if_pcn.c revision 1.9 1 /* $NetBSD: if_pcn.c,v 1.9 2002/05/03 00:16:12 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.9 2002/05/03 00:16:12 thorpej Exp $");
69
70 #include "bpfilter.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83
84 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
85
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_pcnreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 4 segments
114 * per packet. This MUST work out to a power of 2.
115 *
116 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117 *
118 * So we play a little trick here. We give each packet up to 16
119 * DMA segments, but only allocate the max of 512 descriptors. The
120 * transmit logic can deal with this, we just are hoping to sneak by.
121 */
122 #define PCN_NTXSEGS 16
123
124 #define PCN_TXQUEUELEN 128
125 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
126 #define PCN_NTXDESC 512
127 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
128 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
129 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
130
131 /* Tx interrupt every N + 1 packets. */
132 #define PCN_TXINTR_MASK 7
133
134 /*
135 * Receive descriptor list size. We have one Rx buffer per incoming
136 * packet, so this logic is a little simpler.
137 */
138 #define PCN_NRXDESC 128
139 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
140 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
141
142 /*
143 * Control structures are DMA'd to the PCnet chip. We allocate them in
144 * a single clump that maps to a single DMA segment to make several things
145 * easier.
146 */
147 struct pcn_control_data {
148 /* The transmit descriptors. */
149 struct letmd pcd_txdescs[PCN_NTXDESC];
150
151 /* The receive descriptors. */
152 struct lermd pcd_rxdescs[PCN_NRXDESC];
153
154 /* The init block. */
155 struct leinit pcd_initblock;
156 };
157
158 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
159 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
160 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
161 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
162
163 /*
164 * Software state for transmit jobs.
165 */
166 struct pcn_txsoft {
167 struct mbuf *txs_mbuf; /* head of our mbuf chain */
168 bus_dmamap_t txs_dmamap; /* our DMA map */
169 int txs_firstdesc; /* first descriptor in packet */
170 int txs_lastdesc; /* last descriptor in packet */
171 };
172
173 /*
174 * Software state for receive jobs.
175 */
176 struct pcn_rxsoft {
177 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
178 bus_dmamap_t rxs_dmamap; /* our DMA map */
179 };
180
181 /*
182 * Description of Rx FIFO watermarks for various revisions.
183 */
184 const char *pcn_79c970_rcvfw[] = {
185 "16 bytes",
186 "64 bytes",
187 "128 bytes",
188 NULL,
189 };
190
191 const char *pcn_79c971_rcvfw[] = {
192 "16 bytes",
193 "64 bytes",
194 "112 bytes",
195 NULL,
196 };
197
198 /*
199 * Description of Tx start points for various revisions.
200 */
201 const char *pcn_79c970_xmtsp[] = {
202 "8 bytes",
203 "64 bytes",
204 "128 bytes",
205 "248 bytes",
206 };
207
208 const char *pcn_79c971_xmtsp[] = {
209 "20 bytes",
210 "64 bytes",
211 "128 bytes",
212 "248 bytes",
213 };
214
215 const char *pcn_79c971_xmtsp_sram[] = {
216 "44 bytes",
217 "64 bytes",
218 "128 bytes",
219 "store-and-forward",
220 };
221
222 /*
223 * Description of Tx FIFO watermarks for various revisions.
224 */
225 const char *pcn_79c970_xmtfw[] = {
226 "16 bytes",
227 "64 bytes",
228 "128 bytes",
229 NULL,
230 };
231
232 const char *pcn_79c971_xmtfw[] = {
233 "16 bytes",
234 "64 bytes",
235 "108 bytes",
236 NULL,
237 };
238
239 /*
240 * Software state per device.
241 */
242 struct pcn_softc {
243 struct device sc_dev; /* generic device information */
244 bus_space_tag_t sc_st; /* bus space tag */
245 bus_space_handle_t sc_sh; /* bus space handle */
246 bus_dma_tag_t sc_dmat; /* bus DMA tag */
247 struct ethercom sc_ethercom; /* Ethernet common data */
248 void *sc_sdhook; /* shutdown hook */
249
250 /* Points to our media routines, etc. */
251 const struct pcn_variant *sc_variant;
252
253 void *sc_ih; /* interrupt cookie */
254
255 struct mii_data sc_mii; /* MII/media information */
256
257 struct callout sc_tick_ch; /* tick callout */
258
259 bus_dmamap_t sc_cddmamap; /* control data DMA map */
260 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
261
262 /* Software state for transmit and receive descriptors. */
263 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265
266 /* Control data structures */
267 struct pcn_control_data *sc_control_data;
268 #define sc_txdescs sc_control_data->pcd_txdescs
269 #define sc_rxdescs sc_control_data->pcd_rxdescs
270 #define sc_initblock sc_control_data->pcd_initblock
271
272 #ifdef PCN_EVENT_COUNTERS
273 /* Event counters. */
274 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
275 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
276 struct evcnt sc_ev_txintr; /* Tx interrupts */
277 struct evcnt sc_ev_rxintr; /* Rx interrupts */
278 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
279 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
280 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
281
282 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
283 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
284 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
285 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
286 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
287 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
288 struct evcnt sc_ev_txcopy; /* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290
291 const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
292 int sc_rcvfw;
293
294 const char **sc_xmtsp_desc; /* Tx start point info */
295 int sc_xmtsp;
296
297 const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
298 int sc_xmtfw;
299
300 int sc_flags; /* misc. flags; see below */
301 int sc_swstyle; /* the software style in use */
302
303 int sc_txfree; /* number of free Tx descriptors */
304 int sc_txnext; /* next ready Tx descriptor */
305
306 int sc_txsfree; /* number of free Tx jobs */
307 int sc_txsnext; /* next free Tx job */
308 int sc_txsdirty; /* dirty Tx jobs */
309
310 int sc_rxptr; /* next ready Rx descriptor/job */
311
312 uint32_t sc_csr5; /* prototype CSR5 register */
313 uint32_t sc_mode; /* prototype MODE register */
314 int sc_phyaddr; /* PHY address */
315 };
316
317 /* sc_flags */
318 #define PCN_F_HAS_MII 0x0001 /* has MII */
319
320 #ifdef PCN_EVENT_COUNTERS
321 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define PCN_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
329
330 #define PCN_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > PCN_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
341 (PCN_NTXDESC - __x), (ops)); \
342 __n -= (PCN_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
349 } while (/*CONSTCOND*/0)
350
351 #define PCN_CDRXSYNC(sc, x, ops) \
352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
353 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354
355 #define PCN_CDINITSYNC(sc, ops) \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 PCN_CDINITOFF, sizeof(struct leinit), (ops))
358
359 #define PCN_INIT_RXDESC(sc, x) \
360 do { \
361 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
362 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
363 struct mbuf *__m = __rxs->rxs_mbuf; \
364 \
365 /* \
366 * Note: We scoot the packet forward 2 bytes in the buffer \
367 * so that the payload after the Ethernet header is aligned \
368 * to a 4-byte boundary. \
369 */ \
370 __m->m_data = __m->m_ext.ext_buf + 2; \
371 \
372 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
373 __rmd->rmd2 = \
374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
375 __rmd->rmd0 = 0; \
376 } else { \
377 __rmd->rmd2 = 0; \
378 __rmd->rmd0 = \
379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
380 } \
381 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
382 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
383 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385
386 void pcn_start(struct ifnet *);
387 void pcn_watchdog(struct ifnet *);
388 int pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int pcn_init(struct ifnet *);
390 void pcn_stop(struct ifnet *, int);
391
392 void pcn_shutdown(void *);
393
394 void pcn_reset(struct pcn_softc *);
395 void pcn_rxdrain(struct pcn_softc *);
396 int pcn_add_rxbuf(struct pcn_softc *, int);
397 void pcn_tick(void *);
398
399 void pcn_spnd(struct pcn_softc *);
400
401 void pcn_set_filter(struct pcn_softc *);
402
403 int pcn_intr(void *);
404 void pcn_txintr(struct pcn_softc *);
405 int pcn_rxintr(struct pcn_softc *);
406
407 int pcn_mii_readreg(struct device *, int, int);
408 void pcn_mii_writereg(struct device *, int, int, int);
409 void pcn_mii_statchg(struct device *);
410
411 void pcn_79c970_mediainit(struct pcn_softc *);
412 int pcn_79c970_mediachange(struct ifnet *);
413 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414
415 void pcn_79c971_mediainit(struct pcn_softc *);
416 int pcn_79c971_mediachange(struct ifnet *);
417 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418
419 /*
420 * Description of a PCnet-PCI variant. Used to select media access
421 * method, mostly, and to print a nice description of the chip.
