if_rge.c revision 1.11 1 1.11 sevan /* $NetBSD: if_rge.c,v 1.11 2020/05/20 20:18:37 sevan Exp $ */
2 1.11 sevan /* $OpenBSD: if_rge.c,v 1.3 2020/03/27 15:15:24 krw Exp $ */
3 1.1 sevan
4 1.1 sevan /*
5 1.1 sevan * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
6 1.1 sevan *
7 1.1 sevan * Permission to use, copy, modify, and distribute this software for any
8 1.1 sevan * purpose with or without fee is hereby granted, provided that the above
9 1.1 sevan * copyright notice and this permission notice appear in all copies.
10 1.1 sevan *
11 1.1 sevan * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 sevan * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 sevan * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 sevan * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 sevan * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 sevan * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 sevan * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 sevan */
19 1.1 sevan
20 1.2 sevan #include <sys/cdefs.h>
21 1.11 sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.11 2020/05/20 20:18:37 sevan Exp $");
22 1.2 sevan
23 1.2 sevan /* #include "vlan.h" Sevan */
24 1.2 sevan
25 1.2 sevan #include <sys/types.h>
26 1.1 sevan
27 1.1 sevan #include <sys/param.h>
28 1.1 sevan #include <sys/systm.h>
29 1.1 sevan #include <sys/sockio.h>
30 1.1 sevan #include <sys/mbuf.h>
31 1.1 sevan #include <sys/malloc.h>
32 1.1 sevan #include <sys/kernel.h>
33 1.1 sevan #include <sys/socket.h>
34 1.1 sevan #include <sys/device.h>
35 1.1 sevan #include <sys/endian.h>
36 1.3 sevan #include <sys/callout.h>
37 1.3 sevan #include <sys/workqueue.h>
38 1.1 sevan
39 1.1 sevan #include <net/if.h>
40 1.2 sevan
41 1.2 sevan #include <net/if_dl.h>
42 1.2 sevan #include <net/if_ether.h>
43 1.2 sevan
44 1.1 sevan #include <net/if_media.h>
45 1.1 sevan
46 1.1 sevan #include <netinet/in.h>
47 1.2 sevan #include <net/if_ether.h>
48 1.1 sevan
49 1.1 sevan #if NBPFILTER > 0
50 1.1 sevan #include <net/bpf.h>
51 1.1 sevan #endif
52 1.1 sevan
53 1.2 sevan #include <sys/bus.h>
54 1.1 sevan #include <machine/intr.h>
55 1.1 sevan
56 1.1 sevan #include <dev/mii/mii.h>
57 1.1 sevan
58 1.1 sevan #include <dev/pci/pcivar.h>
59 1.1 sevan #include <dev/pci/pcireg.h>
60 1.1 sevan #include <dev/pci/pcidevs.h>
61 1.1 sevan
62 1.1 sevan #include <dev/pci/if_rgereg.h>
63 1.1 sevan
64 1.2 sevan #ifdef __NetBSD__
65 1.2 sevan #define letoh32 htole32
66 1.2 sevan #define nitems(x) __arraycount(x)
67 1.2 sevan #define MBUF_LIST_INITIALIZER() { NULL, NULL, 0 }
68 1.2 sevan struct mbuf_list {
69 1.2 sevan struct mbuf *ml_head;
70 1.2 sevan struct mbuf *ml_tail;
71 1.2 sevan u_int ml_len;
72 1.2 sevan };
73 1.7 sevan
74 1.7 sevan static struct mbuf *
75 1.7 sevan MCLGETI(struct rge_softc *sc __unused, int how,
76 1.7 sevan struct ifnet *ifp __unused, u_int size)
77 1.7 sevan {
78 1.7 sevan struct mbuf *m;
79 1.7 sevan
80 1.7 sevan MGETHDR(m, how, MT_DATA);
81 1.7 sevan if (m == NULL)
82 1.7 sevan return NULL;
83 1.7 sevan
84 1.7 sevan MEXTMALLOC(m, size, how);
85 1.7 sevan if ((m->m_flags & M_EXT) == 0) {
86 1.7 sevan m_freem(m);
87 1.7 sevan return NULL;
88 1.7 sevan }
89 1.7 sevan return m;
90 1.7 sevan }
91 1.7 sevan
92 1.3 sevan #ifdef NET_MPSAFE
93 1.3 sevan #define RGE_MPSAFE 1
94 1.3 sevan #define CALLOUT_FLAGS CALLOUT_MPSAFE
95 1.3 sevan #else
96 1.3 sevan #define CALLOUT_FLAGS 0
97 1.3 sevan #endif
98 1.2 sevan #endif
99 1.2 sevan
100 1.2 sevan static int rge_match(device_t, cfdata_t, void *);
101 1.5 skrll static void rge_attach(device_t, device_t, void *);
102 1.1 sevan int rge_intr(void *);
103 1.1 sevan int rge_encap(struct rge_softc *, struct mbuf *, int);
104 1.2 sevan int rge_ioctl(struct ifnet *, u_long, void *);
105 1.2 sevan void rge_start(struct ifnet *);
106 1.1 sevan void rge_watchdog(struct ifnet *);
107 1.1 sevan int rge_init(struct ifnet *);
108 1.1 sevan void rge_stop(struct ifnet *);
109 1.1 sevan int rge_ifmedia_upd(struct ifnet *);
110 1.1 sevan void rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
111 1.1 sevan int rge_allocmem(struct rge_softc *);
112 1.1 sevan int rge_newbuf(struct rge_softc *, int);
113 1.1 sevan void rge_discard_rxbuf(struct rge_softc *, int);
114 1.1 sevan int rge_rx_list_init(struct rge_softc *);
115 1.1 sevan void rge_tx_list_init(struct rge_softc *);
116 1.1 sevan int rge_rxeof(struct rge_softc *);
117 1.1 sevan int rge_txeof(struct rge_softc *);
118 1.1 sevan void rge_reset(struct rge_softc *);
119 1.1 sevan void rge_iff(struct rge_softc *);
120 1.1 sevan void rge_set_phy_power(struct rge_softc *, int);
121 1.1 sevan void rge_phy_config(struct rge_softc *);
122 1.1 sevan void rge_set_macaddr(struct rge_softc *, const uint8_t *);
123 1.1 sevan void rge_get_macaddr(struct rge_softc *, uint8_t *);
124 1.1 sevan void rge_hw_init(struct rge_softc *);
125 1.1 sevan void rge_disable_phy_ocp_pwrsave(struct rge_softc *);
126 1.1 sevan void rge_patch_phy_mcu(struct rge_softc *, int);
127 1.1 sevan void rge_add_media_types(struct rge_softc *);
128 1.1 sevan void rge_config_imtype(struct rge_softc *, int);
129 1.1 sevan void rge_disable_sim_im(struct rge_softc *);
130 1.1 sevan void rge_setup_sim_im(struct rge_softc *);
131 1.1 sevan void rge_setup_intr(struct rge_softc *, int);
132 1.1 sevan void rge_exit_oob(struct rge_softc *);
133 1.1 sevan void rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
134 1.1 sevan uint32_t rge_read_csi(struct rge_softc *, uint32_t);
135 1.1 sevan void rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
136 1.1 sevan uint16_t rge_read_mac_ocp(struct rge_softc *, uint16_t);
137 1.1 sevan void rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
138 1.1 sevan void rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
139 1.1 sevan void rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
140 1.1 sevan uint16_t rge_read_phy_ocp(struct rge_softc *, uint16_t);
141 1.1 sevan int rge_get_link_status(struct rge_softc *);
142 1.3 sevan void rge_txstart(struct work *, void *);
143 1.1 sevan void rge_tick(void *);
144 1.1 sevan void rge_link_state(struct rge_softc *);
145 1.1 sevan
146 1.1 sevan static const struct {
147 1.1 sevan uint16_t reg;
148 1.1 sevan uint16_t val;
149 1.1 sevan } rtl8125_def_bps[] = {
150 1.1 sevan RTL8125_DEF_BPS
151 1.1 sevan }, rtl8125_mac_cfg2_ephy[] = {
152 1.1 sevan RTL8125_MAC_CFG2_EPHY
153 1.1 sevan }, rtl8125_mac_cfg2_mcu[] = {
154 1.1 sevan RTL8125_MAC_CFG2_MCU
155 1.1 sevan }, rtl8125_mac_cfg3_ephy[] = {
156 1.1 sevan RTL8125_MAC_CFG3_EPHY
157 1.1 sevan }, rtl8125_mac_cfg3_mcu[] = {
158 1.1 sevan RTL8125_MAC_CFG3_MCU
159 1.1 sevan };
160 1.1 sevan
161 1.2 sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
162 1.2 sevan NULL, NULL); /* Sevan - detach function? */
163 1.1 sevan
164 1.2 sevan extern struct cfdriver rge_cd;
165 1.1 sevan
166 1.2 sevan static const struct {
167 1.2 sevan pci_vendor_id_t vendor;
168 1.2 sevan pci_product_id_t product;
169 1.2 sevan }rge_devices[] = {
170 1.1 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
171 1.2 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
172 1.1 sevan };
173 1.1 sevan
174 1.2 sevan static int
175 1.2 sevan rge_match(device_t parent, cfdata_t match, void *aux)
176 1.1 sevan {
177 1.2 sevan struct pci_attach_args *pa =aux;
178 1.2 sevan int n;
179 1.2 sevan
180 1.2 sevan for (n =0; n < __arraycount(rge_devices); n++) {
181 1.2 sevan if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
182 1.2 sevan PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
183 1.2 sevan return 1;
184 1.2 sevan }
185 1.2 sevan
186 1.2 sevan return 0;
187 1.1 sevan }
188 1.1 sevan
189 1.1 sevan void
190 1.2 sevan rge_attach(device_t parent, device_t self, void *aux)
191 1.1 sevan {
192 1.11 sevan struct rge_softc *sc = device_private(self);
193 1.1 sevan struct pci_attach_args *pa = aux;
194 1.1 sevan pci_chipset_tag_t pc = pa->pa_pc;
195 1.1 sevan pci_intr_handle_t ih;
196 1.2 sevan char intrbuf[PCI_INTRSTR_LEN];
197 1.1 sevan const char *intrstr = NULL;
198 1.1 sevan struct ifnet *ifp;
199 1.1 sevan pcireg_t reg;
200 1.1 sevan uint32_t hwrev;
201 1.1 sevan uint8_t eaddr[ETHER_ADDR_LEN];
202 1.1 sevan int offset;
203 1.1 sevan
204 1.1 sevan pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
205 1.1 sevan
206 1.5 skrll /*
207 1.1 sevan * Map control/status registers.
