Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.16
      1  1.16  jakllsch /*	$NetBSD: if_rge.c,v 1.16 2021/01/27 14:25:22 jakllsch Exp $	*/
      2  1.15  jakllsch /*	$OpenBSD: if_rge.c,v 1.4 2020/07/10 13:26:38 patrick Exp $	*/
      3   1.1     sevan 
      4   1.1     sevan /*
      5   1.1     sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6   1.1     sevan  *
      7   1.1     sevan  * Permission to use, copy, modify, and distribute this software for any
      8   1.1     sevan  * purpose with or without fee is hereby granted, provided that the above
      9   1.1     sevan  * copyright notice and this permission notice appear in all copies.
     10   1.1     sevan  *
     11   1.1     sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1     sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1     sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1     sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1     sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1     sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1     sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1     sevan  */
     19   1.1     sevan 
     20   1.2     sevan #include <sys/cdefs.h>
     21  1.16  jakllsch __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.16 2021/01/27 14:25:22 jakllsch Exp $");
     22   1.2     sevan 
     23   1.2     sevan /* #include "vlan.h" Sevan */
     24   1.2     sevan 
     25   1.2     sevan #include <sys/types.h>
     26   1.1     sevan 
     27   1.1     sevan #include <sys/param.h>
     28   1.1     sevan #include <sys/systm.h>
     29   1.1     sevan #include <sys/sockio.h>
     30   1.1     sevan #include <sys/mbuf.h>
     31   1.1     sevan #include <sys/malloc.h>
     32   1.1     sevan #include <sys/kernel.h>
     33   1.1     sevan #include <sys/socket.h>
     34   1.1     sevan #include <sys/device.h>
     35   1.1     sevan #include <sys/endian.h>
     36   1.3     sevan #include <sys/callout.h>
     37   1.3     sevan #include <sys/workqueue.h>
     38   1.1     sevan 
     39   1.1     sevan #include <net/if.h>
     40   1.2     sevan 
     41   1.2     sevan #include <net/if_dl.h>
     42   1.2     sevan #include <net/if_ether.h>
     43   1.2     sevan 
     44   1.1     sevan #include <net/if_media.h>
     45   1.1     sevan 
     46   1.1     sevan #include <netinet/in.h>
     47   1.2     sevan #include <net/if_ether.h>
     48   1.1     sevan 
     49   1.1     sevan #if NBPFILTER > 0
     50   1.1     sevan #include <net/bpf.h>
     51   1.1     sevan #endif
     52   1.1     sevan 
     53   1.2     sevan #include <sys/bus.h>
     54   1.1     sevan #include <machine/intr.h>
     55   1.1     sevan 
     56   1.1     sevan #include <dev/mii/mii.h>
     57   1.1     sevan 
     58   1.1     sevan #include <dev/pci/pcivar.h>
     59   1.1     sevan #include <dev/pci/pcireg.h>
     60   1.1     sevan #include <dev/pci/pcidevs.h>
     61   1.1     sevan 
     62   1.1     sevan #include <dev/pci/if_rgereg.h>
     63   1.1     sevan 
     64   1.2     sevan #ifdef __NetBSD__
     65   1.2     sevan #define letoh32 	htole32
     66   1.2     sevan #define nitems(x) 	__arraycount(x)
     67   1.2     sevan #define MBUF_LIST_INITIALIZER() 	{ NULL, NULL, 0 }
     68   1.2     sevan struct mbuf_list {
     69   1.2     sevan 	struct mbuf 	*ml_head;
     70   1.2     sevan 	struct mbuf 	*ml_tail;
     71   1.2     sevan 	u_int 	ml_len;
     72   1.2     sevan };
     73   1.7     sevan 
     74   1.7     sevan static struct mbuf *
     75   1.7     sevan MCLGETI(struct rge_softc *sc __unused, int how,
     76   1.7     sevan     struct ifnet *ifp __unused, u_int size)
     77   1.7     sevan {
     78   1.7     sevan 	struct mbuf *m;
     79   1.7     sevan 
     80   1.7     sevan 	MGETHDR(m, how, MT_DATA);
     81   1.7     sevan 	if (m == NULL)
     82   1.7     sevan 		return NULL;
     83   1.7     sevan 
     84   1.7     sevan 	MEXTMALLOC(m, size, how);
     85   1.7     sevan 	if ((m->m_flags & M_EXT) == 0) {
     86   1.7     sevan 		m_freem(m);
     87   1.7     sevan 		return NULL;
     88   1.7     sevan 	}
     89   1.7     sevan 	return m;
     90   1.7     sevan }
     91   1.7     sevan 
     92   1.3     sevan #ifdef NET_MPSAFE
     93   1.3     sevan #define 	RGE_MPSAFE	1
     94   1.3     sevan #define 	CALLOUT_FLAGS	CALLOUT_MPSAFE
     95   1.3     sevan #else
     96   1.3     sevan #define 	CALLOUT_FLAGS	0
     97   1.3     sevan #endif
     98   1.2     sevan #endif
     99   1.2     sevan 
    100   1.2     sevan static int		rge_match(device_t, cfdata_t, void *);
    101   1.5     skrll static void		rge_attach(device_t, device_t, void *);
    102   1.1     sevan int		rge_intr(void *);
    103   1.1     sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
    104   1.2     sevan int		rge_ioctl(struct ifnet *, u_long, void *);
    105   1.2     sevan void		rge_start(struct ifnet *);
    106   1.1     sevan void		rge_watchdog(struct ifnet *);
    107   1.1     sevan int		rge_init(struct ifnet *);
    108   1.1     sevan void		rge_stop(struct ifnet *);
    109   1.1     sevan int		rge_ifmedia_upd(struct ifnet *);
    110   1.1     sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    111   1.1     sevan int		rge_allocmem(struct rge_softc *);
    112   1.1     sevan int		rge_newbuf(struct rge_softc *, int);
    113   1.1     sevan void		rge_discard_rxbuf(struct rge_softc *, int);
    114   1.1     sevan int		rge_rx_list_init(struct rge_softc *);
    115   1.1     sevan void		rge_tx_list_init(struct rge_softc *);
    116   1.1     sevan int		rge_rxeof(struct rge_softc *);
    117   1.1     sevan int		rge_txeof(struct rge_softc *);
    118   1.1     sevan void		rge_reset(struct rge_softc *);
    119   1.1     sevan void		rge_iff(struct rge_softc *);
    120   1.1     sevan void		rge_set_phy_power(struct rge_softc *, int);
    121   1.1     sevan void		rge_phy_config(struct rge_softc *);
    122   1.1     sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
    123   1.1     sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
    124   1.1     sevan void		rge_hw_init(struct rge_softc *);
    125   1.1     sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    126   1.1     sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    127   1.1     sevan void		rge_add_media_types(struct rge_softc *);
    128   1.1     sevan void		rge_config_imtype(struct rge_softc *, int);
    129   1.1     sevan void		rge_disable_sim_im(struct rge_softc *);
    130   1.1     sevan void		rge_setup_sim_im(struct rge_softc *);
    131   1.1     sevan void		rge_setup_intr(struct rge_softc *, int);
    132   1.1     sevan void		rge_exit_oob(struct rge_softc *);
    133   1.1     sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    134   1.1     sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    135   1.1     sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    136   1.1     sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    137   1.1     sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    138   1.1     sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    139   1.1     sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    140   1.1     sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    141   1.1     sevan int		rge_get_link_status(struct rge_softc *);
    142   1.3     sevan void		rge_txstart(struct work *, void *);
    143   1.1     sevan void		rge_tick(void *);
    144   1.1     sevan void		rge_link_state(struct rge_softc *);
    145   1.1     sevan 
    146   1.1     sevan static const struct {
    147   1.1     sevan 	uint16_t reg;
    148   1.1     sevan 	uint16_t val;
    149   1.1     sevan }  rtl8125_def_bps[] = {
    150   1.1     sevan 	RTL8125_DEF_BPS
    151   1.1     sevan }, rtl8125_mac_cfg2_ephy[] = {
    152   1.1     sevan 	RTL8125_MAC_CFG2_EPHY
    153   1.1     sevan }, rtl8125_mac_cfg2_mcu[] = {
    154   1.1     sevan 	RTL8125_MAC_CFG2_MCU
    155   1.1     sevan }, rtl8125_mac_cfg3_ephy[] = {
    156   1.1     sevan 	RTL8125_MAC_CFG3_EPHY
    157   1.1     sevan }, rtl8125_mac_cfg3_mcu[] = {
    158   1.1     sevan 	RTL8125_MAC_CFG3_MCU
    159   1.1     sevan };
    160   1.1     sevan 
    161   1.2     sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    162   1.2     sevan 		NULL, NULL); /* Sevan - detach function? */
    163   1.1     sevan 
    164   1.2     sevan extern struct cfdriver rge_cd;
    165   1.1     sevan 
    166   1.2     sevan static const struct {
    167   1.2     sevan 	pci_vendor_id_t 	vendor;
    168   1.2     sevan 	pci_product_id_t 	product;
    169   1.2     sevan }rge_devices[] = {
    170   1.1     sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    171   1.2     sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    172   1.1     sevan };
    173   1.1     sevan 
    174   1.2     sevan static int
    175   1.2     sevan rge_match(device_t parent, cfdata_t match, void *aux)
    176   1.1     sevan {
    177   1.2     sevan 	struct pci_attach_args *pa =aux;
    178   1.2     sevan 	int n;
    179   1.2     sevan 
    180   1.2     sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    181   1.2     sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    182   1.2     sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    183   1.2     sevan 			return 1;
    184   1.2     sevan 	}
    185   1.2     sevan 
    186   1.2     sevan 	return 0;
    187   1.1     sevan }
    188   1.1     sevan 
    189   1.1     sevan void
    190   1.2     sevan rge_attach(device_t parent, device_t self, void *aux)
    191   1.1     sevan {
    192  1.11     sevan 	struct rge_softc *sc = device_private(self);
    193   1.1     sevan 	struct pci_attach_args *pa = aux;
    194   1.1     sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    195   1.1     sevan 	pci_intr_handle_t ih;
    196   1.2     sevan 	char intrbuf[PCI_INTRSTR_LEN];
    197   1.1     sevan 	const char *intrstr = NULL;
    198   1.1     sevan 	struct ifnet *ifp;
    199   1.1     sevan 	pcireg_t reg;
    200   1.1     sevan 	uint32_t hwrev;
    201   1.1     sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    202   1.1     sevan 	int offset;
    203   1.1     sevan 
    204   1.1     sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    205   1.1     sevan 
    206  1.12     sevan 	sc->sc_dev = self;
    207  1.12     sevan 
    208   1.5     skrll 	/*
    209   1.1     sevan 	 * Map control/status registers.