422 */
423 const struct pcn_variant {
424 const char *pcv_desc;
425 void (*pcv_mediainit)(struct pcn_softc *);
426 uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 { "Am79c970 PCnet-PCI",
429 pcn_79c970_mediainit,
430 PARTID_Am79c970 },
431
432 { "Am79c970A PCnet-PCI II",
433 pcn_79c970_mediainit,
434 PARTID_Am79c970A },
435
436 { "Am79c971 PCnet-FAST",
437 pcn_79c971_mediainit,
438 PARTID_Am79c971 },
439
440 { "Am79c972 PCnet-FAST+",
441 pcn_79c971_mediainit,
442 PARTID_Am79c972 },
443
444 { "Am79c973 PCnet-FAST III",
445 pcn_79c971_mediainit,
446 PARTID_Am79c973 },
447
448 { "Am79c975 PCnet-FAST III",
449 pcn_79c971_mediainit,
450 PARTID_Am79c975 },
451
452 { "Unknown PCnet-PCI variant",
453 pcn_79c971_mediainit,
454 0 },
455 };
456
457 int pcn_copy_small = 0;
458
459 int pcn_match(struct device *, struct cfdata *, void *);
460 void pcn_attach(struct device *, struct device *, void *);
461
462 struct cfattach pcn_ca = {
463 sizeof(struct pcn_softc), pcn_match, pcn_attach,
464 };
465
466 /*
467 * Routines to read and write the PCnet-PCI CSR/BCR space.
468 */
469
470 static __inline uint32_t
471 pcn_csr_read(struct pcn_softc *sc, int reg)
472 {
473
474 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
475 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
476 }
477
478 static __inline void
479 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
480 {
481
482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
484 }
485
486 static __inline uint32_t
487 pcn_bcr_read(struct pcn_softc *sc, int reg)
488 {
489
490 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
492 }
493
494 static __inline void
495 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
496 {
497
498 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
499 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
500 }
501
502 static const struct pcn_variant *
503 pcn_lookup_variant(uint16_t chipid)
504 {
505 const struct pcn_variant *pcv;
506
507 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
508 if (chipid == pcv->pcv_chipid)
509 return (pcv);
510 }
511
512 /*
513 * This covers unknown chips, which we simply treat like
514 * a generic PCnet-FAST.
515 */
516 return (pcv);
517 }
518
519 int
520 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
521 {
522 struct pci_attach_args *pa = aux;
523
524 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
525 return (0);
526
527 switch (PCI_PRODUCT(pa->pa_id)) {
528 case PCI_PRODUCT_AMD_PCNET_PCI:
529 /* Beat if_le_pci.c */
530 return (10);
531 }
532
533 return (0);
534 }
535
536 void
537 pcn_attach(struct device *parent, struct device *self, void *aux)
538 {
539 struct pcn_softc *sc = (struct pcn_softc *) self;
540 struct pci_attach_args *pa = aux;
541 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
542 pci_chipset_tag_t pc = pa->pa_pc;
543 pci_intr_handle_t ih;
544 const char *intrstr = NULL;
545 bus_space_tag_t iot;
546 bus_space_handle_t ioh;
547 bus_dma_segment_t seg;
548 int ioh_valid;
549 int i, rseg, error;
550 pcireg_t pmode;
551 uint32_t chipid, reg;
552 uint8_t enaddr[ETHER_ADDR_LEN];
553 int pmreg;
554
555 callout_init(&sc->sc_tick_ch);
556
557 printf(": AMD PCnet-PCI Ethernet\n");
558
559 /*
560 * Map the device.
561 */
562 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
563 &iot, &ioh, NULL, NULL) == 0);
564
565 if (ioh_valid) {
566 sc->sc_st = iot;
567 sc->sc_sh = ioh;
568 } else {
569 printf("%s: unable to map device registers\n",
570 sc->sc_dev.dv_xname);
571 return;
572 }
573
574 sc->sc_dmat = pa->pa_dmat;
575
576 /* Make sure bus mastering is enabled. */
577 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
578 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
579 PCI_COMMAND_MASTER_ENABLE);
580
581 /* Get it out of power save mode, if needed. */
582 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
583 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
584 if (pmode == 3) {
585 /*
586 * The card has lost all configuration data in
587 * this state, so punt.
588 */
589 printf("%s: unable to wake from power state D3\n",
590 sc->sc_dev.dv_xname);
591 return;
592 }
593 if (pmode != 0) {
594 printf("%s: waking up from power date D%d\n",
595 sc->sc_dev.dv_xname, pmode);
596 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
597 }
598 }
599
600 /*
601 * Reset the chip to a known state. This also puts the
602 * chip into 32-bit mode.
603 */
604 pcn_reset(sc);
605
606 /*
607 * Read the Ethernet address from the EEPROM.
608 */
609 for (i = 0; i < ETHER_ADDR_LEN; i++)
610 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
611 PCN32_APROM + i);
612
613 /*
614 * Now that the device is mapped, attempt to figure out what
615 * kind of chip we have. Note that IDL has all 32 bits of
616 * the chip ID when we're in 32-bit mode.
617 */
618 chipid = pcn_csr_read(sc, LE_CSR88);
619 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
620
621 printf("%s: %s rev %d, Ethernet address %s\n",
622 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
623 ether_sprintf(enaddr));
624
625 /*
626 * Map and establish our interrupt.
627 */
628 if (pci_intr_map(pa, &ih)) {
629 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
630 return;
631 }
632 intrstr = pci_intr_string(pc, ih);
633 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
634 if (sc->sc_ih == NULL) {
635 printf("%s: unable to establish interrupt",
636 sc->sc_dev.dv_xname);
637 if (intrstr != NULL)
638 printf(" at %s", intrstr);
639 printf("\n");
640 return;
641 }
642 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
643
644 /*
645 * Allocate the control data structures, and create and load the
646 * DMA map for it.
