Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.17
      1  1.17  jakllsch /*	$NetBSD: if_rge.c,v 1.17 2021/03/01 17:48:52 jakllsch Exp $	*/
      2  1.17  jakllsch /*	$OpenBSD: if_rge.c,v 1.9 2020/12/12 11:48:53 jan Exp $	*/
      3   1.1     sevan 
      4   1.1     sevan /*
      5  1.17  jakllsch  * Copyright (c) 2019, 2020 Kevin Lo <kevlo (at) openbsd.org>
      6   1.1     sevan  *
      7   1.1     sevan  * Permission to use, copy, modify, and distribute this software for any
      8   1.1     sevan  * purpose with or without fee is hereby granted, provided that the above
      9   1.1     sevan  * copyright notice and this permission notice appear in all copies.
     10   1.1     sevan  *
     11   1.1     sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12   1.1     sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13   1.1     sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14   1.1     sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15   1.1     sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16   1.1     sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17   1.1     sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18   1.1     sevan  */
     19   1.1     sevan 
     20   1.2     sevan #include <sys/cdefs.h>
     21  1.17  jakllsch __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.17 2021/03/01 17:48:52 jakllsch Exp $");
     22   1.2     sevan 
     23   1.2     sevan #include <sys/types.h>
     24   1.1     sevan 
     25   1.1     sevan #include <sys/param.h>
     26   1.1     sevan #include <sys/systm.h>
     27   1.1     sevan #include <sys/sockio.h>
     28   1.1     sevan #include <sys/mbuf.h>
     29   1.1     sevan #include <sys/malloc.h>
     30   1.1     sevan #include <sys/kernel.h>
     31   1.1     sevan #include <sys/socket.h>
     32   1.1     sevan #include <sys/device.h>
     33   1.1     sevan #include <sys/endian.h>
     34   1.3     sevan #include <sys/callout.h>
     35   1.3     sevan #include <sys/workqueue.h>
     36   1.1     sevan 
     37   1.1     sevan #include <net/if.h>
     38   1.2     sevan 
     39   1.2     sevan #include <net/if_dl.h>
     40   1.2     sevan #include <net/if_ether.h>
     41   1.2     sevan 
     42   1.1     sevan #include <net/if_media.h>
     43   1.1     sevan 
     44   1.1     sevan #include <netinet/in.h>
     45   1.2     sevan #include <net/if_ether.h>
     46   1.1     sevan 
     47   1.1     sevan #include <net/bpf.h>
     48   1.1     sevan 
     49   1.2     sevan #include <sys/bus.h>
     50   1.1     sevan #include <machine/intr.h>
     51   1.1     sevan 
     52   1.1     sevan #include <dev/mii/mii.h>
     53   1.1     sevan 
     54   1.1     sevan #include <dev/pci/pcivar.h>
     55   1.1     sevan #include <dev/pci/pcireg.h>
     56   1.1     sevan #include <dev/pci/pcidevs.h>
     57   1.1     sevan 
     58   1.1     sevan #include <dev/pci/if_rgereg.h>
     59   1.1     sevan 
     60   1.2     sevan #ifdef __NetBSD__
     61   1.2     sevan #define letoh32 	htole32
     62   1.2     sevan #define nitems(x) 	__arraycount(x)
     63   1.7     sevan 
     64   1.7     sevan static struct mbuf *
     65  1.17  jakllsch MCLGETL(struct rge_softc *sc __unused, int how,
     66  1.17  jakllsch     u_int size)
     67   1.7     sevan {
     68   1.7     sevan 	struct mbuf *m;
     69   1.7     sevan 
     70   1.7     sevan 	MGETHDR(m, how, MT_DATA);
     71   1.7     sevan 	if (m == NULL)
     72   1.7     sevan 		return NULL;
     73   1.7     sevan 
     74   1.7     sevan 	MEXTMALLOC(m, size, how);
     75   1.7     sevan 	if ((m->m_flags & M_EXT) == 0) {
     76   1.7     sevan 		m_freem(m);
     77   1.7     sevan 		return NULL;
     78   1.7     sevan 	}
     79   1.7     sevan 	return m;
     80   1.7     sevan }
     81   1.7     sevan 
     82   1.3     sevan #ifdef NET_MPSAFE
     83   1.3     sevan #define 	RGE_MPSAFE	1
     84   1.3     sevan #define 	CALLOUT_FLAGS	CALLOUT_MPSAFE
     85   1.3     sevan #else
     86   1.3     sevan #define 	CALLOUT_FLAGS	0
     87   1.3     sevan #endif
     88   1.2     sevan #endif
     89   1.2     sevan 
     90  1.17  jakllsch #ifdef RGE_DEBUG
     91  1.17  jakllsch #define DPRINTF(x)	do { if (rge_debug > 0) printf x; } while (0)
     92  1.17  jakllsch int rge_debug = 0;
     93  1.17  jakllsch #else
     94  1.17  jakllsch #define DPRINTF(x)
     95  1.17  jakllsch #endif
     96  1.17  jakllsch 
     97   1.2     sevan static int		rge_match(device_t, cfdata_t, void *);
     98   1.5     skrll static void		rge_attach(device_t, device_t, void *);
     99   1.1     sevan int		rge_intr(void *);
    100   1.1     sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
    101   1.2     sevan int		rge_ioctl(struct ifnet *, u_long, void *);
    102   1.2     sevan void		rge_start(struct ifnet *);
    103   1.1     sevan void		rge_watchdog(struct ifnet *);
    104   1.1     sevan int		rge_init(struct ifnet *);
    105  1.17  jakllsch void		rge_stop(struct ifnet *, int);
    106   1.1     sevan int		rge_ifmedia_upd(struct ifnet *);
    107   1.1     sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    108   1.1     sevan int		rge_allocmem(struct rge_softc *);
    109   1.1     sevan int		rge_newbuf(struct rge_softc *, int);
    110   1.1     sevan void		rge_discard_rxbuf(struct rge_softc *, int);
    111   1.1     sevan int		rge_rx_list_init(struct rge_softc *);
    112   1.1     sevan void		rge_tx_list_init(struct rge_softc *);
    113   1.1     sevan int		rge_rxeof(struct rge_softc *);
    114   1.1     sevan int		rge_txeof(struct rge_softc *);
    115   1.1     sevan void		rge_reset(struct rge_softc *);
    116   1.1     sevan void		rge_iff(struct rge_softc *);
    117   1.1     sevan void		rge_set_phy_power(struct rge_softc *, int);
    118   1.1     sevan void		rge_phy_config(struct rge_softc *);
    119  1.17  jakllsch void		rge_phy_config_mac_cfg2(struct rge_softc *);
    120  1.17  jakllsch void		rge_phy_config_mac_cfg3(struct rge_softc *);
    121  1.17  jakllsch void		rge_phy_config_mac_cfg4(struct rge_softc *);
    122  1.17  jakllsch void		rge_phy_config_mac_cfg5(struct rge_softc *);
    123  1.17  jakllsch void		rge_phy_config_mcu(struct rge_softc *, uint16_t);
    124   1.1     sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
    125   1.1     sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
    126   1.1     sevan void		rge_hw_init(struct rge_softc *);
    127   1.1     sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    128   1.1     sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    129   1.1     sevan void		rge_add_media_types(struct rge_softc *);
    130   1.1     sevan void		rge_config_imtype(struct rge_softc *, int);
    131  1.17  jakllsch void		rge_disable_hw_im(struct rge_softc *);
    132   1.1     sevan void		rge_disable_sim_im(struct rge_softc *);
    133   1.1     sevan void		rge_setup_sim_im(struct rge_softc *);
    134   1.1     sevan void		rge_setup_intr(struct rge_softc *, int);
    135   1.1     sevan void		rge_exit_oob(struct rge_softc *);
    136   1.1     sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    137   1.1     sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    138   1.1     sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    139   1.1     sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    140   1.1     sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    141  1.17  jakllsch uint16_t	rge_read_ephy(struct rge_softc *, uint16_t);
    142   1.1     sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    143  1.17  jakllsch uint16_t	rge_read_phy(struct rge_softc *, uint16_t, uint16_t);
    144   1.1     sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    145   1.1     sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    146   1.1     sevan int		rge_get_link_status(struct rge_softc *);
    147   1.3     sevan void		rge_txstart(struct work *, void *);
    148   1.1     sevan void		rge_tick(void *);
    149   1.1     sevan void		rge_link_state(struct rge_softc *);
    150   1.1     sevan 
    151   1.1     sevan static const struct {
    152   1.1     sevan 	uint16_t reg;
    153   1.1     sevan 	uint16_t val;
    154  1.17  jakllsch }  rtl8125_mac_cfg2_mcu[] = {
    155   1.1     sevan 	RTL8125_MAC_CFG2_MCU
    156   1.1     sevan }, rtl8125_mac_cfg3_mcu[] = {
    157   1.1     sevan 	RTL8125_MAC_CFG3_MCU
    158  1.17  jakllsch }, rtl8125_mac_cfg4_mcu[] = {
    159  1.17  jakllsch 	RTL8125_MAC_CFG4_MCU
    160  1.17  jakllsch }, rtl8125_mac_cfg5_mcu[] = {
    161  1.17  jakllsch 	RTL8125_MAC_CFG5_MCU
    162   1.1     sevan };
    163   1.1     sevan 
    164   1.2     sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    165   1.2     sevan 		NULL, NULL); /* Sevan - detach function? */
    166   1.1     sevan 
    167   1.2     sevan static const struct {
    168   1.2     sevan 	pci_vendor_id_t 	vendor;
    169   1.2     sevan 	pci_product_id_t 	product;
    170   1.2     sevan }rge_devices[] = {
    171   1.1     sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    172   1.2     sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    173   1.1     sevan };
    174   1.1     sevan 
    175   1.2     sevan static int
    176   1.2     sevan rge_match(device_t parent, cfdata_t match, void *aux)
    177   1.1     sevan {
    178   1.2     sevan 	struct pci_attach_args *pa =aux;
    179   1.2     sevan 	int n;
    180   1.2     sevan 
    181   1.2     sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    182   1.2     sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    183   1.2     sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    184  1.17  jakllsch 			return 3;
    185   1.2     sevan 	}
    186   1.2     sevan 
    187   1.2     sevan 	return 0;
    188   1.1     sevan }
    189   1.1     sevan 
    190   1.1     sevan void
    191   1.2     sevan rge_attach(device_t parent, device_t self, void *aux)
    192   1.1     sevan {
    193  1.11     sevan 	struct rge_softc *sc = device_private(self);
    194   1.1     sevan 	struct pci_attach_args *pa = aux;
    195   1.1     sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    196  1.17  jakllsch 	pci_intr_handle_t *ihp;
    197   1.2     sevan 	char intrbuf[PCI_INTRSTR_LEN];
    198   1.1     sevan 	const char *intrstr = NULL;
    199   1.1     sevan 	struct ifnet *ifp;
    200   1.1     sevan 	pcireg_t reg;
    201   1.1     sevan 	uint32_t hwrev;
    202   1.1     sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    203   1.1     sevan 	int offset;
    204  1.17  jakllsch 	pcireg_t command;
    205   1.1     sevan 
    206   1.1     sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    207   1.1     sevan 
    208  1.12     sevan 	sc->sc_dev = self;
    209  1.12     sevan 
    210  1.17  jakllsch 	pci_aprint_devinfo(pa, "Ethernet controller");
    211  1.17  jakllsch 
    212   1.5     skrll 	/*
    213   1.1     sevan 	 * Map control/status registers.
    214   1.1     sevan 	 */
    215   1.1     sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    216   1.1     sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    217   1.2     sevan 	    NULL, &sc->rge_bsize)) {
    218   1.1     sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    219   1.1     sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    220   1.2     sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    221   1.1     sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    222   1.1     sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    223   1.2     sevan 			    &sc->rge_bsize)) {
    224  1.13     sevan 				aprint_error(": can't map mem or i/o space\n");
    225   1.1     sevan 				return;
    226   1.1     sevan 			}
    227   1.1     sevan 		}
    228   1.1     sevan 	}
    229   1.1     sevan 
    230  1.17  jakllsch 	int counts[PCI_INTR_TYPE_SIZE] = {
    231  1.17  jakllsch  		[PCI_INTR_TYPE_INTX] = 1,
    232  1.17  jakllsch  		[PCI_INTR_TYPE_MSI] = 1,
    233  1.17  jakllsch  		[PCI_INTR_TYPE_MSIX] = 1,
    234  1.17  jakllsch  	};
    235  1.17  jakllsch 	int max_type = PCI_INTR_TYPE_MSIX;
    236   1.5     skrll 	/*
    237   1.1     sevan 	 * Allocate interrupt.