    210   1.1     sevan 	 */
    211   1.1     sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    212   1.1     sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    213   1.2     sevan 	    NULL, &sc->rge_bsize)) {
    214   1.1     sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    215   1.1     sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    216   1.2     sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    217   1.1     sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    218   1.1     sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    219   1.2     sevan 			    &sc->rge_bsize)) {
    220  1.13     sevan 				aprint_error(": can't map mem or i/o space\n");
    221   1.1     sevan 				return;
    222   1.1     sevan 			}
    223   1.1     sevan 		}
    224   1.1     sevan 	}
    225   1.1     sevan 
    226   1.5     skrll 	/*
    227   1.1     sevan 	 * Allocate interrupt.
    228   1.1     sevan 	 */
    229   1.2     sevan 	if (pci_intr_map(pa, &ih) == 0)
    230   1.1     sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    231   1.1     sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    232  1.13     sevan 		aprint_error(": couldn't map interrupt\n");
    233   1.1     sevan 		return;
    234   1.1     sevan 	}
    235   1.2     sevan 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    236   1.2     sevan 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
    237  1.14     sevan 	    sc, device_xname(sc->sc_dev));
    238   1.1     sevan 	if (sc->sc_ih == NULL) {
    239  1.13     sevan 		aprint_error_dev(sc->sc_dev, ": couldn't establish interrupt");
    240   1.1     sevan 		if (intrstr != NULL)
    241  1.13     sevan 			aprint_error(" at %s\n", intrstr);
    242  1.13     sevan 		aprint_error("\n");
    243   1.1     sevan 		return;
    244   1.1     sevan 	}
    245  1.13     sevan 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    246   1.1     sevan 
    247   1.9   thorpej 	if (pci_dma64_available(pa))
    248   1.9   thorpej 		sc->sc_dmat = pa->pa_dmat64;
    249   1.9   thorpej 	else
    250   1.9   thorpej 		sc->sc_dmat = pa->pa_dmat;
    251   1.9   thorpej 
    252   1.1     sevan 	sc->sc_pc = pa->pa_pc;
    253   1.1     sevan 	sc->sc_tag = pa->pa_tag;
    254   1.1     sevan 
    255   1.1     sevan 	/* Determine hardware revision */
    256   1.1     sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    257   1.1     sevan 	switch (hwrev) {
    258   1.1     sevan 	case 0x60800000:
    259   1.1     sevan 		sc->rge_type = MAC_CFG2;
    260   1.1     sevan 		break;
    261   1.1     sevan 	case 0x60900000:
    262   1.1     sevan 		sc->rge_type = MAC_CFG3;
    263   1.1     sevan 		break;
    264   1.1     sevan 	default:
    265  1.13     sevan 		aprint_error(": unknown version 0x%08x\n", hwrev);
    266   1.1     sevan 		return;
    267   1.1     sevan 	}
    268   1.1     sevan 
    269   1.1     sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    270   1.1     sevan 
    271   1.5     skrll 	/*
    272   1.1     sevan 	 * PCI Express check.
    273   1.1     sevan 	 */
    274   1.1     sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    275   1.1     sevan 	    &offset, NULL)) {
    276   1.2     sevan 		/* Disable PCIe ASPM. */
    277   1.1     sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    278   1.2     sevan 		    offset + PCIE_LCSR);
    279   1.2     sevan 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
    280   1.2     sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    281   1.1     sevan 		    reg);
    282   1.1     sevan 	}
    283   1.1     sevan 
    284   1.1     sevan 	rge_exit_oob(sc);
    285   1.1     sevan 	rge_hw_init(sc);
    286   1.1     sevan 
    287   1.1     sevan 	rge_get_macaddr(sc, eaddr);
    288  1.13     sevan 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    289  1.13     sevan 	    ether_sprintf(eaddr));
    290   1.1     sevan 
    291   1.2     sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    292   1.1     sevan 
    293   1.1     sevan 	rge_set_phy_power(sc, 1);
    294   1.1     sevan 	rge_phy_config(sc);
    295   1.1     sevan 
    296   1.1     sevan 	if (rge_allocmem(sc))
    297   1.1     sevan 		return;
    298   1.1     sevan 
    299   1.2     sevan 	ifp = &sc->sc_ec.ec_if;
    300   1.1     sevan 	ifp->if_softc = sc;
    301  1.14     sevan 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    302   1.1     sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    303   1.2     sevan #ifdef RGE_MPSAFE
    304   1.2     sevan 	ifp->if_xflags = IFEF_MPSAFE;
    305   1.2     sevan #endif
    306   1.1     sevan 	ifp->if_ioctl = rge_ioctl;
    307   1.2     sevan 	ifp->if_start = rge_start;
    308   1.1     sevan 	ifp->if_watchdog = rge_watchdog;
    309  1.15  jakllsch 	ifq_set_maxlen(&ifp->if_snd, RGE_TX_LIST_CNT);
    310   1.2     sevan 	ifp->if_mtu = RGE_JUMBO_MTU;
    311   1.1     sevan 
    312   1.2     sevan 	ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
    313   1.2     sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    314   1.2     sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    315   1.1     sevan 
    316   1.1     sevan #if NVLAN > 0
    317   1.1     sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    318   1.1     sevan #endif
    319   1.1     sevan 
    320   1.3     sevan 	callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
    321   1.3     sevan 	callout_setfunc(&sc->sc_timeout, rge_tick, sc);
    322   1.3     sevan 	rge_txstart(&sc->sc_task, sc);
    323   1.1     sevan 
    324   1.1     sevan 	/* Initialize ifmedia structures. */
    325   1.1     sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    326   1.1     sevan 	    rge_ifmedia_sts);
    327   1.1     sevan 	rge_add_media_types(sc);
    328   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    329   1.1     sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    330   1.1     sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    331   1.1     sevan 
    332   1.1     sevan 	if_attach(ifp);
    333   1.2     sevan 	ether_ifattach(ifp, eaddr);
    334   1.1     sevan }
    335   1.1     sevan 
    336   1.1     sevan int
    337   1.1     sevan rge_intr(void *arg)
    338   1.1     sevan {
    339   1.1     sevan 	struct rge_softc *sc = arg;
    340   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    341   1.1     sevan 	uint32_t status;
    342   1.1     sevan 	int claimed = 0, rx, tx;
    343   1.1     sevan 
    344   1.1     sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    345   1.1     sevan 		return (0);
    346   1.1     sevan 
    347   1.1     sevan 	/* Disable interrupts. */
    348   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    349   1.1     sevan 
    350   1.1     sevan 	status = RGE_READ_4(sc, RGE_ISR);
    351   1.1     sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    352   1.1     sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    353   1.1     sevan 			return (0);
    354   1.1     sevan 	}
    355   1.1     sevan 	if (status)
    356   1.1     sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    357   1.1     sevan 
    358   1.1     sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    359   1.1     sevan 		claimed = 1;
    360   1.1     sevan 
    361   1.1     sevan 	rx = tx = 0;
    362   1.1     sevan 	if (status & RGE_INTRS) {
    363   1.1     sevan 		if (status &
    364   1.1     sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    365   1.1     sevan 			rx |= rge_rxeof(sc);
    366   1.1     sevan 			claimed = 1;
    367   1.1     sevan 		}
    368   1.1     sevan 
    369   1.1     sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    370   1.1     sevan 			tx |= rge_txeof(sc);
    371   1.1     sevan 			claimed = 1;
    372   1.1     sevan 		}
    373   1.1     sevan 
    374   1.1     sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    375   1.2     sevan 			KERNEL_LOCK(1, NULL);
    376   1.1     sevan 			rge_init(ifp);
    377   1.2     sevan 			KERNEL_UNLOCK_ONE(NULL);
    378   1.1     sevan 			claimed = 1;
    379   1.1     sevan 		}
    380   1.1     sevan 	}
    381   1.1     sevan 
    382   1.1     sevan 	if (sc->rge_timerintr) {
    383   1.1     sevan 		if ((tx | rx) == 0) {
    384   1.1     sevan 			/*
    385   1.1     sevan 			 * Nothing needs to be processed, fallback
    386   1.1     sevan 			 * to use TX/RX interrupts.
    387   1.1     sevan 			 */
    388   1.1     sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    389   1.1     sevan 
    390   1.1     sevan 			/*
    391   1.1     sevan 			 * Recollect, mainly to avoid the possible
    392   1.1     sevan 			 * race introduced by changing interrupt
    393   1.1     sevan 			 * masks.
    394   1.1     sevan 			 */
    395   1.1     sevan 			rge_rxeof(sc);
    396   1.1     sevan 			rge_txeof(sc);
    397   1.1     sevan 		} else
    398   1.1     sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    399   1.1     sevan 	} else if (tx | rx) {
    400   1.1     sevan 		/*
    401   1.1     sevan 		 * Assume that using simulated interrupt moderation
    402   1.1     sevan 		 * (hardware timer based) could reduce the interrupt
    403   1.1     sevan 		 * rate.
    404   1.1     sevan 		 */
    405   1.1     sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    406   1.1     sevan 	}
    407   1.1     sevan 
    408   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    409   1.1     sevan 
    410   1.1     sevan 	return (claimed);
    411   1.1     sevan }
    412   1.1     sevan 
    413   1.1     sevan int
    414   1.1     sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    415   1.1     sevan {
    416   1.1     sevan 	struct rge_tx_desc *d = NULL;
    417   1.1     sevan 	struct rge_txq *txq;
    418   1.1     sevan 	bus_dmamap_t txmap;
    419   1.1     sevan 	uint32_t cmdsts, cflags = 0;
    420   1.1     sevan 	int cur, error, i, last, nsegs;
    421   1.1     sevan 
    422   1.1     sevan 	/*
    423   1.1     sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    424   1.1     sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    425   1.1     sevan 	 * take affect.
