Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.2
      1  1.1  sevan /*	$NetBSD: if_rge.c,v 1.2 2020/01/11 21:05:45 sevan Exp $	*/
      2  1.1  sevan /*	$OpenBSD: if_rge.c,v 1.2 2020/01/02 09:00:45 kevlo Exp $	*/
      3  1.1  sevan 
      4  1.1  sevan /*
      5  1.1  sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6  1.1  sevan  *
      7  1.1  sevan  * Permission to use, copy, modify, and distribute this software for any
      8  1.1  sevan  * purpose with or without fee is hereby granted, provided that the above
      9  1.1  sevan  * copyright notice and this permission notice appear in all copies.
     10  1.1  sevan  *
     11  1.1  sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  1.1  sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  1.1  sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  1.1  sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  1.1  sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  1.1  sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  1.1  sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  1.1  sevan  */
     19  1.1  sevan 
     20  1.2  sevan #include <sys/cdefs.h>
     21  1.2  sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.2 2020/01/11 21:05:45 sevan Exp $");
     22  1.2  sevan 
     23  1.2  sevan /* #include "bpfilter.h" Sevan */
     24  1.2  sevan /* #include "vlan.h" Sevan */
     25  1.2  sevan 
     26  1.2  sevan #include <sys/types.h>
     27  1.1  sevan 
     28  1.1  sevan #include <sys/param.h>
     29  1.1  sevan #include <sys/systm.h>
     30  1.1  sevan #include <sys/sockio.h>
     31  1.1  sevan #include <sys/mbuf.h>
     32  1.1  sevan #include <sys/malloc.h>
     33  1.1  sevan #include <sys/kernel.h>
     34  1.1  sevan #include <sys/socket.h>
     35  1.1  sevan #include <sys/device.h>
     36  1.1  sevan #include <sys/endian.h>
     37  1.1  sevan 
     38  1.1  sevan #include <net/if.h>
     39  1.2  sevan 
     40  1.2  sevan #include <net/if_dl.h>
     41  1.2  sevan #include <net/if_ether.h>
     42  1.2  sevan 
     43  1.1  sevan #include <net/if_media.h>
     44  1.1  sevan 
     45  1.1  sevan #include <netinet/in.h>
     46  1.2  sevan #include <net/if_ether.h>
     47  1.1  sevan 
     48  1.1  sevan #if NBPFILTER > 0
     49  1.1  sevan #include <net/bpf.h>
     50  1.1  sevan #endif
     51  1.1  sevan 
     52  1.2  sevan #include <sys/bus.h>
     53  1.1  sevan #include <machine/intr.h>
     54  1.1  sevan 
     55  1.1  sevan #include <dev/mii/mii.h>
     56  1.1  sevan 
     57  1.1  sevan #include <dev/pci/pcivar.h>
     58  1.1  sevan #include <dev/pci/pcireg.h>
     59  1.1  sevan #include <dev/pci/pcidevs.h>
     60  1.1  sevan 
     61  1.1  sevan #include <dev/pci/if_rgereg.h>
     62  1.1  sevan 
     63  1.2  sevan #ifdef __NetBSD__
     64  1.2  sevan #define letoh32 	htole32
     65  1.2  sevan #define nitems(x) 	__arraycount(x)
     66  1.2  sevan #define MBUF_LIST_INITIALIZER() 	{ NULL, NULL, 0 }
     67  1.2  sevan struct mbuf_list {
     68  1.2  sevan 	struct mbuf 	*ml_head;
     69  1.2  sevan 	struct mbuf 	*ml_tail;
     70  1.2  sevan 	u_int 	ml_len;
     71  1.2  sevan };
     72  1.2  sevan #endif
     73  1.2  sevan 
     74  1.2  sevan static int		rge_match(device_t, cfdata_t, void *);
     75  1.2  sevan static void		rge_attach(device_t, device_t, void *);
     76  1.1  sevan int		rge_intr(void *);
     77  1.1  sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
     78  1.2  sevan int		rge_ioctl(struct ifnet *, u_long, void *);
     79  1.2  sevan void		rge_start(struct ifnet *);
     80  1.1  sevan void		rge_watchdog(struct ifnet *);
     81  1.1  sevan int		rge_init(struct ifnet *);
     82  1.1  sevan void		rge_stop(struct ifnet *);
     83  1.1  sevan int		rge_ifmedia_upd(struct ifnet *);
     84  1.1  sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
     85  1.1  sevan int		rge_allocmem(struct rge_softc *);
     86  1.1  sevan int		rge_newbuf(struct rge_softc *, int);
     87  1.1  sevan void		rge_discard_rxbuf(struct rge_softc *, int);
     88  1.1  sevan int		rge_rx_list_init(struct rge_softc *);
     89  1.1  sevan void		rge_tx_list_init(struct rge_softc *);
     90  1.1  sevan int		rge_rxeof(struct rge_softc *);
     91  1.1  sevan int		rge_txeof(struct rge_softc *);
     92  1.1  sevan void		rge_reset(struct rge_softc *);
     93  1.1  sevan void		rge_iff(struct rge_softc *);
     94  1.1  sevan void		rge_set_phy_power(struct rge_softc *, int);
     95  1.1  sevan void		rge_phy_config(struct rge_softc *);
     96  1.1  sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
     97  1.1  sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
     98  1.1  sevan void		rge_hw_init(struct rge_softc *);
     99  1.1  sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    100  1.1  sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    101  1.1  sevan void		rge_add_media_types(struct rge_softc *);
    102  1.1  sevan void		rge_config_imtype(struct rge_softc *, int);
    103  1.1  sevan void		rge_disable_sim_im(struct rge_softc *);
    104  1.1  sevan void		rge_setup_sim_im(struct rge_softc *);
    105  1.1  sevan void		rge_setup_intr(struct rge_softc *, int);
    106  1.1  sevan void		rge_exit_oob(struct rge_softc *);
    107  1.1  sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    108  1.1  sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    109  1.1  sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    110  1.1  sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    111  1.1  sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    112  1.1  sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    113  1.1  sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    114  1.1  sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    115  1.1  sevan int		rge_get_link_status(struct rge_softc *);
    116  1.1  sevan void		rge_txstart(void *);
    117  1.1  sevan void		rge_tick(void *);
    118  1.1  sevan void		rge_link_state(struct rge_softc *);
    119  1.1  sevan 
    120  1.1  sevan static const struct {
    121  1.1  sevan 	uint16_t reg;
    122  1.1  sevan 	uint16_t val;
    123  1.1  sevan }  rtl8125_def_bps[] = {
    124  1.1  sevan 	RTL8125_DEF_BPS
    125  1.1  sevan }, rtl8125_mac_cfg2_ephy[] = {
    126  1.1  sevan 	RTL8125_MAC_CFG2_EPHY
    127  1.1  sevan }, rtl8125_mac_cfg2_mcu[] = {
    128  1.1  sevan 	RTL8125_MAC_CFG2_MCU
    129  1.1  sevan }, rtl8125_mac_cfg3_ephy[] = {
    130  1.1  sevan 	RTL8125_MAC_CFG3_EPHY
    131  1.1  sevan }, rtl8125_mac_cfg3_mcu[] = {
    132  1.1  sevan 	RTL8125_MAC_CFG3_MCU
    133  1.1  sevan };
    134  1.1  sevan 
    135  1.2  sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    136  1.2  sevan 		NULL, NULL); /* Sevan - detach function? */
    137  1.1  sevan 
    138  1.2  sevan extern struct cfdriver rge_cd;
    139  1.1  sevan 
    140  1.2  sevan static const struct {
    141  1.2  sevan 	pci_vendor_id_t 	vendor;
    142  1.2  sevan 	pci_product_id_t 	product;
    143  1.2  sevan }rge_devices[] = {
    144  1.1  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    145  1.2  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    146  1.1  sevan };
    147  1.1  sevan 
    148  1.2  sevan static int
    149  1.2  sevan rge_match(device_t parent, cfdata_t match, void *aux)
    150  1.1  sevan {
    151  1.2  sevan 	struct pci_attach_args *pa =aux;
    152  1.2  sevan 	int n;
    153  1.2  sevan 
    154  1.2  sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    155  1.2  sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    156  1.2  sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    157  1.2  sevan 			return 1;
    158  1.2  sevan 	}
    159  1.2  sevan 
    160  1.2  sevan 	return 0;
    161  1.1  sevan }
    162  1.1  sevan 
    163  1.1  sevan void
    164  1.2  sevan rge_attach(device_t parent, device_t self, void *aux)
    165  1.1  sevan {
    166  1.1  sevan 	struct rge_softc *sc = (struct rge_softc *)self;
    167  1.1  sevan 	struct pci_attach_args *pa = aux;
    168  1.1  sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    169  1.1  sevan 	pci_intr_handle_t ih;
    170  1.2  sevan 	char intrbuf[PCI_INTRSTR_LEN];
    171  1.1  sevan 	const char *intrstr = NULL;
    172  1.1  sevan 	struct ifnet *ifp;
    173  1.1  sevan 	pcireg_t reg;
    174  1.1  sevan 	uint32_t hwrev;
    175  1.1  sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    176  1.1  sevan 	int offset;
    177  1.1  sevan 
    178  1.1  sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    179  1.1  sevan 
    180  1.1  sevan 	/*
    181  1.1  sevan 	 * Map control/status registers.
