if_pcn.c revision 1.67 1 /* $NetBSD: if_pcn.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81
82 #include <sys/rndsource.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_ether.h>
88
89 #include <net/bpf.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <machine/endian.h>
94
95 #include <dev/mii/mii.h>
96 #include <dev/mii/miivar.h>
97
98 #include <dev/ic/am79900reg.h>
99 #include <dev/ic/lancereg.h>
100
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 #include <dev/pci/pcidevs.h>
104
105 #include <dev/pci/if_pcnreg.h>
106
107 /*
108 * Transmit descriptor list size. This is arbitrary, but allocate
109 * enough descriptors for 128 pending transmissions, and 4 segments
110 * per packet. This MUST work out to a power of 2.
111 *
112 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
113 *
114 * So we play a little trick here. We give each packet up to 16
115 * DMA segments, but only allocate the max of 512 descriptors. The
116 * transmit logic can deal with this, we just are hoping to sneak by.
117 */
118 #define PCN_NTXSEGS 16
119 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */
120
121 #define PCN_TXQUEUELEN 128
122 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
123 #define PCN_NTXDESC 512
124 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
125 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
126 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
127
128 /* Tx interrupt every N + 1 packets. */
129 #define PCN_TXINTR_MASK 7
130
131 /*
132 * Receive descriptor list size. We have one Rx buffer per incoming
133 * packet, so this logic is a little simpler.
134 */
135 #define PCN_NRXDESC 128
136 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
137 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
138
139 /*
140 * Control structures are DMA'd to the PCnet chip. We allocate them in
141 * a single clump that maps to a single DMA segment to make several things
142 * easier.
143 */
144 struct pcn_control_data {
145 /* The transmit descriptors. */
146 struct letmd pcd_txdescs[PCN_NTXDESC];
147
148 /* The receive descriptors. */
149 struct lermd pcd_rxdescs[PCN_NRXDESC];
150
151 /* The init block. */
152 struct leinit pcd_initblock;
153 };
154
155 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
156 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
157 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
158 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
159
160 /*
161 * Software state for transmit jobs.
162 */
163 struct pcn_txsoft {
164 struct mbuf *txs_mbuf; /* head of our mbuf chain */
165 bus_dmamap_t txs_dmamap; /* our DMA map */
166 int txs_firstdesc; /* first descriptor in packet */
167 int txs_lastdesc; /* last descriptor in packet */
168 };
169
170 /*
171 * Software state for receive jobs.
172 */
173 struct pcn_rxsoft {
174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t rxs_dmamap; /* our DMA map */
176 };
177
178 /*
179 * Description of Rx FIFO watermarks for various revisions.
180 */
181 static const char * const pcn_79c970_rcvfw[] = {
182 "16 bytes",
183 "64 bytes",
184 "128 bytes",
185 NULL,
186 };
187
188 static const char * const pcn_79c971_rcvfw[] = {
189 "16 bytes",
190 "64 bytes",
191 "112 bytes",
192 NULL,
193 };
194
195 /*
196 * Description of Tx start points for various revisions.
197 */
198 static const char * const pcn_79c970_xmtsp[] = {
199 "8 bytes",
200 "64 bytes",
201 "128 bytes",
202 "248 bytes",
203 };
204
205 static const char * const pcn_79c971_xmtsp[] = {
206 "20 bytes",
207 "64 bytes",
208 "128 bytes",
209 "248 bytes",
210 };
211
212 static const char * const pcn_79c971_xmtsp_sram[] = {
213 "44 bytes",
214 "64 bytes",
215 "128 bytes",
216 "store-and-forward",
217 };
218
219 /*
220 * Description of Tx FIFO watermarks for various revisions.
221 */
222 static const char * const pcn_79c970_xmtfw[] = {
223 "16 bytes",
224 "64 bytes",
225 "128 bytes",
226 NULL,
227 };
228
229 static const char * const pcn_79c971_xmtfw[] = {
230 "16 bytes",
231 "64 bytes",
232 "108 bytes",
233 NULL,
234 };
235
236 /*
237 * Software state per device.
238 */
239 struct pcn_softc {
240 device_t sc_dev; /* generic device information */
241 bus_space_tag_t sc_st; /* bus space tag */
242 bus_space_handle_t sc_sh; /* bus space handle */
243 bus_dma_tag_t sc_dmat; /* bus DMA tag */
244 struct ethercom sc_ethercom; /* Ethernet common data */
245
246 /* Points to our media routines, etc. */
247 const struct pcn_variant *sc_variant;
248
249 void *sc_ih; /* interrupt cookie */
250
251 struct mii_data sc_mii; /* MII/media information */
252
253 callout_t sc_tick_ch; /* tick callout */
254
255 bus_dmamap_t sc_cddmamap; /* control data DMA map */
256 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
257
258 /* Software state for transmit and receive descriptors. */
259 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
260 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
261
262 /* Control data structures */
263 struct pcn_control_data *sc_control_data;
264 #define sc_txdescs sc_control_data->pcd_txdescs
265 #define sc_rxdescs sc_control_data->pcd_rxdescs
266 #define sc_initblock sc_control_data->pcd_initblock
267
268 #ifdef PCN_EVENT_COUNTERS
269 /* Event counters. */
270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
272 struct evcnt sc_ev_txintr; /* Tx interrupts */
273 struct evcnt sc_ev_rxintr; /* Rx interrupts */
274 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
275 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
276 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
277
278 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
279 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
280 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
281 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
282 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
283 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
284 struct evcnt sc_ev_txcopy; /* Tx copies required */
285 #endif /* PCN_EVENT_COUNTERS */
286
287 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
288 int sc_rcvfw;
289
290 const char * const *sc_xmtsp_desc; /* Tx start point info */
291 int sc_xmtsp;
292
293 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
294 int sc_xmtfw;
295
296 int sc_flags; /* misc. flags; see below */
297 int sc_swstyle; /* the software style in use */
298
299 int sc_txfree; /* number of free Tx descriptors */
300 int sc_txnext; /* next ready Tx descriptor */
301
302 int sc_txsfree; /* number of free Tx jobs */
303 int sc_txsnext; /* next free Tx job */
304 int sc_txsdirty; /* dirty Tx jobs */
305
306 int sc_rxptr; /* next ready Rx descriptor/job */
307
308 uint32_t sc_csr5; /* prototype CSR5 register */
309 uint32_t sc_mode; /* prototype MODE register */
310
311 krndsource_t rnd_source; /* random source */
312 };
313
314 /* sc_flags */
315 #define PCN_F_HAS_MII 0x0001 /* has MII */
316
317 #ifdef PCN_EVENT_COUNTERS
318 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
319 #else
320 #define PCN_EVCNT_INCR(ev) /* nothing */
321 #endif
322
323 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
324 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
325 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
326
327 #define PCN_CDTXSYNC(sc, x, n, ops) \
328 do { \
329 int __x, __n; \
330 \
331 __x = (x); \
332 __n = (n); \
333 \
334 /* If it will wrap around, sync to the end of the ring. */ \
335 if ((__x + __n) > PCN_NTXDESC) { \
336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
337 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
338 (PCN_NTXDESC - __x), (ops)); \
339 __n -= (PCN_NTXDESC - __x); \
340 __x = 0; \
341 } \
342 \
343 /* Now sync whatever is left. */ \
344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
345 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
346 } while (/*CONSTCOND*/0)
347
348 #define PCN_CDRXSYNC(sc, x, ops) \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
351
352 #define PCN_CDINITSYNC(sc, ops) \
353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
354 PCN_CDINITOFF, sizeof(struct leinit), (ops))
355
356 #define PCN_INIT_RXDESC(sc, x) \
357 do { \
358 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
359 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
360 struct mbuf *__m = __rxs->rxs_mbuf; \
361 \
362 /* \
363 * Note: We scoot the packet forward 2 bytes in the buffer \
364 * so that the payload after the Ethernet header is aligned \
365 * to a 4-byte boundary. \
366 */ \
367 __m->m_data = __m->m_ext.ext_buf + 2; \
368 \
369 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
370 __rmd->rmd2 = \
371 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
372 __rmd->rmd0 = 0; \
373 } else { \
374 __rmd->rmd2 = 0; \
375 __rmd->rmd0 = \
376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
377 } \
378 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
379 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
380 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
381 } while(/*CONSTCOND*/0)
382
383 static void pcn_start(struct ifnet *);
384 static void pcn_watchdog(struct ifnet *);
385 static int pcn_ioctl(struct ifnet *, u_long, void *);
386 static int pcn_init(struct ifnet *);
387 static void pcn_stop(struct ifnet *, int);
388
389 static bool pcn_shutdown(device_t, int);
390
391 static void pcn_reset(struct pcn_softc *);
392 static void pcn_rxdrain(struct pcn_softc *);
393 static int pcn_add_rxbuf(struct pcn_softc *, int);
394 static void pcn_tick(void *);
395
396 static void pcn_spnd(struct pcn_softc *);
397
398 static void pcn_set_filter(struct pcn_softc *);
399
400 static int pcn_intr(void *);
401 static void pcn_txintr(struct pcn_softc *);
402 static int pcn_rxintr(struct pcn_softc *);
403
404 static int pcn_mii_readreg(device_t, int, int, uint16_t *);
405 static int pcn_mii_writereg(device_t, int, int, uint16_t);
406 static void pcn_mii_statchg(struct ifnet *);
407
408 static void pcn_79c970_mediainit(struct pcn_softc *);
409 static int pcn_79c970_mediachange(struct ifnet *);
410 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
411
412 static void pcn_79c971_mediainit(struct pcn_softc *);
413
414 /*
415 * Description of a PCnet-PCI variant. Used to select media access
416 * method, mostly, and to print a nice description of the chip.