    426   1.1     sevan 	 */
    427   1.1     sevan 	if ((m->m_pkthdr.csum_flags &
    428   1.2     sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    429   1.1     sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    430   1.1     sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    431   1.1     sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    432   1.1     sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    433   1.1     sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    434   1.1     sevan 	}
    435   1.1     sevan 
    436   1.1     sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    437   1.1     sevan 	txmap = txq->txq_dmamap;
    438   1.1     sevan 
    439   1.1     sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    440   1.1     sevan 	switch (error) {
    441   1.1     sevan 	case 0:
    442   1.1     sevan 		break;
    443   1.1     sevan 	case EFBIG: /* mbuf chain is too fragmented */
    444   1.1     sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    445   1.1     sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    446   1.1     sevan 		    BUS_DMA_NOWAIT) == 0)
    447   1.1     sevan 			break;
    448   1.1     sevan 
    449   1.1     sevan 		/* FALLTHROUGH */
    450   1.1     sevan 	default:
    451   1.1     sevan 		return (0);
    452   1.1     sevan 	}
    453   1.1     sevan 
    454   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    455   1.1     sevan 	    BUS_DMASYNC_PREWRITE);
    456   1.1     sevan 
    457   1.1     sevan 	nsegs = txmap->dm_nsegs;
    458   1.1     sevan 
    459   1.1     sevan 	/* Set up hardware VLAN tagging. */
    460   1.1     sevan #if NVLAN > 0
    461   1.1     sevan 	if (m->m_flags & M_VLANTAG)
    462   1.1     sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    463   1.1     sevan #endif
    464   1.1     sevan 
    465   1.1     sevan 	cur = idx;
    466   1.1     sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    467   1.1     sevan 
    468   1.1     sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    469   1.1     sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    470   1.1     sevan 
    471   1.1     sevan 		d->rge_extsts = htole32(cflags);
    472   1.1     sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    473   1.1     sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    474   1.1     sevan 
    475   1.1     sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    476   1.1     sevan 
    477   1.1     sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    478   1.1     sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    479   1.1     sevan 
    480   1.1     sevan 		d->rge_cmdsts = htole32(cmdsts);
    481   1.1     sevan 
    482   1.1     sevan 		last = cur;
    483   1.1     sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    484   1.1     sevan 		cur = RGE_NEXT_TX_DESC(cur);
    485   1.1     sevan 	}
    486   1.1     sevan 
    487   1.1     sevan 	/* Set EOF on the last descriptor. */
    488   1.1     sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    489   1.1     sevan 
    490   1.1     sevan 	/* Transfer ownership of packet to the chip. */
    491   1.1     sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    492   1.1     sevan 
    493   1.1     sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    494   1.1     sevan 
    495   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    496   1.1     sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    497   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    498   1.1     sevan 
    499   1.1     sevan 	/* Update info of TX queue and descriptors. */
    500   1.1     sevan 	txq->txq_mbuf = m;
    501   1.1     sevan 	txq->txq_descidx = last;
    502   1.1     sevan 
    503   1.1     sevan 	return (nsegs);
    504   1.1     sevan }
    505   1.1     sevan 
    506   1.1     sevan int
    507   1.2     sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    508   1.1     sevan {
    509   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    510   1.1     sevan 	struct ifreq *ifr = (struct ifreq *)data;
    511   1.1     sevan 	int s, error = 0;
    512   1.1     sevan 
    513   1.1     sevan 	s = splnet();
    514   1.1     sevan 
    515   1.1     sevan 	switch (cmd) {
    516   1.1     sevan 	case SIOCSIFADDR:
    517   1.1     sevan 		ifp->if_flags |= IFF_UP;
    518   1.1     sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    519   1.1     sevan 			rge_init(ifp);
    520   1.1     sevan 		break;
    521   1.1     sevan 	case SIOCSIFFLAGS:
    522   1.1     sevan 		if (ifp->if_flags & IFF_UP) {
    523   1.1     sevan 			if (ifp->if_flags & IFF_RUNNING)
    524   1.1     sevan 				error = ENETRESET;
    525   1.1     sevan 			else
    526   1.1     sevan 				rge_init(ifp);
    527   1.1     sevan 		} else {
    528   1.1     sevan 			if (ifp->if_flags & IFF_RUNNING)
    529   1.1     sevan 				rge_stop(ifp);
    530   1.1     sevan 		}
    531   1.1     sevan 		break;
    532   1.1     sevan 	case SIOCGIFMEDIA:
    533   1.1     sevan 	case SIOCSIFMEDIA:
    534   1.1     sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    535   1.1     sevan 		break;
    536   1.1     sevan 	case SIOCSIFMTU:
    537   1.2     sevan 		if (ifr->ifr_mtu > ifp->if_mtu) {
    538   1.1     sevan 			error = EINVAL;
    539   1.1     sevan 			break;
    540   1.1     sevan 		}
    541   1.1     sevan 		ifp->if_mtu = ifr->ifr_mtu;
    542   1.1     sevan 		break;
    543   1.1     sevan 	default:
    544   1.2     sevan 		error = ether_ioctl(ifp, cmd, data);
    545   1.1     sevan 	}
    546   1.1     sevan 
    547   1.1     sevan 	if (error == ENETRESET) {
    548   1.1     sevan 		if (ifp->if_flags & IFF_RUNNING)
    549   1.1     sevan 			rge_iff(sc);
    550   1.1     sevan 		error = 0;
    551   1.1     sevan 	}
    552   1.1     sevan 
    553   1.1     sevan 	splx(s);
    554   1.1     sevan 	return (error);
    555   1.1     sevan }
    556   1.1     sevan 
    557   1.1     sevan void
    558   1.3     sevan rge_start(struct ifnet *ifp)
    559   1.1     sevan {
    560   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    561   1.1     sevan 	struct mbuf *m;
    562   1.1     sevan 	int free, idx, used;
    563   1.1     sevan 	int queued = 0;
    564   1.1     sevan 
    565   1.2     sevan #define LINK_STATE_IS_UP(_s)    \
    566   1.2     sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    567   1.2     sevan 
    568   1.1     sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    569   1.1     sevan 		ifq_purge(ifq);
    570   1.1     sevan 		return;
    571   1.1     sevan 	}
    572   1.1     sevan 
    573   1.1     sevan 	/* Calculate free space. */
    574   1.1     sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    575   1.1     sevan 	free = sc->rge_ldata.rge_txq_considx;
    576   1.1     sevan 	if (free <= idx)
    577   1.1     sevan 		free += RGE_TX_LIST_CNT;
    578   1.1     sevan 	free -= idx;
    579   1.1     sevan 
    580   1.1     sevan 	for (;;) {
    581   1.1     sevan 		if (RGE_TX_NSEGS >= free + 2) {
    582   1.3     sevan 			SET(ifp->if_flags, IFF_OACTIVE);
    583   1.1     sevan 			break;
    584   1.1     sevan 		}
    585   1.1     sevan 
    586   1.3     sevan 		IFQ_DEQUEUE(&ifp->if_snd, m);
    587   1.1     sevan 		if (m == NULL)
    588   1.1     sevan 			break;
    589   1.1     sevan 
    590   1.1     sevan 		used = rge_encap(sc, m, idx);
    591   1.1     sevan 		if (used == 0) {
    592   1.1     sevan 			m_freem(m);
    593   1.1     sevan 			continue;
    594   1.1     sevan 		}
    595   1.1     sevan 
    596   1.1     sevan 		KASSERT(used <= free);
    597   1.1     sevan 		free -= used;
    598   1.1     sevan 
    599   1.1     sevan #if NBPFILTER > 0
    600   1.1     sevan 		if (ifp->if_bpf)
    601   1.1     sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    602   1.1     sevan #endif
    603   1.1     sevan 
    604   1.1     sevan 		idx += used;
    605   1.1     sevan 		if (idx >= RGE_TX_LIST_CNT)
    606   1.1     sevan 			idx -= RGE_TX_LIST_CNT;
    607   1.1     sevan 
    608   1.1     sevan 		queued++;
    609   1.1     sevan 	}
    610   1.1     sevan 
    611   1.1     sevan 	if (queued == 0)
    612   1.1     sevan 		return;
    613   1.1     sevan 
    614   1.1     sevan 	/* Set a timeout in case the chip goes out to lunch. */
    615   1.1     sevan 	ifp->if_timer = 5;
    616   1.1     sevan 
    617   1.1     sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    618   1.1     sevan 	ifq_serialize(ifq, &sc->sc_task);
    619   1.1     sevan }
    620   1.1     sevan 
    621   1.1     sevan void
    622   1.1     sevan rge_watchdog(struct ifnet *ifp)
    623   1.1     sevan {
    624   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    625   1.1     sevan 
    626  1.16  jakllsch 	device_printf(sc->sc_dev, "watchdog timeout\n");
    627   1.4     skrll 	if_statinc(ifp, if_oerrors);
    628   1.1     sevan 
    629   1.1     sevan 	rge_init(ifp);
    630   1.1     sevan }
    631   1.1     sevan 
    632   1.1     sevan int
    633   1.1     sevan rge_init(struct ifnet *ifp)
    634   1.1     sevan {
    635   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    636   1.1     sevan 	uint32_t val;
    637   1.1     sevan 	uint16_t max_frame_size;
    638   1.1     sevan 	int i;
    639   1.1     sevan 
    640   1.1     sevan 	rge_stop(ifp);
    641   1.1     sevan 
    642   1.1     sevan 	/* Set MAC address. */
    643   1.2     sevan 	rge_set_macaddr(sc, sc->sc_enaddr);
    644   1.1     sevan 
    645   1.1     sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    646   1.1     sevan 	if (ifp->if_mtu < ETHERMTU)
    647   1.1     sevan 		max_frame_size = ETHERMTU;
    648   1.1     sevan 	else
    649   1.1     sevan 		max_frame_size = ifp->if_mtu;
    650   1.1     sevan 
    651   1.1     sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    652   1.1     sevan 	    ETHER_CRC_LEN + 1;
    653   1.1     sevan 
    654   1.1     sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    655   1.5     skrll 		max_frame_size -= 1;
    656   1.1     sevan 
    657   1.1     sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    658   1.1     sevan 
    659   1.1     sevan 	/* Initialize RX descriptors list. */
    660   1.1     sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    661  1.16  jakllsch 		device_printf(sc->sc_dev,
    662  1.13     sevan 		    "init failed: no memory for RX buffers\n");
    663   1.1     sevan 		rge_stop(ifp);
    664   1.1     sevan 		return (ENOBUFS);
    665   1.1     sevan 	}
    666   1.1     sevan 
    667   1.1     sevan 	/* Initialize TX descriptors. */
    668   1.1     sevan 	rge_tx_list_init(sc);
    669   1.1     sevan 
    670   1.1     sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    671   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    672   1.1     sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    673   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    674   1.1     sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    675   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    676   1.1     sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    677   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    678   1.1     sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    679   1.1     sevan 
    680   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    681   1.1     sevan 