647 */
648 if ((error = bus_dmamem_alloc(sc->sc_dmat,
649 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
650 0)) != 0) {
651 printf("%s: unable to allocate control data, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_0;
654 }
655
656 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
657 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
658 BUS_DMA_COHERENT)) != 0) {
659 printf("%s: unable to map control data, error = %d\n",
660 sc->sc_dev.dv_xname, error);
661 goto fail_1;
662 }
663
664 if ((error = bus_dmamap_create(sc->sc_dmat,
665 sizeof(struct pcn_control_data), 1,
666 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
667 printf("%s: unable to create control data DMA map, "
668 "error = %d\n", sc->sc_dev.dv_xname, error);
669 goto fail_2;
670 }
671
672 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
673 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
674 0)) != 0) {
675 printf("%s: unable to load control data DMA map, error = %d\n",
676 sc->sc_dev.dv_xname, error);
677 goto fail_3;
678 }
679
680 /* Create the transmit buffer DMA maps. */
681 for (i = 0; i < PCN_TXQUEUELEN; i++) {
682 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
683 PCN_NTXSEGS, MCLBYTES, 0, 0,
684 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
685 printf("%s: unable to create tx DMA map %d, "
686 "error = %d\n", sc->sc_dev.dv_xname, i, error);
687 goto fail_4;
688 }
689 }
690
691 /* Create the receive buffer DMA maps. */
692 for (i = 0; i < PCN_NRXDESC; i++) {
693 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
694 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
695 printf("%s: unable to create rx DMA map %d, "
696 "error = %d\n", sc->sc_dev.dv_xname, i, error);
697 goto fail_5;
698 }
699 sc->sc_rxsoft[i].rxs_mbuf = NULL;
700 }
701
702 /* Initialize our media structures. */
703 (*sc->sc_variant->pcv_mediainit)(sc);
704
705 /*
706 * Initialize FIFO watermark info.
707 */
708 switch (sc->sc_variant->pcv_chipid) {
709 case PARTID_Am79c970:
710 case PARTID_Am79c970A:
711 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
712 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
713 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
714 break;
715
716 default:
717 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
718 /*
719 * Read BCR25 to determine how much SRAM is
720 * on the board. If > 0, then we the chip
721 * uses different Start Point thresholds.
722 *
723 * Note BCR25 and BCR26 are loaded from the
724 * EEPROM on RST, and unaffected by S_RESET,
725 * so we don't really have to worry about
726 * them except for this.
727 */
728 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
729 if (reg != 0)
730 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
731 else
732 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
733 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
734 break;
735 }
736
737 /*
738 * Set up defaults -- see the tables above for what these
739 * values mean.
740 *
741 * XXX How should we tune RCVFW and XMTFW?
742 */
743 sc->sc_rcvfw = 1; /* minimum for full-duplex */
744 sc->sc_xmtsp = 1;
745 sc->sc_xmtfw = 0;
746
747 ifp = &sc->sc_ethercom.ec_if;
748 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 ifp->if_softc = sc;
750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 ifp->if_ioctl = pcn_ioctl;
752 ifp->if_start = pcn_start;
753 ifp->if_watchdog = pcn_watchdog;
754 ifp->if_init = pcn_init;
755 ifp->if_stop = pcn_stop;
756 IFQ_SET_READY(&ifp->if_snd);
757
758 /* Attach the interface. */
759 if_attach(ifp);
760 ether_ifattach(ifp, enaddr);
761
762 #ifdef PCN_EVENT_COUNTERS
763 /* Attach event counters. */
764 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
765 NULL, sc->sc_dev.dv_xname, "txsstall");
766 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
767 NULL, sc->sc_dev.dv_xname, "txdstall");
768 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
769 NULL, sc->sc_dev.dv_xname, "txintr");
770 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
771 NULL, sc->sc_dev.dv_xname, "rxintr");
772 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
773 NULL, sc->sc_dev.dv_xname, "babl");
774 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
775 NULL, sc->sc_dev.dv_xname, "miss");
776 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
777 NULL, sc->sc_dev.dv_xname, "merr");
778
779 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
780 NULL, sc->sc_dev.dv_xname, "txseg1");
781 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
782 NULL, sc->sc_dev.dv_xname, "txseg2");
783 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
784 NULL, sc->sc_dev.dv_xname, "txseg3");
785 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
786 NULL, sc->sc_dev.dv_xname, "txseg4");
787 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
788 NULL, sc->sc_dev.dv_xname, "txseg5");
789 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
790 NULL, sc->sc_dev.dv_xname, "txsegmore");
791 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
792 NULL, sc->sc_dev.dv_xname, "txcopy");
793 #endif /* PCN_EVENT_COUNTERS */
794
795 /* Make sure the interface is shutdown during reboot. */
796 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
797 if (sc->sc_sdhook == NULL)
798 printf("%s: WARNING: unable to establish shutdown hook\n",
799 sc->sc_dev.dv_xname);
800 return;
801
802 /*
803 * Free any resources we've allocated during the failed attach
804 * attempt. Do this in reverse order and fall through.
805 */
806 fail_5:
807 for (i = 0; i < PCN_NRXDESC; i++) {
808 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
809 bus_dmamap_destroy(sc->sc_dmat,
810 sc->sc_rxsoft[i].rxs_dmamap);
811 }
812 fail_4:
813 for (i = 0; i < PCN_TXQUEUELEN; i++) {
814 if (sc->sc_txsoft[i].txs_dmamap != NULL)
815 bus_dmamap_destroy(sc->sc_dmat,
816 sc->sc_txsoft[i].txs_dmamap);
817 }
818 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
819 fail_3:
820 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
821 fail_2:
822 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
823 sizeof(struct pcn_control_data));
824 fail_1:
825 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
826 fail_0:
827 return;
828 }
829
830 /*
831 * pcn_shutdown:
832 *
833 * Make sure the interface is stopped at reboot time.
834 */
835 void
836 pcn_shutdown(void *arg)
837 {
838 struct pcn_softc *sc = arg;
839
840 pcn_stop(&sc->sc_ethercom.ec_if, 1);
841 }
842
843 /*
844 * pcn_start: [ifnet interface function]
845 *
846 * Start packet transmission on the interface.
847 */
848 void
849 pcn_start(struct ifnet *ifp)
850 {
851 struct pcn_softc *sc = ifp->if_softc;
852 struct mbuf *m0, *m;
853 struct pcn_txsoft *txs;
854 bus_dmamap_t dmamap;
855 int error, nexttx, lasttx, ofree, seg;
856
857 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
858 return;
859
860 /*
861 * Remember the previous number of free descriptors and
862 * the first descriptor we'll use.
863 */
864 ofree = sc->sc_txfree;
865
866 /*
867 * Loop through the send queue, setting up transmit descriptors
868 * until we drain the queue, or use up all available transmit
869 * descriptors.
870 */
871 for (;;) {
872 /* Grab a packet off the queue. */
873 IFQ_POLL(&ifp->if_snd, m0);
874 if (m0 == NULL)
875 break;
876 m = NULL;
877
878 /* Get a work queue entry. */
879 if (sc->sc_txsfree == 0) {
880 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
881 break;
882 }
883
884 txs = &sc->sc_txsoft[sc->sc_txsnext];
885 dmamap = txs->txs_dmamap;
886
887 /*
888 * Load the DMA map. If this fails, the packet either
889 * didn't fit in the alloted number of segments, or we
890 * were short on resources. In this case, we'll copy
891 * and try again.
