if_rge.c revision 1.12 1 1.12 sevan /* $NetBSD: if_rge.c,v 1.12 2020/05/30 21:39:49 sevan Exp $ */
2 1.11 sevan /* $OpenBSD: if_rge.c,v 1.3 2020/03/27 15:15:24 krw Exp $ */
3 1.1 sevan
4 1.1 sevan /*
5 1.1 sevan * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
6 1.1 sevan *
7 1.1 sevan * Permission to use, copy, modify, and distribute this software for any
8 1.1 sevan * purpose with or without fee is hereby granted, provided that the above
9 1.1 sevan * copyright notice and this permission notice appear in all copies.
10 1.1 sevan *
11 1.1 sevan * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 sevan * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 sevan * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 sevan * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 sevan * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 sevan * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 sevan * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 sevan */
19 1.1 sevan
20 1.2 sevan #include <sys/cdefs.h>
21 1.12 sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.12 2020/05/30 21:39:49 sevan Exp $");
22 1.2 sevan
23 1.2 sevan /* #include "vlan.h" Sevan */
24 1.2 sevan
25 1.2 sevan #include <sys/types.h>
26 1.1 sevan
27 1.1 sevan #include <sys/param.h>
28 1.1 sevan #include <sys/systm.h>
29 1.1 sevan #include <sys/sockio.h>
30 1.1 sevan #include <sys/mbuf.h>
31 1.1 sevan #include <sys/malloc.h>
32 1.1 sevan #include <sys/kernel.h>
33 1.1 sevan #include <sys/socket.h>
34 1.1 sevan #include <sys/device.h>
35 1.1 sevan #include <sys/endian.h>
36 1.3 sevan #include <sys/callout.h>
37 1.3 sevan #include <sys/workqueue.h>
38 1.1 sevan
39 1.1 sevan #include <net/if.h>
40 1.2 sevan
41 1.2 sevan #include <net/if_dl.h>
42 1.2 sevan #include <net/if_ether.h>
43 1.2 sevan
44 1.1 sevan #include <net/if_media.h>
45 1.1 sevan
46 1.1 sevan #include <netinet/in.h>
47 1.2 sevan #include <net/if_ether.h>
48 1.1 sevan
49 1.1 sevan #if NBPFILTER > 0
50 1.1 sevan #include <net/bpf.h>
51 1.1 sevan #endif
52 1.1 sevan
53 1.2 sevan #include <sys/bus.h>
54 1.1 sevan #include <machine/intr.h>
55 1.1 sevan
56 1.1 sevan #include <dev/mii/mii.h>
57 1.1 sevan
58 1.1 sevan #include <dev/pci/pcivar.h>
59 1.1 sevan #include <dev/pci/pcireg.h>
60 1.1 sevan #include <dev/pci/pcidevs.h>
61 1.1 sevan
62 1.1 sevan #include <dev/pci/if_rgereg.h>
63 1.1 sevan
64 1.2 sevan #ifdef __NetBSD__
65 1.2 sevan #define letoh32 htole32
66 1.2 sevan #define nitems(x) __arraycount(x)
67 1.2 sevan #define MBUF_LIST_INITIALIZER() { NULL, NULL, 0 }
68 1.2 sevan struct mbuf_list {
69 1.2 sevan struct mbuf *ml_head;
70 1.2 sevan struct mbuf *ml_tail;
71 1.2 sevan u_int ml_len;
72 1.2 sevan };
73 1.7 sevan
74 1.7 sevan static struct mbuf *
75 1.7 sevan MCLGETI(struct rge_softc *sc __unused, int how,
76 1.7 sevan struct ifnet *ifp __unused, u_int size)
77 1.7 sevan {
78 1.7 sevan struct mbuf *m;
79 1.7 sevan
80 1.7 sevan MGETHDR(m, how, MT_DATA);
81 1.7 sevan if (m == NULL)
82 1.7 sevan return NULL;
83 1.7 sevan
84 1.7 sevan MEXTMALLOC(m, size, how);
85 1.7 sevan if ((m->m_flags & M_EXT) == 0) {
86 1.7 sevan m_freem(m);
87 1.7 sevan return NULL;
88 1.7 sevan }
89 1.7 sevan return m;
90 1.7 sevan }
91 1.7 sevan
92 1.3 sevan #ifdef NET_MPSAFE
93 1.3 sevan #define RGE_MPSAFE 1
94 1.3 sevan #define CALLOUT_FLAGS CALLOUT_MPSAFE
95 1.3 sevan #else
96 1.3 sevan #define CALLOUT_FLAGS 0
97 1.3 sevan #endif
98 1.2 sevan #endif
99 1.2 sevan
100 1.2 sevan static int rge_match(device_t, cfdata_t, void *);
101 1.5 skrll static void rge_attach(device_t, device_t, void *);
102 1.1 sevan int rge_intr(void *);
103 1.1 sevan int rge_encap(struct rge_softc *, struct mbuf *, int);
104 1.2 sevan int rge_ioctl(struct ifnet *, u_long, void *);
105 1.2 sevan void rge_start(struct ifnet *);
106 1.1 sevan void rge_watchdog(struct ifnet *);
107 1.1 sevan int rge_init(struct ifnet *);
108 1.1 sevan void rge_stop(struct ifnet *);
109 1.1 sevan int rge_ifmedia_upd(struct ifnet *);
110 1.1 sevan void rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
111 1.1 sevan int rge_allocmem(struct rge_softc *);
112 1.1 sevan int rge_newbuf(struct rge_softc *, int);
113 1.1 sevan void rge_discard_rxbuf(struct rge_softc *, int);
114 1.1 sevan int rge_rx_list_init(struct rge_softc *);
115 1.1 sevan void rge_tx_list_init(struct rge_softc *);
116 1.1 sevan int rge_rxeof(struct rge_softc *);
117 1.1 sevan int rge_txeof(struct rge_softc *);
118 1.1 sevan void rge_reset(struct rge_softc *);
119 1.1 sevan void rge_iff(struct rge_softc *);
120 1.1 sevan void rge_set_phy_power(struct rge_softc *, int);
121 1.1 sevan void rge_phy_config(struct rge_softc *);
122 1.1 sevan void rge_set_macaddr(struct rge_softc *, const uint8_t *);
123 1.1 sevan void rge_get_macaddr(struct rge_softc *, uint8_t *);
124 1.1 sevan void rge_hw_init(struct rge_softc *);
125 1.1 sevan void rge_disable_phy_ocp_pwrsave(struct rge_softc *);
126 1.1 sevan void rge_patch_phy_mcu(struct rge_softc *, int);
127 1.1 sevan void rge_add_media_types(struct rge_softc *);
128 1.1 sevan void rge_config_imtype(struct rge_softc *, int);
129 1.1 sevan void rge_disable_sim_im(struct rge_softc *);
130 1.1 sevan void rge_setup_sim_im(struct rge_softc *);
131 1.1 sevan void rge_setup_intr(struct rge_softc *, int);
132 1.1 sevan void rge_exit_oob(struct rge_softc *);
133 1.1 sevan void rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
134 1.1 sevan uint32_t rge_read_csi(struct rge_softc *, uint32_t);
135 1.1 sevan void rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
136 1.1 sevan uint16_t rge_read_mac_ocp(struct rge_softc *, uint16_t);
137 1.1 sevan void rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
138 1.1 sevan void rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
139 1.1 sevan void rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
140 1.1 sevan uint16_t rge_read_phy_ocp(struct rge_softc *, uint16_t);
141 1.1 sevan int rge_get_link_status(struct rge_softc *);
142 1.3 sevan void rge_txstart(struct work *, void *);
143 1.1 sevan void rge_tick(void *);
144 1.1 sevan void rge_link_state(struct rge_softc *);
145 1.1 sevan
146 1.1 sevan static const struct {
147 1.1 sevan uint16_t reg;
148 1.1 sevan uint16_t val;
149 1.1 sevan } rtl8125_def_bps[] = {
150 1.1 sevan RTL8125_DEF_BPS
151 1.1 sevan }, rtl8125_mac_cfg2_ephy[] = {
152 1.1 sevan RTL8125_MAC_CFG2_EPHY
153 1.1 sevan }, rtl8125_mac_cfg2_mcu[] = {
154 1.1 sevan RTL8125_MAC_CFG2_MCU
155 1.1 sevan }, rtl8125_mac_cfg3_ephy[] = {
156 1.1 sevan RTL8125_MAC_CFG3_EPHY
157 1.1 sevan }, rtl8125_mac_cfg3_mcu[] = {
158 1.1 sevan RTL8125_MAC_CFG3_MCU
159 1.1 sevan };
160 1.1 sevan
161 1.2 sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
162 1.2 sevan NULL, NULL); /* Sevan - detach function? */
163 1.1 sevan
164 1.2 sevan extern struct cfdriver rge_cd;
165 1.1 sevan
166 1.2 sevan static const struct {
167 1.2 sevan pci_vendor_id_t vendor;
168 1.2 sevan pci_product_id_t product;
169 1.2 sevan }rge_devices[] = {
170 1.1 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
171 1.2 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
172 1.1 sevan };
173 1.1 sevan
174 1.2 sevan static int
175 1.2 sevan rge_match(device_t parent, cfdata_t match, void *aux)
176 1.1 sevan {
177 1.2 sevan struct pci_attach_args *pa =aux;
178 1.2 sevan int n;
179 1.2 sevan
180 1.2 sevan for (n =0; n < __arraycount(rge_devices); n++) {
181 1.2 sevan if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
182 1.2 sevan PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
183 1.2 sevan return 1;
184 1.2 sevan }
185 1.2 sevan
186 1.2 sevan return 0;
187 1.1 sevan }
188 1.1 sevan
189 1.1 sevan void
190 1.2 sevan rge_attach(device_t parent, device_t self, void *aux)
191 1.1 sevan {
192 1.11 sevan struct rge_softc *sc = device_private(self);
193 1.1 sevan struct pci_attach_args *pa = aux;
194 1.1 sevan pci_chipset_tag_t pc = pa->pa_pc;
195 1.1 sevan pci_intr_handle_t ih;
196 1.2 sevan char intrbuf[PCI_INTRSTR_LEN];
197 1.1 sevan const char *intrstr = NULL;
198 1.1 sevan struct ifnet *ifp;
199 1.1 sevan pcireg_t reg;
200 1.1 sevan uint32_t hwrev;
201 1.1 sevan uint8_t eaddr[ETHER_ADDR_LEN];
202 1.1 sevan int offset;
203 1.1 sevan
204 1.1 sevan pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
205 1.1 sevan
206 1.12 sevan sc->sc_dev = self;
207 1.12 sevan
208 1.5 skrll /*
209 1.1 sevan * Map control/status registers.