208 1.1 sevan */
209 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
210 1.1 sevan PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
211 1.2 sevan NULL, &sc->rge_bsize)) {
212 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
213 1.1 sevan PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
214 1.2 sevan &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
215 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
216 1.1 sevan 0, &sc->rge_btag, &sc->rge_bhandle, NULL,
217 1.2 sevan &sc->rge_bsize)) {
218 1.1 sevan printf(": can't map mem or i/o space\n");
219 1.1 sevan return;
220 1.1 sevan }
221 1.1 sevan }
222 1.1 sevan }
223 1.1 sevan
224 1.5 skrll /*
225 1.1 sevan * Allocate interrupt.
226 1.1 sevan */
227 1.2 sevan if (pci_intr_map(pa, &ih) == 0)
228 1.1 sevan sc->rge_flags |= RGE_FLAG_MSI;
229 1.1 sevan else if (pci_intr_map(pa, &ih) != 0) {
230 1.1 sevan printf(": couldn't map interrupt\n");
231 1.1 sevan return;
232 1.1 sevan }
233 1.2 sevan intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
234 1.2 sevan sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
235 1.1 sevan sc, sc->sc_dev.dv_xname);
236 1.1 sevan if (sc->sc_ih == NULL) {
237 1.1 sevan printf(": couldn't establish interrupt");
238 1.1 sevan if (intrstr != NULL)
239 1.1 sevan printf(" at %s", intrstr);
240 1.1 sevan printf("\n");
241 1.1 sevan return;
242 1.1 sevan }
243 1.1 sevan printf(": %s", intrstr);
244 1.1 sevan
245 1.9 thorpej if (pci_dma64_available(pa))
246 1.9 thorpej sc->sc_dmat = pa->pa_dmat64;
247 1.9 thorpej else
248 1.9 thorpej sc->sc_dmat = pa->pa_dmat;
249 1.9 thorpej
250 1.1 sevan sc->sc_pc = pa->pa_pc;
251 1.1 sevan sc->sc_tag = pa->pa_tag;
252 1.1 sevan
253 1.1 sevan /* Determine hardware revision */
254 1.1 sevan hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
255 1.1 sevan switch (hwrev) {
256 1.1 sevan case 0x60800000:
257 1.1 sevan sc->rge_type = MAC_CFG2;
258 1.1 sevan break;
259 1.1 sevan case 0x60900000:
260 1.1 sevan sc->rge_type = MAC_CFG3;
261 1.1 sevan break;
262 1.1 sevan default:
263 1.1 sevan printf(": unknown version 0x%08x\n", hwrev);
264 1.1 sevan return;
265 1.1 sevan }
266 1.1 sevan
267 1.1 sevan rge_config_imtype(sc, RGE_IMTYPE_SIM);
268 1.1 sevan
269 1.5 skrll /*
270 1.1 sevan * PCI Express check.
271 1.1 sevan */
272 1.1 sevan if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
273 1.1 sevan &offset, NULL)) {
274 1.2 sevan /* Disable PCIe ASPM. */
275 1.1 sevan reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
276 1.2 sevan offset + PCIE_LCSR);
277 1.2 sevan reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
278 1.2 sevan pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
279 1.1 sevan reg);
280 1.1 sevan }
281 1.1 sevan
282 1.1 sevan rge_exit_oob(sc);
283 1.1 sevan rge_hw_init(sc);
284 1.1 sevan
285 1.1 sevan rge_get_macaddr(sc, eaddr);
286 1.1 sevan printf(", address %s\n", ether_sprintf(eaddr));
287 1.1 sevan
288 1.2 sevan memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
289 1.1 sevan
290 1.1 sevan rge_set_phy_power(sc, 1);
291 1.1 sevan rge_phy_config(sc);
292 1.1 sevan
293 1.1 sevan if (rge_allocmem(sc))
294 1.1 sevan return;
295 1.1 sevan
296 1.2 sevan ifp = &sc->sc_ec.ec_if;
297 1.1 sevan ifp->if_softc = sc;
298 1.1 sevan strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
299 1.1 sevan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
300 1.2 sevan #ifdef RGE_MPSAFE
301 1.2 sevan ifp->if_xflags = IFEF_MPSAFE;
302 1.2 sevan #endif
303 1.1 sevan ifp->if_ioctl = rge_ioctl;
304 1.2 sevan ifp->if_start = rge_start;
305 1.1 sevan ifp->if_watchdog = rge_watchdog;
306 1.1 sevan IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
307 1.2 sevan ifp->if_mtu = RGE_JUMBO_MTU;
308 1.1 sevan
309 1.2 sevan ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
310 1.2 sevan IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
311 1.2 sevan IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
312 1.1 sevan
313 1.1 sevan #if NVLAN > 0
314 1.1 sevan ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
315 1.1 sevan #endif
316 1.1 sevan
317 1.3 sevan callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
318 1.3 sevan callout_setfunc(&sc->sc_timeout, rge_tick, sc);
319 1.3 sevan rge_txstart(&sc->sc_task, sc);
320 1.1 sevan
321 1.1 sevan /* Initialize ifmedia structures. */
322 1.1 sevan ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
323 1.1 sevan rge_ifmedia_sts);
324 1.1 sevan rge_add_media_types(sc);
325 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
326 1.1 sevan ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
327 1.1 sevan sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
328 1.1 sevan
329 1.1 sevan if_attach(ifp);
330 1.2 sevan ether_ifattach(ifp, eaddr);
331 1.1 sevan }
332 1.1 sevan
333 1.1 sevan int
334 1.1 sevan rge_intr(void *arg)
335 1.1 sevan {
336 1.1 sevan struct rge_softc *sc = arg;
337 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
338 1.1 sevan uint32_t status;
339 1.1 sevan int claimed = 0, rx, tx;
340 1.1 sevan
341 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
342 1.1 sevan return (0);
343 1.1 sevan
344 1.1 sevan /* Disable interrupts. */
345 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
346 1.1 sevan
347 1.1 sevan status = RGE_READ_4(sc, RGE_ISR);
348 1.1 sevan if (!(sc->rge_flags & RGE_FLAG_MSI)) {
349 1.1 sevan if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
350 1.1 sevan return (0);
351 1.1 sevan }
352 1.1 sevan if (status)
353 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, status);
354 1.1 sevan
355 1.1 sevan if (status & RGE_ISR_PCS_TIMEOUT)
356 1.1 sevan claimed = 1;
357 1.1 sevan
358 1.1 sevan rx = tx = 0;
359 1.1 sevan if (status & RGE_INTRS) {
360 1.1 sevan if (status &
361 1.1 sevan (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
362 1.1 sevan rx |= rge_rxeof(sc);
363 1.1 sevan claimed = 1;
364 1.1 sevan }
365 1.1 sevan
366 1.1 sevan if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
367 1.1 sevan tx |= rge_txeof(sc);
368 1.1 sevan claimed = 1;
369 1.1 sevan }
370 1.1 sevan
371 1.1 sevan if (status & RGE_ISR_SYSTEM_ERR) {
372 1.2 sevan KERNEL_LOCK(1, NULL);
373 1.1 sevan rge_init(ifp);
374 1.2 sevan KERNEL_UNLOCK_ONE(NULL);
375 1.1 sevan claimed = 1;
376 1.1 sevan }
377 1.1 sevan }
378 1.1 sevan
379 1.1 sevan if (sc->rge_timerintr) {
380 1.1 sevan if ((tx | rx) == 0) {
381 1.1 sevan /*
382 1.1 sevan * Nothing needs to be processed, fallback
383 1.1 sevan * to use TX/RX interrupts.
384 1.1 sevan */
385 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_NONE);
386 1.1 sevan
387 1.1 sevan /*
388 1.1 sevan * Recollect, mainly to avoid the possible
389 1.1 sevan * race introduced by changing interrupt
390 1.1 sevan * masks.
391 1.1 sevan */
392 1.1 sevan rge_rxeof(sc);
393 1.1 sevan rge_txeof(sc);
394 1.1 sevan } else
395 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
396 1.1 sevan } else if (tx | rx) {
397 1.1 sevan /*
398 1.1 sevan * Assume that using simulated interrupt moderation
399 1.1 sevan * (hardware timer based) could reduce the interrupt
400 1.1 sevan * rate.
401 1.1 sevan */
402 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
403 1.1 sevan }
404 1.1 sevan
405 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
406 1.1 sevan
407 1.1 sevan return (claimed);
408 1.1 sevan }
409 1.1 sevan
410 1.1 sevan int
411 1.1 sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
412 1.1 sevan {
413 1.1 sevan struct rge_tx_desc *d = NULL;
414 1.1 sevan struct rge_txq *txq;
415 1.1 sevan bus_dmamap_t txmap;
416 1.1 sevan uint32_t cmdsts, cflags = 0;
417 1.1 sevan int cur, error, i, last, nsegs;
418 1.1 sevan
419 1.1 sevan /*
420 1.1 sevan * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
421 1.1 sevan * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
422 1.1 sevan * take affect.