    238   1.1     sevan 	 */
    239  1.17  jakllsch 	if (pci_intr_alloc(pa, &ihp, counts, max_type) != 0) {
    240  1.13     sevan 		aprint_error(": couldn't map interrupt\n");
    241   1.1     sevan 		return;
    242   1.1     sevan 	}
    243  1.17  jakllsch 	switch (pci_intr_type(pc, ihp[0])) {
    244  1.17  jakllsch 	case PCI_INTR_TYPE_MSIX:
    245  1.17  jakllsch 	case PCI_INTR_TYPE_MSI:
    246  1.17  jakllsch 		sc->rge_flags |= RGE_FLAG_MSI;
    247  1.17  jakllsch 		break;
    248  1.17  jakllsch 	default:
    249  1.17  jakllsch 		break;
    250  1.17  jakllsch 	}
    251  1.17  jakllsch 	intrstr = pci_intr_string(pc, ihp[0], intrbuf, sizeof(intrbuf));
    252  1.17  jakllsch 	sc->sc_ih = pci_intr_establish_xname(pc, ihp[0], IPL_NET, rge_intr,
    253  1.14     sevan 	    sc, device_xname(sc->sc_dev));
    254   1.1     sevan 	if (sc->sc_ih == NULL) {
    255  1.13     sevan 		aprint_error_dev(sc->sc_dev, ": couldn't establish interrupt");
    256   1.1     sevan 		if (intrstr != NULL)
    257  1.13     sevan 			aprint_error(" at %s\n", intrstr);
    258  1.13     sevan 		aprint_error("\n");
    259   1.1     sevan 		return;
    260   1.1     sevan 	}
    261  1.13     sevan 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    262   1.1     sevan 
    263   1.9   thorpej 	if (pci_dma64_available(pa))
    264   1.9   thorpej 		sc->sc_dmat = pa->pa_dmat64;
    265   1.9   thorpej 	else
    266   1.9   thorpej 		sc->sc_dmat = pa->pa_dmat;
    267   1.9   thorpej 
    268   1.1     sevan 	sc->sc_pc = pa->pa_pc;
    269   1.1     sevan 	sc->sc_tag = pa->pa_tag;
    270   1.1     sevan 
    271   1.1     sevan 	/* Determine hardware revision */
    272   1.1     sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    273   1.1     sevan 	switch (hwrev) {
    274   1.1     sevan 	case 0x60800000:
    275   1.1     sevan 		sc->rge_type = MAC_CFG2;
    276   1.1     sevan 		break;
    277   1.1     sevan 	case 0x60900000:
    278   1.1     sevan 		sc->rge_type = MAC_CFG3;
    279   1.1     sevan 		break;
    280  1.17  jakllsch 	case 0x64000000:
    281  1.17  jakllsch 		sc->rge_type = MAC_CFG4;
    282  1.17  jakllsch 		break;
    283  1.17  jakllsch 	case 0x64100000:
    284  1.17  jakllsch 		sc->rge_type = MAC_CFG5;
    285  1.17  jakllsch 		break;
    286   1.1     sevan 	default:
    287  1.13     sevan 		aprint_error(": unknown version 0x%08x\n", hwrev);
    288   1.1     sevan 		return;
    289   1.1     sevan 	}
    290   1.1     sevan 
    291   1.1     sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    292   1.1     sevan 
    293   1.5     skrll 	/*
    294   1.1     sevan 	 * PCI Express check.
    295   1.1     sevan 	 */
    296   1.1     sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    297   1.1     sevan 	    &offset, NULL)) {
    298  1.17  jakllsch 		/* Disable PCIe ASPM and ECPM. */
    299   1.1     sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    300   1.2     sevan 		    offset + PCIE_LCSR);
    301  1.17  jakllsch 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 |
    302  1.17  jakllsch 		    PCIE_LCSR_ENCLKPM);
    303   1.2     sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    304   1.1     sevan 		    reg);
    305   1.1     sevan 	}
    306   1.1     sevan 
    307   1.1     sevan 	rge_exit_oob(sc);
    308   1.1     sevan 	rge_hw_init(sc);
    309   1.1     sevan 
    310   1.1     sevan 	rge_get_macaddr(sc, eaddr);
    311  1.13     sevan 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    312  1.13     sevan 	    ether_sprintf(eaddr));
    313   1.1     sevan 
    314   1.2     sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    315   1.1     sevan 
    316   1.1     sevan 	rge_set_phy_power(sc, 1);
    317   1.1     sevan 	rge_phy_config(sc);
    318   1.1     sevan 
    319   1.1     sevan 	if (rge_allocmem(sc))
    320   1.1     sevan 		return;
    321   1.1     sevan 
    322   1.2     sevan 	ifp = &sc->sc_ec.ec_if;
    323   1.1     sevan 	ifp->if_softc = sc;
    324  1.14     sevan 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    325   1.1     sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    326   1.2     sevan #ifdef RGE_MPSAFE
    327   1.2     sevan 	ifp->if_xflags = IFEF_MPSAFE;
    328   1.2     sevan #endif
    329   1.1     sevan 	ifp->if_ioctl = rge_ioctl;
    330  1.17  jakllsch 	ifp->if_stop = rge_stop;
    331   1.2     sevan 	ifp->if_start = rge_start;
    332  1.17  jakllsch 	ifp->if_init = rge_init;
    333   1.1     sevan 	ifp->if_watchdog = rge_watchdog;
    334  1.17  jakllsch 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT - 1);
    335   1.1     sevan 
    336  1.17  jakllsch #if notyet
    337  1.17  jakllsch 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
    338   1.2     sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    339   1.2     sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    340  1.17  jakllsch #endif
    341   1.1     sevan 
    342  1.17  jakllsch 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    343  1.17  jakllsch 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    344   1.1     sevan 
    345   1.3     sevan 	callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
    346   1.3     sevan 	callout_setfunc(&sc->sc_timeout, rge_tick, sc);
    347  1.17  jakllsch 
    348  1.17  jakllsch 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    349  1.17  jakllsch 	command |= PCI_COMMAND_MASTER_ENABLE;
    350  1.17  jakllsch 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    351   1.1     sevan 
    352   1.1     sevan 	/* Initialize ifmedia structures. */
    353  1.17  jakllsch 	sc->sc_ec.ec_ifmedia = &sc->sc_media;
    354   1.1     sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    355   1.1     sevan 	    rge_ifmedia_sts);
    356   1.1     sevan 	rge_add_media_types(sc);
    357   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    358   1.1     sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    359   1.1     sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    360   1.1     sevan 
    361   1.1     sevan 	if_attach(ifp);
    362   1.2     sevan 	ether_ifattach(ifp, eaddr);
    363   1.1     sevan }
    364   1.1     sevan 
    365   1.1     sevan int
    366   1.1     sevan rge_intr(void *arg)
    367   1.1     sevan {
    368   1.1     sevan 	struct rge_softc *sc = arg;
    369   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    370   1.1     sevan 	uint32_t status;
    371   1.1     sevan 	int claimed = 0, rx, tx;
    372   1.1     sevan 
    373   1.1     sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    374   1.1     sevan 		return (0);
    375   1.1     sevan 
    376   1.1     sevan 	/* Disable interrupts. */
    377   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    378   1.1     sevan 
    379   1.1     sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    380  1.17  jakllsch 		if ((RGE_READ_4(sc, RGE_ISR) & sc->rge_intrs) == 0)
    381   1.1     sevan 			return (0);
    382   1.1     sevan 	}
    383  1.17  jakllsch 
    384  1.17  jakllsch 	status = RGE_READ_4(sc, RGE_ISR);
    385   1.1     sevan 	if (status)
    386   1.1     sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    387   1.1     sevan 
    388   1.1     sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    389   1.1     sevan 		claimed = 1;
    390   1.1     sevan 
    391   1.1     sevan 	rx = tx = 0;
    392  1.17  jakllsch 	if (status & sc->rge_intrs) {
    393   1.1     sevan 		if (status &
    394   1.1     sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    395   1.1     sevan 			rx |= rge_rxeof(sc);
    396   1.1     sevan 			claimed = 1;
    397   1.1     sevan 		}
    398   1.1     sevan 
    399   1.1     sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    400   1.1     sevan 			tx |= rge_txeof(sc);
    401   1.1     sevan 			claimed = 1;
    402   1.1     sevan 		}
    403   1.1     sevan 
    404   1.1     sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    405   1.2     sevan 			KERNEL_LOCK(1, NULL);
    406   1.1     sevan 			rge_init(ifp);
    407   1.2     sevan 			KERNEL_UNLOCK_ONE(NULL);
    408   1.1     sevan 			claimed = 1;
    409   1.1     sevan 		}
    410   1.1     sevan 	}
    411   1.1     sevan 
    412   1.1     sevan 	if (sc->rge_timerintr) {
    413   1.1     sevan 		if ((tx | rx) == 0) {
    414   1.1     sevan 			/*
    415   1.1     sevan 			 * Nothing needs to be processed, fallback
    416   1.1     sevan 			 * to use TX/RX interrupts.
    417   1.1     sevan 			 */
    418   1.1     sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    419   1.1     sevan 
    420   1.1     sevan 			/*
    421   1.1     sevan 			 * Recollect, mainly to avoid the possible
    422   1.1     sevan 			 * race introduced by changing interrupt
    423   1.1     sevan 			 * masks.
    424   1.1     sevan 			 */
    425   1.1     sevan 			rge_rxeof(sc);
    426   1.1     sevan 			rge_txeof(sc);
    427   1.1     sevan 		} else
    428   1.1     sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    429   1.1     sevan 	} else if (tx | rx) {
    430   1.1     sevan 		/*
    431   1.1     sevan 		 * Assume that using simulated interrupt moderation
    432   1.1     sevan 		 * (hardware timer based) could reduce the interrupt
    433   1.1     sevan 		 * rate.
    434   1.1     sevan 		 */
    435   1.1     sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    436   1.1     sevan 	}
    437   1.1     sevan 
    438   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    439   1.1     sevan 
    440   1.1     sevan 	return (claimed);
    441   1.1     sevan }
    442   1.1     sevan 
    443   1.1     sevan int
    444   1.1     sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    445   1.1     sevan {
    446   1.1     sevan 	struct rge_tx_desc *d = NULL;
    447   1.1     sevan 	struct rge_txq *txq;
    448   1.1     sevan 	bus_dmamap_t txmap;
    449   1.1     sevan 	uint32_t cmdsts, cflags = 0;
    450   1.1     sevan 	int cur, error, i, last, nsegs;
    451   1.1     sevan 
    452  1.17  jakllsch #if notyet
    453   1.1     sevan 	/*
    454   1.1     sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    455   1.1     sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    456   1.1     sevan 	 * take affect.
    457   1.1     sevan 	 */
    458   1.1     sevan 	if ((m->m_pkthdr.csum_flags &
    459   1.2     sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    460   1.1     sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    461   1.1     sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    462   1.1     sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    463   1.1     sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    464   1.1     sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    465   1.1     sevan 	}
    466  1.17  jakllsch #endif
    467   1.1     sevan 
    468   1.1     sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    469   1.1     sevan 	txmap = txq->txq_dmamap;
    470   1.1     sevan 
    471   1.1     sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    472   1.1     sevan 	switch (error) {
    473   1.1     sevan 	case 0:
    474   1.1     sevan 		break;
    475   1.1     sevan 	case EFBIG: /* mbuf chain is too fragmented */
    476   1.1     sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    477   1.1     sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    478   1.1     sevan 		    BUS_DMA_NOWAIT) == 0)
    479   1.1     sevan 			break;
    480   1.1     sevan 
    481   1.1     sevan 		/* FALLTHROUGH */
    482   1.1     sevan 	default:
    483   1.1     sevan 		return (0);
    484   1.1     sevan 	}
    485   1.1     sevan 
    486   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    487   1.1     sevan 	    BUS_DMASYNC_PREWRITE);
    488   1.1     sevan 
    489   1.1     sevan 	nsegs = txmap->dm_nsegs;
    490   1.1     sevan 
    491   1.1     sevan 	/* Set up hardware VLAN tagging. */
    492  1.17  jakllsch 	if (vlan_has_tag(m))
    493  1.17  jakllsch 		cflags |= bswap16(vlan_get_tag(m)) | RGE_TDEXTSTS_VTAG;
    494   1.1     sevan 
    495  1.17  jakllsch 	last = cur = idx;
    496   1.1     sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    497   1.1     sevan 
    498   1.1     sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    499   1.1     sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    500   1.1     sevan 
    501   1.1     sevan 		d->rge_extsts = htole32(cflags);
    502   1.1     sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    503   1.1     sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    504   1.1     sevan 
    505   1.1     sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    506   1.1     sevan 
    507   1.1     sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    508   1.1     sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    509   1.1     sevan 
    510   1.1     sevan 		d->rge_cmdsts = htole32(cmdsts);
    511   1.1     sevan 
    512   1.1     sevan 		last = cur;
    513   1.1     sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    514   1.1     sevan 		cur = RGE_NEXT_TX_DESC(cur);
    515   1.1     sevan 	}
    516   1.1     sevan 
    517   1.1     sevan 	/* Set EOF on the last descriptor. */
    518   1.1     sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    519   1.1     sevan 
    520   1.1     sevan 	/* Transfer ownership of packet to the chip. */
    521   1.1     sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    522   1.1     sevan 
    523   1.1     sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    524   1.1     sevan 
    525   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    526   1.1     sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    527   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    528   1.1     sevan 
    529   1.1     sevan 	/* Update info of TX queue and descriptors. */
    530   1.1     sevan 	txq->txq_mbuf = m;
    531   1.1     sevan 	txq->txq_descidx = last;
    532   1.1     sevan 
    533   1.1     sevan 	return (nsegs);
    534   1.1     sevan }
    535   1.1     sevan 
    536   1.1     sevan int
    537   1.2     sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    538   1.1     sevan {
    539   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    540  1.17  jakllsch 	//struct ifreq *ifr = (struct ifreq *)data;
    541   1.1     sevan 	int s, error = 0;
    542   1.1     sevan 
    543   1.1     sevan 	s = splnet();
    544   1.1     sevan 
    545   1.1     sevan 	switch (cmd) {
    546   1.1     sevan 	case SIOCSIFFLAGS:
    547  1.17  jakllsch 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    548  1.17  jakllsch 			break;
    549  1.17  jakllsch 		/* XXX set an ifflags callback and let ether_ioctl
    550  1.17  jakllsch 		 * handle all of this.