210 1.1 sevan */
211 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
212 1.1 sevan PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
213 1.2 sevan NULL, &sc->rge_bsize)) {
214 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
215 1.1 sevan PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
216 1.2 sevan &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
217 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
218 1.1 sevan 0, &sc->rge_btag, &sc->rge_bhandle, NULL,
219 1.2 sevan &sc->rge_bsize)) {
220 1.1 sevan printf(": can't map mem or i/o space\n");
221 1.1 sevan return;
222 1.1 sevan }
223 1.1 sevan }
224 1.1 sevan }
225 1.1 sevan
226 1.5 skrll /*
227 1.1 sevan * Allocate interrupt.
228 1.1 sevan */
229 1.2 sevan if (pci_intr_map(pa, &ih) == 0)
230 1.1 sevan sc->rge_flags |= RGE_FLAG_MSI;
231 1.1 sevan else if (pci_intr_map(pa, &ih) != 0) {
232 1.1 sevan printf(": couldn't map interrupt\n");
233 1.1 sevan return;
234 1.1 sevan }
235 1.2 sevan intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
236 1.2 sevan sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
237 1.1 sevan sc, sc->sc_dev.dv_xname);
238 1.1 sevan if (sc->sc_ih == NULL) {
239 1.1 sevan printf(": couldn't establish interrupt");
240 1.1 sevan if (intrstr != NULL)
241 1.1 sevan printf(" at %s", intrstr);
242 1.1 sevan printf("\n");
243 1.1 sevan return;
244 1.1 sevan }
245 1.1 sevan printf(": %s", intrstr);
246 1.1 sevan
247 1.9 thorpej if (pci_dma64_available(pa))
248 1.9 thorpej sc->sc_dmat = pa->pa_dmat64;
249 1.9 thorpej else
250 1.9 thorpej sc->sc_dmat = pa->pa_dmat;
251 1.9 thorpej
252 1.1 sevan sc->sc_pc = pa->pa_pc;
253 1.1 sevan sc->sc_tag = pa->pa_tag;
254 1.1 sevan
255 1.1 sevan /* Determine hardware revision */
256 1.1 sevan hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
257 1.1 sevan switch (hwrev) {
258 1.1 sevan case 0x60800000:
259 1.1 sevan sc->rge_type = MAC_CFG2;
260 1.1 sevan break;
261 1.1 sevan case 0x60900000:
262 1.1 sevan sc->rge_type = MAC_CFG3;
263 1.1 sevan break;
264 1.1 sevan default:
265 1.1 sevan printf(": unknown version 0x%08x\n", hwrev);
266 1.1 sevan return;
267 1.1 sevan }
268 1.1 sevan
269 1.1 sevan rge_config_imtype(sc, RGE_IMTYPE_SIM);
270 1.1 sevan
271 1.5 skrll /*
272 1.1 sevan * PCI Express check.
273 1.1 sevan */
274 1.1 sevan if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
275 1.1 sevan &offset, NULL)) {
276 1.2 sevan /* Disable PCIe ASPM. */
277 1.1 sevan reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
278 1.2 sevan offset + PCIE_LCSR);
279 1.2 sevan reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
280 1.2 sevan pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
281 1.1 sevan reg);
282 1.1 sevan }
283 1.1 sevan
284 1.1 sevan rge_exit_oob(sc);
285 1.1 sevan rge_hw_init(sc);
286 1.1 sevan
287 1.1 sevan rge_get_macaddr(sc, eaddr);
288 1.1 sevan printf(", address %s\n", ether_sprintf(eaddr));
289 1.1 sevan
290 1.2 sevan memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
291 1.1 sevan
292 1.1 sevan rge_set_phy_power(sc, 1);
293 1.1 sevan rge_phy_config(sc);
294 1.1 sevan
295 1.1 sevan if (rge_allocmem(sc))
296 1.1 sevan return;
297 1.1 sevan
298 1.2 sevan ifp = &sc->sc_ec.ec_if;
299 1.1 sevan ifp->if_softc = sc;
300 1.1 sevan strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
301 1.1 sevan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
302 1.2 sevan #ifdef RGE_MPSAFE
303 1.2 sevan ifp->if_xflags = IFEF_MPSAFE;
304 1.2 sevan #endif
305 1.1 sevan ifp->if_ioctl = rge_ioctl;
306 1.2 sevan ifp->if_start = rge_start;
307 1.1 sevan ifp->if_watchdog = rge_watchdog;
308 1.1 sevan IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
309 1.2 sevan ifp->if_mtu = RGE_JUMBO_MTU;
310 1.1 sevan
311 1.2 sevan ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
312 1.2 sevan IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
313 1.2 sevan IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
314 1.1 sevan
315 1.1 sevan #if NVLAN > 0
316 1.1 sevan ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
317 1.1 sevan #endif
318 1.1 sevan
319 1.3 sevan callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
320 1.3 sevan callout_setfunc(&sc->sc_timeout, rge_tick, sc);
321 1.3 sevan rge_txstart(&sc->sc_task, sc);
322 1.1 sevan
323 1.1 sevan /* Initialize ifmedia structures. */
324 1.1 sevan ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
325 1.1 sevan rge_ifmedia_sts);
326 1.1 sevan rge_add_media_types(sc);
327 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
328 1.1 sevan ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
329 1.1 sevan sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
330 1.1 sevan
331 1.1 sevan if_attach(ifp);
332 1.2 sevan ether_ifattach(ifp, eaddr);
333 1.1 sevan }
334 1.1 sevan
335 1.1 sevan int
336 1.1 sevan rge_intr(void *arg)
337 1.1 sevan {
338 1.1 sevan struct rge_softc *sc = arg;
339 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
340 1.1 sevan uint32_t status;
341 1.1 sevan int claimed = 0, rx, tx;
342 1.1 sevan
343 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
344 1.1 sevan return (0);
345 1.1 sevan
346 1.1 sevan /* Disable interrupts. */
347 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
348 1.1 sevan
349 1.1 sevan status = RGE_READ_4(sc, RGE_ISR);
350 1.1 sevan if (!(sc->rge_flags & RGE_FLAG_MSI)) {
351 1.1 sevan if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
352 1.1 sevan return (0);
353 1.1 sevan }
354 1.1 sevan if (status)
355 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, status);
356 1.1 sevan
357 1.1 sevan if (status & RGE_ISR_PCS_TIMEOUT)
358 1.1 sevan claimed = 1;
359 1.1 sevan
360 1.1 sevan rx = tx = 0;
361 1.1 sevan if (status & RGE_INTRS) {
362 1.1 sevan if (status &
363 1.1 sevan (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
364 1.1 sevan rx |= rge_rxeof(sc);
365 1.1 sevan claimed = 1;
366 1.1 sevan }
367 1.1 sevan
368 1.1 sevan if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
369 1.1 sevan tx |= rge_txeof(sc);
370 1.1 sevan claimed = 1;
371 1.1 sevan }
372 1.1 sevan
373 1.1 sevan if (status & RGE_ISR_SYSTEM_ERR) {
374 1.2 sevan KERNEL_LOCK(1, NULL);
375 1.1 sevan rge_init(ifp);
376 1.2 sevan KERNEL_UNLOCK_ONE(NULL);
377 1.1 sevan claimed = 1;
378 1.1 sevan }
379 1.1 sevan }
380 1.1 sevan
381 1.1 sevan if (sc->rge_timerintr) {
382 1.1 sevan if ((tx | rx) == 0) {
383 1.1 sevan /*
384 1.1 sevan * Nothing needs to be processed, fallback
385 1.1 sevan * to use TX/RX interrupts.
386 1.1 sevan */
387 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_NONE);
388 1.1 sevan
389 1.1 sevan /*
390 1.1 sevan * Recollect, mainly to avoid the possible
391 1.1 sevan * race introduced by changing interrupt
392 1.1 sevan * masks.
393 1.1 sevan */
394 1.1 sevan rge_rxeof(sc);
395 1.1 sevan rge_txeof(sc);
396 1.1 sevan } else
397 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
398 1.1 sevan } else if (tx | rx) {
399 1.1 sevan /*
400 1.1 sevan * Assume that using simulated interrupt moderation
401 1.1 sevan * (hardware timer based) could reduce the interrupt
402 1.1 sevan * rate.
403 1.1 sevan */
404 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
405 1.1 sevan }
406 1.1 sevan
407 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
408 1.1 sevan
409 1.1 sevan return (claimed);
410 1.1 sevan }
411 1.1 sevan
412 1.1 sevan int
413 1.1 sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
414 1.1 sevan {
415 1.1 sevan struct rge_tx_desc *d = NULL;
416 1.1 sevan struct rge_txq *txq;
417 1.1 sevan bus_dmamap_t txmap;
418 1.1 sevan uint32_t cmdsts, cflags = 0;
419 1.1 sevan int cur, error, i, last, nsegs;
420 1.1 sevan
421 1.1 sevan /*
422 1.1 sevan * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
423 1.1 sevan * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
424 1.1 sevan * take affect.