892 */
893 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
894 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
895 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
896 MGETHDR(m, M_DONTWAIT, MT_DATA);
897 if (m == NULL) {
898 printf("%s: unable to allocate Tx mbuf\n",
899 sc->sc_dev.dv_xname);
900 break;
901 }
902 if (m0->m_pkthdr.len > MHLEN) {
903 MCLGET(m, M_DONTWAIT);
904 if ((m->m_flags & M_EXT) == 0) {
905 printf("%s: unable to allocate Tx "
906 "cluster\n", sc->sc_dev.dv_xname);
907 m_freem(m);
908 break;
909 }
910 }
911 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
912 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
913 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
914 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
915 if (error) {
916 printf("%s: unable to load Tx buffer, "
917 "error = %d\n", sc->sc_dev.dv_xname, error);
918 break;
919 }
920 }
921
922 /*
923 * Ensure we have enough descriptors free to describe
924 * the packet. Note, we always reserve one descriptor
925 * at the end of the ring as a termination point, to
926 * prevent wrap-around.
927 */
928 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
929 /*
930 * Not enough free descriptors to transmit this
931 * packet. We haven't committed anything yet,
932 * so just unload the DMA map, put the packet
933 * back on the queue, and punt. Notify the upper
934 * layer that there are not more slots left.
935 *
936 * XXX We could allocate an mbuf and copy, but
937 * XXX is it worth it?
938 */
939 ifp->if_flags |= IFF_OACTIVE;
940 bus_dmamap_unload(sc->sc_dmat, dmamap);
941 if (m != NULL)
942 m_freem(m);
943 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
944 break;
945 }
946
947 IFQ_DEQUEUE(&ifp->if_snd, m0);
948 if (m != NULL) {
949 m_freem(m0);
950 m0 = m;
951 }
952
953 /*
954 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
955 */
956
957 /* Sync the DMA map. */
958 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
959 BUS_DMASYNC_PREWRITE);
960
961 #ifdef PCN_EVENT_COUNTERS
962 switch (dmamap->dm_nsegs) {
963 case 1:
964 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
965 break;
966 case 2:
967 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
968 break;
969 case 3:
970 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
971 break;
972 case 4:
973 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
974 break;
975 case 5:
976 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
977 break;
978 default:
979 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
980 break;
981 }
982 #endif /* PCN_EVENT_COUNTERS */
983
984 /*
985 * Initialize the transmit descriptors.
986 */
987 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
988 for (nexttx = sc->sc_txnext, seg = 0;
989 seg < dmamap->dm_nsegs;
990 seg++, nexttx = PCN_NEXTTX(nexttx)) {
991 /*
992 * If this is the first descriptor we're
993 * enqueueing, don't set the OWN bit just
994 * yet. That could cause a race condition.
995 * We'll do it below.
996 */
997 sc->sc_txdescs[nexttx].tmd0 = 0;
998 sc->sc_txdescs[nexttx].tmd2 =
999 htole32(dmamap->dm_segs[seg].ds_addr);
1000 sc->sc_txdescs[nexttx].tmd1 =
1001 htole32(LE_T1_ONES |
1002 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1003 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1004 LE_T1_BCNT_MASK));
1005 lasttx = nexttx;
1006 }
1007 } else {
1008 for (nexttx = sc->sc_txnext, seg = 0;
1009 seg < dmamap->dm_nsegs;
1010 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1011 /*
1012 * If this is the first descriptor we're
1013 * enqueueing, don't set the OWN bit just
1014 * yet. That could cause a race condition.
1015 * We'll do it below.
1016 */
1017 sc->sc_txdescs[nexttx].tmd0 =
1018 htole32(dmamap->dm_segs[seg].ds_addr);
1019 sc->sc_txdescs[nexttx].tmd2 = 0;
1020 sc->sc_txdescs[nexttx].tmd1 =
1021 htole32(LE_T1_ONES |
1022 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1023 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1024 LE_T1_BCNT_MASK));
1025 lasttx = nexttx;
1026 }
1027 }
1028
1029 /* Interrupt on the packet, if appropriate. */
1030 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1031 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1032
1033 /* Set `start of packet' and `end of packet' appropriately. */
1034 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1035 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1036 htole32(LE_T1_OWN|LE_T1_STP);
1037
1038 /* Sync the descriptors we're using. */
1039 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1040 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1041
1042 /* Kick the transmitter. */
1043 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1044
1045 /*
1046 * Store a pointer to the packet so we can free it later,
1047 * and remember what txdirty will be once the packet is
1048 * done.
1049 */
1050 txs->txs_mbuf = m0;
1051 txs->txs_firstdesc = sc->sc_txnext;
1052 txs->txs_lastdesc = lasttx;
1053
1054 /* Advance the tx pointer. */
1055 sc->sc_txfree -= dmamap->dm_nsegs;
1056 sc->sc_txnext = nexttx;
1057
1058 sc->sc_txsfree--;
1059 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1060
1061 #if NBPFILTER > 0
1062 /* Pass the packet to any BPF listeners. */
1063 if (ifp->if_bpf)
1064 bpf_mtap(ifp->if_bpf, m0);
1065 #endif /* NBPFILTER > 0 */
1066 }
1067
1068 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1069 /* No more slots left; notify upper layer. */
1070 ifp->if_flags |= IFF_OACTIVE;
1071 }
1072
1073 if (sc->sc_txfree != ofree) {
1074 /* Set a watchdog timer in case the chip flakes out. */
1075 ifp->if_timer = 5;
1076 }
1077 }
1078
1079 /*
1080 * pcn_watchdog: [ifnet interface function]
1081 *
1082 * Watchdog timer handler.
1083 */
1084 void
1085 pcn_watchdog(struct ifnet *ifp)
1086 {
1087 struct pcn_softc *sc = ifp->if_softc;
1088
1089 /*
1090 * Since we're not interrupting every packet, sweep
1091 * up before we report an error.
1092 */
1093 pcn_txintr(sc);
1094
1095 if (sc->sc_txfree != PCN_NTXDESC) {
1096 printf("%s: device timeout (txfree %d txsfree %d)\n",
1097 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1098 ifp->if_oerrors++;
1099
1100 /* Reset the interface. */
1101 (void) pcn_init(ifp);
1102 }
1103
1104 /* Try to get more packets going. */
1105 pcn_start(ifp);
1106 }
1107
1108 /*
1109 * pcn_ioctl: [ifnet interface function]
1110 *
1111 * Handle control requests from the operator.
1112 */
1113 int
1114 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1115 {
1116 struct pcn_softc *sc = ifp->if_softc;
1117 struct ifreq *ifr = (struct ifreq *) data;
1118 int s, error;
1119
1120 s = splnet();
1121
1122 switch (cmd) {
1123 case SIOCSIFMEDIA:
1124 case SIOCGIFMEDIA:
1125 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1126 break;
1127
1128 default:
1129 error = ether_ioctl(ifp, cmd, data);
1130 if (error == ENETRESET) {
1131 /*
1132 * Multicast list has changed; set the hardware filter
1133 * accordingly.
1134 */
1135 error = pcn_init(ifp);
1136 }
1137 break;
1138 }
1139
1140 /* Try to get more packets going. */
1141 pcn_start(ifp);
1142
1143 splx(s);
1144 return (error);
1145 }
1146
1147 /*
1148 * pcn_intr:
1149 *
1150 * Interrupt service routine.
