if_pcn.c revision 1.74 1 /* $NetBSD: if_pcn.c,v 1.74 2020/02/07 00:04:28 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.74 2020/02/07 00:04:28 thorpej Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81
82 #include <sys/rndsource.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_ether.h>
88
89 #include <net/bpf.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <machine/endian.h>
94
95 #include <dev/mii/mii.h>
96 #include <dev/mii/miivar.h>
97
98 #include <dev/ic/am79900reg.h>
99 #include <dev/ic/lancereg.h>
100
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 #include <dev/pci/pcidevs.h>
104
105 #include <dev/pci/if_pcnreg.h>
106
107 /*
108 * Transmit descriptor list size. This is arbitrary, but allocate
109 * enough descriptors for 128 pending transmissions, and 4 segments
110 * per packet. This MUST work out to a power of 2.
111 *
112 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
113 *
114 * So we play a little trick here. We give each packet up to 16
115 * DMA segments, but only allocate the max of 512 descriptors. The
116 * transmit logic can deal with this, we just are hoping to sneak by.
117 */
118 #define PCN_NTXSEGS 16
119 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */
120
121 #define PCN_TXQUEUELEN 128
122 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
123 #define PCN_NTXDESC 512
124 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
125 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
126 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
127
128 /* Tx interrupt every N + 1 packets. */
129 #define PCN_TXINTR_MASK 7
130
131 /*
132 * Receive descriptor list size. We have one Rx buffer per incoming
133 * packet, so this logic is a little simpler.
134 */
135 #define PCN_NRXDESC 128
136 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
137 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
138
139 /*
140 * Control structures are DMA'd to the PCnet chip. We allocate them in
141 * a single clump that maps to a single DMA segment to make several things
142 * easier.
143 */
144 struct pcn_control_data {
145 /* The transmit descriptors. */
146 struct letmd pcd_txdescs[PCN_NTXDESC];
147
148 /* The receive descriptors. */
149 struct lermd pcd_rxdescs[PCN_NRXDESC];
150
151 /* The init block. */
152 struct leinit pcd_initblock;
153 };
154
155 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
156 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
157 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
158 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
159
160 /*
161 * Software state for transmit jobs.
162 */
163 struct pcn_txsoft {
164 struct mbuf *txs_mbuf; /* head of our mbuf chain */
165 bus_dmamap_t txs_dmamap; /* our DMA map */
166 int txs_firstdesc; /* first descriptor in packet */
167 int txs_lastdesc; /* last descriptor in packet */
168 };
169
170 /*
171 * Software state for receive jobs.
172 */
173 struct pcn_rxsoft {
174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t rxs_dmamap; /* our DMA map */
176 };
177
178 /*
179 * Description of Rx FIFO watermarks for various revisions.
180 */
181 static const char * const pcn_79c970_rcvfw[] = {
182 "16 bytes",
183 "64 bytes",
184 "128 bytes",
185 NULL,
186 };
187
188 static const char * const pcn_79c971_rcvfw[] = {
189 "16 bytes",
190 "64 bytes",
191 "112 bytes",
192 NULL,
193 };
194
195 /*
196 * Description of Tx start points for various revisions.
197 */
198 static const char * const pcn_79c970_xmtsp[] = {
199 "8 bytes",
200 "64 bytes",
201 "128 bytes",
202 "248 bytes",
203 };
204
205 static const char * const pcn_79c971_xmtsp[] = {
206 "20 bytes",
207 "64 bytes",
208 "128 bytes",
209 "248 bytes",
210 };
211
212 static const char * const pcn_79c971_xmtsp_sram[] = {
213 "44 bytes",
214 "64 bytes",
215 "128 bytes",
216 "store-and-forward",
217 };
218
219 /*
220 * Description of Tx FIFO watermarks for various revisions.
221 */
222 static const char * const pcn_79c970_xmtfw[] = {
223 "16 bytes",
224 "64 bytes",
225 "128 bytes",
226 NULL,
227 };
228
229 static const char * const pcn_79c971_xmtfw[] = {
230 "16 bytes",
231 "64 bytes",
232 "108 bytes",
233 NULL,
234 };
235
236 /*
237 * Software state per device.
238 */
239 struct pcn_softc {
240 device_t sc_dev; /* generic device information */
241 bus_space_tag_t sc_st; /* bus space tag */
242 bus_space_handle_t sc_sh; /* bus space handle */
243 bus_dma_tag_t sc_dmat; /* bus DMA tag */
244 struct ethercom sc_ethercom; /* Ethernet common data */
245
246 /* Points to our media routines, etc. */
247 const struct pcn_variant *sc_variant;
248
249 void *sc_ih; /* interrupt cookie */
250
251 struct mii_data sc_mii; /* MII/media information */
252
253 callout_t sc_tick_ch; /* tick callout */
254
255 bus_dmamap_t sc_cddmamap; /* control data DMA map */
256 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
257
258 /* Software state for transmit and receive descriptors. */
259 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
260 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
261
262 /* Control data structures */
263 struct pcn_control_data *sc_control_data;
264 #define sc_txdescs sc_control_data->pcd_txdescs
265 #define sc_rxdescs sc_control_data->pcd_rxdescs
266 #define sc_initblock sc_control_data->pcd_initblock
267
268 #ifdef PCN_EVENT_COUNTERS
269 /* Event counters. */
270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
272 struct evcnt sc_ev_txintr; /* Tx interrupts */
273 struct evcnt sc_ev_rxintr; /* Rx interrupts */
274 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
275 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
276 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
277
278 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
279 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
280 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
281 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
282 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
283 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
284 struct evcnt sc_ev_txcopy; /* Tx copies required */
285 #endif /* PCN_EVENT_COUNTERS */
286
287 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
288 int sc_rcvfw;
289
290 const char * const *sc_xmtsp_desc; /* Tx start point info */
291 int sc_xmtsp;
292
293 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
294 int sc_xmtfw;
295
296 int sc_flags; /* misc. flags; see below */
297 int sc_swstyle; /* the software style in use */
298
299 int sc_txfree; /* number of free Tx descriptors */
300 int sc_txnext; /* next ready Tx descriptor */
301
302 int sc_txsfree; /* number of free Tx jobs */
303 int sc_txsnext; /* next free Tx job */
304 int sc_txsdirty; /* dirty Tx jobs */
305
306 int sc_rxptr; /* next ready Rx descriptor/job */
307
308 uint32_t sc_csr5; /* prototype CSR5 register */
309 uint32_t sc_mode; /* prototype MODE register */
310
311 krndsource_t rnd_source; /* random source */
312 };
313
314 /* sc_flags */
315 #define PCN_F_HAS_MII 0x0001 /* has MII */
316
317 #ifdef PCN_EVENT_COUNTERS
318 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
319 #else
320 #define PCN_EVCNT_INCR(ev) /* nothing */
321 #endif
322
323 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
324 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
325 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
326
327 #define PCN_CDTXSYNC(sc, x, n, ops) \
328 do { \
329 int __x, __n; \
330 \
331 __x = (x); \
332 __n = (n); \
333 \
334 /* If it will wrap around, sync to the end of the ring. */ \
335 if ((__x + __n) > PCN_NTXDESC) { \
336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
337 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
338 (PCN_NTXDESC - __x), (ops)); \
339 __n -= (PCN_NTXDESC - __x); \
340 __x = 0; \
341 } \
342 \
343 /* Now sync whatever is left. */ \
344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
345 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
346 } while (/*CONSTCOND*/0)
347
348 #define PCN_CDRXSYNC(sc, x, ops) \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
351
352 #define PCN_CDINITSYNC(sc, ops) \
353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
354 PCN_CDINITOFF, sizeof(struct leinit), (ops))
355
356 #define PCN_INIT_RXDESC(sc, x) \
357 do { \
358 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
359 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
360 struct mbuf *__m = __rxs->rxs_mbuf; \
361 \
362 /* \
363 * Note: We scoot the packet forward 2 bytes in the buffer \
364 * so that the payload after the Ethernet header is aligned \
365 * to a 4-byte boundary. \
366 */ \
367 __m->m_data = __m->m_ext.ext_buf + 2; \
368 \
369 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
370 __rmd->rmd2 = \
371 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
372 __rmd->rmd0 = 0; \
373 } else { \
374 __rmd->rmd2 = 0; \
375 __rmd->rmd0 = \
376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
377 } \
378 __rmd->rmd1 = htole32(LE_R1_OWN | LE_R1_ONES | \
379 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
380 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);\
381 } while(/*CONSTCOND*/0)
382
383 static void pcn_start(struct ifnet *);
384 static void pcn_watchdog(struct ifnet *);
385 static int pcn_ioctl(struct ifnet *, u_long, void *);
386 static int pcn_init(struct ifnet *);
387 static void pcn_stop(struct ifnet *, int);
388
389 static bool pcn_shutdown(device_t, int);
390
391 static void pcn_reset(struct pcn_softc *);
392 static void pcn_rxdrain(struct pcn_softc *);
393 static int pcn_add_rxbuf(struct pcn_softc *, int);
394 static void pcn_tick(void *);
395
396 static void pcn_spnd(struct pcn_softc *);
397
398 static void pcn_set_filter(struct pcn_softc *);
399
400 static int pcn_intr(void *);
401 static void pcn_txintr(struct pcn_softc *);
402 static int pcn_rxintr(struct pcn_softc *);
403
404 static int pcn_mii_readreg(device_t, int, int, uint16_t *);
405 static int pcn_mii_writereg(device_t, int, int, uint16_t);
406 static void pcn_mii_statchg(struct ifnet *);
407
408 static void pcn_79c970_mediainit(struct pcn_softc *);
409 static int pcn_79c970_mediachange(struct ifnet *);
410 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
411
412 static void pcn_79c971_mediainit(struct pcn_softc *);
413
414 /*
415 * Description of a PCnet-PCI variant. Used to select media access
416 * method, mostly, and to print a nice description of the chip.