    182  1.1  sevan 	 */
    183  1.1  sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    184  1.1  sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    185  1.2  sevan 	    NULL, &sc->rge_bsize)) {
    186  1.1  sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    187  1.1  sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    188  1.2  sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    189  1.1  sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    190  1.1  sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    191  1.2  sevan 			    &sc->rge_bsize)) {
    192  1.1  sevan 				printf(": can't map mem or i/o space\n");
    193  1.1  sevan 				return;
    194  1.1  sevan 			}
    195  1.1  sevan 		}
    196  1.1  sevan 	}
    197  1.1  sevan 
    198  1.1  sevan 	/*
    199  1.1  sevan 	 * Allocate interrupt.
    200  1.1  sevan 	 */
    201  1.2  sevan 	if (pci_intr_map(pa, &ih) == 0)
    202  1.1  sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    203  1.1  sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    204  1.1  sevan 		printf(": couldn't map interrupt\n");
    205  1.1  sevan 		return;
    206  1.1  sevan 	}
    207  1.2  sevan 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    208  1.2  sevan 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
    209  1.1  sevan 	    sc, sc->sc_dev.dv_xname);
    210  1.1  sevan 	if (sc->sc_ih == NULL) {
    211  1.1  sevan 		printf(": couldn't establish interrupt");
    212  1.1  sevan 		if (intrstr != NULL)
    213  1.1  sevan 			printf(" at %s", intrstr);
    214  1.1  sevan 		printf("\n");
    215  1.1  sevan 		return;
    216  1.1  sevan 	}
    217  1.1  sevan 	printf(": %s", intrstr);
    218  1.1  sevan 
    219  1.1  sevan 	sc->sc_dmat = pa->pa_dmat;
    220  1.1  sevan 	sc->sc_pc = pa->pa_pc;
    221  1.1  sevan 	sc->sc_tag = pa->pa_tag;
    222  1.1  sevan 
    223  1.1  sevan 	/* Determine hardware revision */
    224  1.1  sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    225  1.1  sevan 	switch (hwrev) {
    226  1.1  sevan 	case 0x60800000:
    227  1.1  sevan 		sc->rge_type = MAC_CFG2;
    228  1.1  sevan 		break;
    229  1.1  sevan 	case 0x60900000:
    230  1.1  sevan 		sc->rge_type = MAC_CFG3;
    231  1.1  sevan 		break;
    232  1.1  sevan 	default:
    233  1.1  sevan 		printf(": unknown version 0x%08x\n", hwrev);
    234  1.1  sevan 		return;
    235  1.1  sevan 	}
    236  1.1  sevan 
    237  1.1  sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    238  1.1  sevan 
    239  1.1  sevan 	/*
    240  1.1  sevan 	 * PCI Express check.
    241  1.1  sevan 	 */
    242  1.1  sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    243  1.1  sevan 	    &offset, NULL)) {
    244  1.2  sevan 		/* Disable PCIe ASPM. */
    245  1.1  sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    246  1.2  sevan 		    offset + PCIE_LCSR);
    247  1.2  sevan 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
    248  1.2  sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    249  1.1  sevan 		    reg);
    250  1.1  sevan 	}
    251  1.1  sevan 
    252  1.1  sevan 	rge_exit_oob(sc);
    253  1.1  sevan 	rge_hw_init(sc);
    254  1.1  sevan 
    255  1.1  sevan 	rge_get_macaddr(sc, eaddr);
    256  1.1  sevan 	printf(", address %s\n", ether_sprintf(eaddr));
    257  1.1  sevan 
    258  1.2  sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    259  1.1  sevan 
    260  1.1  sevan 	rge_set_phy_power(sc, 1);
    261  1.1  sevan 	rge_phy_config(sc);
    262  1.1  sevan 
    263  1.1  sevan 	if (rge_allocmem(sc))
    264  1.1  sevan 		return;
    265  1.1  sevan 
    266  1.2  sevan 	ifp = &sc->sc_ec.ec_if;
    267  1.1  sevan 	ifp->if_softc = sc;
    268  1.1  sevan 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    269  1.1  sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    270  1.2  sevan #ifdef RGE_MPSAFE
    271  1.2  sevan 	ifp->if_xflags = IFEF_MPSAFE;
    272  1.2  sevan #endif
    273  1.1  sevan 	ifp->if_ioctl = rge_ioctl;
    274  1.2  sevan 	ifp->if_start = rge_start;
    275  1.1  sevan 	ifp->if_watchdog = rge_watchdog;
    276  1.1  sevan 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
    277  1.2  sevan 	ifp->if_mtu = RGE_JUMBO_MTU;
    278  1.1  sevan 
    279  1.2  sevan 	ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
    280  1.2  sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    281  1.2  sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    282  1.1  sevan 
    283  1.1  sevan #if NVLAN > 0
    284  1.1  sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    285  1.1  sevan #endif
    286  1.1  sevan 
    287  1.1  sevan 	timeout_set(&sc->sc_timeout, rge_tick, sc);
    288  1.1  sevan 	task_set(&sc->sc_task, rge_txstart, sc);
    289  1.1  sevan 
    290  1.1  sevan 	/* Initialize ifmedia structures. */
    291  1.1  sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    292  1.1  sevan 	    rge_ifmedia_sts);
    293  1.1  sevan 	rge_add_media_types(sc);
    294  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    295  1.1  sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    296  1.1  sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    297  1.1  sevan 
    298  1.1  sevan 	if_attach(ifp);
    299  1.2  sevan 	ether_ifattach(ifp, eaddr);
    300  1.1  sevan }
    301  1.1  sevan 
    302  1.1  sevan int
    303  1.1  sevan rge_intr(void *arg)
    304  1.1  sevan {
    305  1.1  sevan 	struct rge_softc *sc = arg;
    306  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    307  1.1  sevan 	uint32_t status;
    308  1.1  sevan 	int claimed = 0, rx, tx;
    309  1.1  sevan 
    310  1.1  sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    311  1.1  sevan 		return (0);
    312  1.1  sevan 
    313  1.1  sevan 	/* Disable interrupts. */
    314  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    315  1.1  sevan 
    316  1.1  sevan 	status = RGE_READ_4(sc, RGE_ISR);
    317  1.1  sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    318  1.1  sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    319  1.1  sevan 			return (0);
    320  1.1  sevan 	}
    321  1.1  sevan 	if (status)
    322  1.1  sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    323  1.1  sevan 
    324  1.1  sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    325  1.1  sevan 		claimed = 1;
    326  1.1  sevan 
    327  1.1  sevan 	rx = tx = 0;
    328  1.1  sevan 	if (status & RGE_INTRS) {
    329  1.1  sevan 		if (status &
    330  1.1  sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    331  1.1  sevan 			rx |= rge_rxeof(sc);
    332  1.1  sevan 			claimed = 1;
    333  1.1  sevan 		}
    334  1.1  sevan 
    335  1.1  sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    336  1.1  sevan 			tx |= rge_txeof(sc);
    337  1.1  sevan 			claimed = 1;
    338  1.1  sevan 		}
    339  1.1  sevan 
    340  1.1  sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    341  1.2  sevan 			KERNEL_LOCK(1, NULL);
    342  1.1  sevan 			rge_init(ifp);
    343  1.2  sevan 			KERNEL_UNLOCK_ONE(NULL);
    344  1.1  sevan 			claimed = 1;
    345  1.1  sevan 		}
    346  1.1  sevan 	}
    347  1.1  sevan 
    348  1.1  sevan 	if (sc->rge_timerintr) {
    349  1.1  sevan 		if ((tx | rx) == 0) {
    350  1.1  sevan 			/*
    351  1.1  sevan 			 * Nothing needs to be processed, fallback
    352  1.1  sevan 			 * to use TX/RX interrupts.
    353  1.1  sevan 			 */
    354  1.1  sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    355  1.1  sevan 
    356  1.1  sevan 			/*
    357  1.1  sevan 			 * Recollect, mainly to avoid the possible
    358  1.1  sevan 			 * race introduced by changing interrupt
    359  1.1  sevan 			 * masks.
    360  1.1  sevan 			 */
    361  1.1  sevan 			rge_rxeof(sc);
    362  1.1  sevan 			rge_txeof(sc);
    363  1.1  sevan 		} else
    364  1.1  sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    365  1.1  sevan 	} else if (tx | rx) {
    366  1.1  sevan 		/*
    367  1.1  sevan 		 * Assume that using simulated interrupt moderation
    368  1.1  sevan 		 * (hardware timer based) could reduce the interrupt
    369  1.1  sevan 		 * rate.
    370  1.1  sevan 		 */
    371  1.1  sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    372  1.1  sevan 	}
    373  1.1  sevan 
    374  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    375  1.1  sevan 
    376  1.1  sevan 	return (claimed);
    377  1.1  sevan }
    378  1.1  sevan 
    379  1.1  sevan int
    380  1.1  sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    381  1.1  sevan {
    382  1.1  sevan 	struct rge_tx_desc *d = NULL;
    383  1.1  sevan 	struct rge_txq *txq;
    384  1.1  sevan 	bus_dmamap_t txmap;
    385  1.1  sevan 	uint32_t cmdsts, cflags = 0;
    386  1.1  sevan 	int cur, error, i, last, nsegs;
    387  1.1  sevan 
    388  1.1  sevan 	/*
    389  1.1  sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    390  1.1  sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    391  1.1  sevan 	 * take affect.
