if_rge.c revision 1.20 1 1.20 msaitoh /* $NetBSD: if_rge.c,v 1.20 2021/10/11 15:10:19 msaitoh Exp $ */
2 1.17 jakllsch /* $OpenBSD: if_rge.c,v 1.9 2020/12/12 11:48:53 jan Exp $ */
3 1.1 sevan
4 1.1 sevan /*
5 1.17 jakllsch * Copyright (c) 2019, 2020 Kevin Lo <kevlo (at) openbsd.org>
6 1.1 sevan *
7 1.1 sevan * Permission to use, copy, modify, and distribute this software for any
8 1.1 sevan * purpose with or without fee is hereby granted, provided that the above
9 1.1 sevan * copyright notice and this permission notice appear in all copies.
10 1.1 sevan *
11 1.1 sevan * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 sevan * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 sevan * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 sevan * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 sevan * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 sevan * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 sevan * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 sevan */
19 1.1 sevan
20 1.2 sevan #include <sys/cdefs.h>
21 1.20 msaitoh __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.20 2021/10/11 15:10:19 msaitoh Exp $");
22 1.2 sevan
23 1.2 sevan #include <sys/types.h>
24 1.1 sevan
25 1.1 sevan #include <sys/param.h>
26 1.1 sevan #include <sys/systm.h>
27 1.1 sevan #include <sys/sockio.h>
28 1.1 sevan #include <sys/mbuf.h>
29 1.1 sevan #include <sys/malloc.h>
30 1.1 sevan #include <sys/kernel.h>
31 1.1 sevan #include <sys/socket.h>
32 1.1 sevan #include <sys/device.h>
33 1.1 sevan #include <sys/endian.h>
34 1.3 sevan #include <sys/callout.h>
35 1.3 sevan #include <sys/workqueue.h>
36 1.1 sevan
37 1.1 sevan #include <net/if.h>
38 1.2 sevan
39 1.2 sevan #include <net/if_dl.h>
40 1.2 sevan #include <net/if_ether.h>
41 1.2 sevan
42 1.1 sevan #include <net/if_media.h>
43 1.1 sevan
44 1.1 sevan #include <netinet/in.h>
45 1.2 sevan #include <net/if_ether.h>
46 1.1 sevan
47 1.1 sevan #include <net/bpf.h>
48 1.1 sevan
49 1.2 sevan #include <sys/bus.h>
50 1.1 sevan #include <machine/intr.h>
51 1.1 sevan
52 1.1 sevan #include <dev/mii/mii.h>
53 1.1 sevan
54 1.1 sevan #include <dev/pci/pcivar.h>
55 1.1 sevan #include <dev/pci/pcireg.h>
56 1.1 sevan #include <dev/pci/pcidevs.h>
57 1.1 sevan
58 1.1 sevan #include <dev/pci/if_rgereg.h>
59 1.1 sevan
60 1.2 sevan #ifdef __NetBSD__
61 1.2 sevan #define letoh32 htole32
62 1.2 sevan #define nitems(x) __arraycount(x)
63 1.7 sevan
64 1.7 sevan static struct mbuf *
65 1.17 jakllsch MCLGETL(struct rge_softc *sc __unused, int how,
66 1.17 jakllsch u_int size)
67 1.7 sevan {
68 1.7 sevan struct mbuf *m;
69 1.7 sevan
70 1.7 sevan MGETHDR(m, how, MT_DATA);
71 1.7 sevan if (m == NULL)
72 1.7 sevan return NULL;
73 1.7 sevan
74 1.7 sevan MEXTMALLOC(m, size, how);
75 1.7 sevan if ((m->m_flags & M_EXT) == 0) {
76 1.7 sevan m_freem(m);
77 1.7 sevan return NULL;
78 1.7 sevan }
79 1.7 sevan return m;
80 1.7 sevan }
81 1.7 sevan
82 1.3 sevan #ifdef NET_MPSAFE
83 1.3 sevan #define RGE_MPSAFE 1
84 1.3 sevan #define CALLOUT_FLAGS CALLOUT_MPSAFE
85 1.3 sevan #else
86 1.3 sevan #define CALLOUT_FLAGS 0
87 1.3 sevan #endif
88 1.2 sevan #endif
89 1.2 sevan
90 1.17 jakllsch #ifdef RGE_DEBUG
91 1.17 jakllsch #define DPRINTF(x) do { if (rge_debug > 0) printf x; } while (0)
92 1.17 jakllsch int rge_debug = 0;
93 1.17 jakllsch #else
94 1.17 jakllsch #define DPRINTF(x)
95 1.17 jakllsch #endif
96 1.17 jakllsch
97 1.2 sevan static int rge_match(device_t, cfdata_t, void *);
98 1.5 skrll static void rge_attach(device_t, device_t, void *);
99 1.1 sevan int rge_intr(void *);
100 1.1 sevan int rge_encap(struct rge_softc *, struct mbuf *, int);
101 1.2 sevan int rge_ioctl(struct ifnet *, u_long, void *);
102 1.2 sevan void rge_start(struct ifnet *);
103 1.1 sevan void rge_watchdog(struct ifnet *);
104 1.1 sevan int rge_init(struct ifnet *);
105 1.17 jakllsch void rge_stop(struct ifnet *, int);
106 1.1 sevan int rge_ifmedia_upd(struct ifnet *);
107 1.1 sevan void rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
108 1.1 sevan int rge_allocmem(struct rge_softc *);
109 1.1 sevan int rge_newbuf(struct rge_softc *, int);
110 1.1 sevan void rge_discard_rxbuf(struct rge_softc *, int);
111 1.1 sevan int rge_rx_list_init(struct rge_softc *);
112 1.1 sevan void rge_tx_list_init(struct rge_softc *);
113 1.1 sevan int rge_rxeof(struct rge_softc *);
114 1.1 sevan int rge_txeof(struct rge_softc *);
115 1.1 sevan void rge_reset(struct rge_softc *);
116 1.1 sevan void rge_iff(struct rge_softc *);
117 1.1 sevan void rge_set_phy_power(struct rge_softc *, int);
118 1.1 sevan void rge_phy_config(struct rge_softc *);
119 1.17 jakllsch void rge_phy_config_mac_cfg2(struct rge_softc *);
120 1.17 jakllsch void rge_phy_config_mac_cfg3(struct rge_softc *);
121 1.17 jakllsch void rge_phy_config_mac_cfg4(struct rge_softc *);
122 1.17 jakllsch void rge_phy_config_mac_cfg5(struct rge_softc *);
123 1.17 jakllsch void rge_phy_config_mcu(struct rge_softc *, uint16_t);
124 1.1 sevan void rge_set_macaddr(struct rge_softc *, const uint8_t *);
125 1.1 sevan void rge_get_macaddr(struct rge_softc *, uint8_t *);
126 1.1 sevan void rge_hw_init(struct rge_softc *);
127 1.1 sevan void rge_disable_phy_ocp_pwrsave(struct rge_softc *);
128 1.1 sevan void rge_patch_phy_mcu(struct rge_softc *, int);
129 1.1 sevan void rge_add_media_types(struct rge_softc *);
130 1.1 sevan void rge_config_imtype(struct rge_softc *, int);
131 1.17 jakllsch void rge_disable_hw_im(struct rge_softc *);
132 1.1 sevan void rge_disable_sim_im(struct rge_softc *);
133 1.1 sevan void rge_setup_sim_im(struct rge_softc *);
134 1.1 sevan void rge_setup_intr(struct rge_softc *, int);
135 1.1 sevan void rge_exit_oob(struct rge_softc *);
136 1.1 sevan void rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
137 1.1 sevan uint32_t rge_read_csi(struct rge_softc *, uint32_t);
138 1.1 sevan void rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
139 1.1 sevan uint16_t rge_read_mac_ocp(struct rge_softc *, uint16_t);
140 1.1 sevan void rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
141 1.17 jakllsch uint16_t rge_read_ephy(struct rge_softc *, uint16_t);
142 1.1 sevan void rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
143 1.17 jakllsch uint16_t rge_read_phy(struct rge_softc *, uint16_t, uint16_t);
144 1.1 sevan void rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
145 1.1 sevan uint16_t rge_read_phy_ocp(struct rge_softc *, uint16_t);
146 1.1 sevan int rge_get_link_status(struct rge_softc *);
147 1.3 sevan void rge_txstart(struct work *, void *);
148 1.1 sevan void rge_tick(void *);
149 1.1 sevan void rge_link_state(struct rge_softc *);
150 1.1 sevan
151 1.1 sevan static const struct {
152 1.1 sevan uint16_t reg;
153 1.1 sevan uint16_t val;
154 1.17 jakllsch } rtl8125_mac_cfg2_mcu[] = {
155 1.1 sevan RTL8125_MAC_CFG2_MCU
156 1.1 sevan }, rtl8125_mac_cfg3_mcu[] = {
157 1.1 sevan RTL8125_MAC_CFG3_MCU
158 1.17 jakllsch }, rtl8125_mac_cfg4_mcu[] = {
159 1.17 jakllsch RTL8125_MAC_CFG4_MCU
160 1.17 jakllsch }, rtl8125_mac_cfg5_mcu[] = {
161 1.17 jakllsch RTL8125_MAC_CFG5_MCU
162 1.1 sevan };
163 1.1 sevan
164 1.2 sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
165 1.2 sevan NULL, NULL); /* Sevan - detach function? */
166 1.1 sevan
167 1.19 thorpej static const struct device_compatible_entry compat_data[] = {
168 1.19 thorpej { .id = PCI_ID_CODE(PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000) },
169 1.19 thorpej { .id = PCI_ID_CODE(PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125) },
170 1.19 thorpej
171 1.19 thorpej PCI_COMPAT_EOL
172 1.1 sevan };
173 1.1 sevan
174 1.2 sevan static int
175 1.2 sevan rge_match(device_t parent, cfdata_t match, void *aux)
176 1.1 sevan {
177 1.2 sevan struct pci_attach_args *pa =aux;
178 1.2 sevan
179 1.19 thorpej return pci_compatible_match(pa, compat_data);
180 1.1 sevan }
181 1.1 sevan
182 1.1 sevan void
183 1.2 sevan rge_attach(device_t parent, device_t self, void *aux)
184 1.1 sevan {
185 1.11 sevan struct rge_softc *sc = device_private(self);
186 1.1 sevan struct pci_attach_args *pa = aux;
187 1.1 sevan pci_chipset_tag_t pc = pa->pa_pc;
188 1.17 jakllsch pci_intr_handle_t *ihp;
189 1.2 sevan char intrbuf[PCI_INTRSTR_LEN];
190 1.1 sevan const char *intrstr = NULL;
191 1.1 sevan struct ifnet *ifp;
192 1.1 sevan pcireg_t reg;
193 1.1 sevan uint32_t hwrev;
194 1.1 sevan uint8_t eaddr[ETHER_ADDR_LEN];
195 1.1 sevan int offset;
196 1.17 jakllsch pcireg_t command;
197 1.1 sevan
198 1.1 sevan pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
199 1.1 sevan
200 1.12 sevan sc->sc_dev = self;
201 1.12 sevan
202 1.17 jakllsch pci_aprint_devinfo(pa, "Ethernet controller");
203 1.17 jakllsch
204 1.5 skrll /*
205 1.1 sevan * Map control/status registers.
206 1.1 sevan */
207 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
208 1.1 sevan PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
209 1.2 sevan NULL, &sc->rge_bsize)) {
210 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
211 1.1 sevan PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
212 1.2 sevan &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
213 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
214 1.1 sevan 0, &sc->rge_btag, &sc->rge_bhandle, NULL,
215 1.2 sevan &sc->rge_bsize)) {
216 1.13 sevan aprint_error(": can't map mem or i/o space\n");
217 1.1 sevan return;
218 1.1 sevan }
219 1.1 sevan }
220 1.1 sevan }
221 1.1 sevan
222 1.17 jakllsch int counts[PCI_INTR_TYPE_SIZE] = {
223 1.17 jakllsch [PCI_INTR_TYPE_INTX] = 1,
224 1.17 jakllsch [PCI_INTR_TYPE_MSI] = 1,
225 1.17 jakllsch [PCI_INTR_TYPE_MSIX] = 1,
226 1.17 jakllsch };
227 1.17 jakllsch int max_type = PCI_INTR_TYPE_MSIX;
228 1.5 skrll /*
229 1.1 sevan * Allocate interrupt.