417 */
418 static const struct pcn_variant {
419 const char *pcv_desc;
420 void (*pcv_mediainit)(struct pcn_softc *);
421 uint16_t pcv_chipid;
422 } pcn_variants[] = {
423 { "Am79c970 PCnet-PCI",
424 pcn_79c970_mediainit,
425 PARTID_Am79c970 },
426
427 { "Am79c970A PCnet-PCI II",
428 pcn_79c970_mediainit,
429 PARTID_Am79c970A },
430
431 { "Am79c971 PCnet-FAST",
432 pcn_79c971_mediainit,
433 PARTID_Am79c971 },
434
435 { "Am79c972 PCnet-FAST+",
436 pcn_79c971_mediainit,
437 PARTID_Am79c972 },
438
439 { "Am79c973 PCnet-FAST III",
440 pcn_79c971_mediainit,
441 PARTID_Am79c973 },
442
443 { "Am79c975 PCnet-FAST III",
444 pcn_79c971_mediainit,
445 PARTID_Am79c975 },
446
447 { "Unknown PCnet-PCI variant",
448 pcn_79c971_mediainit,
449 0 },
450 };
451
452 int pcn_copy_small = 0;
453
454 static int pcn_match(device_t, cfdata_t, void *);
455 static void pcn_attach(device_t, device_t, void *);
456
457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
458 pcn_match, pcn_attach, NULL, NULL);
459
460 /*
461 * Routines to read and write the PCnet-PCI CSR/BCR space.
462 */
463
464 static inline uint32_t
465 pcn_csr_read(struct pcn_softc *sc, int reg)
466 {
467
468 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
469 return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP);
470 }
471
472 static inline void
473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
474 {
475
476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
478 }
479
480 static inline uint32_t
481 pcn_bcr_read(struct pcn_softc *sc, int reg)
482 {
483
484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
485 return bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP);
486 }
487
488 static inline void
489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
490 {
491
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
494 }
495
496 static bool
497 pcn_is_vmware(const char *enaddr)
498 {
499
500 /*
501 * VMware uses the OUI 00:0c:29 for auto-generated MAC
502 * addresses.
503 */
504 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
505 return TRUE;
506
507 /*
508 * VMware uses the OUI 00:50:56 for manually-set MAC
509 * addresses (and some auto-generated ones).
510 */
511 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
512 return TRUE;
513
514 return FALSE;
515 }
516
517 static const struct pcn_variant *
518 pcn_lookup_variant(uint16_t chipid)
519 {
520 const struct pcn_variant *pcv;
521
522 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
523 if (chipid == pcv->pcv_chipid)
524 return pcv;
525 }
526
527 /*
528 * This covers unknown chips, which we simply treat like
529 * a generic PCnet-FAST.
530 */
531 return pcv;
532 }
533
534 static int
535 pcn_match(device_t parent, cfdata_t cf, void *aux)
536 {
537 struct pci_attach_args *pa = aux;
538
539 /*
540 * IBM Makes a PCI variant of this card which shows up as a
541 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
542 * this card is truly a pcn card, so we have a special case match for
543 * it
544 */
545
546 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
548 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
549 return 1;
550
551 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
552 return 0;
553
554 switch (PCI_PRODUCT(pa->pa_id)) {
555 case PCI_PRODUCT_AMD_PCNET_PCI:
556 /* Beat if_le_pci.c */
557 return 10;
558 }
559
560 return 0;
561 }
562
563 static void
564 pcn_attach(device_t parent, device_t self, void *aux)
565 {
566 struct pcn_softc *sc = device_private(self);
567 struct pci_attach_args *pa = aux;
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 pci_chipset_tag_t pc = pa->pa_pc;
570 pci_intr_handle_t ih;
571 const char *intrstr = NULL;
572 bus_space_tag_t iot, memt;
573 bus_space_handle_t ioh, memh;
574 bus_dma_segment_t seg;
575 int ioh_valid, memh_valid;
576 int ntxsegs, i, rseg, error;
577 uint32_t chipid, reg;
578 uint8_t enaddr[ETHER_ADDR_LEN];
579 prop_object_t obj;
580 bool is_vmware;
581 char intrbuf[PCI_INTRSTR_LEN];
582
583 sc->sc_dev = self;
584 callout_init(&sc->sc_tick_ch, 0);
585 callout_setfunc(&sc->sc_tick_ch, pcn_tick, sc);
586
587 aprint_normal(": AMD PCnet-PCI Ethernet\n");
588
589 /*
590 * Map the device.
591 */
592 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
593 &iot, &ioh, NULL, NULL) == 0);
594 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
595 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
596 &memt, &memh, NULL, NULL) == 0);
597
598 if (memh_valid) {
599 sc->sc_st = memt;
600 sc->sc_sh = memh;
601 } else if (ioh_valid) {
602 sc->sc_st = iot;
603 sc->sc_sh = ioh;
604 } else {
605 aprint_error_dev(self, "unable to map device registers\n");
606 return;
607 }
608
609 sc->sc_dmat = pa->pa_dmat;
610
611 /* Make sure bus mastering is enabled. */
612 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
613 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
614 PCI_COMMAND_MASTER_ENABLE);
615
616 /* power up chip */
617 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
618 NULL)) && error != EOPNOTSUPP) {
619 aprint_error_dev(self, "cannot activate %d\n", error);
620 return;
621 }
622
623 /*
624 * Reset the chip to a known state. This also puts the
625 * chip into 32-bit mode.
626 */
627 pcn_reset(sc);
628
629 /*
630 * On some systems with the chip is an on-board device, the
631 * EEPROM is not used. Handle this by reading the MAC address
632 * from the CSRs (assuming that boot firmware has written
633 * it there).