    551  1.17  jakllsch 		 */
    552   1.1     sevan 		if (ifp->if_flags & IFF_UP) {
    553   1.1     sevan 			if (ifp->if_flags & IFF_RUNNING)
    554   1.1     sevan 				error = ENETRESET;
    555   1.1     sevan 			else
    556   1.1     sevan 				rge_init(ifp);
    557   1.1     sevan 		} else {
    558   1.1     sevan 			if (ifp->if_flags & IFF_RUNNING)
    559  1.17  jakllsch 				rge_stop(ifp, 1);
    560   1.1     sevan 		}
    561   1.1     sevan 		break;
    562   1.1     sevan 	default:
    563   1.2     sevan 		error = ether_ioctl(ifp, cmd, data);
    564   1.1     sevan 	}
    565   1.1     sevan 
    566   1.1     sevan 	if (error == ENETRESET) {
    567   1.1     sevan 		if (ifp->if_flags & IFF_RUNNING)
    568   1.1     sevan 			rge_iff(sc);
    569   1.1     sevan 		error = 0;
    570   1.1     sevan 	}
    571   1.1     sevan 
    572   1.1     sevan 	splx(s);
    573   1.1     sevan 	return (error);
    574   1.1     sevan }
    575   1.1     sevan 
    576   1.1     sevan void
    577   1.3     sevan rge_start(struct ifnet *ifp)
    578   1.1     sevan {
    579   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    580   1.1     sevan 	struct mbuf *m;
    581   1.1     sevan 	int free, idx, used;
    582   1.1     sevan 	int queued = 0;
    583   1.1     sevan 
    584   1.2     sevan #define LINK_STATE_IS_UP(_s)    \
    585   1.2     sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    586   1.2     sevan 
    587   1.1     sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    588  1.17  jakllsch 		IFQ_PURGE(&ifp->if_snd);
    589   1.1     sevan 		return;
    590   1.1     sevan 	}
    591   1.1     sevan 
    592   1.1     sevan 	/* Calculate free space. */
    593   1.1     sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    594   1.1     sevan 	free = sc->rge_ldata.rge_txq_considx;
    595   1.1     sevan 	if (free <= idx)
    596   1.1     sevan 		free += RGE_TX_LIST_CNT;
    597   1.1     sevan 	free -= idx;
    598   1.1     sevan 
    599   1.1     sevan 	for (;;) {
    600   1.1     sevan 		if (RGE_TX_NSEGS >= free + 2) {
    601   1.3     sevan 			SET(ifp->if_flags, IFF_OACTIVE);
    602   1.1     sevan 			break;
    603   1.1     sevan 		}
    604   1.1     sevan 
    605   1.3     sevan 		IFQ_DEQUEUE(&ifp->if_snd, m);
    606   1.1     sevan 		if (m == NULL)
    607   1.1     sevan 			break;
    608   1.1     sevan 
    609   1.1     sevan 		used = rge_encap(sc, m, idx);
    610   1.1     sevan 		if (used == 0) {
    611   1.1     sevan 			m_freem(m);
    612   1.1     sevan 			continue;
    613   1.1     sevan 		}
    614   1.1     sevan 
    615   1.1     sevan 		KASSERT(used <= free);
    616   1.1     sevan 		free -= used;
    617   1.1     sevan 
    618  1.17  jakllsch 		bpf_mtap(ifp, m, BPF_D_OUT);
    619   1.1     sevan 
    620   1.1     sevan 		idx += used;
    621   1.1     sevan 		if (idx >= RGE_TX_LIST_CNT)
    622   1.1     sevan 			idx -= RGE_TX_LIST_CNT;
    623   1.1     sevan 
    624   1.1     sevan 		queued++;
    625   1.1     sevan 	}
    626   1.1     sevan 
    627   1.1     sevan 	if (queued == 0)
    628   1.1     sevan 		return;
    629   1.1     sevan 
    630   1.1     sevan 	/* Set a timeout in case the chip goes out to lunch. */
    631   1.1     sevan 	ifp->if_timer = 5;
    632   1.1     sevan 
    633   1.1     sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    634  1.17  jakllsch #if 0
    635   1.1     sevan 	ifq_serialize(ifq, &sc->sc_task);
    636  1.17  jakllsch #else
    637  1.17  jakllsch 	rge_txstart(&sc->sc_task, sc);
    638  1.17  jakllsch #endif
    639   1.1     sevan }
    640   1.1     sevan 
    641   1.1     sevan void
    642   1.1     sevan rge_watchdog(struct ifnet *ifp)
    643   1.1     sevan {
    644   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    645   1.1     sevan 
    646  1.16  jakllsch 	device_printf(sc->sc_dev, "watchdog timeout\n");
    647   1.4     skrll 	if_statinc(ifp, if_oerrors);
    648   1.1     sevan 
    649   1.1     sevan 	rge_init(ifp);
    650   1.1     sevan }
    651   1.1     sevan 
    652   1.1     sevan int
    653   1.1     sevan rge_init(struct ifnet *ifp)
    654   1.1     sevan {
    655   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    656   1.1     sevan 	uint32_t val;
    657   1.1     sevan 	int i;
    658   1.1     sevan 
    659  1.17  jakllsch 	rge_stop(ifp, 0);
    660   1.1     sevan 
    661   1.1     sevan 	/* Set MAC address. */
    662  1.17  jakllsch 	rge_set_macaddr(sc, CLLADDR(ifp->if_sadl));
    663   1.1     sevan 
    664  1.17  jakllsch 	/* Set Maximum frame size. */
    665  1.17  jakllsch 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, RGE_JUMBO_FRAMELEN);
    666   1.1     sevan 
    667   1.1     sevan 	/* Initialize RX descriptors list. */
    668   1.1     sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    669  1.16  jakllsch 		device_printf(sc->sc_dev,
    670  1.13     sevan 		    "init failed: no memory for RX buffers\n");
    671  1.17  jakllsch 		rge_stop(ifp, 1);
    672   1.1     sevan 		return (ENOBUFS);
    673   1.1     sevan 	}
    674   1.1     sevan 
    675   1.1     sevan 	/* Initialize TX descriptors. */
    676   1.1     sevan 	rge_tx_list_init(sc);
    677   1.1     sevan 
    678   1.1     sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    679   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    680   1.1     sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    681   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    682   1.1     sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    683   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    684   1.1     sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    685   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    686   1.1     sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    687   1.1     sevan 
    688   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    689   1.1     sevan 
    690   1.1     sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    691   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    692   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    693   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    694   1.1     sevan 
    695   1.1     sevan 	/* Clear interrupt moderation timer. */
    696   1.1     sevan 	for (i = 0; i < 64; i++)
    697  1.17  jakllsch 		RGE_WRITE_4(sc, RGE_INTMITI(i), 0);
    698   1.1     sevan 
    699   1.1     sevan 	/* Set the initial RX and TX configurations. */
    700   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    701   1.1     sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    702   1.1     sevan 
    703   1.1     sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    704   1.1     sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    705   1.1     sevan 
    706   1.1     sevan 	/* Enable hardware optimization function. */
    707   1.1     sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    708   1.1     sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    709   1.1     sevan 
    710   1.1     sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    711   1.1     sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    712   1.1     sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    713   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    714   1.1     sevan 
    715   1.1     sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    716   1.1     sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    717   1.1     sevan 
    718   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    719   1.1     sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    720   1.1     sevan 
    721   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    722   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    723   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    724   1.1     sevan 
    725   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    726  1.17  jakllsch 	if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
    727  1.17  jakllsch 		rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    728  1.17  jakllsch 	else
    729  1.17  jakllsch 		rge_write_mac_ocp(sc, 0xe614, val | 0x0200);
    730   1.1     sevan 
    731   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    732   1.1     sevan 
    733  1.17  jakllsch 	if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
    734  1.17  jakllsch 		val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    735  1.17  jakllsch 		rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    736  1.17  jakllsch 	} else
    737  1.17  jakllsch 		RGE_MAC_CLRBIT(sc, 0xe63e, 0x0030);
    738   1.1     sevan 
    739   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    740   1.1     sevan 
    741  1.17  jakllsch 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x00ff;
    742   1.1     sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    743   1.1     sevan 
    744   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    745   1.1     sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    746   1.1     sevan 
    747   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    748   1.1     sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    749   1.1     sevan 
    750   1.1     sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    751   1.1     sevan 
    752  1.17  jakllsch 	RGE_SETBIT_1(sc, RGE_DLLPR, RGE_DLLPR_TX_10M_PS_EN);
    753  1.17  jakllsch 
    754   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    755   1.1     sevan 
    756  1.17  jakllsch 	val = rge_read_mac_ocp(sc, 0xea1c) & ~0x0003;
    757  1.17  jakllsch 	rge_write_mac_ocp(sc, 0xea1c, val | 0x0001);
    758  1.17  jakllsch 
    759   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    760   1.1     sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    761   1.1     sevan 
    762   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    763   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    764   1.1     sevan 
    765   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    766   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    767   1.1     sevan 
    768   1.1     sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    769   1.1     sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    770   1.1     sevan 
    771  1.17  jakllsch 	val = rge_read_mac_ocp(sc, 0xe84c) & ~0x0040;
    772  1.17  jakllsch 	if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
    773  1.17  jakllsch 		rge_write_mac_ocp(sc, 0xe84c, 0x00c0);
    774  1.17  jakllsch 	else
    775  1.17  jakllsch 		rge_write_mac_ocp(sc, 0xe84c, 0x0080);
    776  1.17  jakllsch 
    777  1.17  jakllsch 	RGE_SETBIT_1(sc, RGE_DLLPR, RGE_DLLPR_PFM_EN);
    778  1.17  jakllsch 
    779  1.17  jakllsch 	if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
    780  1.17  jakllsch 		RGE_SETBIT_1(sc, RGE_MCUCMD, 0x01);
    781   1.1     sevan 
    782   1.1     sevan 	/* Disable EEE plus. */
    783   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    784   1.1     sevan 
    785   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    786   1.1     sevan 
    787   1.1     sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    788   1.1     sevan 	DELAY(1);
    789   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    790   1.1     sevan 
    791   1.1     sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    792   1.1     sevan 
    793   1.1     sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    794   1.1     sevan 
    795  1.17  jakllsch 	if ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
    796   1.1     sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    797  1.17  jakllsch 	else
    798  1.17  jakllsch 		RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    799   1.1     sevan 
    800   1.1     sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    801   1.1     sevan 
    802   1.1     sevan 	for (i = 0; i < 10; i++) {
    803   1.1     sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    804   1.1     sevan 			break;
    805   1.1     sevan 		DELAY(1000);
    806   1.1     sevan 	}
    807   1.1     sevan 
    808   1.1     sevan 	/* Disable RXDV gate. */
    809   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    810   1.1     sevan 	DELAY(2000);
    811   1.1     sevan 
    812   1.1     sevan 	rge_ifmedia_upd(ifp);
    813   1.1     sevan 
    814   1.1     sevan 	/* Enable transmit and receive. */
    815   1.1     sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    816   1.1     sevan 
    817   1.1     sevan 	/* Program promiscuous mode and multicast filters. */
    818   1.1     sevan 	rge_iff(sc);
    819   1.1     sevan 
    820   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    821   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    822   1.1     sevan 
    823   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    824   1.1     sevan 
    825   1.1     sevan 	/* Enable interrupts. */
    826   1.1     sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    827   1.1     sevan 
    828   1.1     sevan 	ifp->if_flags |= IFF_RUNNING;
    829   1.3     sevan 	CLR(ifp->if_flags, IFF_OACTIVE);
    830   1.1     sevan 
    831   1.3     sevan 	callout_schedule(&sc->sc_timeout, 1);
    832   1.1     sevan 
    833   1.1     sevan 	return (0);
    834   1.1     sevan }
    835   1.1     sevan 
    836   1.1     sevan /*
    837   1.1     sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    838   1.1     sevan  */
    839   1.1     sevan void
    840  1.17  jakllsch rge_stop(struct ifnet *ifp, int disable)
    841   1.1     sevan {
    842   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    843   1.1     sevan 	int i;
    844   1.1     sevan 
    845  1.17  jakllsch 	if (disable) {
    846  1.17  jakllsch 		callout_halt(&sc->sc_timeout, NULL);
    847  1.17  jakllsch 	} else
    848  1.17  jakllsch 		callout_stop(&sc->sc_timeout);
    849   1.1     sevan 
    850   1.1     sevan 	ifp->if_timer = 0;
    851   1.1     sevan 	ifp->if_flags &= ~IFF_RUNNING;
    852   1.1     sevan 	sc->rge_timerintr = 0;
    853   1.1     sevan 
    854   1.1     sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    855   1.1     sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    856   1.1     sevan 	    RGE_RXCFG_ERRPKT);
    857   1.1     sevan 
    858   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    859  1.17  jakllsch 
    860  1.17  jakllsch 	/* Clear timer interrupts. */
    861  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT0, 0);
    862  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT1, 0);
    863  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT2, 0);
    864  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT3, 0);
    865   1.1     sevan 
    866   1.1     sevan 	rge_reset(sc);
    867   1.1     sevan 
    868  1.17  jakllsch //	intr_barrier(sc->sc_ih);
    869  1.17  jakllsch //	ifq_barrier(&ifp->if_snd);
    870   1.2     sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    871   1.1     sevan 
    872   1.1     sevan 	if (sc->rge_head != NULL) {
    873   1.1     sevan 		m_freem(sc->rge_head);
    874   1.1     sevan 		sc->rge_head = sc->rge_tail = NULL;
    875   1.1     sevan 	}
    876   1.1     sevan 
    877   1.1     sevan 	/* Free the TX list buffers. */
    878   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    879   1.1     sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    880   1.1     sevan 			bus_dmamap_unload(sc->sc_dmat,
    881   1.1     sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    882   1.1     sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    883   1.1     sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    884   1.1     sevan 		}
    885   1.1     sevan 	}
    886   1.1     sevan 
    887   1.1     sevan 	/* Free the RX list buffers. */
    888   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    889   1.1     sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    890   1.1     sevan 			bus_dmamap_unload(sc->sc_dmat,
    891   1.1     sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    892   1.1     sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    893   1.1     sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    894   1.1     sevan 		}
    895   1.1     sevan 	}
    896   1.1     sevan }
    897   1.1     sevan 
    898   1.1     sevan /*
    899   1.1     sevan  * Set media options.