417 */
418 static const struct pcn_variant {
419 const char *pcv_desc;
420 void (*pcv_mediainit)(struct pcn_softc *);
421 uint16_t pcv_chipid;
422 } pcn_variants[] = {
423 { "Am79c970 PCnet-PCI",
424 pcn_79c970_mediainit,
425 PARTID_Am79c970 },
426
427 { "Am79c970A PCnet-PCI II",
428 pcn_79c970_mediainit,
429 PARTID_Am79c970A },
430
431 { "Am79c971 PCnet-FAST",
432 pcn_79c971_mediainit,
433 PARTID_Am79c971 },
434
435 { "Am79c972 PCnet-FAST+",
436 pcn_79c971_mediainit,
437 PARTID_Am79c972 },
438
439 { "Am79c973 PCnet-FAST III",
440 pcn_79c971_mediainit,
441 PARTID_Am79c973 },
442
443 { "Am79c975 PCnet-FAST III",
444 pcn_79c971_mediainit,
445 PARTID_Am79c975 },
446
447 { "Unknown PCnet-PCI variant",
448 pcn_79c971_mediainit,
449 0 },
450 };
451
452 int pcn_copy_small = 0;
453
454 static int pcn_match(device_t, cfdata_t, void *);
455 static void pcn_attach(device_t, device_t, void *);
456
457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
458 pcn_match, pcn_attach, NULL, NULL);
459
460 /*
461 * Routines to read and write the PCnet-PCI CSR/BCR space.
462 */
463
464 static inline uint32_t
465 pcn_csr_read(struct pcn_softc *sc, int reg)
466 {
467
468 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
469 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
470 }
471
472 static inline void
473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
474 {
475
476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
478 }
479
480 static inline uint32_t
481 pcn_bcr_read(struct pcn_softc *sc, int reg)
482 {
483
484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
485 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
486 }
487
488 static inline void
489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
490 {
491
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
494 }
495
496 static bool
497 pcn_is_vmware(const char *enaddr)
498 {
499
500 /*
501 * VMware uses the OUI 00:0c:29 for auto-generated MAC
502 * addresses.
503 */
504 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
505 return (TRUE);
506
507 /*
508 * VMware uses the OUI 00:50:56 for manually-set MAC
509 * addresses (and some auto-generated ones).
510 */
511 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
512 return (TRUE);
513
514 return (FALSE);
515 }
516
517 static const struct pcn_variant *
518 pcn_lookup_variant(uint16_t chipid)
519 {
520 const struct pcn_variant *pcv;
521
522 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
523 if (chipid == pcv->pcv_chipid)
524 return (pcv);
525 }
526
527 /*
528 * This covers unknown chips, which we simply treat like
529 * a generic PCnet-FAST.
530 */
531 return (pcv);
532 }
533
534 static int
535 pcn_match(device_t parent, cfdata_t cf, void *aux)
536 {
537 struct pci_attach_args *pa = aux;
538
539 /*
540 * IBM Makes a PCI variant of this card which shows up as a
541 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
542 * this card is truly a pcn card, so we have a special case match for
543 * it
544 */
545
546 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
548 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
549 return(1);
550
551 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
552 return (0);
553
554 switch (PCI_PRODUCT(pa->pa_id)) {
555 case PCI_PRODUCT_AMD_PCNET_PCI:
556 /* Beat if_le_pci.c */
557 return (10);
558 }
559
560 return (0);
561 }
562
563 static void
564 pcn_attach(device_t parent, device_t self, void *aux)
565 {
566 struct pcn_softc *sc = device_private(self);
567 struct pci_attach_args *pa = aux;
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 pci_chipset_tag_t pc = pa->pa_pc;
570 pci_intr_handle_t ih;
571 const char *intrstr = NULL;
572 bus_space_tag_t iot, memt;
573 bus_space_handle_t ioh, memh;
574 bus_dma_segment_t seg;
575 int ioh_valid, memh_valid;
576 int ntxsegs, i, rseg, error;
577 uint32_t chipid, reg;
578 uint8_t enaddr[ETHER_ADDR_LEN];
579 prop_object_t obj;
580 bool is_vmware;
581 char intrbuf[PCI_INTRSTR_LEN];
582
583 sc->sc_dev = self;
584 callout_init(&sc->sc_tick_ch, 0);
585
586 aprint_normal(": AMD PCnet-PCI Ethernet\n");
587
588 /*
589 * Map the device.
590 */
591 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
592 &iot, &ioh, NULL, NULL) == 0);
593 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
595 &memt, &memh, NULL, NULL) == 0);
596
597 if (memh_valid) {
598 sc->sc_st = memt;
599 sc->sc_sh = memh;
600 } else if (ioh_valid) {
601 sc->sc_st = iot;
602 sc->sc_sh = ioh;
603 } else {
604 aprint_error_dev(self, "unable to map device registers\n");
605 return;
606 }
607
608 sc->sc_dmat = pa->pa_dmat;
609
610 /* Make sure bus mastering is enabled. */
611 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
612 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
613 PCI_COMMAND_MASTER_ENABLE);
614
615 /* power up chip */
616 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
617 NULL)) && error != EOPNOTSUPP) {
618 aprint_error_dev(self, "cannot activate %d\n", error);
619 return;
620 }
621
622 /*
623 * Reset the chip to a known state. This also puts the
624 * chip into 32-bit mode.