634 */
635 obj = prop_dictionary_get(device_properties(sc->sc_dev),
636 "am79c970-no-eeprom");
637 if (prop_bool_true(obj)) {
638 for (i = 0; i < 3; i++) {
639 uint32_t val;
640 val = pcn_csr_read(sc, LE_CSR12 + i);
641 enaddr[2 * i] = val & 0xff;
642 enaddr[2 * i + 1] = (val >> 8) & 0xff;
643 }
644 } else {
645 for (i = 0; i < ETHER_ADDR_LEN; i++) {
646 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
647 PCN32_APROM + i);
648 }
649 }
650
651 /* Check to see if this is a VMware emulated network interface. */
652 is_vmware = pcn_is_vmware(enaddr);
653
654 /*
655 * Now that the device is mapped, attempt to figure out what
656 * kind of chip we have. Note that IDL has all 32 bits of
657 * the chip ID when we're in 32-bit mode.
658 */
659 chipid = pcn_csr_read(sc, LE_CSR88);
660 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
661
662 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
663 sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
664 ether_sprintf(enaddr));
665
666 /*
667 * VMware has a bug in its network interface emulation; we must
668 * limit the number of Tx segments.
669 */
670 if (is_vmware) {
671 ntxsegs = PCN_NTXSEGS_VMWARE;
672 prop_dictionary_set_bool(device_properties(sc->sc_dev),
673 "am79c970-vmware-tx-bug", TRUE);
674 aprint_verbose_dev(self,
675 "VMware Tx segment count bug detected\n");
676 } else {
677 ntxsegs = PCN_NTXSEGS;
678 }
679
680 /*
681 * Map and establish our interrupt.
682 */
683 if (pci_intr_map(pa, &ih)) {
684 aprint_error_dev(self, "unable to map interrupt\n");
685 return;
686 }
687 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
688 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, pcn_intr, sc,
689 device_xname(self));
690 if (sc->sc_ih == NULL) {
691 aprint_error_dev(self, "unable to establish interrupt");
692 if (intrstr != NULL)
693 aprint_error(" at %s", intrstr);
694 aprint_error("\n");
695 return;
696 }
697 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
698
699 /*
700 * Allocate the control data structures, and create and load the
701 * DMA map for it.
702 */
703 if ((error = bus_dmamem_alloc(sc->sc_dmat,
704 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
705 0)) != 0) {
706 aprint_error_dev(self, "unable to allocate control data, "
707 "error = %d\n", error);
708 goto fail_0;
709 }
710
711 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
712 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
713 BUS_DMA_COHERENT)) != 0) {
714 aprint_error_dev(self, "unable to map control data, "
715 "error = %d\n", error);
716 goto fail_1;
717 }
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 sizeof(struct pcn_control_data), 1,
721 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
722 aprint_error_dev(self, "unable to create control data DMA map, "
723 "error = %d\n", error);
724 goto fail_2;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
728 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
729 0)) != 0) {
730 aprint_error_dev(self,
731 "unable to load control data DMA map, error = %d\n", error);
732 goto fail_3;
733 }
734
735 /* Create the transmit buffer DMA maps. */
736 for (i = 0; i < PCN_TXQUEUELEN; i++) {
737 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
738 ntxsegs, MCLBYTES, 0, 0,
739 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
740 aprint_error_dev(self,
741 "unable to create tx DMA map %d, error = %d\n",
742 i, error);
743 goto fail_4;
744 }
745 }
746
747 /* Create the receive buffer DMA maps. */
748 for (i = 0; i < PCN_NRXDESC; i++) {
749 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
750 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
751 aprint_error_dev(self,
752 "unable to create rx DMA map %d, error = %d\n",
753 i, error);
754 goto fail_5;
755 }
756 sc->sc_rxsoft[i].rxs_mbuf = NULL;
757 }
758
759 /* Initialize our media structures. */
760 (*sc->sc_variant->pcv_mediainit)(sc);
761
762 /*
763 * Initialize FIFO watermark info.
764 */
765 switch (sc->sc_variant->pcv_chipid) {
766 case PARTID_Am79c970:
767 case PARTID_Am79c970A:
768 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
769 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
770 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
771 break;
772
773 default:
774 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
775 /*
776 * Read BCR25 to determine how much SRAM is
777 * on the board. If > 0, then we the chip
778 * uses different Start Point thresholds.
779 *
780 * Note BCR25 and BCR26 are loaded from the
781 * EEPROM on RST, and unaffected by S_RESET,
782 * so we don't really have to worry about
783 * them except for this.
784 */
785 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
786 if (reg != 0)
787 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
788 else
789 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
790 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
791 break;
792 }
793
794 /*
795 * Set up defaults -- see the tables above for what these
796 * values mean.
797 *
798 * XXX How should we tune RCVFW and XMTFW?
799 */
800 sc->sc_rcvfw = 1; /* minimum for full-duplex */
801 sc->sc_xmtsp = 1;
802 sc->sc_xmtfw = 0;
803
804 ifp = &sc->sc_ethercom.ec_if;
805 strcpy(ifp->if_xname, device_xname(self));
806 ifp->if_softc = sc;
807 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
808 ifp->if_ioctl = pcn_ioctl;
809 ifp->if_start = pcn_start;
810 ifp->if_watchdog = pcn_watchdog;
811 ifp->if_init = pcn_init;
812 ifp->if_stop = pcn_stop;
813 IFQ_SET_READY(&ifp->if_snd);
814
815 /* Attach the interface. */
816 if_attach(ifp);
817 if_deferred_start_init(ifp, NULL);
818 ether_ifattach(ifp, enaddr);
819 rnd_attach_source(&sc->rnd_source, device_xname(self),
820 RND_TYPE_NET, RND_FLAG_DEFAULT);
821
822 #ifdef PCN_EVENT_COUNTERS
823 /* Attach event counters. */
824 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
825 NULL, device_xname(self), "txsstall");
826 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
827 NULL, device_xname(self), "txdstall");
828 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
829 NULL, device_xname(self), "txintr");
830 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
831 NULL, device_xname(self), "rxintr");
832 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
833 NULL, device_xname(self), "babl");
834 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
835 NULL, device_xname(self), "miss");
836 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
837 NULL, device_xname(self), "merr");
838
839 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
840 NULL, device_xname(self), "txseg1");
841 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
842 NULL, device_xname(self), "txseg2");
843 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
844 NULL, device_xname(self), "txseg3");
845 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
846 NULL, device_xname(self), "txseg4");
847 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
848 NULL, device_xname(self), "txseg5");
849 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
850 NULL, device_xname(self), "txsegmore");
851 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
852 NULL, device_xname(self), "txcopy");
853 #endif /* PCN_EVENT_COUNTERS */
854
855 /*
856 * Establish power handler with shutdown hook, to make sure
857 * the interface is shutdown during reboot.
858 */
859 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
860 pmf_class_network_register(self, ifp);
861 else
862 aprint_error_dev(self, "couldn't establish power handler\n");
863
864 return;
865
866 /*
867 * Free any resources we've allocated during the failed attach
868 * attempt. Do this in reverse order and fall through.
869 */
870 fail_5:
871 for (i = 0; i < PCN_NRXDESC; i++) {
872 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
873 bus_dmamap_destroy(sc->sc_dmat,
874 sc->sc_rxsoft[i].rxs_dmamap);
875 }
876 fail_4:
877 for (i = 0; i < PCN_TXQUEUELEN; i++) {
878 if (sc->sc_txsoft[i].txs_dmamap != NULL)
879 bus_dmamap_destroy(sc->sc_dmat,
880 sc->sc_txsoft[i].txs_dmamap);
881 }
882 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
883 fail_3:
884 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
885 fail_2:
886 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
887 sizeof(struct pcn_control_data));
888 fail_1:
889 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
890 fail_0:
891 return;
892 }
893
894 /*
895 * pcn_shutdown:
896 *
897 * Make sure the interface is stopped at reboot time.