    682   1.1     sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    683   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    684   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    685   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    686   1.1     sevan 
    687   1.1     sevan 	/* Clear interrupt moderation timer. */
    688   1.1     sevan 	for (i = 0; i < 64; i++)
    689   1.1     sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    690   1.1     sevan 
    691   1.1     sevan 	/* Set the initial RX and TX configurations. */
    692   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    693   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    694   1.1     sevan 
    695   1.1     sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    696   1.1     sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    697   1.1     sevan 
    698   1.1     sevan 	/* Enable hardware optimization function. */
    699   1.1     sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    700   1.1     sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    701   1.1     sevan 
    702   1.1     sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    703   1.1     sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    704   1.1     sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    705   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    706   1.1     sevan 
    707   1.1     sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    708   1.1     sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    709   1.1     sevan 
    710   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    711   1.1     sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    712   1.1     sevan 
    713   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    714   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    715   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    716   1.1     sevan 
    717   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    718   1.1     sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    719   1.1     sevan 
    720   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    721   1.1     sevan 
    722   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    723   1.1     sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    724   1.1     sevan 
    725   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    726   1.1     sevan 
    727   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    728   1.1     sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    729   1.1     sevan 
    730   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    731   1.1     sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    732   1.1     sevan 
    733   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    734   1.1     sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    735   1.1     sevan 
    736   1.1     sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    737   1.1     sevan 
    738   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    739   1.1     sevan 
    740   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    741   1.1     sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    742   1.1     sevan 
    743   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    744   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    745   1.1     sevan 
    746   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    747   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    748   1.1     sevan 
    749   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    750   1.1     sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    751   1.1     sevan 
    752   1.5     skrll 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    753   1.1     sevan 
    754   1.1     sevan 	/* Disable EEE plus. */
    755   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    756   1.1     sevan 
    757   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    758   1.1     sevan 
    759   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    760   1.1     sevan 	DELAY(1);
    761   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    762   1.1     sevan 
    763   1.1     sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    764   1.1     sevan 
    765   1.1     sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    766   1.1     sevan 
    767   1.2     sevan 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
    768   1.1     sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    769   1.1     sevan 
    770   1.1     sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    771   1.1     sevan 
    772   1.1     sevan 	for (i = 0; i < 10; i++) {
    773   1.1     sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    774   1.1     sevan 			break;
    775   1.1     sevan 		DELAY(1000);
    776   1.1     sevan 	}
    777   1.1     sevan 
    778   1.1     sevan 	/* Disable RXDV gate. */
    779   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    780   1.1     sevan 	DELAY(2000);
    781   1.1     sevan 
    782   1.1     sevan 	rge_ifmedia_upd(ifp);
    783   1.1     sevan 
    784   1.1     sevan 	/* Enable transmit and receive. */
    785   1.1     sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    786   1.1     sevan 
    787   1.1     sevan 	/* Program promiscuous mode and multicast filters. */
    788   1.1     sevan 	rge_iff(sc);
    789   1.1     sevan 
    790   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    791   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    792   1.1     sevan 
    793   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    794   1.1     sevan 
    795   1.1     sevan 	/* Enable interrupts. */
    796   1.1     sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    797   1.1     sevan 
    798   1.1     sevan 	ifp->if_flags |= IFF_RUNNING;
    799   1.3     sevan 	CLR(ifp->if_flags, IFF_OACTIVE);
    800   1.1     sevan 
    801   1.3     sevan 	callout_schedule(&sc->sc_timeout, 1);
    802   1.1     sevan 
    803   1.1     sevan 	return (0);
    804   1.1     sevan }
    805   1.1     sevan 
    806   1.1     sevan /*
    807   1.1     sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    808   1.1     sevan  */
    809   1.1     sevan void
    810   1.1     sevan rge_stop(struct ifnet *ifp)
    811   1.1     sevan {
    812   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    813   1.1     sevan 	int i;
    814   1.1     sevan 
    815   1.1     sevan 	timeout_del(&sc->sc_timeout);
    816   1.1     sevan 
    817   1.1     sevan 	ifp->if_timer = 0;
    818   1.1     sevan 	ifp->if_flags &= ~IFF_RUNNING;
    819   1.1     sevan 	sc->rge_timerintr = 0;
    820   1.1     sevan 
    821   1.1     sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    822   1.1     sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    823   1.1     sevan 	    RGE_RXCFG_ERRPKT);
    824   1.1     sevan 
    825   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    826   1.1     sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    827   1.1     sevan 
    828   1.1     sevan 	rge_reset(sc);
    829   1.1     sevan 
    830   1.1     sevan 	intr_barrier(sc->sc_ih);
    831   1.1     sevan 	ifq_barrier(&ifp->if_snd);
    832   1.2     sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    833   1.1     sevan 
    834   1.1     sevan 	if (sc->rge_head != NULL) {
    835   1.1     sevan 		m_freem(sc->rge_head);
    836   1.1     sevan 		sc->rge_head = sc->rge_tail = NULL;
    837   1.1     sevan 	}
    838   1.1     sevan 
    839   1.1     sevan 	/* Free the TX list buffers. */
    840   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    841   1.1     sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    842   1.1     sevan 			bus_dmamap_unload(sc->sc_dmat,
    843   1.1     sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    844   1.1     sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    845   1.1     sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    846   1.1     sevan 		}
    847   1.1     sevan 	}
    848   1.1     sevan 
    849   1.1     sevan 	/* Free the RX list buffers. */
    850   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    851   1.1     sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    852   1.1     sevan 			bus_dmamap_unload(sc->sc_dmat,
    853   1.1     sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    854   1.1     sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    855   1.1     sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    856   1.1     sevan 		}
    857   1.1     sevan 	}
    858   1.1     sevan }
    859   1.1     sevan 
    860   1.1     sevan /*
    861   1.1     sevan  * Set media options.
    862   1.1     sevan  */
    863   1.1     sevan int
    864   1.1     sevan rge_ifmedia_upd(struct ifnet *ifp)
    865   1.1     sevan {
    866   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    867   1.1     sevan 	struct ifmedia *ifm = &sc->sc_media;
    868   1.1     sevan 	int anar, gig, val;
    869   1.1     sevan 
    870   1.1     sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    871   1.1     sevan 		return (EINVAL);
    872   1.1     sevan 
    873   1.1     sevan 	/* Disable Gigabit Lite. */
    874   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    875   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    876   1.1     sevan 
    877   1.1     sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    878   1.1     sevan 	val &= ~RGE_ADV_2500TFDX;
    879   1.1     sevan 
    880   1.1     sevan 	anar = gig = 0;
    881   1.1     sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    882   1.1     sevan 	case IFM_AUTO:
    883   1.1     sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    884   1.1     sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    885   1.1     sevan 		val |= RGE_ADV_2500TFDX;
    886   1.1     sevan 		break;
    887   1.1     sevan 	case IFM_2500_T:
    888   1.1     sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    889   1.1     sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    890   1.1     sevan 		val |= RGE_ADV_2500TFDX;
    891   1.1     sevan 		ifp->if_baudrate = IF_Mbps(2500);
    892   1.1     sevan 		break;
    893   1.1     sevan 	case IFM_1000_T:
    894   1.1     sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    895   1.1     sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    896   1.1     sevan 		ifp->if_baudrate = IF_Gbps(1);
    897   1.1     sevan 		break;
    898   1.1     sevan 	case IFM_100_TX:
    899   1.1     sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    900   1.1     sevan 		ifp->if_baudrate = IF_Mbps(100);
    901   1.1     sevan 		break;
    902   1.1     sevan 	case IFM_10_T:
    903   1.1     sevan 		anar |= ANAR_10 | ANAR_10_FD;
    904   1.1     sevan 		ifp->if_baudrate = IF_Mbps(10);
    905   1.1     sevan 		break;
    906   1.1     sevan 	default:
    907  1.16  jakllsch 		device_printf(sc->sc_dev,
    908  1.13     sevan 		    "unsupported media type\n");
    909   1.1     sevan 		return (EINVAL);
    910   1.1     sevan 	}
    911   1.1     sevan 
    912   1.1     sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    913   1.1     sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    914   1.1     sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    915   1.1     sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    916   1.1     sevan 
    917   1.1     sevan 	return (0);
    918   1.1     sevan }
    919   1.1     sevan 
    920   1.1     sevan /*
    921   1.1     sevan  * Report current media status.