1151 */
1152 int
1153 pcn_intr(void *arg)
1154 {
1155 struct pcn_softc *sc = arg;
1156 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1157 uint32_t csr0;
1158 int wantinit, handled = 0;
1159
1160 for (wantinit = 0; wantinit == 0;) {
1161 csr0 = pcn_csr_read(sc, LE_CSR0);
1162 if ((csr0 & LE_C0_INTR) == 0)
1163 break;
1164
1165 /* ACK the bits and re-enable interrupts. */
1166 pcn_csr_write(sc, LE_CSR0, csr0 &
1167 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1168 LE_C0_TINT|LE_C0_IDON));
1169
1170 handled = 1;
1171
1172 if (csr0 & LE_C0_RINT) {
1173 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1174 wantinit = pcn_rxintr(sc);
1175 }
1176
1177 if (csr0 & LE_C0_TINT) {
1178 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1179 pcn_txintr(sc);
1180 }
1181
1182 if (csr0 & LE_C0_ERR) {
1183 if (csr0 & LE_C0_BABL) {
1184 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1185 ifp->if_oerrors++;
1186 }
1187 if (csr0 & LE_C0_MISS) {
1188 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1189 ifp->if_ierrors++;
1190 }
1191 if (csr0 & LE_C0_MERR) {
1192 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1193 printf("%s: memory error\n",
1194 sc->sc_dev.dv_xname);
1195 wantinit = 1;
1196 break;
1197 }
1198 }
1199
1200 if ((csr0 & LE_C0_RXON) == 0) {
1201 printf("%s: receiver disabled\n",
1202 sc->sc_dev.dv_xname);
1203 ifp->if_ierrors++;
1204 wantinit = 1;
1205 }
1206
1207 if ((csr0 & LE_C0_TXON) == 0) {
1208 printf("%s: transmitter disabled\n",
1209 sc->sc_dev.dv_xname);
1210 ifp->if_oerrors++;
1211 wantinit = 1;
1212 }
1213 }
1214
1215 if (handled) {
1216 if (wantinit)
1217 pcn_init(ifp);
1218
1219 /* Try to get more packets going. */
1220 pcn_start(ifp);
1221 }
1222
1223 return (handled);
1224 }
1225
1226 /*
1227 * pcn_spnd:
1228 *
1229 * Suspend the chip.
1230 */
1231 void
1232 pcn_spnd(struct pcn_softc *sc)
1233 {
1234 int i;
1235
1236 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1237
1238 for (i = 0; i < 10000; i++) {
1239 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1240 return;
1241 delay(5);
1242 }
1243
1244 printf("%s: WARNING: chip failed to enter suspended state\n",
1245 sc->sc_dev.dv_xname);
1246 }
1247
1248 /*
1249 * pcn_txintr:
1250 *
1251 * Helper; handle transmit interrupts.
1252 */
1253 void
1254 pcn_txintr(struct pcn_softc *sc)
1255 {
1256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 struct pcn_txsoft *txs;
1258 uint32_t tmd1, tmd2, tmd;
1259 int i, j;
1260
1261 ifp->if_flags &= ~IFF_OACTIVE;
1262
1263 /*
1264 * Go through our Tx list and free mbufs for those
1265 * frames which have been transmitted.
1266 */
1267 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1268 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1269 txs = &sc->sc_txsoft[i];
1270
1271 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1272 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1273
1274 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1275 if (tmd1 & LE_T1_OWN)
1276 break;
1277
1278 /*
1279 * Slightly annoying -- we have to loop through the
1280 * descriptors we've used looking for ERR, since it
1281 * can appear on any descriptor in the chain.
1282 */
1283 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1284 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1285 if (tmd & LE_T1_ERR) {
1286 ifp->if_oerrors++;
1287 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1288 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1289 else
1290 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1291 if (tmd2 & LE_T2_UFLO) {
1292 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1293 sc->sc_xmtsp++;
1294 printf("%s: transmit "
1295 "underrun; new threshold: "
1296 "%s\n",
1297 sc->sc_dev.dv_xname,
1298 sc->sc_xmtsp_desc[
1299 sc->sc_xmtsp]);
1300 pcn_spnd(sc);
1301 pcn_csr_write(sc, LE_CSR80,
1302 LE_C80_RCVFW(sc->sc_rcvfw) |
1303 LE_C80_XMTSP(sc->sc_xmtsp) |
1304 LE_C80_XMTFW(sc->sc_xmtfw));
1305 pcn_csr_write(sc, LE_CSR5,
1306 sc->sc_csr5);
1307 } else {
1308 printf("%s: transmit "
1309 "underrun\n",
1310 sc->sc_dev.dv_xname);
1311 }
1312 } else if (tmd2 & LE_T2_BUFF) {
1313 printf("%s: transmit buffer error\n",
1314 sc->sc_dev.dv_xname);
1315 }
1316 if (tmd2 & LE_T2_LCOL)
1317 ifp->if_collisions++;
1318 if (tmd2 & LE_T2_RTRY)
1319 ifp->if_collisions += 16;
1320 goto next_packet;
1321 }
1322 if (j == txs->txs_lastdesc)
1323 break;
1324 }
1325 if (tmd1 & LE_T1_ONE)
1326 ifp->if_collisions++;
1327 else if (tmd & LE_T1_MORE) {
1328 /* Real number is unknown. */
1329 ifp->if_collisions += 2;
1330 }
1331 ifp->if_opackets++;
1332 next_packet:
1333 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1334 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1335 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1336 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1337 m_freem(txs->txs_mbuf);
1338 txs->txs_mbuf = NULL;
1339 }
1340
1341 /* Update the dirty transmit buffer pointer. */
1342 sc->sc_txsdirty = i;
1343
1344 /*
1345 * If there are no more pending transmissions, cancel the watchdog
1346 * timer.
1347 */
1348 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1349 ifp->if_timer = 0;
1350 }
1351
1352 /*
1353 * pcn_rxintr:
1354 *
1355 * Helper; handle receive interrupts.
1356 */
1357 int
1358 pcn_rxintr(struct pcn_softc *sc)
1359 {
1360 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1361 struct pcn_rxsoft *rxs;
1362 struct mbuf *m;
1363 uint32_t rmd1;
1364 int i, len;
1365
1366 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1367 rxs = &sc->sc_rxsoft[i];
1368
1369 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1370
1371 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1372
1373 if (rmd1 & LE_R1_OWN)
1374 break;
1375
1376 /*
1377 * Check for errors and make sure the packet fit into
1378 * a single buffer. We have structured this block of
1379 * code the way it is in order to compress it into
1380 * one test in the common case (no error).
1381 */
1382 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1383 (LE_R1_STP|LE_R1_ENP))) {
1384 /* Make sure the packet is in a single buffer. */
1385 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1386 (LE_R1_STP|LE_R1_ENP)) {
1387 printf("%s: packet spilled into next buffer\n",
1388 sc->sc_dev.dv_xname);
1389 return (1); /* pcn_intr() will re-init */
1390 }
1391
1392 /*
1393 * If the packet had an error, simple recycle the
1394 * buffer.
1395 */
1396 if (rmd1 & LE_R1_ERR) {
1397 ifp->if_ierrors++;
1398 /*
1399 * If we got an overflow error, chances
1400 * are there will be a CRC error. In
1401 * this case, just print the overflow
1402 * error, and skip the others.