898 */
899 static bool
900 pcn_shutdown(device_t self, int howto)
901 {
902 struct pcn_softc *sc = device_private(self);
903
904 pcn_stop(&sc->sc_ethercom.ec_if, 1);
905 /* explicitly reset the chip for some onboard one with lazy firmware */
906 pcn_reset(sc);
907
908 return true;
909 }
910
911 /*
912 * pcn_start: [ifnet interface function]
913 *
914 * Start packet transmission on the interface.
915 */
916 static void
917 pcn_start(struct ifnet *ifp)
918 {
919 struct pcn_softc *sc = ifp->if_softc;
920 struct mbuf *m0, *m;
921 struct pcn_txsoft *txs;
922 bus_dmamap_t dmamap;
923 int error, nexttx, lasttx = -1, ofree, seg;
924
925 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
926 return;
927
928 /*
929 * Remember the previous number of free descriptors and
930 * the first descriptor we'll use.
931 */
932 ofree = sc->sc_txfree;
933
934 /*
935 * Loop through the send queue, setting up transmit descriptors
936 * until we drain the queue, or use up all available transmit
937 * descriptors.
938 */
939 for (;;) {
940 /* Grab a packet off the queue. */
941 IFQ_POLL(&ifp->if_snd, m0);
942 if (m0 == NULL)
943 break;
944 m = NULL;
945
946 /* Get a work queue entry. */
947 if (sc->sc_txsfree == 0) {
948 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
949 break;
950 }
951
952 txs = &sc->sc_txsoft[sc->sc_txsnext];
953 dmamap = txs->txs_dmamap;
954
955 /*
956 * Load the DMA map. If this fails, the packet either
957 * didn't fit in the alloted number of segments, or we
958 * were short on resources. In this case, we'll copy
959 * and try again.
960 */
961 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
962 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
963 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
964 MGETHDR(m, M_DONTWAIT, MT_DATA);
965 if (m == NULL) {
966 printf("%s: unable to allocate Tx mbuf\n",
967 device_xname(sc->sc_dev));
968 break;
969 }
970 if (m0->m_pkthdr.len > MHLEN) {
971 MCLGET(m, M_DONTWAIT);
972 if ((m->m_flags & M_EXT) == 0) {
973 printf("%s: unable to allocate Tx "
974 "cluster\n",
975 device_xname(sc->sc_dev));
976 m_freem(m);
977 break;
978 }
979 }
980 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
981 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
982 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
983 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
984 if (error) {
985 printf("%s: unable to load Tx buffer, "
986 "error = %d\n", device_xname(sc->sc_dev),
987 error);
988 m_freem(m);
989 break;
990 }
991 }
992
993 /*
994 * Ensure we have enough descriptors free to describe
995 * the packet. Note, we always reserve one descriptor
996 * at the end of the ring as a termination point, to
997 * prevent wrap-around.
998 */
999 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1000 /*
1001 * Not enough free descriptors to transmit this
1002 * packet. We haven't committed anything yet,
1003 * so just unload the DMA map, put the packet
1004 * back on the queue, and punt. Notify the upper
1005 * layer that there are not more slots left.
1006 *
1007 * XXX We could allocate an mbuf and copy, but
1008 * XXX is it worth it?
1009 */
1010 ifp->if_flags |= IFF_OACTIVE;
1011 bus_dmamap_unload(sc->sc_dmat, dmamap);
1012 if (m != NULL)
1013 m_freem(m);
1014 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1015 break;
1016 }
1017
1018 IFQ_DEQUEUE(&ifp->if_snd, m0);
1019 if (m != NULL) {
1020 m_freem(m0);
1021 m0 = m;
1022 }
1023
1024 /*
1025 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1026 */
1027
1028 /* Sync the DMA map. */
1029 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1030 BUS_DMASYNC_PREWRITE);
1031
1032 #ifdef PCN_EVENT_COUNTERS
1033 switch (dmamap->dm_nsegs) {
1034 case 1:
1035 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1036 break;
1037 case 2:
1038 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1039 break;
1040 case 3:
1041 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1042 break;
1043 case 4:
1044 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1045 break;
1046 case 5:
1047 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1048 break;
1049 default:
1050 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1051 break;
1052 }
1053 #endif /* PCN_EVENT_COUNTERS */
1054
1055 /*
1056 * Initialize the transmit descriptors.
1057 */
1058 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1059 for (nexttx = sc->sc_txnext, seg = 0;
1060 seg < dmamap->dm_nsegs;
1061 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1062 /*
1063 * If this is the first descriptor we're
1064 * enqueueing, don't set the OWN bit just
1065 * yet. That could cause a race condition.
1066 * We'll do it below.
1067 */
1068 sc->sc_txdescs[nexttx].tmd0 = 0;
1069 sc->sc_txdescs[nexttx].tmd2 =
1070 htole32(dmamap->dm_segs[seg].ds_addr);
1071 sc->sc_txdescs[nexttx].tmd1 =
1072 htole32(LE_T1_ONES |
1073 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1074 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1075 LE_T1_BCNT_MASK));
1076 lasttx = nexttx;
1077 }
1078 } else {
1079 for (nexttx = sc->sc_txnext, seg = 0;
1080 seg < dmamap->dm_nsegs;
1081 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1082 /*
1083 * If this is the first descriptor we're
1084 * enqueueing, don't set the OWN bit just
1085 * yet. That could cause a race condition.
1086 * We'll do it below.
1087 */
1088 sc->sc_txdescs[nexttx].tmd0 =
1089 htole32(dmamap->dm_segs[seg].ds_addr);
1090 sc->sc_txdescs[nexttx].tmd2 = 0;
1091 sc->sc_txdescs[nexttx].tmd1 =
1092 htole32(LE_T1_ONES |
1093 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1094 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1095 LE_T1_BCNT_MASK));
1096 lasttx = nexttx;
1097 }
1098 }
1099
1100 KASSERT(lasttx != -1);
1101 /* Interrupt on the packet, if appropriate. */
1102 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1103 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1104
1105 /* Set `start of packet' and `end of packet' appropriately. */
1106 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1107 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1108 htole32(LE_T1_OWN | LE_T1_STP);
1109
1110 /* Sync the descriptors we're using. */
1111 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1112 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1113
1114 /* Kick the transmitter. */
1115 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
1116
1117 /*
1118 * Store a pointer to the packet so we can free it later,
1119 * and remember what txdirty will be once the packet is
1120 * done.
1121 */
1122 txs->txs_mbuf = m0;
1123 txs->txs_firstdesc = sc->sc_txnext;
1124 txs->txs_lastdesc = lasttx;
1125
1126 /* Advance the tx pointer. */
1127 sc->sc_txfree -= dmamap->dm_nsegs;
1128 sc->sc_txnext = nexttx;
1129
1130 sc->sc_txsfree--;
1131 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1132
1133 /* Pass the packet to any BPF listeners. */
1134 bpf_mtap(ifp, m0, BPF_D_OUT);
1135 }
1136
1137 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1138 /* No more slots left; notify upper layer. */
1139 ifp->if_flags |= IFF_OACTIVE;
1140 }
1141
1142 if (sc->sc_txfree != ofree) {
1143 /* Set a watchdog timer in case the chip flakes out. */
1144 ifp->if_timer = 5;
1145 }
1146 }
1147
1148 /*
1149 * pcn_watchdog: [ifnet interface function]
1150 *
1151 * Watchdog timer handler.
1152 */
1153 static void
1154 pcn_watchdog(struct ifnet *ifp)
1155 {
1156 struct pcn_softc *sc = ifp->if_softc;
1157
1158 /*
1159 * Since we're not interrupting every packet, sweep
1160 * up before we report an error.