625 */
626 pcn_reset(sc);
627
628 /*
629 * On some systems with the chip is an on-board device, the
630 * EEPROM is not used. Handle this by reading the MAC address
631 * from the CSRs (assuming that boot firmware has written
632 * it there).
633 */
634 obj = prop_dictionary_get(device_properties(sc->sc_dev),
635 "am79c970-no-eeprom");
636 if (prop_bool_true(obj)) {
637 for (i = 0; i < 3; i++) {
638 uint32_t val;
639 val = pcn_csr_read(sc, LE_CSR12 + i);
640 enaddr[2 * i] = val & 0xff;
641 enaddr[2 * i + 1] = (val >> 8) & 0xff;
642 }
643 } else {
644 for (i = 0; i < ETHER_ADDR_LEN; i++) {
645 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
646 PCN32_APROM + i);
647 }
648 }
649
650 /* Check to see if this is a VMware emulated network interface. */
651 is_vmware = pcn_is_vmware(enaddr);
652
653 /*
654 * Now that the device is mapped, attempt to figure out what
655 * kind of chip we have. Note that IDL has all 32 bits of
656 * the chip ID when we're in 32-bit mode.
657 */
658 chipid = pcn_csr_read(sc, LE_CSR88);
659 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
660
661 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
662 sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
663 ether_sprintf(enaddr));
664
665 /*
666 * VMware has a bug in its network interface emulation; we must
667 * limit the number of Tx segments.
668 */
669 if (is_vmware) {
670 ntxsegs = PCN_NTXSEGS_VMWARE;
671 prop_dictionary_set_bool(device_properties(sc->sc_dev),
672 "am79c970-vmware-tx-bug", TRUE);
673 aprint_verbose_dev(self,
674 "VMware Tx segment count bug detected\n");
675 } else {
676 ntxsegs = PCN_NTXSEGS;
677 }
678
679 /*
680 * Map and establish our interrupt.
681 */
682 if (pci_intr_map(pa, &ih)) {
683 aprint_error_dev(self, "unable to map interrupt\n");
684 return;
685 }
686 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
687 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, pcn_intr, sc,
688 device_xname(self));
689 if (sc->sc_ih == NULL) {
690 aprint_error_dev(self, "unable to establish interrupt");
691 if (intrstr != NULL)
692 aprint_error(" at %s", intrstr);
693 aprint_error("\n");
694 return;
695 }
696 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
697
698 /*
699 * Allocate the control data structures, and create and load the
700 * DMA map for it.
701 */
702 if ((error = bus_dmamem_alloc(sc->sc_dmat,
703 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
704 0)) != 0) {
705 aprint_error_dev(self, "unable to allocate control data, "
706 "error = %d\n", error);
707 goto fail_0;
708 }
709
710 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
711 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
712 BUS_DMA_COHERENT)) != 0) {
713 aprint_error_dev(self, "unable to map control data, "
714 "error = %d\n", error);
715 goto fail_1;
716 }
717
718 if ((error = bus_dmamap_create(sc->sc_dmat,
719 sizeof(struct pcn_control_data), 1,
720 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
721 aprint_error_dev(self, "unable to create control data DMA map, "
722 "error = %d\n", error);
723 goto fail_2;
724 }
725
726 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
727 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
728 0)) != 0) {
729 aprint_error_dev(self,
730 "unable to load control data DMA map, error = %d\n", error);
731 goto fail_3;
732 }
733
734 /* Create the transmit buffer DMA maps. */
735 for (i = 0; i < PCN_TXQUEUELEN; i++) {
736 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
737 ntxsegs, MCLBYTES, 0, 0,
738 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
739 aprint_error_dev(self,
740 "unable to create tx DMA map %d, error = %d\n",
741 i, error);
742 goto fail_4;
743 }
744 }
745
746 /* Create the receive buffer DMA maps. */
747 for (i = 0; i < PCN_NRXDESC; i++) {
748 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
749 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
750 aprint_error_dev(self,
751 "unable to create rx DMA map %d, error = %d\n",
752 i, error);
753 goto fail_5;
754 }
755 sc->sc_rxsoft[i].rxs_mbuf = NULL;
756 }
757
758 /* Initialize our media structures. */
759 (*sc->sc_variant->pcv_mediainit)(sc);
760
761 /*
762 * Initialize FIFO watermark info.
763 */
764 switch (sc->sc_variant->pcv_chipid) {
765 case PARTID_Am79c970:
766 case PARTID_Am79c970A:
767 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
768 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
769 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
770 break;
771
772 default:
773 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
774 /*
775 * Read BCR25 to determine how much SRAM is
776 * on the board. If > 0, then we the chip
777 * uses different Start Point thresholds.
778 *
779 * Note BCR25 and BCR26 are loaded from the
780 * EEPROM on RST, and unaffected by S_RESET,
781 * so we don't really have to worry about
782 * them except for this.
783 */
784 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
785 if (reg != 0)
786 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
787 else
788 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
789 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
790 break;
791 }
792
793 /*
794 * Set up defaults -- see the tables above for what these
795 * values mean.
796 *
797 * XXX How should we tune RCVFW and XMTFW?
798 */
799 sc->sc_rcvfw = 1; /* minimum for full-duplex */
800 sc->sc_xmtsp = 1;
801 sc->sc_xmtfw = 0;
802
803 ifp = &sc->sc_ethercom.ec_if;
804 strcpy(ifp->if_xname, device_xname(self));
805 ifp->if_softc = sc;
806 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
807 ifp->if_ioctl = pcn_ioctl;
808 ifp->if_start = pcn_start;
809 ifp->if_watchdog = pcn_watchdog;
810 ifp->if_init = pcn_init;
811 ifp->if_stop = pcn_stop;
812 IFQ_SET_READY(&ifp->if_snd);
813
814 /* Attach the interface. */
815 if_attach(ifp);
816 if_deferred_start_init(ifp, NULL);
817 ether_ifattach(ifp, enaddr);
818 rnd_attach_source(&sc->rnd_source, device_xname(self),
819 RND_TYPE_NET, RND_FLAG_DEFAULT);
820
821 #ifdef PCN_EVENT_COUNTERS
822 /* Attach event counters. */
823 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
824 NULL, device_xname(self), "txsstall");
825 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
826 NULL, device_xname(self), "txdstall");
827 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
828 NULL, device_xname(self), "txintr");
829 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
830 NULL, device_xname(self), "rxintr");
831 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
832 NULL, device_xname(self), "babl");
833 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
834 NULL, device_xname(self), "miss");
835 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
836 NULL, device_xname(self), "merr");
837
838 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
839 NULL, device_xname(self), "txseg1");
840 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
841 NULL, device_xname(self), "txseg2");
842 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
843 NULL, device_xname(self), "txseg3");
844 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
845 NULL, device_xname(self), "txseg4");
846 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
847 NULL, device_xname(self), "txseg5");
848 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
849 NULL, device_xname(self), "txsegmore");
850 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
851 NULL, device_xname(self), "txcopy");
852 #endif /* PCN_EVENT_COUNTERS */
853
854 /*
855 * Establish power handler with shutdown hook, to make sure
856 * the interface is shutdown during reboot.
857 */
858 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
859 pmf_class_network_register(self, ifp);
860 else
861 aprint_error_dev(self, "couldn't establish power handler\n");
862
863 return;
864
865 /*
866 * Free any resources we've allocated during the failed attach
867 * attempt. Do this in reverse order and fall through.