1403 */
1404 if (rmd1 & LE_R1_OFLO)
1405 printf("%s: overflow error\n",
1406 sc->sc_dev.dv_xname);
1407 else {
1408 #define PRINTIT(x, s) \
1409 if (rmd1 & (x)) \
1410 printf("%s: %s\n", \
1411 sc->sc_dev.dv_xname, s);
1412 PRINTIT(LE_R1_FRAM, "framing error");
1413 PRINTIT(LE_R1_CRC, "CRC error");
1414 PRINTIT(LE_R1_BUFF, "buffer error");
1415 }
1416 #undef PRINTIT
1417 PCN_INIT_RXDESC(sc, i);
1418 continue;
1419 }
1420 }
1421
1422 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1423 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1424
1425 /*
1426 * No errors; receive the packet.
1427 */
1428 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1429 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1430 else
1431 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1432
1433 /*
1434 * The LANCE family includes the CRC with every packet;
1435 * trim it off here.
1436 */
1437 len -= ETHER_CRC_LEN;
1438
1439 /*
1440 * If the packet is small enough to fit in a
1441 * single header mbuf, allocate one and copy
1442 * the data into it. This greatly reduces
1443 * memory consumption when we receive lots
1444 * of small packets.
1445 *
1446 * Otherwise, we add a new buffer to the receive
1447 * chain. If this fails, we drop the packet and
1448 * recycle the old buffer.
1449 */
1450 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1451 MGETHDR(m, M_DONTWAIT, MT_DATA);
1452 if (m == NULL)
1453 goto dropit;
1454 m->m_data += 2;
1455 memcpy(mtod(m, caddr_t),
1456 mtod(rxs->rxs_mbuf, caddr_t), len);
1457 PCN_INIT_RXDESC(sc, i);
1458 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1459 rxs->rxs_dmamap->dm_mapsize,
1460 BUS_DMASYNC_PREREAD);
1461 } else {
1462 m = rxs->rxs_mbuf;
1463 if (pcn_add_rxbuf(sc, i) != 0) {
1464 dropit:
1465 ifp->if_ierrors++;
1466 PCN_INIT_RXDESC(sc, i);
1467 bus_dmamap_sync(sc->sc_dmat,
1468 rxs->rxs_dmamap, 0,
1469 rxs->rxs_dmamap->dm_mapsize,
1470 BUS_DMASYNC_PREREAD);
1471 continue;
1472 }
1473 }
1474
1475 m->m_pkthdr.rcvif = ifp;
1476 m->m_pkthdr.len = m->m_len = len;
1477
1478 #if NBPFILTER > 0
1479 /* Pass this up to any BPF listeners. */
1480 if (ifp->if_bpf)
1481 bpf_mtap(ifp->if_bpf, m);
1482 #endif /* NBPFILTER > 0 */
1483
1484 /* Pass it on. */
1485 (*ifp->if_input)(ifp, m);
1486 ifp->if_ipackets++;
1487 }
1488
1489 /* Update the receive pointer. */
1490 sc->sc_rxptr = i;
1491 return (0);
1492 }
1493
1494 /*
1495 * pcn_tick:
1496 *
1497 * One second timer, used to tick the MII.
1498 */
1499 void
1500 pcn_tick(void *arg)
1501 {
1502 struct pcn_softc *sc = arg;
1503 int s;
1504
1505 s = splnet();
1506 mii_tick(&sc->sc_mii);
1507 splx(s);
1508
1509 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1510 }
1511
1512 /*
1513 * pcn_reset:
1514 *
1515 * Perform a soft reset on the PCnet-PCI.
1516 */
1517 void
1518 pcn_reset(struct pcn_softc *sc)
1519 {
1520
1521 /*
1522 * The PCnet-PCI chip is reset by reading from the
1523 * RESET register. Note that while the NE2100 LANCE
1524 * boards require a write after the read, the PCnet-PCI
1525 * chips do not require this.
1526 *
1527 * Since we don't know if we're in 16-bit or 32-bit
1528 * mode right now, issue both (it's safe) in the
1529 * hopes that one will succeed.
1530 */
1531 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1532 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1533
1534 /* Wait 1ms for it to finish. */
1535 delay(1000);
1536
1537 /*
1538 * Select 32-bit I/O mode by issuing a 32-bit write to the
1539 * RDP. Since the RAP is 0 after a reset, writing a 0
1540 * to RDP is safe (since it simply clears CSR0).
1541 */
1542 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1543 }
1544
1545 /*
1546 * pcn_init: [ifnet interface function]
1547 *
1548 * Initialize the interface. Must be called at splnet().
1549 */
1550 int
1551 pcn_init(struct ifnet *ifp)
1552 {
1553 struct pcn_softc *sc = ifp->if_softc;
1554 struct pcn_rxsoft *rxs;
1555 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1556 int i, error = 0;
1557 uint32_t reg;
1558
1559 /* Cancel any pending I/O. */
1560 pcn_stop(ifp, 0);
1561
1562 /* Reset the chip to a known state. */
1563 pcn_reset(sc);
1564
1565 /*
1566 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1567 * else.
1568 *
1569 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1570 * because the structure layout is compatible with ILACC,
1571 * but the burst mode is only available in SSTYLE 3, and
1572 * burst mode should provide some performance enhancement.
1573 */
1574 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1575 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1576 else
1577 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1578 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1579
1580 /* Initialize the transmit descriptor ring. */
1581 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1582 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1583 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1584 sc->sc_txfree = PCN_NTXDESC;
1585 sc->sc_txnext = 0;
1586
1587 /* Initialize the transmit job descriptors. */
1588 for (i = 0; i < PCN_TXQUEUELEN; i++)
1589 sc->sc_txsoft[i].txs_mbuf = NULL;
1590 sc->sc_txsfree = PCN_TXQUEUELEN;
1591 sc->sc_txsnext = 0;
1592 sc->sc_txsdirty = 0;
1593
1594 /*
1595 * Initialize the receive descriptor and receive job
1596 * descriptor rings.
1597 */
1598 for (i = 0; i < PCN_NRXDESC; i++) {
1599 rxs = &sc->sc_rxsoft[i];
1600 if (rxs->rxs_mbuf == NULL) {
1601 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1602 printf("%s: unable to allocate or map rx "
1603 "buffer %d, error = %d\n",
1604 sc->sc_dev.dv_xname, i, error);
1605 /*
1606 * XXX Should attempt to run with fewer receive
1607 * XXX buffers instead of just failing.
1608 */
1609 pcn_rxdrain(sc);
1610 goto out;
1611 }
1612 } else
1613 PCN_INIT_RXDESC(sc, i);
1614 }
1615 sc->sc_rxptr = 0;
1616
1617 /* Initialize MODE for the initialization block. */
1618 sc->sc_mode = 0;
1619 if (ifp->if_flags & IFF_PROMISC)
1620 sc->sc_mode |= LE_C15_PROM;
1621 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1622 sc->sc_mode |= LE_C15_DRCVBC;
1623
1624 /*
1625 * If we have MII, simply select MII in the MODE register,
1626 * and clear ASEL. Otherwise, let ASEL stand (for now),
1627 * and leave PORTSEL alone (it is ignored with ASEL is set).
1628 */
1629 if (sc->sc_flags & PCN_F_HAS_MII) {
1630 pcn_bcr_write(sc, LE_BCR2,
1631 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1632 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1633
1634 /*
1635 * Disable MII auto-negotiation. We handle that in
1636 * our own MII layer.