    900   1.1     sevan  */
    901   1.1     sevan int
    902   1.1     sevan rge_ifmedia_upd(struct ifnet *ifp)
    903   1.1     sevan {
    904   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    905   1.1     sevan 	struct ifmedia *ifm = &sc->sc_media;
    906   1.1     sevan 	int anar, gig, val;
    907   1.1     sevan 
    908   1.1     sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    909   1.1     sevan 		return (EINVAL);
    910   1.1     sevan 
    911   1.1     sevan 	/* Disable Gigabit Lite. */
    912   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    913   1.1     sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    914   1.1     sevan 
    915   1.1     sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    916   1.1     sevan 	val &= ~RGE_ADV_2500TFDX;
    917   1.1     sevan 
    918   1.1     sevan 	anar = gig = 0;
    919   1.1     sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    920   1.1     sevan 	case IFM_AUTO:
    921  1.17  jakllsch 		anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    922  1.17  jakllsch 		gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    923   1.1     sevan 		val |= RGE_ADV_2500TFDX;
    924   1.1     sevan 		break;
    925   1.1     sevan 	case IFM_2500_T:
    926  1.17  jakllsch 		anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    927  1.17  jakllsch 		gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    928   1.1     sevan 		val |= RGE_ADV_2500TFDX;
    929   1.1     sevan 		ifp->if_baudrate = IF_Mbps(2500);
    930   1.1     sevan 		break;
    931   1.1     sevan 	case IFM_1000_T:
    932  1.17  jakllsch 		anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    933  1.17  jakllsch 		gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    934   1.1     sevan 		ifp->if_baudrate = IF_Gbps(1);
    935   1.1     sevan 		break;
    936   1.1     sevan 	case IFM_100_TX:
    937  1.17  jakllsch 		gig = rge_read_phy(sc, 0, MII_100T2CR) &
    938  1.17  jakllsch 		    ~(GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX);
    939  1.17  jakllsch 		anar = ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) ?
    940  1.17  jakllsch 		    ANAR_TX | ANAR_TX_FD | ANAR_10_FD | ANAR_10 :
    941  1.17  jakllsch 		    ANAR_TX | ANAR_10_FD | ANAR_10;
    942   1.1     sevan 		ifp->if_baudrate = IF_Mbps(100);
    943   1.1     sevan 		break;
    944   1.1     sevan 	case IFM_10_T:
    945  1.17  jakllsch 		gig = rge_read_phy(sc, 0, MII_100T2CR) &
    946  1.17  jakllsch 		    ~(GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX);
    947  1.17  jakllsch 		anar = ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) ?
    948  1.17  jakllsch 		    ANAR_10_FD | ANAR_10 : ANAR_10;
    949   1.1     sevan 		ifp->if_baudrate = IF_Mbps(10);
    950   1.1     sevan 		break;
    951   1.1     sevan 	default:
    952  1.16  jakllsch 		device_printf(sc->sc_dev,
    953  1.13     sevan 		    "unsupported media type\n");
    954   1.1     sevan 		return (EINVAL);
    955   1.1     sevan 	}
    956   1.1     sevan 
    957   1.1     sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    958   1.1     sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    959   1.1     sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    960  1.17  jakllsch 	rge_write_phy(sc, 0, MII_BMCR, BMCR_RESET | BMCR_AUTOEN |
    961  1.17  jakllsch 	    BMCR_STARTNEG);
    962   1.1     sevan 
    963   1.1     sevan 	return (0);
    964   1.1     sevan }
    965   1.1     sevan 
    966   1.1     sevan /*
    967   1.1     sevan  * Report current media status.
    968   1.1     sevan  */
    969   1.1     sevan void
    970   1.1     sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    971   1.1     sevan {
    972   1.1     sevan 	struct rge_softc *sc = ifp->if_softc;
    973   1.1     sevan 	uint16_t status = 0;
    974   1.1     sevan 
    975   1.1     sevan 	ifmr->ifm_status = IFM_AVALID;
    976   1.1     sevan 	ifmr->ifm_active = IFM_ETHER;
    977   1.1     sevan 
    978   1.1     sevan 	if (rge_get_link_status(sc)) {
    979   1.1     sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    980   1.1     sevan 
    981   1.1     sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    982   1.1     sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    983   1.1     sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    984   1.1     sevan 			ifmr->ifm_active |= IFM_FDX;
    985   1.1     sevan 		else
    986   1.1     sevan 			ifmr->ifm_active |= IFM_HDX;
    987   1.1     sevan 
    988   1.1     sevan 		if (status & RGE_PHYSTAT_10MBPS)
    989   1.1     sevan 			ifmr->ifm_active |= IFM_10_T;
    990   1.1     sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    991   1.1     sevan 			ifmr->ifm_active |= IFM_100_TX;
    992   1.1     sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    993   1.1     sevan 			ifmr->ifm_active |= IFM_1000_T;
    994   1.1     sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    995   1.1     sevan 			ifmr->ifm_active |= IFM_2500_T;
    996   1.1     sevan 	}
    997   1.1     sevan }
    998   1.1     sevan 
    999   1.5     skrll /*
   1000   1.1     sevan  * Allocate memory for RX/TX rings.
   1001   1.1     sevan  */
   1002   1.1     sevan int
   1003   1.1     sevan rge_allocmem(struct rge_softc *sc)
   1004   1.1     sevan {
   1005   1.1     sevan 	int error, i;
   1006   1.1     sevan 
   1007   1.1     sevan 	/* Allocate DMA'able memory for the TX ring. */
   1008   1.1     sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
   1009   1.1     sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
   1010   1.1     sevan 	if (error) {
   1011  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't create TX list map\n");
   1012   1.1     sevan 		return (error);
   1013   1.1     sevan 	}
   1014   1.1     sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
   1015   1.1     sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
   1016  1.17  jakllsch 	    BUS_DMA_NOWAIT);
   1017   1.1     sevan 	if (error) {
   1018  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't alloc TX list\n");
   1019   1.1     sevan 		return (error);
   1020   1.1     sevan 	}
   1021   1.1     sevan 
   1022   1.1     sevan 	/* Load the map for the TX ring. */
   1023   1.1     sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
   1024   1.1     sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
   1025   1.8     sevan 	    (void **) &sc->rge_ldata.rge_tx_list,
   1026  1.17  jakllsch 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
   1027   1.1     sevan 	if (error) {
   1028  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't map TX dma buffers\n");
   1029   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
   1030   1.1     sevan 		    sc->rge_ldata.rge_tx_listnseg);
   1031   1.1     sevan 		return (error);
   1032   1.1     sevan 	}
   1033  1.17  jakllsch 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1034   1.1     sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1035   1.1     sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1036   1.1     sevan 	if (error) {
   1037  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't load TX dma map\n");
   1038   1.1     sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
   1039   1.1     sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1040   1.2     sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
   1041   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
   1042   1.1     sevan 		    sc->rge_ldata.rge_tx_listnseg);
   1043   1.1     sevan 		return (error);
   1044   1.1     sevan 	}
   1045   1.1     sevan 
   1046   1.1     sevan 	/* Create DMA maps for TX buffers. */
   1047   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
   1048   1.1     sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
   1049   1.1     sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
   1050   1.1     sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
   1051   1.1     sevan 		if (error) {
   1052  1.13     sevan 			aprint_error_dev(sc->sc_dev, "can't create DMA map for TX\n");
   1053   1.1     sevan 			return (error);
   1054   1.1     sevan 		}
   1055   1.1     sevan 	}
   1056   1.1     sevan 
   1057   1.1     sevan 	/* Allocate DMA'able memory for the RX ring. */
   1058   1.1     sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
   1059   1.1     sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
   1060   1.1     sevan 	if (error) {
   1061  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't create RX list map\n");
   1062   1.1     sevan 		return (error);
   1063   1.1     sevan 	}
   1064   1.1     sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
   1065   1.1     sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
   1066  1.17  jakllsch 	    BUS_DMA_NOWAIT);
   1067   1.1     sevan 	if (error) {
   1068  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't alloc RX list\n");
   1069   1.1     sevan 		return (error);
   1070   1.1     sevan 	}
   1071   1.1     sevan 
   1072   1.1     sevan 	/* Load the map for the RX ring. */
   1073   1.1     sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1074   1.1     sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
   1075   1.8     sevan 	    (void **) &sc->rge_ldata.rge_rx_list,
   1076  1.17  jakllsch 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
   1077   1.1     sevan 	if (error) {
   1078  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't map RX dma buffers\n");
   1079   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1080   1.1     sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1081   1.1     sevan 		return (error);
   1082   1.1     sevan 	}
   1083  1.17  jakllsch 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1084   1.1     sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1085   1.1     sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1086   1.1     sevan 	if (error) {
   1087  1.13     sevan 		aprint_error_dev(sc->sc_dev, "can't load RX dma map\n");
   1088   1.1     sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1089   1.1     sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1090   1.2     sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1091   1.1     sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1092   1.1     sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1093   1.1     sevan 		return (error);
   1094   1.1     sevan 	}
   1095   1.1     sevan 
   1096   1.1     sevan 	/* Create DMA maps for RX buffers. */
   1097   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1098   1.1     sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1099   1.1     sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1100   1.1     sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1101   1.1     sevan 		if (error) {
   1102  1.13     sevan 			aprint_error_dev(sc->sc_dev, "can't create DMA map for RX\n");
   1103   1.1     sevan 			return (error);
   1104   1.1     sevan 		}
   1105   1.1     sevan 	}
   1106   1.1     sevan 
   1107   1.1     sevan 	return (error);
   1108   1.1     sevan }
   1109   1.1     sevan 
   1110   1.1     sevan /*
   1111   1.1     sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1112   1.1     sevan  */
   1113   1.1     sevan int
   1114   1.1     sevan rge_newbuf(struct rge_softc *sc, int idx)
   1115   1.1     sevan {
   1116   1.1     sevan 	struct mbuf *m;
   1117   1.1     sevan 	struct rge_rx_desc *r;
   1118   1.1     sevan 	struct rge_rxq *rxq;
   1119   1.1     sevan 	bus_dmamap_t rxmap;
   1120   1.1     sevan 
   1121  1.17  jakllsch 	m = MCLGETL(NULL, M_DONTWAIT, RGE_JUMBO_FRAMELEN);
   1122   1.1     sevan 	if (m == NULL)
   1123   1.1     sevan 		return (ENOBUFS);
   1124   1.1     sevan 
   1125   1.1     sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1126   1.1     sevan 
   1127   1.1     sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1128   1.1     sevan 	rxmap = rxq->rxq_dmamap;
   1129   1.1     sevan 
   1130   1.1     sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1131   1.1     sevan 		goto out;
   1132   1.1     sevan 
   1133   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1134   1.1     sevan 	    BUS_DMASYNC_PREREAD);
   1135   1.1     sevan 
   1136   1.1     sevan 	/* Map the segments into RX descriptors. */
   1137   1.1     sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1138   1.1     sevan 
   1139   1.1     sevan 	if (RGE_OWN(r)) {
   1140  1.16  jakllsch 		device_printf(sc->sc_dev, "tried to map busy RX descriptor\n");
   1141   1.1     sevan 		goto out;
   1142   1.1     sevan 	}
   1143   1.1     sevan 
   1144   1.1     sevan 	rxq->rxq_mbuf = m;
   1145   1.1     sevan 
   1146   1.1     sevan 	r->rge_extsts = 0;
   1147   1.1     sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1148   1.1     sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1149   1.1     sevan 
   1150   1.1     sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1151   1.1     sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1152   1.1     sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1153   1.1     sevan 
   1154   1.1     sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1155   1.1     sevan 
   1156   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1157   1.1     sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1158   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1159   1.1     sevan 
   1160   1.1     sevan 	return (0);
   1161   1.1     sevan out:
   1162   1.1     sevan 	if (m != NULL)
   1163   1.1     sevan 		m_freem(m);
   1164   1.1     sevan 	return (ENOMEM);
   1165   1.1     sevan }
   1166   1.1     sevan 
   1167   1.1     sevan void
   1168   1.1     sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1169   1.1     sevan {
   1170   1.1     sevan 	struct rge_rx_desc *r;
   1171   1.1     sevan 
   1172   1.1     sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1173   1.1     sevan 
   1174   1.1     sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1175   1.1     sevan 	r->rge_extsts = 0;
   1176   1.1     sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1177   1.1     sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1178   1.1     sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1179   1.1     sevan 
   1180   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1181   1.1     sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1182   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1183   1.1     sevan }
   1184   1.1     sevan 
   1185   1.1     sevan int
   1186   1.1     sevan rge_rx_list_init(struct rge_softc *sc)
   1187   1.1     sevan {
   1188   1.1     sevan 	int i;
   1189   1.1     sevan 
   1190   1.1     sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1191   1.1     sevan 
   1192   1.1     sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1193   1.1     sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1194   1.1     sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1195   1.1     sevan 			return (ENOBUFS);
   1196   1.1     sevan 	}
   1197   1.1     sevan 
   1198  1.17  jakllsch 	sc->rge_ldata.rge_rxq_prodidx = sc->rge_ldata.rge_rxq_considx = 0;
   1199   1.1     sevan 	sc->rge_head = sc->rge_tail = NULL;
   1200   1.1     sevan 
   1201   1.1     sevan 	return (0);
   1202   1.1     sevan }
   1203   1.1     sevan 
   1204   1.1     sevan void
   1205   1.1     sevan rge_tx_list_init(struct rge_softc *sc)
   1206   1.1     sevan {
   1207   1.1     sevan 	int i;
   1208   1.1     sevan 
   1209   1.1     sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1210   1.1     sevan 
   1211   1.1     sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1212   1.1     sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1213   1.1     sevan 
   1214   1.1     sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1215   1.1     sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1216   1.1     sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1217   1.1     sevan 
   1218   1.1     sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1219   1.1     sevan }
   1220   1.1     sevan 
   1221   1.1     sevan int
   1222   1.1     sevan rge_rxeof(struct rge_softc *sc)
   1223   1.1     sevan {
   1224   1.1     sevan 	struct mbuf *m;
   1225   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1226   1.1     sevan 	struct rge_rx_desc *cur_rx;
   1227   1.1     sevan 	struct rge_rxq *rxq;
   1228   1.1     sevan 	uint32_t rxstat, extsts;
   1229   1.1     sevan 	int i, total_len, rx = 0;
   1230   1.1     sevan 
   1231  1.17  jakllsch 	for (i = sc->rge_ldata.rge_rxq_considx; ; i = RGE_NEXT_RX_DESC(i)) {
   1232   1.1     sevan 		/* Invalidate the descriptor memory. */
   1233   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1234   1.1     sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1235   1.1     sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1236   1.1     sevan 
   1237   1.1     sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1238   1.1     sevan 
   1239   1.1     sevan 		if (RGE_OWN(cur_rx))
   1240   1.1     sevan 			break;
   1241   1.1     sevan 
   1242   1.1     sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1243   1.1     sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1244   1.5     skrll 
   1245   1.1     sevan 		total_len = RGE_RXBYTES(cur_rx);
   1246   1.1     sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1247   1.1     sevan 		m = rxq->rxq_mbuf;
   1248  1.17  jakllsch 		rxq->rxq_mbuf = NULL;
   1249   1.1     sevan 		rx = 1;
   1250   1.1     sevan 
   1251   1.1     sevan 		/* Invalidate the RX mbuf and unload its map. */
   1252   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1253   1.1     sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1254   1.1     sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1255   1.1     sevan 
   1256   1.1     sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1257   1.1     sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1258   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1259   1.1     sevan 			continue;
   1260   1.1     sevan 		}
   1261   1.1     sevan 
   1262   1.1     sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1263   1.4     skrll 			if_statinc(ifp, if_ierrors);
   1264   1.1     sevan 			/*
   1265   1.1     sevan 			 * If this is part of a multi-fragment packet,
   1266   1.1     sevan 			 * discard all the pieces.