868 */
869 fail_5:
870 for (i = 0; i < PCN_NRXDESC; i++) {
871 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
872 bus_dmamap_destroy(sc->sc_dmat,
873 sc->sc_rxsoft[i].rxs_dmamap);
874 }
875 fail_4:
876 for (i = 0; i < PCN_TXQUEUELEN; i++) {
877 if (sc->sc_txsoft[i].txs_dmamap != NULL)
878 bus_dmamap_destroy(sc->sc_dmat,
879 sc->sc_txsoft[i].txs_dmamap);
880 }
881 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
882 fail_3:
883 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
884 fail_2:
885 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
886 sizeof(struct pcn_control_data));
887 fail_1:
888 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
889 fail_0:
890 return;
891 }
892
893 /*
894 * pcn_shutdown:
895 *
896 * Make sure the interface is stopped at reboot time.
897 */
898 static bool
899 pcn_shutdown(device_t self, int howto)
900 {
901 struct pcn_softc *sc = device_private(self);
902
903 pcn_stop(&sc->sc_ethercom.ec_if, 1);
904 /* explicitly reset the chip for some onboard one with lazy firmware */
905 pcn_reset(sc);
906
907 return true;
908 }
909
910 /*
911 * pcn_start: [ifnet interface function]
912 *
913 * Start packet transmission on the interface.
914 */
915 static void
916 pcn_start(struct ifnet *ifp)
917 {
918 struct pcn_softc *sc = ifp->if_softc;
919 struct mbuf *m0, *m;
920 struct pcn_txsoft *txs;
921 bus_dmamap_t dmamap;
922 int error, nexttx, lasttx = -1, ofree, seg;
923
924 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
925 return;
926
927 /*
928 * Remember the previous number of free descriptors and
929 * the first descriptor we'll use.
930 */
931 ofree = sc->sc_txfree;
932
933 /*
934 * Loop through the send queue, setting up transmit descriptors
935 * until we drain the queue, or use up all available transmit
936 * descriptors.
937 */
938 for (;;) {
939 /* Grab a packet off the queue. */
940 IFQ_POLL(&ifp->if_snd, m0);
941 if (m0 == NULL)
942 break;
943 m = NULL;
944
945 /* Get a work queue entry. */
946 if (sc->sc_txsfree == 0) {
947 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
948 break;
949 }
950
951 txs = &sc->sc_txsoft[sc->sc_txsnext];
952 dmamap = txs->txs_dmamap;
953
954 /*
955 * Load the DMA map. If this fails, the packet either
956 * didn't fit in the alloted number of segments, or we
957 * were short on resources. In this case, we'll copy
958 * and try again.
959 */
960 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
961 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
962 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
963 MGETHDR(m, M_DONTWAIT, MT_DATA);
964 if (m == NULL) {
965 printf("%s: unable to allocate Tx mbuf\n",
966 device_xname(sc->sc_dev));
967 break;
968 }
969 if (m0->m_pkthdr.len > MHLEN) {
970 MCLGET(m, M_DONTWAIT);
971 if ((m->m_flags & M_EXT) == 0) {
972 printf("%s: unable to allocate Tx "
973 "cluster\n",
974 device_xname(sc->sc_dev));
975 m_freem(m);
976 break;
977 }
978 }
979 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
980 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
981 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
982 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
983 if (error) {
984 printf("%s: unable to load Tx buffer, "
985 "error = %d\n", device_xname(sc->sc_dev),
986 error);
987 m_freem(m);
988 break;
989 }
990 }
991
992 /*
993 * Ensure we have enough descriptors free to describe
994 * the packet. Note, we always reserve one descriptor
995 * at the end of the ring as a termination point, to
996 * prevent wrap-around.
997 */
998 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
999 /*
1000 * Not enough free descriptors to transmit this
1001 * packet. We haven't committed anything yet,
1002 * so just unload the DMA map, put the packet
1003 * back on the queue, and punt. Notify the upper
1004 * layer that there are not more slots left.
1005 *
1006 * XXX We could allocate an mbuf and copy, but
1007 * XXX is it worth it?
1008 */
1009 ifp->if_flags |= IFF_OACTIVE;
1010 bus_dmamap_unload(sc->sc_dmat, dmamap);
1011 if (m != NULL)
1012 m_freem(m);
1013 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1014 break;
1015 }
1016
1017 IFQ_DEQUEUE(&ifp->if_snd, m0);
1018 if (m != NULL) {
1019 m_freem(m0);
1020 m0 = m;
1021 }
1022
1023 /*
1024 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1025 */
1026
1027 /* Sync the DMA map. */
1028 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1029 BUS_DMASYNC_PREWRITE);
1030
1031 #ifdef PCN_EVENT_COUNTERS
1032 switch (dmamap->dm_nsegs) {
1033 case 1:
1034 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1035 break;
1036 case 2:
1037 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1038 break;
1039 case 3:
1040 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1041 break;
1042 case 4:
1043 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1044 break;
1045 case 5:
1046 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1047 break;
1048 default:
1049 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1050 break;
1051 }
1052 #endif /* PCN_EVENT_COUNTERS */
1053
1054 /*
1055 * Initialize the transmit descriptors.
1056 */
1057 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1058 for (nexttx = sc->sc_txnext, seg = 0;
1059 seg < dmamap->dm_nsegs;
1060 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1061 /*
1062 * If this is the first descriptor we're
1063 * enqueueing, don't set the OWN bit just
1064 * yet. That could cause a race condition.
1065 * We'll do it below.
1066 */
1067 sc->sc_txdescs[nexttx].tmd0 = 0;
1068 sc->sc_txdescs[nexttx].tmd2 =
1069 htole32(dmamap->dm_segs[seg].ds_addr);
1070 sc->sc_txdescs[nexttx].tmd1 =
1071 htole32(LE_T1_ONES |
1072 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1073 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1074 LE_T1_BCNT_MASK));
1075 lasttx = nexttx;
1076 }
1077 } else {
1078 for (nexttx = sc->sc_txnext, seg = 0;
1079 seg < dmamap->dm_nsegs;
1080 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1081 /*
1082 * If this is the first descriptor we're
1083 * enqueueing, don't set the OWN bit just
1084 * yet. That could cause a race condition.
1085 * We'll do it below.
1086 */
1087 sc->sc_txdescs[nexttx].tmd0 =
1088 htole32(dmamap->dm_segs[seg].ds_addr);
1089 sc->sc_txdescs[nexttx].tmd2 = 0;
1090 sc->sc_txdescs[nexttx].tmd1 =
1091 htole32(LE_T1_ONES |
1092 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1093 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1094 LE_T1_BCNT_MASK));
1095 lasttx = nexttx;
1096 }
1097 }
1098
1099 KASSERT(lasttx != -1);
1100 /* Interrupt on the packet, if appropriate. */
1101 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1102 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1103
1104 /* Set `start of packet' and `end of packet' appropriately. */
1105 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1106 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1107 htole32(LE_T1_OWN|LE_T1_STP);
1108
1109 /* Sync the descriptors we're using. */
1110 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1111 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1112
1113 /* Kick the transmitter. */
1114 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1115
1116 /*
1117 * Store a pointer to the packet so we can free it later,
1118 * and remember what txdirty will be once the packet is
1119 * done.
1120 */
1121 txs->txs_mbuf = m0;
1122 txs->txs_firstdesc = sc->sc_txnext;
1123 txs->txs_lastdesc = lasttx;
1124
1125 /* Advance the tx pointer. */
1126 sc->sc_txfree -= dmamap->dm_nsegs;
1127 sc->sc_txnext = nexttx;
1128
1129 sc->sc_txsfree--;
1130 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1131
1132 /* Pass the packet to any BPF listeners. */
1133 bpf_mtap(ifp, m0, BPF_D_OUT);
1134 }
1135
1136 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1137 /* No more slots left; notify upper layer. */
1138 ifp->if_flags |= IFF_OACTIVE;
1139 }
1140
1141 if (sc->sc_txfree != ofree) {
1142 /* Set a watchdog timer in case the chip flakes out. */
1143 ifp->if_timer = 5;
1144 }
1145 }
1146
1147 /*
1148 * pcn_watchdog: [ifnet interface function]
1149 *
1150 * Watchdog timer handler.