    392  1.1  sevan 	 */
    393  1.1  sevan 	if ((m->m_pkthdr.csum_flags &
    394  1.2  sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    395  1.1  sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    396  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    397  1.1  sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    398  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    399  1.1  sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    400  1.1  sevan 	}
    401  1.1  sevan 
    402  1.1  sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    403  1.1  sevan 	txmap = txq->txq_dmamap;
    404  1.1  sevan 
    405  1.1  sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    406  1.1  sevan 	switch (error) {
    407  1.1  sevan 	case 0:
    408  1.1  sevan 		break;
    409  1.1  sevan 	case EFBIG: /* mbuf chain is too fragmented */
    410  1.1  sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    411  1.1  sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    412  1.1  sevan 		    BUS_DMA_NOWAIT) == 0)
    413  1.1  sevan 			break;
    414  1.1  sevan 
    415  1.1  sevan 		/* FALLTHROUGH */
    416  1.1  sevan 	default:
    417  1.1  sevan 		return (0);
    418  1.1  sevan 	}
    419  1.1  sevan 
    420  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    421  1.1  sevan 	    BUS_DMASYNC_PREWRITE);
    422  1.1  sevan 
    423  1.1  sevan 	nsegs = txmap->dm_nsegs;
    424  1.1  sevan 
    425  1.1  sevan 	/* Set up hardware VLAN tagging. */
    426  1.1  sevan #if NVLAN > 0
    427  1.1  sevan 	if (m->m_flags & M_VLANTAG)
    428  1.1  sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    429  1.1  sevan #endif
    430  1.1  sevan 
    431  1.1  sevan 	cur = idx;
    432  1.1  sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    433  1.1  sevan 
    434  1.1  sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    435  1.1  sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    436  1.1  sevan 
    437  1.1  sevan 		d->rge_extsts = htole32(cflags);
    438  1.1  sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    439  1.1  sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    440  1.1  sevan 
    441  1.1  sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    442  1.1  sevan 
    443  1.1  sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    444  1.1  sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    445  1.1  sevan 
    446  1.1  sevan 		d->rge_cmdsts = htole32(cmdsts);
    447  1.1  sevan 
    448  1.1  sevan 		last = cur;
    449  1.1  sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    450  1.1  sevan 		cur = RGE_NEXT_TX_DESC(cur);
    451  1.1  sevan 	}
    452  1.1  sevan 
    453  1.1  sevan 	/* Set EOF on the last descriptor. */
    454  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    455  1.1  sevan 
    456  1.1  sevan 	/* Transfer ownership of packet to the chip. */
    457  1.1  sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    458  1.1  sevan 
    459  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    460  1.1  sevan 
    461  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    462  1.1  sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    463  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    464  1.1  sevan 
    465  1.1  sevan 	/* Update info of TX queue and descriptors. */
    466  1.1  sevan 	txq->txq_mbuf = m;
    467  1.1  sevan 	txq->txq_descidx = last;
    468  1.1  sevan 
    469  1.1  sevan 	return (nsegs);
    470  1.1  sevan }
    471  1.1  sevan 
    472  1.1  sevan int
    473  1.2  sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    474  1.1  sevan {
    475  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    476  1.1  sevan 	struct ifreq *ifr = (struct ifreq *)data;
    477  1.1  sevan 	int s, error = 0;
    478  1.1  sevan 
    479  1.1  sevan 	s = splnet();
    480  1.1  sevan 
    481  1.1  sevan 	switch (cmd) {
    482  1.1  sevan 	case SIOCSIFADDR:
    483  1.1  sevan 		ifp->if_flags |= IFF_UP;
    484  1.1  sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    485  1.1  sevan 			rge_init(ifp);
    486  1.1  sevan 		break;
    487  1.1  sevan 	case SIOCSIFFLAGS:
    488  1.1  sevan 		if (ifp->if_flags & IFF_UP) {
    489  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    490  1.1  sevan 				error = ENETRESET;
    491  1.1  sevan 			else
    492  1.1  sevan 				rge_init(ifp);
    493  1.1  sevan 		} else {
    494  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    495  1.1  sevan 				rge_stop(ifp);
    496  1.1  sevan 		}
    497  1.1  sevan 		break;
    498  1.1  sevan 	case SIOCGIFMEDIA:
    499  1.1  sevan 	case SIOCSIFMEDIA:
    500  1.1  sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    501  1.1  sevan 		break;
    502  1.1  sevan 	case SIOCSIFMTU:
    503  1.2  sevan 		if (ifr->ifr_mtu > ifp->if_mtu) {
    504  1.1  sevan 			error = EINVAL;
    505  1.1  sevan 			break;
    506  1.1  sevan 		}
    507  1.1  sevan 		ifp->if_mtu = ifr->ifr_mtu;
    508  1.1  sevan 		break;
    509  1.1  sevan 	default:
    510  1.2  sevan 		error = ether_ioctl(ifp, cmd, data);
    511  1.1  sevan 	}
    512  1.1  sevan 
    513  1.1  sevan 	if (error == ENETRESET) {
    514  1.1  sevan 		if (ifp->if_flags & IFF_RUNNING)
    515  1.1  sevan 			rge_iff(sc);
    516  1.1  sevan 		error = 0;
    517  1.1  sevan 	}
    518  1.1  sevan 
    519  1.1  sevan 	splx(s);
    520  1.1  sevan 	return (error);
    521  1.1  sevan }
    522  1.1  sevan 
    523  1.1  sevan void
    524  1.2  sevan rge_start(struct ifnet *ifq)
    525  1.1  sevan {
    526  1.1  sevan 	struct ifnet *ifp = ifq->ifq_if;
    527  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    528  1.1  sevan 	struct mbuf *m;
    529  1.1  sevan 	int free, idx, used;
    530  1.1  sevan 	int queued = 0;
    531  1.1  sevan 
    532  1.2  sevan #define LINK_STATE_IS_UP(_s)    \
    533  1.2  sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    534  1.2  sevan 
    535  1.1  sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    536  1.1  sevan 		ifq_purge(ifq);
    537  1.1  sevan 		return;
    538  1.1  sevan 	}
    539  1.1  sevan 
    540  1.1  sevan 	/* Calculate free space. */
    541  1.1  sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    542  1.1  sevan 	free = sc->rge_ldata.rge_txq_considx;
    543  1.1  sevan 	if (free <= idx)
    544  1.1  sevan 		free += RGE_TX_LIST_CNT;
    545  1.1  sevan 	free -= idx;
    546  1.1  sevan 
    547  1.1  sevan 	for (;;) {
    548  1.1  sevan 		if (RGE_TX_NSEGS >= free + 2) {
    549  1.1  sevan 			ifq_set_oactive(&ifp->if_snd);
    550  1.1  sevan 			break;
    551  1.1  sevan 		}
    552  1.1  sevan 
    553  1.1  sevan 		m = ifq_dequeue(ifq);
    554  1.1  sevan 		if (m == NULL)
    555  1.1  sevan 			break;
    556  1.1  sevan 
    557  1.1  sevan 		used = rge_encap(sc, m, idx);
    558  1.1  sevan 		if (used == 0) {
    559  1.1  sevan 			m_freem(m);
    560  1.1  sevan 			continue;
    561  1.1  sevan 		}
    562  1.1  sevan 
    563  1.1  sevan 		KASSERT(used <= free);
    564  1.1  sevan 		free -= used;
    565  1.1  sevan 
    566  1.1  sevan #if NBPFILTER > 0
    567  1.1  sevan 		if (ifp->if_bpf)
    568  1.1  sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    569  1.1  sevan #endif
    570  1.1  sevan 
    571  1.1  sevan 		idx += used;
    572  1.1  sevan 		if (idx >= RGE_TX_LIST_CNT)
    573  1.1  sevan 			idx -= RGE_TX_LIST_CNT;
    574  1.1  sevan 
    575  1.1  sevan 		queued++;
    576  1.1  sevan 	}
    577  1.1  sevan 
    578  1.1  sevan 	if (queued == 0)
    579  1.1  sevan 		return;
    580  1.1  sevan 
    581  1.1  sevan 	/* Set a timeout in case the chip goes out to lunch. */
    582  1.1  sevan 	ifp->if_timer = 5;
    583  1.1  sevan 
    584  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    585  1.1  sevan 	ifq_serialize(ifq, &sc->sc_task);
    586  1.1  sevan }
    587  1.1  sevan 
    588  1.1  sevan void
    589  1.1  sevan rge_watchdog(struct ifnet *ifp)
    590  1.1  sevan {
    591  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    592  1.1  sevan 
    593  1.1  sevan 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
    594  1.1  sevan 	ifp->if_oerrors++;
    595  1.1  sevan 
    596  1.1  sevan 	rge_init(ifp);
    597  1.1  sevan }
    598  1.1  sevan 
    599  1.1  sevan int
    600  1.1  sevan rge_init(struct ifnet *ifp)
    601  1.1  sevan {
    602  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    603  1.1  sevan 	uint32_t val;
    604  1.1  sevan 	uint16_t max_frame_size;
    605  1.1  sevan 	int i;
    606  1.1  sevan 
    607  1.1  sevan 	rge_stop(ifp);
    608  1.1  sevan 
    609  1.1  sevan 	/* Set MAC address. */
    610  1.2  sevan 	rge_set_macaddr(sc, sc->sc_enaddr);
    611  1.1  sevan 
    612  1.1  sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    613  1.1  sevan 	if (ifp->if_mtu < ETHERMTU)
    614  1.1  sevan 		max_frame_size = ETHERMTU;
    615  1.1  sevan 	else
    616  1.1  sevan 		max_frame_size = ifp->if_mtu;
    617  1.1  sevan 
    618  1.1  sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    619  1.1  sevan 	    ETHER_CRC_LEN + 1;
    620  1.1  sevan 
    621  1.1  sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    622  1.1  sevan 		max_frame_size -= 1;
    623  1.1  sevan 
    624  1.1  sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    625  1.1  sevan 
    626  1.1  sevan 	/* Initialize RX descriptors list. */
    627  1.1  sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    628  1.1  sevan 		printf("%s: init failed: no memory for RX buffers\n",
    629  1.1  sevan 		    sc->sc_dev.dv_xname);
    630  1.1  sevan 		rge_stop(ifp);
    631  1.1  sevan 		return (ENOBUFS);
    632  1.1  sevan 	}
    633  1.1  sevan 
    634  1.1  sevan 	/* Initialize TX descriptors. */
    635  1.1  sevan 	rge_tx_list_init(sc);
    636  1.1  sevan 
    637  1.1  sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    638  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    639  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    640  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    641  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    642  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    643  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    644  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    645  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    646  1.1  sevan 
    647  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    648  1.1  sevan 
    649  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    650  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    651  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    652  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    653  1.1  sevan 
