Home | History | Annotate | Line # | Download | only in pci
if_pcn.c revision 1.74
      1 /*	$NetBSD: if_pcn.c,v 1.74 2020/02/07 00:04:28 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Device driver for the AMD PCnet-PCI series of Ethernet
     40  * chips:
     41  *
     42  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
     43  *	  Local Bus
     44  *
     45  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
     46  *	  for PCI Local Bus
     47  *
     48  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
     49  *	  Ethernet Controller for PCI Local Bus
     50  *
     51  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
     52  *	  with OnNow Support
     53  *
     54  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
     55  *	  Ethernet Controller with Integrated PHY
     56  *
     57  * This also supports the virtual PCnet-PCI Ethernet interface found
     58  * in VMware.
     59  *
     60  * TODO:
     61  *
     62  *	* Split this into bus-specific and bus-independent portions.
     63  *	  The core could also be used for the ILACC (Am79900) 32-bit
     64  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.74 2020/02/07 00:04:28 thorpej Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/callout.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/malloc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/socket.h>
     77 #include <sys/ioctl.h>
     78 #include <sys/errno.h>
     79 #include <sys/device.h>
     80 #include <sys/queue.h>
     81 
     82 #include <sys/rndsource.h>
     83 
     84 #include <net/if.h>
     85 #include <net/if_dl.h>
     86 #include <net/if_media.h>
     87 #include <net/if_ether.h>
     88 
     89 #include <net/bpf.h>
     90 
     91 #include <sys/bus.h>
     92 #include <sys/intr.h>
     93 #include <machine/endian.h>
     94 
     95 #include <dev/mii/mii.h>
     96 #include <dev/mii/miivar.h>
     97 
     98 #include <dev/ic/am79900reg.h>
     99 #include <dev/ic/lancereg.h>
    100 
    101 #include <dev/pci/pcireg.h>
    102 #include <dev/pci/pcivar.h>
    103 #include <dev/pci/pcidevs.h>
    104 
    105 #include <dev/pci/if_pcnreg.h>
    106 
    107 /*
    108  * Transmit descriptor list size.  This is arbitrary, but allocate
    109  * enough descriptors for 128 pending transmissions, and 4 segments
    110  * per packet.  This MUST work out to a power of 2.
    111  *
    112  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
    113  *
    114  * So we play a little trick here.  We give each packet up to 16
    115  * DMA segments, but only allocate the max of 512 descriptors.  The
    116  * transmit logic can deal with this, we just are hoping to sneak by.
    117  */
    118 #define	PCN_NTXSEGS		16
    119 #define	PCN_NTXSEGS_VMWARE	8	/* bug in VMware's emulation */
    120 
    121 #define	PCN_TXQUEUELEN		128
    122 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
    123 #define	PCN_NTXDESC		512
    124 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
    125 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
    126 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
    127 
    128 /* Tx interrupt every N + 1 packets. */
    129 #define	PCN_TXINTR_MASK		7
    130 
    131 /*
    132  * Receive descriptor list size.  We have one Rx buffer per incoming
    133  * packet, so this logic is a little simpler.
    134  */
    135 #define	PCN_NRXDESC		128
    136 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
    137 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
    138 
    139 /*
    140  * Control structures are DMA'd to the PCnet chip.  We allocate them in
    141  * a single clump that maps to a single DMA segment to make several things
    142  * easier.
    143  */
    144 struct pcn_control_data {
    145 	/* The transmit descriptors. */
    146 	struct letmd pcd_txdescs[PCN_NTXDESC];
    147 
    148 	/* The receive descriptors. */
    149 	struct lermd pcd_rxdescs[PCN_NRXDESC];
    150 
    151 	/* The init block. */
    152 	struct leinit pcd_initblock;
    153 };
    154 
    155 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
    156 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
    157 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
    158 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
    159 
    160 /*
    161  * Software state for transmit jobs.
    162  */
    163 struct pcn_txsoft {
    164 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    165 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    166 	int txs_firstdesc;		/* first descriptor in packet */
    167 	int txs_lastdesc;		/* last descriptor in packet */
    168 };
    169 
    170 /*
    171  * Software state for receive jobs.
    172  */
    173 struct pcn_rxsoft {
    174 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    175 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    176 };
    177 
    178 /*
    179  * Description of Rx FIFO watermarks for various revisions.
    180  */
    181 static const char * const pcn_79c970_rcvfw[] = {
    182 	"16 bytes",
    183 	"64 bytes",
    184 	"128 bytes",
    185 	NULL,
    186 };
    187 
    188 static const char * const pcn_79c971_rcvfw[] = {
    189 	"16 bytes",
    190 	"64 bytes",
    191 	"112 bytes",
    192 	NULL,
    193 };
    194 
    195 /*
    196  * Description of Tx start points for various revisions.
    197  */
    198 static const char * const pcn_79c970_xmtsp[] = {
    199 	"8 bytes",
    200 	"64 bytes",
    201 	"128 bytes",
    202 	"248 bytes",
    203 };
    204 
    205 static const char * const pcn_79c971_xmtsp[] = {
    206 	"20 bytes",
    207 	"64 bytes",
    208 	"128 bytes",
    209 	"248 bytes",
    210 };
    211 
    212 static const char * const pcn_79c971_xmtsp_sram[] = {
    213 	"44 bytes",
    214 	"64 bytes",
    215 	"128 bytes",
    216 	"store-and-forward",
    217 };
    218 
    219 /*
    220  * Description of Tx FIFO watermarks for various revisions.
    221  */
    222 static const char * const pcn_79c970_xmtfw[] = {
    223 	"16 bytes",
    224 	"64 bytes",
    225 	"128 bytes",
    226 	NULL,
    227 };
    228 
    229 static const char * const pcn_79c971_xmtfw[] = {
    230 	"16 bytes",
    231 	"64 bytes",
    232 	"108 bytes",
    233 	NULL,
    234 };
    235 
    236 /*
    237  * Software state per device.
    238  */
    239 struct pcn_softc {
    240 	device_t sc_dev;		/* generic device information */
    241 	bus_space_tag_t sc_st;		/* bus space tag */
    242 	bus_space_handle_t sc_sh;	/* bus space handle */
    243 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    244 	struct ethercom sc_ethercom;	/* Ethernet common data */
    245 
    246 	/* Points to our media routines, etc. */
    247 	const struct pcn_variant *sc_variant;
    248 
    249 	void *sc_ih;			/* interrupt cookie */
    250 
    251 	struct mii_data sc_mii;		/* MII/media information */
    252 
    253 	callout_t sc_tick_ch;		/* tick callout */
    254 
    255 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    256 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    257 
    258 	/* Software state for transmit and receive descriptors. */
    259 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
    260 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
    261 
    262 	/* Control data structures */
    263 	struct pcn_control_data *sc_control_data;
    264 #define	sc_txdescs	sc_control_data->pcd_txdescs
    265 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
    266 #define	sc_initblock	sc_control_data->pcd_initblock
    267 
    268 #ifdef PCN_EVENT_COUNTERS
    269 	/* Event counters. */
    270 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    271 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    272 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    273 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    274 	struct evcnt sc_ev_babl;	/* BABL in pcn_intr() */
    275 	struct evcnt sc_ev_miss;	/* MISS in pcn_intr() */
    276 	struct evcnt sc_ev_merr;	/* MERR in pcn_intr() */
    277 
    278 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    279 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    280 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    281 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    282 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    283 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    284 	struct evcnt sc_ev_txcopy;	/* Tx copies required */
    285 #endif /* PCN_EVENT_COUNTERS */
    286 
    287 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
    288 	int sc_rcvfw;
    289 
    290 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
    291 	int sc_xmtsp;
    292 
    293 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
    294 	int sc_xmtfw;
    295 
    296 	int sc_flags;			/* misc. flags; see below */
    297 	int sc_swstyle;			/* the software style in use */
    298 
    299 	int sc_txfree;			/* number of free Tx descriptors */
    300 	int sc_txnext;			/* next ready Tx descriptor */
    301 
    302 	int sc_txsfree;			/* number of free Tx jobs */
    303 	int sc_txsnext;			/* next free Tx job */
    304 	int sc_txsdirty;		/* dirty Tx jobs */
    305 
    306 	int sc_rxptr;			/* next ready Rx descriptor/job */
    307 
    308 	uint32_t sc_csr5;		/* prototype CSR5 register */
    309 	uint32_t sc_mode;		/* prototype MODE register */
    310 
    311 	krndsource_t rnd_source;	/* random source */
    312 };
    313 
    314 /* sc_flags */
    315 #define	PCN_F_HAS_MII		0x0001	/* has MII */
    316 
    317 #ifdef PCN_EVENT_COUNTERS
    318 #define	PCN_EVCNT_INCR(ev)	(ev)->ev_count++
    319 #else
    320 #define	PCN_EVCNT_INCR(ev)	/* nothing */
    321 #endif
    322 
    323 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
    324 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
    325 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
    326 
    327 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
    328 do {									\
