Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.1
      1  1.1  sevan /*	$NetBSD: if_rge.c,v 1.1 2020/01/11 20:56:51 sevan Exp $	*/
      2  1.1  sevan /*	$OpenBSD: if_rge.c,v 1.2 2020/01/02 09:00:45 kevlo Exp $	*/
      3  1.1  sevan 
      4  1.1  sevan /*
      5  1.1  sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6  1.1  sevan  *
      7  1.1  sevan  * Permission to use, copy, modify, and distribute this software for any
      8  1.1  sevan  * purpose with or without fee is hereby granted, provided that the above
      9  1.1  sevan  * copyright notice and this permission notice appear in all copies.
     10  1.1  sevan  *
     11  1.1  sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  1.1  sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  1.1  sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  1.1  sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  1.1  sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  1.1  sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  1.1  sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  1.1  sevan  */
     19  1.1  sevan 
     20  1.1  sevan #include "bpfilter.h"
     21  1.1  sevan #include "vlan.h"
     22  1.1  sevan 
     23  1.1  sevan #include <sys/param.h>
     24  1.1  sevan #include <sys/systm.h>
     25  1.1  sevan #include <sys/sockio.h>
     26  1.1  sevan #include <sys/mbuf.h>
     27  1.1  sevan #include <sys/malloc.h>
     28  1.1  sevan #include <sys/kernel.h>
     29  1.1  sevan #include <sys/socket.h>
     30  1.1  sevan #include <sys/device.h>
     31  1.1  sevan #include <sys/endian.h>
     32  1.1  sevan 
     33  1.1  sevan #include <net/if.h>
     34  1.1  sevan #include <net/if_media.h>
     35  1.1  sevan 
     36  1.1  sevan #include <netinet/in.h>
     37  1.1  sevan #include <netinet/if_ether.h>
     38  1.1  sevan 
     39  1.1  sevan #if NBPFILTER > 0
     40  1.1  sevan #include <net/bpf.h>
     41  1.1  sevan #endif
     42  1.1  sevan 
     43  1.1  sevan #include <machine/bus.h>
     44  1.1  sevan #include <machine/intr.h>
     45  1.1  sevan 
     46  1.1  sevan #include <dev/mii/mii.h>
     47  1.1  sevan 
     48  1.1  sevan #include <dev/pci/pcivar.h>
     49  1.1  sevan #include <dev/pci/pcireg.h>
     50  1.1  sevan #include <dev/pci/pcidevs.h>
     51  1.1  sevan 
     52  1.1  sevan #include <dev/pci/if_rgereg.h>
     53  1.1  sevan 
     54  1.1  sevan int		rge_match(struct device *, void *, void *);
     55  1.1  sevan void		rge_attach(struct device *, struct device *, void *);
     56  1.1  sevan int		rge_intr(void *);
     57  1.1  sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
     58  1.1  sevan int		rge_ioctl(struct ifnet *, u_long, caddr_t);
     59  1.1  sevan void		rge_start(struct ifqueue *);
     60  1.1  sevan void		rge_watchdog(struct ifnet *);
     61  1.1  sevan int		rge_init(struct ifnet *);
     62  1.1  sevan void		rge_stop(struct ifnet *);
     63  1.1  sevan int		rge_ifmedia_upd(struct ifnet *);
     64  1.1  sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
     65  1.1  sevan int		rge_allocmem(struct rge_softc *);
     66  1.1  sevan int		rge_newbuf(struct rge_softc *, int);
     67  1.1  sevan void		rge_discard_rxbuf(struct rge_softc *, int);
     68  1.1  sevan int		rge_rx_list_init(struct rge_softc *);
     69  1.1  sevan void		rge_tx_list_init(struct rge_softc *);
     70  1.1  sevan int		rge_rxeof(struct rge_softc *);
     71  1.1  sevan int		rge_txeof(struct rge_softc *);
     72  1.1  sevan void		rge_reset(struct rge_softc *);
     73  1.1  sevan void		rge_iff(struct rge_softc *);
     74  1.1  sevan void		rge_set_phy_power(struct rge_softc *, int);
     75  1.1  sevan void		rge_phy_config(struct rge_softc *);
     76  1.1  sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
     77  1.1  sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
     78  1.1  sevan void		rge_hw_init(struct rge_softc *);
     79  1.1  sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
     80  1.1  sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
     81  1.1  sevan void		rge_add_media_types(struct rge_softc *);
     82  1.1  sevan void		rge_config_imtype(struct rge_softc *, int);
     83  1.1  sevan void		rge_disable_sim_im(struct rge_softc *);
     84  1.1  sevan void		rge_setup_sim_im(struct rge_softc *);
     85  1.1  sevan void		rge_setup_intr(struct rge_softc *, int);
     86  1.1  sevan void		rge_exit_oob(struct rge_softc *);
     87  1.1  sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
     88  1.1  sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
     89  1.1  sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
     90  1.1  sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
     91  1.1  sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
     92  1.1  sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
     93  1.1  sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
     94  1.1  sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
     95  1.1  sevan int		rge_get_link_status(struct rge_softc *);
     96  1.1  sevan void		rge_txstart(void *);
     97  1.1  sevan void		rge_tick(void *);
     98  1.1  sevan void		rge_link_state(struct rge_softc *);
     99  1.1  sevan 
    100  1.1  sevan static const struct {
    101  1.1  sevan 	uint16_t reg;
    102  1.1  sevan 	uint16_t val;
    103  1.1  sevan }  rtl8125_def_bps[] = {
    104  1.1  sevan 	RTL8125_DEF_BPS
    105  1.1  sevan }, rtl8125_mac_cfg2_ephy[] = {
    106  1.1  sevan 	RTL8125_MAC_CFG2_EPHY
    107  1.1  sevan }, rtl8125_mac_cfg2_mcu[] = {
    108  1.1  sevan 	RTL8125_MAC_CFG2_MCU
    109  1.1  sevan }, rtl8125_mac_cfg3_ephy[] = {
    110  1.1  sevan 	RTL8125_MAC_CFG3_EPHY
    111  1.1  sevan }, rtl8125_mac_cfg3_mcu[] = {
    112  1.1  sevan 	RTL8125_MAC_CFG3_MCU
    113  1.1  sevan };
    114  1.1  sevan 
    115  1.1  sevan struct cfattach rge_ca = {
    116  1.1  sevan 	sizeof(struct rge_softc), rge_match, rge_attach
    117  1.1  sevan };
    118  1.1  sevan 
    119  1.1  sevan struct cfdriver rge_cd = {
    120  1.1  sevan 	NULL, "rge", DV_IFNET
    121  1.1  sevan };
    122  1.1  sevan 
    123  1.1  sevan const struct pci_matchid rge_devices[] = {
    124  1.1  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    125  1.1  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RTL8125 }
    126  1.1  sevan };
    127  1.1  sevan 
    128  1.1  sevan int
    129  1.1  sevan rge_match(struct device *parent, void *match, void *aux)
    130  1.1  sevan {
    131  1.1  sevan 	return (pci_matchbyid((struct pci_attach_args *)aux, rge_devices,
    132  1.1  sevan 	    nitems(rge_devices)));
    133  1.1  sevan }
    134  1.1  sevan 
    135  1.1  sevan void
    136  1.1  sevan rge_attach(struct device *parent, struct device *self, void *aux)
    137  1.1  sevan {
    138  1.1  sevan 	struct rge_softc *sc = (struct rge_softc *)self;
    139  1.1  sevan 	struct pci_attach_args *pa = aux;
    140  1.1  sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    141  1.1  sevan 	pci_intr_handle_t ih;
    142  1.1  sevan 	const char *intrstr = NULL;
    143  1.1  sevan 	struct ifnet *ifp;
    144  1.1  sevan 	pcireg_t reg;
    145  1.1  sevan 	uint32_t hwrev;
    146  1.1  sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    147  1.1  sevan 	int offset;
    148  1.1  sevan 
    149  1.1  sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    150  1.1  sevan 
    151  1.1  sevan 	/*
    152  1.1  sevan 	 * Map control/status registers.
    153  1.1  sevan 	 */
    154  1.1  sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    155  1.1  sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    156  1.1  sevan 	    NULL, &sc->rge_bsize, 0)) {
    157  1.1  sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    158  1.1  sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    159  1.1  sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize, 0)) {
    160  1.1  sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    161  1.1  sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    162  1.1  sevan 			    &sc->rge_bsize, 0)) {
    163  1.1  sevan 				printf(": can't map mem or i/o space\n");
    164  1.1  sevan 				return;
    165  1.1  sevan 			}
    166  1.1  sevan 		}
    167  1.1  sevan 	}
    168  1.1  sevan 
    169  1.1  sevan 	/*
    170  1.1  sevan 	 * Allocate interrupt.