425 1.1 sevan */
426 1.1 sevan if ((m->m_pkthdr.csum_flags &
427 1.2 sevan (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
428 1.1 sevan cflags |= RGE_TDEXTSTS_IPCSUM;
429 1.1 sevan if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
430 1.1 sevan cflags |= RGE_TDEXTSTS_TCPCSUM;
431 1.1 sevan if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
432 1.1 sevan cflags |= RGE_TDEXTSTS_UDPCSUM;
433 1.1 sevan }
434 1.1 sevan
435 1.1 sevan txq = &sc->rge_ldata.rge_txq[idx];
436 1.1 sevan txmap = txq->txq_dmamap;
437 1.1 sevan
438 1.1 sevan error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
439 1.1 sevan switch (error) {
440 1.1 sevan case 0:
441 1.1 sevan break;
442 1.1 sevan case EFBIG: /* mbuf chain is too fragmented */
443 1.1 sevan if (m_defrag(m, M_DONTWAIT) == 0 &&
444 1.1 sevan bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
445 1.1 sevan BUS_DMA_NOWAIT) == 0)
446 1.1 sevan break;
447 1.1 sevan
448 1.1 sevan /* FALLTHROUGH */
449 1.1 sevan default:
450 1.1 sevan return (0);
451 1.1 sevan }
452 1.1 sevan
453 1.1 sevan bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
454 1.1 sevan BUS_DMASYNC_PREWRITE);
455 1.1 sevan
456 1.1 sevan nsegs = txmap->dm_nsegs;
457 1.1 sevan
458 1.1 sevan /* Set up hardware VLAN tagging. */
459 1.1 sevan #if NVLAN > 0
460 1.1 sevan if (m->m_flags & M_VLANTAG)
461 1.1 sevan cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
462 1.1 sevan #endif
463 1.1 sevan
464 1.1 sevan cur = idx;
465 1.1 sevan cmdsts = RGE_TDCMDSTS_SOF;
466 1.1 sevan
467 1.1 sevan for (i = 0; i < txmap->dm_nsegs; i++) {
468 1.1 sevan d = &sc->rge_ldata.rge_tx_list[cur];
469 1.1 sevan
470 1.1 sevan d->rge_extsts = htole32(cflags);
471 1.1 sevan d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
472 1.1 sevan d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
473 1.1 sevan
474 1.1 sevan cmdsts |= txmap->dm_segs[i].ds_len;
475 1.1 sevan
476 1.1 sevan if (cur == RGE_TX_LIST_CNT - 1)
477 1.1 sevan cmdsts |= RGE_TDCMDSTS_EOR;
478 1.1 sevan
479 1.1 sevan d->rge_cmdsts = htole32(cmdsts);
480 1.1 sevan
481 1.1 sevan last = cur;
482 1.1 sevan cmdsts = RGE_TDCMDSTS_OWN;
483 1.1 sevan cur = RGE_NEXT_TX_DESC(cur);
484 1.1 sevan }
485 1.1 sevan
486 1.1 sevan /* Set EOF on the last descriptor. */
487 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
488 1.1 sevan
489 1.1 sevan /* Transfer ownership of packet to the chip. */
490 1.1 sevan d = &sc->rge_ldata.rge_tx_list[idx];
491 1.1 sevan
492 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
493 1.1 sevan
494 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
495 1.1 sevan cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
496 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
497 1.1 sevan
498 1.1 sevan /* Update info of TX queue and descriptors. */
499 1.1 sevan txq->txq_mbuf = m;
500 1.1 sevan txq->txq_descidx = last;
501 1.1 sevan
502 1.1 sevan return (nsegs);
503 1.1 sevan }
504 1.1 sevan
505 1.1 sevan int
506 1.2 sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
507 1.1 sevan {
508 1.1 sevan struct rge_softc *sc = ifp->if_softc;
509 1.1 sevan struct ifreq *ifr = (struct ifreq *)data;
510 1.1 sevan int s, error = 0;
511 1.1 sevan
512 1.1 sevan s = splnet();
513 1.1 sevan
514 1.1 sevan switch (cmd) {
515 1.1 sevan case SIOCSIFADDR:
516 1.1 sevan ifp->if_flags |= IFF_UP;
517 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
518 1.1 sevan rge_init(ifp);
519 1.1 sevan break;
520 1.1 sevan case SIOCSIFFLAGS:
521 1.1 sevan if (ifp->if_flags & IFF_UP) {
522 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
523 1.1 sevan error = ENETRESET;
524 1.1 sevan else
525 1.1 sevan rge_init(ifp);
526 1.1 sevan } else {
527 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
528 1.1 sevan rge_stop(ifp);
529 1.1 sevan }
530 1.1 sevan break;
531 1.1 sevan case SIOCGIFMEDIA:
532 1.1 sevan case SIOCSIFMEDIA:
533 1.1 sevan error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
534 1.1 sevan break;
535 1.1 sevan case SIOCSIFMTU:
536 1.2 sevan if (ifr->ifr_mtu > ifp->if_mtu) {
537 1.1 sevan error = EINVAL;
538 1.1 sevan break;
539 1.1 sevan }
540 1.1 sevan ifp->if_mtu = ifr->ifr_mtu;
541 1.1 sevan break;
542 1.1 sevan default:
543 1.2 sevan error = ether_ioctl(ifp, cmd, data);
544 1.1 sevan }
545 1.1 sevan
546 1.1 sevan if (error == ENETRESET) {
547 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
548 1.1 sevan rge_iff(sc);
549 1.1 sevan error = 0;
550 1.1 sevan }
551 1.1 sevan
552 1.1 sevan splx(s);
553 1.1 sevan return (error);
554 1.1 sevan }
555 1.1 sevan
556 1.1 sevan void
557 1.3 sevan rge_start(struct ifnet *ifp)
558 1.1 sevan {
559 1.1 sevan struct rge_softc *sc = ifp->if_softc;
560 1.1 sevan struct mbuf *m;
561 1.1 sevan int free, idx, used;
562 1.1 sevan int queued = 0;
563 1.1 sevan
564 1.2 sevan #define LINK_STATE_IS_UP(_s) \
565 1.2 sevan ((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
566 1.2 sevan
567 1.1 sevan if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
568 1.1 sevan ifq_purge(ifq);
569 1.1 sevan return;
570 1.1 sevan }
571 1.1 sevan
572 1.1 sevan /* Calculate free space. */
573 1.1 sevan idx = sc->rge_ldata.rge_txq_prodidx;
574 1.1 sevan free = sc->rge_ldata.rge_txq_considx;
575 1.1 sevan if (free <= idx)
576 1.1 sevan free += RGE_TX_LIST_CNT;
577 1.1 sevan free -= idx;
578 1.1 sevan
579 1.1 sevan for (;;) {
580 1.1 sevan if (RGE_TX_NSEGS >= free + 2) {
581 1.3 sevan SET(ifp->if_flags, IFF_OACTIVE);
582 1.1 sevan break;
583 1.1 sevan }
584 1.1 sevan
585 1.3 sevan IFQ_DEQUEUE(&ifp->if_snd, m);
586 1.1 sevan if (m == NULL)
587 1.1 sevan break;
588 1.1 sevan
589 1.1 sevan used = rge_encap(sc, m, idx);
590 1.1 sevan if (used == 0) {
591 1.1 sevan m_freem(m);
592 1.1 sevan continue;
593 1.1 sevan }
594 1.1 sevan
595 1.1 sevan KASSERT(used <= free);
596 1.1 sevan free -= used;
597 1.1 sevan
598 1.1 sevan #if NBPFILTER > 0
599 1.1 sevan if (ifp->if_bpf)
600 1.1 sevan bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
601 1.1 sevan #endif
602 1.1 sevan
603 1.1 sevan idx += used;
604 1.1 sevan if (idx >= RGE_TX_LIST_CNT)
605 1.1 sevan idx -= RGE_TX_LIST_CNT;
606 1.1 sevan
607 1.1 sevan queued++;
608 1.1 sevan }
609 1.1 sevan
610 1.1 sevan if (queued == 0)
611 1.1 sevan return;
612 1.1 sevan
613 1.1 sevan /* Set a timeout in case the chip goes out to lunch. */
614 1.1 sevan ifp->if_timer = 5;
615 1.1 sevan
616 1.1 sevan sc->rge_ldata.rge_txq_prodidx = idx;
617 1.1 sevan ifq_serialize(ifq, &sc->sc_task);
618 1.1 sevan }
619 1.1 sevan
620 1.1 sevan void
621 1.1 sevan rge_watchdog(struct ifnet *ifp)
622 1.1 sevan {
623 1.1 sevan struct rge_softc *sc = ifp->if_softc;
624 1.1 sevan
625 1.1 sevan printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
626 1.4 skrll if_statinc(ifp, if_oerrors);
627 1.1 sevan
628 1.1 sevan rge_init(ifp);
629 1.1 sevan }
630 1.1 sevan
631 1.1 sevan int
632 1.1 sevan rge_init(struct ifnet *ifp)
633 1.1 sevan {
634 1.1 sevan struct rge_softc *sc = ifp->if_softc;
635 1.1 sevan uint32_t val;
636 1.1 sevan uint16_t max_frame_size;
637 1.1 sevan int i;
638 1.1 sevan
639 1.1 sevan rge_stop(ifp);
640 1.1 sevan
641 1.1 sevan /* Set MAC address. */
642 1.2 sevan rge_set_macaddr(sc, sc->sc_enaddr);
643 1.1 sevan
644 1.1 sevan /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
645 1.1 sevan if (ifp->if_mtu < ETHERMTU)
646 1.1 sevan max_frame_size = ETHERMTU;
647 1.1 sevan else
648 1.1 sevan max_frame_size = ifp->if_mtu;
649 1.1 sevan
650 1.1 sevan max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
651 1.1 sevan ETHER_CRC_LEN + 1;
652 1.1 sevan
653 1.1 sevan if (max_frame_size > RGE_JUMBO_FRAMELEN)
654 1.5 skrll max_frame_size -= 1;
655 1.1 sevan
656 1.1 sevan RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
657 1.1 sevan
658 1.1 sevan /* Initialize RX descriptors list. */
659 1.1 sevan if (rge_rx_list_init(sc) == ENOBUFS) {
660 1.1 sevan printf("%s: init failed: no memory for RX buffers\n",
661 1.1 sevan sc->sc_dev.dv_xname);
662 1.1 sevan rge_stop(ifp);
663 1.1 sevan return (ENOBUFS);
664 1.1 sevan }
665 1.1 sevan
666 1.1 sevan /* Initialize TX descriptors. */
667 1.1 sevan rge_tx_list_init(sc);
668 1.1 sevan
669 1.1 sevan /* Load the addresses of the RX and TX lists into the chip. */
670 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
671 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
672 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
673 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
674 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
675 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
676 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
677 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
678 1.1 sevan
679 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
680 1.1 sevan
681 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
682 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
683 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
684 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
685 1.1 sevan
686 1.1 sevan /* Clear interrupt moderation timer. */
687 1.1 sevan for (i = 0; i < 64; i++)
688 1.1 sevan RGE_WRITE_4(sc, RGE_IM(i), 0);
689 1.1 sevan
690 1.1 sevan /* Set the initial RX and TX configurations. */
691 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
692 1.1 sevan RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
693 1.1 sevan
694 1.1 sevan val = rge_read_csi(sc, 0x70c) & ~0xff000000;
695 1.1 sevan rge_write_csi(sc, 0x70c, val | 0x27000000);
696 1.1 sevan
697 1.1 sevan /* Enable hardware optimization function. */
698 1.1 sevan val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
699 1.1 sevan pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
700 1.1 sevan
701 1.1 sevan RGE_WRITE_2(sc, 0x0382, 0x221b);