    922   1.1     sevan  */
    923   1.1     sevan void
    924   1.1     sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    925   1.1     sevan {
    926   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    927   1.1     sevan 	uint16_t status = 0;
    928   1.1     sevan 
    929   1.1     sevan 	ifmr->ifm_status = IFM_AVALID;
    930   1.1     sevan 	ifmr->ifm_active = IFM_ETHER;
    931   1.1     sevan 
    932   1.1     sevan 	if (rge_get_link_status(sc)) {
    933   1.1     sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    934   1.1     sevan 
    935   1.1     sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    936   1.1     sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    937   1.1     sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    938   1.1     sevan 			ifmr->ifm_active |= IFM_FDX;
    939   1.1     sevan 		else
    940   1.1     sevan 			ifmr->ifm_active |= IFM_HDX;
    941   1.1     sevan 
    942   1.1     sevan 		if (status & RGE_PHYSTAT_10MBPS)
    943   1.1     sevan 			ifmr->ifm_active |= IFM_10_T;
    944   1.1     sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    945   1.1     sevan 			ifmr->ifm_active |= IFM_100_TX;
    946   1.1     sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    947   1.1     sevan 			ifmr->ifm_active |= IFM_1000_T;
    948   1.1     sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    949   1.1     sevan 			ifmr->ifm_active |= IFM_2500_T;
    950   1.1     sevan 	}
    951   1.1     sevan }
    952   1.1     sevan 
    953   1.5     skrll /*
    954   1.1     sevan  * Allocate memory for RX/TX rings.
    955   1.1     sevan  */
    956   1.1     sevan int
    957   1.1     sevan rge_allocmem(struct rge_softc *sc)
    958   1.1     sevan {
    959   1.1     sevan 	int error, i;
    960   1.1     sevan 
    961   1.1     sevan 	/* Allocate DMA'able memory for the TX ring. */
    962   1.1     sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    963   1.1     sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    964   1.1     sevan 	if (error) {
    965  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't create TX list map\n");
    966   1.1     sevan 		return (error);
    967   1.1     sevan 	}
    968   1.1     sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    969   1.1     sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    970   1.2     sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
    971   1.1     sevan 	if (error) {
    972  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't alloc TX list\n");
    973   1.1     sevan 		return (error);
    974   1.1     sevan 	}
    975   1.1     sevan 
    976   1.1     sevan 	/* Load the map for the TX ring. */
    977   1.1     sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    978   1.1     sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    979   1.8     sevan 	    (void **) &sc->rge_ldata.rge_tx_list,
    980   1.2     sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
    981   1.1     sevan 	if (error) {
    982  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't map TX dma buffers\n");
    983   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    984   1.1     sevan 		    sc->rge_ldata.rge_tx_listnseg);
    985   1.1     sevan 		return (error);
    986   1.1     sevan 	}
    987   1.1     sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    988   1.1     sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    989   1.1     sevan 	if (error) {
    990  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't load TX dma map\n");
    991   1.1     sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    992   1.1     sevan 		bus_dmamem_unmap(sc->sc_dmat,
    993   1.2     sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    994   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    995   1.1     sevan 		    sc->rge_ldata.rge_tx_listnseg);
    996   1.1     sevan 		return (error);
    997   1.1     sevan 	}
    998   1.1     sevan 
    999   1.1     sevan 	/* Create DMA maps for TX buffers. */
   1000   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
   1001   1.1     sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
   1002   1.1     sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
   1003   1.1     sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
   1004   1.1     sevan 		if (error) {
   1005  1.13     sevan 			aprint_error_dev(sc->sc_dev, "can't create DMA map for TX\n");
   1006   1.1     sevan 			return (error);
   1007   1.1     sevan 		}
   1008   1.1     sevan 	}
   1009   1.1     sevan 
   1010   1.1     sevan 	/* Allocate DMA'able memory for the RX ring. */
   1011   1.1     sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
   1012   1.1     sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
   1013   1.1     sevan 	if (error) {
   1014  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't create RX list map\n");
   1015   1.1     sevan 		return (error);
   1016   1.1     sevan 	}
   1017   1.1     sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
   1018   1.1     sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
   1019   1.2     sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_ZERO */
   1020   1.1     sevan 	if (error) {
   1021  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't alloc RX list\n");
   1022   1.1     sevan 		return (error);
   1023   1.1     sevan 	}
   1024   1.1     sevan 
   1025   1.1     sevan 	/* Load the map for the RX ring. */
   1026   1.1     sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1027   1.1     sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
   1028   1.8     sevan 	    (void **) &sc->rge_ldata.rge_rx_list,
   1029   1.2     sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1030   1.1     sevan 	if (error) {
   1031  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't map RX dma buffers\n");
   1032   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1033   1.1     sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1034   1.1     sevan 		return (error);
   1035   1.1     sevan 	}
   1036   1.1     sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1037   1.1     sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1038   1.1     sevan 	if (error) {
   1039  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't load RX dma map\n");
   1040   1.1     sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1041   1.1     sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1042   1.2     sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1043   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1044   1.1     sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1045   1.1     sevan 		return (error);
   1046   1.1     sevan 	}
   1047   1.1     sevan 
   1048   1.1     sevan 	/* Create DMA maps for RX buffers. */
   1049   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1050   1.1     sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1051   1.1     sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1052   1.1     sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1053   1.1     sevan 		if (error) {
   1054  1.13     sevan 			aprint_error_dev(sc->sc_dev, "can't create DMA map for RX\n");
   1055   1.1     sevan 			return (error);
   1056   1.1     sevan 		}
   1057   1.1     sevan 	}
   1058   1.1     sevan 
   1059   1.1     sevan 	return (error);
   1060   1.1     sevan }
   1061   1.1     sevan 
   1062   1.1     sevan /*
   1063   1.1     sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1064   1.1     sevan  */
   1065   1.1     sevan int
   1066   1.1     sevan rge_newbuf(struct rge_softc *sc, int idx)
   1067   1.1     sevan {
   1068   1.1     sevan 	struct mbuf *m;
   1069   1.1     sevan 	struct rge_rx_desc *r;
   1070   1.1     sevan 	struct rge_rxq *rxq;
   1071   1.1     sevan 	bus_dmamap_t rxmap;
   1072   1.1     sevan 
   1073   1.1     sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1074   1.1     sevan 	if (m == NULL)
   1075   1.1     sevan 		return (ENOBUFS);
   1076   1.1     sevan 
   1077   1.1     sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1078   1.1     sevan 
   1079   1.1     sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1080   1.1     sevan 	rxmap = rxq->rxq_dmamap;
   1081   1.1     sevan 
   1082   1.1     sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1083   1.1     sevan 		goto out;
   1084   1.1     sevan 
   1085   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1086   1.1     sevan 	    BUS_DMASYNC_PREREAD);
   1087   1.1     sevan 
   1088   1.1     sevan 	/* Map the segments into RX descriptors. */
   1089   1.1     sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1090   1.1     sevan 
   1091   1.1     sevan 	if (RGE_OWN(r)) {
   1092  1.16  jakllsch 		device_printf(sc->sc_dev, "tried to map busy RX descriptor\n");
   1093   1.1     sevan 		goto out;
   1094   1.1     sevan 	}
   1095   1.1     sevan 
   1096   1.1     sevan 	rxq->rxq_mbuf = m;
   1097   1.1     sevan 
   1098   1.1     sevan 	r->rge_extsts = 0;
   1099   1.1     sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1100   1.1     sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1101   1.1     sevan 
   1102   1.1     sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1103   1.1     sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1104   1.1     sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1105   1.1     sevan 
   1106   1.1     sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1107   1.1     sevan 
   1108   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1109   1.1     sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1110   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1111   1.1     sevan 
   1112   1.1     sevan 	return (0);
   1113   1.1     sevan out:
   1114   1.1     sevan 	if (m != NULL)
   1115   1.1     sevan 		m_freem(m);
   1116   1.1     sevan 	return (ENOMEM);
   1117   1.1     sevan }
   1118   1.1     sevan 
   1119   1.1     sevan void
   1120   1.1     sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1121   1.1     sevan {
   1122   1.1     sevan 	struct rge_rx_desc *r;
   1123   1.1     sevan 
   1124   1.1     sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1125   1.1     sevan 
   1126   1.1     sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1127   1.1     sevan 	r->rge_extsts = 0;
   1128   1.1     sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1129   1.1     sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1130   1.1     sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1131   1.1     sevan 
   1132   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1133   1.1     sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1134   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1135   1.1     sevan }
   1136   1.1     sevan 
   1137   1.1     sevan int
   1138   1.1     sevan rge_rx_list_init(struct rge_softc *sc)
   1139   1.1     sevan {
   1140   1.1     sevan 	int i;
   1141   1.1     sevan 
   1142   1.1     sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1143   1.1     sevan 
   1144   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1145   1.1     sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1146   1.1     sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1147   1.1     sevan 			return (ENOBUFS);
   1148   1.1     sevan 	}
   1149   1.1     sevan 
   1150   1.1     sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1151   1.1     sevan 	sc->rge_head = sc->rge_tail = NULL;
   1152   1.1     sevan 
   1153   1.1     sevan 	return (0);
   1154   1.1     sevan }
   1155   1.1     sevan 
   1156   1.1     sevan void
   1157   1.1     sevan rge_tx_list_init(struct rge_softc *sc)
   1158   1.1     sevan {
   1159   1.1     sevan 	int i;
   1160   1.1     sevan 
   1161   1.1     sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1162   1.1     sevan 
   1163   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1164   1.1     sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1165   1.1     sevan 
   1166   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1167   1.1     sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1168   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1169   1.1     sevan 
   1170   1.1     sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1171   1.1     sevan }
   1172   1.1     sevan 
   1173   1.1     sevan int
   1174   1.1     sevan rge_rxeof(struct rge_softc *sc)
   1175   1.1     sevan {
   1176   1.1     sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1177   1.1     sevan 	struct mbuf *m;
   1178   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1179   1.1     sevan 	struct rge_rx_desc *cur_rx;
   1180   1.1     sevan 	struct rge_rxq *rxq;
   1181   1.1     sevan 	uint32_t rxstat, extsts;
   1182   1.1     sevan 	int i, total_len, rx = 0;
   1183   1.1     sevan 
   1184   1.1     sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1185   1.1     sevan 		/* Invalidate the descriptor memory. */
   1186   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1187   1.1     sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1188   1.1     sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1189   1.1     sevan 
   1190   1.1     sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1191   1.1     sevan 
   1192   1.1     sevan 		if (RGE_OWN(cur_rx))
   1193   1.1     sevan 			break;
   1194   1.1     sevan 
   1195   1.1     sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1196   1.1     sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1197   1.5     skrll 
   1198   1.1     sevan 		total_len = RGE_RXBYTES(cur_rx);
   1199   1.1     sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1200   1.1     sevan 		m = rxq->rxq_mbuf;
   1201   1.1     sevan 		rx = 1;
   1202   1.1     sevan 
   1203   1.1     sevan 		/* Invalidate the RX mbuf and unload its map. */
   1204   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1205   1.1     sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1206   1.1     sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1207   1.1     sevan 
   1208   1.1     sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1209   1.1     sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1210   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1211   1.1     sevan 			continue;
   1212   1.1     sevan 		}
   1213   1.1     sevan 
   1214   1.1     sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1215   1.4     skrll 			if_statinc(ifp, if_ierrors);
   1216   1.1     sevan 			/*
   1217   1.1     sevan 			 * If this is part of a multi-fragment packet,
   1218   1.1     sevan 			 * discard all the pieces.
