Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.11
      1  1.11    sevan /*	$NetBSD: if_rge.c,v 1.11 2020/05/20 20:18:37 sevan Exp $	*/
      2  1.11    sevan /*	$OpenBSD: if_rge.c,v 1.3 2020/03/27 15:15:24 krw Exp $	*/
      3   1.1    sevan 
      4   1.1    sevan /*
      5   1.1    sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6   1.1    sevan  *
      7   1.1    sevan  * Permission to use, copy, modify, and distribute this software for any
      8   1.1    sevan  * purpose with or without fee is hereby granted, provided that the above
      9   1.1    sevan  * copyright notice and this permission notice appear in all copies.
     10   1.1    sevan  *
     11   1.1    sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1    sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1    sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1    sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1    sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1    sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1    sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1    sevan  */
     19   1.1    sevan 
     20   1.2    sevan #include <sys/cdefs.h>
     21  1.11    sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.11 2020/05/20 20:18:37 sevan Exp $");
     22   1.2    sevan 
     23   1.2    sevan /* #include "vlan.h" Sevan */
     24   1.2    sevan 
     25   1.2    sevan #include <sys/types.h>
     26   1.1    sevan 
     27   1.1    sevan #include <sys/param.h>
     28   1.1    sevan #include <sys/systm.h>
     29   1.1    sevan #include <sys/sockio.h>
     30   1.1    sevan #include <sys/mbuf.h>
     31   1.1    sevan #include <sys/malloc.h>
     32   1.1    sevan #include <sys/kernel.h>
     33   1.1    sevan #include <sys/socket.h>
     34   1.1    sevan #include <sys/device.h>
     35   1.1    sevan #include <sys/endian.h>
     36   1.3    sevan #include <sys/callout.h>
     37   1.3    sevan #include <sys/workqueue.h>
     38   1.1    sevan 
     39   1.1    sevan #include <net/if.h>
     40   1.2    sevan 
     41   1.2    sevan #include <net/if_dl.h>
     42   1.2    sevan #include <net/if_ether.h>
     43   1.2    sevan 
     44   1.1    sevan #include <net/if_media.h>
     45   1.1    sevan 
     46   1.1    sevan #include <netinet/in.h>
     47   1.2    sevan #include <net/if_ether.h>
     48   1.1    sevan 
     49   1.1    sevan #if NBPFILTER > 0
     50   1.1    sevan #include <net/bpf.h>
     51   1.1    sevan #endif
     52   1.1    sevan 
     53   1.2    sevan #include <sys/bus.h>
     54   1.1    sevan #include <machine/intr.h>
     55   1.1    sevan 
     56   1.1    sevan #include <dev/mii/mii.h>
     57   1.1    sevan 
     58   1.1    sevan #include <dev/pci/pcivar.h>
     59   1.1    sevan #include <dev/pci/pcireg.h>
     60   1.1    sevan #include <dev/pci/pcidevs.h>
     61   1.1    sevan 
     62   1.1    sevan #include <dev/pci/if_rgereg.h>
     63   1.1    sevan 
     64   1.2    sevan #ifdef __NetBSD__
     65   1.2    sevan #define letoh32 	htole32
     66   1.2    sevan #define nitems(x) 	__arraycount(x)
     67   1.2    sevan #define MBUF_LIST_INITIALIZER() 	{ NULL, NULL, 0 }
     68   1.2    sevan struct mbuf_list {
     69   1.2    sevan 	struct mbuf 	*ml_head;
     70   1.2    sevan 	struct mbuf 	*ml_tail;
     71   1.2    sevan 	u_int 	ml_len;
     72   1.2    sevan };
     73   1.7    sevan 
     74   1.7    sevan static struct mbuf *
     75   1.7    sevan MCLGETI(struct rge_softc *sc __unused, int how,
     76   1.7    sevan     struct ifnet *ifp __unused, u_int size)
     77   1.7    sevan {
     78   1.7    sevan 	struct mbuf *m;
     79   1.7    sevan 
     80   1.7    sevan 	MGETHDR(m, how, MT_DATA);
     81   1.7    sevan 	if (m == NULL)
     82   1.7    sevan 		return NULL;
     83   1.7    sevan 
     84   1.7    sevan 	MEXTMALLOC(m, size, how);
     85   1.7    sevan 	if ((m->m_flags & M_EXT) == 0) {
     86   1.7    sevan 		m_freem(m);
     87   1.7    sevan 		return NULL;
     88   1.7    sevan 	}
     89   1.7    sevan 	return m;
     90   1.7    sevan }
     91   1.7    sevan 
     92   1.3    sevan #ifdef NET_MPSAFE
     93   1.3    sevan #define 	RGE_MPSAFE	1
     94   1.3    sevan #define 	CALLOUT_FLAGS	CALLOUT_MPSAFE
     95   1.3    sevan #else
     96   1.3    sevan #define 	CALLOUT_FLAGS	0
     97   1.3    sevan #endif
     98   1.2    sevan #endif
     99   1.2    sevan 
    100   1.2    sevan static int		rge_match(device_t, cfdata_t, void *);
    101   1.5    skrll static void		rge_attach(device_t, device_t, void *);
    102   1.1    sevan int		rge_intr(void *);
    103   1.1    sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
    104   1.2    sevan int		rge_ioctl(struct ifnet *, u_long, void *);
    105   1.2    sevan void		rge_start(struct ifnet *);
    106   1.1    sevan void		rge_watchdog(struct ifnet *);
    107   1.1    sevan int		rge_init(struct ifnet *);
    108   1.1    sevan void		rge_stop(struct ifnet *);
    109   1.1    sevan int		rge_ifmedia_upd(struct ifnet *);
    110   1.1    sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    111   1.1    sevan int		rge_allocmem(struct rge_softc *);
    112   1.1    sevan int		rge_newbuf(struct rge_softc *, int);
    113   1.1    sevan void		rge_discard_rxbuf(struct rge_softc *, int);
    114   1.1    sevan int		rge_rx_list_init(struct rge_softc *);
    115   1.1    sevan void		rge_tx_list_init(struct rge_softc *);
    116   1.1    sevan int		rge_rxeof(struct rge_softc *);
    117   1.1    sevan int		rge_txeof(struct rge_softc *);
    118   1.1    sevan void		rge_reset(struct rge_softc *);
    119   1.1    sevan void		rge_iff(struct rge_softc *);
    120   1.1    sevan void		rge_set_phy_power(struct rge_softc *, int);
    121   1.1    sevan void		rge_phy_config(struct rge_softc *);
    122   1.1    sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
    123   1.1    sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
    124   1.1    sevan void		rge_hw_init(struct rge_softc *);
    125   1.1    sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    126   1.1    sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    127   1.1    sevan void		rge_add_media_types(struct rge_softc *);
    128   1.1    sevan void		rge_config_imtype(struct rge_softc *, int);
    129   1.1    sevan void		rge_disable_sim_im(struct rge_softc *);
    130   1.1    sevan void		rge_setup_sim_im(struct rge_softc *);
    131   1.1    sevan void		rge_setup_intr(struct rge_softc *, int);
    132   1.1    sevan void		rge_exit_oob(struct rge_softc *);
    133   1.1    sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    134   1.1    sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    135   1.1    sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    136   1.1    sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    137   1.1    sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    138   1.1    sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    139   1.1    sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    140   1.1    sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    141   1.1    sevan int		rge_get_link_status(struct rge_softc *);
    142   1.3    sevan void		rge_txstart(struct work *, void *);
    143   1.1    sevan void		rge_tick(void *);
    144   1.1    sevan void		rge_link_state(struct rge_softc *);
    145   1.1    sevan 
    146   1.1    sevan static const struct {
    147   1.1    sevan 	uint16_t reg;
    148   1.1    sevan 	uint16_t val;
    149   1.1    sevan }  rtl8125_def_bps[] = {
    150   1.1    sevan 	RTL8125_DEF_BPS
    151   1.1    sevan }, rtl8125_mac_cfg2_ephy[] = {
    152   1.1    sevan 	RTL8125_MAC_CFG2_EPHY
    153   1.1    sevan }, rtl8125_mac_cfg2_mcu[] = {
    154   1.1    sevan 	RTL8125_MAC_CFG2_MCU
    155   1.1    sevan }, rtl8125_mac_cfg3_ephy[] = {
    156   1.1    sevan 	RTL8125_MAC_CFG3_EPHY
    157   1.1    sevan }, rtl8125_mac_cfg3_mcu[] = {
    158   1.1    sevan 	RTL8125_MAC_CFG3_MCU
    159   1.1    sevan };
    160   1.1    sevan 
    161   1.2    sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    162   1.2    sevan 		NULL, NULL); /* Sevan - detach function? */
    163   1.1    sevan 
    164   1.2    sevan extern struct cfdriver rge_cd;
    165   1.1    sevan 
    166   1.2    sevan static const struct {
    167   1.2    sevan 	pci_vendor_id_t 	vendor;
    168   1.2    sevan 	pci_product_id_t 	product;
    169   1.2    sevan }rge_devices[] = {
    170   1.1    sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    171   1.2    sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    172   1.1    sevan };
    173   1.1    sevan 
    174   1.2    sevan static int
    175   1.2    sevan rge_match(device_t parent, cfdata_t match, void *aux)
    176   1.1    sevan {
    177   1.2    sevan 	struct pci_attach_args *pa =aux;
    178   1.2    sevan 	int n;
    179   1.2    sevan 
    180   1.2    sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    181   1.2    sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    182   1.2    sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    183   1.2    sevan 			return 1;
    184   1.2    sevan 	}
    185   1.2    sevan 
    186   1.2    sevan 	return 0;
    187   1.1    sevan }
    188   1.1    sevan 
    189   1.1    sevan void
    190   1.2    sevan rge_attach(device_t parent, device_t self, void *aux)
    191   1.1    sevan {
    192  1.11    sevan 	struct rge_softc *sc = device_private(self);
    193   1.1    sevan 	struct pci_attach_args *pa = aux;
    194   1.1    sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    195   1.1    sevan 	pci_intr_handle_t ih;
    196   1.2    sevan 	char intrbuf[PCI_INTRSTR_LEN];
    197   1.1    sevan 	const char *intrstr = NULL;
    198   1.1    sevan 	struct ifnet *ifp;
    199   1.1    sevan 	pcireg_t reg;
    200   1.1    sevan 	uint32_t hwrev;
    201   1.1    sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    202   1.1    sevan 	int offset;
    203   1.1    sevan 
    204   1.1    sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    205   1.1    sevan 
    206   1.5    skrll 	/*
    207   1.1    sevan 	 * Map control/status registers.