702 1.1 sevan RGE_WRITE_1(sc, 0x4500, 0);
703 1.1 sevan RGE_WRITE_2(sc, 0x4800, 0);
704 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
705 1.1 sevan
706 1.1 sevan rge_write_mac_ocp(sc, 0xc140, 0xffff);
707 1.1 sevan rge_write_mac_ocp(sc, 0xc142, 0xffff);
708 1.1 sevan
709 1.1 sevan val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
710 1.1 sevan rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
711 1.1 sevan
712 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
713 1.1 sevan RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
714 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
715 1.1 sevan
716 1.1 sevan val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
717 1.1 sevan rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
718 1.1 sevan
719 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
720 1.1 sevan
721 1.1 sevan val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
722 1.1 sevan rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
723 1.1 sevan
724 1.1 sevan RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
725 1.1 sevan
726 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
727 1.1 sevan rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
728 1.1 sevan
729 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
730 1.1 sevan rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
731 1.1 sevan
732 1.1 sevan val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
733 1.1 sevan rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
734 1.1 sevan
735 1.1 sevan RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
736 1.1 sevan
737 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
738 1.1 sevan
739 1.1 sevan val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
740 1.1 sevan rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
741 1.1 sevan
742 1.1 sevan RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
743 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
744 1.1 sevan
745 1.1 sevan val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
746 1.1 sevan rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
747 1.1 sevan
748 1.1 sevan val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
749 1.1 sevan rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
750 1.1 sevan
751 1.5 skrll RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
752 1.1 sevan
753 1.1 sevan /* Disable EEE plus. */
754 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
755 1.1 sevan
756 1.1 sevan RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
757 1.1 sevan
758 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
759 1.1 sevan DELAY(1);
760 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
761 1.1 sevan
762 1.1 sevan RGE_CLRBIT_4(sc, 0x1880, 0x0030);
763 1.1 sevan
764 1.1 sevan rge_write_mac_ocp(sc, 0xe098, 0xc302);
765 1.1 sevan
766 1.2 sevan if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
767 1.1 sevan RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
768 1.1 sevan
769 1.1 sevan RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
770 1.1 sevan
771 1.1 sevan for (i = 0; i < 10; i++) {
772 1.1 sevan if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
773 1.1 sevan break;
774 1.1 sevan DELAY(1000);
775 1.1 sevan }
776 1.1 sevan
777 1.1 sevan /* Disable RXDV gate. */
778 1.1 sevan RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
779 1.1 sevan DELAY(2000);
780 1.1 sevan
781 1.1 sevan rge_ifmedia_upd(ifp);
782 1.1 sevan
783 1.1 sevan /* Enable transmit and receive. */
784 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
785 1.1 sevan
786 1.1 sevan /* Program promiscuous mode and multicast filters. */
787 1.1 sevan rge_iff(sc);
788 1.1 sevan
789 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
790 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
791 1.1 sevan
792 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
793 1.1 sevan
794 1.1 sevan /* Enable interrupts. */
795 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
796 1.1 sevan
797 1.1 sevan ifp->if_flags |= IFF_RUNNING;
798 1.3 sevan CLR(ifp->if_flags, IFF_OACTIVE);
799 1.1 sevan
800 1.3 sevan callout_schedule(&sc->sc_timeout, 1);
801 1.1 sevan
802 1.1 sevan return (0);
803 1.1 sevan }
804 1.1 sevan
805 1.1 sevan /*
806 1.1 sevan * Stop the adapter and free any mbufs allocated to the RX and TX lists.
807 1.1 sevan */
808 1.1 sevan void
809 1.1 sevan rge_stop(struct ifnet *ifp)
810 1.1 sevan {
811 1.1 sevan struct rge_softc *sc = ifp->if_softc;
812 1.1 sevan int i;
813 1.1 sevan
814 1.1 sevan timeout_del(&sc->sc_timeout);
815 1.1 sevan
816 1.1 sevan ifp->if_timer = 0;
817 1.1 sevan ifp->if_flags &= ~IFF_RUNNING;
818 1.1 sevan sc->rge_timerintr = 0;
819 1.1 sevan
820 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
821 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
822 1.1 sevan RGE_RXCFG_ERRPKT);
823 1.1 sevan
824 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
825 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
826 1.1 sevan
827 1.1 sevan rge_reset(sc);
828 1.1 sevan
829 1.1 sevan intr_barrier(sc->sc_ih);
830 1.1 sevan ifq_barrier(&ifp->if_snd);
831 1.2 sevan /* ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
832 1.1 sevan
833 1.1 sevan if (sc->rge_head != NULL) {
834 1.1 sevan m_freem(sc->rge_head);
835 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
836 1.1 sevan }
837 1.1 sevan
838 1.1 sevan /* Free the TX list buffers. */
839 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
840 1.1 sevan if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
841 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
842 1.1 sevan sc->rge_ldata.rge_txq[i].txq_dmamap);
843 1.1 sevan m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
844 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
845 1.1 sevan }
846 1.1 sevan }
847 1.1 sevan
848 1.1 sevan /* Free the RX list buffers. */
849 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
850 1.1 sevan if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
851 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
852 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_dmamap);
853 1.1 sevan m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
854 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
855 1.1 sevan }
856 1.1 sevan }
857 1.1 sevan }
858 1.1 sevan
859 1.1 sevan /*
860 1.1 sevan * Set media options.
861 1.1 sevan */
862 1.1 sevan int
863 1.1 sevan rge_ifmedia_upd(struct ifnet *ifp)
864 1.1 sevan {
865 1.1 sevan struct rge_softc *sc = ifp->if_softc;
866 1.1 sevan struct ifmedia *ifm = &sc->sc_media;
867 1.1 sevan int anar, gig, val;
868 1.1 sevan
869 1.1 sevan if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
870 1.1 sevan return (EINVAL);
871 1.1 sevan
872 1.1 sevan /* Disable Gigabit Lite. */
873 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
874 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
875 1.1 sevan
876 1.1 sevan val = rge_read_phy_ocp(sc, 0xa5d4);
877 1.1 sevan val &= ~RGE_ADV_2500TFDX;
878 1.1 sevan
879 1.1 sevan anar = gig = 0;
880 1.1 sevan switch (IFM_SUBTYPE(ifm->ifm_media)) {
881 1.1 sevan case IFM_AUTO:
882 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
883 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
884 1.1 sevan val |= RGE_ADV_2500TFDX;
885 1.1 sevan break;
886 1.1 sevan case IFM_2500_T:
887 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
888 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
889 1.1 sevan val |= RGE_ADV_2500TFDX;
890 1.1 sevan ifp->if_baudrate = IF_Mbps(2500);
891 1.1 sevan break;
892 1.1 sevan case IFM_1000_T:
893 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
894 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
895 1.1 sevan ifp->if_baudrate = IF_Gbps(1);
896 1.1 sevan break;
897 1.1 sevan case IFM_100_TX:
898 1.1 sevan anar |= ANAR_TX | ANAR_TX_FD;
899 1.1 sevan ifp->if_baudrate = IF_Mbps(100);
900 1.1 sevan break;
901 1.1 sevan case IFM_10_T:
902 1.1 sevan anar |= ANAR_10 | ANAR_10_FD;
903 1.1 sevan ifp->if_baudrate = IF_Mbps(10);
904 1.1 sevan break;
905 1.1 sevan default:
906 1.1 sevan printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
907 1.1 sevan return (EINVAL);
908 1.1 sevan }
909 1.1 sevan
910 1.1 sevan rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
911 1.1 sevan rge_write_phy(sc, 0, MII_100T2CR, gig);
912 1.1 sevan rge_write_phy_ocp(sc, 0xa5d4, val);
913 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
914 1.1 sevan
915 1.1 sevan return (0);
916 1.1 sevan }
917 1.1 sevan
918 1.1 sevan /*
919 1.1 sevan * Report current media status.
920 1.1 sevan */
921 1.1 sevan void
922 1.1 sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
923 1.1 sevan {
924 1.1 sevan struct rge_softc *sc = ifp->if_softc;
925 1.1 sevan uint16_t status = 0;
926 1.1 sevan
927 1.1 sevan ifmr->ifm_status = IFM_AVALID;
928 1.1 sevan ifmr->ifm_active = IFM_ETHER;
929 1.1 sevan
930 1.1 sevan if (rge_get_link_status(sc)) {
931 1.1 sevan ifmr->ifm_status |= IFM_ACTIVE;
932 1.1 sevan
933 1.1 sevan status = RGE_READ_2(sc, RGE_PHYSTAT);
934 1.1 sevan if ((status & RGE_PHYSTAT_FDX) ||
935 1.1 sevan (status & RGE_PHYSTAT_2500MBPS))
936 1.1 sevan ifmr->ifm_active |= IFM_FDX;
937 1.1 sevan else
938 1.1 sevan ifmr->ifm_active |= IFM_HDX;
939 1.1 sevan
940 1.1 sevan if (status & RGE_PHYSTAT_10MBPS)
941 1.1 sevan ifmr->ifm_active |= IFM_10_T;
942 1.1 sevan else if (status & RGE_PHYSTAT_100MBPS)
943 1.1 sevan ifmr->ifm_active |= IFM_100_TX;
944 1.1 sevan else if (status & RGE_PHYSTAT_1000MBPS)
945 1.1 sevan ifmr->ifm_active |= IFM_1000_T;
946 1.1 sevan else if (status & RGE_PHYSTAT_2500MBPS)
947 1.1 sevan ifmr->ifm_active |= IFM_2500_T;
948 1.1 sevan }
949 1.1 sevan }
950 1.1 sevan
951 1.5 skrll /*
952 1.1 sevan * Allocate memory for RX/TX rings.