230 1.1 sevan */
231 1.17 jakllsch if (pci_intr_alloc(pa, &ihp, counts, max_type) != 0) {
232 1.13 sevan aprint_error(": couldn't map interrupt\n");
233 1.1 sevan return;
234 1.1 sevan }
235 1.17 jakllsch switch (pci_intr_type(pc, ihp[0])) {
236 1.17 jakllsch case PCI_INTR_TYPE_MSIX:
237 1.17 jakllsch case PCI_INTR_TYPE_MSI:
238 1.17 jakllsch sc->rge_flags |= RGE_FLAG_MSI;
239 1.17 jakllsch break;
240 1.17 jakllsch default:
241 1.17 jakllsch break;
242 1.17 jakllsch }
243 1.17 jakllsch intrstr = pci_intr_string(pc, ihp[0], intrbuf, sizeof(intrbuf));
244 1.17 jakllsch sc->sc_ih = pci_intr_establish_xname(pc, ihp[0], IPL_NET, rge_intr,
245 1.14 sevan sc, device_xname(sc->sc_dev));
246 1.1 sevan if (sc->sc_ih == NULL) {
247 1.13 sevan aprint_error_dev(sc->sc_dev, ": couldn't establish interrupt");
248 1.1 sevan if (intrstr != NULL)
249 1.13 sevan aprint_error(" at %s\n", intrstr);
250 1.13 sevan aprint_error("\n");
251 1.1 sevan return;
252 1.1 sevan }
253 1.13 sevan aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
254 1.1 sevan
255 1.9 thorpej if (pci_dma64_available(pa))
256 1.9 thorpej sc->sc_dmat = pa->pa_dmat64;
257 1.9 thorpej else
258 1.9 thorpej sc->sc_dmat = pa->pa_dmat;
259 1.9 thorpej
260 1.1 sevan sc->sc_pc = pa->pa_pc;
261 1.1 sevan sc->sc_tag = pa->pa_tag;
262 1.1 sevan
263 1.1 sevan /* Determine hardware revision */
264 1.1 sevan hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
265 1.1 sevan switch (hwrev) {
266 1.1 sevan case 0x60800000:
267 1.1 sevan sc->rge_type = MAC_CFG2;
268 1.1 sevan break;
269 1.1 sevan case 0x60900000:
270 1.1 sevan sc->rge_type = MAC_CFG3;
271 1.1 sevan break;
272 1.17 jakllsch case 0x64000000:
273 1.17 jakllsch sc->rge_type = MAC_CFG4;
274 1.17 jakllsch break;
275 1.17 jakllsch case 0x64100000:
276 1.17 jakllsch sc->rge_type = MAC_CFG5;
277 1.17 jakllsch break;
278 1.1 sevan default:
279 1.13 sevan aprint_error(": unknown version 0x%08x\n", hwrev);
280 1.1 sevan return;
281 1.1 sevan }
282 1.1 sevan
283 1.1 sevan rge_config_imtype(sc, RGE_IMTYPE_SIM);
284 1.1 sevan
285 1.5 skrll /*
286 1.1 sevan * PCI Express check.
287 1.1 sevan */
288 1.1 sevan if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
289 1.1 sevan &offset, NULL)) {
290 1.17 jakllsch /* Disable PCIe ASPM and ECPM. */
291 1.1 sevan reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
292 1.2 sevan offset + PCIE_LCSR);
293 1.17 jakllsch reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 |
294 1.17 jakllsch PCIE_LCSR_ENCLKPM);
295 1.2 sevan pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
296 1.1 sevan reg);
297 1.1 sevan }
298 1.1 sevan
299 1.1 sevan rge_exit_oob(sc);
300 1.1 sevan rge_hw_init(sc);
301 1.1 sevan
302 1.1 sevan rge_get_macaddr(sc, eaddr);
303 1.13 sevan aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
304 1.13 sevan ether_sprintf(eaddr));
305 1.1 sevan
306 1.2 sevan memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
307 1.1 sevan
308 1.1 sevan rge_set_phy_power(sc, 1);
309 1.1 sevan rge_phy_config(sc);
310 1.1 sevan
311 1.1 sevan if (rge_allocmem(sc))
312 1.1 sevan return;
313 1.1 sevan
314 1.2 sevan ifp = &sc->sc_ec.ec_if;
315 1.1 sevan ifp->if_softc = sc;
316 1.14 sevan strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
317 1.1 sevan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
318 1.2 sevan #ifdef RGE_MPSAFE
319 1.18 knakahar ifp->if_extflags = IFEF_MPSAFE;
320 1.2 sevan #endif
321 1.1 sevan ifp->if_ioctl = rge_ioctl;
322 1.17 jakllsch ifp->if_stop = rge_stop;
323 1.2 sevan ifp->if_start = rge_start;
324 1.17 jakllsch ifp->if_init = rge_init;
325 1.1 sevan ifp->if_watchdog = rge_watchdog;
326 1.17 jakllsch IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT - 1);
327 1.1 sevan
328 1.17 jakllsch #if notyet
329 1.17 jakllsch ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
330 1.2 sevan IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
331 1.2 sevan IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
332 1.17 jakllsch #endif
333 1.1 sevan
334 1.17 jakllsch sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
335 1.17 jakllsch sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
336 1.1 sevan
337 1.3 sevan callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
338 1.3 sevan callout_setfunc(&sc->sc_timeout, rge_tick, sc);
339 1.17 jakllsch
340 1.17 jakllsch command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
341 1.17 jakllsch command |= PCI_COMMAND_MASTER_ENABLE;
342 1.17 jakllsch pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
343 1.1 sevan
344 1.1 sevan /* Initialize ifmedia structures. */
345 1.17 jakllsch sc->sc_ec.ec_ifmedia = &sc->sc_media;
346 1.1 sevan ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
347 1.1 sevan rge_ifmedia_sts);
348 1.1 sevan rge_add_media_types(sc);
349 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
350 1.1 sevan ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
351 1.1 sevan sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
352 1.1 sevan
353 1.1 sevan if_attach(ifp);
354 1.2 sevan ether_ifattach(ifp, eaddr);
355 1.20 msaitoh
356 1.20 msaitoh if (pmf_device_register(self, NULL, NULL))
357 1.20 msaitoh pmf_class_network_register(self, ifp);
358 1.20 msaitoh else
359 1.20 msaitoh aprint_error_dev(self, "couldn't establish power handler\n");
360 1.1 sevan }
361 1.1 sevan
362 1.1 sevan int
363 1.1 sevan rge_intr(void *arg)
364 1.1 sevan {
365 1.1 sevan struct rge_softc *sc = arg;
366 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
367 1.1 sevan uint32_t status;
368 1.1 sevan int claimed = 0, rx, tx;
369 1.1 sevan
370 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
371 1.1 sevan return (0);
372 1.1 sevan
373 1.1 sevan /* Disable interrupts. */
374 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
375 1.1 sevan
376 1.1 sevan if (!(sc->rge_flags & RGE_FLAG_MSI)) {
377 1.17 jakllsch if ((RGE_READ_4(sc, RGE_ISR) & sc->rge_intrs) == 0)
378 1.1 sevan return (0);
379 1.1 sevan }
380 1.17 jakllsch
381 1.17 jakllsch status = RGE_READ_4(sc, RGE_ISR);
382 1.1 sevan if (status)
383 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, status);
384 1.1 sevan
385 1.1 sevan if (status & RGE_ISR_PCS_TIMEOUT)
386 1.1 sevan claimed = 1;
387 1.1 sevan
388 1.1 sevan rx = tx = 0;
389 1.17 jakllsch if (status & sc->rge_intrs) {
390 1.1 sevan if (status &
391 1.1 sevan (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
392 1.1 sevan rx |= rge_rxeof(sc);
393 1.1 sevan claimed = 1;
394 1.1 sevan }
395 1.1 sevan
396 1.1 sevan if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
397 1.1 sevan tx |= rge_txeof(sc);
398 1.1 sevan claimed = 1;
399 1.1 sevan }
400 1.1 sevan
401 1.1 sevan if (status & RGE_ISR_SYSTEM_ERR) {
402 1.2 sevan KERNEL_LOCK(1, NULL);
403 1.1 sevan rge_init(ifp);
404 1.2 sevan KERNEL_UNLOCK_ONE(NULL);
405 1.1 sevan claimed = 1;
406 1.1 sevan }
407 1.1 sevan }
408 1.1 sevan
409 1.1 sevan if (sc->rge_timerintr) {
410 1.1 sevan if ((tx | rx) == 0) {
411 1.1 sevan /*
412 1.1 sevan * Nothing needs to be processed, fallback
413 1.1 sevan * to use TX/RX interrupts.
414 1.1 sevan */
415 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_NONE);
416 1.1 sevan
417 1.1 sevan /*
418 1.1 sevan * Recollect, mainly to avoid the possible
419 1.1 sevan * race introduced by changing interrupt
420 1.1 sevan * masks.
421 1.1 sevan */
422 1.1 sevan rge_rxeof(sc);
423 1.1 sevan rge_txeof(sc);
424 1.1 sevan } else
425 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
426 1.1 sevan } else if (tx | rx) {
427 1.1 sevan /*
428 1.1 sevan * Assume that using simulated interrupt moderation
429 1.1 sevan * (hardware timer based) could reduce the interrupt
430 1.1 sevan * rate.
431 1.1 sevan */
432 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
433 1.1 sevan }
434 1.1 sevan
435 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
436 1.1 sevan
437 1.1 sevan return (claimed);
438 1.1 sevan }
439 1.1 sevan
440 1.1 sevan int
441 1.1 sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
442 1.1 sevan {
443 1.1 sevan struct rge_tx_desc *d = NULL;
444 1.1 sevan struct rge_txq *txq;
445 1.1 sevan bus_dmamap_t txmap;
446 1.1 sevan uint32_t cmdsts, cflags = 0;
447 1.1 sevan int cur, error, i, last, nsegs;
448 1.1 sevan
449 1.17 jakllsch #if notyet
450 1.1 sevan /*
451 1.1 sevan * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
452 1.1 sevan * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
453 1.1 sevan * take affect.
454 1.1 sevan */
455 1.1 sevan if ((m->m_pkthdr.csum_flags &
456 1.2 sevan (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
457 1.1 sevan cflags |= RGE_TDEXTSTS_IPCSUM;
458 1.1 sevan if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
459 1.1 sevan cflags |= RGE_TDEXTSTS_TCPCSUM;
460 1.1 sevan if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
461 1.1 sevan cflags |= RGE_TDEXTSTS_UDPCSUM;
462 1.1 sevan }
463 1.17 jakllsch #endif
464 1.1 sevan
465 1.1 sevan txq = &sc->rge_ldata.rge_txq[idx];
466 1.1 sevan txmap = txq->txq_dmamap;
467 1.1 sevan
468 1.1 sevan error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
469 1.1 sevan switch (error) {
470 1.1 sevan case 0:
471 1.1 sevan break;
472 1.1 sevan case EFBIG: /* mbuf chain is too fragmented */
473 1.1 sevan if (m_defrag(m, M_DONTWAIT) == 0 &&
474 1.1 sevan bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
475 1.1 sevan BUS_DMA_NOWAIT) == 0)
476 1.1 sevan break;
477 1.1 sevan
478 1.1 sevan /* FALLTHROUGH */
479 1.1 sevan default:
480 1.1 sevan return (0);
481 1.1 sevan }
482 1.1 sevan
483 1.1 sevan bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
484 1.1 sevan BUS_DMASYNC_PREWRITE);
485 1.1 sevan
486 1.1 sevan nsegs = txmap->dm_nsegs;
487 1.1 sevan
488 1.1 sevan /* Set up hardware VLAN tagging. */
489 1.17 jakllsch if (vlan_has_tag(m))
490 1.17 jakllsch cflags |= bswap16(vlan_get_tag(m)) | RGE_TDEXTSTS_VTAG;
491 1.1 sevan
492 1.17 jakllsch last = cur = idx;
493 1.1 sevan cmdsts = RGE_TDCMDSTS_SOF;
494 1.1 sevan
495 1.1 sevan for (i = 0; i < txmap->dm_nsegs; i++) {
496 1.1 sevan d = &sc->rge_ldata.rge_tx_list[cur];
497 1.1 sevan
498 1.1 sevan d->rge_extsts = htole32(cflags);
499 1.1 sevan d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
500 1.1 sevan d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
501 1.1 sevan
502 1.1 sevan cmdsts |= txmap->dm_segs[i].ds_len;
503 1.1 sevan
504 1.1 sevan if (cur == RGE_TX_LIST_CNT - 1)
505 1.1 sevan cmdsts |= RGE_TDCMDSTS_EOR;
506 1.1 sevan
507 1.1 sevan d->rge_cmdsts = htole32(cmdsts);
508 1.1 sevan
509 1.1 sevan last = cur;
510 1.1 sevan cmdsts = RGE_TDCMDSTS_OWN;
511 1.1 sevan cur = RGE_NEXT_TX_DESC(cur);
512 1.1 sevan }
513 1.1 sevan
514 1.1 sevan /* Set EOF on the last descriptor. */
515 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
516 1.1 sevan
517 1.1 sevan /* Transfer ownership of packet to the chip. */
518 1.1 sevan d = &sc->rge_ldata.rge_tx_list[idx];
519 1.1 sevan
520 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
521 1.1 sevan
522 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
523 1.1 sevan cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
524 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
525 1.1 sevan
526 1.1 sevan /* Update info of TX queue and descriptors. */
527 1.1 sevan txq->txq_mbuf = m;
528 1.1 sevan txq->txq_descidx = last;
529 1.1 sevan
530 1.1 sevan return (nsegs);
531 1.1 sevan }
532 1.1 sevan
533 1.1 sevan int
534 1.2 sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
535 1.1 sevan {
536 1.1 sevan struct rge_softc *sc = ifp->if_softc;
537 1.17 jakllsch //struct ifreq *ifr = (struct ifreq *)data;
538 1.1 sevan int s, error = 0;
539 1.1 sevan
540 1.1 sevan s = splnet();
541 1.1 sevan
542 1.1 sevan switch (cmd) {
543 1.1 sevan case SIOCSIFFLAGS:
544 1.17 jakllsch if ((error = ifioctl_common(ifp, cmd, data)) != 0)
545 1.17 jakllsch break;
546 1.17 jakllsch /* XXX set an ifflags callback and let ether_ioctl
547 1.17 jakllsch * handle all of this.