   1219   1.1     sevan 			 */
   1220   1.1     sevan 			 if (sc->rge_head != NULL) {
   1221   1.1     sevan 				m_freem(sc->rge_head);
   1222   1.1     sevan 				sc->rge_head = sc->rge_tail = NULL;
   1223   1.1     sevan 			}
   1224   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1225   1.1     sevan 			continue;
   1226   1.1     sevan 		}
   1227   1.1     sevan 
   1228   1.1     sevan 		/*
   1229   1.1     sevan 		 * If allocating a replacement mbuf fails,
   1230   1.1     sevan 		 * reload the current one.
   1231   1.1     sevan 		 */
   1232   1.1     sevan 
   1233   1.1     sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1234   1.1     sevan 			if (sc->rge_head != NULL) {
   1235   1.1     sevan 				m_freem(sc->rge_head);
   1236   1.1     sevan 				sc->rge_head = sc->rge_tail = NULL;
   1237   1.1     sevan 			}
   1238   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1239   1.1     sevan 			continue;
   1240   1.1     sevan 		}
   1241   1.1     sevan 
   1242   1.1     sevan 		if (sc->rge_head != NULL) {
   1243   1.1     sevan 			m->m_len = total_len;
   1244   1.1     sevan 			/*
   1245   1.1     sevan 			 * Special case: if there's 4 bytes or less
   1246   1.1     sevan 			 * in this buffer, the mbuf can be discarded:
   1247   1.1     sevan 			 * the last 4 bytes is the CRC, which we don't
   1248   1.1     sevan 			 * care about anyway.
   1249   1.1     sevan 			 */
   1250   1.1     sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1251   1.1     sevan 				sc->rge_tail->m_len -=
   1252   1.1     sevan 				    (ETHER_CRC_LEN - m->m_len);
   1253   1.1     sevan 				m_freem(m);
   1254   1.1     sevan 			} else {
   1255   1.1     sevan 				m->m_len -= ETHER_CRC_LEN;
   1256   1.1     sevan 				m->m_flags &= ~M_PKTHDR;
   1257   1.1     sevan 				sc->rge_tail->m_next = m;
   1258   1.1     sevan 			}
   1259   1.1     sevan 			m = sc->rge_head;
   1260   1.1     sevan 			sc->rge_head = sc->rge_tail = NULL;
   1261   1.1     sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1262   1.1     sevan 		} else
   1263   1.1     sevan 			m->m_pkthdr.len = m->m_len =
   1264   1.1     sevan 			    (total_len - ETHER_CRC_LEN);
   1265   1.1     sevan 
   1266   1.1     sevan 		/* Check IP header checksum. */
   1267   1.1     sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1268   1.1     sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1269   1.1     sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1270   1.1     sevan 
   1271   1.1     sevan 		/* Check TCP/UDP checksum. */
   1272   1.1     sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1273   1.1     sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1274   1.1     sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1275   1.1     sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1276   1.1     sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1277   1.1     sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1278   1.1     sevan 			    M_UDP_CSUM_IN_OK;
   1279   1.1     sevan 
   1280   1.1     sevan #if NVLAN > 0
   1281   1.1     sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1282   1.1     sevan 			m->m_pkthdr.ether_vtag =
   1283   1.1     sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1284   1.1     sevan 			m->m_flags |= M_VLANTAG;
   1285   1.1     sevan 		}
   1286   1.1     sevan #endif
   1287   1.1     sevan 
   1288   1.1     sevan 		ml_enqueue(&ml, m);
   1289   1.1     sevan 	}
   1290   1.1     sevan 
   1291   1.1     sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1292   1.1     sevan 
   1293   1.1     sevan 	if_input(ifp, &ml);
   1294   1.1     sevan 
   1295   1.1     sevan 	return (rx);
   1296   1.1     sevan }
   1297   1.1     sevan 
   1298   1.1     sevan int
   1299   1.1     sevan rge_txeof(struct rge_softc *sc)
   1300   1.1     sevan {
   1301   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1302   1.1     sevan 	struct rge_txq *txq;
   1303   1.1     sevan 	uint32_t txstat;
   1304   1.1     sevan 	int cons, idx, prod;
   1305   1.1     sevan 	int free = 0;
   1306   1.1     sevan 
   1307   1.1     sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1308   1.1     sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1309   1.1     sevan 
   1310   1.1     sevan 	while (prod != cons) {
   1311   1.1     sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1312   1.1     sevan 		idx = txq->txq_descidx;
   1313   1.1     sevan 
   1314   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1315   1.1     sevan 		    idx * sizeof(struct rge_tx_desc),
   1316   1.1     sevan 		    sizeof(struct rge_tx_desc),
   1317   1.1     sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1318   1.1     sevan 
   1319   1.1     sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1320   1.1     sevan 
   1321   1.1     sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1322   1.1     sevan 			free = 2;
   1323   1.1     sevan 			break;
   1324   1.1     sevan 		}
   1325   1.1     sevan 
   1326   1.5     skrll 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1327   1.1     sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1328   1.1     sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1329   1.1     sevan 		m_freem(txq->txq_mbuf);
   1330   1.1     sevan 		txq->txq_mbuf = NULL;
   1331   1.1     sevan 
   1332   1.1     sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1333   1.4     skrll 			if_statinc(ifp, if_collisions);
   1334   1.1     sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1335   1.4     skrll 			if_statinc(ifp, if_oerrors);
   1336   1.1     sevan 
   1337   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1338   1.1     sevan 		    idx * sizeof(struct rge_tx_desc),
   1339   1.1     sevan 		    sizeof(struct rge_tx_desc),
   1340   1.1     sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1341   1.1     sevan 
   1342   1.1     sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1343   1.1     sevan 		free = 1;
   1344   1.1     sevan 	}
   1345   1.1     sevan 
   1346   1.1     sevan 	if (free == 0)
   1347   1.1     sevan 		return (0);
   1348   1.1     sevan 
   1349   1.1     sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1350   1.1     sevan 
   1351   1.1     sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1352   1.1     sevan 		ifq_restart(&ifp->if_snd);
   1353   1.1     sevan 	else if (free == 2)
   1354   1.1     sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1355   1.1     sevan 	else
   1356   1.1     sevan 		ifp->if_timer = 0;
   1357   1.1     sevan 
   1358   1.1     sevan 	return (1);
   1359   1.1     sevan }
   1360   1.1     sevan 
   1361   1.1     sevan void
   1362   1.1     sevan rge_reset(struct rge_softc *sc)
   1363   1.1     sevan {
   1364   1.1     sevan 	int i;
   1365   1.1     sevan 
   1366   1.1     sevan 	/* Enable RXDV gate. */
   1367   1.1     sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1368   1.1     sevan 	DELAY(2000);
   1369   1.1     sevan 
   1370   1.1     sevan 	for (i = 0; i < 10; i++) {
   1371   1.1     sevan 		DELAY(100);
   1372   1.1     sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1373   1.1     sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1374   1.1     sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1375   1.1     sevan 			break;
   1376   1.1     sevan 	}
   1377   1.1     sevan 
   1378   1.1     sevan 	/* Soft reset. */
   1379   1.1     sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1380   1.1     sevan 
   1381   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1382   1.1     sevan 		DELAY(100);
   1383   1.1     sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1384   1.1     sevan 			break;
   1385   1.1     sevan 	}
   1386   1.1     sevan 	if (i == RGE_TIMEOUT)
   1387  1.16  jakllsch 		device_printf(sc->sc_dev, "reset never completed!\n");
   1388   1.1     sevan }
   1389   1.1     sevan 
   1390   1.1     sevan void
   1391   1.1     sevan rge_iff(struct rge_softc *sc)
   1392   1.1     sevan {
   1393   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1394   1.2     sevan 	struct ethercom *ac = &sc->sc_ec;
   1395   1.1     sevan 	struct ether_multi *enm;
   1396   1.1     sevan 	struct ether_multistep step;
   1397   1.1     sevan 	uint32_t hashes[2];
   1398   1.1     sevan 	uint32_t rxfilt;
   1399   1.1     sevan 	int h = 0;
   1400   1.1     sevan 
   1401   1.1     sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1402   1.1     sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1403   1.1     sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1404   1.1     sevan 
   1405   1.1     sevan 	/*
   1406   1.1     sevan 	 * Always accept frames destined to our station address.
   1407   1.1     sevan 	 * Always accept broadcast frames.