    329 	int __x, __n;							\
    330 									\
    331 	__x = (x);							\
    332 	__n = (n);							\
    333 									\
    334 	/* If it will wrap around, sync to the end of the ring. */	\
    335 	if ((__x + __n) > PCN_NTXDESC) {				\
    336 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    337 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
    338 		    (PCN_NTXDESC - __x), (ops));			\
    339 		__n -= (PCN_NTXDESC - __x);				\
    340 		__x = 0;						\
    341 	}								\
    342 									\
    343 	/* Now sync whatever is left. */				\
    344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    345 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
    346 } while (/*CONSTCOND*/0)
    347 
    348 #define	PCN_CDRXSYNC(sc, x, ops)					\
    349 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    350 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
    351 
    352 #define	PCN_CDINITSYNC(sc, ops)						\
    353 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    354 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
    355 
    356 #define	PCN_INIT_RXDESC(sc, x)						\
    357 do {									\
    358 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    359 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
    360 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    361 									\
    362 	/*								\
    363 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    364 	 * so that the payload after the Ethernet header is aligned	\
    365 	 * to a 4-byte boundary.					\
    366 	 */								\
    367 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    368 									\
    369 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
    370 		__rmd->rmd2 =						\
    371 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
    372 		__rmd->rmd0 = 0;					\
    373 	} else {							\
    374 		__rmd->rmd2 = 0;					\
    375 		__rmd->rmd0 =						\
    376 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
    377 	}								\
    378 	__rmd->rmd1 = htole32(LE_R1_OWN | LE_R1_ONES |			\
    379 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
    380 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);\
    381 } while(/*CONSTCOND*/0)
    382 
    383 static void	pcn_start(struct ifnet *);
    384 static void	pcn_watchdog(struct ifnet *);
    385 static int	pcn_ioctl(struct ifnet *, u_long, void *);
    386 static int	pcn_init(struct ifnet *);
    387 static void	pcn_stop(struct ifnet *, int);
    388 
    389 static bool	pcn_shutdown(device_t, int);
    390 
    391 static void	pcn_reset(struct pcn_softc *);
    392 static void	pcn_rxdrain(struct pcn_softc *);
    393 static int	pcn_add_rxbuf(struct pcn_softc *, int);
    394 static void	pcn_tick(void *);
    395 
    396 static void	pcn_spnd(struct pcn_softc *);
    397 
    398 static void	pcn_set_filter(struct pcn_softc *);
    399 
    400 static int	pcn_intr(void *);
    401 static void	pcn_txintr(struct pcn_softc *);
    402 static int	pcn_rxintr(struct pcn_softc *);
    403 
    404 static int	pcn_mii_readreg(device_t, int, int, uint16_t *);
    405 static int	pcn_mii_writereg(device_t, int, int, uint16_t);
    406 static void	pcn_mii_statchg(struct ifnet *);
    407 
    408 static void	pcn_79c970_mediainit(struct pcn_softc *);
    409 static int	pcn_79c970_mediachange(struct ifnet *);
    410 static void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
    411 
    412 static void	pcn_79c971_mediainit(struct pcn_softc *);
    413 
    414 /*
    415  * Description of a PCnet-PCI variant.  Used to select media access
    416  * method, mostly, and to print a nice description of the chip.
    417  */
    418 static const struct pcn_variant {
    419 	const char *pcv_desc;
    420 	void (*pcv_mediainit)(struct pcn_softc *);
    421 	uint16_t pcv_chipid;
    422 } pcn_variants[] = {
    423 	{ "Am79c970 PCnet-PCI",
    424 	  pcn_79c970_mediainit,
    425 	  PARTID_Am79c970 },
    426 
    427 	{ "Am79c970A PCnet-PCI II",
    428 	  pcn_79c970_mediainit,
    429 	  PARTID_Am79c970A },
    430 
    431 	{ "Am79c971 PCnet-FAST",
    432 	  pcn_79c971_mediainit,
    433 	  PARTID_Am79c971 },
    434 
    435 	{ "Am79c972 PCnet-FAST+",
    436 	  pcn_79c971_mediainit,
    437 	  PARTID_Am79c972 },
    438 
    439 	{ "Am79c973 PCnet-FAST III",
    440 	  pcn_79c971_mediainit,
    441 	  PARTID_Am79c973 },
    442 
    443 	{ "Am79c975 PCnet-FAST III",
    444 	  pcn_79c971_mediainit,
    445 	  PARTID_Am79c975 },
    446 
    447 	{ "Unknown PCnet-PCI variant",
    448 	  pcn_79c971_mediainit,
    449 	  0 },
    450 };
    451 
    452 int	pcn_copy_small = 0;
    453 
    454 static int	pcn_match(device_t, cfdata_t, void *);
    455 static void	pcn_attach(device_t, device_t, void *);
    456 
    457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
    458     pcn_match, pcn_attach, NULL, NULL);
    459 
    460 /*
    461  * Routines to read and write the PCnet-PCI CSR/BCR space.
    462  */
    463 
    464 static inline uint32_t
    465 pcn_csr_read(struct pcn_softc *sc, int reg)
    466 {
    467 
    468 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
    469 	return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP);
    470 }
    471 
    472 static inline void
    473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
    474 {
    475 
    476 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
    477 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
    478 }
    479 
    480 static inline uint32_t
    481 pcn_bcr_read(struct pcn_softc *sc, int reg)
    482 {
    483 
    484 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
    485 	return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP);
    486 }
    487 
    488 static inline void
    489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
    490 {
    491 
    492 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
    493 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
    494 }
    495 
    496 static bool
    497 pcn_is_vmware(const char *enaddr)
    498 {
    499 
    500 	/*
    501 	 * VMware uses the OUI 00:0c:29 for auto-generated MAC
    502 	 * addresses.
    503 	 */
    504 	if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
    505 		return TRUE;
    506 
    507 	/*
    508 	 * VMware uses the OUI 00:50:56 for manually-set MAC
    509 	 * addresses (and some auto-generated ones).
    510 	 */
    511 	if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
    512 		return TRUE;
    513 
    514 	return FALSE;
    515 }
    516 
    517 static const struct pcn_variant *
    518 pcn_lookup_variant(uint16_t chipid)
    519 {
    520 	const struct pcn_variant *pcv;
    521 
    522 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
    523 		if (chipid == pcv->pcv_chipid)
    524 			return pcv;
    525 	}
    526 
    527 	/*
    528 	 * This covers unknown chips, which we simply treat like
    529 	 * a generic PCnet-FAST.
    530 	 */
    531 	return pcv;
    532 }
    533 
    534 static int
    535 pcn_match(device_t parent, cfdata_t cf, void *aux)
    536 {
    537 	struct pci_attach_args *pa = aux;
    538 
    539 	/*
    540 	 * IBM Makes a PCI variant of this card which shows up as a
    541 	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
    542 	 * this card is truly a pcn card, so we have a special case match for
    543 	 * it
    544 	 */
    545 
    546 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
    547 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
    548 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
    549 		return 1;
    550 
    551 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
    552 		return 0;
    553 
    554 	switch (PCI_PRODUCT(pa->pa_id)) {
    555 	case PCI_PRODUCT_AMD_PCNET_PCI:
    556 		/* Beat if_le_pci.c */
    557 		return 10;
    558 	}
    559 
    560 	return 0;
    561 }
    562 
    563 static void
    564 pcn_attach(device_t parent, device_t self, void *aux)
    565 {
    566 	struct pcn_softc *sc = device_private(self);
    567 	struct pci_attach_args *pa = aux;
    568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    569 	pci_chipset_tag_t pc = pa->pa_pc;
    570 	pci_intr_handle_t ih;
    571 	const char *intrstr = NULL;
    572 	bus_space_tag_t iot, memt;
    573 	bus_space_handle_t ioh, memh;
    574 	bus_dma_segment_t seg;
    575 	int ioh_valid, memh_valid;
    576 	int ntxsegs, i, rseg, error;
    577 	uint32_t chipid, reg;
    578 	uint8_t enaddr[ETHER_ADDR_LEN];
    579 	prop_object_t obj;
    580 	bool is_vmware;
    581 	char intrbuf[PCI_INTRSTR_LEN];
    582 
    583 	sc->sc_dev = self;
    584 	callout_init(&sc->sc_tick_ch, 0);
    585 	callout_setfunc(&sc->sc_tick_ch, pcn_tick, sc);
    586 
    587 	aprint_normal(": AMD PCnet-PCI Ethernet\n");
    588 
    589 	/*
    590 	 * Map the device.
    591 	 */
    592 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    593 	    &iot, &ioh, NULL, NULL) == 0);
    594 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
    595 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    596 	    &memt, &memh, NULL, NULL) == 0);
    597 
    598 	if (memh_valid) {
    599 		sc->sc_st = memt;
    600 		sc->sc_sh = memh;
    601 	} else if (ioh_valid) {
    602 		sc->sc_st = iot;
    603 		sc->sc_sh = ioh;
    604 	} else {
    605 		aprint_error_dev(self, "unable to map device registers\n");
    606 		return;
    607 	}
    608 
    609 	sc->sc_dmat = pa->pa_dmat;
    610 
    611 	/* Make sure bus mastering is enabled. */
    612 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    613 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    614 	    PCI_COMMAND_MASTER_ENABLE);
    615 
    616 	/* power up chip */
    617 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    618 	    NULL)) && error != EOPNOTSUPP) {
    619 		aprint_error_dev(self, "cannot activate %d\n", error);
    620 		return;
    621 	}
    622 
    623 	/*
    624 	 * Reset the chip to a known state.  This also puts the
    625 	 * chip into 32-bit mode.