    654  1.1  sevan 	/* Clear interrupt moderation timer. */
    655  1.1  sevan 	for (i = 0; i < 64; i++)
    656  1.1  sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    657  1.1  sevan 
    658  1.1  sevan 	/* Set the initial RX and TX configurations. */
    659  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    660  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    661  1.1  sevan 
    662  1.1  sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    663  1.1  sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    664  1.1  sevan 
    665  1.1  sevan 	/* Enable hardware optimization function. */
    666  1.1  sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    667  1.1  sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    668  1.1  sevan 
    669  1.1  sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    670  1.1  sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    671  1.1  sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    672  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    673  1.1  sevan 
    674  1.1  sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    675  1.1  sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    676  1.1  sevan 
    677  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    678  1.1  sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    679  1.1  sevan 
    680  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    681  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    682  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    683  1.1  sevan 
    684  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    685  1.1  sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    686  1.1  sevan 
    687  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    688  1.1  sevan 
    689  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    690  1.1  sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    691  1.1  sevan 
    692  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    693  1.1  sevan 
    694  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    695  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    696  1.1  sevan 
    697  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    698  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    699  1.1  sevan 
    700  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    701  1.1  sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    702  1.1  sevan 
    703  1.1  sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    704  1.1  sevan 
    705  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    706  1.1  sevan 
    707  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    708  1.1  sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    709  1.1  sevan 
    710  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    711  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    712  1.1  sevan 
    713  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    714  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    715  1.1  sevan 
    716  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    717  1.1  sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    718  1.1  sevan 
    719  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    720  1.1  sevan 
    721  1.1  sevan 	/* Disable EEE plus. */
    722  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    723  1.1  sevan 
    724  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    725  1.1  sevan 
    726  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    727  1.1  sevan 	DELAY(1);
    728  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    729  1.1  sevan 
    730  1.1  sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    731  1.1  sevan 
    732  1.1  sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    733  1.1  sevan 
    734  1.2  sevan 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
    735  1.1  sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    736  1.1  sevan 
    737  1.1  sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    738  1.1  sevan 
    739  1.1  sevan 	for (i = 0; i < 10; i++) {
    740  1.1  sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    741  1.1  sevan 			break;
    742  1.1  sevan 		DELAY(1000);
    743  1.1  sevan 	}
    744  1.1  sevan 
    745  1.1  sevan 	/* Disable RXDV gate. */
    746  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    747  1.1  sevan 	DELAY(2000);
    748  1.1  sevan 
    749  1.1  sevan 	rge_ifmedia_upd(ifp);
    750  1.1  sevan 
    751  1.1  sevan 	/* Enable transmit and receive. */
    752  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    753  1.1  sevan 
    754  1.1  sevan 	/* Program promiscuous mode and multicast filters. */
    755  1.1  sevan 	rge_iff(sc);
    756  1.1  sevan 
    757  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    758  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    759  1.1  sevan 
    760  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    761  1.1  sevan 
    762  1.1  sevan 	/* Enable interrupts. */
    763  1.1  sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    764  1.1  sevan 
    765  1.1  sevan 	ifp->if_flags |= IFF_RUNNING;
    766  1.1  sevan 	ifq_clr_oactive(&ifp->if_snd);
    767  1.1  sevan 
    768  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
    769  1.1  sevan 
    770  1.1  sevan 	return (0);
    771  1.1  sevan }
    772  1.1  sevan 
    773  1.1  sevan /*
    774  1.1  sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    775  1.1  sevan  */
    776  1.1  sevan void
    777  1.1  sevan rge_stop(struct ifnet *ifp)
    778  1.1  sevan {
    779  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    780  1.1  sevan 	int i;
    781  1.1  sevan 
    782  1.1  sevan 	timeout_del(&sc->sc_timeout);
    783  1.1  sevan 
    784  1.1  sevan 	ifp->if_timer = 0;
    785  1.1  sevan 	ifp->if_flags &= ~IFF_RUNNING;
    786  1.1  sevan 	sc->rge_timerintr = 0;
    787  1.1  sevan 
    788  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    789  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    790  1.1  sevan 	    RGE_RXCFG_ERRPKT);
    791  1.1  sevan 
    792  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    793  1.1  sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    794  1.1  sevan 
    795  1.1  sevan 	rge_reset(sc);
    796  1.1  sevan 
    797  1.1  sevan 	intr_barrier(sc->sc_ih);
    798  1.1  sevan 	ifq_barrier(&ifp->if_snd);
    799  1.2  sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    800  1.1  sevan 
    801  1.1  sevan 	if (sc->rge_head != NULL) {
    802  1.1  sevan 		m_freem(sc->rge_head);
    803  1.1  sevan 		sc->rge_head = sc->rge_tail = NULL;
    804  1.1  sevan 	}
    805  1.1  sevan 
    806  1.1  sevan 	/* Free the TX list buffers. */
    807  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    808  1.1  sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    809  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    810  1.1  sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    811  1.1  sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    812  1.1  sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    813  1.1  sevan 		}
    814  1.1  sevan 	}
    815  1.1  sevan 
    816  1.1  sevan 	/* Free the RX list buffers. */
    817  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    818  1.1  sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    819  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    820  1.1  sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    821  1.1  sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    822  1.1  sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    823  1.1  sevan 		}
    824  1.1  sevan 	}
    825  1.1  sevan }
    826  1.1  sevan 
    827  1.1  sevan /*
    828  1.1  sevan  * Set media options.
    829  1.1  sevan  */
    830  1.1  sevan int
    831  1.1  sevan rge_ifmedia_upd(struct ifnet *ifp)
    832  1.1  sevan {
    833  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    834  1.1  sevan 	struct ifmedia *ifm = &sc->sc_media;
    835  1.1  sevan 	int anar, gig, val;
    836  1.1  sevan 
    837  1.1  sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    838  1.1  sevan 		return (EINVAL);
    839  1.1  sevan 
    840  1.1  sevan 	/* Disable Gigabit Lite. */
    841  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    842  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    843  1.1  sevan 
    844  1.1  sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    845  1.1  sevan 	val &= ~RGE_ADV_2500TFDX;
    846  1.1  sevan 
    847  1.1  sevan 	anar = gig = 0;
    848  1.1  sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    849  1.1  sevan 	case IFM_AUTO:
    850  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    851  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    852  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    853  1.1  sevan 		break;
    854  1.1  sevan 	case IFM_2500_T:
    855  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    856  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    857  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    858  1.1  sevan 		ifp->if_baudrate = IF_Mbps(2500);
    859  1.1  sevan 		break;
    860  1.1  sevan 	case IFM_1000_T:
    861  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    862  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    863  1.1  sevan 		ifp->if_baudrate = IF_Gbps(1);
    864  1.1  sevan 		break;
    865  1.1  sevan 	case IFM_100_TX:
    866  1.1  sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    867  1.1  sevan 		ifp->if_baudrate = IF_Mbps(100);
    868  1.1  sevan 		break;
    869  1.1  sevan 	case IFM_10_T:
    870  1.1  sevan 		anar |= ANAR_10 | ANAR_10_FD;
    871  1.1  sevan 		ifp->if_baudrate = IF_Mbps(10);
    872  1.1  sevan 		break;
    873  1.1  sevan 	default:
    874  1.1  sevan 		printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
    875  1.1  sevan 		return (EINVAL);
    876  1.1  sevan 	}
    877  1.1  sevan 
    878  1.1  sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    879  1.1  sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    880  1.1  sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    881  1.1  sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    882  1.1  sevan 
    883  1.1  sevan 	return (0);
    884  1.1  sevan }
    885  1.1  sevan 
    886  1.1  sevan /*
    887  1.1  sevan  * Report current media status.