1161 */
1162 pcn_txintr(sc);
1163
1164 if (sc->sc_txfree != PCN_NTXDESC) {
1165 printf("%s: device timeout (txfree %d txsfree %d)\n",
1166 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1167 if_statinc(ifp, if_oerrors);
1168
1169 /* Reset the interface. */
1170 (void) pcn_init(ifp);
1171 }
1172
1173 /* Try to get more packets going. */
1174 pcn_start(ifp);
1175 }
1176
1177 /*
1178 * pcn_ioctl: [ifnet interface function]
1179 *
1180 * Handle control requests from the operator.
1181 */
1182 static int
1183 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1184 {
1185 int s, error;
1186
1187 s = splnet();
1188
1189 switch (cmd) {
1190 default:
1191 error = ether_ioctl(ifp, cmd, data);
1192 if (error == ENETRESET) {
1193 /*
1194 * Multicast list has changed; set the hardware filter
1195 * accordingly.
1196 */
1197 if (ifp->if_flags & IFF_RUNNING)
1198 error = pcn_init(ifp);
1199 else
1200 error = 0;
1201 }
1202 break;
1203 }
1204
1205 /* Try to get more packets going. */
1206 pcn_start(ifp);
1207
1208 splx(s);
1209 return error;
1210 }
1211
1212 /*
1213 * pcn_intr:
1214 *
1215 * Interrupt service routine.
1216 */
1217 static int
1218 pcn_intr(void *arg)
1219 {
1220 struct pcn_softc *sc = arg;
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222 uint32_t csr0;
1223 int wantinit, handled = 0;
1224
1225 for (wantinit = 0; wantinit == 0;) {
1226 csr0 = pcn_csr_read(sc, LE_CSR0);
1227 if ((csr0 & LE_C0_INTR) == 0)
1228 break;
1229
1230 rnd_add_uint32(&sc->rnd_source, csr0);
1231
1232 /* ACK the bits and re-enable interrupts. */
1233 pcn_csr_write(sc, LE_CSR0, csr0 &
1234 (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
1235 LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
1236
1237 handled = 1;
1238
1239 if (csr0 & LE_C0_RINT) {
1240 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1241 wantinit = pcn_rxintr(sc);
1242 }
1243
1244 if (csr0 & LE_C0_TINT) {
1245 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1246 pcn_txintr(sc);
1247 }
1248
1249 if (csr0 & LE_C0_ERR) {
1250 if (csr0 & LE_C0_BABL) {
1251 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1252 if_statinc(ifp, if_oerrors);
1253 }
1254 if (csr0 & LE_C0_MISS) {
1255 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1256 if_statinc(ifp, if_ierrors);
1257 }
1258 if (csr0 & LE_C0_MERR) {
1259 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1260 printf("%s: memory error\n",
1261 device_xname(sc->sc_dev));
1262 wantinit = 1;
1263 break;
1264 }
1265 }
1266
1267 if ((csr0 & LE_C0_RXON) == 0) {
1268 printf("%s: receiver disabled\n",
1269 device_xname(sc->sc_dev));
1270 if_statinc(ifp, if_ierrors);
1271 wantinit = 1;
1272 }
1273
1274 if ((csr0 & LE_C0_TXON) == 0) {
1275 printf("%s: transmitter disabled\n",
1276 device_xname(sc->sc_dev));
1277 if_statinc(ifp, if_oerrors);
1278 wantinit = 1;
1279 }
1280 }
1281
1282 if (handled) {
1283 if (wantinit)
1284 pcn_init(ifp);
1285
1286 /* Try to get more packets going. */
1287 if_schedule_deferred_start(ifp);
1288 }
1289
1290 return handled;
1291 }
1292
1293 /*
1294 * pcn_spnd:
1295 *
1296 * Suspend the chip.
1297 */
1298 static void
1299 pcn_spnd(struct pcn_softc *sc)
1300 {
1301 int i;
1302
1303 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1304
1305 for (i = 0; i < 10000; i++) {
1306 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1307 return;
1308 delay(5);
1309 }
1310
1311 printf("%s: WARNING: chip failed to enter suspended state\n",
1312 device_xname(sc->sc_dev));
1313 }
1314
1315 /*
1316 * pcn_txintr:
1317 *
1318 * Helper; handle transmit interrupts.
1319 */
1320 static void
1321 pcn_txintr(struct pcn_softc *sc)
1322 {
1323 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1324 struct pcn_txsoft *txs;
1325 uint32_t tmd1, tmd2, tmd;
1326 int i, j;
1327
1328 ifp->if_flags &= ~IFF_OACTIVE;
1329
1330 /*
1331 * Go through our Tx list and free mbufs for those
1332 * frames which have been transmitted.
1333 */
1334 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1335 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1336 txs = &sc->sc_txsoft[i];
1337
1338 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1339 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1340
1341 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1342 if (tmd1 & LE_T1_OWN)
1343 break;
1344
1345 /*
1346 * Slightly annoying -- we have to loop through the
1347 * descriptors we've used looking for ERR, since it
1348 * can appear on any descriptor in the chain.
1349 */
1350 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1351 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1352 if (tmd & LE_T1_ERR) {
1353 if_statinc(ifp, if_oerrors);
1354 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1355 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1356 else
1357 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1358 if (tmd2 & LE_T2_UFLO) {
1359 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1360 sc->sc_xmtsp++;
1361 printf("%s: transmit "
1362 "underrun; new threshold: "
1363 "%s\n",
1364 device_xname(sc->sc_dev),
1365 sc->sc_xmtsp_desc[
1366 sc->sc_xmtsp]);
1367 pcn_spnd(sc);
1368 pcn_csr_write(sc, LE_CSR80,
1369 LE_C80_RCVFW(sc->sc_rcvfw) |
1370 LE_C80_XMTSP(sc->sc_xmtsp) |
1371 LE_C80_XMTFW(sc->sc_xmtfw));
1372 pcn_csr_write(sc, LE_CSR5,
1373 sc->sc_csr5);
1374 } else {
1375 printf("%s: transmit "
1376 "underrun\n",
1377 device_xname(sc->sc_dev));
1378 }
1379 } else if (tmd2 & LE_T2_BUFF) {
1380 printf("%s: transmit buffer error\n",
1381 device_xname(sc->sc_dev));
1382 }
1383 if (tmd2 & LE_T2_LCOL)
1384 if_statinc(ifp, if_collisions);
1385 if (tmd2 & LE_T2_RTRY)
1386 if_statadd(ifp, if_collisions, 16);
1387 goto next_packet;
1388 }
1389 if (j == txs->txs_lastdesc)
1390 break;
1391 }
1392 if (tmd1 & LE_T1_ONE)
1393 if_statinc(ifp, if_collisions);
1394 else if (tmd & LE_T1_MORE) {
1395 /* Real number is unknown. */
1396 if_statadd(ifp, if_collisions, 2);
1397 }
1398 if_statinc(ifp, if_opackets);
1399 next_packet:
1400 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1401 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1402 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1403 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1404 m_freem(txs->txs_mbuf);
1405 txs->txs_mbuf = NULL;
1406 }
1407
1408 /* Update the dirty transmit buffer pointer. */
1409 sc->sc_txsdirty = i;
1410
1411 /*
1412 * If there are no more pending transmissions, cancel the watchdog
1413 * timer.
1414 */
1415 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1416 ifp->if_timer = 0;
1417 }
1418
1419 /*
1420 * pcn_rxintr:
1421 *
1422 * Helper; handle receive interrupts.
1423 */
1424 static int
1425 pcn_rxintr(struct pcn_softc *sc)
1426 {
1427 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1428 struct pcn_rxsoft *rxs;
1429 struct mbuf *m;
1430 uint32_t rmd1;
1431 int i, len;
1432
1433 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1434 rxs = &sc->sc_rxsoft[i];
1435
1436 PCN_CDRXSYNC(sc, i,
1437 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1438
1439 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1440
1441 if (rmd1 & LE_R1_OWN)
1442 break;
1443
1444 /*
1445 * Check for errors and make sure the packet fit into
1446 * a single buffer. We have structured this block of
1447 * code the way it is in order to compress it into
1448 * one test in the common case (no error).