    626 	 */
    627 	pcn_reset(sc);
    628 
    629 	/*
    630 	 * On some systems with the chip is an on-board device, the
    631 	 * EEPROM is not used.  Handle this by reading the MAC address
    632 	 * from the CSRs (assuming that boot firmware has written
    633 	 * it there).
    634 	 */
    635 	obj = prop_dictionary_get(device_properties(sc->sc_dev),
    636 				  "am79c970-no-eeprom");
    637 	if (prop_bool_true(obj)) {
    638 		for (i = 0; i < 3; i++) {
    639 			uint32_t val;
    640 			val = pcn_csr_read(sc, LE_CSR12 + i);
    641 			enaddr[2 * i] = val & 0xff;
    642 			enaddr[2 * i + 1] = (val >> 8) & 0xff;
    643 		}
    644 	} else {
    645 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
    646 			enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
    647 			    PCN32_APROM + i);
    648 		}
    649 	}
    650 
    651 	/* Check to see if this is a VMware emulated network interface. */
    652 	is_vmware = pcn_is_vmware(enaddr);
    653 
    654 	/*
    655 	 * Now that the device is mapped, attempt to figure out what
    656 	 * kind of chip we have.  Note that IDL has all 32 bits of
    657 	 * the chip ID when we're in 32-bit mode.
    658 	 */
    659 	chipid = pcn_csr_read(sc, LE_CSR88);
    660 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
    661 
    662 	aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
    663 	    sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
    664 	    ether_sprintf(enaddr));
    665 
    666 	/*
    667 	 * VMware has a bug in its network interface emulation; we must
    668 	 * limit the number of Tx segments.
    669 	 */
    670 	if (is_vmware) {
    671 		ntxsegs = PCN_NTXSEGS_VMWARE;
    672 		prop_dictionary_set_bool(device_properties(sc->sc_dev),
    673 					 "am79c970-vmware-tx-bug", TRUE);
    674 		aprint_verbose_dev(self,
    675 		    "VMware Tx segment count bug detected\n");
    676 	} else {
    677 		ntxsegs = PCN_NTXSEGS;
    678 	}
    679 
    680 	/*
    681 	 * Map and establish our interrupt.
    682 	 */
    683 	if (pci_intr_map(pa, &ih)) {
    684 		aprint_error_dev(self, "unable to map interrupt\n");
    685 		return;
    686 	}
    687 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    688 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, pcn_intr, sc,
    689 	    device_xname(self));
    690 	if (sc->sc_ih == NULL) {
    691 		aprint_error_dev(self, "unable to establish interrupt");
    692 		if (intrstr != NULL)
    693 			aprint_error(" at %s", intrstr);
    694 		aprint_error("\n");
    695 		return;
    696 	}
    697 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    698 
    699 	/*
    700 	 * Allocate the control data structures, and create and load the
    701 	 * DMA map for it.
    702 	 */
    703 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    704 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    705 	     0)) != 0) {
    706 		aprint_error_dev(self, "unable to allocate control data, "
    707 		    "error = %d\n", error);
    708 		goto fail_0;
    709 	}
    710 
    711 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    712 	     sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
    713 	     BUS_DMA_COHERENT)) != 0) {
    714 		aprint_error_dev(self, "unable to map control data, "
    715 		    "error = %d\n", error);
    716 		goto fail_1;
    717 	}
    718 
    719 	if ((error = bus_dmamap_create(sc->sc_dmat,
    720 	     sizeof(struct pcn_control_data), 1,
    721 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    722 		aprint_error_dev(self, "unable to create control data DMA map, "
    723 		    "error = %d\n", error);
    724 		goto fail_2;
    725 	}
    726 
    727 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    728 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
    729 	     0)) != 0) {
    730 		aprint_error_dev(self,
    731 		    "unable to load control data DMA map, error = %d\n", error);
    732 		goto fail_3;
    733 	}
    734 
    735 	/* Create the transmit buffer DMA maps. */
    736 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
    737 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    738 		     ntxsegs, MCLBYTES, 0, 0,
    739 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    740 			aprint_error_dev(self,
    741 			    "unable to create tx DMA map %d, error = %d\n",
    742 			    i, error);
    743 			goto fail_4;
    744 		}
    745 	}
    746 
    747 	/* Create the receive buffer DMA maps. */
    748 	for (i = 0; i < PCN_NRXDESC; i++) {
    749 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    750 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    751 			aprint_error_dev(self,
    752 			    "unable to create rx DMA map %d, error = %d\n",
    753 			    i, error);
    754 			goto fail_5;
    755 		}
    756 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    757 	}
    758 
    759 	/* Initialize our media structures. */
    760 	(*sc->sc_variant->pcv_mediainit)(sc);
    761 
    762 	/*
    763 	 * Initialize FIFO watermark info.
    764 	 */
    765 	switch (sc->sc_variant->pcv_chipid) {
    766 	case PARTID_Am79c970:
    767 	case PARTID_Am79c970A:
    768 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
    769 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
    770 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
    771 		break;
    772 
    773 	default:
    774 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
    775 		/*
    776 		 * Read BCR25 to determine how much SRAM is
    777 		 * on the board.  If > 0, then we the chip
    778 		 * uses different Start Point thresholds.
    779 		 *
    780 		 * Note BCR25 and BCR26 are loaded from the
    781 		 * EEPROM on RST, and unaffected by S_RESET,
    782 		 * so we don't really have to worry about
    783 		 * them except for this.
    784 		 */
    785 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
    786 		if (reg != 0)
    787 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
    788 		else
    789 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
    790 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
    791 		break;
    792 	}
    793 
    794 	/*
    795 	 * Set up defaults -- see the tables above for what these
    796 	 * values mean.
    797 	 *
    798 	 * XXX How should we tune RCVFW and XMTFW?
    799 	 */
    800 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
    801 	sc->sc_xmtsp = 1;
    802 	sc->sc_xmtfw = 0;
    803 
    804 	ifp = &sc->sc_ethercom.ec_if;
    805 	strcpy(ifp->if_xname, device_xname(self));
    806 	ifp->if_softc = sc;
    807 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    808 	ifp->if_ioctl = pcn_ioctl;
    809 	ifp->if_start = pcn_start;
    810 	ifp->if_watchdog = pcn_watchdog;
    811 	ifp->if_init = pcn_init;
    812 	ifp->if_stop = pcn_stop;
    813 	IFQ_SET_READY(&ifp->if_snd);
    814 
    815 	/* Attach the interface. */
    816 	if_attach(ifp);
    817 	if_deferred_start_init(ifp, NULL);
    818 	ether_ifattach(ifp, enaddr);
    819 	rnd_attach_source(&sc->rnd_source, device_xname(self),
    820 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    821 
    822 #ifdef PCN_EVENT_COUNTERS
    823 	/* Attach event counters. */
    824 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    825 	    NULL, device_xname(self), "txsstall");
    826 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    827 	    NULL, device_xname(self), "txdstall");
    828 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    829 	    NULL, device_xname(self), "txintr");
    830 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    831 	    NULL, device_xname(self), "rxintr");
    832 	evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
    833 	    NULL, device_xname(self), "babl");
    834 	evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
    835 	    NULL, device_xname(self), "miss");
    836 	evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
    837 	    NULL, device_xname(self), "merr");
    838 
    839 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    840 	    NULL, device_xname(self), "txseg1");
    841 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    842 	    NULL, device_xname(self), "txseg2");
    843 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    844 	    NULL, device_xname(self), "txseg3");
    845 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    846 	    NULL, device_xname(self), "txseg4");
    847 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    848 	    NULL, device_xname(self), "txseg5");
    849 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    850 	    NULL, device_xname(self), "txsegmore");
    851 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    852 	    NULL, device_xname(self), "txcopy");
    853 #endif /* PCN_EVENT_COUNTERS */
    854 
    855 	/*
    856 	 * Establish power handler with shutdown hook, to make sure
    857 	 * the interface is shutdown during reboot.
    858 	 */
    859 	if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
    860 		pmf_class_network_register(self, ifp);
    861 	else
    862 		aprint_error_dev(self, "couldn't establish power handler\n");
    863 
    864 	return;
    865 
    866 	/*
    867 	 * Free any resources we've allocated during the failed attach
    868 	 * attempt.  Do this in reverse order and fall through.