   1408   1.1     sevan 	 */
   1409   1.1     sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1410   1.1     sevan 
   1411   1.1     sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1412   1.1     sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1413   1.1     sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1414   1.1     sevan 		if (ifp->if_flags & IFF_PROMISC)
   1415   1.1     sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1416   1.1     sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1417   1.1     sevan 	} else {
   1418   1.1     sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1419   1.1     sevan 		/* Program new filter. */
   1420   1.1     sevan 		memset(hashes, 0, sizeof(hashes));
   1421   1.1     sevan 
   1422   1.1     sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1423   1.1     sevan 		while (enm != NULL) {
   1424   1.1     sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1425   1.1     sevan 			    ETHER_ADDR_LEN) >> 26;
   1426   1.1     sevan 
   1427   1.1     sevan 			if (h < 32)
   1428   1.1     sevan 				hashes[0] |= (1 << h);
   1429   1.1     sevan 			else
   1430   1.1     sevan 				hashes[1] |= (1 << (h - 32));
   1431   1.1     sevan 
   1432   1.1     sevan 			ETHER_NEXT_MULTI(step, enm);
   1433   1.1     sevan 		}
   1434   1.1     sevan 	}
   1435   1.1     sevan 
   1436   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1437   1.2     sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1438   1.2     sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1439   1.1     sevan }
   1440   1.1     sevan 
   1441   1.1     sevan void
   1442   1.1     sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1443   1.1     sevan {
   1444   1.1     sevan 	int i;
   1445   1.1     sevan 
   1446   1.1     sevan 	if (on) {
   1447   1.1     sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1448   1.1     sevan 
   1449   1.1     sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1450   1.1     sevan 
   1451   1.1     sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1452  1.10     sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
   1453   1.1     sevan 				break;
   1454   1.1     sevan 			DELAY(1000);
   1455   1.1     sevan 		}
   1456   1.1     sevan 	} else
   1457   1.1     sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1458   1.1     sevan }
   1459   1.1     sevan 
   1460   1.1     sevan void
   1461   1.1     sevan rge_phy_config(struct rge_softc *sc)
   1462   1.1     sevan {
   1463   1.1     sevan 	uint16_t mcode_ver, val;
   1464   1.1     sevan 	int i;
   1465   1.1     sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1466   1.1     sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1467   1.1     sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1468   1.1     sevan 
   1469   1.1     sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1470   1.5     skrll 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1471   1.1     sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1472   1.1     sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1473   1.1     sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1474   1.1     sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1475   1.1     sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1476   1.1     sevan 
   1477   1.1     sevan 	/* Read microcode version. */
   1478   1.1     sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1479   1.1     sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1480   1.1     sevan 
   1481   1.1     sevan 	if (sc->rge_type == MAC_CFG2) {
   1482   1.1     sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1483   1.1     sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1484   1.1     sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1485   1.1     sevan 		}
   1486   1.1     sevan 
   1487   1.1     sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1488   1.1     sevan 			/* Disable PHY config. */
   1489   1.1     sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1490   1.1     sevan 			DELAY(1000);
   1491   1.1     sevan 
   1492   1.1     sevan 			rge_patch_phy_mcu(sc, 1);
   1493   1.1     sevan 
   1494   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1495   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1496   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1497   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1498   1.1     sevan 
   1499   1.1     sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1500   1.1     sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1501   1.1     sevan 				rge_write_phy_ocp(sc,
   1502   1.1     sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1503   1.1     sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1504   1.1     sevan 			}
   1505   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1506   1.1     sevan 
   1507   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1508   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1509   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1510   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1511   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1512   1.1     sevan 
   1513   1.1     sevan 			rge_patch_phy_mcu(sc, 0);
   1514   1.1     sevan 
   1515   1.1     sevan 			/* Enable PHY config. */
   1516   1.1     sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1517   1.1     sevan 
   1518   1.1     sevan 			/* Write microcode version. */
   1519   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1520   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1521   1.1     sevan 		}
   1522   1.5     skrll 
   1523   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1524   1.1     sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1525   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1526   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1527   1.1     sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1528   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1529   1.1     sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1530   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1531   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1532   1.1     sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1533   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1534   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1535   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1536   1.1     sevan 
   1537   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1538   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1539   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1540   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1541   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1542   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1543   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1544   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1545   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1546   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1547   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1548   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1549   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1550   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1551   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1552   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1553   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1554   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1555   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1556   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1557   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1558   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1559   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1560   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1561   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1562   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1563   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1564   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1565   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1566   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1567   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1568   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1569   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1570   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1571   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1572   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1573   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1574   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1575   1.1     sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1576   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1577   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1578   1.1     sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1579   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1580   1.1     sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1581   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1582   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1583   1.1     sevan 	} else {
   1584   1.1     sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1585   1.1     sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1586   1.1     sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1587   1.1     sevan 
   1588   1.1     sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1589   1.1     sevan 			/* Disable PHY config. */
   1590   1.1     sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1591   1.1     sevan 			DELAY(1000);
   1592   1.1     sevan 
   1593   1.1     sevan 			rge_patch_phy_mcu(sc, 1);
   1594   1.1     sevan 
   1595   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1596   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1597   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1598   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1599   1.1     sevan 
   1600   1.1     sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1601   1.1     sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1602   1.1     sevan 				rge_write_phy_ocp(sc,
   1603   1.1     sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1604   1.1     sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1605   1.1     sevan 			}
   1606   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1607   1.1     sevan 
   1608   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1609   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1610   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1611   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1612   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1613   1.1     sevan 
   1614   1.1     sevan 			rge_patch_phy_mcu(sc, 0);
   1615   1.1     sevan 
   1616   1.1     sevan 			/* Enable PHY config. */
   1617   1.1     sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1618   1.1     sevan 
   1619   1.1     sevan 			/* Write microcode version. */
   1620   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1621   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1622   1.1     sevan 		}
   1623   1.1     sevan 
   1624   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1625   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1626   1.1     sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1627   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1628   1.1     sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1629   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1630   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1631   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1632   1.1     sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1633   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1634   1.1     sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1635   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1636   1.1     sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1637   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1638   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1639   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1640   1.1     sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1641   1.1     sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1642   1.1     sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1643   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1644   1.1     sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1645   1.1     sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1646   1.1     sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1647   1.1     sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1648   1.1     sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1649   1.1     sevan 
   1650   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1651   1.1     sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1652   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1653   1.1     sevan 		for (i = 0; i < 26; i++)
   1654   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1655   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1656   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1657   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1658   1.1     sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1659   1.1     sevan 
   1660   1.1     sevan 		rge_patch_phy_mcu(sc, 1);
   1661   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1662   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1663   1.1     sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1664   1.1     sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1665   1.1     sevan 			rge_write_phy_ocp(sc, 0xb890,
   1666   1.1     sevan 			    mac_cfg3_b88e_value[i + 1]);
   1667   1.1     sevan 		}
   1668   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1669   1.1     sevan 		rge_patch_phy_mcu(sc, 0);
   1670   1.1     sevan 
   1671   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1672   1.1     sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1673   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1674   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1675   1.1     sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1676   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1677   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1678   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1679   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1680   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1681   1.1     sevan 	}
   1682   1.1     sevan 
   1683   1.1     sevan 	/* Disable EEE. */
   1684   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1685   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1686   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1687   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1688   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1689   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1690   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1691   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1692   1.1     sevan 
   1693   1.1     sevan 	rge_patch_phy_mcu(sc, 1);
   1694   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1695   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1696   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1697   1.1     sevan 	rge_patch_phy_mcu(sc, 0);
   1698   1.1     sevan }
   1699   1.1     sevan 
   1700   1.1     sevan void
   1701   1.1     sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1702   1.1     sevan {