953 1.1 sevan */
954 1.1 sevan int
955 1.1 sevan rge_allocmem(struct rge_softc *sc)
956 1.1 sevan {
957 1.1 sevan int error, i;
958 1.1 sevan
959 1.1 sevan /* Allocate DMA'able memory for the TX ring. */
960 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
961 1.1 sevan RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
962 1.1 sevan if (error) {
963 1.1 sevan printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
964 1.1 sevan return (error);
965 1.1 sevan }
966 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
967 1.1 sevan &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
968 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
969 1.1 sevan if (error) {
970 1.1 sevan printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
971 1.1 sevan return (error);
972 1.1 sevan }
973 1.1 sevan
974 1.1 sevan /* Load the map for the TX ring. */
975 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
976 1.1 sevan sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
977 1.8 sevan (void **) &sc->rge_ldata.rge_tx_list,
978 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
979 1.1 sevan if (error) {
980 1.1 sevan printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
981 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
982 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
983 1.1 sevan return (error);
984 1.1 sevan }
985 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
986 1.1 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
987 1.1 sevan if (error) {
988 1.1 sevan printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
989 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
990 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
991 1.2 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
992 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
993 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
994 1.1 sevan return (error);
995 1.1 sevan }
996 1.1 sevan
997 1.1 sevan /* Create DMA maps for TX buffers. */
998 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
999 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
1000 1.1 sevan RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
1001 1.1 sevan &sc->rge_ldata.rge_txq[i].txq_dmamap);
1002 1.1 sevan if (error) {
1003 1.1 sevan printf("%s: can't create DMA map for TX\n",
1004 1.1 sevan sc->sc_dev.dv_xname);
1005 1.1 sevan return (error);
1006 1.1 sevan }
1007 1.1 sevan }
1008 1.1 sevan
1009 1.1 sevan /* Allocate DMA'able memory for the RX ring. */
1010 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
1011 1.1 sevan RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
1012 1.1 sevan if (error) {
1013 1.1 sevan printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
1014 1.1 sevan return (error);
1015 1.1 sevan }
1016 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
1017 1.1 sevan &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
1018 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1019 1.1 sevan if (error) {
1020 1.1 sevan printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
1021 1.1 sevan return (error);
1022 1.1 sevan }
1023 1.1 sevan
1024 1.1 sevan /* Load the map for the RX ring. */
1025 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1026 1.1 sevan sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
1027 1.8 sevan (void **) &sc->rge_ldata.rge_rx_list,
1028 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1029 1.1 sevan if (error) {
1030 1.1 sevan printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
1031 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1032 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1033 1.1 sevan return (error);
1034 1.1 sevan }
1035 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1036 1.1 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
1037 1.1 sevan if (error) {
1038 1.1 sevan printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
1039 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
1040 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
1041 1.2 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
1042 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1043 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1044 1.1 sevan return (error);
1045 1.1 sevan }
1046 1.1 sevan
1047 1.1 sevan /* Create DMA maps for RX buffers. */
1048 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1049 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
1050 1.1 sevan RGE_JUMBO_FRAMELEN, 0, 0,
1051 1.1 sevan &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
1052 1.1 sevan if (error) {
1053 1.1 sevan printf("%s: can't create DMA map for RX\n",
1054 1.1 sevan sc->sc_dev.dv_xname);
1055 1.1 sevan return (error);
1056 1.1 sevan }
1057 1.1 sevan }
1058 1.1 sevan
1059 1.1 sevan return (error);
1060 1.1 sevan }
1061 1.1 sevan
1062 1.1 sevan /*
1063 1.1 sevan * Initialize the RX descriptor and attach an mbuf cluster.
1064 1.1 sevan */
1065 1.1 sevan int
1066 1.1 sevan rge_newbuf(struct rge_softc *sc, int idx)
1067 1.1 sevan {
1068 1.1 sevan struct mbuf *m;
1069 1.1 sevan struct rge_rx_desc *r;
1070 1.1 sevan struct rge_rxq *rxq;
1071 1.1 sevan bus_dmamap_t rxmap;
1072 1.1 sevan
1073 1.1 sevan m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
1074 1.1 sevan if (m == NULL)
1075 1.1 sevan return (ENOBUFS);
1076 1.1 sevan
1077 1.1 sevan m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
1078 1.1 sevan
1079 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[idx];
1080 1.1 sevan rxmap = rxq->rxq_dmamap;
1081 1.1 sevan
1082 1.1 sevan if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
1083 1.1 sevan goto out;
1084 1.1 sevan
1085 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1086 1.1 sevan BUS_DMASYNC_PREREAD);
1087 1.1 sevan
1088 1.1 sevan /* Map the segments into RX descriptors. */
1089 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1090 1.1 sevan
1091 1.1 sevan if (RGE_OWN(r)) {
1092 1.1 sevan printf("%s: tried to map busy RX descriptor\n",
1093 1.1 sevan sc->sc_dev.dv_xname);
1094 1.1 sevan goto out;
1095 1.1 sevan }
1096 1.1 sevan
1097 1.1 sevan rxq->rxq_mbuf = m;
1098 1.1 sevan
1099 1.1 sevan r->rge_extsts = 0;
1100 1.1 sevan r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
1101 1.1 sevan r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
1102 1.1 sevan
1103 1.1 sevan r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
1104 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1105 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1106 1.1 sevan
1107 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1108 1.1 sevan
1109 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1110 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1111 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1112 1.1 sevan
1113 1.1 sevan return (0);
1114 1.1 sevan out:
1115 1.1 sevan if (m != NULL)
1116 1.1 sevan m_freem(m);
1117 1.1 sevan return (ENOMEM);
1118 1.1 sevan }
1119 1.1 sevan
1120 1.1 sevan void
1121 1.1 sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
1122 1.1 sevan {
1123 1.1 sevan struct rge_rx_desc *r;
1124 1.1 sevan
1125 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1126 1.1 sevan
1127 1.1 sevan r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
1128 1.1 sevan r->rge_extsts = 0;
1129 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1130 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1131 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1132 1.1 sevan
1133 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1134 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1135 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1136 1.1 sevan }
1137 1.1 sevan
1138 1.1 sevan int
1139 1.1 sevan rge_rx_list_init(struct rge_softc *sc)
1140 1.1 sevan {
1141 1.1 sevan int i;
1142 1.1 sevan
1143 1.1 sevan memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
1144 1.1 sevan
1145 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1146 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
1147 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS)
1148 1.1 sevan return (ENOBUFS);
1149 1.1 sevan }
1150 1.1 sevan
1151 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = 0;
1152 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1153 1.1 sevan
1154 1.1 sevan return (0);
1155 1.1 sevan }
1156 1.1 sevan
1157 1.1 sevan void
1158 1.1 sevan rge_tx_list_init(struct rge_softc *sc)
1159 1.1 sevan {
1160 1.1 sevan int i;
1161 1.1 sevan
1162 1.1 sevan memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
1163 1.1 sevan
1164 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++)
1165 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
1166 1.1 sevan
1167 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
1168 1.1 sevan sc->rge_ldata.rge_tx_list_map->dm_mapsize,
1169 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1170 1.1 sevan
1171 1.1 sevan sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
1172 1.1 sevan }
1173 1.1 sevan
1174 1.1 sevan int
1175 1.1 sevan rge_rxeof(struct rge_softc *sc)
1176 1.1 sevan {
1177 1.1 sevan struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1178 1.1 sevan struct mbuf *m;
1179 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 1.1 sevan struct rge_rx_desc *cur_rx;
1181 1.1 sevan struct rge_rxq *rxq;
1182 1.1 sevan uint32_t rxstat, extsts;
1183 1.1 sevan int i, total_len, rx = 0;
1184 1.1 sevan
1185 1.1 sevan for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
1186 1.1 sevan /* Invalidate the descriptor memory. */
1187 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1188 1.1 sevan i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1189 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1190 1.1 sevan
1191 1.1 sevan cur_rx = &sc->rge_ldata.rge_rx_list[i];
1192 1.1 sevan
1193 1.1 sevan if (RGE_OWN(cur_rx))
1194 1.1 sevan break;
1195 1.1 sevan
1196 1.1 sevan rxstat = letoh32(cur_rx->rge_cmdsts);
1197 1.1 sevan extsts = letoh32(cur_rx->rge_extsts);
1198 1.5 skrll
1199 1.1 sevan total_len = RGE_RXBYTES(cur_rx);
1200 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[i];
1201 1.1 sevan m = rxq->rxq_mbuf;
1202 1.1 sevan rx = 1;
1203 1.1 sevan
1204 1.1 sevan /* Invalidate the RX mbuf and unload its map. */
1205 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
1206 1.1 sevan rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1207 1.1 sevan bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
1208 1.1 sevan
1209 1.1 sevan if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
1210 1.1 sevan (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
1211 1.1 sevan rge_discard_rxbuf(sc, i);
1212 1.1 sevan continue;
1213 1.1 sevan }
1214 1.1 sevan
1215 1.1 sevan if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
1216 1.4 skrll if_statinc(ifp, if_ierrors);
1217 1.1 sevan /*
1218 1.1 sevan * If this is part of a multi-fragment packet,
1219 1.1 sevan * discard all the pieces.
1220 1.1 sevan */
1221 1.1 sevan if (sc->rge_head != NULL) {
1222 1.1 sevan m_freem(sc->rge_head);
1223 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1224 1.1 sevan }
1225 1.1 sevan rge_discard_rxbuf(sc, i);
1226 1.1 sevan continue;
1227 1.1 sevan }
1228 1.1 sevan
1229 1.1 sevan /*
1230 1.1 sevan * If allocating a replacement mbuf fails,
1231 1.1 sevan * reload the current one.