   1267   1.1     sevan 			 */
   1268   1.1     sevan 			 if (sc->rge_head != NULL) {
   1269   1.1     sevan 				m_freem(sc->rge_head);
   1270   1.1     sevan 				sc->rge_head = sc->rge_tail = NULL;
   1271   1.1     sevan 			}
   1272   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1273   1.1     sevan 			continue;
   1274   1.1     sevan 		}
   1275   1.1     sevan 
   1276   1.1     sevan 		/*
   1277   1.1     sevan 		 * If allocating a replacement mbuf fails,
   1278   1.1     sevan 		 * reload the current one.
   1279   1.1     sevan 		 */
   1280   1.1     sevan 
   1281   1.1     sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1282   1.1     sevan 			if (sc->rge_head != NULL) {
   1283   1.1     sevan 				m_freem(sc->rge_head);
   1284   1.1     sevan 				sc->rge_head = sc->rge_tail = NULL;
   1285   1.1     sevan 			}
   1286   1.1     sevan 			rge_discard_rxbuf(sc, i);
   1287   1.1     sevan 			continue;
   1288   1.1     sevan 		}
   1289   1.1     sevan 
   1290  1.17  jakllsch 		m_set_rcvif(m, ifp);
   1291   1.1     sevan 		if (sc->rge_head != NULL) {
   1292   1.1     sevan 			m->m_len = total_len;
   1293   1.1     sevan 			/*
   1294   1.1     sevan 			 * Special case: if there's 4 bytes or less
   1295   1.1     sevan 			 * in this buffer, the mbuf can be discarded:
   1296   1.1     sevan 			 * the last 4 bytes is the CRC, which we don't
   1297   1.1     sevan 			 * care about anyway.
   1298   1.1     sevan 			 */
   1299   1.1     sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1300   1.1     sevan 				sc->rge_tail->m_len -=
   1301   1.1     sevan 				    (ETHER_CRC_LEN - m->m_len);
   1302   1.1     sevan 				m_freem(m);
   1303   1.1     sevan 			} else {
   1304   1.1     sevan 				m->m_len -= ETHER_CRC_LEN;
   1305   1.1     sevan 				m->m_flags &= ~M_PKTHDR;
   1306   1.1     sevan 				sc->rge_tail->m_next = m;
   1307   1.1     sevan 			}
   1308   1.1     sevan 			m = sc->rge_head;
   1309   1.1     sevan 			sc->rge_head = sc->rge_tail = NULL;
   1310   1.1     sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1311   1.1     sevan 		} else
   1312  1.17  jakllsch 	#if 0
   1313   1.1     sevan 			m->m_pkthdr.len = m->m_len =
   1314   1.1     sevan 			    (total_len - ETHER_CRC_LEN);
   1315  1.17  jakllsch 	#else
   1316  1.17  jakllsch 		{
   1317  1.17  jakllsch 			m->m_pkthdr.len = m->m_len = total_len;
   1318  1.17  jakllsch 			m->m_flags |= M_HASFCS;
   1319  1.17  jakllsch 		}
   1320  1.17  jakllsch 	#endif
   1321   1.1     sevan 
   1322  1.17  jakllsch #if notyet
   1323   1.1     sevan 		/* Check IP header checksum. */
   1324   1.1     sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1325   1.1     sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1326   1.1     sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1327   1.1     sevan 
   1328   1.1     sevan 		/* Check TCP/UDP checksum. */
   1329   1.1     sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1330   1.1     sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1331   1.1     sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1332   1.1     sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1333   1.1     sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1334   1.1     sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1335   1.1     sevan 			    M_UDP_CSUM_IN_OK;
   1336  1.17  jakllsch #endif
   1337   1.1     sevan 
   1338   1.1     sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1339  1.17  jakllsch 			vlan_set_tag(m,
   1340  1.17  jakllsch 			    bswap16(extsts & RGE_RDEXTSTS_VLAN_MASK));
   1341   1.1     sevan 		}
   1342   1.1     sevan 
   1343  1.17  jakllsch 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1344   1.1     sevan 	}
   1345   1.1     sevan 
   1346  1.17  jakllsch 	sc->rge_ldata.rge_rxq_considx = i;
   1347   1.1     sevan 
   1348   1.1     sevan 	return (rx);
   1349   1.1     sevan }
   1350   1.1     sevan 
   1351   1.1     sevan int
   1352   1.1     sevan rge_txeof(struct rge_softc *sc)
   1353   1.1     sevan {
   1354   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1355   1.1     sevan 	struct rge_txq *txq;
   1356   1.1     sevan 	uint32_t txstat;
   1357   1.1     sevan 	int cons, idx, prod;
   1358   1.1     sevan 	int free = 0;
   1359   1.1     sevan 
   1360   1.1     sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1361   1.1     sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1362   1.1     sevan 
   1363   1.1     sevan 	while (prod != cons) {
   1364   1.1     sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1365   1.1     sevan 		idx = txq->txq_descidx;
   1366   1.1     sevan 
   1367   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1368   1.1     sevan 		    idx * sizeof(struct rge_tx_desc),
   1369   1.1     sevan 		    sizeof(struct rge_tx_desc),
   1370   1.1     sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1371   1.1     sevan 
   1372   1.1     sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1373   1.1     sevan 
   1374   1.1     sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1375   1.1     sevan 			free = 2;
   1376   1.1     sevan 			break;
   1377   1.1     sevan 		}
   1378   1.1     sevan 
   1379   1.5     skrll 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1380   1.1     sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1381   1.1     sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1382   1.1     sevan 		m_freem(txq->txq_mbuf);
   1383   1.1     sevan 		txq->txq_mbuf = NULL;
   1384   1.1     sevan 
   1385   1.1     sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1386   1.4     skrll 			if_statinc(ifp, if_collisions);
   1387   1.1     sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1388   1.4     skrll 			if_statinc(ifp, if_oerrors);
   1389   1.1     sevan 
   1390   1.1     sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1391   1.1     sevan 		    idx * sizeof(struct rge_tx_desc),
   1392   1.1     sevan 		    sizeof(struct rge_tx_desc),
   1393   1.1     sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1394   1.1     sevan 
   1395   1.1     sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1396   1.1     sevan 		free = 1;
   1397   1.1     sevan 	}
   1398   1.1     sevan 
   1399   1.1     sevan 	if (free == 0)
   1400   1.1     sevan 		return (0);
   1401   1.1     sevan 
   1402   1.1     sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1403   1.1     sevan 
   1404  1.17  jakllsch #if 0
   1405   1.1     sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1406   1.1     sevan 		ifq_restart(&ifp->if_snd);
   1407   1.1     sevan 	else if (free == 2)
   1408   1.1     sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1409   1.1     sevan 	else
   1410   1.1     sevan 		ifp->if_timer = 0;
   1411  1.17  jakllsch #else
   1412  1.17  jakllsch #if 0
   1413  1.17  jakllsch 	if (!IF_IS_EMPTY(&ifp->if_snd))
   1414  1.17  jakllsch 		rge_start(ifp);
   1415  1.17  jakllsch 	else
   1416  1.17  jakllsch 	if (free == 2)
   1417  1.17  jakllsch 		if (0) { rge_txstart(&sc->sc_task, sc); }
   1418  1.17  jakllsch 	else
   1419  1.17  jakllsch #endif
   1420  1.17  jakllsch 		ifp->if_timer = 0;
   1421  1.17  jakllsch #endif
   1422   1.1     sevan 
   1423   1.1     sevan 	return (1);
   1424   1.1     sevan }
   1425   1.1     sevan 
   1426   1.1     sevan void
   1427   1.1     sevan rge_reset(struct rge_softc *sc)
   1428   1.1     sevan {
   1429   1.1     sevan 	int i;
   1430   1.1     sevan 
   1431   1.1     sevan 	/* Enable RXDV gate. */
   1432   1.1     sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1433   1.1     sevan 	DELAY(2000);
   1434   1.1     sevan 
   1435  1.17  jakllsch 	for (i = 0; i < 3000; i++) {
   1436  1.17  jakllsch 		DELAY(50);
   1437   1.1     sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1438   1.1     sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1439   1.1     sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1440   1.1     sevan 			break;
   1441   1.1     sevan 	}
   1442  1.17  jakllsch 	if (sc->rge_type == MAC_CFG4 || sc->rge_type == MAC_CFG5) {
   1443  1.17  jakllsch 		for (i = 0; i < 3000; i++) {
   1444  1.17  jakllsch 			DELAY(50);
   1445  1.17  jakllsch 			if ((RGE_READ_2(sc, RGE_IM) & 0x0103) == 0x0103)
   1446  1.17  jakllsch 				break;
   1447  1.17  jakllsch 		}
   1448  1.17  jakllsch 	}
   1449  1.17  jakllsch 
   1450  1.17  jakllsch 	DELAY(2000);
   1451   1.1     sevan 
   1452   1.1     sevan 	/* Soft reset. */
   1453   1.1     sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1454   1.1     sevan 
   1455   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1456   1.1     sevan 		DELAY(100);
   1457   1.1     sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1458   1.1     sevan 			break;
   1459   1.1     sevan 	}
   1460   1.1     sevan 	if (i == RGE_TIMEOUT)
   1461  1.16  jakllsch 		device_printf(sc->sc_dev, "reset never completed!\n");
   1462   1.1     sevan }
   1463   1.1     sevan 
   1464   1.1     sevan void
   1465   1.1     sevan rge_iff(struct rge_softc *sc)
   1466   1.1     sevan {
   1467   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1468  1.17  jakllsch 	struct ethercom *ec = &sc->sc_ec;
   1469   1.1     sevan 	struct ether_multi *enm;
   1470   1.1     sevan 	struct ether_multistep step;
   1471   1.1     sevan 	uint32_t hashes[2];
   1472   1.1     sevan 	uint32_t rxfilt;
   1473   1.1     sevan 	int h = 0;
   1474   1.1     sevan 
   1475   1.1     sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1476   1.1     sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1477   1.1     sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1478   1.1     sevan 
   1479   1.1     sevan 	/*
   1480   1.1     sevan 	 * Always accept frames destined to our station address.
   1481   1.1     sevan 	 * Always accept broadcast frames.