1449 */
1450 if (__predict_false((rmd1 & (LE_R1_STP | LE_R1_ENP |LE_R1_ERR))
1451 != (LE_R1_STP | LE_R1_ENP))) {
1452 /* Make sure the packet is in a single buffer. */
1453 if ((rmd1 & (LE_R1_STP | LE_R1_ENP)) !=
1454 (LE_R1_STP | LE_R1_ENP)) {
1455 printf("%s: packet spilled into next buffer\n",
1456 device_xname(sc->sc_dev));
1457 return 1; /* pcn_intr() will re-init */
1458 }
1459
1460 /*
1461 * If the packet had an error, simple recycle the
1462 * buffer.
1463 */
1464 if (rmd1 & LE_R1_ERR) {
1465 if_statinc(ifp, if_ierrors);
1466 /*
1467 * If we got an overflow error, chances
1468 * are there will be a CRC error. In
1469 * this case, just print the overflow
1470 * error, and skip the others.
1471 */
1472 if (rmd1 & LE_R1_OFLO)
1473 printf("%s: overflow error\n",
1474 device_xname(sc->sc_dev));
1475 else {
1476 #define PRINTIT(x, str) \
1477 if (rmd1 & (x)) \
1478 printf("%s: %s\n", \
1479 device_xname(sc->sc_dev), \
1480 str);
1481 PRINTIT(LE_R1_FRAM, "framing error");
1482 PRINTIT(LE_R1_CRC, "CRC error");
1483 PRINTIT(LE_R1_BUFF, "buffer error");
1484 }
1485 #undef PRINTIT
1486 PCN_INIT_RXDESC(sc, i);
1487 continue;
1488 }
1489 }
1490
1491 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1492 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1493
1494 /*
1495 * No errors; receive the packet.
1496 */
1497 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1498 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1499 else
1500 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1501
1502 /*
1503 * The LANCE family includes the CRC with every packet;
1504 * trim it off here.
1505 */
1506 len -= ETHER_CRC_LEN;
1507
1508 /*
1509 * If the packet is small enough to fit in a
1510 * single header mbuf, allocate one and copy
1511 * the data into it. This greatly reduces
1512 * memory consumption when we receive lots
1513 * of small packets.
1514 *
1515 * Otherwise, we add a new buffer to the receive
1516 * chain. If this fails, we drop the packet and
1517 * recycle the old buffer.
1518 */
1519 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1520 MGETHDR(m, M_DONTWAIT, MT_DATA);
1521 if (m == NULL)
1522 goto dropit;
1523 m->m_data += 2;
1524 memcpy(mtod(m, void *),
1525 mtod(rxs->rxs_mbuf, void *), len);
1526 PCN_INIT_RXDESC(sc, i);
1527 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1528 rxs->rxs_dmamap->dm_mapsize,
1529 BUS_DMASYNC_PREREAD);
1530 } else {
1531 m = rxs->rxs_mbuf;
1532 if (pcn_add_rxbuf(sc, i) != 0) {
1533 dropit:
1534 if_statinc(ifp, if_ierrors);
1535 PCN_INIT_RXDESC(sc, i);
1536 bus_dmamap_sync(sc->sc_dmat,
1537 rxs->rxs_dmamap, 0,
1538 rxs->rxs_dmamap->dm_mapsize,
1539 BUS_DMASYNC_PREREAD);
1540 continue;
1541 }
1542 }
1543
1544 m_set_rcvif(m, ifp);
1545 m->m_pkthdr.len = m->m_len = len;
1546
1547 /* Pass it on. */
1548 if_percpuq_enqueue(ifp->if_percpuq, m);
1549 }
1550
1551 /* Update the receive pointer. */
1552 sc->sc_rxptr = i;
1553 return 0;
1554 }
1555
1556 /*
1557 * pcn_tick:
1558 *
1559 * One second timer, used to tick the MII.
1560 */
1561 static void
1562 pcn_tick(void *arg)
1563 {
1564 struct pcn_softc *sc = arg;
1565 int s;
1566
1567 s = splnet();
1568 mii_tick(&sc->sc_mii);
1569 splx(s);
1570
1571 callout_schedule(&sc->sc_tick_ch, hz);
1572 }
1573
1574 /*
1575 * pcn_reset:
1576 *
1577 * Perform a soft reset on the PCnet-PCI.
1578 */
1579 static void
1580 pcn_reset(struct pcn_softc *sc)
1581 {
1582
1583 /*
1584 * The PCnet-PCI chip is reset by reading from the
1585 * RESET register. Note that while the NE2100 LANCE
1586 * boards require a write after the read, the PCnet-PCI
1587 * chips do not require this.
1588 *
1589 * Since we don't know if we're in 16-bit or 32-bit
1590 * mode right now, issue both (it's safe) in the
1591 * hopes that one will succeed.
1592 */
1593 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1594 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1595
1596 /* Wait 1ms for it to finish. */
1597 delay(1000);
1598
1599 /*
1600 * Select 32-bit I/O mode by issuing a 32-bit write to the
1601 * RDP. Since the RAP is 0 after a reset, writing a 0
1602 * to RDP is safe (since it simply clears CSR0).
1603 */
1604 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1605 }
1606
1607 /*
1608 * pcn_init: [ifnet interface function]
1609 *
1610 * Initialize the interface. Must be called at splnet().
1611 */
1612 static int
1613 pcn_init(struct ifnet *ifp)
1614 {
1615 struct pcn_softc *sc = ifp->if_softc;
1616 struct pcn_rxsoft *rxs;
1617 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1618 int i, error = 0;
1619 uint32_t reg;
1620
1621 /* Cancel any pending I/O. */
1622 pcn_stop(ifp, 0);
1623
1624 /* Reset the chip to a known state. */
1625 pcn_reset(sc);
1626
1627 /*
1628 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1629 * else.
1630 *
1631 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1632 * because the structure layout is compatible with ILACC,
1633 * but the burst mode is only available in SSTYLE 3, and
1634 * burst mode should provide some performance enhancement.
1635 */
1636 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1637 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1638 else
1639 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1640 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1641
1642 /* Initialize the transmit descriptor ring. */
1643 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1644 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1645 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1646 sc->sc_txfree = PCN_NTXDESC;
1647 sc->sc_txnext = 0;
1648
1649 /* Initialize the transmit job descriptors. */
1650 for (i = 0; i < PCN_TXQUEUELEN; i++)
1651 sc->sc_txsoft[i].txs_mbuf = NULL;
1652 sc->sc_txsfree = PCN_TXQUEUELEN;
1653 sc->sc_txsnext = 0;
1654 sc->sc_txsdirty = 0;
1655
1656 /*
1657 * Initialize the receive descriptor and receive job
1658 * descriptor rings.
1659 */
1660 for (i = 0; i < PCN_NRXDESC; i++) {
1661 rxs = &sc->sc_rxsoft[i];
1662 if (rxs->rxs_mbuf == NULL) {
1663 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1664 printf("%s: unable to allocate or map rx "
1665 "buffer %d, error = %d\n",
1666 device_xname(sc->sc_dev), i, error);
1667 /*
1668 * XXX Should attempt to run with fewer receive
1669 * XXX buffers instead of just failing.
1670 */
1671 pcn_rxdrain(sc);
1672 goto out;
1673 }
1674 } else
1675 PCN_INIT_RXDESC(sc, i);
1676 }
1677 sc->sc_rxptr = 0;
1678
1679 /* Initialize MODE for the initialization block. */
1680 sc->sc_mode = 0;
1681 if (ifp->if_flags & IFF_PROMISC)
1682 sc->sc_mode |= LE_C15_PROM;
1683 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1684 sc->sc_mode |= LE_C15_DRCVBC;
1685
1686 /*
1687 * If we have MII, simply select MII in the MODE register,
1688 * and clear ASEL. Otherwise, let ASEL stand (for now),
1689 * and leave PORTSEL alone (it is ignored with ASEL is set).