    171  1.1  sevan 	 */
    172  1.1  sevan 	if (pci_intr_map_msi(pa, &ih) == 0)
    173  1.1  sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    174  1.1  sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    175  1.1  sevan 		printf(": couldn't map interrupt\n");
    176  1.1  sevan 		return;
    177  1.1  sevan 	}
    178  1.1  sevan 	intrstr = pci_intr_string(pc, ih);
    179  1.1  sevan 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE, rge_intr,
    180  1.1  sevan 	    sc, sc->sc_dev.dv_xname);
    181  1.1  sevan 	if (sc->sc_ih == NULL) {
    182  1.1  sevan 		printf(": couldn't establish interrupt");
    183  1.1  sevan 		if (intrstr != NULL)
    184  1.1  sevan 			printf(" at %s", intrstr);
    185  1.1  sevan 		printf("\n");
    186  1.1  sevan 		return;
    187  1.1  sevan 	}
    188  1.1  sevan 	printf(": %s", intrstr);
    189  1.1  sevan 
    190  1.1  sevan 	sc->sc_dmat = pa->pa_dmat;
    191  1.1  sevan 	sc->sc_pc = pa->pa_pc;
    192  1.1  sevan 	sc->sc_tag = pa->pa_tag;
    193  1.1  sevan 
    194  1.1  sevan 	/* Determine hardware revision */
    195  1.1  sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    196  1.1  sevan 	switch (hwrev) {
    197  1.1  sevan 	case 0x60800000:
    198  1.1  sevan 		sc->rge_type = MAC_CFG2;
    199  1.1  sevan 		break;
    200  1.1  sevan 	case 0x60900000:
    201  1.1  sevan 		sc->rge_type = MAC_CFG3;
    202  1.1  sevan 		break;
    203  1.1  sevan 	default:
    204  1.1  sevan 		printf(": unknown version 0x%08x\n", hwrev);
    205  1.1  sevan 		return;
    206  1.1  sevan 	}
    207  1.1  sevan 
    208  1.1  sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    209  1.1  sevan 
    210  1.1  sevan 	/*
    211  1.1  sevan 	 * PCI Express check.
    212  1.1  sevan 	 */
    213  1.1  sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    214  1.1  sevan 	    &offset, NULL)) {
    215  1.1  sevan 		/* Disable PCIe ASPM and ECPM. */
    216  1.1  sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    217  1.1  sevan 		    offset + PCI_PCIE_LCSR);
    218  1.1  sevan 		reg &= ~(PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1 |
    219  1.1  sevan 		    PCI_PCIE_LCSR_ECPM);
    220  1.1  sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCI_PCIE_LCSR,
    221  1.1  sevan 		    reg);
    222  1.1  sevan 	}
    223  1.1  sevan 
    224  1.1  sevan 	rge_exit_oob(sc);
    225  1.1  sevan 	rge_hw_init(sc);
    226  1.1  sevan 
    227  1.1  sevan 	rge_get_macaddr(sc, eaddr);
    228  1.1  sevan 	printf(", address %s\n", ether_sprintf(eaddr));
    229  1.1  sevan 
    230  1.1  sevan 	memcpy(sc->sc_arpcom.ac_enaddr, eaddr, ETHER_ADDR_LEN);
    231  1.1  sevan 
    232  1.1  sevan 	rge_set_phy_power(sc, 1);
    233  1.1  sevan 	rge_phy_config(sc);
    234  1.1  sevan 
    235  1.1  sevan 	if (rge_allocmem(sc))
    236  1.1  sevan 		return;
    237  1.1  sevan 
    238  1.1  sevan 	ifp = &sc->sc_arpcom.ac_if;
    239  1.1  sevan 	ifp->if_softc = sc;
    240  1.1  sevan 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    241  1.1  sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    242  1.1  sevan 	ifp->if_xflags = IFXF_MPSAFE;
    243  1.1  sevan 	ifp->if_ioctl = rge_ioctl;
    244  1.1  sevan 	ifp->if_qstart = rge_start;
    245  1.1  sevan 	ifp->if_watchdog = rge_watchdog;
    246  1.1  sevan 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
    247  1.1  sevan 	ifp->if_hardmtu = RGE_JUMBO_MTU;
    248  1.1  sevan 
    249  1.1  sevan 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
    250  1.1  sevan 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    251  1.1  sevan 
    252  1.1  sevan #if NVLAN > 0
    253  1.1  sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    254  1.1  sevan #endif
    255  1.1  sevan 
    256  1.1  sevan 	timeout_set(&sc->sc_timeout, rge_tick, sc);
    257  1.1  sevan 	task_set(&sc->sc_task, rge_txstart, sc);
    258  1.1  sevan 
    259  1.1  sevan 	/* Initialize ifmedia structures. */
    260  1.1  sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    261  1.1  sevan 	    rge_ifmedia_sts);
    262  1.1  sevan 	rge_add_media_types(sc);
    263  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    264  1.1  sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    265  1.1  sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    266  1.1  sevan 
    267  1.1  sevan 	if_attach(ifp);
    268  1.1  sevan 	ether_ifattach(ifp);
    269  1.1  sevan }
    270  1.1  sevan 
    271  1.1  sevan int
    272  1.1  sevan rge_intr(void *arg)
    273  1.1  sevan {
    274  1.1  sevan 	struct rge_softc *sc = arg;
    275  1.1  sevan 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    276  1.1  sevan 	uint32_t status;
    277  1.1  sevan 	int claimed = 0, rx, tx;
    278  1.1  sevan 
    279  1.1  sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    280  1.1  sevan 		return (0);
    281  1.1  sevan 
    282  1.1  sevan 	/* Disable interrupts. */
    283  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    284  1.1  sevan 
    285  1.1  sevan 	status = RGE_READ_4(sc, RGE_ISR);
    286  1.1  sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    287  1.1  sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    288  1.1  sevan 			return (0);
    289  1.1  sevan 	}
    290  1.1  sevan 	if (status)
    291  1.1  sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    292  1.1  sevan 
    293  1.1  sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    294  1.1  sevan 		claimed = 1;
    295  1.1  sevan 
    296  1.1  sevan 	rx = tx = 0;
    297  1.1  sevan 	if (status & RGE_INTRS) {
    298  1.1  sevan 		if (status &
    299  1.1  sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    300  1.1  sevan 			rx |= rge_rxeof(sc);
    301  1.1  sevan 			claimed = 1;
    302  1.1  sevan 		}
    303  1.1  sevan 
    304  1.1  sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    305  1.1  sevan 			tx |= rge_txeof(sc);
    306  1.1  sevan 			claimed = 1;
    307  1.1  sevan 		}
    308  1.1  sevan 
    309  1.1  sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    310  1.1  sevan 			KERNEL_LOCK();
    311  1.1  sevan 			rge_init(ifp);
    312  1.1  sevan 			KERNEL_UNLOCK();
    313  1.1  sevan 			claimed = 1;
    314  1.1  sevan 		}
    315  1.1  sevan 	}
    316  1.1  sevan 
    317  1.1  sevan 	if (sc->rge_timerintr) {
    318  1.1  sevan 		if ((tx | rx) == 0) {
    319  1.1  sevan 			/*
    320  1.1  sevan 			 * Nothing needs to be processed, fallback
    321  1.1  sevan 			 * to use TX/RX interrupts.
    322  1.1  sevan 			 */
    323  1.1  sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    324  1.1  sevan 
    325  1.1  sevan 			/*
    326  1.1  sevan 			 * Recollect, mainly to avoid the possible
    327  1.1  sevan 			 * race introduced by changing interrupt
    328  1.1  sevan 			 * masks.
    329  1.1  sevan 			 */
    330  1.1  sevan 			rge_rxeof(sc);
    331  1.1  sevan 			rge_txeof(sc);
    332  1.1  sevan 		} else
    333  1.1  sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    334  1.1  sevan 	} else if (tx | rx) {
    335  1.1  sevan 		/*
    336  1.1  sevan 		 * Assume that using simulated interrupt moderation
    337  1.1  sevan 		 * (hardware timer based) could reduce the interrupt
    338  1.1  sevan 		 * rate.
    339  1.1  sevan 		 */
    340  1.1  sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    341  1.1  sevan 	}
    342  1.1  sevan 
    343  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    344  1.1  sevan 
    345  1.1  sevan 	return (claimed);
    346  1.1  sevan }
    347  1.1  sevan 
    348  1.1  sevan int
    349  1.1  sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    350  1.1  sevan {
    351  1.1  sevan 	struct rge_tx_desc *d = NULL;
    352  1.1  sevan 	struct rge_txq *txq;
    353  1.1  sevan 	bus_dmamap_t txmap;
    354  1.1  sevan 	uint32_t cmdsts, cflags = 0;
    355  1.1  sevan 	int cur, error, i, last, nsegs;
    356  1.1  sevan 
    357  1.1  sevan 	/*
    358  1.1  sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    359  1.1  sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    360  1.1  sevan 	 * take affect.