1232 1.1 sevan */
1233 1.1 sevan
1234 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS) {
1235 1.1 sevan if (sc->rge_head != NULL) {
1236 1.1 sevan m_freem(sc->rge_head);
1237 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1238 1.1 sevan }
1239 1.1 sevan rge_discard_rxbuf(sc, i);
1240 1.1 sevan continue;
1241 1.1 sevan }
1242 1.1 sevan
1243 1.1 sevan if (sc->rge_head != NULL) {
1244 1.1 sevan m->m_len = total_len;
1245 1.1 sevan /*
1246 1.1 sevan * Special case: if there's 4 bytes or less
1247 1.1 sevan * in this buffer, the mbuf can be discarded:
1248 1.1 sevan * the last 4 bytes is the CRC, which we don't
1249 1.1 sevan * care about anyway.
1250 1.1 sevan */
1251 1.1 sevan if (m->m_len <= ETHER_CRC_LEN) {
1252 1.1 sevan sc->rge_tail->m_len -=
1253 1.1 sevan (ETHER_CRC_LEN - m->m_len);
1254 1.1 sevan m_freem(m);
1255 1.1 sevan } else {
1256 1.1 sevan m->m_len -= ETHER_CRC_LEN;
1257 1.1 sevan m->m_flags &= ~M_PKTHDR;
1258 1.1 sevan sc->rge_tail->m_next = m;
1259 1.1 sevan }
1260 1.1 sevan m = sc->rge_head;
1261 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1262 1.1 sevan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1263 1.1 sevan } else
1264 1.1 sevan m->m_pkthdr.len = m->m_len =
1265 1.1 sevan (total_len - ETHER_CRC_LEN);
1266 1.1 sevan
1267 1.1 sevan /* Check IP header checksum. */
1268 1.1 sevan if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
1269 1.1 sevan (extsts & RGE_RDEXTSTS_IPV4))
1270 1.1 sevan m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1271 1.1 sevan
1272 1.1 sevan /* Check TCP/UDP checksum. */
1273 1.1 sevan if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
1274 1.1 sevan (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
1275 1.1 sevan !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
1276 1.1 sevan ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
1277 1.1 sevan !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
1278 1.1 sevan m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1279 1.1 sevan M_UDP_CSUM_IN_OK;
1280 1.1 sevan
1281 1.1 sevan #if NVLAN > 0
1282 1.1 sevan if (extsts & RGE_RDEXTSTS_VTAG) {
1283 1.1 sevan m->m_pkthdr.ether_vtag =
1284 1.1 sevan ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
1285 1.1 sevan m->m_flags |= M_VLANTAG;
1286 1.1 sevan }
1287 1.1 sevan #endif
1288 1.1 sevan
1289 1.1 sevan ml_enqueue(&ml, m);
1290 1.1 sevan }
1291 1.1 sevan
1292 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = i;
1293 1.1 sevan
1294 1.1 sevan if_input(ifp, &ml);
1295 1.1 sevan
1296 1.1 sevan return (rx);
1297 1.1 sevan }
1298 1.1 sevan
1299 1.1 sevan int
1300 1.1 sevan rge_txeof(struct rge_softc *sc)
1301 1.1 sevan {
1302 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1303 1.1 sevan struct rge_txq *txq;
1304 1.1 sevan uint32_t txstat;
1305 1.1 sevan int cons, idx, prod;
1306 1.1 sevan int free = 0;
1307 1.1 sevan
1308 1.1 sevan prod = sc->rge_ldata.rge_txq_prodidx;
1309 1.1 sevan cons = sc->rge_ldata.rge_txq_considx;
1310 1.1 sevan
1311 1.1 sevan while (prod != cons) {
1312 1.1 sevan txq = &sc->rge_ldata.rge_txq[cons];
1313 1.1 sevan idx = txq->txq_descidx;
1314 1.1 sevan
1315 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1316 1.1 sevan idx * sizeof(struct rge_tx_desc),
1317 1.1 sevan sizeof(struct rge_tx_desc),
1318 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1319 1.1 sevan
1320 1.1 sevan txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
1321 1.1 sevan
1322 1.1 sevan if (txstat & RGE_TDCMDSTS_OWN) {
1323 1.1 sevan free = 2;
1324 1.1 sevan break;
1325 1.1 sevan }
1326 1.1 sevan
1327 1.5 skrll bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
1328 1.1 sevan txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1329 1.1 sevan bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1330 1.1 sevan m_freem(txq->txq_mbuf);
1331 1.1 sevan txq->txq_mbuf = NULL;
1332 1.1 sevan
1333 1.1 sevan if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
1334 1.4 skrll if_statinc(ifp, if_collisions);
1335 1.1 sevan if (txstat & RGE_TDCMDSTS_TXERR)
1336 1.4 skrll if_statinc(ifp, if_oerrors);
1337 1.1 sevan
1338 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1339 1.1 sevan idx * sizeof(struct rge_tx_desc),
1340 1.1 sevan sizeof(struct rge_tx_desc),
1341 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1342 1.1 sevan
1343 1.1 sevan cons = RGE_NEXT_TX_DESC(idx);
1344 1.1 sevan free = 1;
1345 1.1 sevan }
1346 1.1 sevan
1347 1.1 sevan if (free == 0)
1348 1.1 sevan return (0);
1349 1.1 sevan
1350 1.1 sevan sc->rge_ldata.rge_txq_considx = cons;
1351 1.1 sevan
1352 1.1 sevan if (ifq_is_oactive(&ifp->if_snd))
1353 1.1 sevan ifq_restart(&ifp->if_snd);
1354 1.1 sevan else if (free == 2)
1355 1.1 sevan ifq_serialize(&ifp->if_snd, &sc->sc_task);
1356 1.1 sevan else
1357 1.1 sevan ifp->if_timer = 0;
1358 1.1 sevan
1359 1.1 sevan return (1);
1360 1.1 sevan }
1361 1.1 sevan
1362 1.1 sevan void
1363 1.1 sevan rge_reset(struct rge_softc *sc)
1364 1.1 sevan {
1365 1.1 sevan int i;
1366 1.1 sevan
1367 1.1 sevan /* Enable RXDV gate. */
1368 1.1 sevan RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
1369 1.1 sevan DELAY(2000);
1370 1.1 sevan
1371 1.1 sevan for (i = 0; i < 10; i++) {
1372 1.1 sevan DELAY(100);
1373 1.1 sevan if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
1374 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
1375 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY))
1376 1.1 sevan break;
1377 1.1 sevan }
1378 1.1 sevan
1379 1.1 sevan /* Soft reset. */
1380 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
1381 1.1 sevan
1382 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1383 1.1 sevan DELAY(100);
1384 1.1 sevan if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
1385 1.1 sevan break;
1386 1.1 sevan }
1387 1.1 sevan if (i == RGE_TIMEOUT)
1388 1.1 sevan printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
1389 1.1 sevan }
1390 1.1 sevan
1391 1.1 sevan void
1392 1.1 sevan rge_iff(struct rge_softc *sc)
1393 1.1 sevan {
1394 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1395 1.2 sevan struct ethercom *ac = &sc->sc_ec;
1396 1.1 sevan struct ether_multi *enm;
1397 1.1 sevan struct ether_multistep step;
1398 1.1 sevan uint32_t hashes[2];
1399 1.1 sevan uint32_t rxfilt;
1400 1.1 sevan int h = 0;
1401 1.1 sevan
1402 1.1 sevan rxfilt = RGE_READ_4(sc, RGE_RXCFG);
1403 1.1 sevan rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
1404 1.1 sevan ifp->if_flags &= ~IFF_ALLMULTI;
1405 1.1 sevan
1406 1.1 sevan /*
1407 1.1 sevan * Always accept frames destined to our station address.
1408 1.1 sevan * Always accept broadcast frames.