1690 */
1691 if (sc->sc_flags & PCN_F_HAS_MII) {
1692 pcn_bcr_write(sc, LE_BCR2,
1693 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1694 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1695
1696 /*
1697 * Disable MII auto-negotiation. We handle that in
1698 * our own MII layer.
1699 */
1700 pcn_bcr_write(sc, LE_BCR32,
1701 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1702 }
1703
1704 /*
1705 * Set the Tx and Rx descriptor ring addresses in the init
1706 * block, the TLEN and RLEN other fields of the init block
1707 * MODE register.
1708 */
1709 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1710 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1711 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1712 (((uint32_t)ffs(PCN_NTXDESC) - 1) << 28) |
1713 ((ffs(PCN_NRXDESC) - 1) << 20));
1714
1715 /* Set the station address in the init block. */
1716 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1717 (enaddr[1] << 8) | (enaddr[2] << 16) |
1718 ((uint32_t)enaddr[3] << 24));
1719 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1720 (enaddr[5] << 8));
1721
1722 /* Set the multicast filter in the init block. */
1723 pcn_set_filter(sc);
1724
1725 /* Initialize CSR3. */
1726 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM | LE_C3_IDONM | LE_C3_DXSUFLO);
1727
1728 /* Initialize CSR4. */
1729 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS | LE_C4_APAD_XMT |
1730 LE_C4_MFCOM | LE_C4_RCVCCOM | LE_C4_TXSTRTM);
1731
1732 /* Initialize CSR5. */
1733 sc->sc_csr5 = LE_C5_LTINTEN | LE_C5_SINTE;
1734 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1735
1736 /*
1737 * If we have an Am79c971 or greater, initialize CSR7.
1738 *
1739 * XXX Might be nice to use the MII auto-poll interrupt someday.
1740 */
1741 switch (sc->sc_variant->pcv_chipid) {
1742 case PARTID_Am79c970:
1743 case PARTID_Am79c970A:
1744 /* Not available on these chips. */
1745 break;
1746
1747 default:
1748 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1749 break;
1750 }
1751
1752 /*
1753 * On the Am79c970A and greater, initialize BCR18 to
1754 * enable burst mode.
1755 *
1756 * Also enable the "no underflow" option on the Am79c971 and
1757 * higher, which prevents the chip from generating transmit
1758 * underflows, yet sill provides decent performance. Note if
1759 * chip is not connected to external SRAM, then we still have
1760 * to handle underflow errors (the NOUFLO bit is ignored in
1761 * that case).
1762 */
1763 reg = pcn_bcr_read(sc, LE_BCR18);
1764 switch (sc->sc_variant->pcv_chipid) {
1765 case PARTID_Am79c970:
1766 break;
1767
1768 case PARTID_Am79c970A:
1769 reg |= LE_B18_BREADE | LE_B18_BWRITE;
1770 break;
1771
1772 default:
1773 reg |= LE_B18_BREADE | LE_B18_BWRITE | LE_B18_NOUFLO;
1774 break;
1775 }
1776 pcn_bcr_write(sc, LE_BCR18, reg);
1777
1778 /*
1779 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1780 */
1781 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1782 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1783
1784 /*
1785 * Send the init block to the chip, and wait for it
1786 * to be processed.
1787 */
1788 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1789 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1790 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1791 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1792 delay(100);
1793 for (i = 0; i < 10000; i++) {
1794 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1795 break;
1796 delay(10);
1797 }
1798 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1799 if (i == 10000) {
1800 printf("%s: timeout processing init block\n",
1801 device_xname(sc->sc_dev));
1802 error = EIO;
1803 goto out;
1804 }
1805
1806 /* Set the media. */
1807 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1808 goto out;
1809
1810 /* Enable interrupts and external activity (and ACK IDON). */
1811 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
1812
1813 if (sc->sc_flags & PCN_F_HAS_MII) {
1814 /* Start the one second MII clock. */
1815 callout_schedule(&sc->sc_tick_ch, hz);
1816 }
1817
1818 /* ...all done! */
1819 ifp->if_flags |= IFF_RUNNING;
1820 ifp->if_flags &= ~IFF_OACTIVE;
1821
1822 out:
1823 if (error)
1824 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1825 return error;
1826 }
1827
1828 /*
1829 * pcn_rxdrain:
1830 *
1831 * Drain the receive queue.
1832 */
1833 static void
1834 pcn_rxdrain(struct pcn_softc *sc)
1835 {
1836 struct pcn_rxsoft *rxs;
1837 int i;
1838
1839 for (i = 0; i < PCN_NRXDESC; i++) {
1840 rxs = &sc->sc_rxsoft[i];
1841 if (rxs->rxs_mbuf != NULL) {
1842 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1843 m_freem(rxs->rxs_mbuf);
1844 rxs->rxs_mbuf = NULL;
1845 }
1846 }
1847 }
1848
1849 /*
1850 * pcn_stop: [ifnet interface function]
1851 *
1852 * Stop transmission on the interface.
1853 */
1854 static void
1855 pcn_stop(struct ifnet *ifp, int disable)
1856 {
1857 struct pcn_softc *sc = ifp->if_softc;
1858 struct pcn_txsoft *txs;
1859 int i;
1860
1861 if (sc->sc_flags & PCN_F_HAS_MII) {
1862 /* Stop the one second clock. */
1863 callout_stop(&sc->sc_tick_ch);
1864
1865 /* Down the MII. */
1866 mii_down(&sc->sc_mii);
1867 }
1868
1869 /* Stop the chip. */
1870 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1871
1872 /* Release any queued transmit buffers. */
1873 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1874 txs = &sc->sc_txsoft[i];
1875 if (txs->txs_mbuf != NULL) {
1876 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1877 m_freem(txs->txs_mbuf);
1878 txs->txs_mbuf = NULL;
1879 }
1880 }
1881
1882 /* Mark the interface as down and cancel the watchdog timer. */
1883 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1884 ifp->if_timer = 0;
1885
1886 if (disable)
1887 pcn_rxdrain(sc);
1888 }
1889
1890 /*
1891 * pcn_add_rxbuf:
1892 *
1893 * Add a receive buffer to the indicated descriptor.
1894 */
1895 static int
1896 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1897 {
1898 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1899 struct mbuf *m;
1900 int error;
1901
1902 MGETHDR(m, M_DONTWAIT, MT_DATA);
1903 if (m == NULL)
1904 return ENOBUFS;
1905
1906 MCLGET(m, M_DONTWAIT);
1907 if ((m->m_flags & M_EXT) == 0) {
1908 m_freem(m);
1909 return ENOBUFS;
1910 }
1911
1912 if (rxs->rxs_mbuf != NULL)
1913 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1914
1915 rxs->rxs_mbuf = m;
1916
1917 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1918 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1919 BUS_DMA_READ | BUS_DMA_NOWAIT);
1920 if (error) {
1921 printf("%s: can't load rx DMA map %d, error = %d\n",
1922 device_xname(sc->sc_dev), idx, error);
1923 panic("pcn_add_rxbuf");
1924 }
1925
1926 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1927 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1928
1929 PCN_INIT_RXDESC(sc, idx);
1930
1931 return 0;
1932 }
1933
1934 /*
1935 * pcn_set_filter:
1936 *
1937 * Set up the receive filter.