1151 */
1152 static void
1153 pcn_watchdog(struct ifnet *ifp)
1154 {
1155 struct pcn_softc *sc = ifp->if_softc;
1156
1157 /*
1158 * Since we're not interrupting every packet, sweep
1159 * up before we report an error.
1160 */
1161 pcn_txintr(sc);
1162
1163 if (sc->sc_txfree != PCN_NTXDESC) {
1164 printf("%s: device timeout (txfree %d txsfree %d)\n",
1165 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1166 ifp->if_oerrors++;
1167
1168 /* Reset the interface. */
1169 (void) pcn_init(ifp);
1170 }
1171
1172 /* Try to get more packets going. */
1173 pcn_start(ifp);
1174 }
1175
1176 /*
1177 * pcn_ioctl: [ifnet interface function]
1178 *
1179 * Handle control requests from the operator.
1180 */
1181 static int
1182 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1183 {
1184 struct pcn_softc *sc = ifp->if_softc;
1185 struct ifreq *ifr = (struct ifreq *) data;
1186 int s, error;
1187
1188 s = splnet();
1189
1190 switch (cmd) {
1191 case SIOCSIFMEDIA:
1192 case SIOCGIFMEDIA:
1193 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1194 break;
1195
1196 default:
1197 error = ether_ioctl(ifp, cmd, data);
1198 if (error == ENETRESET) {
1199 /*
1200 * Multicast list has changed; set the hardware filter
1201 * accordingly.
1202 */
1203 if (ifp->if_flags & IFF_RUNNING)
1204 error = pcn_init(ifp);
1205 else
1206 error = 0;
1207 }
1208 break;
1209 }
1210
1211 /* Try to get more packets going. */
1212 pcn_start(ifp);
1213
1214 splx(s);
1215 return (error);
1216 }
1217
1218 /*
1219 * pcn_intr:
1220 *
1221 * Interrupt service routine.
1222 */
1223 static int
1224 pcn_intr(void *arg)
1225 {
1226 struct pcn_softc *sc = arg;
1227 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1228 uint32_t csr0;
1229 int wantinit, handled = 0;
1230
1231 for (wantinit = 0; wantinit == 0;) {
1232 csr0 = pcn_csr_read(sc, LE_CSR0);
1233 if ((csr0 & LE_C0_INTR) == 0)
1234 break;
1235
1236 rnd_add_uint32(&sc->rnd_source, csr0);
1237
1238 /* ACK the bits and re-enable interrupts. */
1239 pcn_csr_write(sc, LE_CSR0, csr0 &
1240 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1241 LE_C0_TINT|LE_C0_IDON));
1242
1243 handled = 1;
1244
1245 if (csr0 & LE_C0_RINT) {
1246 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1247 wantinit = pcn_rxintr(sc);
1248 }
1249
1250 if (csr0 & LE_C0_TINT) {
1251 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1252 pcn_txintr(sc);
1253 }
1254
1255 if (csr0 & LE_C0_ERR) {
1256 if (csr0 & LE_C0_BABL) {
1257 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1258 ifp->if_oerrors++;
1259 }
1260 if (csr0 & LE_C0_MISS) {
1261 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1262 ifp->if_ierrors++;
1263 }
1264 if (csr0 & LE_C0_MERR) {
1265 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1266 printf("%s: memory error\n",
1267 device_xname(sc->sc_dev));
1268 wantinit = 1;
1269 break;
1270 }
1271 }
1272
1273 if ((csr0 & LE_C0_RXON) == 0) {
1274 printf("%s: receiver disabled\n",
1275 device_xname(sc->sc_dev));
1276 ifp->if_ierrors++;
1277 wantinit = 1;
1278 }
1279
1280 if ((csr0 & LE_C0_TXON) == 0) {
1281 printf("%s: transmitter disabled\n",
1282 device_xname(sc->sc_dev));
1283 ifp->if_oerrors++;
1284 wantinit = 1;
1285 }
1286 }
1287
1288 if (handled) {
1289 if (wantinit)
1290 pcn_init(ifp);
1291
1292 /* Try to get more packets going. */
1293 if_schedule_deferred_start(ifp);
1294 }
1295
1296 return (handled);
1297 }
1298
1299 /*
1300 * pcn_spnd:
1301 *
1302 * Suspend the chip.
1303 */
1304 static void
1305 pcn_spnd(struct pcn_softc *sc)
1306 {
1307 int i;
1308
1309 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1310
1311 for (i = 0; i < 10000; i++) {
1312 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1313 return;
1314 delay(5);
1315 }
1316
1317 printf("%s: WARNING: chip failed to enter suspended state\n",
1318 device_xname(sc->sc_dev));
1319 }
1320
1321 /*
1322 * pcn_txintr:
1323 *
1324 * Helper; handle transmit interrupts.
1325 */
1326 static void
1327 pcn_txintr(struct pcn_softc *sc)
1328 {
1329 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1330 struct pcn_txsoft *txs;
1331 uint32_t tmd1, tmd2, tmd;
1332 int i, j;
1333
1334 ifp->if_flags &= ~IFF_OACTIVE;
1335
1336 /*
1337 * Go through our Tx list and free mbufs for those
1338 * frames which have been transmitted.
1339 */
1340 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1341 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1342 txs = &sc->sc_txsoft[i];
1343
1344 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1345 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1346
1347 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1348 if (tmd1 & LE_T1_OWN)
1349 break;
1350
1351 /*
1352 * Slightly annoying -- we have to loop through the
1353 * descriptors we've used looking for ERR, since it
1354 * can appear on any descriptor in the chain.
1355 */
1356 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1357 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1358 if (tmd & LE_T1_ERR) {
1359 ifp->if_oerrors++;
1360 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1361 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1362 else
1363 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1364 if (tmd2 & LE_T2_UFLO) {
1365 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1366 sc->sc_xmtsp++;
1367 printf("%s: transmit "
1368 "underrun; new threshold: "
1369 "%s\n",
1370 device_xname(sc->sc_dev),
1371 sc->sc_xmtsp_desc[
1372 sc->sc_xmtsp]);
1373 pcn_spnd(sc);
1374 pcn_csr_write(sc, LE_CSR80,
1375 LE_C80_RCVFW(sc->sc_rcvfw) |
1376 LE_C80_XMTSP(sc->sc_xmtsp) |
1377 LE_C80_XMTFW(sc->sc_xmtfw));
1378 pcn_csr_write(sc, LE_CSR5,
1379 sc->sc_csr5);
1380 } else {
1381 printf("%s: transmit "
1382 "underrun\n",
1383 device_xname(sc->sc_dev));
1384 }
1385 } else if (tmd2 & LE_T2_BUFF) {
1386 printf("%s: transmit buffer error\n",
1387 device_xname(sc->sc_dev));
1388 }
1389 if (tmd2 & LE_T2_LCOL)
1390 ifp->if_collisions++;
1391 if (tmd2 & LE_T2_RTRY)
1392 ifp->if_collisions += 16;
1393 goto next_packet;
1394 }
1395 if (j == txs->txs_lastdesc)
1396 break;
1397 }
1398 if (tmd1 & LE_T1_ONE)
1399 ifp->if_collisions++;
1400 else if (tmd & LE_T1_MORE) {
1401 /* Real number is unknown. */
1402 ifp->if_collisions += 2;
1403 }
1404 ifp->if_opackets++;
1405 next_packet:
1406 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1407 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1408 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1409 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1410 m_freem(txs->txs_mbuf);
1411 txs->txs_mbuf = NULL;
1412 }
1413
1414 /* Update the dirty transmit buffer pointer. */
1415 sc->sc_txsdirty = i;
1416
1417 /*
1418 * If there are no more pending transmissions, cancel the watchdog
1419 * timer.