1409 1.1 sevan */
1410 1.1 sevan rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
1411 1.1 sevan
1412 1.1 sevan if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1413 1.1 sevan ifp->if_flags |= IFF_ALLMULTI;
1414 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1415 1.1 sevan if (ifp->if_flags & IFF_PROMISC)
1416 1.1 sevan rxfilt |= RGE_RXCFG_ALLPHYS;
1417 1.1 sevan hashes[0] = hashes[1] = 0xffffffff;
1418 1.1 sevan } else {
1419 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1420 1.1 sevan /* Program new filter. */
1421 1.1 sevan memset(hashes, 0, sizeof(hashes));
1422 1.1 sevan
1423 1.1 sevan ETHER_FIRST_MULTI(step, ac, enm);
1424 1.1 sevan while (enm != NULL) {
1425 1.1 sevan h = ether_crc32_be(enm->enm_addrlo,
1426 1.1 sevan ETHER_ADDR_LEN) >> 26;
1427 1.1 sevan
1428 1.1 sevan if (h < 32)
1429 1.1 sevan hashes[0] |= (1 << h);
1430 1.1 sevan else
1431 1.1 sevan hashes[1] |= (1 << (h - 32));
1432 1.1 sevan
1433 1.1 sevan ETHER_NEXT_MULTI(step, enm);
1434 1.1 sevan }
1435 1.1 sevan }
1436 1.1 sevan
1437 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
1438 1.2 sevan RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
1439 1.2 sevan RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
1440 1.1 sevan }
1441 1.1 sevan
1442 1.1 sevan void
1443 1.1 sevan rge_set_phy_power(struct rge_softc *sc, int on)
1444 1.1 sevan {
1445 1.1 sevan int i;
1446 1.1 sevan
1447 1.1 sevan if (on) {
1448 1.1 sevan RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
1449 1.1 sevan
1450 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
1451 1.1 sevan
1452 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1453 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
1454 1.1 sevan break;
1455 1.1 sevan DELAY(1000);
1456 1.1 sevan }
1457 1.1 sevan } else
1458 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
1459 1.1 sevan }
1460 1.1 sevan
1461 1.1 sevan void
1462 1.1 sevan rge_phy_config(struct rge_softc *sc)
1463 1.1 sevan {
1464 1.1 sevan uint16_t mcode_ver, val;
1465 1.1 sevan int i;
1466 1.1 sevan static const uint16_t mac_cfg3_a438_value[] =
1467 1.1 sevan { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
1468 1.1 sevan 0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
1469 1.1 sevan
1470 1.1 sevan static const uint16_t mac_cfg3_b88e_value[] =
1471 1.5 skrll { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
1472 1.1 sevan 0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
1473 1.1 sevan 0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
1474 1.1 sevan 0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
1475 1.1 sevan 0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
1476 1.1 sevan 0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
1477 1.1 sevan
1478 1.1 sevan /* Read microcode version. */
1479 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1480 1.1 sevan mcode_ver = rge_read_phy_ocp(sc, 0xa438);
1481 1.1 sevan
1482 1.1 sevan if (sc->rge_type == MAC_CFG2) {
1483 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
1484 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
1485 1.1 sevan rtl8125_mac_cfg2_ephy[i].val);
1486 1.1 sevan }
1487 1.1 sevan
1488 1.1 sevan if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
1489 1.1 sevan /* Disable PHY config. */
1490 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1491 1.1 sevan DELAY(1000);
1492 1.1 sevan
1493 1.1 sevan rge_patch_phy_mcu(sc, 1);
1494 1.1 sevan
1495 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1496 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8600);
1497 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1498 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1499 1.1 sevan
1500 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1501 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
1502 1.1 sevan rge_write_phy_ocp(sc,
1503 1.1 sevan rtl8125_mac_cfg2_mcu[i].reg,
1504 1.1 sevan rtl8125_mac_cfg2_mcu[i].val);
1505 1.1 sevan }
1506 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1507 1.1 sevan
1508 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1509 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1510 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1511 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1512 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1513 1.1 sevan
1514 1.1 sevan rge_patch_phy_mcu(sc, 0);
1515 1.1 sevan
1516 1.1 sevan /* Enable PHY config. */
1517 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1518 1.1 sevan
1519 1.1 sevan /* Write microcode version. */
1520 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1521 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
1522 1.1 sevan }
1523 1.5 skrll
1524 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
1525 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
1526 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1527 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1528 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
1529 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
1530 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1531 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
1532 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
1533 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
1534 1.1 sevan RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
1535 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
1536 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
1537 1.1 sevan
1538 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1539 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1540 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
1541 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80eb);
1542 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
1543 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
1544 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f8);
1545 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1546 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
1547 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f1);
1548 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1549 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
1550 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80fe);
1551 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1552 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
1553 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8102);
1554 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1555 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1556 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8105);
1557 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1558 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
1559 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8100);
1560 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1561 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
1562 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8104);
1563 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1564 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
1565 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8106);
1566 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1567 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
1568 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80dc);
1569 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1570 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
1571 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80df);
1572 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1573 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80e1);
1574 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
1575 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
1576 1.1 sevan rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
1577 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x819f);
1578 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
1579 1.1 sevan rge_write_phy_ocp(sc, 0xbc34, 0x5555);
1580 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
1581 1.1 sevan rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
1582 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
1583 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1584 1.1 sevan } else {
1585 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
1586 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
1587 1.1 sevan rtl8125_mac_cfg3_ephy[i].val);
1588 1.1 sevan
1589 1.1 sevan if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
1590 1.1 sevan /* Disable PHY config. */
1591 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1592 1.1 sevan DELAY(1000);
1593 1.1 sevan
1594 1.1 sevan rge_patch_phy_mcu(sc, 1);
1595 1.1 sevan
1596 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1597 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8601);
1598 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1599 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1600 1.1 sevan
1601 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1602 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
1603 1.1 sevan rge_write_phy_ocp(sc,
1604 1.1 sevan rtl8125_mac_cfg3_mcu[i].reg,
1605 1.1 sevan rtl8125_mac_cfg3_mcu[i].val);
1606 1.1 sevan }
1607 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1608 1.1 sevan
1609 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1610 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1611 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1612 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1613 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1614 1.1 sevan
1615 1.1 sevan rge_patch_phy_mcu(sc, 0);
1616 1.1 sevan
1617 1.1 sevan /* Enable PHY config. */
1618 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1619 1.1 sevan
1620 1.1 sevan /* Write microcode version. */
1621 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1622 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
1623 1.1 sevan }
1624 1.1 sevan
1625 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1626 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1627 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
1628 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
1629 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1630 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
1631 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
1632 1.1 sevan val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
1633 1.1 sevan rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
1634 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
1635 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
1636 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
1637 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
1638 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
1639 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
1640 1.1 sevan val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
1641 1.1 sevan rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
1642 1.1 sevan rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
1643 1.1 sevan rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
1644 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
1645 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
1646 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
1647 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1648 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x809c);
1649 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1650 1.1 sevan
1651 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81b3);
1652 1.1 sevan for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
1653 1.1 sevan rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
1654 1.1 sevan for (i = 0; i < 26; i++)
1655 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1656 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8257);
1657 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x020f);
1658 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1659 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x7843);
1660 1.1 sevan
1661 1.1 sevan rge_patch_phy_mcu(sc, 1);
1662 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
1663 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
1664 1.1 sevan for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
1665 1.1 sevan rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
1666 1.1 sevan rge_write_phy_ocp(sc, 0xb890,
1667 1.1 sevan mac_cfg3_b88e_value[i + 1]);
1668 1.1 sevan }
1669 1.1 sevan RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
1670 1.1 sevan rge_patch_phy_mcu(sc, 0);
1671 1.1 sevan
1672 1.1 sevan RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
1673 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81a2);
1674 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1675 1.1 sevan val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
1676 1.1 sevan rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
1677 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
1678 1.1 sevan RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
1679 1.1 sevan RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
1680 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
1681 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1682 1.1 sevan }
1683 1.1 sevan
1684 1.1 sevan /* Disable EEE. */
1685 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
1686 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
1687 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