1637 */
1638 pcn_bcr_write(sc, LE_BCR32,
1639 pcn_csr_read(sc, LE_BCR32) | LE_B32_DANAS);
1640 }
1641
1642 /*
1643 * Set the Tx and Rx descriptor ring addresses in the init
1644 * block, the TLEN and RLEN other fields of the init block
1645 * MODE register.
1646 */
1647 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1648 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1649 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1650 ((ffs(PCN_NTXDESC) - 1) << 28) |
1651 ((ffs(PCN_NRXDESC) - 1) << 20));
1652
1653 /* Set the station address in the init block. */
1654 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1655 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1656 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1657 (enaddr[5] << 8));
1658
1659 /* Set the multicast filter in the init block. */
1660 pcn_set_filter(sc);
1661
1662 /* Initialize CSR3. */
1663 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1664
1665 /* Initialize CSR4. */
1666 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1667 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1668
1669 /* Initialize CSR5. */
1670 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1671 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1672
1673 /*
1674 * If we have an Am79c971 or greater, initialize CSR7.
1675 *
1676 * XXX Might be nice to use the MII auto-poll interrupt someday.
1677 */
1678 switch (sc->sc_variant->pcv_chipid) {
1679 case PARTID_Am79c970:
1680 case PARTID_Am79c970A:
1681 /* Not available on these chips. */
1682 break;
1683
1684 default:
1685 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1686 break;
1687 }
1688
1689 /*
1690 * On the Am79c970A and greater, initialize BCR18 to
1691 * enable burst mode.
1692 *
1693 * Also enable the "no underflow" option on the Am79c971 and
1694 * higher, which prevents the chip from generating transmit
1695 * underflows, yet sill provides decent performance. Note if
1696 * chip is not connected to external SRAM, then we still have
1697 * to handle underflow errors (the NOUFLO bit is ignored in
1698 * that case).
1699 */
1700 reg = pcn_bcr_read(sc, LE_BCR18);
1701 switch (sc->sc_variant->pcv_chipid) {
1702 case PARTID_Am79c970:
1703 break;
1704
1705 case PARTID_Am79c970A:
1706 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1707 break;
1708
1709 default:
1710 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1711 break;
1712 }
1713 pcn_bcr_write(sc, LE_BCR18, reg);
1714
1715 /*
1716 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1717 */
1718 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1719 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1720
1721 /*
1722 * Send the init block to the chip, and wait for it
1723 * to be processed.
1724 */
1725 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1726 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1727 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1728 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1729 delay(100);
1730 for (i = 0; i < 10000; i++) {
1731 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1732 break;
1733 delay(10);
1734 }
1735 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1736 if (i == 10000) {
1737 printf("%s: timeout processing init block\n",
1738 sc->sc_dev.dv_xname);
1739 error = EIO;
1740 goto out;
1741 }
1742
1743 /* Set the media. */
1744 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1745
1746 /* Enable interrupts and external activity (and ACK IDON). */
1747 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1748
1749 if (sc->sc_flags & PCN_F_HAS_MII) {
1750 /* Start the one second MII clock. */
1751 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1752 }
1753
1754 /* ...all done! */
1755 ifp->if_flags |= IFF_RUNNING;
1756 ifp->if_flags &= ~IFF_OACTIVE;
1757
1758 out:
1759 if (error)
1760 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1761 return (error);
1762 }
1763
1764 /*
1765 * pcn_rxdrain:
1766 *
1767 * Drain the receive queue.
1768 */
1769 void
1770 pcn_rxdrain(struct pcn_softc *sc)
1771 {
1772 struct pcn_rxsoft *rxs;
1773 int i;
1774
1775 for (i = 0; i < PCN_NRXDESC; i++) {
1776 rxs = &sc->sc_rxsoft[i];
1777 if (rxs->rxs_mbuf != NULL) {
1778 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1779 m_freem(rxs->rxs_mbuf);
1780 rxs->rxs_mbuf = NULL;
1781 }
1782 }
1783 }
1784
1785 /*
1786 * pcn_stop: [ifnet interface function]
1787 *
1788 * Stop transmission on the interface.
1789 */
1790 void
1791 pcn_stop(struct ifnet *ifp, int disable)
1792 {
1793 struct pcn_softc *sc = ifp->if_softc;
1794 struct pcn_txsoft *txs;
1795 int i;
1796
1797 if (sc->sc_flags & PCN_F_HAS_MII) {
1798 /* Stop the one second clock. */
1799 callout_stop(&sc->sc_tick_ch);
1800
1801 /* Down the MII. */
1802 mii_down(&sc->sc_mii);
1803 }
1804
1805 /* Stop the chip. */
1806 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1807
1808 /* Release any queued transmit buffers. */
1809 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1810 txs = &sc->sc_txsoft[i];
1811 if (txs->txs_mbuf != NULL) {
1812 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1813 m_freem(txs->txs_mbuf);
1814 txs->txs_mbuf = NULL;
1815 }
1816 }
1817
1818 if (disable)
1819 pcn_rxdrain(sc);
1820
1821 /* Mark the interface as down and cancel the watchdog timer. */
1822 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1823 ifp->if_timer = 0;
1824 }
1825
1826 /*
1827 * pcn_add_rxbuf:
1828 *
1829 * Add a receive buffer to the indicated descriptor.
1830 */
1831 int
1832 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1833 {
1834 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1835 struct mbuf *m;
1836 int error;
1837
1838 MGETHDR(m, M_DONTWAIT, MT_DATA);
1839 if (m == NULL)
1840 return (ENOBUFS);
1841
1842 MCLGET(m, M_DONTWAIT);
1843 if ((m->m_flags & M_EXT) == 0) {
1844 m_freem(m);
1845 return (ENOBUFS);
1846 }
1847
1848 if (rxs->rxs_mbuf != NULL)
1849 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1850
1851 rxs->rxs_mbuf = m;
1852
1853 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1854 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1855 BUS_DMA_READ|BUS_DMA_NOWAIT);
1856 if (error) {
1857 printf("%s: can't load rx DMA map %d, error = %d\n",
1858 sc->sc_dev.dv_xname, idx, error);
1859 panic("pcn_add_rxbuf");
1860 }
1861
1862 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1863 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1864
1865 PCN_INIT_RXDESC(sc, idx);
1866
1867 return (0);
1868 }
1869
1870 /*
1871 * pcn_set_filter:
1872 *
1873 * Set up the receive filter.
1874 */
1875 void
1876 pcn_set_filter(struct pcn_softc *sc)
1877 {
1878 struct ethercom *ec = &sc->sc_ethercom;
1879 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1880 struct ether_multi *enm;
1881 struct ether_multistep step;
1882 uint32_t crc;
1883
1884 /*
1885 * Set up the multicast address filter by passing all multicast
1886 * addresses through a CRC generator, and then using the high
1887 * order 6 bits as an index into the 64-bit logical address
1888 * filter. The high order bits select the word, while the rest
1889 * of the bits select the bit within the word.
1890 */
1891
1892 if (ifp->if_flags & IFF_PROMISC)
1893 goto allmulti;
1894
1895 sc->sc_initblock.init_ladrf[0] =
1896 sc->sc_initblock.init_ladrf[1] =
1897 sc->sc_initblock.init_ladrf[2] =
1898 sc->sc_initblock.init_ladrf[3] = 0;
1899
1900 ETHER_FIRST_MULTI(step, ec, enm);
1901 while (enm != NULL) {
1902 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1903 /*
1904 * We must listen to a range of multicast addresses.