   1482   1.1     sevan 	 */
   1483   1.1     sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1484   1.1     sevan 
   1485  1.17  jakllsch 	if (ifp->if_flags & IFF_PROMISC) {
   1486  1.17  jakllsch  allmulti:
   1487   1.1     sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1488   1.1     sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1489   1.1     sevan 		if (ifp->if_flags & IFF_PROMISC)
   1490   1.1     sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1491   1.1     sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1492   1.1     sevan 	} else {
   1493   1.1     sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1494   1.1     sevan 		/* Program new filter. */
   1495   1.1     sevan 		memset(hashes, 0, sizeof(hashes));
   1496   1.1     sevan 
   1497  1.17  jakllsch 		ETHER_LOCK(ec);
   1498  1.17  jakllsch 		ETHER_FIRST_MULTI(step, ec, enm);
   1499   1.1     sevan 		while (enm != NULL) {
   1500  1.17  jakllsch 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1501  1.17  jakllsch 			    ETHER_ADDR_LEN) != 0) {
   1502  1.17  jakllsch 			    	ETHER_UNLOCK(ec);
   1503  1.17  jakllsch 				goto allmulti;
   1504  1.17  jakllsch 			}
   1505   1.1     sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1506   1.1     sevan 			    ETHER_ADDR_LEN) >> 26;
   1507   1.1     sevan 
   1508   1.1     sevan 			if (h < 32)
   1509   1.1     sevan 				hashes[0] |= (1 << h);
   1510   1.1     sevan 			else
   1511   1.1     sevan 				hashes[1] |= (1 << (h - 32));
   1512   1.1     sevan 
   1513   1.1     sevan 			ETHER_NEXT_MULTI(step, enm);
   1514   1.1     sevan 		}
   1515  1.17  jakllsch 		ETHER_UNLOCK(ec);
   1516   1.1     sevan 	}
   1517   1.1     sevan 
   1518   1.1     sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1519   1.2     sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1520   1.2     sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1521   1.1     sevan }
   1522   1.1     sevan 
   1523   1.1     sevan void
   1524   1.1     sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1525   1.1     sevan {
   1526   1.1     sevan 	int i;
   1527   1.1     sevan 
   1528   1.1     sevan 	if (on) {
   1529   1.1     sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1530   1.1     sevan 
   1531   1.1     sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1532   1.1     sevan 
   1533   1.1     sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1534  1.10     sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
   1535   1.1     sevan 				break;
   1536   1.1     sevan 			DELAY(1000);
   1537   1.1     sevan 		}
   1538  1.17  jakllsch 	} else {
   1539   1.1     sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1540  1.17  jakllsch 		RGE_CLRBIT_1(sc, RGE_PMCH, 0x80);
   1541  1.17  jakllsch 		RGE_CLRBIT_1(sc, RGE_PPSW, 0x40);
   1542  1.17  jakllsch 	}
   1543   1.1     sevan }
   1544   1.1     sevan 
   1545   1.1     sevan void
   1546   1.1     sevan rge_phy_config(struct rge_softc *sc)
   1547   1.1     sevan {
   1548  1.17  jakllsch 	/* Read microcode version. */
   1549  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1550  1.17  jakllsch 	sc->rge_mcodever = rge_read_phy_ocp(sc, 0xa438);
   1551  1.17  jakllsch 
   1552  1.17  jakllsch 	switch (sc->rge_type) {
   1553  1.17  jakllsch 	case MAC_CFG2:
   1554  1.17  jakllsch 		rge_phy_config_mac_cfg2(sc);
   1555  1.17  jakllsch 		break;
   1556  1.17  jakllsch 	case MAC_CFG3:
   1557  1.17  jakllsch 		rge_phy_config_mac_cfg3(sc);
   1558  1.17  jakllsch 		break;
   1559  1.17  jakllsch 	case MAC_CFG4:
   1560  1.17  jakllsch 		rge_phy_config_mac_cfg4(sc);
   1561  1.17  jakllsch 		break;
   1562  1.17  jakllsch 	case MAC_CFG5:
   1563  1.17  jakllsch 		rge_phy_config_mac_cfg5(sc);
   1564  1.17  jakllsch 		break;
   1565  1.17  jakllsch 	default:
   1566  1.17  jakllsch 		break;	/* Can't happen. */
   1567  1.17  jakllsch 	}
   1568  1.17  jakllsch 
   1569  1.17  jakllsch 	rge_write_phy(sc, 0x0a5b, 0x12,
   1570  1.17  jakllsch 	    rge_read_phy(sc, 0x0a5b, 0x12) & ~0x8000);
   1571  1.17  jakllsch 
   1572  1.17  jakllsch 	/* Disable EEE. */
   1573  1.17  jakllsch 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1574  1.17  jakllsch 	if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
   1575  1.17  jakllsch 		RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1576  1.17  jakllsch 		RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1577  1.17  jakllsch 	}
   1578  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1579  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1580  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1581  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1582  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1583  1.17  jakllsch 
   1584  1.17  jakllsch 	rge_patch_phy_mcu(sc, 1);
   1585  1.17  jakllsch 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1586  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1587  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1588  1.17  jakllsch 	rge_patch_phy_mcu(sc, 0);
   1589  1.17  jakllsch }
   1590  1.17  jakllsch 
   1591  1.17  jakllsch void
   1592  1.17  jakllsch rge_phy_config_mac_cfg2(struct rge_softc *sc)
   1593  1.17  jakllsch {
   1594  1.17  jakllsch 	uint16_t val;
   1595  1.17  jakllsch 	int i;
   1596  1.17  jakllsch 
   1597  1.17  jakllsch 	for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++)
   1598  1.17  jakllsch 		rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1599  1.17  jakllsch 		    rtl8125_mac_cfg2_ephy[i].val);
   1600  1.17  jakllsch 
   1601  1.17  jakllsch 	rge_phy_config_mcu(sc, RGE_MAC_CFG2_MCODE_VER);
   1602  1.17  jakllsch 
   1603  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1604  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1605  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1606  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1607  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1608  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1609  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1610  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1611  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1612  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1613  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1614  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1615  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1616  1.17  jakllsch 
   1617  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1618  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1619  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1620  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1621  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1622  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1623  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1624  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1625  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1626  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1627  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1628  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1629  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1630  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1631  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1632  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1633  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1634  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1635  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1636  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1637  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1638  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1639  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1640  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1641  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1642  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1643  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1644  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1645  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1646  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1647  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1648  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1649  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1650  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1651  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1652  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1653  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1654  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1655  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1656  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1657  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1658  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1659  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1660  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1661  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1662  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1663  1.17  jakllsch }
   1664  1.17  jakllsch 
   1665  1.17  jakllsch void
   1666  1.17  jakllsch rge_phy_config_mac_cfg3(struct rge_softc *sc)
   1667  1.17  jakllsch {
   1668  1.17  jakllsch 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1669  1.17  jakllsch 	uint16_t val;
   1670   1.1     sevan 	int i;
   1671   1.1     sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1672   1.1     sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1673   1.1     sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1674   1.1     sevan 
   1675   1.1     sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1676   1.5     skrll 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1677   1.1     sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1678   1.1     sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1679   1.1     sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1680   1.1     sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1681   1.1     sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1682   1.1     sevan 
   1683  1.17  jakllsch 	for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1684  1.17  jakllsch 		rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1685  1.17  jakllsch 		    rtl8125_mac_cfg3_ephy[i].val);
   1686  1.17  jakllsch 
   1687  1.17  jakllsch 	val = rge_read_ephy(sc, 0x002a) & ~0x7000;
   1688  1.17  jakllsch 	rge_write_ephy(sc, 0x002a, val | 0x3000);
   1689  1.17  jakllsch 	RGE_EPHY_CLRBIT(sc, 0x0019, 0x0040);
   1690  1.17  jakllsch 	RGE_EPHY_SETBIT(sc, 0x001b, 0x0e00);
   1691  1.17  jakllsch 	RGE_EPHY_CLRBIT(sc, 0x001b, 0x7000);
   1692  1.17  jakllsch 	rge_write_ephy(sc, 0x0002, 0x6042);
   1693  1.17  jakllsch 	rge_write_ephy(sc, 0x0006, 0x0014);
   1694  1.17  jakllsch 	val = rge_read_ephy(sc, 0x006a) & ~0x7000;
   1695  1.17  jakllsch 	rge_write_ephy(sc, 0x006a, val | 0x3000);
   1696  1.17  jakllsch 	RGE_EPHY_CLRBIT(sc, 0x0059, 0x0040);
   1697  1.17  jakllsch 	RGE_EPHY_SETBIT(sc, 0x005b, 0x0e00);
   1698  1.17  jakllsch 	RGE_EPHY_CLRBIT(sc, 0x005b, 0x7000);
   1699  1.17  jakllsch 	rge_write_ephy(sc, 0x0042, 0x6042);
   1700  1.17  jakllsch 	rge_write_ephy(sc, 0x0046, 0x0014);
   1701  1.17  jakllsch 
   1702  1.17  jakllsch 	rge_phy_config_mcu(sc, RGE_MAC_CFG3_MCODE_VER);
   1703  1.17  jakllsch 
   1704  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1705  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1706  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1707  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1708  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1709  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1710  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1711  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1712  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1713  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1714  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1715  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1716  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1717  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1718  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1719  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1720  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1721  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1722  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1723  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1724  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1725  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8157);
   1726  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
   1727  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, val | 0x0500);
   1728  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8159);
   1729  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
   1730  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, val | 0x0700);
   1731  1.17  jakllsch 	RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
   1732  1.17  jakllsch 	    32);
   1733  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1734  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1735  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1736  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1737  1.17  jakllsch 
   1738  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1739  1.17  jakllsch 	for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1740  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1741  1.17  jakllsch 	for (i = 0; i < 26; i++)
   1742  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa438, 0);
   1743  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1744  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1745  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1746  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1747  1.17  jakllsch 
   1748  1.17  jakllsch 	rge_patch_phy_mcu(sc, 1);
   1749  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1750  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1751  1.17  jakllsch 	for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1752  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1753  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb890, mac_cfg3_b88e_value[i + 1]);
   1754  1.17  jakllsch 	}
   1755  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1756  1.17  jakllsch 	rge_patch_phy_mcu(sc, 0);
   1757  1.17  jakllsch 
   1758  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1759  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1760  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1761  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1762  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1763  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1764  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1765  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1766  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1767  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1768  1.17  jakllsch }
   1769  1.17  jakllsch 
   1770  1.17  jakllsch void
   1771  1.17  jakllsch rge_phy_config_mac_cfg4(struct rge_softc *sc)
   1772  1.17  jakllsch {
   1773  1.17  jakllsch 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1774  1.17  jakllsch 	uint16_t val;
   1775  1.17  jakllsch 	int i;
   1776  1.17  jakllsch 	static const uint16_t mac_cfg4_b87c_value[] =
   1777  1.17  jakllsch 	    { 0x8013, 0x0700, 0x8fb9, 0x2801, 0x8fba, 0x0100, 0x8fbc, 0x1900,
   1778  1.17  jakllsch 	      0x8fbe, 0xe100, 0x8fc0, 0x0800, 0x8fc2, 0xe500, 0x8fc4, 0x0f00,
   1779  1.17  jakllsch 	      0x8fc6, 0xf100, 0x8fc8, 0x0400, 0x8fca, 0xf300, 0x8fcc, 0xfd00,
   1780  1.17  jakllsch 	      0x8fce, 0xff00, 0x8fd0, 0xfb00, 0x8fd2, 0x0100, 0x8fd4, 0xf400,
   1781  1.17  jakllsch 	      0x8fd6, 0xff00, 0x8fd8, 0xf600, 0x813d, 0x390e, 0x814f, 0x790e,
   1782  1.17  jakllsch 	      0x80b0, 0x0f31 };
   1783  1.17  jakllsch 
   1784  1.17  jakllsch 	for (i = 0; i < nitems(rtl8125_mac_cfg4_ephy); i++)
   1785  1.17  jakllsch 		rge_write_ephy(sc, rtl8125_mac_cfg4_ephy[i].reg,
   1786  1.17  jakllsch 		    rtl8125_mac_cfg4_ephy[i].val);
   1787  1.17  jakllsch 
   1788  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf86, 0x9000);
   1789  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xc402, 0x0400);
   1790  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xc402, 0x0400);
   1791  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbd86, 0x1010);
   1792  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbd88, 0x1010);
   1793  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbd4e) & ~0x0c00;
   1794  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbd4e, val | 0x0800);
   1795  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf46) & ~0x0f00;
   1796  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf46, val | 0x0700);
   1797  1.17  jakllsch 
   1798  1.17  jakllsch 	rge_phy_config_mcu(sc, RGE_MAC_CFG4_MCODE_VER);
   1799  1.17  jakllsch 
   1800  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1801  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xbc08, 0x000c);
   1802  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8fff);
   1803  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1804  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x0400);
   1805  1.17  jakllsch 	for (i = 0; i < 6; i++) {