    888  1.1  sevan  */
    889  1.1  sevan void
    890  1.1  sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    891  1.1  sevan {
    892  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    893  1.1  sevan 	uint16_t status = 0;
    894  1.1  sevan 
    895  1.1  sevan 	ifmr->ifm_status = IFM_AVALID;
    896  1.1  sevan 	ifmr->ifm_active = IFM_ETHER;
    897  1.1  sevan 
    898  1.1  sevan 	if (rge_get_link_status(sc)) {
    899  1.1  sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    900  1.1  sevan 
    901  1.1  sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    902  1.1  sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    903  1.1  sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    904  1.1  sevan 			ifmr->ifm_active |= IFM_FDX;
    905  1.1  sevan 		else
    906  1.1  sevan 			ifmr->ifm_active |= IFM_HDX;
    907  1.1  sevan 
    908  1.1  sevan 		if (status & RGE_PHYSTAT_10MBPS)
    909  1.1  sevan 			ifmr->ifm_active |= IFM_10_T;
    910  1.1  sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    911  1.1  sevan 			ifmr->ifm_active |= IFM_100_TX;
    912  1.1  sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    913  1.1  sevan 			ifmr->ifm_active |= IFM_1000_T;
    914  1.1  sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    915  1.1  sevan 			ifmr->ifm_active |= IFM_2500_T;
    916  1.1  sevan 	}
    917  1.1  sevan }
    918  1.1  sevan 
    919  1.1  sevan /*
    920  1.1  sevan  * Allocate memory for RX/TX rings.
    921  1.1  sevan  */
    922  1.1  sevan int
    923  1.1  sevan rge_allocmem(struct rge_softc *sc)
    924  1.1  sevan {
    925  1.1  sevan 	int error, i;
    926  1.1  sevan 
    927  1.1  sevan 	/* Allocate DMA'able memory for the TX ring. */
    928  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    929  1.1  sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    930  1.1  sevan 	if (error) {
    931  1.1  sevan 		printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
    932  1.1  sevan 		return (error);
    933  1.1  sevan 	}
    934  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    935  1.1  sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    936  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
    937  1.1  sevan 	if (error) {
    938  1.1  sevan 		printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
    939  1.1  sevan 		return (error);
    940  1.1  sevan 	}
    941  1.1  sevan 
    942  1.1  sevan 	/* Load the map for the TX ring. */
    943  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    944  1.1  sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    945  1.2  sevan 	    &sc->rge_ldata.rge_tx_list,
    946  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
    947  1.1  sevan 	if (error) {
    948  1.1  sevan 		printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
    949  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    950  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    951  1.1  sevan 		return (error);
    952  1.1  sevan 	}
    953  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    954  1.1  sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    955  1.1  sevan 	if (error) {
    956  1.1  sevan 		printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
    957  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    958  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
    959  1.2  sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    960  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    961  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    962  1.1  sevan 		return (error);
    963  1.1  sevan 	}
    964  1.1  sevan 
    965  1.1  sevan 	/* Create DMA maps for TX buffers. */
    966  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    967  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
    968  1.1  sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
    969  1.1  sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
    970  1.1  sevan 		if (error) {
    971  1.1  sevan 			printf("%s: can't create DMA map for TX\n",
    972  1.1  sevan 			    sc->sc_dev.dv_xname);
    973  1.1  sevan 			return (error);
    974  1.1  sevan 		}
    975  1.1  sevan 	}
    976  1.1  sevan 
    977  1.1  sevan 	/* Allocate DMA'able memory for the RX ring. */
    978  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
    979  1.1  sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
    980  1.1  sevan 	if (error) {
    981  1.1  sevan 		printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
    982  1.1  sevan 		return (error);
    983  1.1  sevan 	}
    984  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
    985  1.1  sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
    986  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_ZERO */
    987  1.1  sevan 	if (error) {
    988  1.1  sevan 		printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
    989  1.1  sevan 		return (error);
    990  1.1  sevan 	}
    991  1.1  sevan 
    992  1.1  sevan 	/* Load the map for the RX ring. */
    993  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
    994  1.1  sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
    995  1.2  sevan 	    &sc->rge_ldata.rge_rx_list,
    996  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_COHERENT */
    997  1.1  sevan 	if (error) {
    998  1.1  sevan 		printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
    999  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1000  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1001  1.1  sevan 		return (error);
   1002  1.1  sevan 	}
   1003  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1004  1.1  sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1005  1.1  sevan 	if (error) {
   1006  1.1  sevan 		printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
   1007  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1008  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1009  1.2  sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1010  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1011  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1012  1.1  sevan 		return (error);
   1013  1.1  sevan 	}
   1014  1.1  sevan 
   1015  1.1  sevan 	/* Create DMA maps for RX buffers. */
   1016  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1017  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1018  1.1  sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1019  1.1  sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1020  1.1  sevan 		if (error) {
   1021  1.1  sevan 			printf("%s: can't create DMA map for RX\n",
   1022  1.1  sevan 			    sc->sc_dev.dv_xname);
   1023  1.1  sevan 			return (error);
   1024  1.1  sevan 		}
   1025  1.1  sevan 	}
   1026  1.1  sevan 
   1027  1.1  sevan 	return (error);
   1028  1.1  sevan }
   1029  1.1  sevan 
   1030  1.1  sevan /*
   1031  1.1  sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1032  1.1  sevan  */
   1033  1.1  sevan int
   1034  1.1  sevan rge_newbuf(struct rge_softc *sc, int idx)
   1035  1.1  sevan {
   1036  1.1  sevan 	struct mbuf *m;
   1037  1.1  sevan 	struct rge_rx_desc *r;
   1038  1.1  sevan 	struct rge_rxq *rxq;
   1039  1.1  sevan 	bus_dmamap_t rxmap;
   1040  1.1  sevan 
   1041  1.1  sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1042  1.1  sevan 	if (m == NULL)
   1043  1.1  sevan 		return (ENOBUFS);
   1044  1.1  sevan 
   1045  1.1  sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1046  1.1  sevan 
   1047  1.1  sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1048  1.1  sevan 	rxmap = rxq->rxq_dmamap;
   1049  1.1  sevan 
   1050  1.1  sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1051  1.1  sevan 		goto out;
   1052  1.1  sevan 
   1053  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1054  1.1  sevan 	    BUS_DMASYNC_PREREAD);
   1055  1.1  sevan 
   1056  1.1  sevan 	/* Map the segments into RX descriptors. */
   1057  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1058  1.1  sevan 
   1059  1.1  sevan 	if (RGE_OWN(r)) {
   1060  1.1  sevan 		printf("%s: tried to map busy RX descriptor\n",
   1061  1.1  sevan 		    sc->sc_dev.dv_xname);
   1062  1.1  sevan 		goto out;
   1063  1.1  sevan 	}
   1064  1.1  sevan 
   1065  1.1  sevan 	rxq->rxq_mbuf = m;
   1066  1.1  sevan 
   1067  1.1  sevan 	r->rge_extsts = 0;
   1068  1.1  sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1069  1.1  sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1070  1.1  sevan 
   1071  1.1  sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1072  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1073  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1074  1.1  sevan 
   1075  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1076  1.1  sevan 
   1077  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1078  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1079  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1080  1.1  sevan 
   1081  1.1  sevan 	return (0);
   1082  1.1  sevan out:
   1083  1.1  sevan 	if (m != NULL)
   1084  1.1  sevan 		m_freem(m);
   1085  1.1  sevan 	return (ENOMEM);
   1086  1.1  sevan }
   1087  1.1  sevan 
   1088  1.1  sevan void
   1089  1.1  sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1090  1.1  sevan {
   1091  1.1  sevan 	struct rge_rx_desc *r;
   1092  1.1  sevan 
   1093  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1094  1.1  sevan 
   1095  1.1  sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1096  1.1  sevan 	r->rge_extsts = 0;
   1097  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1098  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1099  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1100  1.1  sevan 
   1101  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1102  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1103  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1104  1.1  sevan }
   1105  1.1  sevan 
   1106  1.1  sevan int
   1107  1.1  sevan rge_rx_list_init(struct rge_softc *sc)
   1108  1.1  sevan {
   1109  1.1  sevan 	int i;
   1110  1.1  sevan 
   1111  1.1  sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1112  1.1  sevan 
   1113  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1114  1.1  sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1115  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1116  1.1  sevan 			return (ENOBUFS);
   1117  1.1  sevan 	}
   1118  1.1  sevan 
   1119  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1120  1.1  sevan 	sc->rge_head = sc->rge_tail = NULL;
   1121  1.1  sevan 
   1122  1.1  sevan 	return (0);
   1123  1.1  sevan }
   1124  1.1  sevan 
   1125  1.1  sevan void
   1126  1.1  sevan rge_tx_list_init(struct rge_softc *sc)
   1127  1.1  sevan {
   1128  1.1  sevan 	int i;
   1129  1.1  sevan 
   1130  1.1  sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1131  1.1  sevan 
   1132  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1133  1.1  sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1134  1.1  sevan 
   1135  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1136  1.1  sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1137  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1138  1.1  sevan 
   1139  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1140  1.1  sevan }
   1141  1.1  sevan 
   1142  1.1  sevan int
   1143  1.1  sevan rge_rxeof(struct rge_softc *sc)
   1144  1.1  sevan {
   1145  1.1  sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1146  1.1  sevan 	struct mbuf *m;
   1147  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1148  1.1  sevan 	struct rge_rx_desc *cur_rx;
   1149  1.1  sevan 	struct rge_rxq *rxq;
   1150  1.1  sevan 	uint32_t rxstat, extsts;
   1151  1.1  sevan 	int i, total_len, rx = 0;
   1152  1.1  sevan 
   1153  1.1  sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1154  1.1  sevan 		/* Invalidate the descriptor memory. */
   1155  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1156  1.1  sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1157  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1158  1.1  sevan 
   1159  1.1  sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1160  1.1  sevan 
   1161  1.1  sevan 		if (RGE_OWN(cur_rx))
   1162  1.1  sevan 			break;
   1163  1.1  sevan 
   1164  1.1  sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1165  1.1  sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1166  1.1  sevan 
   1167  1.1  sevan 		total_len = RGE_RXBYTES(cur_rx);
   1168  1.1  sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1169  1.1  sevan 		m = rxq->rxq_mbuf;
   1170  1.1  sevan 		rx = 1;
   1171  1.1  sevan 
   1172  1.1  sevan 		/* Invalidate the RX mbuf and unload its map. */
   1173  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1174  1.1  sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1175  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1176  1.1  sevan 
   1177  1.1  sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1178  1.1  sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1179  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1180  1.1  sevan 			continue;
   1181  1.1  sevan 		}
   1182  1.1  sevan 
   1183  1.1  sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1184  1.1  sevan 			ifp->if_ierrors++;
   1185  1.1  sevan 			/*
   1186  1.1  sevan 			 * If this is part of a multi-fragment packet,
   1187  1.1  sevan 			 * discard all the pieces.