    361  1.1  sevan 	 */
    362  1.1  sevan 	if ((m->m_pkthdr.csum_flags &
    363  1.1  sevan 	    (M_IPV4_CSUM_OUT | M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)) != 0) {
    364  1.1  sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    365  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    366  1.1  sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    367  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    368  1.1  sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    369  1.1  sevan 	}
    370  1.1  sevan 
    371  1.1  sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    372  1.1  sevan 	txmap = txq->txq_dmamap;
    373  1.1  sevan 
    374  1.1  sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    375  1.1  sevan 	switch (error) {
    376  1.1  sevan 	case 0:
    377  1.1  sevan 		break;
    378  1.1  sevan 	case EFBIG: /* mbuf chain is too fragmented */
    379  1.1  sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    380  1.1  sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    381  1.1  sevan 		    BUS_DMA_NOWAIT) == 0)
    382  1.1  sevan 			break;
    383  1.1  sevan 
    384  1.1  sevan 		/* FALLTHROUGH */
    385  1.1  sevan 	default:
    386  1.1  sevan 		return (0);
    387  1.1  sevan 	}
    388  1.1  sevan 
    389  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    390  1.1  sevan 	    BUS_DMASYNC_PREWRITE);
    391  1.1  sevan 
    392  1.1  sevan 	nsegs = txmap->dm_nsegs;
    393  1.1  sevan 
    394  1.1  sevan 	/* Set up hardware VLAN tagging. */
    395  1.1  sevan #if NVLAN > 0
    396  1.1  sevan 	if (m->m_flags & M_VLANTAG)
    397  1.1  sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    398  1.1  sevan #endif
    399  1.1  sevan 
    400  1.1  sevan 	cur = idx;
    401  1.1  sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    402  1.1  sevan 
    403  1.1  sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    404  1.1  sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    405  1.1  sevan 
    406  1.1  sevan 		d->rge_extsts = htole32(cflags);
    407  1.1  sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    408  1.1  sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    409  1.1  sevan 
    410  1.1  sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    411  1.1  sevan 
    412  1.1  sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    413  1.1  sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    414  1.1  sevan 
    415  1.1  sevan 		d->rge_cmdsts = htole32(cmdsts);
    416  1.1  sevan 
    417  1.1  sevan 		last = cur;
    418  1.1  sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    419  1.1  sevan 		cur = RGE_NEXT_TX_DESC(cur);
    420  1.1  sevan 	}
    421  1.1  sevan 
    422  1.1  sevan 	/* Set EOF on the last descriptor. */
    423  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    424  1.1  sevan 
    425  1.1  sevan 	/* Transfer ownership of packet to the chip. */
    426  1.1  sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    427  1.1  sevan 
    428  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    429  1.1  sevan 
    430  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    431  1.1  sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    432  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    433  1.1  sevan 
    434  1.1  sevan 	/* Update info of TX queue and descriptors. */
    435  1.1  sevan 	txq->txq_mbuf = m;
    436  1.1  sevan 	txq->txq_descidx = last;
    437  1.1  sevan 
    438  1.1  sevan 	return (nsegs);
    439  1.1  sevan }
    440  1.1  sevan 
    441  1.1  sevan int
    442  1.1  sevan rge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    443  1.1  sevan {
    444  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    445  1.1  sevan 	struct ifreq *ifr = (struct ifreq *)data;
    446  1.1  sevan 	int s, error = 0;
    447  1.1  sevan 
    448  1.1  sevan 	s = splnet();
    449  1.1  sevan 
    450  1.1  sevan 	switch (cmd) {
    451  1.1  sevan 	case SIOCSIFADDR:
    452  1.1  sevan 		ifp->if_flags |= IFF_UP;
    453  1.1  sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    454  1.1  sevan 			rge_init(ifp);
    455  1.1  sevan 		break;
    456  1.1  sevan 	case SIOCSIFFLAGS:
    457  1.1  sevan 		if (ifp->if_flags & IFF_UP) {
    458  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    459  1.1  sevan 				error = ENETRESET;
    460  1.1  sevan 			else
    461  1.1  sevan 				rge_init(ifp);
    462  1.1  sevan 		} else {
    463  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    464  1.1  sevan 				rge_stop(ifp);
    465  1.1  sevan 		}
    466  1.1  sevan 		break;
    467  1.1  sevan 	case SIOCGIFMEDIA:
    468  1.1  sevan 	case SIOCSIFMEDIA:
    469  1.1  sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    470  1.1  sevan 		break;
    471  1.1  sevan 	case SIOCSIFMTU:
    472  1.1  sevan 		if (ifr->ifr_mtu > ifp->if_hardmtu) {
    473  1.1  sevan 			error = EINVAL;
    474  1.1  sevan 			break;
    475  1.1  sevan 		}
    476  1.1  sevan 		ifp->if_mtu = ifr->ifr_mtu;
    477  1.1  sevan 		break;
    478  1.1  sevan 	default:
    479  1.1  sevan 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
    480  1.1  sevan 	}
    481  1.1  sevan 
    482  1.1  sevan 	if (error == ENETRESET) {
    483  1.1  sevan 		if (ifp->if_flags & IFF_RUNNING)
    484  1.1  sevan 			rge_iff(sc);
    485  1.1  sevan 		error = 0;
    486  1.1  sevan 	}
    487  1.1  sevan 
    488  1.1  sevan 	splx(s);
    489  1.1  sevan 	return (error);
    490  1.1  sevan }
    491  1.1  sevan 
    492  1.1  sevan void
    493  1.1  sevan rge_start(struct ifqueue *ifq)
    494  1.1  sevan {
    495  1.1  sevan 	struct ifnet *ifp = ifq->ifq_if;
    496  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    497  1.1  sevan 	struct mbuf *m;
    498  1.1  sevan 	int free, idx, used;
    499  1.1  sevan 	int queued = 0;
    500  1.1  sevan 
    501  1.1  sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    502  1.1  sevan 		ifq_purge(ifq);
    503  1.1  sevan 		return;
    504  1.1  sevan 	}
    505  1.1  sevan 
    506  1.1  sevan 	/* Calculate free space. */
    507  1.1  sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    508  1.1  sevan 	free = sc->rge_ldata.rge_txq_considx;
    509  1.1  sevan 	if (free <= idx)
    510  1.1  sevan 		free += RGE_TX_LIST_CNT;
    511  1.1  sevan 	free -= idx;
    512  1.1  sevan 
    513  1.1  sevan 	for (;;) {
    514  1.1  sevan 		if (RGE_TX_NSEGS >= free + 2) {
    515  1.1  sevan 			ifq_set_oactive(&ifp->if_snd);
    516  1.1  sevan 			break;
    517  1.1  sevan 		}
    518  1.1  sevan 
    519  1.1  sevan 		m = ifq_dequeue(ifq);
    520  1.1  sevan 		if (m == NULL)
    521  1.1  sevan 			break;
    522  1.1  sevan 
    523  1.1  sevan 		used = rge_encap(sc, m, idx);
    524  1.1  sevan 		if (used == 0) {
    525  1.1  sevan 			m_freem(m);
    526  1.1  sevan 			continue;
    527  1.1  sevan 		}
    528  1.1  sevan 
    529  1.1  sevan 		KASSERT(used <= free);
    530  1.1  sevan 		free -= used;
    531  1.1  sevan 
    532  1.1  sevan #if NBPFILTER > 0
    533  1.1  sevan 		if (ifp->if_bpf)
    534  1.1  sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    535  1.1  sevan #endif
    536  1.1  sevan 
    537  1.1  sevan 		idx += used;
    538  1.1  sevan 		if (idx >= RGE_TX_LIST_CNT)
    539  1.1  sevan 			idx -= RGE_TX_LIST_CNT;
    540  1.1  sevan 
    541  1.1  sevan 		queued++;
    542  1.1  sevan 	}
    543  1.1  sevan 
    544  1.1  sevan 	if (queued == 0)
    545  1.1  sevan 		return;
    546  1.1  sevan 
    547  1.1  sevan 	/* Set a timeout in case the chip goes out to lunch. */
    548  1.1  sevan 	ifp->if_timer = 5;
    549  1.1  sevan 
    550  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    551  1.1  sevan 	ifq_serialize(ifq, &sc->sc_task);
    552  1.1  sevan }
    553  1.1  sevan 
    554  1.1  sevan void
    555  1.1  sevan rge_watchdog(struct ifnet *ifp)
    556  1.1  sevan {
    557  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    558  1.1  sevan 
    559  1.1  sevan 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
    560  1.1  sevan 	ifp->if_oerrors++;
    561  1.1  sevan 
    562  1.1  sevan 	rge_init(ifp);
    563  1.1  sevan }
    564  1.1  sevan 
    565  1.1  sevan int
    566  1.1  sevan rge_init(struct ifnet *ifp)
    567  1.1  sevan {
    568  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    569  1.1  sevan 	uint32_t val;
    570  1.1  sevan 	uint16_t max_frame_size;
    571  1.1  sevan 	int i;
    572  1.1  sevan 
    573  1.1  sevan 	rge_stop(ifp);
    574  1.1  sevan 
    575  1.1  sevan 	/* Set MAC address. */
    576  1.1  sevan 	rge_set_macaddr(sc, sc->sc_arpcom.ac_enaddr);
    577  1.1  sevan 
    578  1.1  sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    579  1.1  sevan 	if (ifp->if_mtu < ETHERMTU)
    580  1.1  sevan 		max_frame_size = ETHERMTU;
    581  1.1  sevan 	else
    582  1.1  sevan 		max_frame_size = ifp->if_mtu;
    583  1.1  sevan 
    584  1.1  sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    585  1.1  sevan 	    ETHER_CRC_LEN + 1;
    586  1.1  sevan 
    587  1.1  sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    588  1.1  sevan 		max_frame_size -= 1;
    589  1.1  sevan 
    590  1.1  sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    591  1.1  sevan 
    592  1.1  sevan 	/* Initialize RX descriptors list. */
    593  1.1  sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    594  1.1  sevan 		printf("%s: init failed: no memory for RX buffers\n",
    595  1.1  sevan 		    sc->sc_dev.dv_xname);
    596  1.1  sevan 		rge_stop(ifp);
    597  1.1  sevan 		return (ENOBUFS);
    598  1.1  sevan 	}
    599  1.1  sevan 
    600  1.1  sevan 	/* Initialize TX descriptors. */
    601  1.1  sevan 	rge_tx_list_init(sc);
    602  1.1  sevan 
    603  1.1  sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    604  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    605  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    606  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    607  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    608  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    609  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    610  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    611  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    612  1.1  sevan 
    613  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    614  1.1  sevan 
    615  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    616  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    617  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    618  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    619  1.1  sevan 
    620  1.1  sevan 	/* Clear interrupt moderation timer. */
    621  1.1  sevan 	for (i = 0; i < 64; i++)
    622  1.1  sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    623  1.1  sevan 
    624  1.1  sevan 	/* Set the initial RX and TX configurations. */
    625  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    626  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    627  1.1  sevan 
    628  1.1  sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    629  1.1  sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    630  1.1  sevan 
    631  1.1  sevan 	/* Enable hardware optimization function. */