   1703   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1704   1.1     sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1705   1.1     sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1706   1.1     sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1707   1.1     sevan 	    addr[5] <<  8 | addr[4]);
   1708   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1709   1.1     sevan }
   1710   1.1     sevan 
   1711   1.1     sevan void
   1712   1.1     sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1713   1.1     sevan {
   1714   1.1     sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1715   1.1     sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1716   1.1     sevan }
   1717   1.1     sevan 
   1718   1.1     sevan void
   1719   1.1     sevan rge_hw_init(struct rge_softc *sc)
   1720   1.1     sevan {
   1721   1.1     sevan 	int i;
   1722   1.1     sevan 
   1723   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1724   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1725   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1726   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1727   1.1     sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1728   1.1     sevan 
   1729   1.1     sevan 	/* Disable UPS. */
   1730   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1731   1.1     sevan 
   1732   1.1     sevan 	/* Configure MAC MCU. */
   1733   1.1     sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1734   1.1     sevan 
   1735   1.1     sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1736   1.1     sevan 		rge_write_mac_ocp(sc, i, 0);
   1737   1.1     sevan 
   1738   1.1     sevan 	DELAY(3000);
   1739   1.1     sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1740   1.1     sevan 
   1741   1.1     sevan 	if (sc->rge_type == MAC_CFG3) {
   1742   1.1     sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1743   1.1     sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1744   1.1     sevan 			    rtl8125_def_bps[i].val);
   1745   1.1     sevan 	}
   1746   1.1     sevan 
   1747   1.1     sevan 	/* Disable PHY power saving. */
   1748   1.1     sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1749   1.1     sevan 
   1750   1.1     sevan 	/* Set PCIe uncorrectable error status. */
   1751   1.1     sevan 	rge_write_csi(sc, 0x108,
   1752   1.1     sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1753   1.1     sevan }
   1754   1.1     sevan 
   1755   1.1     sevan void
   1756   1.1     sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1757   1.1     sevan {
   1758   1.1     sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1759   1.1     sevan 		rge_patch_phy_mcu(sc, 1);
   1760   1.1     sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1761   1.1     sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1762   1.1     sevan 		rge_patch_phy_mcu(sc, 0);
   1763   1.1     sevan 	}
   1764   1.1     sevan }
   1765   1.1     sevan 
   1766   1.1     sevan void
   1767   1.1     sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1768   1.1     sevan {
   1769   1.1     sevan 	uint16_t val;
   1770   1.1     sevan 	int i;
   1771   1.1     sevan 
   1772   1.1     sevan 	if (set)
   1773   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1774   1.1     sevan 	else
   1775   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1776   1.1     sevan 
   1777   1.1     sevan 	for (i = 0; i < 1000; i++) {
   1778   1.1     sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1779   1.1     sevan 		DELAY(100);
   1780   1.1     sevan 		if (val == 0x0040)
   1781   1.1     sevan 			break;
   1782   1.1     sevan 	}
   1783   1.1     sevan 	if (i == 1000)
   1784  1.13     sevan 		aprint_error_dev(sc->sc_dev, "timeout waiting to patch phy mcu\n");
   1785   1.1     sevan }
   1786   1.1     sevan 
   1787   1.1     sevan void
   1788   1.1     sevan rge_add_media_types(struct rge_softc *sc)
   1789   1.1     sevan {
   1790   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1791   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1792   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1793   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1794   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1795   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1796   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1797   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1798   1.1     sevan }
   1799   1.1     sevan 
   1800   1.1     sevan void
   1801   1.1     sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1802   1.1     sevan {
   1803   1.1     sevan 	switch (imtype) {
   1804   1.1     sevan 	case RGE_IMTYPE_NONE:
   1805   1.1     sevan 		sc->rge_intrs = RGE_INTRS;
   1806   1.1     sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1807   1.1     sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1808   1.1     sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1809   1.1     sevan 		break;
   1810   1.1     sevan 	case RGE_IMTYPE_SIM:
   1811   1.1     sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1812   1.1     sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1813   1.1     sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1814   1.1     sevan 		break;
   1815   1.1     sevan 	default:
   1816  1.14     sevan 		panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
   1817   1.1     sevan 	}
   1818   1.1     sevan }
   1819   1.1     sevan 
   1820   1.1     sevan void
   1821   1.1     sevan rge_disable_sim_im(struct rge_softc *sc)
   1822   1.1     sevan {
   1823   1.1     sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1824   1.1     sevan 	sc->rge_timerintr = 0;
   1825   1.1     sevan }
   1826   1.1     sevan 
   1827   1.1     sevan void
   1828   1.1     sevan rge_setup_sim_im(struct rge_softc *sc)
   1829   1.1     sevan {
   1830   1.1     sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1831   1.1     sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1832   1.1     sevan 	sc->rge_timerintr = 1;
   1833   1.1     sevan }
   1834   1.1     sevan 
   1835   1.1     sevan void
   1836   1.1     sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1837   1.1     sevan {
   1838   1.1     sevan 	rge_config_imtype(sc, imtype);
   1839   1.1     sevan 
   1840   1.1     sevan 	/* Enable interrupts. */
   1841   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1842   1.1     sevan 
   1843   1.1     sevan 	switch (imtype) {
   1844   1.1     sevan 	case RGE_IMTYPE_NONE:
   1845   1.1     sevan 		rge_disable_sim_im(sc);
   1846   1.1     sevan 		break;
   1847   1.1     sevan 	case RGE_IMTYPE_SIM:
   1848   1.1     sevan 		rge_setup_sim_im(sc);
   1849   1.1     sevan 		break;
   1850   1.1     sevan 	default:
   1851  1.14     sevan 		panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
   1852   1.1     sevan 	}
   1853   1.1     sevan }
   1854   1.1     sevan 
   1855   1.1     sevan void
   1856   1.1     sevan rge_exit_oob(struct rge_softc *sc)
   1857   1.1     sevan {
   1858   1.1     sevan 	int i;
   1859   1.1     sevan 
   1860   1.1     sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1861   1.1     sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1862   1.1     sevan 	    RGE_RXCFG_ERRPKT);
   1863   1.1     sevan 
   1864   1.1     sevan 	/* Disable RealWoW. */
   1865   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1866   1.1     sevan 
   1867   1.1     sevan 	rge_reset(sc);
   1868   1.1     sevan 
   1869   1.1     sevan 	/* Disable OOB. */
   1870   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1871   1.1     sevan 
   1872   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1873   1.1     sevan 
   1874   1.1     sevan 	for (i = 0; i < 10; i++) {
   1875   1.1     sevan 		DELAY(100);
   1876   1.1     sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1877   1.1     sevan 			break;
   1878   1.1     sevan 	}
   1879   1.1     sevan 
   1880   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1881   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1882   1.1     sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1883   1.1     sevan 
   1884   1.1     sevan 	for (i = 0; i < 10; i++) {
   1885   1.1     sevan 		DELAY(100);
   1886   1.1     sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1887   1.1     sevan 			break;
   1888   1.1     sevan 	}
   1889   1.1     sevan 
   1890   1.1     sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1891   1.1     sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1892  1.10     sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
   1893   1.1     sevan 				break;
   1894   1.1     sevan 			DELAY(1000);
   1895   1.1     sevan 		}
   1896   1.1     sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1897   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1898   1.1     sevan 	}
   1899   1.1     sevan }
   1900   1.1     sevan 
   1901   1.1     sevan void
   1902   1.1     sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1903   1.1     sevan {
   1904   1.1     sevan 	int i;
   1905   1.1     sevan 
   1906   1.1     sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1907   1.1     sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1908   1.1     sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1909   1.1     sevan 
   1910   1.1     sevan 	for (i = 0; i < 10; i++) {
   1911   1.1     sevan 		 DELAY(100);
   1912   1.1     sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1913   1.1     sevan 			break;
   1914   1.1     sevan 	}
   1915   1.1     sevan 
   1916   1.1     sevan 	DELAY(20);
   1917   1.1     sevan }
   1918   1.1     sevan 
   1919   1.1     sevan uint32_t
   1920   1.1     sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1921   1.1     sevan {
   1922   1.1     sevan 	int i;
   1923   1.1     sevan 
   1924   1.1     sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1925   1.1     sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1926   1.1     sevan 
   1927   1.1     sevan 	for (i = 0; i < 10; i++) {
   1928   1.1     sevan 		 DELAY(100);
   1929   1.1     sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1930   1.1     sevan 			break;
   1931   1.1     sevan 	}
   1932   1.1     sevan 
   1933   1.1     sevan 	DELAY(20);
   1934   1.1     sevan 
   1935   1.1     sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1936   1.1     sevan }
   1937   1.1     sevan 
   1938   1.1     sevan void
   1939   1.1     sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1940   1.1     sevan {
   1941   1.1     sevan 	uint32_t tmp;
   1942   1.1     sevan 
   1943   1.1     sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1944   1.1     sevan 	tmp += val;
   1945   1.1     sevan 	tmp |= RGE_MACOCP_BUSY;
   1946   1.1     sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1947   1.1     sevan }
   1948   1.1     sevan 
   1949   1.1     sevan uint16_t
   1950   1.1     sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1951   1.1     sevan {
   1952   1.1     sevan 	uint32_t val;
   1953   1.1     sevan 
   1954   1.1     sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1955   1.1     sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1956   1.1     sevan 
   1957   1.1     sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1958   1.1     sevan }
   1959   1.1     sevan 
   1960   1.1     sevan void
   1961   1.1     sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1962   1.1     sevan {
   1963   1.1     sevan 	uint32_t tmp;
   1964   1.1     sevan 	int i;
   1965   1.1     sevan 
   1966   1.1     sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1967   1.1     sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1968   1.1     sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1969   1.1     sevan 
   1970   1.1     sevan 	for (i = 0; i < 10; i++) {
   1971   1.1     sevan 		DELAY(100);
   1972   1.1     sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1973   1.1     sevan 			break;
   1974   1.1     sevan 	}
   1975   1.1     sevan 
   1976   1.1     sevan 	DELAY(20);
   1977   1.1     sevan }
   1978   1.1     sevan 
   1979   1.1     sevan void
   1980   1.1     sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1981   1.1     sevan {
   1982   1.1     sevan 	uint16_t off, phyaddr;
   1983   1.1     sevan 
   1984   1.1     sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1985   1.1     sevan 	phyaddr <<= 4;
   1986   1.1     sevan 
   1987   1.1     sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1988   1.1     sevan 
   1989   1.1     sevan 	phyaddr += (off - 16) << 1;
   1990   1.1     sevan 
   1991   1.1     sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1992   1.1     sevan }
   1993   1.1     sevan 
   1994   1.1     sevan void
   1995   1.1     sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1996   1.1     sevan {
   1997   1.1     sevan 	uint32_t tmp;
   1998   1.1     sevan 	int i;
   1999   1.1     sevan 
   2000   1.1     sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2001   1.1     sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   2002   1.1     sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   2003   1.1     sevan 
   2004   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2005   1.1     sevan 		DELAY(1);
   2006   1.1     sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   2007   1.1     sevan 			break;
   2008   1.1     sevan 	}
   2009   1.1     sevan }
   2010   1.1     sevan 
   2011   1.1     sevan uint16_t
   2012   1.1     sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   2013   1.1     sevan {
   2014   1.1     sevan 	uint32_t val;
   2015   1.1     sevan 	int i;
   2016   1.1     sevan 
   2017   1.1     sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2018   1.1     sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   2019   1.1     sevan 
   2020   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2021   1.1     sevan 		DELAY(1);
   2022   1.1     sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   2023   1.1     sevan 		if (val & RGE_PHYOCP_BUSY)
   2024   1.1     sevan 			break;
   2025   1.1     sevan 	}
   2026   1.1     sevan 
   2027   1.1     sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   2028   1.1     sevan }
   2029   1.1     sevan 
   2030   1.1     sevan int
   2031   1.1     sevan rge_get_link_status(struct rge_softc *sc)
   2032   1.1     sevan {
   2033   1.1     sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2034   1.1     sevan }
   2035   1.1     sevan 
   2036   1.1     sevan void
   2037   1.3     sevan rge_txstart(struct work *wk, void *arg)
   2038   1.1     sevan {
   2039   1.1     sevan 	struct rge_softc *sc = arg;
   2040   1.1     sevan 
   2041   1.1     sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2042   1.1     sevan }
   2043   1.1     sevan 
   2044   1.1     sevan void
   2045   1.1     sevan rge_tick(void *arg)
   2046   1.1     sevan {
   2047   1.1     sevan 	struct rge_softc *sc = arg;
   2048   1.1     sevan 	int s;
   2049   1.1     sevan 
   2050   1.1     sevan 	s = splnet();
   2051   1.1     sevan 	rge_link_state(sc);
   2052   1.1     sevan 	splx(s);
   2053   1.1     sevan 
   2054   1.1     sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   2055   1.1     sevan }
   2056   1.1     sevan 
   2057   1.1     sevan void
   2058   1.1     sevan rge_link_state(struct rge_softc *sc)
   2059   1.1     sevan {
   2060   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2061   1.1     sevan 	int link = LINK_STATE_DOWN;
   2062   1.1     sevan 
   2063   1.1     sevan 	if (rge_get_link_status(sc))
   2064   1.1     sevan 		link = LINK_STATE_UP;
   2065   1.1     sevan 
   2066   1.1     sevan 	if (ifp->if_link_state != link) {
   2067   1.1     sevan 		ifp->if_link_state = link;
   2068   1.2     sevan 		if_link_state_change(ifp, LINK_STATE_DOWN);
   2069   1.1     sevan 	}
   2070   1.1     sevan }
   2071