1420 */
1421 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1422 ifp->if_timer = 0;
1423 }
1424
1425 /*
1426 * pcn_rxintr:
1427 *
1428 * Helper; handle receive interrupts.
1429 */
1430 static int
1431 pcn_rxintr(struct pcn_softc *sc)
1432 {
1433 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 struct pcn_rxsoft *rxs;
1435 struct mbuf *m;
1436 uint32_t rmd1;
1437 int i, len;
1438
1439 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1440 rxs = &sc->sc_rxsoft[i];
1441
1442 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1443
1444 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1445
1446 if (rmd1 & LE_R1_OWN)
1447 break;
1448
1449 /*
1450 * Check for errors and make sure the packet fit into
1451 * a single buffer. We have structured this block of
1452 * code the way it is in order to compress it into
1453 * one test in the common case (no error).
1454 */
1455 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1456 (LE_R1_STP|LE_R1_ENP))) {
1457 /* Make sure the packet is in a single buffer. */
1458 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1459 (LE_R1_STP|LE_R1_ENP)) {
1460 printf("%s: packet spilled into next buffer\n",
1461 device_xname(sc->sc_dev));
1462 return (1); /* pcn_intr() will re-init */
1463 }
1464
1465 /*
1466 * If the packet had an error, simple recycle the
1467 * buffer.
1468 */
1469 if (rmd1 & LE_R1_ERR) {
1470 ifp->if_ierrors++;
1471 /*
1472 * If we got an overflow error, chances
1473 * are there will be a CRC error. In
1474 * this case, just print the overflow
1475 * error, and skip the others.
1476 */
1477 if (rmd1 & LE_R1_OFLO)
1478 printf("%s: overflow error\n",
1479 device_xname(sc->sc_dev));
1480 else {
1481 #define PRINTIT(x, str) \
1482 if (rmd1 & (x)) \
1483 printf("%s: %s\n", \
1484 device_xname(sc->sc_dev), \
1485 str);
1486 PRINTIT(LE_R1_FRAM, "framing error");
1487 PRINTIT(LE_R1_CRC, "CRC error");
1488 PRINTIT(LE_R1_BUFF, "buffer error");
1489 }
1490 #undef PRINTIT
1491 PCN_INIT_RXDESC(sc, i);
1492 continue;
1493 }
1494 }
1495
1496 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1497 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1498
1499 /*
1500 * No errors; receive the packet.
1501 */
1502 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1503 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1504 else
1505 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1506
1507 /*
1508 * The LANCE family includes the CRC with every packet;
1509 * trim it off here.
1510 */
1511 len -= ETHER_CRC_LEN;
1512
1513 /*
1514 * If the packet is small enough to fit in a
1515 * single header mbuf, allocate one and copy
1516 * the data into it. This greatly reduces
1517 * memory consumption when we receive lots
1518 * of small packets.
1519 *
1520 * Otherwise, we add a new buffer to the receive
1521 * chain. If this fails, we drop the packet and
1522 * recycle the old buffer.
1523 */
1524 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1525 MGETHDR(m, M_DONTWAIT, MT_DATA);
1526 if (m == NULL)
1527 goto dropit;
1528 m->m_data += 2;
1529 memcpy(mtod(m, void *),
1530 mtod(rxs->rxs_mbuf, void *), len);
1531 PCN_INIT_RXDESC(sc, i);
1532 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1533 rxs->rxs_dmamap->dm_mapsize,
1534 BUS_DMASYNC_PREREAD);
1535 } else {
1536 m = rxs->rxs_mbuf;
1537 if (pcn_add_rxbuf(sc, i) != 0) {
1538 dropit:
1539 ifp->if_ierrors++;
1540 PCN_INIT_RXDESC(sc, i);
1541 bus_dmamap_sync(sc->sc_dmat,
1542 rxs->rxs_dmamap, 0,
1543 rxs->rxs_dmamap->dm_mapsize,
1544 BUS_DMASYNC_PREREAD);
1545 continue;
1546 }
1547 }
1548
1549 m_set_rcvif(m, ifp);
1550 m->m_pkthdr.len = m->m_len = len;
1551
1552 /* Pass it on. */
1553 if_percpuq_enqueue(ifp->if_percpuq, m);
1554 }
1555
1556 /* Update the receive pointer. */
1557 sc->sc_rxptr = i;
1558 return (0);
1559 }
1560
1561 /*
1562 * pcn_tick:
1563 *
1564 * One second timer, used to tick the MII.
1565 */
1566 static void
1567 pcn_tick(void *arg)
1568 {
1569 struct pcn_softc *sc = arg;
1570 int s;
1571
1572 s = splnet();
1573 mii_tick(&sc->sc_mii);
1574 splx(s);
1575
1576 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1577 }
1578
1579 /*
1580 * pcn_reset:
1581 *
1582 * Perform a soft reset on the PCnet-PCI.
1583 */
1584 static void
1585 pcn_reset(struct pcn_softc *sc)
1586 {
1587
1588 /*
1589 * The PCnet-PCI chip is reset by reading from the
1590 * RESET register. Note that while the NE2100 LANCE
1591 * boards require a write after the read, the PCnet-PCI
1592 * chips do not require this.
1593 *
1594 * Since we don't know if we're in 16-bit or 32-bit
1595 * mode right now, issue both (it's safe) in the
1596 * hopes that one will succeed.
1597 */
1598 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1599 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1600
1601 /* Wait 1ms for it to finish. */
1602 delay(1000);
1603
1604 /*
1605 * Select 32-bit I/O mode by issuing a 32-bit write to the
1606 * RDP. Since the RAP is 0 after a reset, writing a 0
1607 * to RDP is safe (since it simply clears CSR0).
1608 */
1609 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1610 }
1611
1612 /*
1613 * pcn_init: [ifnet interface function]
1614 *
1615 * Initialize the interface. Must be called at splnet().
1616 */
1617 static int
1618 pcn_init(struct ifnet *ifp)
1619 {
1620 struct pcn_softc *sc = ifp->if_softc;
1621 struct pcn_rxsoft *rxs;
1622 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1623 int i, error = 0;
1624 uint32_t reg;
1625
1626 /* Cancel any pending I/O. */
1627 pcn_stop(ifp, 0);
1628
1629 /* Reset the chip to a known state. */
1630 pcn_reset(sc);
1631
1632 /*
1633 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1634 * else.
1635 *
1636 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1637 * because the structure layout is compatible with ILACC,
1638 * but the burst mode is only available in SSTYLE 3, and
1639 * burst mode should provide some performance enhancement.
1640 */
1641 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1642 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1643 else
1644 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1645 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1646
1647 /* Initialize the transmit descriptor ring. */
1648 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1649 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1650 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1651 sc->sc_txfree = PCN_NTXDESC;
1652 sc->sc_txnext = 0;
1653
1654 /* Initialize the transmit job descriptors. */
1655 for (i = 0; i < PCN_TXQUEUELEN; i++)
1656 sc->sc_txsoft[i].txs_mbuf = NULL;
1657 sc->sc_txsfree = PCN_TXQUEUELEN;
1658 sc->sc_txsnext = 0;
1659 sc->sc_txsdirty = 0;
1660
1661 /*
1662 * Initialize the receive descriptor and receive job
1663 * descriptor rings.
