Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.5
      1  1.5  skrll /*	$NetBSD: if_rge.c,v 1.5 2020/02/04 07:41:21 skrll Exp $	*/
      2  1.1  sevan /*	$OpenBSD: if_rge.c,v 1.2 2020/01/02 09:00:45 kevlo Exp $	*/
      3  1.1  sevan 
      4  1.1  sevan /*
      5  1.1  sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6  1.1  sevan  *
      7  1.1  sevan  * Permission to use, copy, modify, and distribute this software for any
      8  1.1  sevan  * purpose with or without fee is hereby granted, provided that the above
      9  1.1  sevan  * copyright notice and this permission notice appear in all copies.
     10  1.1  sevan  *
     11  1.1  sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  1.1  sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  1.1  sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  1.1  sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  1.1  sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  1.1  sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  1.1  sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  1.1  sevan  */
     19  1.1  sevan 
     20  1.2  sevan #include <sys/cdefs.h>
     21  1.5  skrll __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.5 2020/02/04 07:41:21 skrll Exp $");
     22  1.2  sevan 
     23  1.2  sevan /* #include "bpfilter.h" Sevan */
     24  1.2  sevan /* #include "vlan.h" Sevan */
     25  1.2  sevan 
     26  1.2  sevan #include <sys/types.h>
     27  1.1  sevan 
     28  1.1  sevan #include <sys/param.h>
     29  1.1  sevan #include <sys/systm.h>
     30  1.1  sevan #include <sys/sockio.h>
     31  1.1  sevan #include <sys/mbuf.h>
     32  1.1  sevan #include <sys/malloc.h>
     33  1.1  sevan #include <sys/kernel.h>
     34  1.1  sevan #include <sys/socket.h>
     35  1.1  sevan #include <sys/device.h>
     36  1.1  sevan #include <sys/endian.h>
     37  1.3  sevan #include <sys/callout.h>
     38  1.3  sevan #include <sys/workqueue.h>
     39  1.1  sevan 
     40  1.1  sevan #include <net/if.h>
     41  1.2  sevan 
     42  1.2  sevan #include <net/if_dl.h>
     43  1.2  sevan #include <net/if_ether.h>
     44  1.2  sevan 
     45  1.1  sevan #include <net/if_media.h>
     46  1.1  sevan 
     47  1.1  sevan #include <netinet/in.h>
     48  1.2  sevan #include <net/if_ether.h>
     49  1.1  sevan 
     50  1.1  sevan #if NBPFILTER > 0
     51  1.1  sevan #include <net/bpf.h>
     52  1.1  sevan #endif
     53  1.1  sevan 
     54  1.2  sevan #include <sys/bus.h>
     55  1.1  sevan #include <machine/intr.h>
     56  1.1  sevan 
     57  1.1  sevan #include <dev/mii/mii.h>
     58  1.1  sevan 
     59  1.1  sevan #include <dev/pci/pcivar.h>
     60  1.1  sevan #include <dev/pci/pcireg.h>
     61  1.1  sevan #include <dev/pci/pcidevs.h>
     62  1.1  sevan 
     63  1.1  sevan #include <dev/pci/if_rgereg.h>
     64  1.1  sevan 
     65  1.2  sevan #ifdef __NetBSD__
     66  1.2  sevan #define letoh32 	htole32
     67  1.2  sevan #define nitems(x) 	__arraycount(x)
     68  1.2  sevan #define MBUF_LIST_INITIALIZER() 	{ NULL, NULL, 0 }
     69  1.2  sevan struct mbuf_list {
     70  1.2  sevan 	struct mbuf 	*ml_head;
     71  1.2  sevan 	struct mbuf 	*ml_tail;
     72  1.2  sevan 	u_int 	ml_len;
     73  1.2  sevan };
     74  1.3  sevan #ifdef NET_MPSAFE
     75  1.3  sevan #define 	RGE_MPSAFE	1
     76  1.3  sevan #define 	CALLOUT_FLAGS	CALLOUT_MPSAFE
     77  1.3  sevan #else
     78  1.3  sevan #define 	CALLOUT_FLAGS	0
     79  1.3  sevan #endif
     80  1.2  sevan #endif
     81  1.2  sevan 
     82  1.2  sevan static int		rge_match(device_t, cfdata_t, void *);
     83  1.5  skrll static void		rge_attach(device_t, device_t, void *);
     84  1.1  sevan int		rge_intr(void *);
     85  1.1  sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
     86  1.2  sevan int		rge_ioctl(struct ifnet *, u_long, void *);
     87  1.2  sevan void		rge_start(struct ifnet *);
     88  1.1  sevan void		rge_watchdog(struct ifnet *);
     89  1.1  sevan int		rge_init(struct ifnet *);
     90  1.1  sevan void		rge_stop(struct ifnet *);
     91  1.1  sevan int		rge_ifmedia_upd(struct ifnet *);
     92  1.1  sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
     93  1.1  sevan int		rge_allocmem(struct rge_softc *);
     94  1.1  sevan int		rge_newbuf(struct rge_softc *, int);
     95  1.1  sevan void		rge_discard_rxbuf(struct rge_softc *, int);
     96  1.1  sevan int		rge_rx_list_init(struct rge_softc *);
     97  1.1  sevan void		rge_tx_list_init(struct rge_softc *);