    632  1.1  sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    633  1.1  sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    634  1.1  sevan 
    635  1.1  sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    636  1.1  sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    637  1.1  sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    638  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    639  1.1  sevan 
    640  1.1  sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    641  1.1  sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    642  1.1  sevan 
    643  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    644  1.1  sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    645  1.1  sevan 
    646  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    647  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    648  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    649  1.1  sevan 
    650  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    651  1.1  sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    652  1.1  sevan 
    653  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    654  1.1  sevan 
    655  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    656  1.1  sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    657  1.1  sevan 
    658  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    659  1.1  sevan 
    660  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    661  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    662  1.1  sevan 
    663  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    664  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    665  1.1  sevan 
    666  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    667  1.1  sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    668  1.1  sevan 
    669  1.1  sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    670  1.1  sevan 
    671  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    672  1.1  sevan 
    673  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    674  1.1  sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    675  1.1  sevan 
    676  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    677  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    678  1.1  sevan 
    679  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    680  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    681  1.1  sevan 
    682  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    683  1.1  sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    684  1.1  sevan 
    685  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    686  1.1  sevan 
    687  1.1  sevan 	/* Disable EEE plus. */
    688  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    689  1.1  sevan 
    690  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    691  1.1  sevan 
    692  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    693  1.1  sevan 	DELAY(1);
    694  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    695  1.1  sevan 
    696  1.1  sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    697  1.1  sevan 
    698  1.1  sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    699  1.1  sevan 
    700  1.1  sevan 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
    701  1.1  sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    702  1.1  sevan 
    703  1.1  sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    704  1.1  sevan 
    705  1.1  sevan 	for (i = 0; i < 10; i++) {
    706  1.1  sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    707  1.1  sevan 			break;
    708  1.1  sevan 		DELAY(1000);
    709  1.1  sevan 	}
    710  1.1  sevan 
    711  1.1  sevan 	/* Disable RXDV gate. */
    712  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    713  1.1  sevan 	DELAY(2000);
    714  1.1  sevan 
    715  1.1  sevan 	rge_ifmedia_upd(ifp);
    716  1.1  sevan 
    717  1.1  sevan 	/* Enable transmit and receive. */
    718  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    719  1.1  sevan 
    720  1.1  sevan 	/* Program promiscuous mode and multicast filters. */
    721  1.1  sevan 	rge_iff(sc);
    722  1.1  sevan 
    723  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    724  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    725  1.1  sevan 
    726  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    727  1.1  sevan 
    728  1.1  sevan 	/* Enable interrupts. */
    729  1.1  sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    730  1.1  sevan 
    731  1.1  sevan 	ifp->if_flags |= IFF_RUNNING;
    732  1.1  sevan 	ifq_clr_oactive(&ifp->if_snd);
    733  1.1  sevan 
    734  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
    735  1.1  sevan 
    736  1.1  sevan 	return (0);
    737  1.1  sevan }
    738  1.1  sevan 
    739  1.1  sevan /*
    740  1.1  sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    741  1.1  sevan  */
    742  1.1  sevan void
    743  1.1  sevan rge_stop(struct ifnet *ifp)
    744  1.1  sevan {
    745  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    746  1.1  sevan 	int i;
    747  1.1  sevan 
    748  1.1  sevan 	timeout_del(&sc->sc_timeout);
    749  1.1  sevan 
    750  1.1  sevan 	ifp->if_timer = 0;
    751  1.1  sevan 	ifp->if_flags &= ~IFF_RUNNING;
    752  1.1  sevan 	sc->rge_timerintr = 0;
    753  1.1  sevan 
    754  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    755  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    756  1.1  sevan 	    RGE_RXCFG_ERRPKT);
    757  1.1  sevan 
    758  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    759  1.1  sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    760  1.1  sevan 
    761  1.1  sevan 	rge_reset(sc);
    762  1.1  sevan 
    763  1.1  sevan 	intr_barrier(sc->sc_ih);
    764  1.1  sevan 	ifq_barrier(&ifp->if_snd);
    765  1.1  sevan 	ifq_clr_oactive(&ifp->if_snd);
    766  1.1  sevan 
    767  1.1  sevan 	if (sc->rge_head != NULL) {
    768  1.1  sevan 		m_freem(sc->rge_head);
    769  1.1  sevan 		sc->rge_head = sc->rge_tail = NULL;
    770  1.1  sevan 	}
    771  1.1  sevan 
    772  1.1  sevan 	/* Free the TX list buffers. */
    773  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    774  1.1  sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    775  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    776  1.1  sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    777  1.1  sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    778  1.1  sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    779  1.1  sevan 		}
    780  1.1  sevan 	}
    781  1.1  sevan 
    782  1.1  sevan 	/* Free the RX list buffers. */
    783  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    784  1.1  sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    785  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    786  1.1  sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    787  1.1  sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    788  1.1  sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    789  1.1  sevan 		}
    790  1.1  sevan 	}
    791  1.1  sevan }
    792  1.1  sevan 
    793  1.1  sevan /*
    794  1.1  sevan  * Set media options.
    795  1.1  sevan  */
    796  1.1  sevan int
    797  1.1  sevan rge_ifmedia_upd(struct ifnet *ifp)
    798  1.1  sevan {
    799  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    800  1.1  sevan 	struct ifmedia *ifm = &sc->sc_media;
    801  1.1  sevan 	int anar, gig, val;
    802  1.1  sevan 
    803  1.1  sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    804  1.1  sevan 		return (EINVAL);
    805  1.1  sevan 
    806  1.1  sevan 	/* Disable Gigabit Lite. */
    807  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    808  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    809  1.1  sevan 
    810  1.1  sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    811  1.1  sevan 	val &= ~RGE_ADV_2500TFDX;
    812  1.1  sevan 
    813  1.1  sevan 	anar = gig = 0;
    814  1.1  sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    815  1.1  sevan 	case IFM_AUTO:
    816  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    817  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    818  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    819  1.1  sevan 		break;
    820  1.1  sevan 	case IFM_2500_T:
    821  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    822  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    823  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    824  1.1  sevan 		ifp->if_baudrate = IF_Mbps(2500);
    825  1.1  sevan 		break;
    826  1.1  sevan 	case IFM_1000_T:
    827  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    828  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    829  1.1  sevan 		ifp->if_baudrate = IF_Gbps(1);
    830  1.1  sevan 		break;
    831  1.1  sevan 	case IFM_100_TX:
    832  1.1  sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    833  1.1  sevan 		ifp->if_baudrate = IF_Mbps(100);
    834  1.1  sevan 		break;
    835  1.1  sevan 	case IFM_10_T:
    836  1.1  sevan 		anar |= ANAR_10 | ANAR_10_FD;
    837  1.1  sevan 		ifp->if_baudrate = IF_Mbps(10);
    838  1.1  sevan 		break;
    839  1.1  sevan 	default:
    840  1.1  sevan 		printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
    841  1.1  sevan 		return (EINVAL);
    842  1.1  sevan 	}
    843  1.1  sevan 
    844  1.1  sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    845  1.1  sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    846  1.1  sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    847  1.1  sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    848  1.1  sevan 
    849  1.1  sevan 	return (0);
    850  1.1  sevan }
    851  1.1  sevan 
    852  1.1  sevan /*
    853  1.1  sevan  * Report current media status.
    854  1.1  sevan  */
    855  1.1  sevan void
    856  1.1  sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    857  1.1  sevan {
    858  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    859  1.1  sevan 	uint16_t status = 0;
    860  1.1  sevan 
    861  1.1  sevan 	ifmr->ifm_status = IFM_AVALID;
    862  1.1  sevan 	ifmr->ifm_active = IFM_ETHER;
    863  1.1  sevan 
    864  1.1  sevan 	if (rge_get_link_status(sc)) {
    865  1.1  sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    866  1.1  sevan 
    867  1.1  sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    868  1.1  sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    869  1.1  sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    870  1.1  sevan 			ifmr->ifm_active |= IFM_FDX;
    871  1.1  sevan 		else
    872  1.1  sevan 			ifmr->ifm_active |= IFM_HDX;
    873  1.1  sevan 
    874  1.1  sevan 		if (status & RGE_PHYSTAT_10MBPS)
    875  1.1  sevan 			ifmr->ifm_active |= IFM_10_T;
    876  1.1  sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    877  1.1  sevan 			ifmr->ifm_active |= IFM_100_TX;
    878  1.1  sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    879  1.1  sevan 			ifmr->ifm_active |= IFM_1000_T;
    880  1.1  sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    881  1.1  sevan 			ifmr->ifm_active |= IFM_2500_T;
    882  1.1  sevan 	}
    883  1.1  sevan }
    884  1.1  sevan 
    885  1.1  sevan /*
    886  1.1  sevan  * Allocate memory for RX/TX rings.