    208   1.1    sevan 	 */
    209   1.1    sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    210   1.1    sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    211   1.2    sevan 	    NULL, &sc->rge_bsize)) {
    212   1.1    sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    213   1.1    sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    214   1.2    sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    215   1.1    sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    216   1.1    sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    217   1.2    sevan 			    &sc->rge_bsize)) {
    218   1.1    sevan 				printf(": can't map mem or i/o space\n");
    219   1.1    sevan 				return;
    220   1.1    sevan 			}
    221   1.1    sevan 		}
    222   1.1    sevan 	}
    223   1.1    sevan 
    224   1.5    skrll 	/*
    225   1.1    sevan 	 * Allocate interrupt.
    226   1.1    sevan 	 */
    227   1.2    sevan 	if (pci_intr_map(pa, &ih) == 0)
    228   1.1    sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    229   1.1    sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    230   1.1    sevan 		printf(": couldn't map interrupt\n");
    231   1.1    sevan 		return;
    232   1.1    sevan 	}
    233   1.2    sevan 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    234   1.2    sevan 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
    235   1.1    sevan 	    sc, sc->sc_dev.dv_xname);
    236   1.1    sevan 	if (sc->sc_ih == NULL) {
    237   1.1    sevan 		printf(": couldn't establish interrupt");
    238   1.1    sevan 		if (intrstr != NULL)
    239   1.1    sevan 			printf(" at %s", intrstr);
    240   1.1    sevan 		printf("\n");
    241   1.1    sevan 		return;
    242   1.1    sevan 	}
    243   1.1    sevan 	printf(": %s", intrstr);
    244   1.1    sevan 
    245   1.9  thorpej 	if (pci_dma64_available(pa))
    246   1.9  thorpej 		sc->sc_dmat = pa->pa_dmat64;
    247   1.9  thorpej 	else
    248   1.9  thorpej 		sc->sc_dmat = pa->pa_dmat;
    249   1.9  thorpej 
    250   1.1    sevan 	sc->sc_pc = pa->pa_pc;
    251   1.1    sevan 	sc->sc_tag = pa->pa_tag;
    252   1.1    sevan 
    253   1.1    sevan 	/* Determine hardware revision */
    254   1.1    sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    255   1.1    sevan 	switch (hwrev) {
    256   1.1    sevan 	case 0x60800000:
    257   1.1    sevan 		sc->rge_type = MAC_CFG2;
    258   1.1    sevan 		break;
    259   1.1    sevan 	case 0x60900000:
    260   1.1    sevan 		sc->rge_type = MAC_CFG3;
    261   1.1    sevan 		break;
    262   1.1    sevan 	default:
    263   1.1    sevan 		printf(": unknown version 0x%08x\n", hwrev);
    264   1.1    sevan 		return;
    265   1.1    sevan 	}
    266   1.1    sevan 
    267   1.1    sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    268   1.1    sevan 
    269   1.5    skrll 	/*
    270   1.1    sevan 	 * PCI Express check.
    271   1.1    sevan 	 */
    272   1.1    sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    273   1.1    sevan 	    &offset, NULL)) {
    274   1.2    sevan 		/* Disable PCIe ASPM. */
    275   1.1    sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    276   1.2    sevan 		    offset + PCIE_LCSR);
    277   1.2    sevan 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
    278   1.2    sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    279   1.1    sevan 		    reg);
    280   1.1    sevan 	}
    281   1.1    sevan 
    282   1.1    sevan 	rge_exit_oob(sc);
    283   1.1    sevan 	rge_hw_init(sc);
    284   1.1    sevan 
    285   1.1    sevan 	rge_get_macaddr(sc, eaddr);
    286   1.1    sevan 	printf(", address %s\n", ether_sprintf(eaddr));
    287   1.1    sevan 
    288   1.2    sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    289   1.1    sevan 
    290   1.1    sevan 	rge_set_phy_power(sc, 1);
    291   1.1    sevan 	rge_phy_config(sc);
    292   1.1    sevan 
    293   1.1    sevan 	if (rge_allocmem(sc))
    294   1.1    sevan 		return;
    295   1.1    sevan 
    296   1.2    sevan 	ifp = &sc->sc_ec.ec_if;
    297   1.1    sevan 	ifp->if_softc = sc;
    298   1.1    sevan 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    299   1.1    sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    300   1.2    sevan #ifdef RGE_MPSAFE
    301   1.2    sevan 	ifp->if_xflags = IFEF_MPSAFE;
    302   1.2    sevan #endif
    303   1.1    sevan 	ifp->if_ioctl = rge_ioctl;
    304   1.2    sevan 	ifp->if_start = rge_start;
    305   1.1    sevan 	ifp->if_watchdog = rge_watchdog;
    306   1.1    sevan 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
    307   1.2    sevan 	ifp->if_mtu = RGE_JUMBO_MTU;
    308   1.1    sevan 
    309   1.2    sevan 	ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
    310   1.2    sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    311   1.2    sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    312   1.1    sevan 
    313   1.1    sevan #if NVLAN > 0
    314   1.1    sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    315   1.1    sevan #endif
    316   1.1    sevan 
    317   1.3    sevan 	callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
    318   1.3    sevan 	callout_setfunc(&sc->sc_timeout, rge_tick, sc);
    319   1.3    sevan 	rge_txstart(&sc->sc_task, sc);
    320   1.1    sevan 
    321   1.1    sevan 	/* Initialize ifmedia structures. */
    322   1.1    sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    323   1.1    sevan 	    rge_ifmedia_sts);
    324   1.1    sevan 	rge_add_media_types(sc);
    325   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    326   1.1    sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    327   1.1    sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    328   1.1    sevan 
    329   1.1    sevan 	if_attach(ifp);
    330   1.2    sevan 	ether_ifattach(ifp, eaddr);
    331   1.1    sevan }
    332   1.1    sevan 
    333   1.1    sevan int
    334   1.1    sevan rge_intr(void *arg)
    335   1.1    sevan {
    336   1.1    sevan 	struct rge_softc *sc = arg;
    337   1.2    sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    338   1.1    sevan 	uint32_t status;
    339   1.1    sevan 	int claimed = 0, rx, tx;
    340   1.1    sevan 
    341   1.1    sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    342   1.1    sevan 		return (0);
    343   1.1    sevan 
    344   1.1    sevan 	/* Disable interrupts. */
    345   1.1    sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    346   1.1    sevan 
    347   1.1    sevan 	status = RGE_READ_4(sc, RGE_ISR);
    348   1.1    sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    349   1.1    sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    350   1.1    sevan 			return (0);
    351   1.1    sevan 	}
    352   1.1    sevan 	if (status)
    353   1.1    sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    354   1.1    sevan 
    355   1.1    sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    356   1.1    sevan 		claimed = 1;
    357   1.1    sevan 
    358   1.1    sevan 	rx = tx = 0;
    359   1.1    sevan 	if (status & RGE_INTRS) {
    360   1.1    sevan 		if (status &
    361   1.1    sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    362   1.1    sevan 			rx |= rge_rxeof(sc);
    363   1.1    sevan 			claimed = 1;
    364   1.1    sevan 		}
    365   1.1    sevan 
    366   1.1    sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    367   1.1    sevan 			tx |= rge_txeof(sc);
    368   1.1    sevan 			claimed = 1;
    369   1.1    sevan 		}
    370   1.1    sevan 
    371   1.1    sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    372   1.2    sevan 			KERNEL_LOCK(1, NULL);
    373   1.1    sevan 			rge_init(ifp);
    374   1.2    sevan 			KERNEL_UNLOCK_ONE(NULL);
    375   1.1    sevan 			claimed = 1;
    376   1.1    sevan 		}
    377   1.1    sevan 	}
    378   1.1    sevan 
    379   1.1    sevan 	if (sc->rge_timerintr) {
    380   1.1    sevan 		if ((tx | rx) == 0) {
    381   1.1    sevan 			/*
    382   1.1    sevan 			 * Nothing needs to be processed, fallback
    383   1.1    sevan 			 * to use TX/RX interrupts.
    384   1.1    sevan 			 */
    385   1.1    sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    386   1.1    sevan 
    387   1.1    sevan 			/*
    388   1.1    sevan 			 * Recollect, mainly to avoid the possible
    389   1.1    sevan 			 * race introduced by changing interrupt
    390   1.1    sevan 			 * masks.
    391   1.1    sevan 			 */
    392   1.1    sevan 			rge_rxeof(sc);
    393   1.1    sevan 			rge_txeof(sc);
    394   1.1    sevan 		} else
    395   1.1    sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    396   1.1    sevan 	} else if (tx | rx) {
    397   1.1    sevan 		/*
    398   1.1    sevan 		 * Assume that using simulated interrupt moderation
    399   1.1    sevan 		 * (hardware timer based) could reduce the interrupt
    400   1.1    sevan 		 * rate.
    401   1.1    sevan 		 */
    402   1.1    sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    403   1.1    sevan 	}
    404   1.1    sevan 
    405   1.1    sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    406   1.1    sevan 
    407   1.1    sevan 	return (claimed);
    408   1.1    sevan }
    409   1.1    sevan 
    410   1.1    sevan int
    411   1.1    sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    412   1.1    sevan {
    413   1.1    sevan 	struct rge_tx_desc *d = NULL;
    414   1.1    sevan 	struct rge_txq *txq;
    415   1.1    sevan 	bus_dmamap_t txmap;
    416   1.1    sevan 	uint32_t cmdsts, cflags = 0;
    417   1.1    sevan 	int cur, error, i, last, nsegs;
    418   1.1    sevan 
    419   1.1    sevan 	/*
    420   1.1    sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    421   1.1    sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    422   1.1    sevan 	 * take affect.