423 1.1 sevan */
424 1.1 sevan if ((m->m_pkthdr.csum_flags &
425 1.2 sevan (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
426 1.1 sevan cflags |= RGE_TDEXTSTS_IPCSUM;
427 1.1 sevan if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
428 1.1 sevan cflags |= RGE_TDEXTSTS_TCPCSUM;
429 1.1 sevan if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
430 1.1 sevan cflags |= RGE_TDEXTSTS_UDPCSUM;
431 1.1 sevan }
432 1.1 sevan
433 1.1 sevan txq = &sc->rge_ldata.rge_txq[idx];
434 1.1 sevan txmap = txq->txq_dmamap;
435 1.1 sevan
436 1.1 sevan error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
437 1.1 sevan switch (error) {
438 1.1 sevan case 0:
439 1.1 sevan break;
440 1.1 sevan case EFBIG: /* mbuf chain is too fragmented */
441 1.1 sevan if (m_defrag(m, M_DONTWAIT) == 0 &&
442 1.1 sevan bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
443 1.1 sevan BUS_DMA_NOWAIT) == 0)
444 1.1 sevan break;
445 1.1 sevan
446 1.1 sevan /* FALLTHROUGH */
447 1.1 sevan default:
448 1.1 sevan return (0);
449 1.1 sevan }
450 1.1 sevan
451 1.1 sevan bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
452 1.1 sevan BUS_DMASYNC_PREWRITE);
453 1.1 sevan
454 1.1 sevan nsegs = txmap->dm_nsegs;
455 1.1 sevan
456 1.1 sevan /* Set up hardware VLAN tagging. */
457 1.1 sevan #if NVLAN > 0
458 1.1 sevan if (m->m_flags & M_VLANTAG)
459 1.1 sevan cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
460 1.1 sevan #endif
461 1.1 sevan
462 1.1 sevan cur = idx;
463 1.1 sevan cmdsts = RGE_TDCMDSTS_SOF;
464 1.1 sevan
465 1.1 sevan for (i = 0; i < txmap->dm_nsegs; i++) {
466 1.1 sevan d = &sc->rge_ldata.rge_tx_list[cur];
467 1.1 sevan
468 1.1 sevan d->rge_extsts = htole32(cflags);
469 1.1 sevan d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
470 1.1 sevan d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
471 1.1 sevan
472 1.1 sevan cmdsts |= txmap->dm_segs[i].ds_len;
473 1.1 sevan
474 1.1 sevan if (cur == RGE_TX_LIST_CNT - 1)
475 1.1 sevan cmdsts |= RGE_TDCMDSTS_EOR;
476 1.1 sevan
477 1.1 sevan d->rge_cmdsts = htole32(cmdsts);
478 1.1 sevan
479 1.1 sevan last = cur;
480 1.1 sevan cmdsts = RGE_TDCMDSTS_OWN;
481 1.1 sevan cur = RGE_NEXT_TX_DESC(cur);
482 1.1 sevan }
483 1.1 sevan
484 1.1 sevan /* Set EOF on the last descriptor. */
485 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
486 1.1 sevan
487 1.1 sevan /* Transfer ownership of packet to the chip. */
488 1.1 sevan d = &sc->rge_ldata.rge_tx_list[idx];
489 1.1 sevan
490 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
491 1.1 sevan
492 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
493 1.1 sevan cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
494 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
495 1.1 sevan
496 1.1 sevan /* Update info of TX queue and descriptors. */
497 1.1 sevan txq->txq_mbuf = m;
498 1.1 sevan txq->txq_descidx = last;
499 1.1 sevan
500 1.1 sevan return (nsegs);
501 1.1 sevan }
502 1.1 sevan
503 1.1 sevan int
504 1.2 sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
505 1.1 sevan {
506 1.1 sevan struct rge_softc *sc = ifp->if_softc;
507 1.1 sevan struct ifreq *ifr = (struct ifreq *)data;
508 1.1 sevan int s, error = 0;
509 1.1 sevan
510 1.1 sevan s = splnet();
511 1.1 sevan
512 1.1 sevan switch (cmd) {
513 1.1 sevan case SIOCSIFADDR:
514 1.1 sevan ifp->if_flags |= IFF_UP;
515 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
516 1.1 sevan rge_init(ifp);
517 1.1 sevan break;
518 1.1 sevan case SIOCSIFFLAGS:
519 1.1 sevan if (ifp->if_flags & IFF_UP) {
520 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
521 1.1 sevan error = ENETRESET;
522 1.1 sevan else
523 1.1 sevan rge_init(ifp);
524 1.1 sevan } else {
525 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
526 1.1 sevan rge_stop(ifp);
527 1.1 sevan }
528 1.1 sevan break;
529 1.1 sevan case SIOCGIFMEDIA:
530 1.1 sevan case SIOCSIFMEDIA:
531 1.1 sevan error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
532 1.1 sevan break;
533 1.1 sevan case SIOCSIFMTU:
534 1.2 sevan if (ifr->ifr_mtu > ifp->if_mtu) {
535 1.1 sevan error = EINVAL;
536 1.1 sevan break;
537 1.1 sevan }
538 1.1 sevan ifp->if_mtu = ifr->ifr_mtu;
539 1.1 sevan break;
540 1.1 sevan default:
541 1.2 sevan error = ether_ioctl(ifp, cmd, data);
542 1.1 sevan }
543 1.1 sevan
544 1.1 sevan if (error == ENETRESET) {
545 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
546 1.1 sevan rge_iff(sc);
547 1.1 sevan error = 0;
548 1.1 sevan }
549 1.1 sevan
550 1.1 sevan splx(s);
551 1.1 sevan return (error);
552 1.1 sevan }
553 1.1 sevan
554 1.1 sevan void
555 1.3 sevan rge_start(struct ifnet *ifp)
556 1.1 sevan {
557 1.1 sevan struct rge_softc *sc = ifp->if_softc;
558 1.1 sevan struct mbuf *m;
559 1.1 sevan int free, idx, used;
560 1.1 sevan int queued = 0;
561 1.1 sevan
562 1.2 sevan #define LINK_STATE_IS_UP(_s) \
563 1.2 sevan ((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
564 1.2 sevan
565 1.1 sevan if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
566 1.1 sevan ifq_purge(ifq);
567 1.1 sevan return;
568 1.1 sevan }
569 1.1 sevan
570 1.1 sevan /* Calculate free space. */
571 1.1 sevan idx = sc->rge_ldata.rge_txq_prodidx;
572 1.1 sevan free = sc->rge_ldata.rge_txq_considx;
573 1.1 sevan if (free <= idx)
574 1.1 sevan free += RGE_TX_LIST_CNT;
575 1.1 sevan free -= idx;
576 1.1 sevan
577 1.1 sevan for (;;) {
578 1.1 sevan if (RGE_TX_NSEGS >= free + 2) {
579 1.3 sevan SET(ifp->if_flags, IFF_OACTIVE);
580 1.1 sevan break;
581 1.1 sevan }
582 1.1 sevan
583 1.3 sevan IFQ_DEQUEUE(&ifp->if_snd, m);
584 1.1 sevan if (m == NULL)
585 1.1 sevan break;
586 1.1 sevan
587 1.1 sevan used = rge_encap(sc, m, idx);
588 1.1 sevan if (used == 0) {
589 1.1 sevan m_freem(m);
590 1.1 sevan continue;
591 1.1 sevan }
592 1.1 sevan
593 1.1 sevan KASSERT(used <= free);
594 1.1 sevan free -= used;
595 1.1 sevan
596 1.1 sevan #if NBPFILTER > 0
597 1.1 sevan if (ifp->if_bpf)
598 1.1 sevan bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
599 1.1 sevan #endif
600 1.1 sevan
601 1.1 sevan idx += used;
602 1.1 sevan if (idx >= RGE_TX_LIST_CNT)
603 1.1 sevan idx -= RGE_TX_LIST_CNT;
604 1.1 sevan
605 1.1 sevan queued++;
606 1.1 sevan }
607 1.1 sevan
608 1.1 sevan if (queued == 0)
609 1.1 sevan return;
610 1.1 sevan
611 1.1 sevan /* Set a timeout in case the chip goes out to lunch. */
612 1.1 sevan ifp->if_timer = 5;
613 1.1 sevan
614 1.1 sevan sc->rge_ldata.rge_txq_prodidx = idx;
615 1.1 sevan ifq_serialize(ifq, &sc->sc_task);
616 1.1 sevan }
617 1.1 sevan
618 1.1 sevan void
619 1.1 sevan rge_watchdog(struct ifnet *ifp)
620 1.1 sevan {
621 1.1 sevan struct rge_softc *sc = ifp->if_softc;
622 1.1 sevan
623 1.1 sevan printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
624 1.4 skrll if_statinc(ifp, if_oerrors);
625 1.1 sevan
626 1.1 sevan rge_init(ifp);
627 1.1 sevan }
628 1.1 sevan
629 1.1 sevan int
630 1.1 sevan rge_init(struct ifnet *ifp)
631 1.1 sevan {
632 1.1 sevan struct rge_softc *sc = ifp->if_softc;
633 1.1 sevan uint32_t val;
634 1.1 sevan uint16_t max_frame_size;
635 1.1 sevan int i;
636 1.1 sevan
637 1.1 sevan rge_stop(ifp);
638 1.1 sevan
639 1.1 sevan /* Set MAC address. */
640 1.2 sevan rge_set_macaddr(sc, sc->sc_enaddr);
641 1.1 sevan
642 1.1 sevan /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
643 1.1 sevan if (ifp->if_mtu < ETHERMTU)
644 1.1 sevan max_frame_size = ETHERMTU;
645 1.1 sevan else
646 1.1 sevan max_frame_size = ifp->if_mtu;
647 1.1 sevan
648 1.1 sevan max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
649 1.1 sevan ETHER_CRC_LEN + 1;
650 1.1 sevan
651 1.1 sevan if (max_frame_size > RGE_JUMBO_FRAMELEN)
652 1.5 skrll max_frame_size -= 1;
653 1.1 sevan
654 1.1 sevan RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
655 1.1 sevan
656 1.1 sevan /* Initialize RX descriptors list. */
657 1.1 sevan if (rge_rx_list_init(sc) == ENOBUFS) {
658 1.1 sevan printf("%s: init failed: no memory for RX buffers\n",
659 1.1 sevan sc->sc_dev.dv_xname);
660 1.1 sevan rge_stop(ifp);
661 1.1 sevan return (ENOBUFS);
662 1.1 sevan }
663 1.1 sevan
664 1.1 sevan /* Initialize TX descriptors. */
665 1.1 sevan rge_tx_list_init(sc);
666 1.1 sevan
667 1.1 sevan /* Load the addresses of the RX and TX lists into the chip. */
668 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
669 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
670 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
671 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
672 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
673 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
674 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
675 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
676 1.1 sevan
677 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
678 1.1 sevan
679 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
680 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
681 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
682 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
683 1.1 sevan
684 1.1 sevan /* Clear interrupt moderation timer. */
685 1.1 sevan for (i = 0; i < 64; i++)
686 1.1 sevan RGE_WRITE_4(sc, RGE_IM(i), 0);
687 1.1 sevan
688 1.1 sevan /* Set the initial RX and TX configurations. */
689 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
690 1.1 sevan RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
691 1.1 sevan
692 1.1 sevan val = rge_read_csi(sc, 0x70c) & ~0xff000000;
693 1.1 sevan rge_write_csi(sc, 0x70c, val | 0x27000000);
694 1.1 sevan
695 1.1 sevan /* Enable hardware optimization function. */
696 1.1 sevan val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
697 1.1 sevan pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
698 1.1 sevan
699 1.1 sevan RGE_WRITE_2(sc, 0x0382, 0x221b);