    887  1.1  sevan  */
    888  1.1  sevan int
    889  1.1  sevan rge_allocmem(struct rge_softc *sc)
    890  1.1  sevan {
    891  1.1  sevan 	int error, i;
    892  1.1  sevan 
    893  1.1  sevan 	/* Allocate DMA'able memory for the TX ring. */
    894  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    895  1.1  sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    896  1.1  sevan 	if (error) {
    897  1.1  sevan 		printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
    898  1.1  sevan 		return (error);
    899  1.1  sevan 	}
    900  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    901  1.1  sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    902  1.1  sevan 	    BUS_DMA_NOWAIT| BUS_DMA_ZERO);
    903  1.1  sevan 	if (error) {
    904  1.1  sevan 		printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
    905  1.1  sevan 		return (error);
    906  1.1  sevan 	}
    907  1.1  sevan 
    908  1.1  sevan 	/* Load the map for the TX ring. */
    909  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    910  1.1  sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    911  1.1  sevan 	    (caddr_t *)&sc->rge_ldata.rge_tx_list,
    912  1.1  sevan 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    913  1.1  sevan 	if (error) {
    914  1.1  sevan 		printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
    915  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    916  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    917  1.1  sevan 		return (error);
    918  1.1  sevan 	}
    919  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    920  1.1  sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    921  1.1  sevan 	if (error) {
    922  1.1  sevan 		printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
    923  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    924  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
    925  1.1  sevan 		    (caddr_t)sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    926  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    927  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    928  1.1  sevan 		return (error);
    929  1.1  sevan 	}
    930  1.1  sevan 
    931  1.1  sevan 	/* Create DMA maps for TX buffers. */
    932  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    933  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
    934  1.1  sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
    935  1.1  sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
    936  1.1  sevan 		if (error) {
    937  1.1  sevan 			printf("%s: can't create DMA map for TX\n",
    938  1.1  sevan 			    sc->sc_dev.dv_xname);
    939  1.1  sevan 			return (error);
    940  1.1  sevan 		}
    941  1.1  sevan 	}
    942  1.1  sevan 
    943  1.1  sevan 	/* Allocate DMA'able memory for the RX ring. */
    944  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
    945  1.1  sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
    946  1.1  sevan 	if (error) {
    947  1.1  sevan 		printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
    948  1.1  sevan 		return (error);
    949  1.1  sevan 	}
    950  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
    951  1.1  sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
    952  1.1  sevan 	    BUS_DMA_NOWAIT| BUS_DMA_ZERO);
    953  1.1  sevan 	if (error) {
    954  1.1  sevan 		printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
    955  1.1  sevan 		return (error);
    956  1.1  sevan 	}
    957  1.1  sevan 
    958  1.1  sevan 	/* Load the map for the RX ring. */
    959  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
    960  1.1  sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
    961  1.1  sevan 	    (caddr_t *)&sc->rge_ldata.rge_rx_list,
    962  1.1  sevan 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    963  1.1  sevan 	if (error) {
    964  1.1  sevan 		printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
    965  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
    966  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
    967  1.1  sevan 		return (error);
    968  1.1  sevan 	}
    969  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
    970  1.1  sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    971  1.1  sevan 	if (error) {
    972  1.1  sevan 		printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
    973  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
    974  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
    975  1.1  sevan 		    (caddr_t)sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
    976  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
    977  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
    978  1.1  sevan 		return (error);
    979  1.1  sevan 	}
    980  1.1  sevan 
    981  1.1  sevan 	/* Create DMA maps for RX buffers. */
    982  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    983  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
    984  1.1  sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
    985  1.1  sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    986  1.1  sevan 		if (error) {
    987  1.1  sevan 			printf("%s: can't create DMA map for RX\n",
    988  1.1  sevan 			    sc->sc_dev.dv_xname);
    989  1.1  sevan 			return (error);
    990  1.1  sevan 		}
    991  1.1  sevan 	}
    992  1.1  sevan 
    993  1.1  sevan 	return (error);
    994  1.1  sevan }
    995  1.1  sevan 
    996  1.1  sevan /*
    997  1.1  sevan  * Initialize the RX descriptor and attach an mbuf cluster.
    998  1.1  sevan  */
    999  1.1  sevan int
   1000  1.1  sevan rge_newbuf(struct rge_softc *sc, int idx)
   1001  1.1  sevan {
   1002  1.1  sevan 	struct mbuf *m;
   1003  1.1  sevan 	struct rge_rx_desc *r;
   1004  1.1  sevan 	struct rge_rxq *rxq;
   1005  1.1  sevan 	bus_dmamap_t rxmap;
   1006  1.1  sevan 
   1007  1.1  sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1008  1.1  sevan 	if (m == NULL)
   1009  1.1  sevan 		return (ENOBUFS);
   1010  1.1  sevan 
   1011  1.1  sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1012  1.1  sevan 
   1013  1.1  sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1014  1.1  sevan 	rxmap = rxq->rxq_dmamap;
   1015  1.1  sevan 
   1016  1.1  sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1017  1.1  sevan 		goto out;
   1018  1.1  sevan 
   1019  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1020  1.1  sevan 	    BUS_DMASYNC_PREREAD);
   1021  1.1  sevan 
   1022  1.1  sevan 	/* Map the segments into RX descriptors. */
   1023  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1024  1.1  sevan 
   1025  1.1  sevan 	if (RGE_OWN(r)) {
   1026  1.1  sevan 		printf("%s: tried to map busy RX descriptor\n",
   1027  1.1  sevan 		    sc->sc_dev.dv_xname);
   1028  1.1  sevan 		goto out;
   1029  1.1  sevan 	}
   1030  1.1  sevan 
   1031  1.1  sevan 	rxq->rxq_mbuf = m;
   1032  1.1  sevan 
   1033  1.1  sevan 	r->rge_extsts = 0;
   1034  1.1  sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1035  1.1  sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1036  1.1  sevan 
   1037  1.1  sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1038  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1039  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1040  1.1  sevan 
   1041  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1042  1.1  sevan 
   1043  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1044  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1045  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1046  1.1  sevan 
   1047  1.1  sevan 	return (0);
   1048  1.1  sevan out:
   1049  1.1  sevan 	if (m != NULL)
   1050  1.1  sevan 		m_freem(m);
   1051  1.1  sevan 	return (ENOMEM);
   1052  1.1  sevan }
   1053  1.1  sevan 
   1054  1.1  sevan void
   1055  1.1  sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1056  1.1  sevan {
   1057  1.1  sevan 	struct rge_rx_desc *r;
   1058  1.1  sevan 
   1059  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1060  1.1  sevan 
   1061  1.1  sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1062  1.1  sevan 	r->rge_extsts = 0;
   1063  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1064  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1065  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1066  1.1  sevan 
   1067  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1068  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1069  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1070  1.1  sevan }
   1071  1.1  sevan 
   1072  1.1  sevan int
   1073  1.1  sevan rge_rx_list_init(struct rge_softc *sc)
   1074  1.1  sevan {
   1075  1.1  sevan 	int i;
   1076  1.1  sevan 
   1077  1.1  sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1078  1.1  sevan 
   1079  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1080  1.1  sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1081  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1082  1.1  sevan 			return (ENOBUFS);
   1083  1.1  sevan 	}
   1084  1.1  sevan 
   1085  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1086  1.1  sevan 	sc->rge_head = sc->rge_tail = NULL;
   1087  1.1  sevan 
   1088  1.1  sevan 	return (0);
   1089  1.1  sevan }
   1090  1.1  sevan 
   1091  1.1  sevan void
   1092  1.1  sevan rge_tx_list_init(struct rge_softc *sc)
   1093  1.1  sevan {
   1094  1.1  sevan 	int i;
   1095  1.1  sevan 
   1096  1.1  sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1097  1.1  sevan 
   1098  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1099  1.1  sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1100  1.1  sevan 
   1101  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1102  1.1  sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1103  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1104  1.1  sevan 
   1105  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1106  1.1  sevan }
   1107  1.1  sevan 
   1108  1.1  sevan int
   1109  1.1  sevan rge_rxeof(struct rge_softc *sc)
   1110  1.1  sevan {
   1111  1.1  sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1112  1.1  sevan 	struct mbuf *m;
   1113  1.1  sevan 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
   1114  1.1  sevan 	struct rge_rx_desc *cur_rx;
   1115  1.1  sevan 	struct rge_rxq *rxq;
   1116  1.1  sevan 	uint32_t rxstat, extsts;
   1117  1.1  sevan 	int i, total_len, rx = 0;
   1118  1.1  sevan 
   1119  1.1  sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1120  1.1  sevan 		/* Invalidate the descriptor memory. */
   1121  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1122  1.1  sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1123  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1124  1.1  sevan 
   1125  1.1  sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1126  1.1  sevan 
   1127  1.1  sevan 		if (RGE_OWN(cur_rx))
   1128  1.1  sevan 			break;
   1129  1.1  sevan 
   1130  1.1  sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1131  1.1  sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1132  1.1  sevan 
   1133  1.1  sevan 		total_len = RGE_RXBYTES(cur_rx);
   1134  1.1  sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1135  1.1  sevan 		m = rxq->rxq_mbuf;
   1136  1.1  sevan 		rx = 1;
   1137  1.1  sevan 
   1138  1.1  sevan 		/* Invalidate the RX mbuf and unload its map. */
   1139  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1140  1.1  sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1141  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1142  1.1  sevan 
   1143  1.1  sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1144  1.1  sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1145  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1146  1.1  sevan 			continue;
   1147  1.1  sevan 		}
   1148  1.1  sevan 
   1149  1.1  sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1150  1.1  sevan 			ifp->if_ierrors++;
   1151  1.1  sevan 			/*
   1152  1.1  sevan 			 * If this is part of a multi-fragment packet,
   1153  1.1  sevan 			 * discard all the pieces.