548 1.17 jakllsch */
549 1.1 sevan if (ifp->if_flags & IFF_UP) {
550 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
551 1.1 sevan error = ENETRESET;
552 1.1 sevan else
553 1.1 sevan rge_init(ifp);
554 1.1 sevan } else {
555 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
556 1.17 jakllsch rge_stop(ifp, 1);
557 1.1 sevan }
558 1.1 sevan break;
559 1.1 sevan default:
560 1.2 sevan error = ether_ioctl(ifp, cmd, data);
561 1.1 sevan }
562 1.1 sevan
563 1.1 sevan if (error == ENETRESET) {
564 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
565 1.1 sevan rge_iff(sc);
566 1.1 sevan error = 0;
567 1.1 sevan }
568 1.1 sevan
569 1.1 sevan splx(s);
570 1.1 sevan return (error);
571 1.1 sevan }
572 1.1 sevan
573 1.1 sevan void
574 1.3 sevan rge_start(struct ifnet *ifp)
575 1.1 sevan {
576 1.1 sevan struct rge_softc *sc = ifp->if_softc;
577 1.1 sevan struct mbuf *m;
578 1.1 sevan int free, idx, used;
579 1.1 sevan int queued = 0;
580 1.1 sevan
581 1.2 sevan #define LINK_STATE_IS_UP(_s) \
582 1.2 sevan ((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
583 1.2 sevan
584 1.1 sevan if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
585 1.17 jakllsch IFQ_PURGE(&ifp->if_snd);
586 1.1 sevan return;
587 1.1 sevan }
588 1.1 sevan
589 1.1 sevan /* Calculate free space. */
590 1.1 sevan idx = sc->rge_ldata.rge_txq_prodidx;
591 1.1 sevan free = sc->rge_ldata.rge_txq_considx;
592 1.1 sevan if (free <= idx)
593 1.1 sevan free += RGE_TX_LIST_CNT;
594 1.1 sevan free -= idx;
595 1.1 sevan
596 1.1 sevan for (;;) {
597 1.1 sevan if (RGE_TX_NSEGS >= free + 2) {
598 1.3 sevan SET(ifp->if_flags, IFF_OACTIVE);
599 1.1 sevan break;
600 1.1 sevan }
601 1.1 sevan
602 1.3 sevan IFQ_DEQUEUE(&ifp->if_snd, m);
603 1.1 sevan if (m == NULL)
604 1.1 sevan break;
605 1.1 sevan
606 1.1 sevan used = rge_encap(sc, m, idx);
607 1.1 sevan if (used == 0) {
608 1.1 sevan m_freem(m);
609 1.1 sevan continue;
610 1.1 sevan }
611 1.1 sevan
612 1.1 sevan KASSERT(used <= free);
613 1.1 sevan free -= used;
614 1.1 sevan
615 1.17 jakllsch bpf_mtap(ifp, m, BPF_D_OUT);
616 1.1 sevan
617 1.1 sevan idx += used;
618 1.1 sevan if (idx >= RGE_TX_LIST_CNT)
619 1.1 sevan idx -= RGE_TX_LIST_CNT;
620 1.1 sevan
621 1.1 sevan queued++;
622 1.1 sevan }
623 1.1 sevan
624 1.1 sevan if (queued == 0)
625 1.1 sevan return;
626 1.1 sevan
627 1.1 sevan /* Set a timeout in case the chip goes out to lunch. */
628 1.1 sevan ifp->if_timer = 5;
629 1.1 sevan
630 1.1 sevan sc->rge_ldata.rge_txq_prodidx = idx;
631 1.17 jakllsch #if 0
632 1.1 sevan ifq_serialize(ifq, &sc->sc_task);
633 1.17 jakllsch #else
634 1.17 jakllsch rge_txstart(&sc->sc_task, sc);
635 1.17 jakllsch #endif
636 1.1 sevan }
637 1.1 sevan
638 1.1 sevan void
639 1.1 sevan rge_watchdog(struct ifnet *ifp)
640 1.1 sevan {
641 1.1 sevan struct rge_softc *sc = ifp->if_softc;
642 1.1 sevan
643 1.16 jakllsch device_printf(sc->sc_dev, "watchdog timeout\n");
644 1.4 skrll if_statinc(ifp, if_oerrors);
645 1.1 sevan
646 1.1 sevan rge_init(ifp);
647 1.1 sevan }
648 1.1 sevan
649 1.1 sevan int
650 1.1 sevan rge_init(struct ifnet *ifp)
651 1.1 sevan {
652 1.1 sevan struct rge_softc *sc = ifp->if_softc;
653 1.1 sevan uint32_t val;
654 1.1 sevan int i;
655 1.1 sevan
656 1.17 jakllsch rge_stop(ifp, 0);
657 1.1 sevan
658 1.1 sevan /* Set MAC address. */
659 1.17 jakllsch rge_set_macaddr(sc, CLLADDR(ifp->if_sadl));
660 1.1 sevan
661 1.17 jakllsch /* Set Maximum frame size. */
662 1.17 jakllsch RGE_WRITE_2(sc, RGE_RXMAXSIZE, RGE_JUMBO_FRAMELEN);
663 1.1 sevan
664 1.1 sevan /* Initialize RX descriptors list. */
665 1.1 sevan if (rge_rx_list_init(sc) == ENOBUFS) {
666 1.16 jakllsch device_printf(sc->sc_dev,
667 1.13 sevan "init failed: no memory for RX buffers\n");
668 1.17 jakllsch rge_stop(ifp, 1);
669 1.1 sevan return (ENOBUFS);
670 1.1 sevan }
671 1.1 sevan
672 1.1 sevan /* Initialize TX descriptors. */
673 1.1 sevan rge_tx_list_init(sc);
674 1.1 sevan
675 1.1 sevan /* Load the addresses of the RX and TX lists into the chip. */
676 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
677 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
678 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
679 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
680 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
681 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
682 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
683 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
684 1.1 sevan
685 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
686 1.1 sevan
687 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
688 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
689 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
690 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
691 1.1 sevan
692 1.1 sevan /* Clear interrupt moderation timer. */
693 1.1 sevan for (i = 0; i < 64; i++)
694 1.17 jakllsch RGE_WRITE_4(sc, RGE_INTMITI(i), 0);
695 1.1 sevan
696 1.1 sevan /* Set the initial RX and TX configurations. */
697 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
698 1.1 sevan RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
699 1.1 sevan
700 1.1 sevan val = rge_read_csi(sc, 0x70c) & ~0xff000000;
701 1.1 sevan rge_write_csi(sc, 0x70c, val | 0x27000000);
702 1.1 sevan
703 1.1 sevan /* Enable hardware optimization function. */
704 1.1 sevan val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
705 1.1 sevan pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
706 1.1 sevan
707 1.1 sevan RGE_WRITE_2(sc, 0x0382, 0x221b);
708 1.1 sevan RGE_WRITE_1(sc, 0x4500, 0);
709 1.1 sevan RGE_WRITE_2(sc, 0x4800, 0);
710 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
711 1.1 sevan
712 1.1 sevan rge_write_mac_ocp(sc, 0xc140, 0xffff);
713 1.1 sevan rge_write_mac_ocp(sc, 0xc142, 0xffff);
714 1.1 sevan
715 1.1 sevan val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
716 1.1 sevan rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
717 1.1 sevan
718 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
719 1.1 sevan RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
720 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
721 1.1 sevan
722 1.1 sevan val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
723 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
724 1.17 jakllsch rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
725 1.17 jakllsch else
726 1.17 jakllsch rge_write_mac_ocp(sc, 0xe614, val | 0x0200);
727 1.1 sevan
728 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
729 1.1 sevan
730 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
731 1.17 jakllsch val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
732 1.17 jakllsch rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
733 1.17 jakllsch } else
734 1.17 jakllsch RGE_MAC_CLRBIT(sc, 0xe63e, 0x0030);
735 1.1 sevan
736 1.1 sevan RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
737 1.1 sevan
738 1.17 jakllsch val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x00ff;
739 1.1 sevan rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
740 1.1 sevan
741 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
742 1.1 sevan rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
743 1.1 sevan
744 1.1 sevan val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
745 1.1 sevan rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
746 1.1 sevan
747 1.1 sevan RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
748 1.1 sevan
749 1.17 jakllsch RGE_SETBIT_1(sc, RGE_DLLPR, RGE_DLLPR_TX_10M_PS_EN);
750 1.17 jakllsch
751 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
752 1.1 sevan
753 1.17 jakllsch val = rge_read_mac_ocp(sc, 0xea1c) & ~0x0003;
754 1.17 jakllsch rge_write_mac_ocp(sc, 0xea1c, val | 0x0001);
755 1.17 jakllsch
756 1.1 sevan val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
757 1.1 sevan rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
758 1.1 sevan
759 1.1 sevan RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
760 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
761 1.1 sevan
762 1.1 sevan val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
763 1.1 sevan rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
764 1.1 sevan
765 1.1 sevan val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
766 1.1 sevan rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
767 1.1 sevan
768 1.17 jakllsch val = rge_read_mac_ocp(sc, 0xe84c) & ~0x0040;
769 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
770 1.17 jakllsch rge_write_mac_ocp(sc, 0xe84c, 0x00c0);
771 1.17 jakllsch else
772 1.17 jakllsch rge_write_mac_ocp(sc, 0xe84c, 0x0080);
773 1.17 jakllsch
774 1.17 jakllsch RGE_SETBIT_1(sc, RGE_DLLPR, RGE_DLLPR_PFM_EN);
775 1.17 jakllsch
776 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3)
777 1.17 jakllsch RGE_SETBIT_1(sc, RGE_MCUCMD, 0x01);
778 1.1 sevan
779 1.1 sevan /* Disable EEE plus. */
780 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
781 1.1 sevan
782 1.1 sevan RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
783 1.1 sevan
784 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
785 1.1 sevan DELAY(1);
786 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
787 1.1 sevan
788 1.1 sevan RGE_CLRBIT_4(sc, 0x1880, 0x0030);
789 1.1 sevan
790 1.1 sevan rge_write_mac_ocp(sc, 0xe098, 0xc302);
791 1.1 sevan
792 1.17 jakllsch if ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
793 1.1 sevan RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
794 1.17 jakllsch else
795 1.17 jakllsch RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
796 1.1 sevan
797 1.1 sevan RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
798 1.1 sevan
799 1.1 sevan for (i = 0; i < 10; i++) {
800 1.1 sevan if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
801 1.1 sevan break;
802 1.1 sevan DELAY(1000);
803 1.1 sevan }
804 1.1 sevan
805 1.1 sevan /* Disable RXDV gate. */
806 1.1 sevan RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
807 1.1 sevan DELAY(2000);
808 1.1 sevan
809 1.1 sevan rge_ifmedia_upd(ifp);
810 1.1 sevan
811 1.1 sevan /* Enable transmit and receive. */
812 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
813 1.1 sevan
814 1.1 sevan /* Program promiscuous mode and multicast filters. */
815 1.1 sevan rge_iff(sc);
816 1.1 sevan
817 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
818 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
819 1.1 sevan
820 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
821 1.1 sevan
822 1.1 sevan /* Enable interrupts. */
823 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
824 1.1 sevan
825 1.1 sevan ifp->if_flags |= IFF_RUNNING;
826 1.3 sevan CLR(ifp->if_flags, IFF_OACTIVE);
827 1.1 sevan
828 1.3 sevan callout_schedule(&sc->sc_timeout, 1);
829 1.1 sevan
830 1.1 sevan return (0);
831 1.1 sevan }
832 1.1 sevan
833 1.1 sevan /*
834 1.1 sevan * Stop the adapter and free any mbufs allocated to the RX and TX lists.
835 1.1 sevan */
836 1.1 sevan void
837 1.17 jakllsch rge_stop(struct ifnet *ifp, int disable)
838 1.1 sevan {
839 1.1 sevan struct rge_softc *sc = ifp->if_softc;
840 1.1 sevan int i;
841 1.1 sevan
842 1.17 jakllsch if (disable) {
843 1.17 jakllsch callout_halt(&sc->sc_timeout, NULL);
844 1.17 jakllsch } else
845 1.17 jakllsch callout_stop(&sc->sc_timeout);
846 1.1 sevan
847 1.1 sevan ifp->if_timer = 0;
848 1.1 sevan ifp->if_flags &= ~IFF_RUNNING;
849 1.1 sevan sc->rge_timerintr = 0;
850 1.1 sevan
851 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
852 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
853 1.1 sevan RGE_RXCFG_ERRPKT);
854 1.1 sevan
855 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
856 1.17 jakllsch
857 1.17 jakllsch /* Clear timer interrupts. */
858 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT0, 0);
859 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT1, 0);
860 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT2, 0);
861 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT3, 0);
862 1.1 sevan
863 1.1 sevan rge_reset(sc);
864 1.1 sevan
865 1.17 jakllsch // intr_barrier(sc->sc_ih);
866 1.17 jakllsch // ifq_barrier(&ifp->if_snd);
867 1.2 sevan /* ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
868 1.1 sevan
869 1.1 sevan if (sc->rge_head != NULL) {
870 1.1 sevan m_freem(sc->rge_head);
871 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
872 1.1 sevan }
873 1.1 sevan
874 1.1 sevan /* Free the TX list buffers. */
875 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
876 1.1 sevan if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
877 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
878 1.1 sevan sc->rge_ldata.rge_txq[i].txq_dmamap);
879 1.1 sevan m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
880 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
881 1.1 sevan }
882 1.1 sevan }
883 1.1 sevan
884 1.1 sevan /* Free the RX list buffers. */
885 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
886 1.1 sevan if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
887 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
888 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_dmamap);
889 1.1 sevan m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
890 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
891 1.1 sevan }
892 1.1 sevan }
893 1.1 sevan }
894 1.1 sevan
895 1.1 sevan /*
896 1.1 sevan * Set media options.