   1806  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb87c, 0x8560 + i * 2);
   1807  1.17  jakllsch 		if (i < 3)
   1808  1.17  jakllsch 			rge_write_phy_ocp(sc, 0xb87e, 0x19cc);
   1809  1.17  jakllsch 		else
   1810  1.17  jakllsch 			rge_write_phy_ocp(sc, 0xb87e, 0x147d);
   1811  1.17  jakllsch 	}
   1812  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8ffe);
   1813  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x0907);
   1814  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xacda) & ~0xff00;
   1815  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xacda, val | 0xff00);
   1816  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xacde) & ~0xf000;
   1817  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xacde, val | 0xf000);
   1818  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x80d6);
   1819  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x2801);
   1820  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x80F2);
   1821  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x2801);
   1822  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x80f4);
   1823  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x6077);
   1824  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb506, 0x01e7);
   1825  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac8c, 0x0ffc);
   1826  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac46, 0xb7b4);
   1827  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac50, 0x0fbc);
   1828  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac3c, 0x9240);
   1829  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac4E, 0x0db4);
   1830  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xacc6, 0x0707);
   1831  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xacc8, 0xa0d3);
   1832  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad08, 0x0007);
   1833  1.17  jakllsch 	for (i = 0; i < nitems(mac_cfg4_b87c_value); i += 2) {
   1834  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb87c, mac_cfg4_b87c_value[i]);
   1835  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb87e, mac_cfg4_b87c_value[i + 1]);
   1836  1.17  jakllsch 	}
   1837  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xbf4c, 0x0002);
   1838  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xbcca, 0x0300);
   1839  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8141);
   1840  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x320e);
   1841  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8153);
   1842  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x720e);
   1843  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0040);
   1844  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8529);
   1845  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x050e);
   1846  1.17  jakllsch 	RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
   1847  1.17  jakllsch 	    32);
   1848  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x816c);
   1849  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xc4a0);
   1850  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8170);
   1851  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xc4a0);
   1852  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8174);
   1853  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x04a0);
   1854  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8178);
   1855  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x04a0);
   1856  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x817c);
   1857  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x0719);
   1858  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8ff4);
   1859  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x0400);
   1860  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8ff1);
   1861  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x0404);
   1862  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf4a, 0x001b);
   1863  1.17  jakllsch 	for (i = 0; i < 6; i++) {
   1864  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xb87c, 0x8033 + i * 4);
   1865  1.17  jakllsch 		if (i == 2)
   1866  1.17  jakllsch 			rge_write_phy_ocp(sc, 0xb87e, 0xfc32);
   1867  1.17  jakllsch 		else
   1868  1.17  jakllsch 			rge_write_phy_ocp(sc, 0xb87e, 0x7c13);
   1869  1.17  jakllsch 	}
   1870  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8145);
   1871  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x370e);
   1872  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8157);
   1873  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x770e);
   1874  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8169);
   1875  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x0d0a);
   1876  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x817b);
   1877  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x1d0a);
   1878  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x8217);
   1879  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1880  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1881  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x821a);
   1882  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1883  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1884  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80da);
   1885  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x0403);
   1886  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1887  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1888  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x1000);
   1889  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80b3);
   1890  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x0384);
   1891  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80b7);
   1892  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x2007);
   1893  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80ba);
   1894  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1895  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x6c00);
   1896  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80b5);
   1897  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xf009);
   1898  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80bd);
   1899  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1900  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x9f00);
   1901  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80c7);
   1902  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xf083);
   1903  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80dd);
   1904  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x03f0);
   1905  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1906  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1907  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x1000);
   1908  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80cb);
   1909  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x2007);
   1910  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80ce);
   1911  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1912  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x6c00);
   1913  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80c9);
   1914  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x8009);
   1915  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80d1);
   1916  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1917  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0x8000);
   1918  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80a3);
   1919  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x200a);
   1920  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80a5);
   1921  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0xf0ad);
   1922  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x809f);
   1923  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x6073);
   1924  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80a1);
   1925  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, 0x000b);
   1926  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x80a9);
   1927  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1928  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa438, val | 0xc000);
   1929  1.17  jakllsch 	rge_patch_phy_mcu(sc, 1);
   1930  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1931  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1932  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc23e);
   1933  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x0000);
   1934  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc240);
   1935  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x0103);
   1936  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc242);
   1937  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x0507);
   1938  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc244);
   1939  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x090b);
   1940  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc246);
   1941  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x0c0e);
   1942  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc248);
   1943  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x1012);
   1944  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb88e, 0xc24a);
   1945  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb890, 0x1416);
   1946  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1947  1.17  jakllsch 	rge_patch_phy_mcu(sc, 0);
   1948  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa86a, 0x0001);
   1949  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa6f0, 0x0001);
   1950  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbfa0, 0xd70d);
   1951  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbfa2, 0x4100);
   1952  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbfa4, 0xe868);
   1953  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbfa6, 0xdc59);
   1954  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb54c, 0x3c18);
   1955  1.17  jakllsch 	RGE_PHY_CLRBIT(sc, 0xbfa4, 0x0020);
   1956  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xa436, 0x817d);
   1957  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa438, 0x1000);
   1958  1.17  jakllsch }
   1959  1.17  jakllsch 
   1960  1.17  jakllsch void
   1961  1.17  jakllsch rge_phy_config_mac_cfg5(struct rge_softc *sc)
   1962  1.17  jakllsch {
   1963  1.17  jakllsch 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1964  1.17  jakllsch 	uint16_t val;
   1965  1.17  jakllsch 	int i;
   1966   1.1     sevan 
   1967  1.17  jakllsch 	for (i = 0; i < nitems(rtl8125_mac_cfg5_ephy); i++)
   1968  1.17  jakllsch 		rge_write_ephy(sc, rtl8125_mac_cfg5_ephy[i].reg,
   1969  1.17  jakllsch 		    rtl8125_mac_cfg5_ephy[i].val);
   1970  1.17  jakllsch 
   1971  1.17  jakllsch 	val = rge_read_ephy(sc, 0x0022) & ~0x0030;
   1972  1.17  jakllsch 	rge_write_ephy(sc, 0x0022, val | 0x0020);
   1973  1.17  jakllsch 	val = rge_read_ephy(sc, 0x0062) & ~0x0030;
   1974  1.17  jakllsch 	rge_write_ephy(sc, 0x0062, val | 0x0020);
   1975  1.17  jakllsch 
   1976  1.17  jakllsch 	rge_phy_config_mcu(sc, RGE_MAC_CFG5_MCODE_VER);
   1977  1.17  jakllsch 
   1978  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1979  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xac46) & ~0x00f0;
   1980  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xac46, val | 0x0090);
   1981  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xad30) & ~0x0003;
   1982  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xad30, val | 0x0001);
   1983  1.17  jakllsch 	RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
   1984  1.17  jakllsch 	    32);
   1985  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x80f5);
   1986  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x760e);
   1987  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8107);
   1988  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, 0x360e);
   1989  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87c, 0x8551);
   1990  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
   1991  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xb87e, val | 0x0800);
   1992  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf00) & ~0xe000;
   1993  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf00, val | 0xa000);
   1994  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf46) & ~0x0f00;
   1995  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf46, val | 0x0300);
   1996  1.17  jakllsch 	for (i = 0; i < 10; i++) {
   1997  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa436, 0x8044 + i * 6);
   1998  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa438, 0x2417);
   1999  1.17  jakllsch 	}
   2000  1.17  jakllsch 	RGE_PHY_SETBIT(sc, 0xa4ca, 0x0040);
   2001  1.17  jakllsch 	val = rge_read_phy_ocp(sc, 0xbf84) & ~0xe000;
   2002  1.17  jakllsch 	rge_write_phy_ocp(sc, 0xbf84, val | 0xa000);
   2003  1.17  jakllsch }
   2004   1.1     sevan 
   2005  1.17  jakllsch void
   2006  1.17  jakllsch rge_phy_config_mcu(struct rge_softc *sc, uint16_t mcode_version)
   2007  1.17  jakllsch {
   2008  1.17  jakllsch 	if (sc->rge_mcodever != mcode_version) {
   2009  1.17  jakllsch 		int i;
   2010   1.1     sevan 
   2011  1.17  jakllsch 		rge_patch_phy_mcu(sc, 1);
   2012   1.1     sevan 
   2013  1.17  jakllsch 		if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
   2014   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   2015  1.17  jakllsch 			if (sc->rge_type == MAC_CFG2)
   2016  1.17  jakllsch 				rge_write_phy_ocp(sc, 0xa438, 0x8600);
   2017  1.17  jakllsch 			else
   2018  1.17  jakllsch 				rge_write_phy_ocp(sc, 0xa438, 0x8601);
   2019   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   2020   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   2021   1.1     sevan 
   2022   1.1     sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   2023  1.17  jakllsch 		}
   2024  1.17  jakllsch 
   2025  1.17  jakllsch 		if (sc->rge_type == MAC_CFG2) {
   2026   1.1     sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   2027   1.1     sevan 				rge_write_phy_ocp(sc,
   2028   1.1     sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   2029   1.1     sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   2030   1.1     sevan 			}
   2031  1.17  jakllsch 		} else if (sc->rge_type == MAC_CFG3) {
   2032   1.1     sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   2033   1.1     sevan 				rge_write_phy_ocp(sc,
   2034   1.1     sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   2035   1.1     sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   2036   1.1     sevan 			}
   2037  1.17  jakllsch 		} else if (sc->rge_type == MAC_CFG4) {
   2038  1.17  jakllsch 			for (i = 0; i < nitems(rtl8125_mac_cfg4_mcu); i++) {
   2039  1.17  jakllsch 				rge_write_phy_ocp(sc,
   2040  1.17  jakllsch 				    rtl8125_mac_cfg4_mcu[i].reg,
   2041  1.17  jakllsch 				    rtl8125_mac_cfg4_mcu[i].val);
   2042  1.17  jakllsch 			}
   2043  1.17  jakllsch 		} else if (sc->rge_type == MAC_CFG5) {
   2044  1.17  jakllsch 			for (i = 0; i < nitems(rtl8125_mac_cfg5_mcu); i++) {
   2045  1.17  jakllsch 				rge_write_phy_ocp(sc,
   2046  1.17  jakllsch 				    rtl8125_mac_cfg5_mcu[i].reg,
   2047  1.17  jakllsch 				    rtl8125_mac_cfg5_mcu[i].val);
   2048  1.17  jakllsch 			}
   2049  1.17  jakllsch 		}
   2050  1.17  jakllsch 
   2051  1.17  jakllsch 		if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
   2052   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   2053   1.1     sevan 
   2054   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   2055   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   2056   1.1     sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   2057   1.1     sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   2058   1.1     sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   2059  1.17  jakllsch 		}
   2060   1.1     sevan 
   2061   1.1     sevan 		rge_patch_phy_mcu(sc, 0);
   2062   1.1     sevan 
   2063  1.17  jakllsch 		/* Write microcode version. */
   2064  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa436, 0x801e);
   2065  1.17  jakllsch 		rge_write_phy_ocp(sc, 0xa438, mcode_version);
   2066   1.1     sevan 	}
   2067   1.1     sevan }
   2068   1.1     sevan 
   2069   1.1     sevan void
   2070   1.1     sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   2071   1.1     sevan {
   2072   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   2073   1.1     sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   2074   1.1     sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   2075   1.1     sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   2076   1.1     sevan 	    addr[5] <<  8 | addr[4]);
   2077   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   2078   1.1     sevan }
   2079   1.1     sevan 
   2080   1.1     sevan void
   2081   1.1     sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   2082   1.1     sevan {
   2083   1.1     sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   2084   1.1     sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   2085   1.1     sevan }
   2086   1.1     sevan 
   2087   1.1     sevan void
   2088   1.1     sevan rge_hw_init(struct rge_softc *sc)
   2089   1.1     sevan {
   2090   1.1     sevan 	int i;
   2091   1.1     sevan 
   2092   1.1     sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   2093   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   2094   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   2095   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   2096   1.1     sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   2097   1.1     sevan 