   1154  1.1  sevan 			 */
   1155  1.1  sevan 			 if (sc->rge_head != NULL) {
   1156  1.1  sevan 				m_freem(sc->rge_head);
   1157  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1158  1.1  sevan 			}
   1159  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1160  1.1  sevan 			continue;
   1161  1.1  sevan 		}
   1162  1.1  sevan 
   1163  1.1  sevan 		/*
   1164  1.1  sevan 		 * If allocating a replacement mbuf fails,
   1165  1.1  sevan 		 * reload the current one.
   1166  1.1  sevan 		 */
   1167  1.1  sevan 
   1168  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1169  1.1  sevan 			if (sc->rge_head != NULL) {
   1170  1.1  sevan 				m_freem(sc->rge_head);
   1171  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1172  1.1  sevan 			}
   1173  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1174  1.1  sevan 			continue;
   1175  1.1  sevan 		}
   1176  1.1  sevan 
   1177  1.1  sevan 		if (sc->rge_head != NULL) {
   1178  1.1  sevan 			m->m_len = total_len;
   1179  1.1  sevan 			/*
   1180  1.1  sevan 			 * Special case: if there's 4 bytes or less
   1181  1.1  sevan 			 * in this buffer, the mbuf can be discarded:
   1182  1.1  sevan 			 * the last 4 bytes is the CRC, which we don't
   1183  1.1  sevan 			 * care about anyway.
   1184  1.1  sevan 			 */
   1185  1.1  sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1186  1.1  sevan 				sc->rge_tail->m_len -=
   1187  1.1  sevan 				    (ETHER_CRC_LEN - m->m_len);
   1188  1.1  sevan 				m_freem(m);
   1189  1.1  sevan 			} else {
   1190  1.1  sevan 				m->m_len -= ETHER_CRC_LEN;
   1191  1.1  sevan 				m->m_flags &= ~M_PKTHDR;
   1192  1.1  sevan 				sc->rge_tail->m_next = m;
   1193  1.1  sevan 			}
   1194  1.1  sevan 			m = sc->rge_head;
   1195  1.1  sevan 			sc->rge_head = sc->rge_tail = NULL;
   1196  1.1  sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1197  1.1  sevan 		} else
   1198  1.1  sevan 			m->m_pkthdr.len = m->m_len =
   1199  1.1  sevan 			    (total_len - ETHER_CRC_LEN);
   1200  1.1  sevan 
   1201  1.1  sevan 		/* Check IP header checksum. */
   1202  1.1  sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1203  1.1  sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1204  1.1  sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1205  1.1  sevan 
   1206  1.1  sevan 		/* Check TCP/UDP checksum. */
   1207  1.1  sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1208  1.1  sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1209  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1210  1.1  sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1211  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1212  1.1  sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1213  1.1  sevan 			    M_UDP_CSUM_IN_OK;
   1214  1.1  sevan 
   1215  1.1  sevan #if NVLAN > 0
   1216  1.1  sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1217  1.1  sevan 			m->m_pkthdr.ether_vtag =
   1218  1.1  sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1219  1.1  sevan 			m->m_flags |= M_VLANTAG;
   1220  1.1  sevan 		}
   1221  1.1  sevan #endif
   1222  1.1  sevan 
   1223  1.1  sevan 		ml_enqueue(&ml, m);
   1224  1.1  sevan 	}
   1225  1.1  sevan 
   1226  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1227  1.1  sevan 
   1228  1.1  sevan 	if_input(ifp, &ml);
   1229  1.1  sevan 
   1230  1.1  sevan 	return (rx);
   1231  1.1  sevan }
   1232  1.1  sevan 
   1233  1.1  sevan int
   1234  1.1  sevan rge_txeof(struct rge_softc *sc)
   1235  1.1  sevan {
   1236  1.1  sevan 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
   1237  1.1  sevan 	struct rge_txq *txq;
   1238  1.1  sevan 	uint32_t txstat;
   1239  1.1  sevan 	int cons, idx, prod;
   1240  1.1  sevan 	int free = 0;
   1241  1.1  sevan 
   1242  1.1  sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1243  1.1  sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1244  1.1  sevan 
   1245  1.1  sevan 	while (prod != cons) {
   1246  1.1  sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1247  1.1  sevan 		idx = txq->txq_descidx;
   1248  1.1  sevan 
   1249  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1250  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1251  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1252  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1253  1.1  sevan 
   1254  1.1  sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1255  1.1  sevan 
   1256  1.1  sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1257  1.1  sevan 			free = 2;
   1258  1.1  sevan 			break;
   1259  1.1  sevan 		}
   1260  1.1  sevan 
   1261  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1262  1.1  sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1263  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1264  1.1  sevan 		m_freem(txq->txq_mbuf);
   1265  1.1  sevan 		txq->txq_mbuf = NULL;
   1266  1.1  sevan 
   1267  1.1  sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1268  1.1  sevan 			ifp->if_collisions++;
   1269  1.1  sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1270  1.1  sevan 			ifp->if_oerrors++;
   1271  1.1  sevan 
   1272  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1273  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1274  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1275  1.1  sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1276  1.1  sevan 
   1277  1.1  sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1278  1.1  sevan 		free = 1;
   1279  1.1  sevan 	}
   1280  1.1  sevan 
   1281  1.1  sevan 	if (free == 0)
   1282  1.1  sevan 		return (0);
   1283  1.1  sevan 
   1284  1.1  sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1285  1.1  sevan 
   1286  1.1  sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1287  1.1  sevan 		ifq_restart(&ifp->if_snd);
   1288  1.1  sevan 	else if (free == 2)
   1289  1.1  sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1290  1.1  sevan 	else
   1291  1.1  sevan 		ifp->if_timer = 0;
   1292  1.1  sevan 
   1293  1.1  sevan 	return (1);
   1294  1.1  sevan }
   1295  1.1  sevan 
   1296  1.1  sevan void
   1297  1.1  sevan rge_reset(struct rge_softc *sc)
   1298  1.1  sevan {
   1299  1.1  sevan 	int i;
   1300  1.1  sevan 
   1301  1.1  sevan 	/* Enable RXDV gate. */
   1302  1.1  sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1303  1.1  sevan 	DELAY(2000);
   1304  1.1  sevan 
   1305  1.1  sevan 	for (i = 0; i < 10; i++) {
   1306  1.1  sevan 		DELAY(100);
   1307  1.1  sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1308  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1309  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1310  1.1  sevan 			break;
   1311  1.1  sevan 	}
   1312  1.1  sevan 
   1313  1.1  sevan 	/* Soft reset. */
   1314  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1315  1.1  sevan 
   1316  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1317  1.1  sevan 		DELAY(100);
   1318  1.1  sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1319  1.1  sevan 			break;
   1320  1.1  sevan 	}
   1321  1.1  sevan 	if (i == RGE_TIMEOUT)
   1322  1.1  sevan 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
   1323  1.1  sevan }
   1324  1.1  sevan 
   1325  1.1  sevan void
   1326  1.1  sevan rge_iff(struct rge_softc *sc)
   1327  1.1  sevan {
   1328  1.1  sevan 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
   1329  1.1  sevan 	struct arpcom *ac = &sc->sc_arpcom;
   1330  1.1  sevan 	struct ether_multi *enm;
   1331  1.1  sevan 	struct ether_multistep step;
   1332  1.1  sevan 	uint32_t hashes[2];
   1333  1.1  sevan 	uint32_t rxfilt;
   1334  1.1  sevan 	int h = 0;
   1335  1.1  sevan 
   1336  1.1  sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1337  1.1  sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1338  1.1  sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1339  1.1  sevan 
   1340  1.1  sevan 	/*
   1341  1.1  sevan 	 * Always accept frames destined to our station address.
   1342  1.1  sevan 	 * Always accept broadcast frames.