    423   1.1    sevan 	 */
    424   1.1    sevan 	if ((m->m_pkthdr.csum_flags &
    425   1.2    sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    426   1.1    sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    427   1.1    sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    428   1.1    sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    429   1.1    sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    430   1.1    sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    431   1.1    sevan 	}
    432   1.1    sevan 
    433   1.1    sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    434   1.1    sevan 	txmap = txq->txq_dmamap;
    435   1.1    sevan 
    436   1.1    sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    437   1.1    sevan 	switch (error) {
    438   1.1    sevan 	case 0:
    439   1.1    sevan 		break;
    440   1.1    sevan 	case EFBIG: /* mbuf chain is too fragmented */
    441   1.1    sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    442   1.1    sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    443   1.1    sevan 		    BUS_DMA_NOWAIT) == 0)
    444   1.1    sevan 			break;
    445   1.1    sevan 
    446   1.1    sevan 		/* FALLTHROUGH */
    447   1.1    sevan 	default:
    448   1.1    sevan 		return (0);
    449   1.1    sevan 	}
    450   1.1    sevan 
    451   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    452   1.1    sevan 	    BUS_DMASYNC_PREWRITE);
    453   1.1    sevan 
    454   1.1    sevan 	nsegs = txmap->dm_nsegs;
    455   1.1    sevan 
    456   1.1    sevan 	/* Set up hardware VLAN tagging. */
    457   1.1    sevan #if NVLAN > 0
    458   1.1    sevan 	if (m->m_flags & M_VLANTAG)
    459   1.1    sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    460   1.1    sevan #endif
    461   1.1    sevan 
    462   1.1    sevan 	cur = idx;
    463   1.1    sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    464   1.1    sevan 
    465   1.1    sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    466   1.1    sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    467   1.1    sevan 
    468   1.1    sevan 		d->rge_extsts = htole32(cflags);
    469   1.1    sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    470   1.1    sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    471   1.1    sevan 
    472   1.1    sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    473   1.1    sevan 
    474   1.1    sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    475   1.1    sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    476   1.1    sevan 
    477   1.1    sevan 		d->rge_cmdsts = htole32(cmdsts);
    478   1.1    sevan 
    479   1.1    sevan 		last = cur;
    480   1.1    sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    481   1.1    sevan 		cur = RGE_NEXT_TX_DESC(cur);
    482   1.1    sevan 	}
    483   1.1    sevan 
    484   1.1    sevan 	/* Set EOF on the last descriptor. */
    485   1.1    sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    486   1.1    sevan 
    487   1.1    sevan 	/* Transfer ownership of packet to the chip. */
    488   1.1    sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    489   1.1    sevan 
    490   1.1    sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    491   1.1    sevan 
    492   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    493   1.1    sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    494   1.1    sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    495   1.1    sevan 
    496   1.1    sevan 	/* Update info of TX queue and descriptors. */
    497   1.1    sevan 	txq->txq_mbuf = m;
    498   1.1    sevan 	txq->txq_descidx = last;
    499   1.1    sevan 
    500   1.1    sevan 	return (nsegs);
    501   1.1    sevan }
    502   1.1    sevan 
    503   1.1    sevan int
    504   1.2    sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    505   1.1    sevan {
    506   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    507   1.1    sevan 	struct ifreq *ifr = (struct ifreq *)data;
    508   1.1    sevan 	int s, error = 0;
    509   1.1    sevan 
    510   1.1    sevan 	s = splnet();
    511   1.1    sevan 
    512   1.1    sevan 	switch (cmd) {
    513   1.1    sevan 	case SIOCSIFADDR:
    514   1.1    sevan 		ifp->if_flags |= IFF_UP;
    515   1.1    sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    516   1.1    sevan 			rge_init(ifp);
    517   1.1    sevan 		break;
    518   1.1    sevan 	case SIOCSIFFLAGS:
    519   1.1    sevan 		if (ifp->if_flags & IFF_UP) {
    520   1.1    sevan 			if (ifp->if_flags & IFF_RUNNING)
    521   1.1    sevan 				error = ENETRESET;
    522   1.1    sevan 			else
    523   1.1    sevan 				rge_init(ifp);
    524   1.1    sevan 		} else {
    525   1.1    sevan 			if (ifp->if_flags & IFF_RUNNING)
    526   1.1    sevan 				rge_stop(ifp);
    527   1.1    sevan 		}
    528   1.1    sevan 		break;
    529   1.1    sevan 	case SIOCGIFMEDIA:
    530   1.1    sevan 	case SIOCSIFMEDIA:
    531   1.1    sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    532   1.1    sevan 		break;
    533   1.1    sevan 	case SIOCSIFMTU:
    534   1.2    sevan 		if (ifr->ifr_mtu > ifp->if_mtu) {
    535   1.1    sevan 			error = EINVAL;
    536   1.1    sevan 			break;
    537   1.1    sevan 		}
    538   1.1    sevan 		ifp->if_mtu = ifr->ifr_mtu;
    539   1.1    sevan 		break;
    540   1.1    sevan 	default:
    541   1.2    sevan 		error = ether_ioctl(ifp, cmd, data);
    542   1.1    sevan 	}
    543   1.1    sevan 
    544   1.1    sevan 	if (error == ENETRESET) {
    545   1.1    sevan 		if (ifp->if_flags & IFF_RUNNING)
    546   1.1    sevan 			rge_iff(sc);
    547   1.1    sevan 		error = 0;
    548   1.1    sevan 	}
    549   1.1    sevan 
    550   1.1    sevan 	splx(s);
    551   1.1    sevan 	return (error);
    552   1.1    sevan }
    553   1.1    sevan 
    554   1.1    sevan void
    555   1.3    sevan rge_start(struct ifnet *ifp)
    556   1.1    sevan {
    557   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    558   1.1    sevan 	struct mbuf *m;
    559   1.1    sevan 	int free, idx, used;
    560   1.1    sevan 	int queued = 0;
    561   1.1    sevan 
    562   1.2    sevan #define LINK_STATE_IS_UP(_s)    \
    563   1.2    sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    564   1.2    sevan 
    565   1.1    sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    566   1.1    sevan 		ifq_purge(ifq);
    567   1.1    sevan 		return;
    568   1.1    sevan 	}
    569   1.1    sevan 
    570   1.1    sevan 	/* Calculate free space. */
    571   1.1    sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    572   1.1    sevan 	free = sc->rge_ldata.rge_txq_considx;
    573   1.1    sevan 	if (free <= idx)
    574   1.1    sevan 		free += RGE_TX_LIST_CNT;
    575   1.1    sevan 	free -= idx;
    576   1.1    sevan 
    577   1.1    sevan 	for (;;) {
    578   1.1    sevan 		if (RGE_TX_NSEGS >= free + 2) {
    579   1.3    sevan 			SET(ifp->if_flags, IFF_OACTIVE);
    580   1.1    sevan 			break;
    581   1.1    sevan 		}
    582   1.1    sevan 
    583   1.3    sevan 		IFQ_DEQUEUE(&ifp->if_snd, m);
    584   1.1    sevan 		if (m == NULL)
    585   1.1    sevan 			break;
    586   1.1    sevan 
    587   1.1    sevan 		used = rge_encap(sc, m, idx);
    588   1.1    sevan 		if (used == 0) {
    589   1.1    sevan 			m_freem(m);
    590   1.1    sevan 			continue;
    591   1.1    sevan 		}
    592   1.1    sevan 
    593   1.1    sevan 		KASSERT(used <= free);
    594   1.1    sevan 		free -= used;
    595   1.1    sevan 
    596   1.1    sevan #if NBPFILTER > 0
    597   1.1    sevan 		if (ifp->if_bpf)
    598   1.1    sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    599   1.1    sevan #endif
    600   1.1    sevan 
    601   1.1    sevan 		idx += used;
    602   1.1    sevan 		if (idx >= RGE_TX_LIST_CNT)
    603   1.1    sevan 			idx -= RGE_TX_LIST_CNT;
    604   1.1    sevan 
    605   1.1    sevan 		queued++;
    606   1.1    sevan 	}
    607   1.1    sevan 
    608   1.1    sevan 	if (queued == 0)
    609   1.1    sevan 		return;
    610   1.1    sevan 
    611   1.1    sevan 	/* Set a timeout in case the chip goes out to lunch. */
    612   1.1    sevan 	ifp->if_timer = 5;
    613   1.1    sevan 
    614   1.1    sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    615   1.1    sevan 	ifq_serialize(ifq, &sc->sc_task);
    616   1.1    sevan }
    617   1.1    sevan 
    618   1.1    sevan void
    619   1.1    sevan rge_watchdog(struct ifnet *ifp)
    620   1.1    sevan {
    621   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    622   1.1    sevan 
    623   1.1    sevan 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
    624   1.4    skrll 	if_statinc(ifp, if_oerrors);
    625   1.1    sevan 
    626   1.1    sevan 	rge_init(ifp);
    627   1.1    sevan }
    628   1.1    sevan 
    629   1.1    sevan int
    630   1.1    sevan rge_init(struct ifnet *ifp)
    631   1.1    sevan {
    632   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    633   1.1    sevan 	uint32_t val;
    634   1.1    sevan 	uint16_t max_frame_size;
    635   1.1    sevan 	int i;
    636   1.1    sevan 
    637   1.1    sevan 	rge_stop(ifp);
    638   1.1    sevan 
    639   1.1    sevan 	/* Set MAC address. */
    640   1.2    sevan 	rge_set_macaddr(sc, sc->sc_enaddr);
    641   1.1    sevan 
    642   1.1    sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    643   1.1    sevan 	if (ifp->if_mtu < ETHERMTU)
    644   1.1    sevan 		max_frame_size = ETHERMTU;
    645   1.1    sevan 	else
    646   1.1    sevan 		max_frame_size = ifp->if_mtu;
    647   1.1    sevan 
    648   1.1    sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    649   1.1    sevan 	    ETHER_CRC_LEN + 1;
    650   1.1    sevan 
    651   1.1    sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    652   1.5    skrll 		max_frame_size -= 1;
    653   1.1    sevan 
    654   1.1    sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    655   1.1    sevan 
    656   1.1    sevan 	/* Initialize RX descriptors list. */
    657   1.1    sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    658   1.1    sevan 		printf("%s: init failed: no memory for RX buffers\n",
    659   1.1    sevan 		    sc->sc_dev.dv_xname);
    660   1.1    sevan 		rge_stop(ifp);
    661   1.1    sevan 		return (ENOBUFS);
    662   1.1    sevan 	}
    663   1.1    sevan 
    664   1.1    sevan 	/* Initialize TX descriptors. */
    665   1.1    sevan 	rge_tx_list_init(sc);
    666   1.1    sevan 
    667   1.1    sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    668   1.1    sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    669   1.1    sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    670   1.1    sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    671   1.1    sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    672   1.1    sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    673   1.1    sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    674   1.1    sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    675   1.1    sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    676   1.1    sevan 
    677   1.1    sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    678   1.1    sevan 
    679   1.1    sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    680   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    681   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    682   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    683   1.1    sevan 
    684   1.1    sevan 	/* Clear interrupt moderation timer. */
    685   1.1    sevan 	for (i = 0; i < 64; i++)
    686   1.1    sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    687   1.1    sevan 
    688   1.1    sevan 	/* Set the initial RX and TX configurations. */
    689   1.1    sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    690   1.1    sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    691   1.1    sevan 
    692   1.1    sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    693   1.1    sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    694   1.1    sevan 
    695   1.1    sevan 	/* Enable hardware optimization function. */