1938 */
1939 static void
1940 pcn_set_filter(struct pcn_softc *sc)
1941 {
1942 struct ethercom *ec = &sc->sc_ethercom;
1943 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1944 struct ether_multi *enm;
1945 struct ether_multistep step;
1946 uint32_t crc;
1947
1948 /*
1949 * Set up the multicast address filter by passing all multicast
1950 * addresses through a CRC generator, and then using the high
1951 * order 6 bits as an index into the 64-bit logical address
1952 * filter. The high order bits select the word, while the rest
1953 * of the bits select the bit within the word.
1954 */
1955
1956 if (ifp->if_flags & IFF_PROMISC)
1957 goto allmulti;
1958
1959 sc->sc_initblock.init_ladrf[0] =
1960 sc->sc_initblock.init_ladrf[1] =
1961 sc->sc_initblock.init_ladrf[2] =
1962 sc->sc_initblock.init_ladrf[3] = 0;
1963
1964 ETHER_LOCK(ec);
1965 ETHER_FIRST_MULTI(step, ec, enm);
1966 while (enm != NULL) {
1967 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1968 /*
1969 * We must listen to a range of multicast addresses.
1970 * For now, just accept all multicasts, rather than
1971 * trying to set only those filter bits needed to match
1972 * the range. (At this time, the only use of address
1973 * ranges is for IP multicast routing, for which the
1974 * range is big enough to require all bits set.)
1975 */
1976 ETHER_UNLOCK(ec);
1977 goto allmulti;
1978 }
1979
1980 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1981
1982 /* Just want the 6 most significant bits. */
1983 crc >>= 26;
1984
1985 /* Set the corresponding bit in the filter. */
1986 sc->sc_initblock.init_ladrf[crc >> 4] |=
1987 htole16(1 << (crc & 0xf));
1988
1989 ETHER_NEXT_MULTI(step, enm);
1990 }
1991 ETHER_UNLOCK(ec);
1992
1993 ifp->if_flags &= ~IFF_ALLMULTI;
1994 return;
1995
1996 allmulti:
1997 ifp->if_flags |= IFF_ALLMULTI;
1998 sc->sc_initblock.init_ladrf[0] =
1999 sc->sc_initblock.init_ladrf[1] =
2000 sc->sc_initblock.init_ladrf[2] =
2001 sc->sc_initblock.init_ladrf[3] = 0xffff;
2002 }
2003
2004 /*
2005 * pcn_79c970_mediainit:
2006 *
2007 * Initialize media for the Am79c970.
2008 */
2009 static void
2010 pcn_79c970_mediainit(struct pcn_softc *sc)
2011 {
2012 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2013 struct mii_data * const mii = &sc->sc_mii;
2014 const char *sep = "";
2015
2016 mii->mii_ifp = ifp;
2017
2018 ifmedia_init(&mii->mii_media, IFM_IMASK, pcn_79c970_mediachange,
2019 pcn_79c970_mediastatus);
2020
2021 #define ADD(str, m, d) \
2022 do { \
2023 aprint_normal("%s%s", sep, str); \
2024 ifmedia_add(&mii->mii_media, IFM_ETHER | (m), (d), NULL); \
2025 sep = ", "; \
2026 } while (/*CONSTCOND*/0)
2027
2028 aprint_normal("%s: ", device_xname(sc->sc_dev));
2029 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2030 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2031 ADD("10base5-FDX", IFM_10_5 | IFM_FDX, PORTSEL_AUI);
2032 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2033 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2034 ADD("10baseT-FDX", IFM_10_T | IFM_FDX, PORTSEL_10T);
2035 ADD("auto", IFM_AUTO, 0);
2036 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2037 ADD("auto-FDX", IFM_AUTO | IFM_FDX, 0);
2038 aprint_normal("\n");
2039
2040 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2041 }
2042
2043 /*
2044 * pcn_79c970_mediastatus: [ifmedia interface function]
2045 *
2046 * Get the current interface media status (Am79c970 version).
2047 */
2048 static void
2049 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2050 {
2051 struct pcn_softc *sc = ifp->if_softc;
2052
2053 /*
2054 * The currently selected media is always the active media.
2055 * Note: We have no way to determine what media the AUTO
2056 * process picked.
2057 */
2058 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2059 }
2060
2061 /*
2062 * pcn_79c970_mediachange: [ifmedia interface function]
2063 *
2064 * Set hardware to newly-selected media (Am79c970 version).
2065 */
2066 static int
2067 pcn_79c970_mediachange(struct ifnet *ifp)
2068 {
2069 struct pcn_softc *sc = ifp->if_softc;
2070 uint32_t reg;
2071
2072 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2073 /*
2074 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2075 */
2076 reg = pcn_bcr_read(sc, LE_BCR2);
2077 reg |= LE_B2_ASEL;
2078 pcn_bcr_write(sc, LE_BCR2, reg);
2079 } else {
2080 /*
2081 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2082 */
2083 reg = pcn_bcr_read(sc, LE_BCR2);
2084 reg &= ~LE_B2_ASEL;
2085 pcn_bcr_write(sc, LE_BCR2, reg);
2086
2087 reg = pcn_csr_read(sc, LE_CSR15);
2088 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2089 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2090 pcn_csr_write(sc, LE_CSR15, reg);
2091 }
2092
2093 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2094 reg = LE_B9_FDEN;
2095 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2096 reg |= LE_B9_AUIFD;
2097 pcn_bcr_write(sc, LE_BCR9, reg);
2098 } else
2099 pcn_bcr_write(sc, LE_BCR9, 0);
2100
2101 return 0;
2102 }
2103
2104 /*
2105 * pcn_79c971_mediainit:
2106 *
2107 * Initialize media for the Am79c971.
2108 */
2109 static void
2110 pcn_79c971_mediainit(struct pcn_softc *sc)
2111 {
2112 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2113 struct mii_data * const mii = &sc->sc_mii;
2114
2115 /* We have MII. */
2116 sc->sc_flags |= PCN_F_HAS_MII;
2117
2118 /*
2119 * The built-in 10BASE-T interface is mapped to the MII
2120 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2121 * word that tells us which PHY to use.
2122 * This driver used to ignore all but the first PHY to
2123 * answer, but this code was removed to support multiple
2124 * external PHYs. As the default instance will be the first
2125 * one to answer, no harm is done by letting the possibly
2126 * non-connected internal PHY show up.
2127 */
2128
2129 /* Initialize our media structures and probe the MII. */
2130 mii->mii_ifp = ifp;
2131 mii->mii_readreg = pcn_mii_readreg;
2132 mii->mii_writereg = pcn_mii_writereg;
2133 mii->mii_statchg = pcn_mii_statchg;
2134
2135 sc->sc_ethercom.ec_mii = mii;
2136 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
2137
2138 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
2139 MII_OFFSET_ANY, 0);
2140 if (LIST_FIRST(&mii->mii_phys) == NULL) {
2141 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
2142 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
2143 } else
2144 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2145 }
2146
2147 /*
2148 * pcn_mii_readreg: [mii interface function]
2149 *
2150 * Read a PHY register on the MII.
2151 */
2152 static int
2153 pcn_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2154 {
2155 struct pcn_softc *sc = device_private(self);
2156
2157 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2158 *val = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2159 if (*val == 0xffff)
2160 return -1;
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * pcn_mii_writereg: [mii interface function]
2167 *
2168 * Write a PHY register on the MII.
2169 */
2170 static int
2171 pcn_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2172 {
2173 struct pcn_softc *sc = device_private(self);
2174
2175 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2176 pcn_bcr_write(sc, LE_BCR34, val);
2177
2178 return 0;
2179 }
2180
2181 /*
2182 * pcn_mii_statchg: [mii interface function]
2183 *
2184 * Callback from MII layer when media changes.
2185 */
2186 static void
2187 pcn_mii_statchg(struct ifnet *ifp)
2188 {
2189 struct pcn_softc *sc = ifp->if_softc;
2190
2191 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2192 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2193 else
2194 pcn_bcr_write(sc, LE_BCR9, 0);
2195 }
2196