     98  1.1  sevan int		rge_rxeof(struct rge_softc *);
     99  1.1  sevan int		rge_txeof(struct rge_softc *);
    100  1.1  sevan void		rge_reset(struct rge_softc *);
    101  1.1  sevan void		rge_iff(struct rge_softc *);
    102  1.1  sevan void		rge_set_phy_power(struct rge_softc *, int);
    103  1.1  sevan void		rge_phy_config(struct rge_softc *);
    104  1.1  sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
    105  1.1  sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
    106  1.1  sevan void		rge_hw_init(struct rge_softc *);
    107  1.1  sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    108  1.1  sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    109  1.1  sevan void		rge_add_media_types(struct rge_softc *);
    110  1.1  sevan void		rge_config_imtype(struct rge_softc *, int);
    111  1.1  sevan void		rge_disable_sim_im(struct rge_softc *);
    112  1.1  sevan void		rge_setup_sim_im(struct rge_softc *);
    113  1.1  sevan void		rge_setup_intr(struct rge_softc *, int);
    114  1.1  sevan void		rge_exit_oob(struct rge_softc *);
    115  1.1  sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    116  1.1  sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    117  1.1  sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    118  1.1  sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    119  1.1  sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    120  1.1  sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    121  1.1  sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    122  1.1  sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    123  1.1  sevan int		rge_get_link_status(struct rge_softc *);
    124  1.3  sevan void		rge_txstart(struct work *, void *);
    125  1.1  sevan void		rge_tick(void *);
    126  1.1  sevan void		rge_link_state(struct rge_softc *);
    127  1.1  sevan 
    128  1.1  sevan static const struct {
    129  1.1  sevan 	uint16_t reg;
    130  1.1  sevan 	uint16_t val;
    131  1.1  sevan }  rtl8125_def_bps[] = {
    132  1.1  sevan 	RTL8125_DEF_BPS
    133  1.1  sevan }, rtl8125_mac_cfg2_ephy[] = {
    134  1.1  sevan 	RTL8125_MAC_CFG2_EPHY
    135  1.1  sevan }, rtl8125_mac_cfg2_mcu[] = {
    136  1.1  sevan 	RTL8125_MAC_CFG2_MCU
    137  1.1  sevan }, rtl8125_mac_cfg3_ephy[] = {
    138  1.1  sevan 	RTL8125_MAC_CFG3_EPHY
    139  1.1  sevan }, rtl8125_mac_cfg3_mcu[] = {
    140  1.1  sevan 	RTL8125_MAC_CFG3_MCU
    141  1.1  sevan };
    142  1.1  sevan 
    143  1.2  sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    144  1.2  sevan 		NULL, NULL); /* Sevan - detach function? */
    145  1.1  sevan 
    146  1.2  sevan extern struct cfdriver rge_cd;
    147  1.1  sevan 
    148  1.2  sevan static const struct {
    149  1.2  sevan 	pci_vendor_id_t 	vendor;
    150  1.2  sevan 	pci_product_id_t 	product;
    151  1.2  sevan }rge_devices[] = {
    152  1.1  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    153  1.2  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    154  1.1  sevan };
    155  1.1  sevan 
    156  1.2  sevan static int
    157  1.2  sevan rge_match(device_t parent, cfdata_t match, void *aux)
    158  1.1  sevan {
    159  1.2  sevan 	struct pci_attach_args *pa =aux;
    160  1.2  sevan 	int n;
    161  1.2  sevan 
    162  1.2  sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    163  1.2  sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    164  1.2  sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    165  1.2  sevan 			return 1;
    166  1.2  sevan 	}
    167  1.2  sevan 
    168  1.2  sevan 	return 0;
    169  1.1  sevan }
    170  1.1  sevan 
    171  1.1  sevan void
    172  1.2  sevan rge_attach(device_t parent, device_t self, void *aux)
    173  1.1  sevan {
    174  1.1  sevan 	struct rge_softc *sc = (struct rge_softc *)self;
    175  1.1  sevan 	struct pci_attach_args *pa = aux;
    176  1.1  sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    177  1.1  sevan 	pci_intr_handle_t ih;
    178  1.2  sevan 	char intrbuf[PCI_INTRSTR_LEN];
    179  1.1  sevan 	const char *intrstr = NULL;
    180  1.1  sevan 	struct ifnet *ifp;
    181  1.1  sevan 	pcireg_t reg;
    182  1.1  sevan 	uint32_t hwrev;
    183  1.1  sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    184  1.1  sevan 	int offset;
    185  1.1  sevan 
    186  1.1  sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    187  1.1  sevan 
    188  1.5  skrll 	/*
    189  1.1  sevan 	 * Map control/status registers.