    696   1.1    sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    697   1.1    sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    698   1.1    sevan 
    699   1.1    sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    700   1.1    sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    701   1.1    sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    702   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    703   1.1    sevan 
    704   1.1    sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    705   1.1    sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    706   1.1    sevan 
    707   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    708   1.1    sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    709   1.1    sevan 
    710   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    711   1.1    sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    712   1.1    sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    713   1.1    sevan 
    714   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    715   1.1    sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    716   1.1    sevan 
    717   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    718   1.1    sevan 
    719   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    720   1.1    sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    721   1.1    sevan 
    722   1.1    sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    723   1.1    sevan 
    724   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    725   1.1    sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    726   1.1    sevan 
    727   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    728   1.1    sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    729   1.1    sevan 
    730   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    731   1.1    sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    732   1.1    sevan 
    733   1.1    sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    734   1.1    sevan 
    735   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    736   1.1    sevan 
    737   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    738   1.1    sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    739   1.1    sevan 
    740   1.1    sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    741   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    742   1.1    sevan 
    743   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    744   1.1    sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    745   1.1    sevan 
    746   1.1    sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    747   1.1    sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    748   1.1    sevan 
    749   1.5    skrll 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    750   1.1    sevan 
    751   1.1    sevan 	/* Disable EEE plus. */
    752   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    753   1.1    sevan 
    754   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    755   1.1    sevan 
    756   1.1    sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    757   1.1    sevan 	DELAY(1);
    758   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    759   1.1    sevan 
    760   1.1    sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    761   1.1    sevan 
    762   1.1    sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    763   1.1    sevan 
    764   1.2    sevan 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
    765   1.1    sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    766   1.1    sevan 
    767   1.1    sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    768   1.1    sevan 
    769   1.1    sevan 	for (i = 0; i < 10; i++) {
    770   1.1    sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    771   1.1    sevan 			break;
    772   1.1    sevan 		DELAY(1000);
    773   1.1    sevan 	}
    774   1.1    sevan 
    775   1.1    sevan 	/* Disable RXDV gate. */
    776   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    777   1.1    sevan 	DELAY(2000);
    778   1.1    sevan 
    779   1.1    sevan 	rge_ifmedia_upd(ifp);
    780   1.1    sevan 
    781   1.1    sevan 	/* Enable transmit and receive. */
    782   1.1    sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    783   1.1    sevan 
    784   1.1    sevan 	/* Program promiscuous mode and multicast filters. */
    785   1.1    sevan 	rge_iff(sc);
    786   1.1    sevan 
    787   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    788   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    789   1.1    sevan 
    790   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    791   1.1    sevan 
    792   1.1    sevan 	/* Enable interrupts. */
    793   1.1    sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    794   1.1    sevan 
    795   1.1    sevan 	ifp->if_flags |= IFF_RUNNING;
    796   1.3    sevan 	CLR(ifp->if_flags, IFF_OACTIVE);
    797   1.1    sevan 
    798   1.3    sevan 	callout_schedule(&sc->sc_timeout, 1);
    799   1.1    sevan 
    800   1.1    sevan 	return (0);
    801   1.1    sevan }
    802   1.1    sevan 
    803   1.1    sevan /*
    804   1.1    sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    805   1.1    sevan  */
    806   1.1    sevan void
    807   1.1    sevan rge_stop(struct ifnet *ifp)
    808   1.1    sevan {
    809   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    810   1.1    sevan 	int i;
    811   1.1    sevan 
    812   1.1    sevan 	timeout_del(&sc->sc_timeout);
    813   1.1    sevan 
    814   1.1    sevan 	ifp->if_timer = 0;
    815   1.1    sevan 	ifp->if_flags &= ~IFF_RUNNING;
    816   1.1    sevan 	sc->rge_timerintr = 0;
    817   1.1    sevan 
    818   1.1    sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    819   1.1    sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    820   1.1    sevan 	    RGE_RXCFG_ERRPKT);
    821   1.1    sevan 
    822   1.1    sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    823   1.1    sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    824   1.1    sevan 
    825   1.1    sevan 	rge_reset(sc);
    826   1.1    sevan 
    827   1.1    sevan 	intr_barrier(sc->sc_ih);
    828   1.1    sevan 	ifq_barrier(&ifp->if_snd);
    829   1.2    sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    830   1.1    sevan 
    831   1.1    sevan 	if (sc->rge_head != NULL) {
    832   1.1    sevan 		m_freem(sc->rge_head);
    833   1.1    sevan 		sc->rge_head = sc->rge_tail = NULL;
    834   1.1    sevan 	}
    835   1.1    sevan 
    836   1.1    sevan 	/* Free the TX list buffers. */
    837   1.1    sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    838   1.1    sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    839   1.1    sevan 			bus_dmamap_unload(sc->sc_dmat,
    840   1.1    sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    841   1.1    sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    842   1.1    sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    843   1.1    sevan 		}
    844   1.1    sevan 	}
    845   1.1    sevan 
    846   1.1    sevan 	/* Free the RX list buffers. */
    847   1.1    sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    848   1.1    sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    849   1.1    sevan 			bus_dmamap_unload(sc->sc_dmat,
    850   1.1    sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    851   1.1    sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    852   1.1    sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    853   1.1    sevan 		}
    854   1.1    sevan 	}
    855   1.1    sevan }
    856   1.1    sevan 
    857   1.1    sevan /*
    858   1.1    sevan  * Set media options.
    859   1.1    sevan  */
    860   1.1    sevan int
    861   1.1    sevan rge_ifmedia_upd(struct ifnet *ifp)
    862   1.1    sevan {
    863   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    864   1.1    sevan 	struct ifmedia *ifm = &sc->sc_media;
    865   1.1    sevan 	int anar, gig, val;
    866   1.1    sevan 
    867   1.1    sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    868   1.1    sevan 		return (EINVAL);
    869   1.1    sevan 
    870   1.1    sevan 	/* Disable Gigabit Lite. */
    871   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    872   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    873   1.1    sevan 
    874   1.1    sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    875   1.1    sevan 	val &= ~RGE_ADV_2500TFDX;
    876   1.1    sevan 
    877   1.1    sevan 	anar = gig = 0;
    878   1.1    sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    879   1.1    sevan 	case IFM_AUTO:
    880   1.1    sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    881   1.1    sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    882   1.1    sevan 		val |= RGE_ADV_2500TFDX;
    883   1.1    sevan 		break;
    884   1.1    sevan 	case IFM_2500_T:
    885   1.1    sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    886   1.1    sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    887   1.1    sevan 		val |= RGE_ADV_2500TFDX;
    888   1.1    sevan 		ifp->if_baudrate = IF_Mbps(2500);
    889   1.1    sevan 		break;
    890   1.1    sevan 	case IFM_1000_T:
    891   1.1    sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    892   1.1    sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    893   1.1    sevan 		ifp->if_baudrate = IF_Gbps(1);
    894   1.1    sevan 		break;
    895   1.1    sevan 	case IFM_100_TX:
    896   1.1    sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    897   1.1    sevan 		ifp->if_baudrate = IF_Mbps(100);
    898   1.1    sevan 		break;
    899   1.1    sevan 	case IFM_10_T:
    900   1.1    sevan 		anar |= ANAR_10 | ANAR_10_FD;
    901   1.1    sevan 		ifp->if_baudrate = IF_Mbps(10);
    902   1.1    sevan 		break;
    903   1.1    sevan 	default:
    904   1.1    sevan 		printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
    905   1.1    sevan 		return (EINVAL);
    906   1.1    sevan 	}
    907   1.1    sevan 
    908   1.1    sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    909   1.1    sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    910   1.1    sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    911   1.1    sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    912   1.1    sevan 
    913   1.1    sevan 	return (0);
    914   1.1    sevan }
    915   1.1    sevan 
    916   1.1    sevan /*
    917   1.1    sevan  * Report current media status.
    918   1.1    sevan  */
    919   1.1    sevan void
    920   1.1    sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    921   1.1    sevan {
    922   1.1    sevan 	struct rge_softc *sc = ifp->if_softc;
    923   1.1    sevan 	uint16_t status = 0;
    924   1.1    sevan 
    925   1.1    sevan 	ifmr->ifm_status = IFM_AVALID;
    926   1.1    sevan 	ifmr->ifm_active = IFM_ETHER;
    927   1.1    sevan 
    928   1.1    sevan 	if (rge_get_link_status(sc)) {
    929   1.1    sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    930   1.1    sevan 
    931   1.1    sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    932   1.1    sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    933   1.1    sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    934   1.1    sevan 			ifmr->ifm_active |= IFM_FDX;
    935   1.1    sevan 		else
    936   1.1    sevan 			ifmr->ifm_active |= IFM_HDX;
    937   1.1    sevan 
    938   1.1    sevan 		if (status & RGE_PHYSTAT_10MBPS)
    939   1.1    sevan 			ifmr->ifm_active |= IFM_10_T;
    940   1.1    sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    941   1.1    sevan 			ifmr->ifm_active |= IFM_100_TX;
    942   1.1    sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    943   1.1    sevan 			ifmr->ifm_active |= IFM_1000_T;
    944   1.1    sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    945   1.1    sevan 			ifmr->ifm_active |= IFM_2500_T;
    946   1.1    sevan 	}
    947   1.1    sevan }
    948   1.1    sevan 
    949   1.5    skrll /*
    950   1.1    sevan  * Allocate memory for RX/TX rings.