    869 	 */
    870  fail_5:
    871 	for (i = 0; i < PCN_NRXDESC; i++) {
    872 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    873 			bus_dmamap_destroy(sc->sc_dmat,
    874 			    sc->sc_rxsoft[i].rxs_dmamap);
    875 	}
    876  fail_4:
    877 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
    878 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    879 			bus_dmamap_destroy(sc->sc_dmat,
    880 			    sc->sc_txsoft[i].txs_dmamap);
    881 	}
    882 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    883  fail_3:
    884 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    885  fail_2:
    886 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    887 	    sizeof(struct pcn_control_data));
    888  fail_1:
    889 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    890  fail_0:
    891 	return;
    892 }
    893 
    894 /*
    895  * pcn_shutdown:
    896  *
    897  *	Make sure the interface is stopped at reboot time.
    898  */
    899 static bool
    900 pcn_shutdown(device_t self, int howto)
    901 {
    902 	struct pcn_softc *sc = device_private(self);
    903 
    904 	pcn_stop(&sc->sc_ethercom.ec_if, 1);
    905 	/* explicitly reset the chip for some onboard one with lazy firmware */
    906 	pcn_reset(sc);
    907 
    908 	return true;
    909 }
    910 
    911 /*
    912  * pcn_start:		[ifnet interface function]
    913  *
    914  *	Start packet transmission on the interface.
    915  */
    916 static void
    917 pcn_start(struct ifnet *ifp)
    918 {
    919 	struct pcn_softc *sc = ifp->if_softc;
    920 	struct mbuf *m0, *m;
    921 	struct pcn_txsoft *txs;
    922 	bus_dmamap_t dmamap;
    923 	int error, nexttx, lasttx = -1, ofree, seg;
    924 
    925 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    926 		return;
    927 
    928 	/*
    929 	 * Remember the previous number of free descriptors and
    930 	 * the first descriptor we'll use.
    931 	 */
    932 	ofree = sc->sc_txfree;
    933 
    934 	/*
    935 	 * Loop through the send queue, setting up transmit descriptors
    936 	 * until we drain the queue, or use up all available transmit
    937 	 * descriptors.
    938 	 */
    939 	for (;;) {
    940 		/* Grab a packet off the queue. */
    941 		IFQ_POLL(&ifp->if_snd, m0);
    942 		if (m0 == NULL)
    943 			break;
    944 		m = NULL;
    945 
    946 		/* Get a work queue entry. */
    947 		if (sc->sc_txsfree == 0) {
    948 			PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
    949 			break;
    950 		}
    951 
    952 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    953 		dmamap = txs->txs_dmamap;
    954 
    955 		/*
    956 		 * Load the DMA map.  If this fails, the packet either
    957 		 * didn't fit in the alloted number of segments, or we
    958 		 * were short on resources.  In this case, we'll copy
    959 		 * and try again.
    960 		 */
    961 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    962 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    963 			PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
    964 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    965 			if (m == NULL) {
    966 				printf("%s: unable to allocate Tx mbuf\n",
    967 				    device_xname(sc->sc_dev));
    968 				break;
    969 			}
    970 			if (m0->m_pkthdr.len > MHLEN) {
    971 				MCLGET(m, M_DONTWAIT);
    972 				if ((m->m_flags & M_EXT) == 0) {
    973 					printf("%s: unable to allocate Tx "
    974 					    "cluster\n",
    975 					    device_xname(sc->sc_dev));
    976 					m_freem(m);
    977 					break;
    978 				}
    979 			}
    980 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    981 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    982 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    983 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    984 			if (error) {
    985 				printf("%s: unable to load Tx buffer, "
    986 				    "error = %d\n", device_xname(sc->sc_dev),
    987 				    error);
    988 				m_freem(m);
    989 				break;
    990 			}
    991 		}
    992 
    993 		/*
    994 		 * Ensure we have enough descriptors free to describe
    995 		 * the packet.  Note, we always reserve one descriptor
    996 		 * at the end of the ring as a termination point, to
    997 		 * prevent wrap-around.
    998 		 */
    999 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1000 			/*
   1001 			 * Not enough free descriptors to transmit this
   1002 			 * packet.  We haven't committed anything yet,
   1003 			 * so just unload the DMA map, put the packet
   1004 			 * back on the queue, and punt.  Notify the upper
   1005 			 * layer that there are not more slots left.
   1006 			 *
   1007 			 * XXX We could allocate an mbuf and copy, but
   1008 			 * XXX is it worth it?
   1009 			 */
   1010 			ifp->if_flags |= IFF_OACTIVE;
   1011 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1012 			if (m != NULL)
   1013 				m_freem(m);
   1014 			PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
   1015 			break;
   1016 		}
   1017 
   1018 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1019 		if (m != NULL) {
   1020 			m_freem(m0);
   1021 			m0 = m;
   1022 		}
   1023 
   1024 		/*
   1025 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1026 		 */
   1027 
   1028 		/* Sync the DMA map. */
   1029 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1030 		    BUS_DMASYNC_PREWRITE);
   1031 
   1032 #ifdef PCN_EVENT_COUNTERS
   1033 		switch (dmamap->dm_nsegs) {
   1034 		case 1:
   1035 			PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
   1036 			break;
   1037 		case 2:
   1038 			PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
   1039 			break;
   1040 		case 3:
   1041 			PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
   1042 			break;
   1043 		case 4:
   1044 			PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
   1045 			break;
   1046 		case 5:
   1047 			PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
   1048 			break;
   1049 		default:
   1050 			PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
   1051 			break;
   1052 		}
   1053 #endif /* PCN_EVENT_COUNTERS */
   1054 
   1055 		/*
   1056 		 * Initialize the transmit descriptors.
   1057 		 */
   1058 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
   1059 			for (nexttx = sc->sc_txnext, seg = 0;
   1060 			     seg < dmamap->dm_nsegs;
   1061 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
   1062 				/*
   1063 				 * If this is the first descriptor we're
   1064 				 * enqueueing, don't set the OWN bit just
   1065 				 * yet.  That could cause a race condition.
   1066 				 * We'll do it below.
   1067 				 */
   1068 				sc->sc_txdescs[nexttx].tmd0 = 0;
   1069 				sc->sc_txdescs[nexttx].tmd2 =
   1070 				    htole32(dmamap->dm_segs[seg].ds_addr);
   1071 				sc->sc_txdescs[nexttx].tmd1 =
   1072 				    htole32(LE_T1_ONES |
   1073 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
   1074 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
   1075 				     LE_T1_BCNT_MASK));
   1076 				lasttx = nexttx;
   1077 			}
   1078 		} else {
   1079 			for (nexttx = sc->sc_txnext, seg = 0;
   1080 			     seg < dmamap->dm_nsegs;
   1081 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
   1082 				/*
   1083 				 * If this is the first descriptor we're
   1084 				 * enqueueing, don't set the OWN bit just
   1085 				 * yet.  That could cause a race condition.
   1086 				 * We'll do it below.
   1087 				 */
   1088 				sc->sc_txdescs[nexttx].tmd0 =
   1089 				    htole32(dmamap->dm_segs[seg].ds_addr);
   1090 				sc->sc_txdescs[nexttx].tmd2 = 0;
   1091 				sc->sc_txdescs[nexttx].tmd1 =
   1092 				    htole32(LE_T1_ONES |
   1093 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
   1094 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
   1095 				     LE_T1_BCNT_MASK));
   1096 				lasttx = nexttx;
   1097 			}
   1098 		}
   1099 
   1100 		KASSERT(lasttx != -1);
   1101 		/* Interrupt on the packet, if appropriate. */
   1102 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
   1103 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
   1104 
   1105 		/* Set `start of packet' and `end of packet' appropriately. */
   1106 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
   1107 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
   1108 		    htole32(LE_T1_OWN | LE_T1_STP);
   1109 
   1110 		/* Sync the descriptors we're using. */
   1111 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1112 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1113 
   1114 		/* Kick the transmitter. */
   1115 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
   1116 
   1117 		/*
   1118 		 * Store a pointer to the packet so we can free it later,
   1119 		 * and remember what txdirty will be once the packet is
   1120 		 * done.
   1121 		 */
   1122 		txs->txs_mbuf = m0;
   1123 		txs->txs_firstdesc = sc->sc_txnext;
   1124 		txs->txs_lastdesc = lasttx;
   1125 
   1126 		/* Advance the tx pointer. */
   1127 		sc->sc_txfree -= dmamap->dm_nsegs;
   1128 		sc->sc_txnext = nexttx;
   1129 
   1130 		sc->sc_txsfree--;
   1131 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
   1132 
   1133 		/* Pass the packet to any BPF listeners. */
   1134 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1135 	}
   1136 
   1137 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
   1138 		/* No more slots left; notify upper layer. */
   1139 		ifp->if_flags |= IFF_OACTIVE;
   1140 	}
   1141 
   1142 	if (sc->sc_txfree != ofree) {
   1143 		/* Set a watchdog timer in case the chip flakes out. */
   1144 		ifp->if_timer = 5;
   1145 	}
   1146 }
   1147 
   1148 /*
   1149  * pcn_watchdog:	[ifnet interface function]
   1150  *
   1151  *	Watchdog timer handler.
   1152  */
   1153 static void
   1154 pcn_watchdog(struct ifnet *ifp)
   1155 {
   1156 	struct pcn_softc *sc = ifp->if_softc;
   1157 
   1158 	/*
   1159 	 * Since we're not interrupting every packet, sweep
   1160 	 * up before we report an error.