1688 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
1689 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
1690 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
1691 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
1692 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
1693 1.1 sevan
1694 1.1 sevan rge_patch_phy_mcu(sc, 1);
1695 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
1696 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
1697 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
1698 1.1 sevan rge_patch_phy_mcu(sc, 0);
1699 1.1 sevan }
1700 1.1 sevan
1701 1.1 sevan void
1702 1.1 sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
1703 1.1 sevan {
1704 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1705 1.1 sevan RGE_WRITE_4(sc, RGE_MAC0,
1706 1.1 sevan addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1707 1.1 sevan RGE_WRITE_4(sc, RGE_MAC4,
1708 1.1 sevan addr[5] << 8 | addr[4]);
1709 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1710 1.1 sevan }
1711 1.1 sevan
1712 1.1 sevan void
1713 1.1 sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
1714 1.1 sevan {
1715 1.1 sevan *(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
1716 1.1 sevan *(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
1717 1.1 sevan }
1718 1.1 sevan
1719 1.1 sevan void
1720 1.1 sevan rge_hw_init(struct rge_softc *sc)
1721 1.1 sevan {
1722 1.1 sevan int i;
1723 1.1 sevan
1724 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1725 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
1726 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
1727 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1728 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
1729 1.1 sevan
1730 1.1 sevan /* Disable UPS. */
1731 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
1732 1.1 sevan
1733 1.1 sevan /* Configure MAC MCU. */
1734 1.1 sevan rge_write_mac_ocp(sc, 0xfc38, 0);
1735 1.1 sevan
1736 1.1 sevan for (i = 0xfc28; i < 0xfc38; i += 2)
1737 1.1 sevan rge_write_mac_ocp(sc, i, 0);
1738 1.1 sevan
1739 1.1 sevan DELAY(3000);
1740 1.1 sevan rge_write_mac_ocp(sc, 0xfc26, 0);
1741 1.1 sevan
1742 1.1 sevan if (sc->rge_type == MAC_CFG3) {
1743 1.1 sevan for (i = 0; i < nitems(rtl8125_def_bps); i++)
1744 1.1 sevan rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
1745 1.1 sevan rtl8125_def_bps[i].val);
1746 1.1 sevan }
1747 1.1 sevan
1748 1.1 sevan /* Disable PHY power saving. */
1749 1.1 sevan rge_disable_phy_ocp_pwrsave(sc);
1750 1.1 sevan
1751 1.1 sevan /* Set PCIe uncorrectable error status. */
1752 1.1 sevan rge_write_csi(sc, 0x108,
1753 1.1 sevan rge_read_csi(sc, 0x108) | 0x00100000);
1754 1.1 sevan }
1755 1.1 sevan
1756 1.1 sevan void
1757 1.1 sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
1758 1.1 sevan {
1759 1.1 sevan if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
1760 1.1 sevan rge_patch_phy_mcu(sc, 1);
1761 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0);
1762 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0x0500);
1763 1.1 sevan rge_patch_phy_mcu(sc, 0);
1764 1.1 sevan }
1765 1.1 sevan }
1766 1.1 sevan
1767 1.1 sevan void
1768 1.1 sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
1769 1.1 sevan {
1770 1.1 sevan uint16_t val;
1771 1.1 sevan int i;
1772 1.1 sevan
1773 1.1 sevan if (set)
1774 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
1775 1.1 sevan else
1776 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
1777 1.1 sevan
1778 1.1 sevan for (i = 0; i < 1000; i++) {
1779 1.1 sevan val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
1780 1.1 sevan DELAY(100);
1781 1.1 sevan if (val == 0x0040)
1782 1.1 sevan break;
1783 1.1 sevan }
1784 1.1 sevan if (i == 1000)
1785 1.1 sevan printf("%s: timeout waiting to patch phy mcu\n",
1786 1.1 sevan sc->sc_dev.dv_xname);
1787 1.1 sevan }
1788 1.1 sevan
1789 1.1 sevan void
1790 1.1 sevan rge_add_media_types(struct rge_softc *sc)
1791 1.1 sevan {
1792 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
1793 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1794 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
1795 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1796 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
1797 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1798 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
1799 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1800 1.1 sevan }
1801 1.1 sevan
1802 1.1 sevan void
1803 1.1 sevan rge_config_imtype(struct rge_softc *sc, int imtype)
1804 1.1 sevan {
1805 1.1 sevan switch (imtype) {
1806 1.1 sevan case RGE_IMTYPE_NONE:
1807 1.1 sevan sc->rge_intrs = RGE_INTRS;
1808 1.1 sevan sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
1809 1.1 sevan RGE_ISR_RX_FIFO_OFLOW;
1810 1.1 sevan sc->rge_tx_ack = RGE_ISR_TX_OK;
1811 1.1 sevan break;
1812 1.1 sevan case RGE_IMTYPE_SIM:
1813 1.1 sevan sc->rge_intrs = RGE_INTRS_TIMER;
1814 1.1 sevan sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
1815 1.1 sevan sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
1816 1.1 sevan break;
1817 1.1 sevan default:
1818 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1819 1.1 sevan }
1820 1.1 sevan }
1821 1.1 sevan
1822 1.1 sevan void
1823 1.1 sevan rge_disable_sim_im(struct rge_softc *sc)
1824 1.1 sevan {
1825 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0);
1826 1.1 sevan sc->rge_timerintr = 0;
1827 1.1 sevan }
1828 1.1 sevan
1829 1.1 sevan void
1830 1.1 sevan rge_setup_sim_im(struct rge_softc *sc)
1831 1.1 sevan {
1832 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
1833 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
1834 1.1 sevan sc->rge_timerintr = 1;
1835 1.1 sevan }
1836 1.1 sevan
1837 1.1 sevan void
1838 1.1 sevan rge_setup_intr(struct rge_softc *sc, int imtype)
1839 1.1 sevan {
1840 1.1 sevan rge_config_imtype(sc, imtype);
1841 1.1 sevan
1842 1.1 sevan /* Enable interrupts. */
1843 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
1844 1.1 sevan
1845 1.1 sevan switch (imtype) {
1846 1.1 sevan case RGE_IMTYPE_NONE:
1847 1.1 sevan rge_disable_sim_im(sc);
1848 1.1 sevan break;
1849 1.1 sevan case RGE_IMTYPE_SIM:
1850 1.1 sevan rge_setup_sim_im(sc);
1851 1.1 sevan break;
1852 1.1 sevan default:
1853 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1854 1.1 sevan }
1855 1.1 sevan }
1856 1.1 sevan
1857 1.1 sevan void
1858 1.1 sevan rge_exit_oob(struct rge_softc *sc)
1859 1.1 sevan {
1860 1.1 sevan int i;
1861 1.1 sevan
1862 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
1863 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
1864 1.1 sevan RGE_RXCFG_ERRPKT);
1865 1.1 sevan
1866 1.1 sevan /* Disable RealWoW. */
1867 1.1 sevan rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
1868 1.1 sevan
1869 1.1 sevan rge_reset(sc);
1870 1.1 sevan
1871 1.1 sevan /* Disable OOB. */
1872 1.1 sevan RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
1873 1.1 sevan
1874 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
1875 1.1 sevan
1876 1.1 sevan for (i = 0; i < 10; i++) {
1877 1.1 sevan DELAY(100);
1878 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1879 1.1 sevan break;
1880 1.1 sevan }
1881 1.1 sevan
1882 1.1 sevan rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
1883 1.1 sevan rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
1884 1.1 sevan rge_write_mac_ocp(sc, 0xc01e, 0x5555);
1885 1.1 sevan
1886 1.1 sevan for (i = 0; i < 10; i++) {
1887 1.1 sevan DELAY(100);
1888 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1889 1.1 sevan break;
1890 1.1 sevan }
1891 1.1 sevan
1892 1.1 sevan if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
1893 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1894 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
1895 1.1 sevan break;
1896 1.1 sevan DELAY(1000);
1897 1.1 sevan }
1898 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
1899 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
1900 1.1 sevan }
1901 1.1 sevan }
1902 1.1 sevan
1903 1.1 sevan void
1904 1.1 sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
1905 1.1 sevan {
1906 1.1 sevan int i;
1907 1.1 sevan
1908 1.1 sevan RGE_WRITE_4(sc, RGE_CSIDR, val);
1909 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1910 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
1911 1.1 sevan
1912 1.1 sevan for (i = 0; i < 10; i++) {
1913 1.1 sevan DELAY(100);
1914 1.1 sevan if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
1915 1.1 sevan break;
1916 1.1 sevan }
1917 1.1 sevan
1918 1.1 sevan DELAY(20);
1919 1.1 sevan }
1920 1.1 sevan
1921 1.1 sevan uint32_t
1922 1.1 sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
1923 1.1 sevan {
1924 1.1 sevan int i;
1925 1.1 sevan
1926 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1927 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
1928 1.1 sevan
1929 1.1 sevan for (i = 0; i < 10; i++) {
1930 1.1 sevan DELAY(100);
1931 1.1 sevan if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
1932 1.1 sevan break;
1933 1.1 sevan }
1934 1.1 sevan
1935 1.1 sevan DELAY(20);
1936 1.1 sevan
1937 1.1 sevan return (RGE_READ_4(sc, RGE_CSIDR));
1938 1.1 sevan }
1939 1.1 sevan
1940 1.1 sevan void
1941 1.1 sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1942 1.1 sevan {
1943 1.1 sevan uint32_t tmp;
1944 1.1 sevan
1945 1.1 sevan tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1946 1.1 sevan tmp += val;
1947 1.1 sevan tmp |= RGE_MACOCP_BUSY;
1948 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, tmp);
1949 1.1 sevan }
1950 1.1 sevan
1951 1.1 sevan uint16_t
1952 1.1 sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
1953 1.1 sevan {
1954 1.1 sevan uint32_t val;
1955 1.1 sevan
1956 1.1 sevan val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1957 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, val);
1958 1.1 sevan
1959 1.1 sevan return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
1960 1.1 sevan }
1961 1.1 sevan
1962 1.1 sevan void
1963 1.1 sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
1964 1.1 sevan {
1965 1.1 sevan uint32_t tmp;
1966 1.1 sevan int i;
1967 1.1 sevan
1968 1.1 sevan tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
1969 1.1 sevan tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
1970 1.1 sevan RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
1971 1.1 sevan
1972 1.1 sevan for (i = 0; i < 10; i++) {
1973 1.1 sevan DELAY(100);
1974 1.1 sevan if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
1975 1.1 sevan break;
1976 1.1 sevan }
1977 1.1 sevan
1978 1.1 sevan DELAY(20);
1979 1.1 sevan }
1980 1.1 sevan
1981 1.1 sevan void
1982 1.1 sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
1983 1.1 sevan {
1984 1.1 sevan uint16_t off, phyaddr;
1985 1.1 sevan
1986 1.1 sevan phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
1987 1.1 sevan phyaddr <<= 4;
1988 1.1 sevan
1989 1.1 sevan off = addr ? reg : 0x10 + (reg % 8);
1990 1.1 sevan
1991 1.1 sevan phyaddr += (off - 16) << 1;
1992 1.1 sevan
1993 1.1 sevan rge_write_phy_ocp(sc, phyaddr, val);
1994 1.1 sevan }
1995 1.1 sevan
1996 1.1 sevan void
1997 1.1 sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1998 1.1 sevan {
1999 1.1 sevan uint32_t tmp;
2000 1.1 sevan int i;
2001 1.1 sevan
2002 1.1 sevan tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2003 1.1 sevan tmp |= RGE_PHYOCP_BUSY | val;
2004 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
2005 1.1 sevan
2006 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2007 1.1 sevan DELAY(1);
2008 1.1 sevan if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
2009 1.1 sevan break;
2010 1.1 sevan }
2011 1.1 sevan }
2012 1.1 sevan
2013 1.1 sevan uint16_t
2014 1.1 sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
2015 1.1 sevan {
2016 1.1 sevan uint32_t val;
2017 1.1 sevan int i;
2018 1.1 sevan
2019 1.1 sevan val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2020 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, val);
2021 1.1 sevan
2022 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2023 1.1 sevan DELAY(1);
2024 1.1 sevan val = RGE_READ_4(sc, RGE_PHYOCP);
2025 1.1 sevan if (val & RGE_PHYOCP_BUSY)
2026 1.1 sevan break;
2027 1.1 sevan }
2028 1.1 sevan
2029 1.1 sevan return (val & RGE_PHYOCP_DATA_MASK);
2030 1.1 sevan }
2031 1.1 sevan
2032 1.1 sevan int
2033 1.1 sevan rge_get_link_status(struct rge_softc *sc)
2034 1.1 sevan {
2035 1.1 sevan return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
2036 1.1 sevan }
2037 1.1 sevan
2038 1.1 sevan void
2039 1.3 sevan rge_txstart(struct work *wk, void *arg)
2040 1.1 sevan {
2041 1.1 sevan struct rge_softc *sc = arg;
2042 1.1 sevan
2043 1.1 sevan RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
2044 1.1 sevan }
2045 1.1 sevan
2046 1.1 sevan void
2047 1.1 sevan rge_tick(void *arg)
2048 1.1 sevan {
2049 1.1 sevan struct rge_softc *sc = arg;
2050 1.1 sevan int s;
2051 1.1 sevan
2052 1.1 sevan s = splnet();
2053 1.1 sevan rge_link_state(sc);
2054 1.1 sevan splx(s);
2055 1.1 sevan
2056 1.1 sevan timeout_add_sec(&sc->sc_timeout, 1);
2057 1.1 sevan }
2058 1.1 sevan
2059 1.1 sevan void
2060 1.1 sevan rge_link_state(struct rge_softc *sc)
2061 1.1 sevan {
2062 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
2063 1.1 sevan int link = LINK_STATE_DOWN;
2064 1.1 sevan
2065 1.1 sevan if (rge_get_link_status(sc))
2066 1.1 sevan link = LINK_STATE_UP;
2067 1.1 sevan
2068 1.1 sevan if (ifp->if_link_state != link) {
2069 1.1 sevan ifp->if_link_state = link;
2070 1.2 sevan if_link_state_change(ifp, LINK_STATE_DOWN);
2071 1.1 sevan }
2072 1.1 sevan }
2073