    951   1.1    sevan  */
    952   1.1    sevan int
    953   1.1    sevan rge_allocmem(struct rge_softc *sc)
    954   1.1    sevan {
    955   1.1    sevan 	int error, i;
    956   1.1    sevan 
    957   1.1    sevan 	/* Allocate DMA'able memory for the TX ring. */
    958   1.1    sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    959   1.1    sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    960   1.1    sevan 	if (error) {
    961   1.1    sevan 		printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
    962   1.1    sevan 		return (error);
    963   1.1    sevan 	}
    964   1.1    sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    965   1.1    sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    966   1.2    sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
    967   1.1    sevan 	if (error) {
    968   1.1    sevan 		printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
    969   1.1    sevan 		return (error);
    970   1.1    sevan 	}
    971   1.1    sevan 
    972   1.1    sevan 	/* Load the map for the TX ring. */
    973   1.1    sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    974   1.1    sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    975   1.8    sevan 	    (void **) &sc->rge_ldata.rge_tx_list,
    976   1.2    sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
    977   1.1    sevan 	if (error) {
    978   1.1    sevan 		printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
    979   1.1    sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    980   1.1    sevan 		    sc->rge_ldata.rge_tx_listnseg);
    981   1.1    sevan 		return (error);
    982   1.1    sevan 	}
    983   1.1    sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    984   1.1    sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    985   1.1    sevan 	if (error) {
    986   1.1    sevan 		printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
    987   1.1    sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    988   1.1    sevan 		bus_dmamem_unmap(sc->sc_dmat,
    989   1.2    sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    990   1.1    sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    991   1.1    sevan 		    sc->rge_ldata.rge_tx_listnseg);
    992   1.1    sevan 		return (error);
    993   1.1    sevan 	}
    994   1.1    sevan 
    995   1.1    sevan 	/* Create DMA maps for TX buffers. */
    996   1.1    sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    997   1.1    sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
    998   1.1    sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
    999   1.1    sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
   1000   1.1    sevan 		if (error) {
   1001   1.1    sevan 			printf("%s: can't create DMA map for TX\n",
   1002   1.1    sevan 			    sc->sc_dev.dv_xname);
   1003   1.1    sevan 			return (error);
   1004   1.1    sevan 		}
   1005   1.1    sevan 	}
   1006   1.1    sevan 
   1007   1.1    sevan 	/* Allocate DMA'able memory for the RX ring. */
   1008   1.1    sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
   1009   1.1    sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
   1010   1.1    sevan 	if (error) {
   1011   1.1    sevan 		printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
   1012   1.1    sevan 		return (error);
   1013   1.1    sevan 	}
   1014   1.1    sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
   1015   1.1    sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
   1016   1.2    sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_ZERO */
   1017   1.1    sevan 	if (error) {
   1018   1.1    sevan 		printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
   1019   1.1    sevan 		return (error);
   1020   1.1    sevan 	}
   1021   1.1    sevan 
   1022   1.1    sevan 	/* Load the map for the RX ring. */
   1023   1.1    sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1024   1.1    sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
   1025   1.8    sevan 	    (void **) &sc->rge_ldata.rge_rx_list,
   1026   1.2    sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1027   1.1    sevan 	if (error) {
   1028   1.1    sevan 		printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
   1029   1.1    sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1030   1.1    sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1031   1.1    sevan 		return (error);
   1032   1.1    sevan 	}
   1033   1.1    sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1034   1.1    sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1035   1.1    sevan 	if (error) {
   1036   1.1    sevan 		printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
   1037   1.1    sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1038   1.1    sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1039   1.2    sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1040   1.1    sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1041   1.1    sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1042   1.1    sevan 		return (error);
   1043   1.1    sevan 	}
   1044   1.1    sevan 
   1045   1.1    sevan 	/* Create DMA maps for RX buffers. */
   1046   1.1    sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1047   1.1    sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1048   1.1    sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1049   1.1    sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1050   1.1    sevan 		if (error) {
   1051   1.1    sevan 			printf("%s: can't create DMA map for RX\n",
   1052   1.1    sevan 			    sc->sc_dev.dv_xname);
   1053   1.1    sevan 			return (error);
   1054   1.1    sevan 		}
   1055   1.1    sevan 	}
   1056   1.1    sevan 
   1057   1.1    sevan 	return (error);
   1058   1.1    sevan }
   1059   1.1    sevan 
   1060   1.1    sevan /*
   1061   1.1    sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1062   1.1    sevan  */
   1063   1.1    sevan int
   1064   1.1    sevan rge_newbuf(struct rge_softc *sc, int idx)
   1065   1.1    sevan {
   1066   1.1    sevan 	struct mbuf *m;
   1067   1.1    sevan 	struct rge_rx_desc *r;
   1068   1.1    sevan 	struct rge_rxq *rxq;
   1069   1.1    sevan 	bus_dmamap_t rxmap;
   1070   1.1    sevan 
   1071   1.1    sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1072   1.1    sevan 	if (m == NULL)
   1073   1.1    sevan 		return (ENOBUFS);
   1074   1.1    sevan 
   1075   1.1    sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1076   1.1    sevan 
   1077   1.1    sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1078   1.1    sevan 	rxmap = rxq->rxq_dmamap;
   1079   1.1    sevan 
   1080   1.1    sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1081   1.1    sevan 		goto out;
   1082   1.1    sevan 
   1083   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1084   1.1    sevan 	    BUS_DMASYNC_PREREAD);
   1085   1.1    sevan 
   1086   1.1    sevan 	/* Map the segments into RX descriptors. */
   1087   1.1    sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1088   1.1    sevan 
   1089   1.1    sevan 	if (RGE_OWN(r)) {
   1090   1.1    sevan 		printf("%s: tried to map busy RX descriptor\n",
   1091   1.1    sevan 		    sc->sc_dev.dv_xname);
   1092   1.1    sevan 		goto out;
   1093   1.1    sevan 	}
   1094   1.1    sevan 
   1095   1.1    sevan 	rxq->rxq_mbuf = m;
   1096   1.1    sevan 
   1097   1.1    sevan 	r->rge_extsts = 0;
   1098   1.1    sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1099   1.1    sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1100   1.1    sevan 
   1101   1.1    sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1102   1.1    sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1103   1.1    sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1104   1.1    sevan 
   1105   1.1    sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1106   1.1    sevan 
   1107   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1108   1.1    sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1109   1.1    sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1110   1.1    sevan 
   1111   1.1    sevan 	return (0);
   1112   1.1    sevan out:
   1113   1.1    sevan 	if (m != NULL)
   1114   1.1    sevan 		m_freem(m);
   1115   1.1    sevan 	return (ENOMEM);
   1116   1.1    sevan }
   1117   1.1    sevan 
   1118   1.1    sevan void
   1119   1.1    sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1120   1.1    sevan {
   1121   1.1    sevan 	struct rge_rx_desc *r;
   1122   1.1    sevan 
   1123   1.1    sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1124   1.1    sevan 
   1125   1.1    sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1126   1.1    sevan 	r->rge_extsts = 0;
   1127   1.1    sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1128   1.1    sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1129   1.1    sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1130   1.1    sevan 
   1131   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1132   1.1    sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1133   1.1    sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1134   1.1    sevan }
   1135   1.1    sevan 
   1136   1.1    sevan int
   1137   1.1    sevan rge_rx_list_init(struct rge_softc *sc)
   1138   1.1    sevan {
   1139   1.1    sevan 	int i;
   1140   1.1    sevan 
   1141   1.1    sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1142   1.1    sevan 
   1143   1.1    sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1144   1.1    sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1145   1.1    sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1146   1.1    sevan 			return (ENOBUFS);
   1147   1.1    sevan 	}
   1148   1.1    sevan 
   1149   1.1    sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1150   1.1    sevan 	sc->rge_head = sc->rge_tail = NULL;
   1151   1.1    sevan 
   1152   1.1    sevan 	return (0);
   1153   1.1    sevan }
   1154   1.1    sevan 
   1155   1.1    sevan void
   1156   1.1    sevan rge_tx_list_init(struct rge_softc *sc)
   1157   1.1    sevan {
   1158   1.1    sevan 	int i;
   1159   1.1    sevan 
   1160   1.1    sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1161   1.1    sevan 
   1162   1.1    sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1163   1.1    sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1164   1.1    sevan 
   1165   1.1    sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1166   1.1    sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1167   1.1    sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1168   1.1    sevan 
   1169   1.1    sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1170   1.1    sevan }
   1171   1.1    sevan 
   1172   1.1    sevan int
   1173   1.1    sevan rge_rxeof(struct rge_softc *sc)
   1174   1.1    sevan {
   1175   1.1    sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1176   1.1    sevan 	struct mbuf *m;
   1177   1.2    sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1178   1.1    sevan 	struct rge_rx_desc *cur_rx;
   1179   1.1    sevan 	struct rge_rxq *rxq;
   1180   1.1    sevan 	uint32_t rxstat, extsts;
   1181   1.1    sevan 	int i, total_len, rx = 0;
   1182   1.1    sevan 
   1183   1.1    sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1184   1.1    sevan 		/* Invalidate the descriptor memory. */
   1185   1.1    sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1186   1.1    sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1187   1.1    sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1188   1.1    sevan 
   1189   1.1    sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1190   1.1    sevan 
   1191   1.1    sevan 		if (RGE_OWN(cur_rx))
   1192   1.1    sevan 			break;
   1193   1.1    sevan 
   1194   1.1    sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1195   1.1    sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1196   1.5    skrll 
   1197   1.1    sevan 		total_len = RGE_RXBYTES(cur_rx);
   1198   1.1    sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1199   1.1    sevan 		m = rxq->rxq_mbuf;
   1200   1.1    sevan 		rx = 1;
   1201   1.1    sevan 
   1202   1.1    sevan 		/* Invalidate the RX mbuf and unload its map. */
   1203   1.1    sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1204   1.1    sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1205   1.1    sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1206   1.1    sevan 
   1207   1.1    sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1208   1.1    sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1209   1.1    sevan 			rge_discard_rxbuf(sc, i);
   1210   1.1    sevan 			continue;
   1211   1.1    sevan 		}
   1212   1.1    sevan 
   1213   1.1    sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1214   1.4    skrll 			if_statinc(ifp, if_ierrors);
   1215   1.1    sevan 			/*
   1216   1.1    sevan 			 * If this is part of a multi-fragment packet,
   1217   1.1    sevan 			 * discard all the pieces.