   1161 	 */
   1162 	pcn_txintr(sc);
   1163 
   1164 	if (sc->sc_txfree != PCN_NTXDESC) {
   1165 		printf("%s: device timeout (txfree %d txsfree %d)\n",
   1166 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
   1167 		if_statinc(ifp, if_oerrors);
   1168 
   1169 		/* Reset the interface. */
   1170 		(void) pcn_init(ifp);
   1171 	}
   1172 
   1173 	/* Try to get more packets going. */
   1174 	pcn_start(ifp);
   1175 }
   1176 
   1177 /*
   1178  * pcn_ioctl:		[ifnet interface function]
   1179  *
   1180  *	Handle control requests from the operator.
   1181  */
   1182 static int
   1183 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1184 {
   1185 	int s, error;
   1186 
   1187 	s = splnet();
   1188 
   1189 	switch (cmd) {
   1190 	default:
   1191 		error = ether_ioctl(ifp, cmd, data);
   1192 		if (error == ENETRESET) {
   1193 			/*
   1194 			 * Multicast list has changed; set the hardware filter
   1195 			 * accordingly.
   1196 			 */
   1197 			if (ifp->if_flags & IFF_RUNNING)
   1198 				error = pcn_init(ifp);
   1199 			else
   1200 				error = 0;
   1201 		}
   1202 		break;
   1203 	}
   1204 
   1205 	/* Try to get more packets going. */
   1206 	pcn_start(ifp);
   1207 
   1208 	splx(s);
   1209 	return error;
   1210 }
   1211 
   1212 /*
   1213  * pcn_intr:
   1214  *
   1215  *	Interrupt service routine.
   1216  */
   1217 static int
   1218 pcn_intr(void *arg)
   1219 {
   1220 	struct pcn_softc *sc = arg;
   1221 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1222 	uint32_t csr0;
   1223 	int wantinit, handled = 0;
   1224 
   1225 	for (wantinit = 0; wantinit == 0;) {
   1226 		csr0 = pcn_csr_read(sc, LE_CSR0);
   1227 		if ((csr0 & LE_C0_INTR) == 0)
   1228 			break;
   1229 
   1230 		rnd_add_uint32(&sc->rnd_source, csr0);
   1231 
   1232 		/* ACK the bits and re-enable interrupts. */
   1233 		pcn_csr_write(sc, LE_CSR0, csr0 &
   1234 		    (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
   1235 			LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
   1236 
   1237 		handled = 1;
   1238 
   1239 		if (csr0 & LE_C0_RINT) {
   1240 			PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
   1241 			wantinit = pcn_rxintr(sc);
   1242 		}
   1243 
   1244 		if (csr0 & LE_C0_TINT) {
   1245 			PCN_EVCNT_INCR(&sc->sc_ev_txintr);
   1246 			pcn_txintr(sc);
   1247 		}
   1248 
   1249 		if (csr0 & LE_C0_ERR) {
   1250 			if (csr0 & LE_C0_BABL) {
   1251 				PCN_EVCNT_INCR(&sc->sc_ev_babl);
   1252 				if_statinc(ifp, if_oerrors);
   1253 			}
   1254 			if (csr0 & LE_C0_MISS) {
   1255 				PCN_EVCNT_INCR(&sc->sc_ev_miss);
   1256 				if_statinc(ifp, if_ierrors);
   1257 			}
   1258 			if (csr0 & LE_C0_MERR) {
   1259 				PCN_EVCNT_INCR(&sc->sc_ev_merr);
   1260 				printf("%s: memory error\n",
   1261 				    device_xname(sc->sc_dev));
   1262 				wantinit = 1;
   1263 				break;
   1264 			}
   1265 		}
   1266 
   1267 		if ((csr0 & LE_C0_RXON) == 0) {
   1268 			printf("%s: receiver disabled\n",
   1269 			    device_xname(sc->sc_dev));
   1270 			if_statinc(ifp, if_ierrors);
   1271 			wantinit = 1;
   1272 		}
   1273 
   1274 		if ((csr0 & LE_C0_TXON) == 0) {
   1275 			printf("%s: transmitter disabled\n",
   1276 			    device_xname(sc->sc_dev));
   1277 			if_statinc(ifp, if_oerrors);
   1278 			wantinit = 1;
   1279 		}
   1280 	}
   1281 
   1282 	if (handled) {
   1283 		if (wantinit)
   1284 			pcn_init(ifp);
   1285 
   1286 		/* Try to get more packets going. */
   1287 		if_schedule_deferred_start(ifp);
   1288 	}
   1289 
   1290 	return handled;
   1291 }
   1292 
   1293 /*
   1294  * pcn_spnd:
   1295  *
   1296  *	Suspend the chip.
   1297  */
   1298 static void
   1299 pcn_spnd(struct pcn_softc *sc)
   1300 {
   1301 	int i;
   1302 
   1303 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
   1304 
   1305 	for (i = 0; i < 10000; i++) {
   1306 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
   1307 			return;
   1308 		delay(5);
   1309 	}
   1310 
   1311 	printf("%s: WARNING: chip failed to enter suspended state\n",
   1312 	    device_xname(sc->sc_dev));
   1313 }
   1314 
   1315 /*
   1316  * pcn_txintr:
   1317  *
   1318  *	Helper; handle transmit interrupts.
   1319  */
   1320 static void
   1321 pcn_txintr(struct pcn_softc *sc)
   1322 {
   1323 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1324 	struct pcn_txsoft *txs;
   1325 	uint32_t tmd1, tmd2, tmd;
   1326 	int i, j;
   1327 
   1328 	ifp->if_flags &= ~IFF_OACTIVE;
   1329 
   1330 	/*
   1331 	 * Go through our Tx list and free mbufs for those
   1332 	 * frames which have been transmitted.
   1333 	 */
   1334 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
   1335 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
   1336 		txs = &sc->sc_txsoft[i];
   1337 
   1338 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1339 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1340 
   1341 		tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
   1342 		if (tmd1 & LE_T1_OWN)
   1343 			break;
   1344 
   1345 		/*
   1346 		 * Slightly annoying -- we have to loop through the
   1347 		 * descriptors we've used looking for ERR, since it
   1348 		 * can appear on any descriptor in the chain.
   1349 		 */
   1350 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
   1351 			tmd = le32toh(sc->sc_txdescs[j].tmd1);
   1352 			if (tmd & LE_T1_ERR) {
   1353 				if_statinc(ifp, if_oerrors);
   1354 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
   1355 					tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
   1356 				else
   1357 					tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
   1358 				if (tmd2 & LE_T2_UFLO) {
   1359 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
   1360 						sc->sc_xmtsp++;
   1361 						printf("%s: transmit "
   1362 						    "underrun; new threshold: "
   1363 						    "%s\n",
   1364 						    device_xname(sc->sc_dev),
   1365 						    sc->sc_xmtsp_desc[
   1366 						    sc->sc_xmtsp]);
   1367 						pcn_spnd(sc);
   1368 						pcn_csr_write(sc, LE_CSR80,
   1369 						    LE_C80_RCVFW(sc->sc_rcvfw) |
   1370 						    LE_C80_XMTSP(sc->sc_xmtsp) |
   1371 						    LE_C80_XMTFW(sc->sc_xmtfw));
   1372 						pcn_csr_write(sc, LE_CSR5,
   1373 						    sc->sc_csr5);
   1374 					} else {
   1375 						printf("%s: transmit "
   1376 						    "underrun\n",
   1377 						    device_xname(sc->sc_dev));
   1378 					}
   1379 				} else if (tmd2 & LE_T2_BUFF) {
   1380 					printf("%s: transmit buffer error\n",
   1381 					    device_xname(sc->sc_dev));
   1382 				}
   1383 				if (tmd2 & LE_T2_LCOL)
   1384 					if_statinc(ifp, if_collisions);
   1385 				if (tmd2 & LE_T2_RTRY)
   1386 					if_statadd(ifp, if_collisions, 16);
   1387 				goto next_packet;
   1388 			}
   1389 			if (j == txs->txs_lastdesc)
   1390 				break;
   1391 		}
   1392 		if (tmd1 & LE_T1_ONE)
   1393 			if_statinc(ifp, if_collisions);
   1394 		else if (tmd & LE_T1_MORE) {
   1395 			/* Real number is unknown. */
   1396 			if_statadd(ifp, if_collisions, 2);
   1397 		}
   1398 		if_statinc(ifp, if_opackets);
   1399  next_packet:
   1400 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1401 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1402 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1403 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1404 		m_freem(txs->txs_mbuf);
   1405 		txs->txs_mbuf = NULL;
   1406 	}
   1407 
   1408 	/* Update the dirty transmit buffer pointer. */
   1409 	sc->sc_txsdirty = i;
   1410 
   1411 	/*
   1412 	 * If there are no more pending transmissions, cancel the watchdog
   1413 	 * timer.