   1188  1.1  sevan 			 */
   1189  1.1  sevan 			 if (sc->rge_head != NULL) {
   1190  1.1  sevan 				m_freem(sc->rge_head);
   1191  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1192  1.1  sevan 			}
   1193  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1194  1.1  sevan 			continue;
   1195  1.1  sevan 		}
   1196  1.1  sevan 
   1197  1.1  sevan 		/*
   1198  1.1  sevan 		 * If allocating a replacement mbuf fails,
   1199  1.1  sevan 		 * reload the current one.
   1200  1.1  sevan 		 */
   1201  1.1  sevan 
   1202  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1203  1.1  sevan 			if (sc->rge_head != NULL) {
   1204  1.1  sevan 				m_freem(sc->rge_head);
   1205  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1206  1.1  sevan 			}
   1207  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1208  1.1  sevan 			continue;
   1209  1.1  sevan 		}
   1210  1.1  sevan 
   1211  1.1  sevan 		if (sc->rge_head != NULL) {
   1212  1.1  sevan 			m->m_len = total_len;
   1213  1.1  sevan 			/*
   1214  1.1  sevan 			 * Special case: if there's 4 bytes or less
   1215  1.1  sevan 			 * in this buffer, the mbuf can be discarded:
   1216  1.1  sevan 			 * the last 4 bytes is the CRC, which we don't
   1217  1.1  sevan 			 * care about anyway.
   1218  1.1  sevan 			 */
   1219  1.1  sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1220  1.1  sevan 				sc->rge_tail->m_len -=
   1221  1.1  sevan 				    (ETHER_CRC_LEN - m->m_len);
   1222  1.1  sevan 				m_freem(m);
   1223  1.1  sevan 			} else {
   1224  1.1  sevan 				m->m_len -= ETHER_CRC_LEN;
   1225  1.1  sevan 				m->m_flags &= ~M_PKTHDR;
   1226  1.1  sevan 				sc->rge_tail->m_next = m;
   1227  1.1  sevan 			}
   1228  1.1  sevan 			m = sc->rge_head;
   1229  1.1  sevan 			sc->rge_head = sc->rge_tail = NULL;
   1230  1.1  sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1231  1.1  sevan 		} else
   1232  1.1  sevan 			m->m_pkthdr.len = m->m_len =
   1233  1.1  sevan 			    (total_len - ETHER_CRC_LEN);
   1234  1.1  sevan 
   1235  1.1  sevan 		/* Check IP header checksum. */
   1236  1.1  sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1237  1.1  sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1238  1.1  sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1239  1.1  sevan 
   1240  1.1  sevan 		/* Check TCP/UDP checksum. */
   1241  1.1  sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1242  1.1  sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1243  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1244  1.1  sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1245  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1246  1.1  sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1247  1.1  sevan 			    M_UDP_CSUM_IN_OK;
   1248  1.1  sevan 
   1249  1.1  sevan #if NVLAN > 0
   1250  1.1  sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1251  1.1  sevan 			m->m_pkthdr.ether_vtag =
   1252  1.1  sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1253  1.1  sevan 			m->m_flags |= M_VLANTAG;
   1254  1.1  sevan 		}
   1255  1.1  sevan #endif
   1256  1.1  sevan 
   1257  1.1  sevan 		ml_enqueue(&ml, m);
   1258  1.1  sevan 	}
   1259  1.1  sevan 
   1260  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1261  1.1  sevan 
   1262  1.1  sevan 	if_input(ifp, &ml);
   1263  1.1  sevan 
   1264  1.1  sevan 	return (rx);
   1265  1.1  sevan }
   1266  1.1  sevan 
   1267  1.1  sevan int
   1268  1.1  sevan rge_txeof(struct rge_softc *sc)
   1269  1.1  sevan {
   1270  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1271  1.1  sevan 	struct rge_txq *txq;
   1272  1.1  sevan 	uint32_t txstat;
   1273  1.1  sevan 	int cons, idx, prod;
   1274  1.1  sevan 	int free = 0;
   1275  1.1  sevan 
   1276  1.1  sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1277  1.1  sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1278  1.1  sevan 
   1279  1.1  sevan 	while (prod != cons) {
   1280  1.1  sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1281  1.1  sevan 		idx = txq->txq_descidx;
   1282  1.1  sevan 
   1283  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1284  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1285  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1286  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1287  1.1  sevan 
   1288  1.1  sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1289  1.1  sevan 
   1290  1.1  sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1291  1.1  sevan 			free = 2;
   1292  1.1  sevan 			break;
   1293  1.1  sevan 		}
   1294  1.1  sevan 
   1295  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1296  1.1  sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1297  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1298  1.1  sevan 		m_freem(txq->txq_mbuf);
   1299  1.1  sevan 		txq->txq_mbuf = NULL;
   1300  1.1  sevan 
   1301  1.1  sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1302  1.1  sevan 			ifp->if_collisions++;
   1303  1.1  sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1304  1.1  sevan 			ifp->if_oerrors++;
   1305  1.1  sevan 
   1306  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1307  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1308  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1309  1.1  sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1310  1.1  sevan 
   1311  1.1  sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1312  1.1  sevan 		free = 1;
   1313  1.1  sevan 	}
   1314  1.1  sevan 
   1315  1.1  sevan 	if (free == 0)
   1316  1.1  sevan 		return (0);
   1317  1.1  sevan 
   1318  1.1  sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1319  1.1  sevan 
   1320  1.1  sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1321  1.1  sevan 		ifq_restart(&ifp->if_snd);
   1322  1.1  sevan 	else if (free == 2)
   1323  1.1  sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1324  1.1  sevan 	else
   1325  1.1  sevan 		ifp->if_timer = 0;
   1326  1.1  sevan 
   1327  1.1  sevan 	return (1);
   1328  1.1  sevan }
   1329  1.1  sevan 
   1330  1.1  sevan void
   1331  1.1  sevan rge_reset(struct rge_softc *sc)
   1332  1.1  sevan {
   1333  1.1  sevan 	int i;
   1334  1.1  sevan 
   1335  1.1  sevan 	/* Enable RXDV gate. */
   1336  1.1  sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1337  1.1  sevan 	DELAY(2000);
   1338  1.1  sevan 
   1339  1.1  sevan 	for (i = 0; i < 10; i++) {
   1340  1.1  sevan 		DELAY(100);
   1341  1.1  sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1342  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1343  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1344  1.1  sevan 			break;
   1345  1.1  sevan 	}
   1346  1.1  sevan 
   1347  1.1  sevan 	/* Soft reset. */
   1348  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1349  1.1  sevan 
   1350  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1351  1.1  sevan 		DELAY(100);
   1352  1.1  sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1353  1.1  sevan 			break;
   1354  1.1  sevan 	}
   1355  1.1  sevan 	if (i == RGE_TIMEOUT)
   1356  1.1  sevan 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
   1357  1.1  sevan }
   1358  1.1  sevan 
   1359  1.1  sevan void
   1360  1.1  sevan rge_iff(struct rge_softc *sc)
   1361  1.1  sevan {
   1362  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1363  1.2  sevan 	struct ethercom *ac = &sc->sc_ec;
   1364  1.1  sevan 	struct ether_multi *enm;
   1365  1.1  sevan 	struct ether_multistep step;
   1366  1.1  sevan 	uint32_t hashes[2];
   1367  1.1  sevan 	uint32_t rxfilt;
   1368  1.1  sevan 	int h = 0;
   1369  1.1  sevan 
   1370  1.1  sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1371  1.1  sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1372  1.1  sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1373  1.1  sevan 
   1374  1.1  sevan 	/*
   1375  1.1  sevan 	 * Always accept frames destined to our station address.
   1376  1.1  sevan 	 * Always accept broadcast frames.