897 1.1 sevan */
898 1.1 sevan int
899 1.1 sevan rge_ifmedia_upd(struct ifnet *ifp)
900 1.1 sevan {
901 1.1 sevan struct rge_softc *sc = ifp->if_softc;
902 1.1 sevan struct ifmedia *ifm = &sc->sc_media;
903 1.1 sevan int anar, gig, val;
904 1.1 sevan
905 1.1 sevan if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
906 1.1 sevan return (EINVAL);
907 1.1 sevan
908 1.1 sevan /* Disable Gigabit Lite. */
909 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
910 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
911 1.1 sevan
912 1.1 sevan val = rge_read_phy_ocp(sc, 0xa5d4);
913 1.1 sevan val &= ~RGE_ADV_2500TFDX;
914 1.1 sevan
915 1.1 sevan anar = gig = 0;
916 1.1 sevan switch (IFM_SUBTYPE(ifm->ifm_media)) {
917 1.1 sevan case IFM_AUTO:
918 1.17 jakllsch anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
919 1.17 jakllsch gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
920 1.1 sevan val |= RGE_ADV_2500TFDX;
921 1.1 sevan break;
922 1.1 sevan case IFM_2500_T:
923 1.17 jakllsch anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
924 1.17 jakllsch gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
925 1.1 sevan val |= RGE_ADV_2500TFDX;
926 1.1 sevan ifp->if_baudrate = IF_Mbps(2500);
927 1.1 sevan break;
928 1.1 sevan case IFM_1000_T:
929 1.17 jakllsch anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
930 1.17 jakllsch gig = GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
931 1.1 sevan ifp->if_baudrate = IF_Gbps(1);
932 1.1 sevan break;
933 1.1 sevan case IFM_100_TX:
934 1.17 jakllsch gig = rge_read_phy(sc, 0, MII_100T2CR) &
935 1.17 jakllsch ~(GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX);
936 1.17 jakllsch anar = ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) ?
937 1.17 jakllsch ANAR_TX | ANAR_TX_FD | ANAR_10_FD | ANAR_10 :
938 1.17 jakllsch ANAR_TX | ANAR_10_FD | ANAR_10;
939 1.1 sevan ifp->if_baudrate = IF_Mbps(100);
940 1.1 sevan break;
941 1.1 sevan case IFM_10_T:
942 1.17 jakllsch gig = rge_read_phy(sc, 0, MII_100T2CR) &
943 1.17 jakllsch ~(GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX);
944 1.17 jakllsch anar = ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) ?
945 1.17 jakllsch ANAR_10_FD | ANAR_10 : ANAR_10;
946 1.1 sevan ifp->if_baudrate = IF_Mbps(10);
947 1.1 sevan break;
948 1.1 sevan default:
949 1.16 jakllsch device_printf(sc->sc_dev,
950 1.13 sevan "unsupported media type\n");
951 1.1 sevan return (EINVAL);
952 1.1 sevan }
953 1.1 sevan
954 1.1 sevan rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
955 1.1 sevan rge_write_phy(sc, 0, MII_100T2CR, gig);
956 1.1 sevan rge_write_phy_ocp(sc, 0xa5d4, val);
957 1.17 jakllsch rge_write_phy(sc, 0, MII_BMCR, BMCR_RESET | BMCR_AUTOEN |
958 1.17 jakllsch BMCR_STARTNEG);
959 1.1 sevan
960 1.1 sevan return (0);
961 1.1 sevan }
962 1.1 sevan
963 1.1 sevan /*
964 1.1 sevan * Report current media status.
965 1.1 sevan */
966 1.1 sevan void
967 1.1 sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
968 1.1 sevan {
969 1.1 sevan struct rge_softc *sc = ifp->if_softc;
970 1.1 sevan uint16_t status = 0;
971 1.1 sevan
972 1.1 sevan ifmr->ifm_status = IFM_AVALID;
973 1.1 sevan ifmr->ifm_active = IFM_ETHER;
974 1.1 sevan
975 1.1 sevan if (rge_get_link_status(sc)) {
976 1.1 sevan ifmr->ifm_status |= IFM_ACTIVE;
977 1.1 sevan
978 1.1 sevan status = RGE_READ_2(sc, RGE_PHYSTAT);
979 1.1 sevan if ((status & RGE_PHYSTAT_FDX) ||
980 1.1 sevan (status & RGE_PHYSTAT_2500MBPS))
981 1.1 sevan ifmr->ifm_active |= IFM_FDX;
982 1.1 sevan else
983 1.1 sevan ifmr->ifm_active |= IFM_HDX;
984 1.1 sevan
985 1.1 sevan if (status & RGE_PHYSTAT_10MBPS)
986 1.1 sevan ifmr->ifm_active |= IFM_10_T;
987 1.1 sevan else if (status & RGE_PHYSTAT_100MBPS)
988 1.1 sevan ifmr->ifm_active |= IFM_100_TX;
989 1.1 sevan else if (status & RGE_PHYSTAT_1000MBPS)
990 1.1 sevan ifmr->ifm_active |= IFM_1000_T;
991 1.1 sevan else if (status & RGE_PHYSTAT_2500MBPS)
992 1.1 sevan ifmr->ifm_active |= IFM_2500_T;
993 1.1 sevan }
994 1.1 sevan }
995 1.1 sevan
996 1.5 skrll /*
997 1.1 sevan * Allocate memory for RX/TX rings.
998 1.1 sevan */
999 1.1 sevan int
1000 1.1 sevan rge_allocmem(struct rge_softc *sc)
1001 1.1 sevan {
1002 1.1 sevan int error, i;
1003 1.1 sevan
1004 1.1 sevan /* Allocate DMA'able memory for the TX ring. */
1005 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
1006 1.1 sevan RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
1007 1.1 sevan if (error) {
1008 1.13 sevan aprint_error_dev(sc->sc_dev, "can't create TX list map\n");
1009 1.1 sevan return (error);
1010 1.1 sevan }
1011 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
1012 1.1 sevan &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
1013 1.17 jakllsch BUS_DMA_NOWAIT);
1014 1.1 sevan if (error) {
1015 1.13 sevan aprint_error_dev(sc->sc_dev, "can't alloc TX list\n");
1016 1.1 sevan return (error);
1017 1.1 sevan }
1018 1.1 sevan
1019 1.1 sevan /* Load the map for the TX ring. */
1020 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
1021 1.1 sevan sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
1022 1.8 sevan (void **) &sc->rge_ldata.rge_tx_list,
1023 1.17 jakllsch BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1024 1.1 sevan if (error) {
1025 1.13 sevan aprint_error_dev(sc->sc_dev, "can't map TX dma buffers\n");
1026 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
1027 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
1028 1.1 sevan return (error);
1029 1.1 sevan }
1030 1.17 jakllsch memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
1031 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1032 1.1 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
1033 1.1 sevan if (error) {
1034 1.13 sevan aprint_error_dev(sc->sc_dev, "can't load TX dma map\n");
1035 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
1036 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
1037 1.2 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
1038 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
1039 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
1040 1.1 sevan return (error);
1041 1.1 sevan }
1042 1.1 sevan
1043 1.1 sevan /* Create DMA maps for TX buffers. */
1044 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
1045 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
1046 1.1 sevan RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
1047 1.1 sevan &sc->rge_ldata.rge_txq[i].txq_dmamap);
1048 1.1 sevan if (error) {
1049 1.13 sevan aprint_error_dev(sc->sc_dev, "can't create DMA map for TX\n");
1050 1.1 sevan return (error);
1051 1.1 sevan }
1052 1.1 sevan }
1053 1.1 sevan
1054 1.1 sevan /* Allocate DMA'able memory for the RX ring. */
1055 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
1056 1.1 sevan RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
1057 1.1 sevan if (error) {
1058 1.13 sevan aprint_error_dev(sc->sc_dev, "can't create RX list map\n");
1059 1.1 sevan return (error);
1060 1.1 sevan }
1061 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
1062 1.1 sevan &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
1063 1.17 jakllsch BUS_DMA_NOWAIT);
1064 1.1 sevan if (error) {
1065 1.13 sevan aprint_error_dev(sc->sc_dev, "can't alloc RX list\n");
1066 1.1 sevan return (error);
1067 1.1 sevan }
1068 1.1 sevan
1069 1.1 sevan /* Load the map for the RX ring. */
1070 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1071 1.1 sevan sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
1072 1.8 sevan (void **) &sc->rge_ldata.rge_rx_list,
1073 1.17 jakllsch BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1074 1.1 sevan if (error) {
1075 1.13 sevan aprint_error_dev(sc->sc_dev, "can't map RX dma buffers\n");
1076 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1077 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1078 1.1 sevan return (error);
1079 1.1 sevan }
1080 1.17 jakllsch memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
1081 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1082 1.1 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
1083 1.1 sevan if (error) {
1084 1.13 sevan aprint_error_dev(sc->sc_dev, "can't load RX dma map\n");
1085 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
1086 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
1087 1.2 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
1088 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1089 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1090 1.1 sevan return (error);
1091 1.1 sevan }
1092 1.1 sevan
1093 1.1 sevan /* Create DMA maps for RX buffers. */
1094 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1095 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
1096 1.1 sevan RGE_JUMBO_FRAMELEN, 0, 0,
1097 1.1 sevan &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
1098 1.1 sevan if (error) {
1099 1.13 sevan aprint_error_dev(sc->sc_dev, "can't create DMA map for RX\n");
1100 1.1 sevan return (error);
1101 1.1 sevan }
1102 1.1 sevan }
1103 1.1 sevan
1104 1.1 sevan return (error);
1105 1.1 sevan }
1106 1.1 sevan
1107 1.1 sevan /*
1108 1.1 sevan * Initialize the RX descriptor and attach an mbuf cluster.
1109 1.1 sevan */
1110 1.1 sevan int
1111 1.1 sevan rge_newbuf(struct rge_softc *sc, int idx)
1112 1.1 sevan {
1113 1.1 sevan struct mbuf *m;
1114 1.1 sevan struct rge_rx_desc *r;
1115 1.1 sevan struct rge_rxq *rxq;
1116 1.1 sevan bus_dmamap_t rxmap;
1117 1.1 sevan
1118 1.17 jakllsch m = MCLGETL(NULL, M_DONTWAIT, RGE_JUMBO_FRAMELEN);
1119 1.1 sevan if (m == NULL)
1120 1.1 sevan return (ENOBUFS);
1121 1.1 sevan
1122 1.1 sevan m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
1123 1.1 sevan
1124 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[idx];
1125 1.1 sevan rxmap = rxq->rxq_dmamap;
1126 1.1 sevan
1127 1.1 sevan if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
1128 1.1 sevan goto out;
1129 1.1 sevan
1130 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1131 1.1 sevan BUS_DMASYNC_PREREAD);
1132 1.1 sevan
1133 1.1 sevan /* Map the segments into RX descriptors. */
1134 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1135 1.1 sevan
1136 1.1 sevan if (RGE_OWN(r)) {
1137 1.16 jakllsch device_printf(sc->sc_dev, "tried to map busy RX descriptor\n");
1138 1.1 sevan goto out;
1139 1.1 sevan }
1140 1.1 sevan
1141 1.1 sevan rxq->rxq_mbuf = m;
1142 1.1 sevan
1143 1.1 sevan r->rge_extsts = 0;
1144 1.1 sevan r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
1145 1.1 sevan r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
1146 1.1 sevan
1147 1.1 sevan r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
1148 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1149 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1150 1.1 sevan
1151 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1152 1.1 sevan
1153 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1154 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1155 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1156 1.1 sevan
1157 1.1 sevan return (0);
1158 1.1 sevan out:
1159 1.1 sevan if (m != NULL)
1160 1.1 sevan m_freem(m);
1161 1.1 sevan return (ENOMEM);
1162 1.1 sevan }
1163 1.1 sevan
1164 1.1 sevan void
1165 1.1 sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
1166 1.1 sevan {
1167 1.1 sevan struct rge_rx_desc *r;
1168 1.1 sevan
1169 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1170 1.1 sevan
1171 1.1 sevan r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
1172 1.1 sevan r->rge_extsts = 0;
1173 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1174 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1175 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1176 1.1 sevan
1177 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1178 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1179 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1180 1.1 sevan }
1181 1.1 sevan
1182 1.1 sevan int
1183 1.1 sevan rge_rx_list_init(struct rge_softc *sc)
1184 1.1 sevan {
1185 1.1 sevan int i;
1186 1.1 sevan
1187 1.1 sevan memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
1188 1.1 sevan
1189 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1190 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
1191 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS)
1192 1.1 sevan return (ENOBUFS);
1193 1.1 sevan }
1194 1.1 sevan
1195 1.17 jakllsch sc->rge_ldata.rge_rxq_prodidx = sc->rge_ldata.rge_rxq_considx = 0;
1196 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1197 1.1 sevan
1198 1.1 sevan return (0);
1199 1.1 sevan }
1200 1.1 sevan
1201 1.1 sevan void
1202 1.1 sevan rge_tx_list_init(struct rge_softc *sc)
1203 1.1 sevan {
1204 1.1 sevan int i;
1205 1.1 sevan
1206 1.1 sevan memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
1207 1.1 sevan
1208 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++)
1209 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
1210 1.1 sevan
1211 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
1212 1.1 sevan sc->rge_ldata.rge_tx_list_map->dm_mapsize,
1213 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1214 1.1 sevan
1215 1.1 sevan sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
1216 1.1 sevan }
1217 1.1 sevan
1218 1.1 sevan int
1219 1.1 sevan rge_rxeof(struct rge_softc *sc)
1220 1.1 sevan {
1221 1.1 sevan struct mbuf *m;
1222 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1223 1.1 sevan struct rge_rx_desc *cur_rx;
1224 1.1 sevan struct rge_rxq *rxq;
1225 1.1 sevan uint32_t rxstat, extsts;
1226 1.1 sevan int i, total_len, rx = 0;
1227 1.1 sevan
1228 1.17 jakllsch for (i = sc->rge_ldata.rge_rxq_considx; ; i = RGE_NEXT_RX_DESC(i)) {
1229 1.1 sevan /* Invalidate the descriptor memory. */
1230 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1231 1.1 sevan i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1232 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1233 1.1 sevan
1234 1.1 sevan cur_rx = &sc->rge_ldata.rge_rx_list[i];
1235 1.1 sevan
1236 1.1 sevan if (RGE_OWN(cur_rx))
1237 1.1 sevan break;
1238 1.1 sevan
1239 1.1 sevan rxstat = letoh32(cur_rx->rge_cmdsts);
1240 1.1 sevan extsts = letoh32(cur_rx->rge_extsts);
1241 1.5 skrll
1242 1.1 sevan total_len = RGE_RXBYTES(cur_rx);
1243 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[i];
1244 1.1 sevan m = rxq->rxq_mbuf;
1245 1.17 jakllsch rxq->rxq_mbuf = NULL;
1246 1.1 sevan rx = 1;
1247 1.1 sevan
1248 1.1 sevan /* Invalidate the RX mbuf and unload its map. */
1249 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
1250 1.1 sevan rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1251 1.1 sevan bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
1252 1.1 sevan
1253 1.1 sevan if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
1254 1.1 sevan (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
1255 1.1 sevan rge_discard_rxbuf(sc, i);
1256 1.1 sevan continue;
1257 1.1 sevan }
1258 1.1 sevan
1259 1.1 sevan if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
1260 1.4 skrll if_statinc(ifp, if_ierrors);
1261 1.1 sevan /*
1262 1.1 sevan * If this is part of a multi-fragment packet,
1263 1.1 sevan * discard all the pieces.