1905 * For now, just accept all multicasts, rather than
1906 * trying to set only those filter bits needed to match
1907 * the range. (At this time, the only use of address
1908 * ranges is for IP multicast routing, for which the
1909 * range is big enough to require all bits set.)
1910 */
1911 goto allmulti;
1912 }
1913
1914 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1915
1916 /* Just want the 6 most significant bits. */
1917 crc >>= 26;
1918
1919 /* Set the corresponding bit in the filter. */
1920 sc->sc_initblock.init_ladrf[crc >> 4] |=
1921 htole16(1 << (crc & 0xf));
1922
1923 ETHER_NEXT_MULTI(step, enm);
1924 }
1925
1926 ifp->if_flags &= ~IFF_ALLMULTI;
1927 return;
1928
1929 allmulti:
1930 ifp->if_flags |= IFF_ALLMULTI;
1931 sc->sc_initblock.init_ladrf[0] =
1932 sc->sc_initblock.init_ladrf[1] =
1933 sc->sc_initblock.init_ladrf[2] =
1934 sc->sc_initblock.init_ladrf[3] = 0xffff;
1935 }
1936
1937 /*
1938 * pcn_79c970_mediainit:
1939 *
1940 * Initialize media for the Am79c970.
1941 */
1942 void
1943 pcn_79c970_mediainit(struct pcn_softc *sc)
1944 {
1945 const char *sep = "";
1946
1947 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
1948 pcn_79c970_mediastatus);
1949
1950 #define ADD(s, m, d) \
1951 do { \
1952 printf("%s%s", sep, s); \
1953 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
1954 sep = ", "; \
1955 } while (/*CONSTCOND*/0)
1956
1957 printf("%s: ", sc->sc_dev.dv_xname);
1958 ADD("10base5", IFM_10_5, PORTSEL_AUI);
1959 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1960 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1961 ADD("10baseT", IFM_10_T, PORTSEL_10T);
1962 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1963 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1964 ADD("auto", IFM_AUTO, 0);
1965 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1966 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1967 printf("\n");
1968
1969 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1970 }
1971
1972 /*
1973 * pcn_79c970_mediastatus: [ifmedia interface function]
1974 *
1975 * Get the current interface media status (Am79c970 version).
1976 */
1977 void
1978 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1979 {
1980 struct pcn_softc *sc = ifp->if_softc;
1981
1982 /*
1983 * The currently selected media is always the active media.
1984 * Note: We have no way to determine what media the AUTO
1985 * process picked.
1986 */
1987 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1988 }
1989
1990 /*
1991 * pcn_79c970_mediachange: [ifmedia interface function]
1992 *
1993 * Set hardware to newly-selected media (Am79c970 version).
1994 */
1995 int
1996 pcn_79c970_mediachange(struct ifnet *ifp)
1997 {
1998 struct pcn_softc *sc = ifp->if_softc;
1999 uint32_t reg;
2000
2001 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2002 /*
2003 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2004 */
2005 reg = pcn_bcr_read(sc, LE_BCR2);
2006 reg |= LE_B2_ASEL;
2007 pcn_bcr_write(sc, LE_BCR2, reg);
2008 } else {
2009 /*
2010 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2011 */
2012 reg = pcn_bcr_read(sc, LE_BCR2);
2013 reg &= ~LE_B2_ASEL;
2014 pcn_bcr_write(sc, LE_BCR2, reg);
2015
2016 reg = pcn_csr_read(sc, LE_CSR15);
2017 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2018 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2019 pcn_csr_write(sc, LE_CSR15, reg);
2020 }
2021
2022 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2023 reg = LE_B9_FDEN;
2024 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2025 reg |= LE_B9_AUIFD;
2026 pcn_bcr_write(sc, LE_BCR9, reg);
2027 } else
2028 pcn_bcr_write(sc, LE_BCR0, 0);
2029
2030 return (0);
2031 }
2032
2033 /*
2034 * pcn_79c971_mediainit:
2035 *
2036 * Initialize media for the Am79c971.
2037 */
2038 void
2039 pcn_79c971_mediainit(struct pcn_softc *sc)
2040 {
2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042
2043 /* We have MII. */
2044 sc->sc_flags |= PCN_F_HAS_MII;
2045
2046 /*
2047 * The built-in 10BASE-T interface is mapped to the MII
2048 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2049 * word that tells us which PHY to use. Since the 10BASE-T
2050 * interface is always at PHY 31, we make a note of the
2051 * first PHY that responds, and disallow any PHYs after
2052 * it. This is all handled in the MII read routine.
2053 */
2054 sc->sc_phyaddr = -1;
2055
2056 /* Initialize our media structures and probe the MII. */
2057 sc->sc_mii.mii_ifp = ifp;
2058 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2059 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2060 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2061 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2062 pcn_79c971_mediastatus);
2063
2064 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2065 MII_OFFSET_ANY, 0);
2066 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2067 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2068 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2069 } else
2070 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2071 }
2072
2073 /*
2074 * pcn_79c971_mediastatus: [ifmedia interface function]
2075 *
2076 * Get the current interface media status (Am79c971 version).
2077 */
2078 void
2079 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2080 {
2081 struct pcn_softc *sc = ifp->if_softc;
2082
2083 mii_pollstat(&sc->sc_mii);
2084 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2085 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2086 }
2087
2088 /*
2089 * pcn_79c971_mediachange: [ifmedia interface function]
2090 *
2091 * Set hardware to newly-selected media (Am79c971 version).
2092 */
2093 int
2094 pcn_79c971_mediachange(struct ifnet *ifp)
2095 {
2096 struct pcn_softc *sc = ifp->if_softc;
2097
2098 if (ifp->if_flags & IFF_UP)
2099 mii_mediachg(&sc->sc_mii);
2100 return (0);
2101 }
2102
2103 /*
2104 * pcn_mii_readreg: [mii interface function]
2105 *
2106 * Read a PHY register on the MII.
2107 */
2108 int
2109 pcn_mii_readreg(struct device *self, int phy, int reg)
2110 {
2111 struct pcn_softc *sc = (void *) self;
2112 uint32_t rv;
2113
2114 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2115 return (0);
2116
2117 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2118 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2119 if (rv == 0xffff)
2120 return (0);
2121
2122 if (sc->sc_phyaddr == -1)
2123 sc->sc_phyaddr = phy;
2124
2125 return (rv);
2126 }
2127
2128 /*
2129 * pcn_mii_writereg: [mii interface function]
2130 *
2131 * Write a PHY register on the MII.
2132 */
2133 void
2134 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2135 {
2136 struct pcn_softc *sc = (void *) self;
2137
2138 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2139 pcn_bcr_write(sc, LE_BCR34, val);
2140 }
2141
2142 /*
2143 * pcn_mii_statchg: [mii interface function]
2144 *
2145 * Callback from MII layer when media changes.
2146 */
2147 void
2148 pcn_mii_statchg(struct device *self)
2149 {
2150 struct pcn_softc *sc = (void *) self;
2151
2152 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2153 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2154 else
2155 pcn_bcr_write(sc, LE_BCR0, 0);
2156 }
2157