   1218   1.1    sevan 			 */
   1219   1.1    sevan 			 if (sc->rge_head != NULL) {
   1220   1.1    sevan 				m_freem(sc->rge_head);
   1221   1.1    sevan 				sc->rge_head = sc->rge_tail = NULL;
   1222   1.1    sevan 			}
   1223   1.1    sevan 			rge_discard_rxbuf(sc, i);
   1224   1.1    sevan 			continue;
   1225   1.1    sevan 		}
   1226   1.1    sevan 
   1227   1.1    sevan 		/*
   1228   1.1    sevan 		 * If allocating a replacement mbuf fails,
   1229   1.1    sevan 		 * reload the current one.
   1230   1.1    sevan 		 */
   1231   1.1    sevan 
   1232   1.1    sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1233   1.1    sevan 			if (sc->rge_head != NULL) {
   1234   1.1    sevan 				m_freem(sc->rge_head);
   1235   1.1    sevan 				sc->rge_head = sc->rge_tail = NULL;
   1236   1.1    sevan 			}
   1237   1.1    sevan 			rge_discard_rxbuf(sc, i);
   1238   1.1    sevan 			continue;
   1239   1.1    sevan 		}
   1240   1.1    sevan 
   1241   1.1    sevan 		if (sc->rge_head != NULL) {
   1242   1.1    sevan 			m->m_len = total_len;
   1243   1.1    sevan 			/*
   1244   1.1    sevan 			 * Special case: if there's 4 bytes or less
   1245   1.1    sevan 			 * in this buffer, the mbuf can be discarded:
   1246   1.1    sevan 			 * the last 4 bytes is the CRC, which we don't
   1247   1.1    sevan 			 * care about anyway.
   1248   1.1    sevan 			 */
   1249   1.1    sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1250   1.1    sevan 				sc->rge_tail->m_len -=
   1251   1.1    sevan 				    (ETHER_CRC_LEN - m->m_len);
   1252   1.1    sevan 				m_freem(m);
   1253   1.1    sevan 			} else {
   1254   1.1    sevan 				m->m_len -= ETHER_CRC_LEN;
   1255   1.1    sevan 				m->m_flags &= ~M_PKTHDR;
   1256   1.1    sevan 				sc->rge_tail->m_next = m;
   1257   1.1    sevan 			}
   1258   1.1    sevan 			m = sc->rge_head;
   1259   1.1    sevan 			sc->rge_head = sc->rge_tail = NULL;
   1260   1.1    sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1261   1.1    sevan 		} else
   1262   1.1    sevan 			m->m_pkthdr.len = m->m_len =
   1263   1.1    sevan 			    (total_len - ETHER_CRC_LEN);
   1264   1.1    sevan 
   1265   1.1    sevan 		/* Check IP header checksum. */
   1266   1.1    sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1267   1.1    sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1268   1.1    sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1269   1.1    sevan 
   1270   1.1    sevan 		/* Check TCP/UDP checksum. */
   1271   1.1    sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1272   1.1    sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1273   1.1    sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1274   1.1    sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1275   1.1    sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1276   1.1    sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1277   1.1    sevan 			    M_UDP_CSUM_IN_OK;
   1278   1.1    sevan 
   1279   1.1    sevan #if NVLAN > 0
   1280   1.1    sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1281   1.1    sevan 			m->m_pkthdr.ether_vtag =
   1282   1.1    sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1283   1.1    sevan 			m->m_flags |= M_VLANTAG;
   1284   1.1    sevan 		}
   1285   1.1    sevan #endif
   1286   1.1    sevan 
   1287   1.1    sevan 		ml_enqueue(&ml, m);
   1288   1.1    sevan 	}
   1289   1.1    sevan 
   1290   1.1    sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1291   1.1    sevan 
   1292   1.1    sevan 	if_input(ifp, &ml);
   1293   1.1    sevan 
   1294   1.1    sevan 	return (rx);
   1295   1.1    sevan }
   1296   1.1    sevan 
   1297   1.1    sevan int
   1298   1.1    sevan rge_txeof(struct rge_softc *sc)
   1299   1.1    sevan {
   1300   1.2    sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1301   1.1    sevan 	struct rge_txq *txq;
   1302   1.1    sevan 	uint32_t txstat;
   1303   1.1    sevan 	int cons, idx, prod;
   1304   1.1    sevan 	int free = 0;
   1305   1.1    sevan 
   1306   1.1    sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1307   1.1    sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1308   1.1    sevan 
   1309   1.1    sevan 	while (prod != cons) {
   1310   1.1    sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1311   1.1    sevan 		idx = txq->txq_descidx;
   1312   1.1    sevan 
   1313   1.1    sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1314   1.1    sevan 		    idx * sizeof(struct rge_tx_desc),
   1315   1.1    sevan 		    sizeof(struct rge_tx_desc),
   1316   1.1    sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1317   1.1    sevan 
   1318   1.1    sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1319   1.1    sevan 
   1320   1.1    sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1321   1.1    sevan 			free = 2;
   1322   1.1    sevan 			break;
   1323   1.1    sevan 		}
   1324   1.1    sevan 
   1325   1.5    skrll 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1326   1.1    sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1327   1.1    sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1328   1.1    sevan 		m_freem(txq->txq_mbuf);
   1329   1.1    sevan 		txq->txq_mbuf = NULL;
   1330   1.1    sevan 
   1331   1.1    sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1332   1.4    skrll 			if_statinc(ifp, if_collisions);
   1333   1.1    sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1334   1.4    skrll 			if_statinc(ifp, if_oerrors);
   1335   1.1    sevan 
   1336   1.1    sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1337   1.1    sevan 		    idx * sizeof(struct rge_tx_desc),
   1338   1.1    sevan 		    sizeof(struct rge_tx_desc),
   1339   1.1    sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1340   1.1    sevan 
   1341   1.1    sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1342   1.1    sevan 		free = 1;
   1343   1.1    sevan 	}
   1344   1.1    sevan 
   1345   1.1    sevan 	if (free == 0)
   1346   1.1    sevan 		return (0);
   1347   1.1    sevan 
   1348   1.1    sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1349   1.1    sevan 
   1350   1.1    sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1351   1.1    sevan 		ifq_restart(&ifp->if_snd);
   1352   1.1    sevan 	else if (free == 2)
   1353   1.1    sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1354   1.1    sevan 	else
   1355   1.1    sevan 		ifp->if_timer = 0;
   1356   1.1    sevan 
   1357   1.1    sevan 	return (1);
   1358   1.1    sevan }
   1359   1.1    sevan 
   1360   1.1    sevan void
   1361   1.1    sevan rge_reset(struct rge_softc *sc)
   1362   1.1    sevan {
   1363   1.1    sevan 	int i;
   1364   1.1    sevan 
   1365   1.1    sevan 	/* Enable RXDV gate. */
   1366   1.1    sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1367   1.1    sevan 	DELAY(2000);
   1368   1.1    sevan 
   1369   1.1    sevan 	for (i = 0; i < 10; i++) {
   1370   1.1    sevan 		DELAY(100);
   1371   1.1    sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1372   1.1    sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1373   1.1    sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1374   1.1    sevan 			break;
   1375   1.1    sevan 	}
   1376   1.1    sevan 
   1377   1.1    sevan 	/* Soft reset. */
   1378   1.1    sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1379   1.1    sevan 
   1380   1.1    sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1381   1.1    sevan 		DELAY(100);
   1382   1.1    sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1383   1.1    sevan 			break;
   1384   1.1    sevan 	}
   1385   1.1    sevan 	if (i == RGE_TIMEOUT)
   1386   1.1    sevan 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
   1387   1.1    sevan }
   1388   1.1    sevan 
   1389   1.1    sevan void
   1390   1.1    sevan rge_iff(struct rge_softc *sc)
   1391   1.1    sevan {
   1392   1.2    sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1393   1.2    sevan 	struct ethercom *ac = &sc->sc_ec;
   1394   1.1    sevan 	struct ether_multi *enm;
   1395   1.1    sevan 	struct ether_multistep step;
   1396   1.1    sevan 	uint32_t hashes[2];
   1397   1.1    sevan 	uint32_t rxfilt;
   1398   1.1    sevan 	int h = 0;
   1399   1.1    sevan 
   1400   1.1    sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1401   1.1    sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1402   1.1    sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1403   1.1    sevan 
   1404   1.1    sevan 	/*
   1405   1.1    sevan 	 * Always accept frames destined to our station address.
   1406   1.1    sevan 	 * Always accept broadcast frames.