700 1.1 sevan RGE_WRITE_1(sc, 0x4500, 0);
701 1.1 sevan RGE_WRITE_2(sc, 0x4800, 0);
702 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
703 1.1 sevan
704 1.1 sevan rge_write_mac_ocp(sc, 0xc140, 0xffff);
705 1.1 sevan rge_write_mac_ocp(sc, 0xc142, 0xffff);
706 1.1 sevan
707 1.1 sevan val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
708 1.1 sevan rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
709 1.1 sevan
710 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
711 1.1 sevan RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
712 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
713 1.1 sevan
714 1.1 sevan val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
715 1.1 sevan rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
716 1.1 sevan
717 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
718 1.1 sevan
719 1.1 sevan val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
720 1.1 sevan rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
721 1.1 sevan
722 1.1 sevan RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
723 1.1 sevan
724 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
725 1.1 sevan rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
726 1.1 sevan
727 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
728 1.1 sevan rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
729 1.1 sevan
730 1.1 sevan val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
731 1.1 sevan rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
732 1.1 sevan
733 1.1 sevan RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
734 1.1 sevan
735 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
736 1.1 sevan
737 1.1 sevan val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
738 1.1 sevan rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
739 1.1 sevan
740 1.1 sevan RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
741 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
742 1.1 sevan
743 1.1 sevan val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
744 1.1 sevan rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
745 1.1 sevan
746 1.1 sevan val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
747 1.1 sevan rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
748 1.1 sevan
749 1.5 skrll RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
750 1.1 sevan
751 1.1 sevan /* Disable EEE plus. */
752 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
753 1.1 sevan
754 1.1 sevan RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
755 1.1 sevan
756 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
757 1.1 sevan DELAY(1);
758 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
759 1.1 sevan
760 1.1 sevan RGE_CLRBIT_4(sc, 0x1880, 0x0030);
761 1.1 sevan
762 1.1 sevan rge_write_mac_ocp(sc, 0xe098, 0xc302);
763 1.1 sevan
764 1.2 sevan if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
765 1.1 sevan RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
766 1.1 sevan
767 1.1 sevan RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
768 1.1 sevan
769 1.1 sevan for (i = 0; i < 10; i++) {
770 1.1 sevan if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
771 1.1 sevan break;
772 1.1 sevan DELAY(1000);
773 1.1 sevan }
774 1.1 sevan
775 1.1 sevan /* Disable RXDV gate. */
776 1.1 sevan RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
777 1.1 sevan DELAY(2000);
778 1.1 sevan
779 1.1 sevan rge_ifmedia_upd(ifp);
780 1.1 sevan
781 1.1 sevan /* Enable transmit and receive. */
782 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
783 1.1 sevan
784 1.1 sevan /* Program promiscuous mode and multicast filters. */
785 1.1 sevan rge_iff(sc);
786 1.1 sevan
787 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
788 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
789 1.1 sevan
790 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
791 1.1 sevan
792 1.1 sevan /* Enable interrupts. */
793 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
794 1.1 sevan
795 1.1 sevan ifp->if_flags |= IFF_RUNNING;
796 1.3 sevan CLR(ifp->if_flags, IFF_OACTIVE);
797 1.1 sevan
798 1.3 sevan callout_schedule(&sc->sc_timeout, 1);
799 1.1 sevan
800 1.1 sevan return (0);
801 1.1 sevan }
802 1.1 sevan
803 1.1 sevan /*
804 1.1 sevan * Stop the adapter and free any mbufs allocated to the RX and TX lists.
805 1.1 sevan */
806 1.1 sevan void
807 1.1 sevan rge_stop(struct ifnet *ifp)
808 1.1 sevan {
809 1.1 sevan struct rge_softc *sc = ifp->if_softc;
810 1.1 sevan int i;
811 1.1 sevan
812 1.1 sevan timeout_del(&sc->sc_timeout);
813 1.1 sevan
814 1.1 sevan ifp->if_timer = 0;
815 1.1 sevan ifp->if_flags &= ~IFF_RUNNING;
816 1.1 sevan sc->rge_timerintr = 0;
817 1.1 sevan
818 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
819 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
820 1.1 sevan RGE_RXCFG_ERRPKT);
821 1.1 sevan
822 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
823 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
824 1.1 sevan
825 1.1 sevan rge_reset(sc);
826 1.1 sevan
827 1.1 sevan intr_barrier(sc->sc_ih);
828 1.1 sevan ifq_barrier(&ifp->if_snd);
829 1.2 sevan /* ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
830 1.1 sevan
831 1.1 sevan if (sc->rge_head != NULL) {
832 1.1 sevan m_freem(sc->rge_head);
833 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
834 1.1 sevan }
835 1.1 sevan
836 1.1 sevan /* Free the TX list buffers. */
837 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
838 1.1 sevan if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
839 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
840 1.1 sevan sc->rge_ldata.rge_txq[i].txq_dmamap);
841 1.1 sevan m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
842 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
843 1.1 sevan }
844 1.1 sevan }
845 1.1 sevan
846 1.1 sevan /* Free the RX list buffers. */
847 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
848 1.1 sevan if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
849 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
850 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_dmamap);
851 1.1 sevan m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
852 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
853 1.1 sevan }
854 1.1 sevan }
855 1.1 sevan }
856 1.1 sevan
857 1.1 sevan /*
858 1.1 sevan * Set media options.
859 1.1 sevan */
860 1.1 sevan int
861 1.1 sevan rge_ifmedia_upd(struct ifnet *ifp)
862 1.1 sevan {
863 1.1 sevan struct rge_softc *sc = ifp->if_softc;
864 1.1 sevan struct ifmedia *ifm = &sc->sc_media;
865 1.1 sevan int anar, gig, val;
866 1.1 sevan
867 1.1 sevan if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
868 1.1 sevan return (EINVAL);
869 1.1 sevan
870 1.1 sevan /* Disable Gigabit Lite. */
871 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
872 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
873 1.1 sevan
874 1.1 sevan val = rge_read_phy_ocp(sc, 0xa5d4);
875 1.1 sevan val &= ~RGE_ADV_2500TFDX;
876 1.1 sevan
877 1.1 sevan anar = gig = 0;
878 1.1 sevan switch (IFM_SUBTYPE(ifm->ifm_media)) {
879 1.1 sevan case IFM_AUTO:
880 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
881 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
882 1.1 sevan val |= RGE_ADV_2500TFDX;
883 1.1 sevan break;
884 1.1 sevan case IFM_2500_T:
885 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
886 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
887 1.1 sevan val |= RGE_ADV_2500TFDX;
888 1.1 sevan ifp->if_baudrate = IF_Mbps(2500);
889 1.1 sevan break;
890 1.1 sevan case IFM_1000_T:
891 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
892 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
893 1.1 sevan ifp->if_baudrate = IF_Gbps(1);
894 1.1 sevan break;
895 1.1 sevan case IFM_100_TX:
896 1.1 sevan anar |= ANAR_TX | ANAR_TX_FD;
897 1.1 sevan ifp->if_baudrate = IF_Mbps(100);
898 1.1 sevan break;
899 1.1 sevan case IFM_10_T:
900 1.1 sevan anar |= ANAR_10 | ANAR_10_FD;
901 1.1 sevan ifp->if_baudrate = IF_Mbps(10);
902 1.1 sevan break;
903 1.1 sevan default:
904 1.1 sevan printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
905 1.1 sevan return (EINVAL);
906 1.1 sevan }
907 1.1 sevan
908 1.1 sevan rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
909 1.1 sevan rge_write_phy(sc, 0, MII_100T2CR, gig);
910 1.1 sevan rge_write_phy_ocp(sc, 0xa5d4, val);
911 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
912 1.1 sevan
913 1.1 sevan return (0);
914 1.1 sevan }
915 1.1 sevan
916 1.1 sevan /*
917 1.1 sevan * Report current media status.
918 1.1 sevan */
919 1.1 sevan void
920 1.1 sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
921 1.1 sevan {
922 1.1 sevan struct rge_softc *sc = ifp->if_softc;
923 1.1 sevan uint16_t status = 0;
924 1.1 sevan
925 1.1 sevan ifmr->ifm_status = IFM_AVALID;
926 1.1 sevan ifmr->ifm_active = IFM_ETHER;
927 1.1 sevan
928 1.1 sevan if (rge_get_link_status(sc)) {
929 1.1 sevan ifmr->ifm_status |= IFM_ACTIVE;
930 1.1 sevan
931 1.1 sevan status = RGE_READ_2(sc, RGE_PHYSTAT);
932 1.1 sevan if ((status & RGE_PHYSTAT_FDX) ||
933 1.1 sevan (status & RGE_PHYSTAT_2500MBPS))
934 1.1 sevan ifmr->ifm_active |= IFM_FDX;
935 1.1 sevan else
936 1.1 sevan ifmr->ifm_active |= IFM_HDX;
937 1.1 sevan
938 1.1 sevan if (status & RGE_PHYSTAT_10MBPS)
939 1.1 sevan ifmr->ifm_active |= IFM_10_T;
940 1.1 sevan else if (status & RGE_PHYSTAT_100MBPS)
941 1.1 sevan ifmr->ifm_active |= IFM_100_TX;
942 1.1 sevan else if (status & RGE_PHYSTAT_1000MBPS)
943 1.1 sevan ifmr->ifm_active |= IFM_1000_T;
944 1.1 sevan else if (status & RGE_PHYSTAT_2500MBPS)
945 1.1 sevan ifmr->ifm_active |= IFM_2500_T;
946 1.1 sevan }
947 1.1 sevan }
948 1.1 sevan
949 1.5 skrll /*
950 1.1 sevan * Allocate memory for RX/TX rings.