   1343  1.1  sevan 	 */
   1344  1.1  sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1345  1.1  sevan 
   1346  1.1  sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1347  1.1  sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1348  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1349  1.1  sevan 		if (ifp->if_flags & IFF_PROMISC)
   1350  1.1  sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1351  1.1  sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1352  1.1  sevan 	} else {
   1353  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1354  1.1  sevan 		/* Program new filter. */
   1355  1.1  sevan 		memset(hashes, 0, sizeof(hashes));
   1356  1.1  sevan 
   1357  1.1  sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1358  1.1  sevan 		while (enm != NULL) {
   1359  1.1  sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1360  1.1  sevan 			    ETHER_ADDR_LEN) >> 26;
   1361  1.1  sevan 
   1362  1.1  sevan 			if (h < 32)
   1363  1.1  sevan 				hashes[0] |= (1 << h);
   1364  1.1  sevan 			else
   1365  1.1  sevan 				hashes[1] |= (1 << (h - 32));
   1366  1.1  sevan 
   1367  1.1  sevan 			ETHER_NEXT_MULTI(step, enm);
   1368  1.1  sevan 		}
   1369  1.1  sevan 	}
   1370  1.1  sevan 
   1371  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1372  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAR0, swap32(hashes[1]));
   1373  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAR4, swap32(hashes[0]));
   1374  1.1  sevan }
   1375  1.1  sevan 
   1376  1.1  sevan void
   1377  1.1  sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1378  1.1  sevan {
   1379  1.1  sevan 	int i;
   1380  1.1  sevan 
   1381  1.1  sevan 	if (on) {
   1382  1.1  sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1383  1.1  sevan 
   1384  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1385  1.1  sevan 
   1386  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1387  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 3)
   1388  1.1  sevan 				break;
   1389  1.1  sevan 			DELAY(1000);
   1390  1.1  sevan 		}
   1391  1.1  sevan 	} else
   1392  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1393  1.1  sevan }
   1394  1.1  sevan 
   1395  1.1  sevan void
   1396  1.1  sevan rge_phy_config(struct rge_softc *sc)
   1397  1.1  sevan {
   1398  1.1  sevan 	uint16_t mcode_ver, val;
   1399  1.1  sevan 	int i;
   1400  1.1  sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1401  1.1  sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1402  1.1  sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1403  1.1  sevan 
   1404  1.1  sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1405  1.1  sevan 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1406  1.1  sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1407  1.1  sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1408  1.1  sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1409  1.1  sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1410  1.1  sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1411  1.1  sevan 
   1412  1.1  sevan 	/* Read microcode version. */
   1413  1.1  sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1414  1.1  sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1415  1.1  sevan 
   1416  1.1  sevan 	if (sc->rge_type == MAC_CFG2) {
   1417  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1418  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1419  1.1  sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1420  1.1  sevan 		}
   1421  1.1  sevan 
   1422  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1423  1.1  sevan 			/* Disable PHY config. */
   1424  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1425  1.1  sevan 			DELAY(1000);
   1426  1.1  sevan 
   1427  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1428  1.1  sevan 
   1429  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1430  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1431  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1432  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1433  1.1  sevan 
   1434  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1435  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1436  1.1  sevan 				rge_write_phy_ocp(sc,
   1437  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1438  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1439  1.1  sevan 			}
   1440  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1441  1.1  sevan 
   1442  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1443  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1444  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1445  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1446  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1447  1.1  sevan 
   1448  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1449  1.1  sevan 
   1450  1.1  sevan 			/* Enable PHY config. */
   1451  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1452  1.1  sevan 
   1453  1.1  sevan 			/* Write microcode version. */
   1454  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1455  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1456  1.1  sevan 		}
   1457  1.1  sevan 
   1458  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1459  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1460  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1461  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1462  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1463  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1464  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1465  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1466  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1467  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1468  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1469  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1470  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1471  1.1  sevan 
   1472  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1473  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1474  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1475  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1476  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1477  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1478  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1479  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1480  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1481  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1482  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1483  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1484  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1485  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1486  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1487  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1488  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1489  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1490  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1491  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1492  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1493  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1494  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1495  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1496  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1497  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1498  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1499  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1500  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1501  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1502  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1503  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1504  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1505  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1506  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1507  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1508  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1509  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1510  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1511  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1512  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1513  1.1  sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1514  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1515  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1516  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1517  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1518  1.1  sevan 	} else {
   1519  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1520  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1521  1.1  sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1522  1.1  sevan 
   1523  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1524  1.1  sevan 			/* Disable PHY config. */
   1525  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1526  1.1  sevan 			DELAY(1000);
   1527  1.1  sevan 
   1528  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1529  1.1  sevan 
   1530  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1531  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1532  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1533  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1534  1.1  sevan 
   1535  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1536  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1537  1.1  sevan 				rge_write_phy_ocp(sc,
   1538  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1539  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1540  1.1  sevan 			}
   1541  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1542  1.1  sevan 
   1543  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1544  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1545  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1546  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1547  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1548  1.1  sevan 
   1549  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1550  1.1  sevan 
   1551  1.1  sevan 			/* Enable PHY config. */
   1552  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1553  1.1  sevan 
   1554  1.1  sevan 			/* Write microcode version. */
   1555  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1556  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1557  1.1  sevan 		}
   1558  1.1  sevan 
   1559  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1560  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1561  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1562  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1563  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1564  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1565  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1566  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1567  1.1  sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1568  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1569  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1570  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1571  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1572  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1573  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1574  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1575  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1576  1.1  sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1577  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1578  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1579  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1580  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1581  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1582  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1583  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1584  1.1  sevan 
   1585  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1586  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1587  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1588  1.1  sevan 		for (i = 0; i < 26; i++)
   1589  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1590  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1591  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1592  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1593  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1594  1.1  sevan 
   1595  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1596  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1597  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1598  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1599  1.1  sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1600  1.1  sevan 			rge_write_phy_ocp(sc, 0xb890,
   1601  1.1  sevan 			    mac_cfg3_b88e_value[i + 1]);
   1602  1.1  sevan 		}
   1603  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1604  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1605  1.1  sevan 
   1606  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1607  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1608  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1609  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1610  1.1  sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1611  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1612  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1613  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1614  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1615  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1616  1.1  sevan 	}
   1617  1.1  sevan 
   1618  1.1  sevan 	/* Disable EEE. */
   1619  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1620  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1621  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1622  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1623  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1624  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1625  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1626  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1627  1.1  sevan 
   1628  1.1  sevan 	rge_patch_phy_mcu(sc, 1);
   1629  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1630  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1631  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1632  1.1  sevan 	rge_patch_phy_mcu(sc, 0);