   1407   1.1    sevan 	 */
   1408   1.1    sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1409   1.1    sevan 
   1410   1.1    sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1411   1.1    sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1412   1.1    sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1413   1.1    sevan 		if (ifp->if_flags & IFF_PROMISC)
   1414   1.1    sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1415   1.1    sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1416   1.1    sevan 	} else {
   1417   1.1    sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1418   1.1    sevan 		/* Program new filter. */
   1419   1.1    sevan 		memset(hashes, 0, sizeof(hashes));
   1420   1.1    sevan 
   1421   1.1    sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1422   1.1    sevan 		while (enm != NULL) {
   1423   1.1    sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1424   1.1    sevan 			    ETHER_ADDR_LEN) >> 26;
   1425   1.1    sevan 
   1426   1.1    sevan 			if (h < 32)
   1427   1.1    sevan 				hashes[0] |= (1 << h);
   1428   1.1    sevan 			else
   1429   1.1    sevan 				hashes[1] |= (1 << (h - 32));
   1430   1.1    sevan 
   1431   1.1    sevan 			ETHER_NEXT_MULTI(step, enm);
   1432   1.1    sevan 		}
   1433   1.1    sevan 	}
   1434   1.1    sevan 
   1435   1.1    sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1436   1.2    sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1437   1.2    sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1438   1.1    sevan }
   1439   1.1    sevan 
   1440   1.1    sevan void
   1441   1.1    sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1442   1.1    sevan {
   1443   1.1    sevan 	int i;
   1444   1.1    sevan 
   1445   1.1    sevan 	if (on) {
   1446   1.1    sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1447   1.1    sevan 
   1448   1.1    sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1449   1.1    sevan 
   1450   1.1    sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1451  1.10    sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
   1452   1.1    sevan 				break;
   1453   1.1    sevan 			DELAY(1000);
   1454   1.1    sevan 		}
   1455   1.1    sevan 	} else
   1456   1.1    sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1457   1.1    sevan }
   1458   1.1    sevan 
   1459   1.1    sevan void
   1460   1.1    sevan rge_phy_config(struct rge_softc *sc)
   1461   1.1    sevan {
   1462   1.1    sevan 	uint16_t mcode_ver, val;
   1463   1.1    sevan 	int i;
   1464   1.1    sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1465   1.1    sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1466   1.1    sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1467   1.1    sevan 
   1468   1.1    sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1469   1.5    skrll 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1470   1.1    sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1471   1.1    sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1472   1.1    sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1473   1.1    sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1474   1.1    sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1475   1.1    sevan 
   1476   1.1    sevan 	/* Read microcode version. */
   1477   1.1    sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1478   1.1    sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1479   1.1    sevan 
   1480   1.1    sevan 	if (sc->rge_type == MAC_CFG2) {
   1481   1.1    sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1482   1.1    sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1483   1.1    sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1484   1.1    sevan 		}
   1485   1.1    sevan 
   1486   1.1    sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1487   1.1    sevan 			/* Disable PHY config. */
   1488   1.1    sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1489   1.1    sevan 			DELAY(1000);
   1490   1.1    sevan 
   1491   1.1    sevan 			rge_patch_phy_mcu(sc, 1);
   1492   1.1    sevan 
   1493   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1494   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1495   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1496   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1497   1.1    sevan 
   1498   1.1    sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1499   1.1    sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1500   1.1    sevan 				rge_write_phy_ocp(sc,
   1501   1.1    sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1502   1.1    sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1503   1.1    sevan 			}
   1504   1.1    sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1505   1.1    sevan 
   1506   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1507   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1508   1.1    sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1509   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1510   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1511   1.1    sevan 
   1512   1.1    sevan 			rge_patch_phy_mcu(sc, 0);
   1513   1.1    sevan 
   1514   1.1    sevan 			/* Enable PHY config. */
   1515   1.1    sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1516   1.1    sevan 
   1517   1.1    sevan 			/* Write microcode version. */
   1518   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1519   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1520   1.1    sevan 		}
   1521   1.5    skrll 
   1522   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1523   1.1    sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1524   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1525   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1526   1.1    sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1527   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1528   1.1    sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1529   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1530   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1531   1.1    sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1532   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1533   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1534   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1535   1.1    sevan 
   1536   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1537   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1538   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1539   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1540   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1541   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1542   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1543   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1544   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1545   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1546   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1547   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1548   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1549   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1550   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1551   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1552   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1553   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1554   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1555   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1556   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1557   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1558   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1559   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1560   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1561   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1562   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1563   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1564   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1565   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1566   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1567   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1568   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1569   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1570   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1571   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1572   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1573   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1574   1.1    sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1575   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1576   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1577   1.1    sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1578   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1579   1.1    sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1580   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1581   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1582   1.1    sevan 	} else {
   1583   1.1    sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1584   1.1    sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1585   1.1    sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1586   1.1    sevan 
   1587   1.1    sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1588   1.1    sevan 			/* Disable PHY config. */
   1589   1.1    sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1590   1.1    sevan 			DELAY(1000);
   1591   1.1    sevan 
   1592   1.1    sevan 			rge_patch_phy_mcu(sc, 1);
   1593   1.1    sevan 
   1594   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1595   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1596   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1597   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1598   1.1    sevan 
   1599   1.1    sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1600   1.1    sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1601   1.1    sevan 				rge_write_phy_ocp(sc,
   1602   1.1    sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1603   1.1    sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1604   1.1    sevan 			}
   1605   1.1    sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1606   1.1    sevan 
   1607   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1608   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1609   1.1    sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1610   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1611   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1612   1.1    sevan 
   1613   1.1    sevan 			rge_patch_phy_mcu(sc, 0);
   1614   1.1    sevan 
   1615   1.1    sevan 			/* Enable PHY config. */
   1616   1.1    sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1617   1.1    sevan 
   1618   1.1    sevan 			/* Write microcode version. */
   1619   1.1    sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1620   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1621   1.1    sevan 		}
   1622   1.1    sevan 
   1623   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1624   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1625   1.1    sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1626   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1627   1.1    sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1628   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1629   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1630   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1631   1.1    sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1632   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1633   1.1    sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1634   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1635   1.1    sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1636   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1637   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1638   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1639   1.1    sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1640   1.1    sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1641   1.1    sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1642   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1643   1.1    sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1644   1.1    sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1645   1.1    sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1646   1.1    sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1647   1.1    sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1648   1.1    sevan 
   1649   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1650   1.1    sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1651   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1652   1.1    sevan 		for (i = 0; i < 26; i++)
   1653   1.1    sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1654   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1655   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1656   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1657   1.1    sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1658   1.1    sevan 
   1659   1.1    sevan 		rge_patch_phy_mcu(sc, 1);
   1660   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1661   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1662   1.1    sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1663   1.1    sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1664   1.1    sevan 			rge_write_phy_ocp(sc, 0xb890,
   1665   1.1    sevan 			    mac_cfg3_b88e_value[i + 1]);
   1666   1.1    sevan 		}
   1667   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1668   1.1    sevan 		rge_patch_phy_mcu(sc, 0);
   1669   1.1    sevan 
   1670   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1671   1.1    sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1672   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1673   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1674   1.1    sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1675   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1676   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1677   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1678   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1679   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1680   1.1    sevan 	}
   1681   1.1    sevan 
   1682   1.1    sevan 	/* Disable EEE. */
   1683   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1684   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1685   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1686   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1687   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1688   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1689   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1690   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1691   1.1    sevan 
   1692   1.1    sevan 	rge_patch_phy_mcu(sc, 1);
   1693   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1694   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1695   1.1    sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1696   1.1    sevan 	rge_patch_phy_mcu(sc, 0);
   1697   1.1    sevan }
   1698   1.1    sevan 
   1699   1.1    sevan void
   1700   1.1    sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1701   1.1    sevan {