1664 */
1665 for (i = 0; i < PCN_NRXDESC; i++) {
1666 rxs = &sc->sc_rxsoft[i];
1667 if (rxs->rxs_mbuf == NULL) {
1668 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1669 printf("%s: unable to allocate or map rx "
1670 "buffer %d, error = %d\n",
1671 device_xname(sc->sc_dev), i, error);
1672 /*
1673 * XXX Should attempt to run with fewer receive
1674 * XXX buffers instead of just failing.
1675 */
1676 pcn_rxdrain(sc);
1677 goto out;
1678 }
1679 } else
1680 PCN_INIT_RXDESC(sc, i);
1681 }
1682 sc->sc_rxptr = 0;
1683
1684 /* Initialize MODE for the initialization block. */
1685 sc->sc_mode = 0;
1686 if (ifp->if_flags & IFF_PROMISC)
1687 sc->sc_mode |= LE_C15_PROM;
1688 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1689 sc->sc_mode |= LE_C15_DRCVBC;
1690
1691 /*
1692 * If we have MII, simply select MII in the MODE register,
1693 * and clear ASEL. Otherwise, let ASEL stand (for now),
1694 * and leave PORTSEL alone (it is ignored with ASEL is set).
1695 */
1696 if (sc->sc_flags & PCN_F_HAS_MII) {
1697 pcn_bcr_write(sc, LE_BCR2,
1698 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1699 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1700
1701 /*
1702 * Disable MII auto-negotiation. We handle that in
1703 * our own MII layer.
1704 */
1705 pcn_bcr_write(sc, LE_BCR32,
1706 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1707 }
1708
1709 /*
1710 * Set the Tx and Rx descriptor ring addresses in the init
1711 * block, the TLEN and RLEN other fields of the init block
1712 * MODE register.
1713 */
1714 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1715 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1716 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1717 ((ffs(PCN_NTXDESC) - 1) << 28) |
1718 ((ffs(PCN_NRXDESC) - 1) << 20));
1719
1720 /* Set the station address in the init block. */
1721 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1722 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1723 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1724 (enaddr[5] << 8));
1725
1726 /* Set the multicast filter in the init block. */
1727 pcn_set_filter(sc);
1728
1729 /* Initialize CSR3. */
1730 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1731
1732 /* Initialize CSR4. */
1733 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1734 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1735
1736 /* Initialize CSR5. */
1737 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1738 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1739
1740 /*
1741 * If we have an Am79c971 or greater, initialize CSR7.
1742 *
1743 * XXX Might be nice to use the MII auto-poll interrupt someday.
1744 */
1745 switch (sc->sc_variant->pcv_chipid) {
1746 case PARTID_Am79c970:
1747 case PARTID_Am79c970A:
1748 /* Not available on these chips. */
1749 break;
1750
1751 default:
1752 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1753 break;
1754 }
1755
1756 /*
1757 * On the Am79c970A and greater, initialize BCR18 to
1758 * enable burst mode.
1759 *
1760 * Also enable the "no underflow" option on the Am79c971 and
1761 * higher, which prevents the chip from generating transmit
1762 * underflows, yet sill provides decent performance. Note if
1763 * chip is not connected to external SRAM, then we still have
1764 * to handle underflow errors (the NOUFLO bit is ignored in
1765 * that case).
1766 */
1767 reg = pcn_bcr_read(sc, LE_BCR18);
1768 switch (sc->sc_variant->pcv_chipid) {
1769 case PARTID_Am79c970:
1770 break;
1771
1772 case PARTID_Am79c970A:
1773 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1774 break;
1775
1776 default:
1777 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1778 break;
1779 }
1780 pcn_bcr_write(sc, LE_BCR18, reg);
1781
1782 /*
1783 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1784 */
1785 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1786 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1787
1788 /*
1789 * Send the init block to the chip, and wait for it
1790 * to be processed.
1791 */
1792 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1793 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1794 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1795 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1796 delay(100);
1797 for (i = 0; i < 10000; i++) {
1798 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1799 break;
1800 delay(10);
1801 }
1802 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1803 if (i == 10000) {
1804 printf("%s: timeout processing init block\n",
1805 device_xname(sc->sc_dev));
1806 error = EIO;
1807 goto out;
1808 }
1809
1810 /* Set the media. */
1811 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1812 goto out;
1813
1814 /* Enable interrupts and external activity (and ACK IDON). */
1815 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1816
1817 if (sc->sc_flags & PCN_F_HAS_MII) {
1818 /* Start the one second MII clock. */
1819 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1820 }
1821
1822 /* ...all done! */
1823 ifp->if_flags |= IFF_RUNNING;
1824 ifp->if_flags &= ~IFF_OACTIVE;
1825
1826 out:
1827 if (error)
1828 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1829 return (error);
1830 }
1831
1832 /*
1833 * pcn_rxdrain:
1834 *
1835 * Drain the receive queue.
1836 */
1837 static void
1838 pcn_rxdrain(struct pcn_softc *sc)
1839 {
1840 struct pcn_rxsoft *rxs;
1841 int i;
1842
1843 for (i = 0; i < PCN_NRXDESC; i++) {
1844 rxs = &sc->sc_rxsoft[i];
1845 if (rxs->rxs_mbuf != NULL) {
1846 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1847 m_freem(rxs->rxs_mbuf);
1848 rxs->rxs_mbuf = NULL;
1849 }
1850 }
1851 }
1852
1853 /*
1854 * pcn_stop: [ifnet interface function]
1855 *
1856 * Stop transmission on the interface.
1857 */
1858 static void
1859 pcn_stop(struct ifnet *ifp, int disable)
1860 {
1861 struct pcn_softc *sc = ifp->if_softc;
1862 struct pcn_txsoft *txs;
1863 int i;
1864
1865 if (sc->sc_flags & PCN_F_HAS_MII) {
1866 /* Stop the one second clock. */
1867 callout_stop(&sc->sc_tick_ch);
1868
1869 /* Down the MII. */
1870 mii_down(&sc->sc_mii);
1871 }
1872
1873 /* Stop the chip. */
1874 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1875
1876 /* Release any queued transmit buffers. */
1877 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1878 txs = &sc->sc_txsoft[i];
1879 if (txs->txs_mbuf != NULL) {
1880 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1881 m_freem(txs->txs_mbuf);
1882 txs->txs_mbuf = NULL;
1883 }
1884 }
1885
1886 /* Mark the interface as down and cancel the watchdog timer. */
1887 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1888 ifp->if_timer = 0;
1889
1890 if (disable)
1891 pcn_rxdrain(sc);
1892 }
1893
1894 /*
1895 * pcn_add_rxbuf:
1896 *
1897 * Add a receive buffer to the indicated descriptor.
1898 */
1899 static int
1900 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1901 {
1902 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1903 struct mbuf *m;
1904 int error;
1905
1906 MGETHDR(m, M_DONTWAIT, MT_DATA);
1907 if (m == NULL)
1908 return (ENOBUFS);
1909
1910 MCLGET(m, M_DONTWAIT);
1911 if ((m->m_flags & M_EXT) == 0) {
1912 m_freem(m);
1913 return (ENOBUFS);
1914 }
1915
1916 if (rxs->rxs_mbuf != NULL)
1917 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1918
1919 rxs->rxs_mbuf = m;
1920
1921 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1922 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1923 BUS_DMA_READ|BUS_DMA_NOWAIT);
1924 if (error) {
1925 printf("%s: can't load rx DMA map %d, error = %d\n",
1926 device_xname(sc->sc_dev), idx, error);
1927 panic("pcn_add_rxbuf");
1928 }
1929
1930 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1931 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1932
1933 PCN_INIT_RXDESC(sc, idx);
1934
1935 return (0);
1936 }
1937
1938 /*
1939 * pcn_set_filter:
1940 *
1941 * Set up the receive filter.