   1414 	 */
   1415 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
   1416 		ifp->if_timer = 0;
   1417 }
   1418 
   1419 /*
   1420  * pcn_rxintr:
   1421  *
   1422  *	Helper; handle receive interrupts.
   1423  */
   1424 static int
   1425 pcn_rxintr(struct pcn_softc *sc)
   1426 {
   1427 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1428 	struct pcn_rxsoft *rxs;
   1429 	struct mbuf *m;
   1430 	uint32_t rmd1;
   1431 	int i, len;
   1432 
   1433 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
   1434 		rxs = &sc->sc_rxsoft[i];
   1435 
   1436 		PCN_CDRXSYNC(sc, i,
   1437 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1438 
   1439 		rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
   1440 
   1441 		if (rmd1 & LE_R1_OWN)
   1442 			break;
   1443 
   1444 		/*
   1445 		 * Check for errors and make sure the packet fit into
   1446 		 * a single buffer.  We have structured this block of
   1447 		 * code the way it is in order to compress it into
   1448 		 * one test in the common case (no error).
   1449 		 */
   1450 		if (__predict_false((rmd1 & (LE_R1_STP | LE_R1_ENP |LE_R1_ERR))
   1451 		    != (LE_R1_STP | LE_R1_ENP))) {
   1452 			/* Make sure the packet is in a single buffer. */
   1453 			if ((rmd1 & (LE_R1_STP | LE_R1_ENP)) !=
   1454 			    (LE_R1_STP | LE_R1_ENP)) {
   1455 				printf("%s: packet spilled into next buffer\n",
   1456 				    device_xname(sc->sc_dev));
   1457 				return 1;	/* pcn_intr() will re-init */
   1458 			}
   1459 
   1460 			/*
   1461 			 * If the packet had an error, simple recycle the
   1462 			 * buffer.
   1463 			 */
   1464 			if (rmd1 & LE_R1_ERR) {
   1465 				if_statinc(ifp, if_ierrors);
   1466 				/*
   1467 				 * If we got an overflow error, chances
   1468 				 * are there will be a CRC error.  In
   1469 				 * this case, just print the overflow
   1470 				 * error, and skip the others.
   1471 				 */
   1472 				if (rmd1 & LE_R1_OFLO)
   1473 					printf("%s: overflow error\n",
   1474 					    device_xname(sc->sc_dev));
   1475 				else {
   1476 #define	PRINTIT(x, str)							\
   1477 					if (rmd1 & (x))			\
   1478 						printf("%s: %s\n",	\
   1479 						    device_xname(sc->sc_dev), \
   1480 						    str);
   1481 					PRINTIT(LE_R1_FRAM, "framing error");
   1482 					PRINTIT(LE_R1_CRC, "CRC error");
   1483 					PRINTIT(LE_R1_BUFF, "buffer error");
   1484 				}
   1485 #undef PRINTIT
   1486 				PCN_INIT_RXDESC(sc, i);
   1487 				continue;
   1488 			}
   1489 		}
   1490 
   1491 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1492 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1493 
   1494 		/*
   1495 		 * No errors; receive the packet.
   1496 		 */
   1497 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
   1498 			len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
   1499 		else
   1500 			len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
   1501 
   1502 		/*
   1503 		 * The LANCE family includes the CRC with every packet;
   1504 		 * trim it off here.
   1505 		 */
   1506 		len -= ETHER_CRC_LEN;
   1507 
   1508 		/*
   1509 		 * If the packet is small enough to fit in a
   1510 		 * single header mbuf, allocate one and copy
   1511 		 * the data into it.  This greatly reduces
   1512 		 * memory consumption when we receive lots
   1513 		 * of small packets.
   1514 		 *
   1515 		 * Otherwise, we add a new buffer to the receive
   1516 		 * chain.  If this fails, we drop the packet and
   1517 		 * recycle the old buffer.
   1518 		 */
   1519 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
   1520 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1521 			if (m == NULL)
   1522 				goto dropit;
   1523 			m->m_data += 2;
   1524 			memcpy(mtod(m, void *),
   1525 			    mtod(rxs->rxs_mbuf, void *), len);
   1526 			PCN_INIT_RXDESC(sc, i);
   1527 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1528 			    rxs->rxs_dmamap->dm_mapsize,
   1529 			    BUS_DMASYNC_PREREAD);
   1530 		} else {
   1531 			m = rxs->rxs_mbuf;
   1532 			if (pcn_add_rxbuf(sc, i) != 0) {
   1533  dropit:
   1534 				if_statinc(ifp, if_ierrors);
   1535 				PCN_INIT_RXDESC(sc, i);
   1536 				bus_dmamap_sync(sc->sc_dmat,
   1537 				    rxs->rxs_dmamap, 0,
   1538 				    rxs->rxs_dmamap->dm_mapsize,
   1539 				    BUS_DMASYNC_PREREAD);
   1540 				continue;
   1541 			}
   1542 		}
   1543 
   1544 		m_set_rcvif(m, ifp);
   1545 		m->m_pkthdr.len = m->m_len = len;
   1546 
   1547 		/* Pass it on. */
   1548 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1549 	}
   1550 
   1551 	/* Update the receive pointer. */
   1552 	sc->sc_rxptr = i;
   1553 	return 0;
   1554 }
   1555 
   1556 /*
   1557  * pcn_tick:
   1558  *
   1559  *	One second timer, used to tick the MII.
   1560  */
   1561 static void
   1562 pcn_tick(void *arg)
   1563 {
   1564 	struct pcn_softc *sc = arg;
   1565 	int s;
   1566 
   1567 	s = splnet();
   1568 	mii_tick(&sc->sc_mii);
   1569 	splx(s);
   1570 
   1571 	callout_schedule(&sc->sc_tick_ch, hz);
   1572 }
   1573 
   1574 /*
   1575  * pcn_reset:
   1576  *
   1577  *	Perform a soft reset on the PCnet-PCI.
   1578  */
   1579 static void
   1580 pcn_reset(struct pcn_softc *sc)
   1581 {
   1582 
   1583 	/*
   1584 	 * The PCnet-PCI chip is reset by reading from the
   1585 	 * RESET register.  Note that while the NE2100 LANCE
   1586 	 * boards require a write after the read, the PCnet-PCI
   1587 	 * chips do not require this.
   1588 	 *
   1589 	 * Since we don't know if we're in 16-bit or 32-bit
   1590 	 * mode right now, issue both (it's safe) in the
   1591 	 * hopes that one will succeed.
   1592 	 */
   1593 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
   1594 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
   1595 
   1596 	/* Wait 1ms for it to finish. */
   1597 	delay(1000);
   1598 
   1599 	/*
   1600 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
   1601 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
   1602 	 * to RDP is safe (since it simply clears CSR0).
   1603 	 */
   1604 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
   1605 }
   1606 
   1607 /*
   1608  * pcn_init:		[ifnet interface function]
   1609  *
   1610  *	Initialize the interface.  Must be called at splnet().
   1611  */
   1612 static int
   1613 pcn_init(struct ifnet *ifp)
   1614 {
   1615 	struct pcn_softc *sc = ifp->if_softc;
   1616 	struct pcn_rxsoft *rxs;
   1617 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
   1618 	int i, error = 0;
   1619 	uint32_t reg;
   1620 
   1621 	/* Cancel any pending I/O. */
   1622 	pcn_stop(ifp, 0);
   1623 
   1624 	/* Reset the chip to a known state. */
   1625 	pcn_reset(sc);
   1626 
   1627 	/*
   1628 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
   1629 	 * else.
   1630 	 *
   1631 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
   1632 	 * because the structure layout is compatible with ILACC,
   1633 	 * but the burst mode is only available in SSTYLE 3, and
   1634 	 * burst mode should provide some performance enhancement.
   1635 	 */
   1636 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
   1637 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
   1638 	else
   1639 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
   1640 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
   1641 
   1642 	/* Initialize the transmit descriptor ring. */
   1643 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1644 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
   1645 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1646 	sc->sc_txfree = PCN_NTXDESC;
   1647 	sc->sc_txnext = 0;
   1648 
   1649 	/* Initialize the transmit job descriptors. */
   1650 	for (i = 0; i < PCN_TXQUEUELEN; i++)
   1651 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1652 	sc->sc_txsfree = PCN_TXQUEUELEN;
   1653 	sc->sc_txsnext = 0;
   1654 	sc->sc_txsdirty = 0;
   1655 
   1656 	/*
   1657 	 * Initialize the receive descriptor and receive job
   1658 	 * descriptor rings.
   1659 	 */
   1660 	for (i = 0; i < PCN_NRXDESC; i++) {
   1661 		rxs = &sc->sc_rxsoft[i];
   1662 		if (rxs->rxs_mbuf == NULL) {
   1663 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
   1664 				printf("%s: unable to allocate or map rx "
   1665 				    "buffer %d, error = %d\n",
   1666 				    device_xname(sc->sc_dev), i, error);
   1667 				/*
   1668 				 * XXX Should attempt to run with fewer receive
   1669 				 * XXX buffers instead of just failing.