951 1.1 sevan */
952 1.1 sevan int
953 1.1 sevan rge_allocmem(struct rge_softc *sc)
954 1.1 sevan {
955 1.1 sevan int error, i;
956 1.1 sevan
957 1.1 sevan /* Allocate DMA'able memory for the TX ring. */
958 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
959 1.1 sevan RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
960 1.1 sevan if (error) {
961 1.1 sevan printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
962 1.1 sevan return (error);
963 1.1 sevan }
964 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
965 1.1 sevan &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
966 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
967 1.1 sevan if (error) {
968 1.1 sevan printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
969 1.1 sevan return (error);
970 1.1 sevan }
971 1.1 sevan
972 1.1 sevan /* Load the map for the TX ring. */
973 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
974 1.1 sevan sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
975 1.8 sevan (void **) &sc->rge_ldata.rge_tx_list,
976 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
977 1.1 sevan if (error) {
978 1.1 sevan printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
979 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
980 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
981 1.1 sevan return (error);
982 1.1 sevan }
983 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
984 1.1 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
985 1.1 sevan if (error) {
986 1.1 sevan printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
987 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
988 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
989 1.2 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
990 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
991 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
992 1.1 sevan return (error);
993 1.1 sevan }
994 1.1 sevan
995 1.1 sevan /* Create DMA maps for TX buffers. */
996 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
997 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
998 1.1 sevan RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
999 1.1 sevan &sc->rge_ldata.rge_txq[i].txq_dmamap);
1000 1.1 sevan if (error) {
1001 1.1 sevan printf("%s: can't create DMA map for TX\n",
1002 1.1 sevan sc->sc_dev.dv_xname);
1003 1.1 sevan return (error);
1004 1.1 sevan }
1005 1.1 sevan }
1006 1.1 sevan
1007 1.1 sevan /* Allocate DMA'able memory for the RX ring. */
1008 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
1009 1.1 sevan RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
1010 1.1 sevan if (error) {
1011 1.1 sevan printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
1012 1.1 sevan return (error);
1013 1.1 sevan }
1014 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
1015 1.1 sevan &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
1016 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1017 1.1 sevan if (error) {
1018 1.1 sevan printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
1019 1.1 sevan return (error);
1020 1.1 sevan }
1021 1.1 sevan
1022 1.1 sevan /* Load the map for the RX ring. */
1023 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1024 1.1 sevan sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
1025 1.8 sevan (void **) &sc->rge_ldata.rge_rx_list,
1026 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1027 1.1 sevan if (error) {
1028 1.1 sevan printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
1029 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1030 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1031 1.1 sevan return (error);
1032 1.1 sevan }
1033 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1034 1.1 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
1035 1.1 sevan if (error) {
1036 1.1 sevan printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
1037 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
1038 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
1039 1.2 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
1040 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1041 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1042 1.1 sevan return (error);
1043 1.1 sevan }
1044 1.1 sevan
1045 1.1 sevan /* Create DMA maps for RX buffers. */
1046 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1047 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
1048 1.1 sevan RGE_JUMBO_FRAMELEN, 0, 0,
1049 1.1 sevan &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
1050 1.1 sevan if (error) {
1051 1.1 sevan printf("%s: can't create DMA map for RX\n",
1052 1.1 sevan sc->sc_dev.dv_xname);
1053 1.1 sevan return (error);
1054 1.1 sevan }
1055 1.1 sevan }
1056 1.1 sevan
1057 1.1 sevan return (error);
1058 1.1 sevan }
1059 1.1 sevan
1060 1.1 sevan /*
1061 1.1 sevan * Initialize the RX descriptor and attach an mbuf cluster.
1062 1.1 sevan */
1063 1.1 sevan int
1064 1.1 sevan rge_newbuf(struct rge_softc *sc, int idx)
1065 1.1 sevan {
1066 1.1 sevan struct mbuf *m;
1067 1.1 sevan struct rge_rx_desc *r;
1068 1.1 sevan struct rge_rxq *rxq;
1069 1.1 sevan bus_dmamap_t rxmap;
1070 1.1 sevan
1071 1.1 sevan m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
1072 1.1 sevan if (m == NULL)
1073 1.1 sevan return (ENOBUFS);
1074 1.1 sevan
1075 1.1 sevan m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
1076 1.1 sevan
1077 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[idx];
1078 1.1 sevan rxmap = rxq->rxq_dmamap;
1079 1.1 sevan
1080 1.1 sevan if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
1081 1.1 sevan goto out;
1082 1.1 sevan
1083 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1084 1.1 sevan BUS_DMASYNC_PREREAD);
1085 1.1 sevan
1086 1.1 sevan /* Map the segments into RX descriptors. */
1087 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1088 1.1 sevan
1089 1.1 sevan if (RGE_OWN(r)) {
1090 1.1 sevan printf("%s: tried to map busy RX descriptor\n",
1091 1.1 sevan sc->sc_dev.dv_xname);
1092 1.1 sevan goto out;
1093 1.1 sevan }
1094 1.1 sevan
1095 1.1 sevan rxq->rxq_mbuf = m;
1096 1.1 sevan
1097 1.1 sevan r->rge_extsts = 0;
1098 1.1 sevan r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
1099 1.1 sevan r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
1100 1.1 sevan
1101 1.1 sevan r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
1102 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1103 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1104 1.1 sevan
1105 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1106 1.1 sevan
1107 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1108 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1109 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1110 1.1 sevan
1111 1.1 sevan return (0);
1112 1.1 sevan out:
1113 1.1 sevan if (m != NULL)
1114 1.1 sevan m_freem(m);
1115 1.1 sevan return (ENOMEM);
1116 1.1 sevan }
1117 1.1 sevan
1118 1.1 sevan void
1119 1.1 sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
1120 1.1 sevan {
1121 1.1 sevan struct rge_rx_desc *r;
1122 1.1 sevan
1123 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1124 1.1 sevan
1125 1.1 sevan r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
1126 1.1 sevan r->rge_extsts = 0;
1127 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1128 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1129 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1130 1.1 sevan
1131 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1132 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1133 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1134 1.1 sevan }
1135 1.1 sevan
1136 1.1 sevan int
1137 1.1 sevan rge_rx_list_init(struct rge_softc *sc)
1138 1.1 sevan {
1139 1.1 sevan int i;
1140 1.1 sevan
1141 1.1 sevan memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
1142 1.1 sevan
1143 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1144 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
1145 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS)
1146 1.1 sevan return (ENOBUFS);
1147 1.1 sevan }
1148 1.1 sevan
1149 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = 0;
1150 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1151 1.1 sevan
1152 1.1 sevan return (0);
1153 1.1 sevan }
1154 1.1 sevan
1155 1.1 sevan void
1156 1.1 sevan rge_tx_list_init(struct rge_softc *sc)
1157 1.1 sevan {
1158 1.1 sevan int i;
1159 1.1 sevan
1160 1.1 sevan memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
1161 1.1 sevan
1162 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++)
1163 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
1164 1.1 sevan
1165 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
1166 1.1 sevan sc->rge_ldata.rge_tx_list_map->dm_mapsize,
1167 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1168 1.1 sevan
1169 1.1 sevan sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
1170 1.1 sevan }
1171 1.1 sevan
1172 1.1 sevan int
1173 1.1 sevan rge_rxeof(struct rge_softc *sc)
1174 1.1 sevan {
1175 1.1 sevan struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1176 1.1 sevan struct mbuf *m;
1177 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1178 1.1 sevan struct rge_rx_desc *cur_rx;
1179 1.1 sevan struct rge_rxq *rxq;
1180 1.1 sevan uint32_t rxstat, extsts;
1181 1.1 sevan int i, total_len, rx = 0;
1182 1.1 sevan
1183 1.1 sevan for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
1184 1.1 sevan /* Invalidate the descriptor memory. */
1185 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1186 1.1 sevan i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1187 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1188 1.1 sevan
1189 1.1 sevan cur_rx = &sc->rge_ldata.rge_rx_list[i];
1190 1.1 sevan
1191 1.1 sevan if (RGE_OWN(cur_rx))
1192 1.1 sevan break;
1193 1.1 sevan
1194 1.1 sevan rxstat = letoh32(cur_rx->rge_cmdsts);
1195 1.1 sevan extsts = letoh32(cur_rx->rge_extsts);
1196 1.5 skrll
1197 1.1 sevan total_len = RGE_RXBYTES(cur_rx);
1198 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[i];
1199 1.1 sevan m = rxq->rxq_mbuf;
1200 1.1 sevan rx = 1;
1201 1.1 sevan
1202 1.1 sevan /* Invalidate the RX mbuf and unload its map. */
1203 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
1204 1.1 sevan rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1205 1.1 sevan bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
1206 1.1 sevan
1207 1.1 sevan if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
1208 1.1 sevan (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
1209 1.1 sevan rge_discard_rxbuf(sc, i);
1210 1.1 sevan continue;
1211 1.1 sevan }
1212 1.1 sevan
1213 1.1 sevan if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
1214 1.4 skrll if_statinc(ifp, if_ierrors);
1215 1.1 sevan /*
1216 1.1 sevan * If this is part of a multi-fragment packet,
1217 1.1 sevan * discard all the pieces.
1218 1.1 sevan */
1219 1.1 sevan if (sc->rge_head != NULL) {
1220 1.1 sevan m_freem(sc->rge_head);
1221 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1222 1.1 sevan }
1223 1.1 sevan rge_discard_rxbuf(sc, i);
1224 1.1 sevan continue;
1225 1.1 sevan }
1226 1.1 sevan
1227 1.1 sevan /*
1228 1.1 sevan * If allocating a replacement mbuf fails,
1229 1.1 sevan * reload the current one.