1264 1.1 sevan */
1265 1.1 sevan if (sc->rge_head != NULL) {
1266 1.1 sevan m_freem(sc->rge_head);
1267 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1268 1.1 sevan }
1269 1.1 sevan rge_discard_rxbuf(sc, i);
1270 1.1 sevan continue;
1271 1.1 sevan }
1272 1.1 sevan
1273 1.1 sevan /*
1274 1.1 sevan * If allocating a replacement mbuf fails,
1275 1.1 sevan * reload the current one.
1276 1.1 sevan */
1277 1.1 sevan
1278 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS) {
1279 1.1 sevan if (sc->rge_head != NULL) {
1280 1.1 sevan m_freem(sc->rge_head);
1281 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1282 1.1 sevan }
1283 1.1 sevan rge_discard_rxbuf(sc, i);
1284 1.1 sevan continue;
1285 1.1 sevan }
1286 1.1 sevan
1287 1.17 jakllsch m_set_rcvif(m, ifp);
1288 1.1 sevan if (sc->rge_head != NULL) {
1289 1.1 sevan m->m_len = total_len;
1290 1.1 sevan /*
1291 1.1 sevan * Special case: if there's 4 bytes or less
1292 1.1 sevan * in this buffer, the mbuf can be discarded:
1293 1.1 sevan * the last 4 bytes is the CRC, which we don't
1294 1.1 sevan * care about anyway.
1295 1.1 sevan */
1296 1.1 sevan if (m->m_len <= ETHER_CRC_LEN) {
1297 1.1 sevan sc->rge_tail->m_len -=
1298 1.1 sevan (ETHER_CRC_LEN - m->m_len);
1299 1.1 sevan m_freem(m);
1300 1.1 sevan } else {
1301 1.1 sevan m->m_len -= ETHER_CRC_LEN;
1302 1.1 sevan m->m_flags &= ~M_PKTHDR;
1303 1.1 sevan sc->rge_tail->m_next = m;
1304 1.1 sevan }
1305 1.1 sevan m = sc->rge_head;
1306 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1307 1.1 sevan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1308 1.1 sevan } else
1309 1.17 jakllsch #if 0
1310 1.1 sevan m->m_pkthdr.len = m->m_len =
1311 1.1 sevan (total_len - ETHER_CRC_LEN);
1312 1.17 jakllsch #else
1313 1.17 jakllsch {
1314 1.17 jakllsch m->m_pkthdr.len = m->m_len = total_len;
1315 1.17 jakllsch m->m_flags |= M_HASFCS;
1316 1.17 jakllsch }
1317 1.17 jakllsch #endif
1318 1.1 sevan
1319 1.17 jakllsch #if notyet
1320 1.1 sevan /* Check IP header checksum. */
1321 1.1 sevan if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
1322 1.1 sevan (extsts & RGE_RDEXTSTS_IPV4))
1323 1.1 sevan m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1324 1.1 sevan
1325 1.1 sevan /* Check TCP/UDP checksum. */
1326 1.1 sevan if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
1327 1.1 sevan (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
1328 1.1 sevan !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
1329 1.1 sevan ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
1330 1.1 sevan !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
1331 1.1 sevan m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1332 1.1 sevan M_UDP_CSUM_IN_OK;
1333 1.17 jakllsch #endif
1334 1.1 sevan
1335 1.1 sevan if (extsts & RGE_RDEXTSTS_VTAG) {
1336 1.17 jakllsch vlan_set_tag(m,
1337 1.17 jakllsch bswap16(extsts & RGE_RDEXTSTS_VLAN_MASK));
1338 1.1 sevan }
1339 1.1 sevan
1340 1.17 jakllsch if_percpuq_enqueue(ifp->if_percpuq, m);
1341 1.1 sevan }
1342 1.1 sevan
1343 1.17 jakllsch sc->rge_ldata.rge_rxq_considx = i;
1344 1.1 sevan
1345 1.1 sevan return (rx);
1346 1.1 sevan }
1347 1.1 sevan
1348 1.1 sevan int
1349 1.1 sevan rge_txeof(struct rge_softc *sc)
1350 1.1 sevan {
1351 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1352 1.1 sevan struct rge_txq *txq;
1353 1.1 sevan uint32_t txstat;
1354 1.1 sevan int cons, idx, prod;
1355 1.1 sevan int free = 0;
1356 1.1 sevan
1357 1.1 sevan prod = sc->rge_ldata.rge_txq_prodidx;
1358 1.1 sevan cons = sc->rge_ldata.rge_txq_considx;
1359 1.1 sevan
1360 1.1 sevan while (prod != cons) {
1361 1.1 sevan txq = &sc->rge_ldata.rge_txq[cons];
1362 1.1 sevan idx = txq->txq_descidx;
1363 1.1 sevan
1364 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1365 1.1 sevan idx * sizeof(struct rge_tx_desc),
1366 1.1 sevan sizeof(struct rge_tx_desc),
1367 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1368 1.1 sevan
1369 1.1 sevan txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
1370 1.1 sevan
1371 1.1 sevan if (txstat & RGE_TDCMDSTS_OWN) {
1372 1.1 sevan free = 2;
1373 1.1 sevan break;
1374 1.1 sevan }
1375 1.1 sevan
1376 1.5 skrll bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
1377 1.1 sevan txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1378 1.1 sevan bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1379 1.1 sevan m_freem(txq->txq_mbuf);
1380 1.1 sevan txq->txq_mbuf = NULL;
1381 1.1 sevan
1382 1.1 sevan if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
1383 1.4 skrll if_statinc(ifp, if_collisions);
1384 1.1 sevan if (txstat & RGE_TDCMDSTS_TXERR)
1385 1.4 skrll if_statinc(ifp, if_oerrors);
1386 1.1 sevan
1387 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1388 1.1 sevan idx * sizeof(struct rge_tx_desc),
1389 1.1 sevan sizeof(struct rge_tx_desc),
1390 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1391 1.1 sevan
1392 1.1 sevan cons = RGE_NEXT_TX_DESC(idx);
1393 1.1 sevan free = 1;
1394 1.1 sevan }
1395 1.1 sevan
1396 1.1 sevan if (free == 0)
1397 1.1 sevan return (0);
1398 1.1 sevan
1399 1.1 sevan sc->rge_ldata.rge_txq_considx = cons;
1400 1.1 sevan
1401 1.17 jakllsch #if 0
1402 1.1 sevan if (ifq_is_oactive(&ifp->if_snd))
1403 1.1 sevan ifq_restart(&ifp->if_snd);
1404 1.1 sevan else if (free == 2)
1405 1.1 sevan ifq_serialize(&ifp->if_snd, &sc->sc_task);
1406 1.1 sevan else
1407 1.1 sevan ifp->if_timer = 0;
1408 1.17 jakllsch #else
1409 1.17 jakllsch #if 0
1410 1.17 jakllsch if (!IF_IS_EMPTY(&ifp->if_snd))
1411 1.17 jakllsch rge_start(ifp);
1412 1.17 jakllsch else
1413 1.17 jakllsch if (free == 2)
1414 1.17 jakllsch if (0) { rge_txstart(&sc->sc_task, sc); }
1415 1.17 jakllsch else
1416 1.17 jakllsch #endif
1417 1.17 jakllsch ifp->if_timer = 0;
1418 1.17 jakllsch #endif
1419 1.1 sevan
1420 1.1 sevan return (1);
1421 1.1 sevan }
1422 1.1 sevan
1423 1.1 sevan void
1424 1.1 sevan rge_reset(struct rge_softc *sc)
1425 1.1 sevan {
1426 1.1 sevan int i;
1427 1.1 sevan
1428 1.1 sevan /* Enable RXDV gate. */
1429 1.1 sevan RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
1430 1.1 sevan DELAY(2000);
1431 1.1 sevan
1432 1.17 jakllsch for (i = 0; i < 3000; i++) {
1433 1.17 jakllsch DELAY(50);
1434 1.1 sevan if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
1435 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
1436 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY))
1437 1.1 sevan break;
1438 1.1 sevan }
1439 1.17 jakllsch if (sc->rge_type == MAC_CFG4 || sc->rge_type == MAC_CFG5) {
1440 1.17 jakllsch for (i = 0; i < 3000; i++) {
1441 1.17 jakllsch DELAY(50);
1442 1.17 jakllsch if ((RGE_READ_2(sc, RGE_IM) & 0x0103) == 0x0103)
1443 1.17 jakllsch break;
1444 1.17 jakllsch }
1445 1.17 jakllsch }
1446 1.17 jakllsch
1447 1.17 jakllsch DELAY(2000);
1448 1.1 sevan
1449 1.1 sevan /* Soft reset. */
1450 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
1451 1.1 sevan
1452 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1453 1.1 sevan DELAY(100);
1454 1.1 sevan if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
1455 1.1 sevan break;
1456 1.1 sevan }
1457 1.1 sevan if (i == RGE_TIMEOUT)
1458 1.16 jakllsch device_printf(sc->sc_dev, "reset never completed!\n");
1459 1.1 sevan }
1460 1.1 sevan
1461 1.1 sevan void
1462 1.1 sevan rge_iff(struct rge_softc *sc)
1463 1.1 sevan {
1464 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1465 1.17 jakllsch struct ethercom *ec = &sc->sc_ec;
1466 1.1 sevan struct ether_multi *enm;
1467 1.1 sevan struct ether_multistep step;
1468 1.1 sevan uint32_t hashes[2];
1469 1.1 sevan uint32_t rxfilt;
1470 1.1 sevan int h = 0;
1471 1.1 sevan
1472 1.1 sevan rxfilt = RGE_READ_4(sc, RGE_RXCFG);
1473 1.1 sevan rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
1474 1.1 sevan ifp->if_flags &= ~IFF_ALLMULTI;
1475 1.1 sevan
1476 1.1 sevan /*
1477 1.1 sevan * Always accept frames destined to our station address.
1478 1.1 sevan * Always accept broadcast frames.