   1377  1.1  sevan 	 */
   1378  1.1  sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1379  1.1  sevan 
   1380  1.1  sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1381  1.1  sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1382  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1383  1.1  sevan 		if (ifp->if_flags & IFF_PROMISC)
   1384  1.1  sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1385  1.1  sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1386  1.1  sevan 	} else {
   1387  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1388  1.1  sevan 		/* Program new filter. */
   1389  1.1  sevan 		memset(hashes, 0, sizeof(hashes));
   1390  1.1  sevan 
   1391  1.1  sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1392  1.1  sevan 		while (enm != NULL) {
   1393  1.1  sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1394  1.1  sevan 			    ETHER_ADDR_LEN) >> 26;
   1395  1.1  sevan 
   1396  1.1  sevan 			if (h < 32)
   1397  1.1  sevan 				hashes[0] |= (1 << h);
   1398  1.1  sevan 			else
   1399  1.1  sevan 				hashes[1] |= (1 << (h - 32));
   1400  1.1  sevan 
   1401  1.1  sevan 			ETHER_NEXT_MULTI(step, enm);
   1402  1.1  sevan 		}
   1403  1.1  sevan 	}
   1404  1.1  sevan 
   1405  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1406  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1407  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1408  1.1  sevan }
   1409  1.1  sevan 
   1410  1.1  sevan void
   1411  1.1  sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1412  1.1  sevan {
   1413  1.1  sevan 	int i;
   1414  1.1  sevan 
   1415  1.1  sevan 	if (on) {
   1416  1.1  sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1417  1.1  sevan 
   1418  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1419  1.1  sevan 
   1420  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1421  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 3)
   1422  1.1  sevan 				break;
   1423  1.1  sevan 			DELAY(1000);
   1424  1.1  sevan 		}
   1425  1.1  sevan 	} else
   1426  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1427  1.1  sevan }
   1428  1.1  sevan 
   1429  1.1  sevan void
   1430  1.1  sevan rge_phy_config(struct rge_softc *sc)
   1431  1.1  sevan {
   1432  1.1  sevan 	uint16_t mcode_ver, val;
   1433  1.1  sevan 	int i;
   1434  1.1  sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1435  1.1  sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1436  1.1  sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1437  1.1  sevan 
   1438  1.1  sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1439  1.1  sevan 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1440  1.1  sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1441  1.1  sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1442  1.1  sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1443  1.1  sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1444  1.1  sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1445  1.1  sevan 
   1446  1.1  sevan 	/* Read microcode version. */
   1447  1.1  sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1448  1.1  sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1449  1.1  sevan 
   1450  1.1  sevan 	if (sc->rge_type == MAC_CFG2) {
   1451  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1452  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1453  1.1  sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1454  1.1  sevan 		}
   1455  1.1  sevan 
   1456  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1457  1.1  sevan 			/* Disable PHY config. */
   1458  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1459  1.1  sevan 			DELAY(1000);
   1460  1.1  sevan 
   1461  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1462  1.1  sevan 
   1463  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1464  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1465  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1466  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1467  1.1  sevan 
   1468  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1469  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1470  1.1  sevan 				rge_write_phy_ocp(sc,
   1471  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1472  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1473  1.1  sevan 			}
   1474  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1475  1.1  sevan 
   1476  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1477  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1478  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1479  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1480  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1481  1.1  sevan 
   1482  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1483  1.1  sevan 
   1484  1.1  sevan 			/* Enable PHY config. */
   1485  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1486  1.1  sevan 
   1487  1.1  sevan 			/* Write microcode version. */
   1488  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1489  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1490  1.1  sevan 		}
   1491  1.1  sevan 
   1492  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1493  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1494  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1495  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1496  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1497  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1498  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1499  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1500  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1501  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1502  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1503  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1504  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1505  1.1  sevan 
   1506  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1507  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1508  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1509  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1510  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1511  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1512  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1513  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1514  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1515  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1516  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1517  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1518  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1519  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1520  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1521  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1522  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1523  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1524  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1525  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1526  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1527  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1528  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1529  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1530  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1531  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1532  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1533  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1534  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1535  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1536  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1537  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1538  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1539  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1540  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1541  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1542  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1543  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1544  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1545  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1546  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1547  1.1  sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1548  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1549  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1550  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1551  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1552  1.1  sevan 	} else {
   1553  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1554  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1555  1.1  sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1556  1.1  sevan 
   1557  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1558  1.1  sevan 			/* Disable PHY config. */
   1559  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1560  1.1  sevan 			DELAY(1000);
   1561  1.1  sevan 
   1562  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1563  1.1  sevan 
   1564  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1565  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1566  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1567  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1568  1.1  sevan 
   1569  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1570  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1571  1.1  sevan 				rge_write_phy_ocp(sc,
   1572  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1573  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1574  1.1  sevan 			}
   1575  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1576  1.1  sevan 
   1577  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1578  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1579  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1580  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1581  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1582  1.1  sevan 
   1583  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1584  1.1  sevan 
   1585  1.1  sevan 			/* Enable PHY config. */
   1586  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1587  1.1  sevan 
   1588  1.1  sevan 			/* Write microcode version. */
   1589  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1590  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1591  1.1  sevan 		}
   1592  1.1  sevan 
   1593  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1594  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1595  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1596  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1597  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1598  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1599  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1600  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1601  1.1  sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1602  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1603  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1604  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1605  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1606  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1607  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1608  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1609  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1610  1.1  sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1611  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1612  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1613  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1614  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1615  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1616  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1617  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1618  1.1  sevan 
   1619  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1620  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1621  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1622  1.1  sevan 		for (i = 0; i < 26; i++)
   1623  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1624  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1625  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1626  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1627  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1628  1.1  sevan 
   1629  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1630  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1631  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1632  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1633  1.1  sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1634  1.1  sevan 			rge_write_phy_ocp(sc, 0xb890,
   1635  1.1  sevan 			    mac_cfg3_b88e_value[i + 1]);
   1636  1.1  sevan 		}
   1637  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1638  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1639  1.1  sevan 
   1640  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1641  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1642  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1643  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1644  1.1  sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1645  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1646  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1647  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1648  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1649  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1650  1.1  sevan 	}
   1651  1.1  sevan 
   1652  1.1  sevan 	/* Disable EEE. */
   1653  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1654  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1655  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1656  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1657  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1658  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1659  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1660  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1661  1.1  sevan 
   1662  1.1  sevan 	rge_patch_phy_mcu(sc, 1);
   1663  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1664  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1665  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1666  1.1  sevan 	rge_patch_phy_mcu(sc, 0);