1230 1.1 sevan */
1231 1.1 sevan
1232 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS) {
1233 1.1 sevan if (sc->rge_head != NULL) {
1234 1.1 sevan m_freem(sc->rge_head);
1235 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1236 1.1 sevan }
1237 1.1 sevan rge_discard_rxbuf(sc, i);
1238 1.1 sevan continue;
1239 1.1 sevan }
1240 1.1 sevan
1241 1.1 sevan if (sc->rge_head != NULL) {
1242 1.1 sevan m->m_len = total_len;
1243 1.1 sevan /*
1244 1.1 sevan * Special case: if there's 4 bytes or less
1245 1.1 sevan * in this buffer, the mbuf can be discarded:
1246 1.1 sevan * the last 4 bytes is the CRC, which we don't
1247 1.1 sevan * care about anyway.
1248 1.1 sevan */
1249 1.1 sevan if (m->m_len <= ETHER_CRC_LEN) {
1250 1.1 sevan sc->rge_tail->m_len -=
1251 1.1 sevan (ETHER_CRC_LEN - m->m_len);
1252 1.1 sevan m_freem(m);
1253 1.1 sevan } else {
1254 1.1 sevan m->m_len -= ETHER_CRC_LEN;
1255 1.1 sevan m->m_flags &= ~M_PKTHDR;
1256 1.1 sevan sc->rge_tail->m_next = m;
1257 1.1 sevan }
1258 1.1 sevan m = sc->rge_head;
1259 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1260 1.1 sevan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1261 1.1 sevan } else
1262 1.1 sevan m->m_pkthdr.len = m->m_len =
1263 1.1 sevan (total_len - ETHER_CRC_LEN);
1264 1.1 sevan
1265 1.1 sevan /* Check IP header checksum. */
1266 1.1 sevan if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
1267 1.1 sevan (extsts & RGE_RDEXTSTS_IPV4))
1268 1.1 sevan m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1269 1.1 sevan
1270 1.1 sevan /* Check TCP/UDP checksum. */
1271 1.1 sevan if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
1272 1.1 sevan (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
1273 1.1 sevan !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
1274 1.1 sevan ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
1275 1.1 sevan !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
1276 1.1 sevan m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1277 1.1 sevan M_UDP_CSUM_IN_OK;
1278 1.1 sevan
1279 1.1 sevan #if NVLAN > 0
1280 1.1 sevan if (extsts & RGE_RDEXTSTS_VTAG) {
1281 1.1 sevan m->m_pkthdr.ether_vtag =
1282 1.1 sevan ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
1283 1.1 sevan m->m_flags |= M_VLANTAG;
1284 1.1 sevan }
1285 1.1 sevan #endif
1286 1.1 sevan
1287 1.1 sevan ml_enqueue(&ml, m);
1288 1.1 sevan }
1289 1.1 sevan
1290 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = i;
1291 1.1 sevan
1292 1.1 sevan if_input(ifp, &ml);
1293 1.1 sevan
1294 1.1 sevan return (rx);
1295 1.1 sevan }
1296 1.1 sevan
1297 1.1 sevan int
1298 1.1 sevan rge_txeof(struct rge_softc *sc)
1299 1.1 sevan {
1300 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1301 1.1 sevan struct rge_txq *txq;
1302 1.1 sevan uint32_t txstat;
1303 1.1 sevan int cons, idx, prod;
1304 1.1 sevan int free = 0;
1305 1.1 sevan
1306 1.1 sevan prod = sc->rge_ldata.rge_txq_prodidx;
1307 1.1 sevan cons = sc->rge_ldata.rge_txq_considx;
1308 1.1 sevan
1309 1.1 sevan while (prod != cons) {
1310 1.1 sevan txq = &sc->rge_ldata.rge_txq[cons];
1311 1.1 sevan idx = txq->txq_descidx;
1312 1.1 sevan
1313 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1314 1.1 sevan idx * sizeof(struct rge_tx_desc),
1315 1.1 sevan sizeof(struct rge_tx_desc),
1316 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1317 1.1 sevan
1318 1.1 sevan txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
1319 1.1 sevan
1320 1.1 sevan if (txstat & RGE_TDCMDSTS_OWN) {
1321 1.1 sevan free = 2;
1322 1.1 sevan break;
1323 1.1 sevan }
1324 1.1 sevan
1325 1.5 skrll bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
1326 1.1 sevan txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1327 1.1 sevan bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1328 1.1 sevan m_freem(txq->txq_mbuf);
1329 1.1 sevan txq->txq_mbuf = NULL;
1330 1.1 sevan
1331 1.1 sevan if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
1332 1.4 skrll if_statinc(ifp, if_collisions);
1333 1.1 sevan if (txstat & RGE_TDCMDSTS_TXERR)
1334 1.4 skrll if_statinc(ifp, if_oerrors);
1335 1.1 sevan
1336 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1337 1.1 sevan idx * sizeof(struct rge_tx_desc),
1338 1.1 sevan sizeof(struct rge_tx_desc),
1339 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1340 1.1 sevan
1341 1.1 sevan cons = RGE_NEXT_TX_DESC(idx);
1342 1.1 sevan free = 1;
1343 1.1 sevan }
1344 1.1 sevan
1345 1.1 sevan if (free == 0)
1346 1.1 sevan return (0);
1347 1.1 sevan
1348 1.1 sevan sc->rge_ldata.rge_txq_considx = cons;
1349 1.1 sevan
1350 1.1 sevan if (ifq_is_oactive(&ifp->if_snd))
1351 1.1 sevan ifq_restart(&ifp->if_snd);
1352 1.1 sevan else if (free == 2)
1353 1.1 sevan ifq_serialize(&ifp->if_snd, &sc->sc_task);
1354 1.1 sevan else
1355 1.1 sevan ifp->if_timer = 0;
1356 1.1 sevan
1357 1.1 sevan return (1);
1358 1.1 sevan }
1359 1.1 sevan
1360 1.1 sevan void
1361 1.1 sevan rge_reset(struct rge_softc *sc)
1362 1.1 sevan {
1363 1.1 sevan int i;
1364 1.1 sevan
1365 1.1 sevan /* Enable RXDV gate. */
1366 1.1 sevan RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
1367 1.1 sevan DELAY(2000);
1368 1.1 sevan
1369 1.1 sevan for (i = 0; i < 10; i++) {
1370 1.1 sevan DELAY(100);
1371 1.1 sevan if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
1372 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
1373 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY))
1374 1.1 sevan break;
1375 1.1 sevan }
1376 1.1 sevan
1377 1.1 sevan /* Soft reset. */
1378 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
1379 1.1 sevan
1380 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1381 1.1 sevan DELAY(100);
1382 1.1 sevan if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
1383 1.1 sevan break;
1384 1.1 sevan }
1385 1.1 sevan if (i == RGE_TIMEOUT)
1386 1.1 sevan printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
1387 1.1 sevan }
1388 1.1 sevan
1389 1.1 sevan void
1390 1.1 sevan rge_iff(struct rge_softc *sc)
1391 1.1 sevan {
1392 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1393 1.2 sevan struct ethercom *ac = &sc->sc_ec;
1394 1.1 sevan struct ether_multi *enm;
1395 1.1 sevan struct ether_multistep step;
1396 1.1 sevan uint32_t hashes[2];
1397 1.1 sevan uint32_t rxfilt;
1398 1.1 sevan int h = 0;
1399 1.1 sevan
1400 1.1 sevan rxfilt = RGE_READ_4(sc, RGE_RXCFG);
1401 1.1 sevan rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
1402 1.1 sevan ifp->if_flags &= ~IFF_ALLMULTI;
1403 1.1 sevan
1404 1.1 sevan /*
1405 1.1 sevan * Always accept frames destined to our station address.
1406 1.1 sevan * Always accept broadcast frames.