1479 1.1 sevan */
1480 1.1 sevan rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
1481 1.1 sevan
1482 1.17 jakllsch if (ifp->if_flags & IFF_PROMISC) {
1483 1.17 jakllsch allmulti:
1484 1.1 sevan ifp->if_flags |= IFF_ALLMULTI;
1485 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1486 1.1 sevan if (ifp->if_flags & IFF_PROMISC)
1487 1.1 sevan rxfilt |= RGE_RXCFG_ALLPHYS;
1488 1.1 sevan hashes[0] = hashes[1] = 0xffffffff;
1489 1.1 sevan } else {
1490 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1491 1.1 sevan /* Program new filter. */
1492 1.1 sevan memset(hashes, 0, sizeof(hashes));
1493 1.1 sevan
1494 1.17 jakllsch ETHER_LOCK(ec);
1495 1.17 jakllsch ETHER_FIRST_MULTI(step, ec, enm);
1496 1.1 sevan while (enm != NULL) {
1497 1.17 jakllsch if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1498 1.17 jakllsch ETHER_ADDR_LEN) != 0) {
1499 1.17 jakllsch ETHER_UNLOCK(ec);
1500 1.17 jakllsch goto allmulti;
1501 1.17 jakllsch }
1502 1.1 sevan h = ether_crc32_be(enm->enm_addrlo,
1503 1.1 sevan ETHER_ADDR_LEN) >> 26;
1504 1.1 sevan
1505 1.1 sevan if (h < 32)
1506 1.1 sevan hashes[0] |= (1 << h);
1507 1.1 sevan else
1508 1.1 sevan hashes[1] |= (1 << (h - 32));
1509 1.1 sevan
1510 1.1 sevan ETHER_NEXT_MULTI(step, enm);
1511 1.1 sevan }
1512 1.17 jakllsch ETHER_UNLOCK(ec);
1513 1.1 sevan }
1514 1.1 sevan
1515 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
1516 1.2 sevan RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
1517 1.2 sevan RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
1518 1.1 sevan }
1519 1.1 sevan
1520 1.1 sevan void
1521 1.1 sevan rge_set_phy_power(struct rge_softc *sc, int on)
1522 1.1 sevan {
1523 1.1 sevan int i;
1524 1.1 sevan
1525 1.1 sevan if (on) {
1526 1.1 sevan RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
1527 1.1 sevan
1528 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
1529 1.1 sevan
1530 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1531 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 3)
1532 1.1 sevan break;
1533 1.1 sevan DELAY(1000);
1534 1.1 sevan }
1535 1.17 jakllsch } else {
1536 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
1537 1.17 jakllsch RGE_CLRBIT_1(sc, RGE_PMCH, 0x80);
1538 1.17 jakllsch RGE_CLRBIT_1(sc, RGE_PPSW, 0x40);
1539 1.17 jakllsch }
1540 1.1 sevan }
1541 1.1 sevan
1542 1.1 sevan void
1543 1.1 sevan rge_phy_config(struct rge_softc *sc)
1544 1.1 sevan {
1545 1.17 jakllsch /* Read microcode version. */
1546 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x801e);
1547 1.17 jakllsch sc->rge_mcodever = rge_read_phy_ocp(sc, 0xa438);
1548 1.17 jakllsch
1549 1.17 jakllsch switch (sc->rge_type) {
1550 1.17 jakllsch case MAC_CFG2:
1551 1.17 jakllsch rge_phy_config_mac_cfg2(sc);
1552 1.17 jakllsch break;
1553 1.17 jakllsch case MAC_CFG3:
1554 1.17 jakllsch rge_phy_config_mac_cfg3(sc);
1555 1.17 jakllsch break;
1556 1.17 jakllsch case MAC_CFG4:
1557 1.17 jakllsch rge_phy_config_mac_cfg4(sc);
1558 1.17 jakllsch break;
1559 1.17 jakllsch case MAC_CFG5:
1560 1.17 jakllsch rge_phy_config_mac_cfg5(sc);
1561 1.17 jakllsch break;
1562 1.17 jakllsch default:
1563 1.17 jakllsch break; /* Can't happen. */
1564 1.17 jakllsch }
1565 1.17 jakllsch
1566 1.17 jakllsch rge_write_phy(sc, 0x0a5b, 0x12,
1567 1.17 jakllsch rge_read_phy(sc, 0x0a5b, 0x12) & ~0x8000);
1568 1.17 jakllsch
1569 1.17 jakllsch /* Disable EEE. */
1570 1.17 jakllsch RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
1571 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
1572 1.17 jakllsch RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
1573 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
1574 1.17 jakllsch }
1575 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
1576 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
1577 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
1578 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
1579 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
1580 1.17 jakllsch
1581 1.17 jakllsch rge_patch_phy_mcu(sc, 1);
1582 1.17 jakllsch RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
1583 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
1584 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
1585 1.17 jakllsch rge_patch_phy_mcu(sc, 0);
1586 1.17 jakllsch }
1587 1.17 jakllsch
1588 1.17 jakllsch void
1589 1.17 jakllsch rge_phy_config_mac_cfg2(struct rge_softc *sc)
1590 1.17 jakllsch {
1591 1.17 jakllsch uint16_t val;
1592 1.17 jakllsch int i;
1593 1.17 jakllsch
1594 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++)
1595 1.17 jakllsch rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
1596 1.17 jakllsch rtl8125_mac_cfg2_ephy[i].val);
1597 1.17 jakllsch
1598 1.17 jakllsch rge_phy_config_mcu(sc, RGE_MAC_CFG2_MCODE_VER);
1599 1.17 jakllsch
1600 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
1601 1.17 jakllsch rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
1602 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1603 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1604 1.17 jakllsch rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
1605 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
1606 1.17 jakllsch rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1607 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
1608 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
1609 1.17 jakllsch rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
1610 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
1611 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
1612 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
1613 1.17 jakllsch
1614 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1615 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1616 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
1617 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80eb);
1618 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
1619 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
1620 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80f8);
1621 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1622 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
1623 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80f1);
1624 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1625 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
1626 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80fe);
1627 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1628 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
1629 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8102);
1630 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1631 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1632 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8105);
1633 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1634 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
1635 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8100);
1636 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1637 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
1638 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8104);
1639 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1640 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
1641 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8106);
1642 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1643 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
1644 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80dc);
1645 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1646 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
1647 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80df);
1648 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1649 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80e1);
1650 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
1651 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
1652 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
1653 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x819f);
1654 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
1655 1.17 jakllsch rge_write_phy_ocp(sc, 0xbc34, 0x5555);
1656 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
1657 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
1658 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
1659 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1660 1.17 jakllsch }
1661 1.17 jakllsch
1662 1.17 jakllsch void
1663 1.17 jakllsch rge_phy_config_mac_cfg3(struct rge_softc *sc)
1664 1.17 jakllsch {
1665 1.17 jakllsch struct ifnet *ifp = &sc->sc_ec.ec_if;
1666 1.17 jakllsch uint16_t val;
1667 1.1 sevan int i;
1668 1.1 sevan static const uint16_t mac_cfg3_a438_value[] =
1669 1.1 sevan { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
1670 1.1 sevan 0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
1671 1.1 sevan
1672 1.1 sevan static const uint16_t mac_cfg3_b88e_value[] =
1673 1.5 skrll { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
1674 1.1 sevan 0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
1675 1.1 sevan 0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
1676 1.1 sevan 0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
1677 1.1 sevan 0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
1678 1.1 sevan 0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
1679 1.1 sevan
1680 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
1681 1.17 jakllsch rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
1682 1.17 jakllsch rtl8125_mac_cfg3_ephy[i].val);
1683 1.17 jakllsch
1684 1.17 jakllsch val = rge_read_ephy(sc, 0x002a) & ~0x7000;
1685 1.17 jakllsch rge_write_ephy(sc, 0x002a, val | 0x3000);
1686 1.17 jakllsch RGE_EPHY_CLRBIT(sc, 0x0019, 0x0040);
1687 1.17 jakllsch RGE_EPHY_SETBIT(sc, 0x001b, 0x0e00);
1688 1.17 jakllsch RGE_EPHY_CLRBIT(sc, 0x001b, 0x7000);
1689 1.17 jakllsch rge_write_ephy(sc, 0x0002, 0x6042);
1690 1.17 jakllsch rge_write_ephy(sc, 0x0006, 0x0014);
1691 1.17 jakllsch val = rge_read_ephy(sc, 0x006a) & ~0x7000;
1692 1.17 jakllsch rge_write_ephy(sc, 0x006a, val | 0x3000);
1693 1.17 jakllsch RGE_EPHY_CLRBIT(sc, 0x0059, 0x0040);
1694 1.17 jakllsch RGE_EPHY_SETBIT(sc, 0x005b, 0x0e00);
1695 1.17 jakllsch RGE_EPHY_CLRBIT(sc, 0x005b, 0x7000);
1696 1.17 jakllsch rge_write_ephy(sc, 0x0042, 0x6042);
1697 1.17 jakllsch rge_write_ephy(sc, 0x0046, 0x0014);
1698 1.17 jakllsch
1699 1.17 jakllsch rge_phy_config_mcu(sc, RGE_MAC_CFG3_MCODE_VER);
1700 1.17 jakllsch
1701 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1702 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1703 1.17 jakllsch rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
1704 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
1705 1.17 jakllsch rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1706 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
1707 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
1708 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
1709 1.17 jakllsch rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
1710 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
1711 1.17 jakllsch rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
1712 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
1713 1.17 jakllsch rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
1714 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
1715 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
1716 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
1717 1.17 jakllsch rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
1718 1.17 jakllsch rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
1719 1.17 jakllsch rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
1720 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
1721 1.17 jakllsch rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
1722 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8157);
1723 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
1724 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, val | 0x0500);
1725 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8159);
1726 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
1727 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, val | 0x0700);
1728 1.17 jakllsch RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
1729 1.17 jakllsch 32);
1730 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
1731 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1732 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x809c);
1733 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1734 1.17 jakllsch
1735 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x81b3);
1736 1.17 jakllsch for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
1737 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
1738 1.17 jakllsch for (i = 0; i < 26; i++)
1739 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0);
1740 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8257);
1741 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x020f);
1742 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1743 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x7843);
1744 1.17 jakllsch
1745 1.17 jakllsch rge_patch_phy_mcu(sc, 1);
1746 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
1747 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
1748 1.17 jakllsch for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
1749 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
1750 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, mac_cfg3_b88e_value[i + 1]);
1751 1.17 jakllsch }
1752 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
1753 1.17 jakllsch rge_patch_phy_mcu(sc, 0);
1754 1.17 jakllsch
1755 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
1756 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x81a2);
1757 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1758 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
1759 1.17 jakllsch rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
1760 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
1761 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
1762 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
1763 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
1764 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1765 1.17 jakllsch }
1766 1.17 jakllsch
1767 1.17 jakllsch void
1768 1.17 jakllsch rge_phy_config_mac_cfg4(struct rge_softc *sc)
1769 1.17 jakllsch {
1770 1.17 jakllsch struct ifnet *ifp = &sc->sc_ec.ec_if;
1771 1.17 jakllsch uint16_t val;
1772 1.17 jakllsch int i;
1773 1.17 jakllsch static const uint16_t mac_cfg4_b87c_value[] =
1774 1.17 jakllsch { 0x8013, 0x0700, 0x8fb9, 0x2801, 0x8fba, 0x0100, 0x8fbc, 0x1900,
1775 1.17 jakllsch 0x8fbe, 0xe100, 0x8fc0, 0x0800, 0x8fc2, 0xe500, 0x8fc4, 0x0f00,
1776 1.17 jakllsch 0x8fc6, 0xf100, 0x8fc8, 0x0400, 0x8fca, 0xf300, 0x8fcc, 0xfd00,
1777 1.17 jakllsch 0x8fce, 0xff00, 0x8fd0, 0xfb00, 0x8fd2, 0x0100, 0x8fd4, 0xf400,
1778 1.17 jakllsch 0x8fd6, 0xff00, 0x8fd8, 0xf600, 0x813d, 0x390e, 0x814f, 0x790e,
1779 1.17 jakllsch 0x80b0, 0x0f31 };
1780 1.17 jakllsch
1781 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg4_ephy); i++)
1782 1.17 jakllsch rge_write_ephy(sc, rtl8125_mac_cfg4_ephy[i].reg,
1783 1.17 jakllsch rtl8125_mac_cfg4_ephy[i].val);
1784 1.17 jakllsch
1785 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf86, 0x9000);