   2098   1.1     sevan 	/* Disable UPS. */
   2099   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   2100   1.1     sevan 
   2101   1.1     sevan 	/* Configure MAC MCU. */
   2102   1.1     sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   2103   1.1     sevan 
   2104   1.1     sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   2105   1.1     sevan 		rge_write_mac_ocp(sc, i, 0);
   2106   1.1     sevan 
   2107   1.1     sevan 	DELAY(3000);
   2108   1.1     sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   2109   1.1     sevan 
   2110   1.1     sevan 	if (sc->rge_type == MAC_CFG3) {
   2111  1.17  jakllsch 		for (i = 0; i < nitems(rtl8125_mac_bps); i++) {
   2112  1.17  jakllsch 			rge_write_mac_ocp(sc, rtl8125_mac_bps[i].reg,
   2113  1.17  jakllsch 			    rtl8125_mac_bps[i].val);
   2114  1.17  jakllsch 		}
   2115  1.17  jakllsch 	} else if (sc->rge_type == MAC_CFG5) {
   2116  1.17  jakllsch 		for (i = 0; i < nitems(rtl8125b_mac_bps); i++) {
   2117  1.17  jakllsch 			rge_write_mac_ocp(sc, rtl8125b_mac_bps[i].reg,
   2118  1.17  jakllsch 			    rtl8125b_mac_bps[i].val);
   2119  1.17  jakllsch 		}
   2120   1.1     sevan 	}
   2121   1.1     sevan 
   2122   1.1     sevan 	/* Disable PHY power saving. */
   2123   1.1     sevan 	rge_disable_phy_ocp_pwrsave(sc);
   2124   1.1     sevan 
   2125   1.1     sevan 	/* Set PCIe uncorrectable error status. */
   2126   1.1     sevan 	rge_write_csi(sc, 0x108,
   2127   1.1     sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   2128   1.1     sevan }
   2129   1.1     sevan 
   2130   1.1     sevan void
   2131   1.1     sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   2132   1.1     sevan {
   2133   1.1     sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   2134   1.1     sevan 		rge_patch_phy_mcu(sc, 1);
   2135   1.1     sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   2136   1.1     sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   2137   1.1     sevan 		rge_patch_phy_mcu(sc, 0);
   2138   1.1     sevan 	}
   2139   1.1     sevan }
   2140   1.1     sevan 
   2141   1.1     sevan void
   2142   1.1     sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   2143   1.1     sevan {
   2144   1.1     sevan 	int i;
   2145   1.1     sevan 
   2146   1.1     sevan 	if (set)
   2147   1.1     sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   2148   1.1     sevan 	else
   2149   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   2150   1.1     sevan 
   2151   1.1     sevan 	for (i = 0; i < 1000; i++) {
   2152  1.17  jakllsch 		if ((rge_read_phy_ocp(sc, 0xb800) & 0x0040) == 0x0040)
   2153  1.17  jakllsch 			break;
   2154   1.1     sevan 		DELAY(100);
   2155   1.1     sevan 	}
   2156  1.17  jakllsch 	if (i == 1000) {
   2157  1.17  jakllsch 		DPRINTF(("timeout waiting to patch phy mcu\n"));
   2158  1.17  jakllsch 		return;
   2159  1.17  jakllsch 	}
   2160   1.1     sevan }
   2161   1.1     sevan 
   2162   1.1     sevan void
   2163   1.1     sevan rge_add_media_types(struct rge_softc *sc)
   2164   1.1     sevan {
   2165   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   2166   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   2167   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   2168   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   2169   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   2170   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   2171   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   2172   1.1     sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   2173   1.1     sevan }
   2174   1.1     sevan 
   2175   1.1     sevan void
   2176   1.1     sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   2177   1.1     sevan {
   2178   1.1     sevan 	switch (imtype) {
   2179   1.1     sevan 	case RGE_IMTYPE_NONE:
   2180   1.1     sevan 		sc->rge_intrs = RGE_INTRS;
   2181   1.1     sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   2182   1.1     sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   2183   1.1     sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   2184   1.1     sevan 		break;
   2185   1.1     sevan 	case RGE_IMTYPE_SIM:
   2186   1.1     sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   2187   1.1     sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   2188   1.1     sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   2189   1.1     sevan 		break;
   2190   1.1     sevan 	default:
   2191  1.14     sevan 		panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
   2192   1.1     sevan 	}
   2193   1.1     sevan }
   2194   1.1     sevan 
   2195   1.1     sevan void
   2196  1.17  jakllsch rge_disable_hw_im(struct rge_softc *sc)
   2197  1.17  jakllsch {
   2198  1.17  jakllsch 	RGE_WRITE_2(sc, RGE_IM, 0);
   2199  1.17  jakllsch }
   2200  1.17  jakllsch 
   2201  1.17  jakllsch void
   2202   1.1     sevan rge_disable_sim_im(struct rge_softc *sc)
   2203   1.1     sevan {
   2204  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT0, 0);
   2205   1.1     sevan 	sc->rge_timerintr = 0;
   2206   1.1     sevan }
   2207   1.1     sevan 
   2208   1.1     sevan void
   2209   1.1     sevan rge_setup_sim_im(struct rge_softc *sc)
   2210   1.1     sevan {
   2211  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_TIMERINT0, 0x2600);
   2212   1.1     sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   2213   1.1     sevan 	sc->rge_timerintr = 1;
   2214   1.1     sevan }
   2215   1.1     sevan 
   2216   1.1     sevan void
   2217   1.1     sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   2218   1.1     sevan {
   2219   1.1     sevan 	rge_config_imtype(sc, imtype);
   2220   1.1     sevan 
   2221   1.1     sevan 	/* Enable interrupts. */
   2222   1.1     sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   2223   1.1     sevan 
   2224   1.1     sevan 	switch (imtype) {
   2225   1.1     sevan 	case RGE_IMTYPE_NONE:
   2226   1.1     sevan 		rge_disable_sim_im(sc);
   2227  1.17  jakllsch 		rge_disable_hw_im(sc);
   2228   1.1     sevan 		break;
   2229   1.1     sevan 	case RGE_IMTYPE_SIM:
   2230  1.17  jakllsch 		rge_disable_hw_im(sc);
   2231   1.1     sevan 		rge_setup_sim_im(sc);
   2232   1.1     sevan 		break;
   2233   1.1     sevan 	default:
   2234  1.14     sevan 		panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
   2235   1.1     sevan 	}
   2236   1.1     sevan }
   2237   1.1     sevan 
   2238   1.1     sevan void
   2239   1.1     sevan rge_exit_oob(struct rge_softc *sc)
   2240   1.1     sevan {
   2241   1.1     sevan 	int i;
   2242   1.1     sevan 
   2243   1.1     sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   2244   1.1     sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   2245   1.1     sevan 	    RGE_RXCFG_ERRPKT);
   2246   1.1     sevan 
   2247   1.1     sevan 	/* Disable RealWoW. */
   2248   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   2249   1.1     sevan 
   2250   1.1     sevan 	rge_reset(sc);
   2251   1.1     sevan 
   2252   1.1     sevan 	/* Disable OOB. */
   2253   1.1     sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   2254   1.1     sevan 
   2255   1.1     sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   2256   1.1     sevan 
   2257   1.1     sevan 	for (i = 0; i < 10; i++) {
   2258   1.1     sevan 		DELAY(100);
   2259   1.1     sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   2260   1.1     sevan 			break;
   2261   1.1     sevan 	}
   2262   1.1     sevan 
   2263   1.1     sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   2264  1.17  jakllsch 	rge_write_mac_ocp(sc, 0xc0a6, 0x01b5);
   2265   1.1     sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   2266   1.1     sevan 
   2267   1.1     sevan 	for (i = 0; i < 10; i++) {
   2268   1.1     sevan 		DELAY(100);
   2269   1.1     sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   2270   1.1     sevan 			break;
   2271   1.1     sevan 	}
   2272   1.1     sevan 
   2273   1.1     sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   2274  1.17  jakllsch 		printf("%s: rge_exit_oob(): rtl8125_is_ups_resume!!\n",
   2275  1.17  jakllsch 		    device_xname(sc->sc_dev));
   2276   1.1     sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   2277  1.10     sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
   2278   1.1     sevan 				break;
   2279   1.1     sevan 			DELAY(1000);
   2280   1.1     sevan 		}
   2281   1.1     sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   2282  1.17  jakllsch 		if (sc->rge_type == MAC_CFG4 || sc->rge_type == MAC_CFG5)
   2283  1.17  jakllsch 			RGE_PHY_CLRBIT(sc, 0xa466, 0x0001);
   2284   1.1     sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   2285   1.1     sevan 	}
   2286   1.1     sevan }
   2287   1.1     sevan 
   2288   1.1     sevan void
   2289   1.1     sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   2290   1.1     sevan {
   2291   1.1     sevan 	int i;
   2292   1.1     sevan 
   2293   1.1     sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   2294  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_CSIAR, (reg & RGE_CSIAR_ADDR_MASK) |
   2295   1.1     sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   2296   1.1     sevan 
   2297   1.1     sevan 	for (i = 0; i < 10; i++) {
   2298   1.1     sevan 		 DELAY(100);
   2299   1.1     sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   2300   1.1     sevan 			break;
   2301   1.1     sevan 	}
   2302   1.1     sevan 
   2303   1.1     sevan 	DELAY(20);
   2304   1.1     sevan }
   2305   1.1     sevan 
   2306   1.1     sevan uint32_t
   2307   1.1     sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   2308   1.1     sevan {
   2309   1.1     sevan 	int i;
   2310   1.1     sevan 
   2311  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_CSIAR, (reg & RGE_CSIAR_ADDR_MASK) |
   2312   1.1     sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   2313   1.1     sevan 
   2314   1.1     sevan 	for (i = 0; i < 10; i++) {
   2315   1.1     sevan 		 DELAY(100);
   2316   1.1     sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   2317   1.1     sevan 			break;
   2318   1.1     sevan 	}
   2319   1.1     sevan 
   2320   1.1     sevan 	DELAY(20);
   2321   1.1     sevan 
   2322   1.1     sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   2323   1.1     sevan }
   2324   1.1     sevan 
   2325   1.1     sevan void
   2326   1.1     sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   2327   1.1     sevan {
   2328   1.1     sevan 	uint32_t tmp;
   2329   1.1     sevan 
   2330   1.1     sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   2331   1.1     sevan 	tmp += val;
   2332   1.1     sevan 	tmp |= RGE_MACOCP_BUSY;
   2333   1.1     sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   2334   1.1     sevan }
   2335   1.1     sevan 
   2336   1.1     sevan uint16_t
   2337   1.1     sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   2338   1.1     sevan {
   2339   1.1     sevan 	uint32_t val;
   2340   1.1     sevan 
   2341   1.1     sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   2342   1.1     sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   2343   1.1     sevan 
   2344   1.1     sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   2345   1.1     sevan }
   2346   1.1     sevan 
   2347   1.1     sevan void
   2348   1.1     sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   2349   1.1     sevan {
   2350   1.1     sevan 	uint32_t tmp;
   2351   1.1     sevan 	int i;
   2352   1.1     sevan 
   2353   1.1     sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   2354   1.1     sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   2355   1.1     sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   2356   1.1     sevan 
   2357   1.1     sevan 	for (i = 0; i < 10; i++) {
   2358   1.1     sevan 		DELAY(100);
   2359   1.1     sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   2360   1.1     sevan 			break;
   2361   1.1     sevan 	}
   2362   1.1     sevan 
   2363   1.1     sevan 	DELAY(20);
   2364   1.1     sevan }
   2365   1.1     sevan 
   2366  1.17  jakllsch uint16_t
   2367  1.17  jakllsch rge_read_ephy(struct rge_softc *sc, uint16_t reg)
   2368  1.17  jakllsch {
   2369  1.17  jakllsch 	uint32_t val;
   2370  1.17  jakllsch 	int i;
   2371  1.17  jakllsch 
   2372  1.17  jakllsch 	val = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   2373  1.17  jakllsch 	RGE_WRITE_4(sc, RGE_EPHYAR, val);
   2374  1.17  jakllsch 
   2375  1.17  jakllsch 	for (i = 0; i < 10; i++) {
   2376  1.17  jakllsch 		DELAY(100);
   2377  1.17  jakllsch 		val = RGE_READ_4(sc, RGE_EPHYAR);
   2378  1.17  jakllsch 		if (val & RGE_EPHYAR_BUSY)
   2379  1.17  jakllsch 			break;
   2380  1.17  jakllsch 	}
   2381  1.17  jakllsch 
   2382  1.17  jakllsch 	DELAY(20);
   2383  1.17  jakllsch 
   2384  1.17  jakllsch 	return (val & RGE_EPHYAR_DATA_MASK);
   2385  1.17  jakllsch }
   2386  1.17  jakllsch 
   2387   1.1     sevan void
   2388   1.1     sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   2389   1.1     sevan {
   2390   1.1     sevan 	uint16_t off, phyaddr;
   2391   1.1     sevan 
   2392   1.1     sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   2393   1.1     sevan 	phyaddr <<= 4;
   2394   1.1     sevan 
   2395   1.1     sevan 	off = addr ? reg : 0x10 + (reg % 8);
   2396   1.1     sevan 
   2397   1.1     sevan 	phyaddr += (off - 16) << 1;
   2398   1.1     sevan 
   2399   1.1     sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   2400   1.1     sevan }
   2401   1.1     sevan 
   2402  1.17  jakllsch uint16_t
   2403  1.17  jakllsch rge_read_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg)
   2404  1.17  jakllsch {
   2405  1.17  jakllsch 	uint16_t off, phyaddr;
   2406  1.17  jakllsch 
   2407  1.17  jakllsch 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   2408  1.17  jakllsch 	phyaddr <<= 4;
   2409  1.17  jakllsch 
   2410  1.17  jakllsch 	off = addr ? reg : 0x10 + (reg % 8);
   2411  1.17  jakllsch 
   2412  1.17  jakllsch 	phyaddr += (off - 16) << 1;
   2413  1.17  jakllsch 
   2414  1.17  jakllsch 	return (rge_read_phy_ocp(sc, phyaddr));
   2415  1.17  jakllsch }
   2416  1.17  jakllsch 
   2417   1.1     sevan void
   2418   1.1     sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   2419   1.1     sevan {
   2420   1.1     sevan 	uint32_t tmp;
   2421   1.1     sevan 	int i;
   2422   1.1     sevan 
   2423   1.1     sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2424   1.1     sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   2425   1.1     sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   2426   1.1     sevan 
   2427   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2428   1.1     sevan 		DELAY(1);
   2429   1.1     sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   2430   1.1     sevan 			break;
   2431   1.1     sevan 	}
   2432   1.1     sevan }
   2433   1.1     sevan 
   2434   1.1     sevan uint16_t
   2435   1.1     sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   2436   1.1     sevan {
   2437   1.1     sevan 	uint32_t val;
   2438   1.1     sevan 	int i;
   2439   1.1     sevan 
   2440   1.1     sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2441   1.1     sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   2442   1.1     sevan 
   2443   1.1     sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2444   1.1     sevan 		DELAY(1);
   2445   1.1     sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   2446   1.1     sevan 		if (val & RGE_PHYOCP_BUSY)
   2447   1.1     sevan 			break;
   2448   1.1     sevan 	}
   2449   1.1     sevan 
   2450   1.1     sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   2451   1.1     sevan }
   2452   1.1     sevan 
   2453   1.1     sevan int
   2454   1.1     sevan rge_get_link_status(struct rge_softc *sc)
   2455   1.1     sevan {
   2456   1.1     sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2457   1.1     sevan }
   2458   1.1     sevan 
   2459   1.1     sevan void
   2460   1.3     sevan rge_txstart(struct work *wk, void *arg)
   2461   1.1     sevan {
   2462   1.1     sevan 	struct rge_softc *sc = arg;
   2463   1.1     sevan 
   2464   1.1     sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2465   1.1     sevan }
   2466   1.1     sevan 
   2467   1.1     sevan void
   2468   1.1     sevan rge_tick(void *arg)
   2469   1.1     sevan {
   2470   1.1     sevan 	struct rge_softc *sc = arg;
   2471   1.1     sevan 	int s;
   2472   1.1     sevan 
   2473   1.1     sevan 	s = splnet();
   2474   1.1     sevan 	rge_link_state(sc);
   2475   1.1     sevan 	splx(s);
   2476   1.1     sevan 
   2477  1.17  jakllsch 	callout_schedule(&sc->sc_timeout, hz);
   2478   1.1     sevan }
   2479   1.1     sevan 
   2480   1.1     sevan void
   2481   1.1     sevan rge_link_state(struct rge_softc *sc)
   2482   1.1     sevan {
   2483   1.2     sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2484   1.1     sevan 	int link = LINK_STATE_DOWN;
   2485   1.1     sevan 
   2486   1.1     sevan 	if (rge_get_link_status(sc))
   2487   1.1     sevan 		link = LINK_STATE_UP;
   2488   1.1     sevan 
   2489  1.17  jakllsch 	if (ifp->if_link_state != link) { /* XXX not safe to access */
   2490  1.17  jakllsch 		if_link_state_change(ifp, link);
   2491   1.1     sevan 	}
   2492   1.1     sevan }
   2493