   1633  1.1  sevan }
   1634  1.1  sevan 
   1635  1.1  sevan void
   1636  1.1  sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1637  1.1  sevan {
   1638  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1639  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1640  1.1  sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1641  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1642  1.1  sevan 	    addr[5] <<  8 | addr[4]);
   1643  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1644  1.1  sevan }
   1645  1.1  sevan 
   1646  1.1  sevan void
   1647  1.1  sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1648  1.1  sevan {
   1649  1.1  sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1650  1.1  sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1651  1.1  sevan }
   1652  1.1  sevan 
   1653  1.1  sevan void
   1654  1.1  sevan rge_hw_init(struct rge_softc *sc)
   1655  1.1  sevan {
   1656  1.1  sevan 	int i;
   1657  1.1  sevan 
   1658  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1659  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1660  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1661  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1662  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1663  1.1  sevan 
   1664  1.1  sevan 	/* Disable UPS. */
   1665  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1666  1.1  sevan 
   1667  1.1  sevan 	/* Configure MAC MCU. */
   1668  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1669  1.1  sevan 
   1670  1.1  sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1671  1.1  sevan 		rge_write_mac_ocp(sc, i, 0);
   1672  1.1  sevan 
   1673  1.1  sevan 	DELAY(3000);
   1674  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1675  1.1  sevan 
   1676  1.1  sevan 	if (sc->rge_type == MAC_CFG3) {
   1677  1.1  sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1678  1.1  sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1679  1.1  sevan 			    rtl8125_def_bps[i].val);
   1680  1.1  sevan 	}
   1681  1.1  sevan 
   1682  1.1  sevan 	/* Disable PHY power saving. */
   1683  1.1  sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1684  1.1  sevan 
   1685  1.1  sevan 	/* Set PCIe uncorrectable error status. */
   1686  1.1  sevan 	rge_write_csi(sc, 0x108,
   1687  1.1  sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1688  1.1  sevan }
   1689  1.1  sevan 
   1690  1.1  sevan void
   1691  1.1  sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1692  1.1  sevan {
   1693  1.1  sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1694  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1695  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1696  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1697  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1698  1.1  sevan 	}
   1699  1.1  sevan }
   1700  1.1  sevan 
   1701  1.1  sevan void
   1702  1.1  sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1703  1.1  sevan {
   1704  1.1  sevan 	uint16_t val;
   1705  1.1  sevan 	int i;
   1706  1.1  sevan 
   1707  1.1  sevan 	if (set)
   1708  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1709  1.1  sevan 	else
   1710  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1711  1.1  sevan 
   1712  1.1  sevan 	for (i = 0; i < 1000; i++) {
   1713  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1714  1.1  sevan 		DELAY(100);
   1715  1.1  sevan 		if (val == 0x0040)
   1716  1.1  sevan 			break;
   1717  1.1  sevan 	}
   1718  1.1  sevan 	if (i == 1000)
   1719  1.1  sevan 		printf("%s: timeout waiting to patch phy mcu\n",
   1720  1.1  sevan 		    sc->sc_dev.dv_xname);
   1721  1.1  sevan }
   1722  1.1  sevan 
   1723  1.1  sevan void
   1724  1.1  sevan rge_add_media_types(struct rge_softc *sc)
   1725  1.1  sevan {
   1726  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1727  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1728  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1729  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1730  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1731  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1732  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1733  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1734  1.1  sevan }
   1735  1.1  sevan 
   1736  1.1  sevan void
   1737  1.1  sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1738  1.1  sevan {
   1739  1.1  sevan 	switch (imtype) {
   1740  1.1  sevan 	case RGE_IMTYPE_NONE:
   1741  1.1  sevan 		sc->rge_intrs = RGE_INTRS;
   1742  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1743  1.1  sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1744  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1745  1.1  sevan 		break;
   1746  1.1  sevan 	case RGE_IMTYPE_SIM:
   1747  1.1  sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1748  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1749  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1750  1.1  sevan 		break;
   1751  1.1  sevan 	default:
   1752  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1753  1.1  sevan 	}
   1754  1.1  sevan }
   1755  1.1  sevan 
   1756  1.1  sevan void
   1757  1.1  sevan rge_disable_sim_im(struct rge_softc *sc)
   1758  1.1  sevan {
   1759  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1760  1.1  sevan 	sc->rge_timerintr = 0;
   1761  1.1  sevan }
   1762  1.1  sevan 
   1763  1.1  sevan void
   1764  1.1  sevan rge_setup_sim_im(struct rge_softc *sc)
   1765  1.1  sevan {
   1766  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1767  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1768  1.1  sevan 	sc->rge_timerintr = 1;
   1769  1.1  sevan }
   1770  1.1  sevan 
   1771  1.1  sevan void
   1772  1.1  sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1773  1.1  sevan {
   1774  1.1  sevan 	rge_config_imtype(sc, imtype);
   1775  1.1  sevan 
   1776  1.1  sevan 	/* Enable interrupts. */
   1777  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1778  1.1  sevan 
   1779  1.1  sevan 	switch (imtype) {
   1780  1.1  sevan 	case RGE_IMTYPE_NONE:
   1781  1.1  sevan 		rge_disable_sim_im(sc);
   1782  1.1  sevan 		break;
   1783  1.1  sevan 	case RGE_IMTYPE_SIM:
   1784  1.1  sevan 		rge_setup_sim_im(sc);
   1785  1.1  sevan 		break;
   1786  1.1  sevan 	default:
   1787  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1788  1.1  sevan 	}
   1789  1.1  sevan }
   1790  1.1  sevan 
   1791  1.1  sevan void
   1792  1.1  sevan rge_exit_oob(struct rge_softc *sc)
   1793  1.1  sevan {
   1794  1.1  sevan 	int i;
   1795  1.1  sevan 
   1796  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1797  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1798  1.1  sevan 	    RGE_RXCFG_ERRPKT);
   1799  1.1  sevan 
   1800  1.1  sevan 	/* Disable RealWoW. */
   1801  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1802  1.1  sevan 
   1803  1.1  sevan 	rge_reset(sc);
   1804  1.1  sevan 
   1805  1.1  sevan 	/* Disable OOB. */
   1806  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1807  1.1  sevan 
   1808  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1809  1.1  sevan 
   1810  1.1  sevan 	for (i = 0; i < 10; i++) {
   1811  1.1  sevan 		DELAY(100);
   1812  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1813  1.1  sevan 			break;
   1814  1.1  sevan 	}
   1815  1.1  sevan 
   1816  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1817  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1818  1.1  sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1819  1.1  sevan 
   1820  1.1  sevan 	for (i = 0; i < 10; i++) {
   1821  1.1  sevan 		DELAY(100);
   1822  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1823  1.1  sevan 			break;
   1824  1.1  sevan 	}
   1825  1.1  sevan 
   1826  1.1  sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1827  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1828  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 2)
   1829  1.1  sevan 				break;
   1830  1.1  sevan 			DELAY(1000);
   1831  1.1  sevan 		}
   1832  1.1  sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1833  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1834  1.1  sevan 	}
   1835  1.1  sevan }
   1836  1.1  sevan 
   1837  1.1  sevan void
   1838  1.1  sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1839  1.1  sevan {
   1840  1.1  sevan 	int i;
   1841  1.1  sevan 
   1842  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1843  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1844  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1845  1.1  sevan 
   1846  1.1  sevan 	for (i = 0; i < 10; i++) {
   1847  1.1  sevan 		 DELAY(100);
   1848  1.1  sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1849  1.1  sevan 			break;
   1850  1.1  sevan 	}
   1851  1.1  sevan 
   1852  1.1  sevan 	DELAY(20);
   1853  1.1  sevan }
   1854  1.1  sevan 
   1855  1.1  sevan uint32_t
   1856  1.1  sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1857  1.1  sevan {
   1858  1.1  sevan 	int i;
   1859  1.1  sevan 
   1860  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1861  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1862  1.1  sevan 
   1863  1.1  sevan 	for (i = 0; i < 10; i++) {
   1864  1.1  sevan 		 DELAY(100);
   1865  1.1  sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1866  1.1  sevan 			break;
   1867  1.1  sevan 	}
   1868  1.1  sevan 
   1869  1.1  sevan 	DELAY(20);
   1870  1.1  sevan 
   1871  1.1  sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1872  1.1  sevan }
   1873  1.1  sevan 
   1874  1.1  sevan void
   1875  1.1  sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1876  1.1  sevan {
   1877  1.1  sevan 	uint32_t tmp;
   1878  1.1  sevan 
   1879  1.1  sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1880  1.1  sevan 	tmp += val;
   1881  1.1  sevan 	tmp |= RGE_MACOCP_BUSY;
   1882  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1883  1.1  sevan }
   1884  1.1  sevan 
   1885  1.1  sevan uint16_t
   1886  1.1  sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1887  1.1  sevan {
   1888  1.1  sevan 	uint32_t val;
   1889  1.1  sevan 
   1890  1.1  sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1891  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1892  1.1  sevan 
   1893  1.1  sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1894  1.1  sevan }
   1895  1.1  sevan 
   1896  1.1  sevan void
   1897  1.1  sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1898  1.1  sevan {
   1899  1.1  sevan 	uint32_t tmp;
   1900  1.1  sevan 	int i;
   1901  1.1  sevan 
   1902  1.1  sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1903  1.1  sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1904  1.1  sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1905  1.1  sevan 
   1906  1.1  sevan 	for (i = 0; i < 10; i++) {
   1907  1.1  sevan 		DELAY(100);
   1908  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1909  1.1  sevan 			break;
   1910  1.1  sevan 	}
   1911  1.1  sevan 
   1912  1.1  sevan 	DELAY(20);
   1913  1.1  sevan }
   1914  1.1  sevan 
   1915  1.1  sevan void
   1916  1.1  sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1917  1.1  sevan {
   1918  1.1  sevan 	uint16_t off, phyaddr;
   1919  1.1  sevan 
   1920  1.1  sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1921  1.1  sevan 	phyaddr <<= 4;
   1922  1.1  sevan 
   1923  1.1  sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1924  1.1  sevan 
   1925  1.1  sevan 	phyaddr += (off - 16) << 1;
   1926  1.1  sevan 
   1927  1.1  sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1928  1.1  sevan }
   1929  1.1  sevan 
   1930  1.1  sevan void
   1931  1.1  sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1932  1.1  sevan {
   1933  1.1  sevan 	uint32_t tmp;
   1934  1.1  sevan 	int i;
   1935  1.1  sevan 
   1936  1.1  sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1937  1.1  sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   1938  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   1939  1.1  sevan 
   1940  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1941  1.1  sevan 		DELAY(1);
   1942  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   1943  1.1  sevan 			break;
   1944  1.1  sevan 	}
   1945  1.1  sevan }
   1946  1.1  sevan 
   1947  1.1  sevan uint16_t
   1948  1.1  sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   1949  1.1  sevan {
   1950  1.1  sevan 	uint32_t val;
   1951  1.1  sevan 	int i;
   1952  1.1  sevan 
   1953  1.1  sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1954  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   1955  1.1  sevan 
   1956  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1957  1.1  sevan 		DELAY(1);
   1958  1.1  sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   1959  1.1  sevan 		if (val & RGE_PHYOCP_BUSY)
   1960  1.1  sevan 			break;
   1961  1.1  sevan 	}
   1962  1.1  sevan 
   1963  1.1  sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   1964  1.1  sevan }
   1965  1.1  sevan 
   1966  1.1  sevan int
   1967  1.1  sevan rge_get_link_status(struct rge_softc *sc)
   1968  1.1  sevan {
   1969  1.1  sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   1970  1.1  sevan }
   1971  1.1  sevan 
   1972  1.1  sevan void
   1973  1.1  sevan rge_txstart(void *arg)
   1974  1.1  sevan {
   1975  1.1  sevan 	struct rge_softc *sc = arg;
   1976  1.1  sevan 
   1977  1.1  sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   1978  1.1  sevan }
   1979  1.1  sevan 
   1980  1.1  sevan void
   1981  1.1  sevan rge_tick(void *arg)
   1982  1.1  sevan {
   1983  1.1  sevan 	struct rge_softc *sc = arg;
   1984  1.1  sevan 	int s;
   1985  1.1  sevan 
   1986  1.1  sevan 	s = splnet();
   1987  1.1  sevan 	rge_link_state(sc);
   1988  1.1  sevan 	splx(s);
   1989  1.1  sevan 
   1990  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   1991  1.1  sevan }
   1992  1.1  sevan 
   1993  1.1  sevan void
   1994  1.1  sevan rge_link_state(struct rge_softc *sc)
   1995  1.1  sevan {
   1996  1.1  sevan 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
   1997  1.1  sevan 	int link = LINK_STATE_DOWN;
   1998  1.1  sevan 
   1999  1.1  sevan 	if (rge_get_link_status(sc))
   2000  1.1  sevan 		link = LINK_STATE_UP;
   2001  1.1  sevan 
   2002  1.1  sevan 	if (ifp->if_link_state != link) {
   2003  1.1  sevan 		ifp->if_link_state = link;
   2004  1.1  sevan 		if_link_state_change(ifp);
   2005  1.1  sevan 	}
   2006  1.1  sevan }
   2007