1786 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xc402, 0x0400);
1787 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xc402, 0x0400);
1788 1.17 jakllsch rge_write_phy_ocp(sc, 0xbd86, 0x1010);
1789 1.17 jakllsch rge_write_phy_ocp(sc, 0xbd88, 0x1010);
1790 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbd4e) & ~0x0c00;
1791 1.17 jakllsch rge_write_phy_ocp(sc, 0xbd4e, val | 0x0800);
1792 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf46) & ~0x0f00;
1793 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf46, val | 0x0700);
1794 1.17 jakllsch
1795 1.17 jakllsch rge_phy_config_mcu(sc, RGE_MAC_CFG4_MCODE_VER);
1796 1.17 jakllsch
1797 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1798 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xbc08, 0x000c);
1799 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8fff);
1800 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1801 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x0400);
1802 1.17 jakllsch for (i = 0; i < 6; i++) {
1803 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8560 + i * 2);
1804 1.17 jakllsch if (i < 3)
1805 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x19cc);
1806 1.17 jakllsch else
1807 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x147d);
1808 1.17 jakllsch }
1809 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8ffe);
1810 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x0907);
1811 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xacda) & ~0xff00;
1812 1.17 jakllsch rge_write_phy_ocp(sc, 0xacda, val | 0xff00);
1813 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xacde) & ~0xf000;
1814 1.17 jakllsch rge_write_phy_ocp(sc, 0xacde, val | 0xf000);
1815 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x80d6);
1816 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x2801);
1817 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x80F2);
1818 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x2801);
1819 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x80f4);
1820 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x6077);
1821 1.17 jakllsch rge_write_phy_ocp(sc, 0xb506, 0x01e7);
1822 1.17 jakllsch rge_write_phy_ocp(sc, 0xac8c, 0x0ffc);
1823 1.17 jakllsch rge_write_phy_ocp(sc, 0xac46, 0xb7b4);
1824 1.17 jakllsch rge_write_phy_ocp(sc, 0xac50, 0x0fbc);
1825 1.17 jakllsch rge_write_phy_ocp(sc, 0xac3c, 0x9240);
1826 1.17 jakllsch rge_write_phy_ocp(sc, 0xac4E, 0x0db4);
1827 1.17 jakllsch rge_write_phy_ocp(sc, 0xacc6, 0x0707);
1828 1.17 jakllsch rge_write_phy_ocp(sc, 0xacc8, 0xa0d3);
1829 1.17 jakllsch rge_write_phy_ocp(sc, 0xad08, 0x0007);
1830 1.17 jakllsch for (i = 0; i < nitems(mac_cfg4_b87c_value); i += 2) {
1831 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, mac_cfg4_b87c_value[i]);
1832 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, mac_cfg4_b87c_value[i + 1]);
1833 1.17 jakllsch }
1834 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xbf4c, 0x0002);
1835 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xbcca, 0x0300);
1836 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8141);
1837 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x320e);
1838 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8153);
1839 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x720e);
1840 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa432, 0x0040);
1841 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8529);
1842 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x050e);
1843 1.17 jakllsch RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
1844 1.17 jakllsch 32);
1845 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x816c);
1846 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xc4a0);
1847 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8170);
1848 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xc4a0);
1849 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8174);
1850 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x04a0);
1851 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8178);
1852 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x04a0);
1853 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x817c);
1854 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x0719);
1855 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8ff4);
1856 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x0400);
1857 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8ff1);
1858 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x0404);
1859 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf4a, 0x001b);
1860 1.17 jakllsch for (i = 0; i < 6; i++) {
1861 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8033 + i * 4);
1862 1.17 jakllsch if (i == 2)
1863 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0xfc32);
1864 1.17 jakllsch else
1865 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x7c13);
1866 1.17 jakllsch }
1867 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8145);
1868 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x370e);
1869 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8157);
1870 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x770e);
1871 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8169);
1872 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x0d0a);
1873 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x817b);
1874 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x1d0a);
1875 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8217);
1876 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1877 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1878 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x821a);
1879 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1880 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1881 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80da);
1882 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x0403);
1883 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80dc);
1884 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1885 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x1000);
1886 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80b3);
1887 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x0384);
1888 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80b7);
1889 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x2007);
1890 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80ba);
1891 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1892 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x6c00);
1893 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80b5);
1894 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xf009);
1895 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80bd);
1896 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1897 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x9f00);
1898 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80c7);
1899 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xf083);
1900 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80dd);
1901 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x03f0);
1902 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80df);
1903 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1904 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x1000);
1905 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80cb);
1906 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x2007);
1907 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80ce);
1908 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1909 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x6c00);
1910 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80c9);
1911 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x8009);
1912 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80d1);
1913 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1914 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0x8000);
1915 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80a3);
1916 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x200a);
1917 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80a5);
1918 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0xf0ad);
1919 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x809f);
1920 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x6073);
1921 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80a1);
1922 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x000b);
1923 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x80a9);
1924 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1925 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, val | 0xc000);
1926 1.17 jakllsch rge_patch_phy_mcu(sc, 1);
1927 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
1928 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
1929 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc23e);
1930 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x0000);
1931 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc240);
1932 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x0103);
1933 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc242);
1934 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x0507);
1935 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc244);
1936 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x090b);
1937 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc246);
1938 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x0c0e);
1939 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc248);
1940 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x1012);
1941 1.17 jakllsch rge_write_phy_ocp(sc, 0xb88e, 0xc24a);
1942 1.17 jakllsch rge_write_phy_ocp(sc, 0xb890, 0x1416);
1943 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
1944 1.17 jakllsch rge_patch_phy_mcu(sc, 0);
1945 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa86a, 0x0001);
1946 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa6f0, 0x0001);
1947 1.17 jakllsch rge_write_phy_ocp(sc, 0xbfa0, 0xd70d);
1948 1.17 jakllsch rge_write_phy_ocp(sc, 0xbfa2, 0x4100);
1949 1.17 jakllsch rge_write_phy_ocp(sc, 0xbfa4, 0xe868);
1950 1.17 jakllsch rge_write_phy_ocp(sc, 0xbfa6, 0xdc59);
1951 1.17 jakllsch rge_write_phy_ocp(sc, 0xb54c, 0x3c18);
1952 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xbfa4, 0x0020);
1953 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x817d);
1954 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa438, 0x1000);
1955 1.17 jakllsch }
1956 1.17 jakllsch
1957 1.17 jakllsch void
1958 1.17 jakllsch rge_phy_config_mac_cfg5(struct rge_softc *sc)
1959 1.17 jakllsch {
1960 1.17 jakllsch struct ifnet *ifp = &sc->sc_ec.ec_if;
1961 1.17 jakllsch uint16_t val;
1962 1.17 jakllsch int i;
1963 1.1 sevan
1964 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg5_ephy); i++)
1965 1.17 jakllsch rge_write_ephy(sc, rtl8125_mac_cfg5_ephy[i].reg,
1966 1.17 jakllsch rtl8125_mac_cfg5_ephy[i].val);
1967 1.17 jakllsch
1968 1.17 jakllsch val = rge_read_ephy(sc, 0x0022) & ~0x0030;
1969 1.17 jakllsch rge_write_ephy(sc, 0x0022, val | 0x0020);
1970 1.17 jakllsch val = rge_read_ephy(sc, 0x0062) & ~0x0030;
1971 1.17 jakllsch rge_write_ephy(sc, 0x0062, val | 0x0020);
1972 1.17 jakllsch
1973 1.17 jakllsch rge_phy_config_mcu(sc, RGE_MAC_CFG5_MCODE_VER);
1974 1.17 jakllsch
1975 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1976 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xac46) & ~0x00f0;
1977 1.17 jakllsch rge_write_phy_ocp(sc, 0xac46, val | 0x0090);
1978 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xad30) & ~0x0003;
1979 1.17 jakllsch rge_write_phy_ocp(sc, 0xad30, val | 0x0001);
1980 1.17 jakllsch RGE_WRITE_2(sc, RGE_EEE_TXIDLE_TIMER, ifp->if_mtu + ETHER_HDR_LEN +
1981 1.17 jakllsch 32);
1982 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x80f5);
1983 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x760e);
1984 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8107);
1985 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, 0x360e);
1986 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87c, 0x8551);
1987 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xb87e) & ~0xff00;
1988 1.17 jakllsch rge_write_phy_ocp(sc, 0xb87e, val | 0x0800);
1989 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf00) & ~0xe000;
1990 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf00, val | 0xa000);
1991 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf46) & ~0x0f00;
1992 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf46, val | 0x0300);
1993 1.17 jakllsch for (i = 0; i < 10; i++) {
1994 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x8044 + i * 6);
1995 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x2417);
1996 1.17 jakllsch }
1997 1.17 jakllsch RGE_PHY_SETBIT(sc, 0xa4ca, 0x0040);
1998 1.17 jakllsch val = rge_read_phy_ocp(sc, 0xbf84) & ~0xe000;
1999 1.17 jakllsch rge_write_phy_ocp(sc, 0xbf84, val | 0xa000);
2000 1.17 jakllsch }
2001 1.1 sevan
2002 1.17 jakllsch void
2003 1.17 jakllsch rge_phy_config_mcu(struct rge_softc *sc, uint16_t mcode_version)
2004 1.17 jakllsch {
2005 1.17 jakllsch if (sc->rge_mcodever != mcode_version) {
2006 1.17 jakllsch int i;
2007 1.1 sevan
2008 1.17 jakllsch rge_patch_phy_mcu(sc, 1);
2009 1.1 sevan
2010 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
2011 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
2012 1.17 jakllsch if (sc->rge_type == MAC_CFG2)
2013 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x8600);
2014 1.17 jakllsch else
2015 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, 0x8601);
2016 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
2017 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
2018 1.1 sevan
2019 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
2020 1.17 jakllsch }
2021 1.17 jakllsch
2022 1.17 jakllsch if (sc->rge_type == MAC_CFG2) {
2023 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
2024 1.1 sevan rge_write_phy_ocp(sc,
2025 1.1 sevan rtl8125_mac_cfg2_mcu[i].reg,
2026 1.1 sevan rtl8125_mac_cfg2_mcu[i].val);
2027 1.1 sevan }
2028 1.17 jakllsch } else if (sc->rge_type == MAC_CFG3) {
2029 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
2030 1.1 sevan rge_write_phy_ocp(sc,
2031 1.1 sevan rtl8125_mac_cfg3_mcu[i].reg,
2032 1.1 sevan rtl8125_mac_cfg3_mcu[i].val);
2033 1.1 sevan }
2034 1.17 jakllsch } else if (sc->rge_type == MAC_CFG4) {
2035 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg4_mcu); i++) {
2036 1.17 jakllsch rge_write_phy_ocp(sc,
2037 1.17 jakllsch rtl8125_mac_cfg4_mcu[i].reg,
2038 1.17 jakllsch rtl8125_mac_cfg4_mcu[i].val);
2039 1.17 jakllsch }
2040 1.17 jakllsch } else if (sc->rge_type == MAC_CFG5) {
2041 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_cfg5_mcu); i++) {
2042 1.17 jakllsch rge_write_phy_ocp(sc,
2043 1.17 jakllsch rtl8125_mac_cfg5_mcu[i].reg,
2044 1.17 jakllsch rtl8125_mac_cfg5_mcu[i].val);
2045 1.17 jakllsch }
2046 1.17 jakllsch }
2047 1.17 jakllsch
2048 1.17 jakllsch if (sc->rge_type == MAC_CFG2 || sc->rge_type == MAC_CFG3) {
2049 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
2050 1.1 sevan
2051 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
2052 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
2053 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
2054 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
2055 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