   1670 				 */
   1671 				pcn_rxdrain(sc);
   1672 				goto out;
   1673 			}
   1674 		} else
   1675 			PCN_INIT_RXDESC(sc, i);
   1676 	}
   1677 	sc->sc_rxptr = 0;
   1678 
   1679 	/* Initialize MODE for the initialization block. */
   1680 	sc->sc_mode = 0;
   1681 	if (ifp->if_flags & IFF_PROMISC)
   1682 		sc->sc_mode |= LE_C15_PROM;
   1683 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1684 		sc->sc_mode |= LE_C15_DRCVBC;
   1685 
   1686 	/*
   1687 	 * If we have MII, simply select MII in the MODE register,
   1688 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
   1689 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
   1690 	 */
   1691 	if (sc->sc_flags & PCN_F_HAS_MII) {
   1692 		pcn_bcr_write(sc, LE_BCR2,
   1693 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
   1694 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
   1695 
   1696 		/*
   1697 		 * Disable MII auto-negotiation.  We handle that in
   1698 		 * our own MII layer.
   1699 		 */
   1700 		pcn_bcr_write(sc, LE_BCR32,
   1701 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
   1702 	}
   1703 
   1704 	/*
   1705 	 * Set the Tx and Rx descriptor ring addresses in the init
   1706 	 * block, the TLEN and RLEN other fields of the init block
   1707 	 * MODE register.
   1708 	 */
   1709 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
   1710 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
   1711 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
   1712 	    (((uint32_t)ffs(PCN_NTXDESC) - 1) << 28) |
   1713 	    ((ffs(PCN_NRXDESC) - 1) << 20));
   1714 
   1715 	/* Set the station address in the init block. */
   1716 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
   1717 	    (enaddr[1] << 8) | (enaddr[2] << 16) |
   1718 	    ((uint32_t)enaddr[3] << 24));
   1719 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
   1720 	    (enaddr[5] << 8));
   1721 
   1722 	/* Set the multicast filter in the init block. */
   1723 	pcn_set_filter(sc);
   1724 
   1725 	/* Initialize CSR3. */
   1726 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM | LE_C3_IDONM | LE_C3_DXSUFLO);
   1727 
   1728 	/* Initialize CSR4. */
   1729 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS | LE_C4_APAD_XMT |
   1730 	    LE_C4_MFCOM | LE_C4_RCVCCOM | LE_C4_TXSTRTM);
   1731 
   1732 	/* Initialize CSR5. */
   1733 	sc->sc_csr5 = LE_C5_LTINTEN | LE_C5_SINTE;
   1734 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
   1735 
   1736 	/*
   1737 	 * If we have an Am79c971 or greater, initialize CSR7.
   1738 	 *
   1739 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
   1740 	 */
   1741 	switch (sc->sc_variant->pcv_chipid) {
   1742 	case PARTID_Am79c970:
   1743 	case PARTID_Am79c970A:
   1744 		/* Not available on these chips. */
   1745 		break;
   1746 
   1747 	default:
   1748 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
   1749 		break;
   1750 	}
   1751 
   1752 	/*
   1753 	 * On the Am79c970A and greater, initialize BCR18 to
   1754 	 * enable burst mode.
   1755 	 *
   1756 	 * Also enable the "no underflow" option on the Am79c971 and
   1757 	 * higher, which prevents the chip from generating transmit
   1758 	 * underflows, yet sill provides decent performance.  Note if
   1759 	 * chip is not connected to external SRAM, then we still have
   1760 	 * to handle underflow errors (the NOUFLO bit is ignored in
   1761 	 * that case).
   1762 	 */
   1763 	reg = pcn_bcr_read(sc, LE_BCR18);
   1764 	switch (sc->sc_variant->pcv_chipid) {
   1765 	case PARTID_Am79c970:
   1766 		break;
   1767 
   1768 	case PARTID_Am79c970A:
   1769 		reg |= LE_B18_BREADE | LE_B18_BWRITE;
   1770 		break;
   1771 
   1772 	default:
   1773 		reg |= LE_B18_BREADE | LE_B18_BWRITE | LE_B18_NOUFLO;
   1774 		break;
   1775 	}
   1776 	pcn_bcr_write(sc, LE_BCR18, reg);
   1777 
   1778 	/*
   1779 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
   1780 	 */
   1781 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
   1782 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
   1783 
   1784 	/*
   1785 	 * Send the init block to the chip, and wait for it
   1786 	 * to be processed.
   1787 	 */
   1788 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
   1789 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
   1790 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
   1791 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
   1792 	delay(100);
   1793 	for (i = 0; i < 10000; i++) {
   1794 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
   1795 			break;
   1796 		delay(10);
   1797 	}
   1798 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
   1799 	if (i == 10000) {
   1800 		printf("%s: timeout processing init block\n",
   1801 		    device_xname(sc->sc_dev));
   1802 		error = EIO;
   1803 		goto out;
   1804 	}
   1805 
   1806 	/* Set the media. */
   1807 	if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1808 		goto out;
   1809 
   1810 	/* Enable interrupts and external activity (and ACK IDON). */
   1811 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
   1812 
   1813 	if (sc->sc_flags & PCN_F_HAS_MII) {
   1814 		/* Start the one second MII clock. */
   1815 		callout_schedule(&sc->sc_tick_ch, hz);
   1816 	}
   1817 
   1818 	/* ...all done! */
   1819 	ifp->if_flags |= IFF_RUNNING;
   1820 	ifp->if_flags &= ~IFF_OACTIVE;
   1821 
   1822  out:
   1823 	if (error)
   1824 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1825 	return error;
   1826 }
   1827 
   1828 /*
   1829  * pcn_rxdrain:
   1830  *
   1831  *	Drain the receive queue.
   1832  */
   1833 static void
   1834 pcn_rxdrain(struct pcn_softc *sc)
   1835 {
   1836 	struct pcn_rxsoft *rxs;
   1837 	int i;
   1838 
   1839 	for (i = 0; i < PCN_NRXDESC; i++) {
   1840 		rxs = &sc->sc_rxsoft[i];
   1841 		if (rxs->rxs_mbuf != NULL) {
   1842 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1843 			m_freem(rxs->rxs_mbuf);
   1844 			rxs->rxs_mbuf = NULL;
   1845 		}
   1846 	}
   1847 }
   1848 
   1849 /*
   1850  * pcn_stop:		[ifnet interface function]
   1851  *
   1852  *	Stop transmission on the interface.
   1853  */
   1854 static void
   1855 pcn_stop(struct ifnet *ifp, int disable)
   1856 {
   1857 	struct pcn_softc *sc = ifp->if_softc;
   1858 	struct pcn_txsoft *txs;
   1859 	int i;
   1860 
   1861 	if (sc->sc_flags & PCN_F_HAS_MII) {
   1862 		/* Stop the one second clock. */
   1863 		callout_stop(&sc->sc_tick_ch);
   1864 
   1865 		/* Down the MII. */
   1866 		mii_down(&sc->sc_mii);
   1867 	}
   1868 
   1869 	/* Stop the chip. */
   1870 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
   1871 
   1872 	/* Release any queued transmit buffers. */
   1873 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
   1874 		txs = &sc->sc_txsoft[i];
   1875 		if (txs->txs_mbuf != NULL) {
   1876 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1877 			m_freem(txs->txs_mbuf);
   1878 			txs->txs_mbuf = NULL;
   1879 		}
   1880 	}
   1881 
   1882 	/* Mark the interface as down and cancel the watchdog timer. */
   1883 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1884 	ifp->if_timer = 0;
   1885 
   1886 	if (disable)
   1887 		pcn_rxdrain(sc);
   1888 }
   1889 
   1890 /*
   1891  * pcn_add_rxbuf:
   1892  *
   1893  *	Add a receive buffer to the indicated descriptor.
   1894  */
   1895 static int
   1896 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
   1897 {
   1898 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1899 	struct mbuf *m;
   1900 	int error;
   1901 
   1902 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1903 	if (m == NULL)
   1904 		return ENOBUFS;
   1905 
   1906 	MCLGET(m, M_DONTWAIT);
   1907 	if ((m->m_flags & M_EXT) == 0) {
   1908 		m_freem(m);
   1909 		return ENOBUFS;
   1910 	}
   1911 
   1912 	if (rxs->rxs_mbuf != NULL)
   1913 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1914 
   1915 	rxs->rxs_mbuf = m;
   1916 
   1917 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1918 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1919 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1920 	if (error) {
   1921 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1922 		    device_xname(sc->sc_dev), idx, error);
   1923 		panic("pcn_add_rxbuf");
   1924 	}
   1925 
   1926 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1927 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1928 
   1929 	PCN_INIT_RXDESC(sc, idx);
   1930 
   1931 	return 0;
   1932 }
   1933 
   1934 /*
   1935  * pcn_set_filter:
   1936  *
   1937  *	Set up the receive filter.