   1702   1.1    sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1703   1.1    sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1704   1.1    sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1705   1.1    sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1706   1.1    sevan 	    addr[5] <<  8 | addr[4]);
   1707   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1708   1.1    sevan }
   1709   1.1    sevan 
   1710   1.1    sevan void
   1711   1.1    sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1712   1.1    sevan {
   1713   1.1    sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1714   1.1    sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1715   1.1    sevan }
   1716   1.1    sevan 
   1717   1.1    sevan void
   1718   1.1    sevan rge_hw_init(struct rge_softc *sc)
   1719   1.1    sevan {
   1720   1.1    sevan 	int i;
   1721   1.1    sevan 
   1722   1.1    sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1723   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1724   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1725   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1726   1.1    sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1727   1.1    sevan 
   1728   1.1    sevan 	/* Disable UPS. */
   1729   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1730   1.1    sevan 
   1731   1.1    sevan 	/* Configure MAC MCU. */
   1732   1.1    sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1733   1.1    sevan 
   1734   1.1    sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1735   1.1    sevan 		rge_write_mac_ocp(sc, i, 0);
   1736   1.1    sevan 
   1737   1.1    sevan 	DELAY(3000);
   1738   1.1    sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1739   1.1    sevan 
   1740   1.1    sevan 	if (sc->rge_type == MAC_CFG3) {
   1741   1.1    sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1742   1.1    sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1743   1.1    sevan 			    rtl8125_def_bps[i].val);
   1744   1.1    sevan 	}
   1745   1.1    sevan 
   1746   1.1    sevan 	/* Disable PHY power saving. */
   1747   1.1    sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1748   1.1    sevan 
   1749   1.1    sevan 	/* Set PCIe uncorrectable error status. */
   1750   1.1    sevan 	rge_write_csi(sc, 0x108,
   1751   1.1    sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1752   1.1    sevan }
   1753   1.1    sevan 
   1754   1.1    sevan void
   1755   1.1    sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1756   1.1    sevan {
   1757   1.1    sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1758   1.1    sevan 		rge_patch_phy_mcu(sc, 1);
   1759   1.1    sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1760   1.1    sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1761   1.1    sevan 		rge_patch_phy_mcu(sc, 0);
   1762   1.1    sevan 	}
   1763   1.1    sevan }
   1764   1.1    sevan 
   1765   1.1    sevan void
   1766   1.1    sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1767   1.1    sevan {
   1768   1.1    sevan 	uint16_t val;
   1769   1.1    sevan 	int i;
   1770   1.1    sevan 
   1771   1.1    sevan 	if (set)
   1772   1.1    sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1773   1.1    sevan 	else
   1774   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1775   1.1    sevan 
   1776   1.1    sevan 	for (i = 0; i < 1000; i++) {
   1777   1.1    sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1778   1.1    sevan 		DELAY(100);
   1779   1.1    sevan 		if (val == 0x0040)
   1780   1.1    sevan 			break;
   1781   1.1    sevan 	}
   1782   1.1    sevan 	if (i == 1000)
   1783   1.1    sevan 		printf("%s: timeout waiting to patch phy mcu\n",
   1784   1.1    sevan 		    sc->sc_dev.dv_xname);
   1785   1.1    sevan }
   1786   1.1    sevan 
   1787   1.1    sevan void
   1788   1.1    sevan rge_add_media_types(struct rge_softc *sc)
   1789   1.1    sevan {
   1790   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1791   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1792   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1793   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1794   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1795   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1796   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1797   1.1    sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1798   1.1    sevan }
   1799   1.1    sevan 
   1800   1.1    sevan void
   1801   1.1    sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1802   1.1    sevan {
   1803   1.1    sevan 	switch (imtype) {
   1804   1.1    sevan 	case RGE_IMTYPE_NONE:
   1805   1.1    sevan 		sc->rge_intrs = RGE_INTRS;
   1806   1.1    sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1807   1.1    sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1808   1.1    sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1809   1.1    sevan 		break;
   1810   1.1    sevan 	case RGE_IMTYPE_SIM:
   1811   1.1    sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1812   1.1    sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1813   1.1    sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1814   1.1    sevan 		break;
   1815   1.1    sevan 	default:
   1816   1.1    sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1817   1.1    sevan 	}
   1818   1.1    sevan }
   1819   1.1    sevan 
   1820   1.1    sevan void
   1821   1.1    sevan rge_disable_sim_im(struct rge_softc *sc)
   1822   1.1    sevan {
   1823   1.1    sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1824   1.1    sevan 	sc->rge_timerintr = 0;
   1825   1.1    sevan }
   1826   1.1    sevan 
   1827   1.1    sevan void
   1828   1.1    sevan rge_setup_sim_im(struct rge_softc *sc)
   1829   1.1    sevan {
   1830   1.1    sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1831   1.1    sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1832   1.1    sevan 	sc->rge_timerintr = 1;
   1833   1.1    sevan }
   1834   1.1    sevan 
   1835   1.1    sevan void
   1836   1.1    sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1837   1.1    sevan {
   1838   1.1    sevan 	rge_config_imtype(sc, imtype);
   1839   1.1    sevan 
   1840   1.1    sevan 	/* Enable interrupts. */
   1841   1.1    sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1842   1.1    sevan 
   1843   1.1    sevan 	switch (imtype) {
   1844   1.1    sevan 	case RGE_IMTYPE_NONE:
   1845   1.1    sevan 		rge_disable_sim_im(sc);
   1846   1.1    sevan 		break;
   1847   1.1    sevan 	case RGE_IMTYPE_SIM:
   1848   1.1    sevan 		rge_setup_sim_im(sc);
   1849   1.1    sevan 		break;
   1850   1.1    sevan 	default:
   1851   1.1    sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1852   1.1    sevan 	}
   1853   1.1    sevan }
   1854   1.1    sevan 
   1855   1.1    sevan void
   1856   1.1    sevan rge_exit_oob(struct rge_softc *sc)
   1857   1.1    sevan {
   1858   1.1    sevan 	int i;
   1859   1.1    sevan 
   1860   1.1    sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1861   1.1    sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1862   1.1    sevan 	    RGE_RXCFG_ERRPKT);
   1863   1.1    sevan 
   1864   1.1    sevan 	/* Disable RealWoW. */
   1865   1.1    sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1866   1.1    sevan 
   1867   1.1    sevan 	rge_reset(sc);
   1868   1.1    sevan 
   1869   1.1    sevan 	/* Disable OOB. */
   1870   1.1    sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1871   1.1    sevan 
   1872   1.1    sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1873   1.1    sevan 
   1874   1.1    sevan 	for (i = 0; i < 10; i++) {
   1875   1.1    sevan 		DELAY(100);
   1876   1.1    sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1877   1.1    sevan 			break;
   1878   1.1    sevan 	}
   1879   1.1    sevan 
   1880   1.1    sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1881   1.1    sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1882   1.1    sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1883   1.1    sevan 
   1884   1.1    sevan 	for (i = 0; i < 10; i++) {
   1885   1.1    sevan 		DELAY(100);
   1886   1.1    sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1887   1.1    sevan 			break;
   1888   1.1    sevan 	}
   1889   1.1    sevan 
   1890   1.1    sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1891   1.1    sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1892  1.10    sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
   1893   1.1    sevan 				break;
   1894   1.1    sevan 			DELAY(1000);
   1895   1.1    sevan 		}
   1896   1.1    sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1897   1.1    sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1898   1.1    sevan 	}
   1899   1.1    sevan }
   1900   1.1    sevan 
   1901   1.1    sevan void
   1902   1.1    sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1903   1.1    sevan {
   1904   1.1    sevan 	int i;
   1905   1.1    sevan 
   1906   1.1    sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1907   1.1    sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1908   1.1    sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1909   1.1    sevan 
   1910   1.1    sevan 	for (i = 0; i < 10; i++) {
   1911   1.1    sevan 		 DELAY(100);
   1912   1.1    sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1913   1.1    sevan 			break;
   1914   1.1    sevan 	}
   1915   1.1    sevan 
   1916   1.1    sevan 	DELAY(20);
   1917   1.1    sevan }
   1918   1.1    sevan 
   1919   1.1    sevan uint32_t
   1920   1.1    sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1921   1.1    sevan {
   1922   1.1    sevan 	int i;
   1923   1.1    sevan 
   1924   1.1    sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1925   1.1    sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1926   1.1    sevan 
   1927   1.1    sevan 	for (i = 0; i < 10; i++) {
   1928   1.1    sevan 		 DELAY(100);
   1929   1.1    sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1930   1.1    sevan 			break;
   1931   1.1    sevan 	}
   1932   1.1    sevan 
   1933   1.1    sevan 	DELAY(20);
   1934   1.1    sevan 
   1935   1.1    sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1936   1.1    sevan }
   1937   1.1    sevan 
   1938   1.1    sevan void
   1939   1.1    sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1940   1.1    sevan {
   1941   1.1    sevan 	uint32_t tmp;
   1942   1.1    sevan 
   1943   1.1    sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1944   1.1    sevan 	tmp += val;
   1945   1.1    sevan 	tmp |= RGE_MACOCP_BUSY;
   1946   1.1    sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1947   1.1    sevan }
   1948   1.1    sevan 
   1949   1.1    sevan uint16_t
   1950   1.1    sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1951   1.1    sevan {
   1952   1.1    sevan 	uint32_t val;
   1953   1.1    sevan 
   1954   1.1    sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1955   1.1    sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1956   1.1    sevan 
   1957   1.1    sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1958   1.1    sevan }
   1959   1.1    sevan 
   1960   1.1    sevan void
   1961   1.1    sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1962   1.1    sevan {
   1963   1.1    sevan 	uint32_t tmp;
   1964   1.1    sevan 	int i;
   1965   1.1    sevan 
   1966   1.1    sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1967   1.1    sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1968   1.1    sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1969   1.1    sevan 
   1970   1.1    sevan 	for (i = 0; i < 10; i++) {
   1971   1.1    sevan 		DELAY(100);
   1972   1.1    sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1973   1.1    sevan 			break;
   1974   1.1    sevan 	}
   1975   1.1    sevan 
   1976   1.1    sevan 	DELAY(20);
   1977   1.1    sevan }
   1978   1.1    sevan 
   1979   1.1    sevan void
   1980   1.1    sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1981   1.1    sevan {
   1982   1.1    sevan 	uint16_t off, phyaddr;
   1983   1.1    sevan 
   1984   1.1    sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1985   1.1    sevan 	phyaddr <<= 4;
   1986   1.1    sevan 
   1987   1.1    sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1988   1.1    sevan 
   1989   1.1    sevan 	phyaddr += (off - 16) << 1;
   1990   1.1    sevan 
   1991   1.1    sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1992   1.1    sevan }
   1993   1.1    sevan 
   1994   1.1    sevan void
   1995   1.1    sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1996   1.1    sevan {
   1997   1.1    sevan 	uint32_t tmp;
   1998   1.1    sevan 	int i;
   1999   1.1    sevan 
   2000   1.1    sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2001   1.1    sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   2002   1.1    sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   2003   1.1    sevan 
   2004   1.1    sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2005   1.1    sevan 		DELAY(1);
   2006   1.1    sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   2007   1.1    sevan 			break;
   2008   1.1    sevan 	}
   2009   1.1    sevan }
   2010   1.1    sevan 
   2011   1.1    sevan uint16_t
   2012   1.1    sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   2013   1.1    sevan {
   2014   1.1    sevan 	uint32_t val;
   2015   1.1    sevan 	int i;
   2016   1.1    sevan 
   2017   1.1    sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2018   1.1    sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   2019   1.1    sevan 
   2020   1.1    sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2021   1.1    sevan 		DELAY(1);
   2022   1.1    sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   2023   1.1    sevan 		if (val & RGE_PHYOCP_BUSY)
   2024   1.1    sevan 			break;
   2025   1.1    sevan 	}
   2026   1.1    sevan 
   2027   1.1    sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   2028   1.1    sevan }
   2029   1.1    sevan 
   2030   1.1    sevan int
   2031   1.1    sevan rge_get_link_status(struct rge_softc *sc)
   2032   1.1    sevan {
   2033   1.1    sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2034   1.1    sevan }
   2035   1.1    sevan 
   2036   1.1    sevan void
   2037   1.3    sevan rge_txstart(struct work *wk, void *arg)
   2038   1.1    sevan {
   2039   1.1    sevan 	struct rge_softc *sc = arg;
   2040   1.1    sevan 
   2041   1.1    sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2042   1.1    sevan }
   2043   1.1    sevan 
   2044   1.1    sevan void
   2045   1.1    sevan rge_tick(void *arg)
   2046   1.1    sevan {
   2047   1.1    sevan 	struct rge_softc *sc = arg;
   2048   1.1    sevan 	int s;
   2049   1.1    sevan 
   2050   1.1    sevan 	s = splnet();
   2051   1.1    sevan 	rge_link_state(sc);
   2052   1.1    sevan 	splx(s);
   2053   1.1    sevan 
   2054   1.1    sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   2055   1.1    sevan }
   2056   1.1    sevan 
   2057   1.1    sevan void
   2058   1.1    sevan rge_link_state(struct rge_softc *sc)
   2059   1.1    sevan {
   2060   1.2    sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2061   1.1    sevan 	int link = LINK_STATE_DOWN;
   2062   1.1    sevan 
   2063   1.1    sevan 	if (rge_get_link_status(sc))
   2064   1.1    sevan 		link = LINK_STATE_UP;
   2065   1.1    sevan 
   2066   1.1    sevan 	if (ifp->if_link_state != link) {
   2067   1.1    sevan 		ifp->if_link_state = link;
   2068   1.2    sevan 		if_link_state_change(ifp, LINK_STATE_DOWN);
   2069   1.1    sevan 	}
   2070   1.1    sevan }
   2071