2056 1.17 jakllsch }
2057 1.1 sevan
2058 1.1 sevan rge_patch_phy_mcu(sc, 0);
2059 1.1 sevan
2060 1.17 jakllsch /* Write microcode version. */
2061 1.17 jakllsch rge_write_phy_ocp(sc, 0xa436, 0x801e);
2062 1.17 jakllsch rge_write_phy_ocp(sc, 0xa438, mcode_version);
2063 1.1 sevan }
2064 1.1 sevan }
2065 1.1 sevan
2066 1.1 sevan void
2067 1.1 sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
2068 1.1 sevan {
2069 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
2070 1.1 sevan RGE_WRITE_4(sc, RGE_MAC0,
2071 1.1 sevan addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2072 1.1 sevan RGE_WRITE_4(sc, RGE_MAC4,
2073 1.1 sevan addr[5] << 8 | addr[4]);
2074 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
2075 1.1 sevan }
2076 1.1 sevan
2077 1.1 sevan void
2078 1.1 sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
2079 1.1 sevan {
2080 1.1 sevan *(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
2081 1.1 sevan *(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
2082 1.1 sevan }
2083 1.1 sevan
2084 1.1 sevan void
2085 1.1 sevan rge_hw_init(struct rge_softc *sc)
2086 1.1 sevan {
2087 1.1 sevan int i;
2088 1.1 sevan
2089 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
2090 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
2091 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
2092 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
2093 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
2094 1.1 sevan
2095 1.1 sevan /* Disable UPS. */
2096 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
2097 1.1 sevan
2098 1.1 sevan /* Configure MAC MCU. */
2099 1.1 sevan rge_write_mac_ocp(sc, 0xfc38, 0);
2100 1.1 sevan
2101 1.1 sevan for (i = 0xfc28; i < 0xfc38; i += 2)
2102 1.1 sevan rge_write_mac_ocp(sc, i, 0);
2103 1.1 sevan
2104 1.1 sevan DELAY(3000);
2105 1.1 sevan rge_write_mac_ocp(sc, 0xfc26, 0);
2106 1.1 sevan
2107 1.1 sevan if (sc->rge_type == MAC_CFG3) {
2108 1.17 jakllsch for (i = 0; i < nitems(rtl8125_mac_bps); i++) {
2109 1.17 jakllsch rge_write_mac_ocp(sc, rtl8125_mac_bps[i].reg,
2110 1.17 jakllsch rtl8125_mac_bps[i].val);
2111 1.17 jakllsch }
2112 1.17 jakllsch } else if (sc->rge_type == MAC_CFG5) {
2113 1.17 jakllsch for (i = 0; i < nitems(rtl8125b_mac_bps); i++) {
2114 1.17 jakllsch rge_write_mac_ocp(sc, rtl8125b_mac_bps[i].reg,
2115 1.17 jakllsch rtl8125b_mac_bps[i].val);
2116 1.17 jakllsch }
2117 1.1 sevan }
2118 1.1 sevan
2119 1.1 sevan /* Disable PHY power saving. */
2120 1.1 sevan rge_disable_phy_ocp_pwrsave(sc);
2121 1.1 sevan
2122 1.1 sevan /* Set PCIe uncorrectable error status. */
2123 1.1 sevan rge_write_csi(sc, 0x108,
2124 1.1 sevan rge_read_csi(sc, 0x108) | 0x00100000);
2125 1.1 sevan }
2126 1.1 sevan
2127 1.1 sevan void
2128 1.1 sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
2129 1.1 sevan {
2130 1.1 sevan if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
2131 1.1 sevan rge_patch_phy_mcu(sc, 1);
2132 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0);
2133 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0x0500);
2134 1.1 sevan rge_patch_phy_mcu(sc, 0);
2135 1.1 sevan }
2136 1.1 sevan }
2137 1.1 sevan
2138 1.1 sevan void
2139 1.1 sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
2140 1.1 sevan {
2141 1.1 sevan int i;
2142 1.1 sevan
2143 1.1 sevan if (set)
2144 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
2145 1.1 sevan else
2146 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
2147 1.1 sevan
2148 1.1 sevan for (i = 0; i < 1000; i++) {
2149 1.17 jakllsch if ((rge_read_phy_ocp(sc, 0xb800) & 0x0040) == 0x0040)
2150 1.17 jakllsch break;
2151 1.1 sevan DELAY(100);
2152 1.1 sevan }
2153 1.17 jakllsch if (i == 1000) {
2154 1.17 jakllsch DPRINTF(("timeout waiting to patch phy mcu\n"));
2155 1.17 jakllsch return;
2156 1.17 jakllsch }
2157 1.1 sevan }
2158 1.1 sevan
2159 1.1 sevan void
2160 1.1 sevan rge_add_media_types(struct rge_softc *sc)
2161 1.1 sevan {
2162 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
2163 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2164 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
2165 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2166 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
2167 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2168 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
2169 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
2170 1.1 sevan }
2171 1.1 sevan
2172 1.1 sevan void
2173 1.1 sevan rge_config_imtype(struct rge_softc *sc, int imtype)
2174 1.1 sevan {
2175 1.1 sevan switch (imtype) {
2176 1.1 sevan case RGE_IMTYPE_NONE:
2177 1.1 sevan sc->rge_intrs = RGE_INTRS;
2178 1.1 sevan sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
2179 1.1 sevan RGE_ISR_RX_FIFO_OFLOW;
2180 1.1 sevan sc->rge_tx_ack = RGE_ISR_TX_OK;
2181 1.1 sevan break;
2182 1.1 sevan case RGE_IMTYPE_SIM:
2183 1.1 sevan sc->rge_intrs = RGE_INTRS_TIMER;
2184 1.1 sevan sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
2185 1.1 sevan sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
2186 1.1 sevan break;
2187 1.1 sevan default:
2188 1.14 sevan panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
2189 1.1 sevan }
2190 1.1 sevan }
2191 1.1 sevan
2192 1.1 sevan void
2193 1.17 jakllsch rge_disable_hw_im(struct rge_softc *sc)
2194 1.17 jakllsch {
2195 1.17 jakllsch RGE_WRITE_2(sc, RGE_IM, 0);
2196 1.17 jakllsch }
2197 1.17 jakllsch
2198 1.17 jakllsch void
2199 1.1 sevan rge_disable_sim_im(struct rge_softc *sc)
2200 1.1 sevan {
2201 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT0, 0);
2202 1.1 sevan sc->rge_timerintr = 0;
2203 1.1 sevan }
2204 1.1 sevan
2205 1.1 sevan void
2206 1.1 sevan rge_setup_sim_im(struct rge_softc *sc)
2207 1.1 sevan {
2208 1.17 jakllsch RGE_WRITE_4(sc, RGE_TIMERINT0, 0x2600);
2209 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
2210 1.1 sevan sc->rge_timerintr = 1;
2211 1.1 sevan }
2212 1.1 sevan
2213 1.1 sevan void
2214 1.1 sevan rge_setup_intr(struct rge_softc *sc, int imtype)
2215 1.1 sevan {
2216 1.1 sevan rge_config_imtype(sc, imtype);
2217 1.1 sevan
2218 1.1 sevan /* Enable interrupts. */
2219 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
2220 1.1 sevan
2221 1.1 sevan switch (imtype) {
2222 1.1 sevan case RGE_IMTYPE_NONE:
2223 1.1 sevan rge_disable_sim_im(sc);
2224 1.17 jakllsch rge_disable_hw_im(sc);
2225 1.1 sevan break;
2226 1.1 sevan case RGE_IMTYPE_SIM:
2227 1.17 jakllsch rge_disable_hw_im(sc);
2228 1.1 sevan rge_setup_sim_im(sc);
2229 1.1 sevan break;
2230 1.1 sevan default:
2231 1.14 sevan panic("%s: unknown imtype %d", device_xname(sc->sc_dev), imtype);
2232 1.1 sevan }
2233 1.1 sevan }
2234 1.1 sevan
2235 1.1 sevan void
2236 1.1 sevan rge_exit_oob(struct rge_softc *sc)
2237 1.1 sevan {
2238 1.1 sevan int i;
2239 1.1 sevan
2240 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
2241 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
2242 1.1 sevan RGE_RXCFG_ERRPKT);
2243 1.1 sevan
2244 1.1 sevan /* Disable RealWoW. */
2245 1.1 sevan rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
2246 1.1 sevan
2247 1.1 sevan rge_reset(sc);
2248 1.1 sevan
2249 1.1 sevan /* Disable OOB. */
2250 1.1 sevan RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
2251 1.1 sevan
2252 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
2253 1.1 sevan
2254 1.1 sevan for (i = 0; i < 10; i++) {
2255 1.1 sevan DELAY(100);
2256 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
2257 1.1 sevan break;
2258 1.1 sevan }
2259 1.1 sevan
2260 1.1 sevan rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
2261 1.17 jakllsch rge_write_mac_ocp(sc, 0xc0a6, 0x01b5);
2262 1.1 sevan rge_write_mac_ocp(sc, 0xc01e, 0x5555);
2263 1.1 sevan
2264 1.1 sevan for (i = 0; i < 10; i++) {
2265 1.1 sevan DELAY(100);
2266 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
2267 1.1 sevan break;
2268 1.1 sevan }
2269 1.1 sevan
2270 1.1 sevan if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
2271 1.17 jakllsch printf("%s: rge_exit_oob(): rtl8125_is_ups_resume!!\n",
2272 1.17 jakllsch device_xname(sc->sc_dev));
2273 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2274 1.10 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0007) == 2)
2275 1.1 sevan break;
2276 1.1 sevan DELAY(1000);
2277 1.1 sevan }
2278 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
2279 1.17 jakllsch if (sc->rge_type == MAC_CFG4 || sc->rge_type == MAC_CFG5)
2280 1.17 jakllsch RGE_PHY_CLRBIT(sc, 0xa466, 0x0001);
2281 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
2282 1.1 sevan }
2283 1.1 sevan }
2284 1.1 sevan
2285 1.1 sevan void
2286 1.1 sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
2287 1.1 sevan {
2288 1.1 sevan int i;
2289 1.1 sevan
2290 1.1 sevan RGE_WRITE_4(sc, RGE_CSIDR, val);
2291 1.17 jakllsch RGE_WRITE_4(sc, RGE_CSIAR, (reg & RGE_CSIAR_ADDR_MASK) |
2292 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
2293 1.1 sevan
2294 1.1 sevan for (i = 0; i < 10; i++) {
2295 1.1 sevan DELAY(100);
2296 1.1 sevan if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
2297 1.1 sevan break;
2298 1.1 sevan }
2299 1.1 sevan
2300 1.1 sevan DELAY(20);
2301 1.1 sevan }
2302 1.1 sevan
2303 1.1 sevan uint32_t
2304 1.1 sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
2305 1.1 sevan {
2306 1.1 sevan int i;
2307 1.1 sevan
2308 1.17 jakllsch RGE_WRITE_4(sc, RGE_CSIAR, (reg & RGE_CSIAR_ADDR_MASK) |
2309 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
2310 1.1 sevan
2311 1.1 sevan for (i = 0; i < 10; i++) {
2312 1.1 sevan DELAY(100);
2313 1.1 sevan if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
2314 1.1 sevan break;
2315 1.1 sevan }
2316 1.1 sevan
2317 1.1 sevan DELAY(20);
2318 1.1 sevan
2319 1.1 sevan return (RGE_READ_4(sc, RGE_CSIDR));
2320 1.1 sevan }
2321 1.1 sevan
2322 1.1 sevan void
2323 1.1 sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
2324 1.1 sevan {
2325 1.1 sevan uint32_t tmp;
2326 1.1 sevan
2327 1.1 sevan tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
2328 1.1 sevan tmp += val;
2329 1.1 sevan tmp |= RGE_MACOCP_BUSY;
2330 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, tmp);
2331 1.1 sevan }
2332 1.1 sevan
2333 1.1 sevan uint16_t
2334 1.1 sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
2335 1.1 sevan {
2336 1.1 sevan uint32_t val;
2337 1.1 sevan
2338 1.1 sevan val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
2339 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, val);
2340 1.1 sevan
2341 1.1 sevan return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
2342 1.1 sevan }
2343 1.1 sevan
2344 1.1 sevan void
2345 1.1 sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
2346 1.1 sevan {
2347 1.1 sevan uint32_t tmp;
2348 1.1 sevan int i;
2349 1.1 sevan
2350 1.1 sevan tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
2351 1.1 sevan tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
2352 1.1 sevan RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
2353 1.1 sevan
2354 1.1 sevan for (i = 0; i < 10; i++) {
2355 1.1 sevan DELAY(100);
2356 1.1 sevan if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
2357 1.1 sevan break;
2358 1.1 sevan }
2359 1.1 sevan
2360 1.1 sevan DELAY(20);
2361 1.1 sevan }
2362 1.1 sevan
2363 1.17 jakllsch uint16_t
2364 1.17 jakllsch rge_read_ephy(struct rge_softc *sc, uint16_t reg)
2365 1.17 jakllsch {
2366 1.17 jakllsch uint32_t val;
2367 1.17 jakllsch int i;
2368 1.17 jakllsch
2369 1.17 jakllsch val = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
2370 1.17 jakllsch RGE_WRITE_4(sc, RGE_EPHYAR, val);
2371 1.17 jakllsch
2372 1.17 jakllsch for (i = 0; i < 10; i++) {
2373 1.17 jakllsch DELAY(100);
2374 1.17 jakllsch val = RGE_READ_4(sc, RGE_EPHYAR);
2375 1.17 jakllsch if (val & RGE_EPHYAR_BUSY)
2376 1.17 jakllsch break;
2377 1.17 jakllsch }
2378 1.17 jakllsch
2379 1.17 jakllsch DELAY(20);
2380 1.17 jakllsch
2381 1.17 jakllsch return (val & RGE_EPHYAR_DATA_MASK);
2382 1.17 jakllsch }
2383 1.17 jakllsch
2384 1.1 sevan void
2385 1.1 sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
2386 1.1 sevan {
2387 1.1 sevan uint16_t off, phyaddr;
2388 1.1 sevan
2389 1.1 sevan phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
2390 1.1 sevan phyaddr <<= 4;
2391 1.1 sevan
2392 1.1 sevan off = addr ? reg : 0x10 + (reg % 8);
2393 1.1 sevan
2394 1.1 sevan phyaddr += (off - 16) << 1;
2395 1.1 sevan
2396 1.1 sevan rge_write_phy_ocp(sc, phyaddr, val);
2397 1.1 sevan }
2398 1.1 sevan
2399 1.17 jakllsch uint16_t
2400 1.17 jakllsch rge_read_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg)
2401 1.17 jakllsch {
2402 1.17 jakllsch uint16_t off, phyaddr;
2403 1.17 jakllsch
2404 1.17 jakllsch phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
2405 1.17 jakllsch phyaddr <<= 4;
2406 1.17 jakllsch
2407 1.17 jakllsch off = addr ? reg : 0x10 + (reg % 8);
2408 1.17 jakllsch
2409 1.17 jakllsch phyaddr += (off - 16) << 1;
2410 1.17 jakllsch
2411 1.17 jakllsch return (rge_read_phy_ocp(sc, phyaddr));
2412 1.17 jakllsch }
2413 1.17 jakllsch
2414 1.1 sevan void
2415 1.1 sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
2416 1.1 sevan {
2417 1.1 sevan uint32_t tmp;
2418 1.1 sevan int i;
2419 1.1 sevan
2420 1.1 sevan tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2421 1.1 sevan tmp |= RGE_PHYOCP_BUSY | val;
2422 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
2423 1.1 sevan
2424 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2425 1.1 sevan DELAY(1);
2426 1.1 sevan if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
2427 1.1 sevan break;
2428 1.1 sevan }
2429 1.1 sevan }
2430 1.1 sevan
2431 1.1 sevan uint16_t
2432 1.1 sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
2433 1.1 sevan {
2434 1.1 sevan uint32_t val;
2435 1.1 sevan int i;
2436 1.1 sevan
2437 1.1 sevan val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2438 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, val);
2439 1.1 sevan
2440 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2441 1.1 sevan DELAY(1);
2442 1.1 sevan val = RGE_READ_4(sc, RGE_PHYOCP);
2443 1.1 sevan if (val & RGE_PHYOCP_BUSY)
2444 1.1 sevan break;
2445 1.1 sevan }
2446 1.1 sevan
2447 1.1 sevan return (val & RGE_PHYOCP_DATA_MASK);
2448 1.1 sevan }
2449 1.1 sevan
2450 1.1 sevan int
2451 1.1 sevan rge_get_link_status(struct rge_softc *sc)
2452 1.1 sevan {
2453 1.1 sevan return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
2454 1.1 sevan }
2455 1.1 sevan
2456 1.1 sevan void
2457 1.3 sevan rge_txstart(struct work *wk, void *arg)
2458 1.1 sevan {
2459 1.1 sevan struct rge_softc *sc = arg;
2460 1.1 sevan
2461 1.1 sevan RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
2462 1.1 sevan }
2463 1.1 sevan
2464 1.1 sevan void
2465 1.1 sevan rge_tick(void *arg)
2466 1.1 sevan {
2467 1.1 sevan struct rge_softc *sc = arg;
2468 1.1 sevan int s;
2469 1.1 sevan
2470 1.1 sevan s = splnet();
2471 1.1 sevan rge_link_state(sc);
2472 1.1 sevan splx(s);
2473 1.1 sevan
2474 1.17 jakllsch callout_schedule(&sc->sc_timeout, hz);
2475 1.1 sevan }
2476 1.1 sevan
2477 1.1 sevan void
2478 1.1 sevan rge_link_state(struct rge_softc *sc)
2479 1.1 sevan {
2480 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
2481 1.1 sevan int link = LINK_STATE_DOWN;
2482 1.1 sevan
2483 1.1 sevan if (rge_get_link_status(sc))
2484 1.1 sevan link = LINK_STATE_UP;
2485 1.1 sevan
2486 1.17 jakllsch if (ifp->if_link_state != link) { /* XXX not safe to access */
2487 1.17 jakllsch if_link_state_change(ifp, link);
2488 1.1 sevan }
2489 1.1 sevan }
2490