   1938  */
   1939 static void
   1940 pcn_set_filter(struct pcn_softc *sc)
   1941 {
   1942 	struct ethercom *ec = &sc->sc_ethercom;
   1943 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1944 	struct ether_multi *enm;
   1945 	struct ether_multistep step;
   1946 	uint32_t crc;
   1947 
   1948 	/*
   1949 	 * Set up the multicast address filter by passing all multicast
   1950 	 * addresses through a CRC generator, and then using the high
   1951 	 * order 6 bits as an index into the 64-bit logical address
   1952 	 * filter.  The high order bits select the word, while the rest
   1953 	 * of the bits select the bit within the word.
   1954 	 */
   1955 
   1956 	if (ifp->if_flags & IFF_PROMISC)
   1957 		goto allmulti;
   1958 
   1959 	sc->sc_initblock.init_ladrf[0] =
   1960 	    sc->sc_initblock.init_ladrf[1] =
   1961 	    sc->sc_initblock.init_ladrf[2] =
   1962 	    sc->sc_initblock.init_ladrf[3] = 0;
   1963 
   1964 	ETHER_LOCK(ec);
   1965 	ETHER_FIRST_MULTI(step, ec, enm);
   1966 	while (enm != NULL) {
   1967 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1968 			/*
   1969 			 * We must listen to a range of multicast addresses.
   1970 			 * For now, just accept all multicasts, rather than
   1971 			 * trying to set only those filter bits needed to match
   1972 			 * the range.  (At this time, the only use of address
   1973 			 * ranges is for IP multicast routing, for which the
   1974 			 * range is big enough to require all bits set.)
   1975 			 */
   1976 			ETHER_UNLOCK(ec);
   1977 			goto allmulti;
   1978 		}
   1979 
   1980 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1981 
   1982 		/* Just want the 6 most significant bits. */
   1983 		crc >>= 26;
   1984 
   1985 		/* Set the corresponding bit in the filter. */
   1986 		sc->sc_initblock.init_ladrf[crc >> 4] |=
   1987 		    htole16(1 << (crc & 0xf));
   1988 
   1989 		ETHER_NEXT_MULTI(step, enm);
   1990 	}
   1991 	ETHER_UNLOCK(ec);
   1992 
   1993 	ifp->if_flags &= ~IFF_ALLMULTI;
   1994 	return;
   1995 
   1996  allmulti:
   1997 	ifp->if_flags |= IFF_ALLMULTI;
   1998 	sc->sc_initblock.init_ladrf[0] =
   1999 	    sc->sc_initblock.init_ladrf[1] =
   2000 	    sc->sc_initblock.init_ladrf[2] =
   2001 	    sc->sc_initblock.init_ladrf[3] = 0xffff;
   2002 }
   2003 
   2004 /*
   2005  * pcn_79c970_mediainit:
   2006  *
   2007  *	Initialize media for the Am79c970.
   2008  */
   2009 static void
   2010 pcn_79c970_mediainit(struct pcn_softc *sc)
   2011 {
   2012 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2013 	struct mii_data * const mii = &sc->sc_mii;
   2014 	const char *sep = "";
   2015 
   2016 	mii->mii_ifp = ifp;
   2017 
   2018 	ifmedia_init(&mii->mii_media, IFM_IMASK, pcn_79c970_mediachange,
   2019 	    pcn_79c970_mediastatus);
   2020 
   2021 #define	ADD(str, m, d)							\
   2022 do {									\
   2023 	aprint_normal("%s%s", sep, str);				\
   2024 	ifmedia_add(&mii->mii_media, IFM_ETHER | (m), (d), NULL);	\
   2025 	sep = ", ";							\
   2026 } while (/*CONSTCOND*/0)
   2027 
   2028 	aprint_normal("%s: ", device_xname(sc->sc_dev));
   2029 	ADD("10base5", IFM_10_5, PORTSEL_AUI);
   2030 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
   2031 		ADD("10base5-FDX", IFM_10_5 | IFM_FDX, PORTSEL_AUI);
   2032 	ADD("10baseT", IFM_10_T, PORTSEL_10T);
   2033 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
   2034 		ADD("10baseT-FDX", IFM_10_T | IFM_FDX, PORTSEL_10T);
   2035 	ADD("auto", IFM_AUTO, 0);
   2036 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
   2037 		ADD("auto-FDX", IFM_AUTO | IFM_FDX, 0);
   2038 	aprint_normal("\n");
   2039 
   2040 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   2041 }
   2042 
   2043 /*
   2044  * pcn_79c970_mediastatus:	[ifmedia interface function]
   2045  *
   2046  *	Get the current interface media status (Am79c970 version).
   2047  */
   2048 static void
   2049 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2050 {
   2051 	struct pcn_softc *sc = ifp->if_softc;
   2052 
   2053 	/*
   2054 	 * The currently selected media is always the active media.
   2055 	 * Note: We have no way to determine what media the AUTO
   2056 	 * process picked.
   2057 	 */
   2058 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
   2059 }
   2060 
   2061 /*
   2062  * pcn_79c970_mediachange:	[ifmedia interface function]
   2063  *
   2064  *	Set hardware to newly-selected media (Am79c970 version).
   2065  */
   2066 static int
   2067 pcn_79c970_mediachange(struct ifnet *ifp)
   2068 {
   2069 	struct pcn_softc *sc = ifp->if_softc;
   2070 	uint32_t reg;
   2071 
   2072 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
   2073 		/*
   2074 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
   2075 		 */
   2076 		reg = pcn_bcr_read(sc, LE_BCR2);
   2077 		reg |= LE_B2_ASEL;
   2078 		pcn_bcr_write(sc, LE_BCR2, reg);
   2079 	} else {
   2080 		/*
   2081 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
   2082 		 */
   2083 		reg = pcn_bcr_read(sc, LE_BCR2);
   2084 		reg &= ~LE_B2_ASEL;
   2085 		pcn_bcr_write(sc, LE_BCR2, reg);
   2086 
   2087 		reg = pcn_csr_read(sc, LE_CSR15);
   2088 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
   2089 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
   2090 		pcn_csr_write(sc, LE_CSR15, reg);
   2091 	}
   2092 
   2093 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
   2094 		reg = LE_B9_FDEN;
   2095 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
   2096 			reg |= LE_B9_AUIFD;
   2097 		pcn_bcr_write(sc, LE_BCR9, reg);
   2098 	} else
   2099 		pcn_bcr_write(sc, LE_BCR9, 0);
   2100 
   2101 	return 0;
   2102 }
   2103 
   2104 /*
   2105  * pcn_79c971_mediainit:
   2106  *
   2107  *	Initialize media for the Am79c971.
   2108  */
   2109 static void
   2110 pcn_79c971_mediainit(struct pcn_softc *sc)
   2111 {
   2112 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2113 	struct mii_data * const mii = &sc->sc_mii;
   2114 
   2115 	/* We have MII. */
   2116 	sc->sc_flags |= PCN_F_HAS_MII;
   2117 
   2118 	/*
   2119 	 * The built-in 10BASE-T interface is mapped to the MII
   2120 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
   2121 	 * word that tells us which PHY to use.
   2122 	 * This driver used to ignore all but the first PHY to
   2123 	 * answer, but this code was removed to support multiple
   2124 	 * external PHYs. As the default instance will be the first
   2125 	 * one to answer, no harm is done by letting the possibly
   2126 	 * non-connected internal PHY show up.
   2127 	 */
   2128 
   2129 	/* Initialize our media structures and probe the MII. */
   2130 	mii->mii_ifp = ifp;
   2131 	mii->mii_readreg = pcn_mii_readreg;
   2132 	mii->mii_writereg = pcn_mii_writereg;
   2133 	mii->mii_statchg = pcn_mii_statchg;
   2134 
   2135 	sc->sc_ethercom.ec_mii = mii;
   2136 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
   2137 
   2138 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   2139 	    MII_OFFSET_ANY, 0);
   2140 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   2141 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   2142 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   2143 	} else
   2144 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   2145 }
   2146 
   2147 /*
   2148  * pcn_mii_readreg:	[mii interface function]
   2149  *
   2150  *	Read a PHY register on the MII.
   2151  */
   2152 static int
   2153 pcn_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   2154 {
   2155 	struct pcn_softc *sc = device_private(self);
   2156 
   2157 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
   2158 	*val = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
   2159 	if (*val == 0xffff)
   2160 		return -1;
   2161 
   2162 	return 0;
   2163 }
   2164 
   2165 /*
   2166  * pcn_mii_writereg:	[mii interface function]
   2167  *
   2168  *	Write a PHY register on the MII.
   2169  */
   2170 static int
   2171 pcn_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   2172 {
   2173 	struct pcn_softc *sc = device_private(self);
   2174 
   2175 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
   2176 	pcn_bcr_write(sc, LE_BCR34, val);
   2177 
   2178 	return 0;
   2179 }
   2180 
   2181 /*
   2182  * pcn_mii_statchg:	[mii interface function]
   2183  *
   2184  *	Callback from MII layer when media changes.
   2185  */
   2186 static void
   2187 pcn_mii_statchg(struct ifnet *ifp)
   2188 {
   2189 	struct pcn_softc *sc = ifp->if_softc;
   2190 
   2191 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2192 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
   2193 	else
   2194 		pcn_bcr_write(sc, LE_BCR9, 0);
   2195 }
   2196