1942 */
1943 static void
1944 pcn_set_filter(struct pcn_softc *sc)
1945 {
1946 struct ethercom *ec = &sc->sc_ethercom;
1947 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1948 struct ether_multi *enm;
1949 struct ether_multistep step;
1950 uint32_t crc;
1951
1952 /*
1953 * Set up the multicast address filter by passing all multicast
1954 * addresses through a CRC generator, and then using the high
1955 * order 6 bits as an index into the 64-bit logical address
1956 * filter. The high order bits select the word, while the rest
1957 * of the bits select the bit within the word.
1958 */
1959
1960 if (ifp->if_flags & IFF_PROMISC)
1961 goto allmulti;
1962
1963 sc->sc_initblock.init_ladrf[0] =
1964 sc->sc_initblock.init_ladrf[1] =
1965 sc->sc_initblock.init_ladrf[2] =
1966 sc->sc_initblock.init_ladrf[3] = 0;
1967
1968 ETHER_FIRST_MULTI(step, ec, enm);
1969 while (enm != NULL) {
1970 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1971 /*
1972 * We must listen to a range of multicast addresses.
1973 * For now, just accept all multicasts, rather than
1974 * trying to set only those filter bits needed to match
1975 * the range. (At this time, the only use of address
1976 * ranges is for IP multicast routing, for which the
1977 * range is big enough to require all bits set.)
1978 */
1979 goto allmulti;
1980 }
1981
1982 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1983
1984 /* Just want the 6 most significant bits. */
1985 crc >>= 26;
1986
1987 /* Set the corresponding bit in the filter. */
1988 sc->sc_initblock.init_ladrf[crc >> 4] |=
1989 htole16(1 << (crc & 0xf));
1990
1991 ETHER_NEXT_MULTI(step, enm);
1992 }
1993
1994 ifp->if_flags &= ~IFF_ALLMULTI;
1995 return;
1996
1997 allmulti:
1998 ifp->if_flags |= IFF_ALLMULTI;
1999 sc->sc_initblock.init_ladrf[0] =
2000 sc->sc_initblock.init_ladrf[1] =
2001 sc->sc_initblock.init_ladrf[2] =
2002 sc->sc_initblock.init_ladrf[3] = 0xffff;
2003 }
2004
2005 /*
2006 * pcn_79c970_mediainit:
2007 *
2008 * Initialize media for the Am79c970.
2009 */
2010 static void
2011 pcn_79c970_mediainit(struct pcn_softc *sc)
2012 {
2013 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2014 const char *sep = "";
2015
2016 sc->sc_mii.mii_ifp = ifp;
2017
2018 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2019 pcn_79c970_mediastatus);
2020
2021 #define ADD(str, m, d) \
2022 do { \
2023 aprint_normal("%s%s", sep, str); \
2024 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
2025 sep = ", "; \
2026 } while (/*CONSTCOND*/0)
2027
2028 aprint_normal("%s: ", device_xname(sc->sc_dev));
2029 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2030 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2031 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2032 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2033 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2034 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2035 ADD("auto", IFM_AUTO, 0);
2036 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2037 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2038 aprint_normal("\n");
2039
2040 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2041 }
2042
2043 /*
2044 * pcn_79c970_mediastatus: [ifmedia interface function]
2045 *
2046 * Get the current interface media status (Am79c970 version).
2047 */
2048 static void
2049 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2050 {
2051 struct pcn_softc *sc = ifp->if_softc;
2052
2053 /*
2054 * The currently selected media is always the active media.
2055 * Note: We have no way to determine what media the AUTO
2056 * process picked.
2057 */
2058 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2059 }
2060
2061 /*
2062 * pcn_79c970_mediachange: [ifmedia interface function]
2063 *
2064 * Set hardware to newly-selected media (Am79c970 version).
2065 */
2066 static int
2067 pcn_79c970_mediachange(struct ifnet *ifp)
2068 {
2069 struct pcn_softc *sc = ifp->if_softc;
2070 uint32_t reg;
2071
2072 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2073 /*
2074 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2075 */
2076 reg = pcn_bcr_read(sc, LE_BCR2);
2077 reg |= LE_B2_ASEL;
2078 pcn_bcr_write(sc, LE_BCR2, reg);
2079 } else {
2080 /*
2081 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2082 */
2083 reg = pcn_bcr_read(sc, LE_BCR2);
2084 reg &= ~LE_B2_ASEL;
2085 pcn_bcr_write(sc, LE_BCR2, reg);
2086
2087 reg = pcn_csr_read(sc, LE_CSR15);
2088 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2089 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2090 pcn_csr_write(sc, LE_CSR15, reg);
2091 }
2092
2093 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2094 reg = LE_B9_FDEN;
2095 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2096 reg |= LE_B9_AUIFD;
2097 pcn_bcr_write(sc, LE_BCR9, reg);
2098 } else
2099 pcn_bcr_write(sc, LE_BCR9, 0);
2100
2101 return (0);
2102 }
2103
2104 /*
2105 * pcn_79c971_mediainit:
2106 *
2107 * Initialize media for the Am79c971.
2108 */
2109 static void
2110 pcn_79c971_mediainit(struct pcn_softc *sc)
2111 {
2112 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2113
2114 /* We have MII. */
2115 sc->sc_flags |= PCN_F_HAS_MII;
2116
2117 /*
2118 * The built-in 10BASE-T interface is mapped to the MII
2119 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2120 * word that tells us which PHY to use.
2121 * This driver used to ignore all but the first PHY to
2122 * answer, but this code was removed to support multiple
2123 * external PHYs. As the default instance will be the first
2124 * one to answer, no harm is done by letting the possibly
2125 * non-connected internal PHY show up.
2126 */
2127
2128 /* Initialize our media structures and probe the MII. */
2129 sc->sc_mii.mii_ifp = ifp;
2130 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2131 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2132 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2133
2134 sc->sc_ethercom.ec_mii = &sc->sc_mii;
2135 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2136 ether_mediastatus);
2137
2138 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2139 MII_OFFSET_ANY, 0);
2140 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2141 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2142 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2143 } else
2144 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2145 }
2146
2147 /*
2148 * pcn_mii_readreg: [mii interface function]
2149 *
2150 * Read a PHY register on the MII.
2151 */
2152 static int
2153 pcn_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2154 {
2155 struct pcn_softc *sc = device_private(self);
2156
2157 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2158 *val = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2159 if (*val == 0xffff)
2160 return -1;
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * pcn_mii_writereg: [mii interface function]
2167 *
2168 * Write a PHY register on the MII.
2169 */
2170 static int
2171 pcn_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2172 {
2173 struct pcn_softc *sc = device_private(self);
2174
2175 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2176 pcn_bcr_write(sc, LE_BCR34, val);
2177
2178 return 0;
2179 }
2180
2181 /*
2182 * pcn_mii_statchg: [mii interface function]
2183 *
2184 * Callback from MII layer when media changes.
2185 */
2186 static void
2187 pcn_mii_statchg(struct ifnet *ifp)
2188 {
2189 struct pcn_softc *sc = ifp->if_softc;
2190
2191 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2192 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2193 else
2194 pcn_bcr_write(sc, LE_BCR9, 0);
2195 }
2196