1407 1.1 sevan */
1408 1.1 sevan rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
1409 1.1 sevan
1410 1.1 sevan if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1411 1.1 sevan ifp->if_flags |= IFF_ALLMULTI;
1412 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1413 1.1 sevan if (ifp->if_flags & IFF_PROMISC)
1414 1.1 sevan rxfilt |= RGE_RXCFG_ALLPHYS;
1415 1.1 sevan hashes[0] = hashes[1] = 0xffffffff;
1416 1.1 sevan } else {
1417 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1418 1.1 sevan /* Program new filter. */
1419 1.1 sevan memset(hashes, 0, sizeof(hashes));
1420 1.1 sevan
1421 1.1 sevan ETHER_FIRST_MULTI(step, ac, enm);
1422 1.1 sevan while (enm != NULL) {
1423 1.1 sevan h = ether_crc32_be(enm->enm_addrlo,
1424 1.1 sevan ETHER_ADDR_LEN) >> 26;
1425 1.1 sevan
1426 1.1 sevan if (h < 32)
1427 1.1 sevan hashes[0] |= (1 << h);
1428 1.1 sevan else
1429 1.1 sevan hashes[1] |= (1 << (h - 32));
1430 1.1 sevan
1431 1.1 sevan ETHER_NEXT_MULTI(step, enm);
1432 1.1 sevan }
1433 1.1 sevan }
1434 1.1 sevan
1435 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
1436 1.2 sevan RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
1437 1.2 sevan RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
1438 1.1 sevan }
1439 1.1 sevan
1440 1.1 sevan void
1441 1.1 sevan rge_set_phy_power(struct rge_softc *sc, int on)
1442 1.1 sevan {
1443 1.1 sevan int i;
1444 1.1 sevan
1445 1.1 sevan if (on) {
1446 1.1 sevan RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
1447 1.1 sevan
1448 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
1449 1.1 sevan
1450 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1451 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
1452 1.1 sevan break;
1453 1.1 sevan DELAY(1000);
1454 1.1 sevan }
1455 1.1 sevan } else
1456 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
1457 1.1 sevan }
1458 1.1 sevan
1459 1.1 sevan void
1460 1.1 sevan rge_phy_config(struct rge_softc *sc)
1461 1.1 sevan {
1462 1.1 sevan uint16_t mcode_ver, val;
1463 1.1 sevan int i;
1464 1.1 sevan static const uint16_t mac_cfg3_a438_value[] =
1465 1.1 sevan { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
1466 1.1 sevan 0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
1467 1.1 sevan
1468 1.1 sevan static const uint16_t mac_cfg3_b88e_value[] =
1469 1.5 skrll { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
1470 1.1 sevan 0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
1471 1.1 sevan 0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
1472 1.1 sevan 0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
1473 1.1 sevan 0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
1474 1.1 sevan 0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
1475 1.1 sevan
1476 1.1 sevan /* Read microcode version. */
1477 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1478 1.1 sevan mcode_ver = rge_read_phy_ocp(sc, 0xa438);
1479 1.1 sevan
1480 1.1 sevan if (sc->rge_type == MAC_CFG2) {
1481 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
1482 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
1483 1.1 sevan rtl8125_mac_cfg2_ephy[i].val);
1484 1.1 sevan }
1485 1.1 sevan
1486 1.1 sevan if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
1487 1.1 sevan /* Disable PHY config. */
1488 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1489 1.1 sevan DELAY(1000);
1490 1.1 sevan
1491 1.1 sevan rge_patch_phy_mcu(sc, 1);
1492 1.1 sevan
1493 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1494 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8600);
1495 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1496 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1497 1.1 sevan
1498 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1499 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
1500 1.1 sevan rge_write_phy_ocp(sc,
1501 1.1 sevan rtl8125_mac_cfg2_mcu[i].reg,
1502 1.1 sevan rtl8125_mac_cfg2_mcu[i].val);
1503 1.1 sevan }
1504 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1505 1.1 sevan
1506 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1507 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1508 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1509 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1510 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1511 1.1 sevan
1512 1.1 sevan rge_patch_phy_mcu(sc, 0);
1513 1.1 sevan
1514 1.1 sevan /* Enable PHY config. */
1515 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1516 1.1 sevan
1517 1.1 sevan /* Write microcode version. */
1518 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1519 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
1520 1.1 sevan }
1521 1.5 skrll
1522 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
1523 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
1524 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1525 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1526 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
1527 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
1528 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1529 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
1530 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
1531 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
1532 1.1 sevan RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
1533 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
1534 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
1535 1.1 sevan
1536 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1537 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1538 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
1539 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80eb);
1540 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
1541 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
1542 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f8);
1543 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1544 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
1545 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f1);
1546 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1547 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
1548 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80fe);
1549 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1550 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
1551 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8102);
1552 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1553 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1554 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8105);
1555 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1556 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
1557 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8100);
1558 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1559 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
1560 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8104);
1561 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1562 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
1563 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8106);
1564 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1565 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
1566 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80dc);
1567 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1568 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
1569 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80df);
1570 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1571 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80e1);
1572 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
1573 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
1574 1.1 sevan rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
1575 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x819f);
1576 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
1577 1.1 sevan rge_write_phy_ocp(sc, 0xbc34, 0x5555);
1578 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
1579 1.1 sevan rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
1580 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
1581 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1582 1.1 sevan } else {
1583 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
1584 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
1585 1.1 sevan rtl8125_mac_cfg3_ephy[i].val);
1586 1.1 sevan
1587 1.1 sevan if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
1588 1.1 sevan /* Disable PHY config. */
1589 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1590 1.1 sevan DELAY(1000);
1591 1.1 sevan
1592 1.1 sevan rge_patch_phy_mcu(sc, 1);
1593 1.1 sevan
1594 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1595 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8601);
1596 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1597 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1598 1.1 sevan
1599 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1600 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
1601 1.1 sevan rge_write_phy_ocp(sc,
1602 1.1 sevan rtl8125_mac_cfg3_mcu[i].reg,
1603 1.1 sevan rtl8125_mac_cfg3_mcu[i].val);
1604 1.1 sevan }
1605 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1606 1.1 sevan
1607 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1608 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1609 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1610 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1611 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1612 1.1 sevan
1613 1.1 sevan rge_patch_phy_mcu(sc, 0);
1614 1.1 sevan
1615 1.1 sevan /* Enable PHY config. */
1616 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1617 1.1 sevan
1618 1.1 sevan /* Write microcode version. */
1619 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1620 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
1621 1.1 sevan }
1622 1.1 sevan
1623 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1624 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1625 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
1626 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
1627 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1628 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
1629 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
1630 1.1 sevan val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
1631 1.1 sevan rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
1632 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
1633 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
1634 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
1635 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
1636 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
1637 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
1638 1.1 sevan val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
1639 1.1 sevan rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
1640 1.1 sevan rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
1641 1.1 sevan rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
1642 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
1643 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
1644 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
1645 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1646 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x809c);
1647 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1648 1.1 sevan
1649 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81b3);
1650 1.1 sevan for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
1651 1.1 sevan rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
1652 1.1 sevan for (i = 0; i < 26; i++)
1653 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1654 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8257);
1655 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x020f);
1656 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1657 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x7843);
1658 1.1 sevan
1659 1.1 sevan rge_patch_phy_mcu(sc, 1);
1660 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
1661 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
1662 1.1 sevan for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
1663 1.1 sevan rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
1664 1.1 sevan rge_write_phy_ocp(sc, 0xb890,
1665 1.1 sevan mac_cfg3_b88e_value[i + 1]);
1666 1.1 sevan }
1667 1.1 sevan RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
1668 1.1 sevan rge_patch_phy_mcu(sc, 0);
1669 1.1 sevan
1670 1.1 sevan RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
1671 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81a2);
1672 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1673 1.1 sevan val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
1674 1.1 sevan rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
1675 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
1676 1.1 sevan RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
1677 1.1 sevan RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
1678 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
1679 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1680 1.1 sevan }
1681 1.1 sevan
1682 1.1 sevan /* Disable EEE. */
1683 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
1684 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
1685 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