   1667  1.1  sevan }
   1668  1.1  sevan 
   1669  1.1  sevan void
   1670  1.1  sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1671  1.1  sevan {
   1672  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1673  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1674  1.1  sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1675  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1676  1.1  sevan 	    addr[5] <<  8 | addr[4]);
   1677  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1678  1.1  sevan }
   1679  1.1  sevan 
   1680  1.1  sevan void
   1681  1.1  sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1682  1.1  sevan {
   1683  1.1  sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1684  1.1  sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1685  1.1  sevan }
   1686  1.1  sevan 
   1687  1.1  sevan void
   1688  1.1  sevan rge_hw_init(struct rge_softc *sc)
   1689  1.1  sevan {
   1690  1.1  sevan 	int i;
   1691  1.1  sevan 
   1692  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1693  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1694  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1695  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1696  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1697  1.1  sevan 
   1698  1.1  sevan 	/* Disable UPS. */
   1699  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1700  1.1  sevan 
   1701  1.1  sevan 	/* Configure MAC MCU. */
   1702  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1703  1.1  sevan 
   1704  1.1  sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1705  1.1  sevan 		rge_write_mac_ocp(sc, i, 0);
   1706  1.1  sevan 
   1707  1.1  sevan 	DELAY(3000);
   1708  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1709  1.1  sevan 
   1710  1.1  sevan 	if (sc->rge_type == MAC_CFG3) {
   1711  1.1  sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1712  1.1  sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1713  1.1  sevan 			    rtl8125_def_bps[i].val);
   1714  1.1  sevan 	}
   1715  1.1  sevan 
   1716  1.1  sevan 	/* Disable PHY power saving. */
   1717  1.1  sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1718  1.1  sevan 
   1719  1.1  sevan 	/* Set PCIe uncorrectable error status. */
   1720  1.1  sevan 	rge_write_csi(sc, 0x108,
   1721  1.1  sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1722  1.1  sevan }
   1723  1.1  sevan 
   1724  1.1  sevan void
   1725  1.1  sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1726  1.1  sevan {
   1727  1.1  sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1728  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1729  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1730  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1731  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1732  1.1  sevan 	}
   1733  1.1  sevan }
   1734  1.1  sevan 
   1735  1.1  sevan void
   1736  1.1  sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1737  1.1  sevan {
   1738  1.1  sevan 	uint16_t val;
   1739  1.1  sevan 	int i;
   1740  1.1  sevan 
   1741  1.1  sevan 	if (set)
   1742  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1743  1.1  sevan 	else
   1744  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1745  1.1  sevan 
   1746  1.1  sevan 	for (i = 0; i < 1000; i++) {
   1747  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1748  1.1  sevan 		DELAY(100);
   1749  1.1  sevan 		if (val == 0x0040)
   1750  1.1  sevan 			break;
   1751  1.1  sevan 	}
   1752  1.1  sevan 	if (i == 1000)
   1753  1.1  sevan 		printf("%s: timeout waiting to patch phy mcu\n",
   1754  1.1  sevan 		    sc->sc_dev.dv_xname);
   1755  1.1  sevan }
   1756  1.1  sevan 
   1757  1.1  sevan void
   1758  1.1  sevan rge_add_media_types(struct rge_softc *sc)
   1759  1.1  sevan {
   1760  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1761  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1762  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1763  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1764  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1765  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1766  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1767  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1768  1.1  sevan }
   1769  1.1  sevan 
   1770  1.1  sevan void
   1771  1.1  sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1772  1.1  sevan {
   1773  1.1  sevan 	switch (imtype) {
   1774  1.1  sevan 	case RGE_IMTYPE_NONE:
   1775  1.1  sevan 		sc->rge_intrs = RGE_INTRS;
   1776  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1777  1.1  sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1778  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1779  1.1  sevan 		break;
   1780  1.1  sevan 	case RGE_IMTYPE_SIM:
   1781  1.1  sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1782  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1783  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1784  1.1  sevan 		break;
   1785  1.1  sevan 	default:
   1786  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1787  1.1  sevan 	}
   1788  1.1  sevan }
   1789  1.1  sevan 
   1790  1.1  sevan void
   1791  1.1  sevan rge_disable_sim_im(struct rge_softc *sc)
   1792  1.1  sevan {
   1793  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1794  1.1  sevan 	sc->rge_timerintr = 0;
   1795  1.1  sevan }
   1796  1.1  sevan 
   1797  1.1  sevan void
   1798  1.1  sevan rge_setup_sim_im(struct rge_softc *sc)
   1799  1.1  sevan {
   1800  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1801  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1802  1.1  sevan 	sc->rge_timerintr = 1;
   1803  1.1  sevan }
   1804  1.1  sevan 
   1805  1.1  sevan void
   1806  1.1  sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1807  1.1  sevan {
   1808  1.1  sevan 	rge_config_imtype(sc, imtype);
   1809  1.1  sevan 
   1810  1.1  sevan 	/* Enable interrupts. */
   1811  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1812  1.1  sevan 
   1813  1.1  sevan 	switch (imtype) {
   1814  1.1  sevan 	case RGE_IMTYPE_NONE:
   1815  1.1  sevan 		rge_disable_sim_im(sc);
   1816  1.1  sevan 		break;
   1817  1.1  sevan 	case RGE_IMTYPE_SIM:
   1818  1.1  sevan 		rge_setup_sim_im(sc);
   1819  1.1  sevan 		break;
   1820  1.1  sevan 	default:
   1821  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1822  1.1  sevan 	}
   1823  1.1  sevan }
   1824  1.1  sevan 
   1825  1.1  sevan void
   1826  1.1  sevan rge_exit_oob(struct rge_softc *sc)
   1827  1.1  sevan {
   1828  1.1  sevan 	int i;
   1829  1.1  sevan 
   1830  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1831  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1832  1.1  sevan 	    RGE_RXCFG_ERRPKT);
   1833  1.1  sevan 
   1834  1.1  sevan 	/* Disable RealWoW. */
   1835  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1836  1.1  sevan 
   1837  1.1  sevan 	rge_reset(sc);
   1838  1.1  sevan 
   1839  1.1  sevan 	/* Disable OOB. */
   1840  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1841  1.1  sevan 
   1842  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1843  1.1  sevan 
   1844  1.1  sevan 	for (i = 0; i < 10; i++) {
   1845  1.1  sevan 		DELAY(100);
   1846  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1847  1.1  sevan 			break;
   1848  1.1  sevan 	}
   1849  1.1  sevan 
   1850  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1851  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1852  1.1  sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1853  1.1  sevan 
   1854  1.1  sevan 	for (i = 0; i < 10; i++) {
   1855  1.1  sevan 		DELAY(100);
   1856  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1857  1.1  sevan 			break;
   1858  1.1  sevan 	}
   1859  1.1  sevan 
   1860  1.1  sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1861  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1862  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 2)
   1863  1.1  sevan 				break;
   1864  1.1  sevan 			DELAY(1000);
   1865  1.1  sevan 		}
   1866  1.1  sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1867  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1868  1.1  sevan 	}
   1869  1.1  sevan }
   1870  1.1  sevan 
   1871  1.1  sevan void
   1872  1.1  sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1873  1.1  sevan {
   1874  1.1  sevan 	int i;
   1875  1.1  sevan 
   1876  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1877  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1878  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1879  1.1  sevan 
   1880  1.1  sevan 	for (i = 0; i < 10; i++) {
   1881  1.1  sevan 		 DELAY(100);
   1882  1.1  sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1883  1.1  sevan 			break;
   1884  1.1  sevan 	}
   1885  1.1  sevan 
   1886  1.1  sevan 	DELAY(20);
   1887  1.1  sevan }
   1888  1.1  sevan 
   1889  1.1  sevan uint32_t
   1890  1.1  sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1891  1.1  sevan {
   1892  1.1  sevan 	int i;
   1893  1.1  sevan 
   1894  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1895  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1896  1.1  sevan 
   1897  1.1  sevan 	for (i = 0; i < 10; i++) {
   1898  1.1  sevan 		 DELAY(100);
   1899  1.1  sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1900  1.1  sevan 			break;
   1901  1.1  sevan 	}
   1902  1.1  sevan 
   1903  1.1  sevan 	DELAY(20);
   1904  1.1  sevan 
   1905  1.1  sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1906  1.1  sevan }
   1907  1.1  sevan 
   1908  1.1  sevan void
   1909  1.1  sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1910  1.1  sevan {
   1911  1.1  sevan 	uint32_t tmp;
   1912  1.1  sevan 
   1913  1.1  sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1914  1.1  sevan 	tmp += val;
   1915  1.1  sevan 	tmp |= RGE_MACOCP_BUSY;
   1916  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1917  1.1  sevan }
   1918  1.1  sevan 
   1919  1.1  sevan uint16_t
   1920  1.1  sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1921  1.1  sevan {
   1922  1.1  sevan 	uint32_t val;
   1923  1.1  sevan 
   1924  1.1  sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1925  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1926  1.1  sevan 
   1927  1.1  sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1928  1.1  sevan }
   1929  1.1  sevan 
   1930  1.1  sevan void
   1931  1.1  sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1932  1.1  sevan {
   1933  1.1  sevan 	uint32_t tmp;
   1934  1.1  sevan 	int i;
   1935  1.1  sevan 
   1936  1.1  sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1937  1.1  sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1938  1.1  sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1939  1.1  sevan 
   1940  1.1  sevan 	for (i = 0; i < 10; i++) {
   1941  1.1  sevan 		DELAY(100);
   1942  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1943  1.1  sevan 			break;
   1944  1.1  sevan 	}
   1945  1.1  sevan 
   1946  1.1  sevan 	DELAY(20);
   1947  1.1  sevan }
   1948  1.1  sevan 
   1949  1.1  sevan void
   1950  1.1  sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1951  1.1  sevan {
   1952  1.1  sevan 	uint16_t off, phyaddr;
   1953  1.1  sevan 
   1954  1.1  sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1955  1.1  sevan 	phyaddr <<= 4;
   1956  1.1  sevan 
   1957  1.1  sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1958  1.1  sevan 
   1959  1.1  sevan 	phyaddr += (off - 16) << 1;
   1960  1.1  sevan 
   1961  1.1  sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1962  1.1  sevan }
   1963  1.1  sevan 
   1964  1.1  sevan void
   1965  1.1  sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1966  1.1  sevan {
   1967  1.1  sevan 	uint32_t tmp;
   1968  1.1  sevan 	int i;
   1969  1.1  sevan 
   1970  1.1  sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1971  1.1  sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   1972  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   1973  1.1  sevan 
   1974  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1975  1.1  sevan 		DELAY(1);
   1976  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   1977  1.1  sevan 			break;
   1978  1.1  sevan 	}
   1979  1.1  sevan }
   1980  1.1  sevan 
   1981  1.1  sevan uint16_t
   1982  1.1  sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   1983  1.1  sevan {
   1984  1.1  sevan 	uint32_t val;
   1985  1.1  sevan 	int i;
   1986  1.1  sevan 
   1987  1.1  sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1988  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   1989  1.1  sevan 
   1990  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1991  1.1  sevan 		DELAY(1);
   1992  1.1  sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   1993  1.1  sevan 		if (val & RGE_PHYOCP_BUSY)
   1994  1.1  sevan 			break;
   1995  1.1  sevan 	}
   1996  1.1  sevan 
   1997  1.1  sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   1998  1.1  sevan }
   1999  1.1  sevan 
   2000  1.1  sevan int
   2001  1.1  sevan rge_get_link_status(struct rge_softc *sc)
   2002  1.1  sevan {
   2003  1.1  sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2004  1.1  sevan }
   2005  1.1  sevan 
   2006  1.1  sevan void
   2007  1.1  sevan rge_txstart(void *arg)
   2008  1.1  sevan {
   2009  1.1  sevan 	struct rge_softc *sc = arg;
   2010  1.1  sevan 
   2011  1.1  sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2012  1.1  sevan }
   2013  1.1  sevan 
   2014  1.1  sevan void
   2015  1.1  sevan rge_tick(void *arg)
   2016  1.1  sevan {
   2017  1.1  sevan 	struct rge_softc *sc = arg;
   2018  1.1  sevan 	int s;
   2019  1.1  sevan 
   2020  1.1  sevan 	s = splnet();
   2021  1.1  sevan 	rge_link_state(sc);
   2022  1.1  sevan 	splx(s);
   2023  1.1  sevan 
   2024  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   2025  1.1  sevan }
   2026  1.1  sevan 
   2027  1.1  sevan void
   2028  1.1  sevan rge_link_state(struct rge_softc *sc)
   2029  1.1  sevan {
   2030  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2031  1.1  sevan 	int link = LINK_STATE_DOWN;
   2032  1.1  sevan 
   2033  1.1  sevan 	if (rge_get_link_status(sc))
   2034  1.1  sevan 		link = LINK_STATE_UP;
   2035  1.1  sevan 
   2036  1.1  sevan 	if (ifp->if_link_state != link) {
   2037  1.1  sevan 		ifp->if_link_state = link;
   2038  1.2  sevan 		if_link_state_change(ifp, LINK_STATE_DOWN);
   2039  1.1  sevan 	}
   2040  1.1  sevan }
   2041