1686 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
1687 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
1688 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
1689 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
1690 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
1691 1.1 sevan
1692 1.1 sevan rge_patch_phy_mcu(sc, 1);
1693 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
1694 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
1695 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
1696 1.1 sevan rge_patch_phy_mcu(sc, 0);
1697 1.1 sevan }
1698 1.1 sevan
1699 1.1 sevan void
1700 1.1 sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
1701 1.1 sevan {
1702 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1703 1.1 sevan RGE_WRITE_4(sc, RGE_MAC0,
1704 1.1 sevan addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1705 1.1 sevan RGE_WRITE_4(sc, RGE_MAC4,
1706 1.1 sevan addr[5] << 8 | addr[4]);
1707 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1708 1.1 sevan }
1709 1.1 sevan
1710 1.1 sevan void
1711 1.1 sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
1712 1.1 sevan {
1713 1.1 sevan *(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
1714 1.1 sevan *(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
1715 1.1 sevan }
1716 1.1 sevan
1717 1.1 sevan void
1718 1.1 sevan rge_hw_init(struct rge_softc *sc)
1719 1.1 sevan {
1720 1.1 sevan int i;
1721 1.1 sevan
1722 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1723 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
1724 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
1725 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1726 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
1727 1.1 sevan
1728 1.1 sevan /* Disable UPS. */
1729 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
1730 1.1 sevan
1731 1.1 sevan /* Configure MAC MCU. */
1732 1.1 sevan rge_write_mac_ocp(sc, 0xfc38, 0);
1733 1.1 sevan
1734 1.1 sevan for (i = 0xfc28; i < 0xfc38; i += 2)
1735 1.1 sevan rge_write_mac_ocp(sc, i, 0);
1736 1.1 sevan
1737 1.1 sevan DELAY(3000);
1738 1.1 sevan rge_write_mac_ocp(sc, 0xfc26, 0);
1739 1.1 sevan
1740 1.1 sevan if (sc->rge_type == MAC_CFG3) {
1741 1.1 sevan for (i = 0; i < nitems(rtl8125_def_bps); i++)
1742 1.1 sevan rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
1743 1.1 sevan rtl8125_def_bps[i].val);
1744 1.1 sevan }
1745 1.1 sevan
1746 1.1 sevan /* Disable PHY power saving. */
1747 1.1 sevan rge_disable_phy_ocp_pwrsave(sc);
1748 1.1 sevan
1749 1.1 sevan /* Set PCIe uncorrectable error status. */
1750 1.1 sevan rge_write_csi(sc, 0x108,
1751 1.1 sevan rge_read_csi(sc, 0x108) | 0x00100000);
1752 1.1 sevan }
1753 1.1 sevan
1754 1.1 sevan void
1755 1.1 sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
1756 1.1 sevan {
1757 1.1 sevan if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
1758 1.1 sevan rge_patch_phy_mcu(sc, 1);
1759 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0);
1760 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0x0500);
1761 1.1 sevan rge_patch_phy_mcu(sc, 0);
1762 1.1 sevan }
1763 1.1 sevan }
1764 1.1 sevan
1765 1.1 sevan void
1766 1.1 sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
1767 1.1 sevan {
1768 1.1 sevan uint16_t val;
1769 1.1 sevan int i;
1770 1.1 sevan
1771 1.1 sevan if (set)
1772 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
1773 1.1 sevan else
1774 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
1775 1.1 sevan
1776 1.1 sevan for (i = 0; i < 1000; i++) {
1777 1.1 sevan val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
1778 1.1 sevan DELAY(100);
1779 1.1 sevan if (val == 0x0040)
1780 1.1 sevan break;
1781 1.1 sevan }
1782 1.1 sevan if (i == 1000)
1783 1.1 sevan printf("%s: timeout waiting to patch phy mcu\n",
1784 1.1 sevan sc->sc_dev.dv_xname);
1785 1.1 sevan }
1786 1.1 sevan
1787 1.1 sevan void
1788 1.1 sevan rge_add_media_types(struct rge_softc *sc)
1789 1.1 sevan {
1790 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
1791 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1792 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
1793 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1794 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
1795 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1796 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
1797 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1798 1.1 sevan }
1799 1.1 sevan
1800 1.1 sevan void
1801 1.1 sevan rge_config_imtype(struct rge_softc *sc, int imtype)
1802 1.1 sevan {
1803 1.1 sevan switch (imtype) {
1804 1.1 sevan case RGE_IMTYPE_NONE:
1805 1.1 sevan sc->rge_intrs = RGE_INTRS;
1806 1.1 sevan sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
1807 1.1 sevan RGE_ISR_RX_FIFO_OFLOW;
1808 1.1 sevan sc->rge_tx_ack = RGE_ISR_TX_OK;
1809 1.1 sevan break;
1810 1.1 sevan case RGE_IMTYPE_SIM:
1811 1.1 sevan sc->rge_intrs = RGE_INTRS_TIMER;
1812 1.1 sevan sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
1813 1.1 sevan sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
1814 1.1 sevan break;
1815 1.1 sevan default:
1816 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1817 1.1 sevan }
1818 1.1 sevan }
1819 1.1 sevan
1820 1.1 sevan void
1821 1.1 sevan rge_disable_sim_im(struct rge_softc *sc)
1822 1.1 sevan {
1823 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0);
1824 1.1 sevan sc->rge_timerintr = 0;
1825 1.1 sevan }
1826 1.1 sevan
1827 1.1 sevan void
1828 1.1 sevan rge_setup_sim_im(struct rge_softc *sc)
1829 1.1 sevan {
1830 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
1831 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
1832 1.1 sevan sc->rge_timerintr = 1;
1833 1.1 sevan }
1834 1.1 sevan
1835 1.1 sevan void
1836 1.1 sevan rge_setup_intr(struct rge_softc *sc, int imtype)
1837 1.1 sevan {
1838 1.1 sevan rge_config_imtype(sc, imtype);
1839 1.1 sevan
1840 1.1 sevan /* Enable interrupts. */
1841 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
1842 1.1 sevan
1843 1.1 sevan switch (imtype) {
1844 1.1 sevan case RGE_IMTYPE_NONE:
1845 1.1 sevan rge_disable_sim_im(sc);
1846 1.1 sevan break;
1847 1.1 sevan case RGE_IMTYPE_SIM:
1848 1.1 sevan rge_setup_sim_im(sc);
1849 1.1 sevan break;
1850 1.1 sevan default:
1851 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1852 1.1 sevan }
1853 1.1 sevan }
1854 1.1 sevan
1855 1.1 sevan void
1856 1.1 sevan rge_exit_oob(struct rge_softc *sc)
1857 1.1 sevan {
1858 1.1 sevan int i;
1859 1.1 sevan
1860 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
1861 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
1862 1.1 sevan RGE_RXCFG_ERRPKT);
1863 1.1 sevan
1864 1.1 sevan /* Disable RealWoW. */
1865 1.1 sevan rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
1866 1.1 sevan
1867 1.1 sevan rge_reset(sc);
1868 1.1 sevan
1869 1.1 sevan /* Disable OOB. */
1870 1.1 sevan RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
1871 1.1 sevan
1872 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
1873 1.1 sevan
1874 1.1 sevan for (i = 0; i < 10; i++) {
1875 1.1 sevan DELAY(100);
1876 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1877 1.1 sevan break;
1878 1.1 sevan }
1879 1.1 sevan
1880 1.1 sevan rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
1881 1.1 sevan rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
1882 1.1 sevan rge_write_mac_ocp(sc, 0xc01e, 0x5555);
1883 1.1 sevan
1884 1.1 sevan for (i = 0; i < 10; i++) {
1885 1.1 sevan DELAY(100);
1886 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1887 1.1 sevan break;
1888 1.1 sevan }
1889 1.1 sevan
1890 1.1 sevan if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
1891 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1892 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
1893 1.1 sevan break;
1894 1.1 sevan DELAY(1000);
1895 1.1 sevan }
1896 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
1897 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
1898 1.1 sevan }
1899 1.1 sevan }
1900 1.1 sevan
1901 1.1 sevan void
1902 1.1 sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
1903 1.1 sevan {
1904 1.1 sevan int i;
1905 1.1 sevan
1906 1.1 sevan RGE_WRITE_4(sc, RGE_CSIDR, val);
1907 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1908 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
1909 1.1 sevan
1910 1.1 sevan for (i = 0; i < 10; i++) {
1911 1.1 sevan DELAY(100);
1912 1.1 sevan if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
1913 1.1 sevan break;
1914 1.1 sevan }
1915 1.1 sevan
1916 1.1 sevan DELAY(20);
1917 1.1 sevan }
1918 1.1 sevan
1919 1.1 sevan uint32_t
1920 1.1 sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
1921 1.1 sevan {
1922 1.1 sevan int i;
1923 1.1 sevan
1924 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1925 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
1926 1.1 sevan
1927 1.1 sevan for (i = 0; i < 10; i++) {
1928 1.1 sevan DELAY(100);
1929 1.1 sevan if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
1930 1.1 sevan break;
1931 1.1 sevan }
1932 1.1 sevan
1933 1.1 sevan DELAY(20);
1934 1.1 sevan
1935 1.1 sevan return (RGE_READ_4(sc, RGE_CSIDR));
1936 1.1 sevan }
1937 1.1 sevan
1938 1.1 sevan void
1939 1.1 sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1940 1.1 sevan {
1941 1.1 sevan uint32_t tmp;
1942 1.1 sevan
1943 1.1 sevan tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1944 1.1 sevan tmp += val;
1945 1.1 sevan tmp |= RGE_MACOCP_BUSY;
1946 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, tmp);
1947 1.1 sevan }
1948 1.1 sevan
1949 1.1 sevan uint16_t
1950 1.1 sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
1951 1.1 sevan {
1952 1.1 sevan uint32_t val;
1953 1.1 sevan
1954 1.1 sevan val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1955 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, val);
1956 1.1 sevan
1957 1.1 sevan return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
1958 1.1 sevan }
1959 1.1 sevan
1960 1.1 sevan void
1961 1.1 sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
1962 1.1 sevan {
1963 1.1 sevan uint32_t tmp;
1964 1.1 sevan int i;
1965 1.1 sevan
1966 1.1 sevan tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
1967 1.1 sevan tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
1968 1.1 sevan RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
1969 1.1 sevan
1970 1.1 sevan for (i = 0; i < 10; i++) {
1971 1.1 sevan DELAY(100);
1972 1.1 sevan if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
1973 1.1 sevan break;
1974 1.1 sevan }
1975 1.1 sevan
1976 1.1 sevan DELAY(20);
1977 1.1 sevan }
1978 1.1 sevan
1979 1.1 sevan void
1980 1.1 sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
1981 1.1 sevan {
1982 1.1 sevan uint16_t off, phyaddr;
1983 1.1 sevan
1984 1.1 sevan phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
1985 1.1 sevan phyaddr <<= 4;
1986 1.1 sevan
1987 1.1 sevan off = addr ? reg : 0x10 + (reg % 8);
1988 1.1 sevan
1989 1.1 sevan phyaddr += (off - 16) << 1;
1990 1.1 sevan
1991 1.1 sevan rge_write_phy_ocp(sc, phyaddr, val);
1992 1.1 sevan }
1993 1.1 sevan
1994 1.1 sevan void
1995 1.1 sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1996 1.1 sevan {
1997 1.1 sevan uint32_t tmp;
1998 1.1 sevan int i;
1999 1.1 sevan
2000 1.1 sevan tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2001 1.1 sevan tmp |= RGE_PHYOCP_BUSY | val;
2002 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
2003 1.1 sevan
2004 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2005 1.1 sevan DELAY(1);
2006 1.1 sevan if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
2007 1.1 sevan break;
2008 1.1 sevan }
2009 1.1 sevan }
2010 1.1 sevan
2011 1.1 sevan uint16_t
2012 1.1 sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
2013 1.1 sevan {
2014 1.1 sevan uint32_t val;
2015 1.1 sevan int i;
2016 1.1 sevan
2017 1.1 sevan val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2018 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, val);
2019 1.1 sevan
2020 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2021 1.1 sevan DELAY(1);
2022 1.1 sevan val = RGE_READ_4(sc, RGE_PHYOCP);
2023 1.1 sevan if (val & RGE_PHYOCP_BUSY)
2024 1.1 sevan break;
2025 1.1 sevan }
2026 1.1 sevan
2027 1.1 sevan return (val & RGE_PHYOCP_DATA_MASK);
2028 1.1 sevan }
2029 1.1 sevan
2030 1.1 sevan int
2031 1.1 sevan rge_get_link_status(struct rge_softc *sc)
2032 1.1 sevan {
2033 1.1 sevan return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
2034 1.1 sevan }
2035 1.1 sevan
2036 1.1 sevan void
2037 1.3 sevan rge_txstart(struct work *wk, void *arg)
2038 1.1 sevan {
2039 1.1 sevan struct rge_softc *sc = arg;
2040 1.1 sevan
2041 1.1 sevan RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
2042 1.1 sevan }
2043 1.1 sevan
2044 1.1 sevan void
2045 1.1 sevan rge_tick(void *arg)
2046 1.1 sevan {
2047 1.1 sevan struct rge_softc *sc = arg;
2048 1.1 sevan int s;
2049 1.1 sevan
2050 1.1 sevan s = splnet();
2051 1.1 sevan rge_link_state(sc);
2052 1.1 sevan splx(s);
2053 1.1 sevan
2054 1.1 sevan timeout_add_sec(&sc->sc_timeout, 1);
2055 1.1 sevan }
2056 1.1 sevan
2057 1.1 sevan void
2058 1.1 sevan rge_link_state(struct rge_softc *sc)
2059 1.1 sevan {
2060 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
2061 1.1 sevan int link = LINK_STATE_DOWN;
2062 1.1 sevan
2063 1.1 sevan if (rge_get_link_status(sc))
2064 1.1 sevan link = LINK_STATE_UP;
2065 1.1 sevan
2066 1.1 sevan if (ifp->if_link_state != link) {
2067 1.1 sevan ifp->if_link_state = link;
2068 1.2 sevan if_link_state_change(ifp, LINK_STATE_DOWN);
2069 1.1 sevan }
2070 1.1 sevan }
2071