    190  1.1  sevan 	 */
    191  1.1  sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    192  1.1  sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    193  1.2  sevan 	    NULL, &sc->rge_bsize)) {
    194  1.1  sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    195  1.1  sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    196  1.2  sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    197  1.1  sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    198  1.1  sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    199  1.2  sevan 			    &sc->rge_bsize)) {
    200  1.1  sevan 				printf(": can't map mem or i/o space\n");
    201  1.1  sevan 				return;
    202  1.1  sevan 			}
    203  1.1  sevan 		}
    204  1.1  sevan 	}
    205  1.1  sevan 
    206  1.5  skrll 	/*
    207  1.1  sevan 	 * Allocate interrupt.
    208  1.1  sevan 	 */
    209  1.2  sevan 	if (pci_intr_map(pa, &ih) == 0)
    210  1.1  sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    211  1.1  sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    212  1.1  sevan 		printf(": couldn't map interrupt\n");
    213  1.1  sevan 		return;
    214  1.1  sevan 	}
    215  1.2  sevan 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    216  1.2  sevan 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
    217  1.1  sevan 	    sc, sc->sc_dev.dv_xname);
    218  1.1  sevan 	if (sc->sc_ih == NULL) {
    219  1.1  sevan 		printf(": couldn't establish interrupt");
    220  1.1  sevan 		if (intrstr != NULL)
    221  1.1  sevan 			printf(" at %s", intrstr);
    222  1.1  sevan 		printf("\n");
    223  1.1  sevan 		return;
    224  1.1  sevan 	}
    225  1.1  sevan 	printf(": %s", intrstr);
    226  1.1  sevan 
    227  1.1  sevan 	sc->sc_dmat = pa->pa_dmat;
    228  1.1  sevan 	sc->sc_pc = pa->pa_pc;
    229  1.1  sevan 	sc->sc_tag = pa->pa_tag;
    230  1.1  sevan 
    231  1.1  sevan 	/* Determine hardware revision */
    232  1.1  sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    233  1.1  sevan 	switch (hwrev) {
    234  1.1  sevan 	case 0x60800000:
    235  1.1  sevan 		sc->rge_type = MAC_CFG2;
    236  1.1  sevan 		break;
    237  1.1  sevan 	case 0x60900000:
    238  1.1  sevan 		sc->rge_type = MAC_CFG3;
    239  1.1  sevan 		break;
    240  1.1  sevan 	default:
    241  1.1  sevan 		printf(": unknown version 0x%08x\n", hwrev);
    242  1.1  sevan 		return;
    243  1.1  sevan 	}
    244  1.1  sevan 
    245  1.1  sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    246  1.1  sevan 
    247  1.5  skrll 	/*
    248  1.1  sevan 	 * PCI Express check.
    249  1.1  sevan 	 */
    250  1.1  sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    251  1.1  sevan 	    &offset, NULL)) {
    252  1.2  sevan 		/* Disable PCIe ASPM. */
    253  1.1  sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    254  1.2  sevan 		    offset + PCIE_LCSR);
    255  1.2  sevan 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
    256  1.2  sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    257  1.1  sevan 		    reg);
    258  1.1  sevan 	}
    259  1.1  sevan 
    260  1.1  sevan 	rge_exit_oob(sc);
    261  1.1  sevan 	rge_hw_init(sc);
    262  1.1  sevan 
    263  1.1  sevan 	rge_get_macaddr(sc, eaddr);
    264  1.1  sevan 	printf(", address %s\n", ether_sprintf(eaddr));
    265  1.1  sevan 
    266  1.2  sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    267  1.1  sevan 
    268  1.1  sevan 	rge_set_phy_power(sc, 1);
    269  1.1  sevan 	rge_phy_config(sc);
    270  1.1  sevan 
    271  1.1  sevan 	if (rge_allocmem(sc))
    272  1.1  sevan 		return;
    273  1.1  sevan 
    274  1.2  sevan 	ifp = &sc->sc_ec.ec_if;
    275  1.1  sevan 	ifp->if_softc = sc;
    276  1.1  sevan 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    277  1.1  sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    278  1.2  sevan #ifdef RGE_MPSAFE
    279  1.2  sevan 	ifp->if_xflags = IFEF_MPSAFE;
    280  1.2  sevan #endif
    281  1.1  sevan 	ifp->if_ioctl = rge_ioctl;
    282  1.2  sevan 	ifp->if_start = rge_start;
    283  1.1  sevan 	ifp->if_watchdog = rge_watchdog;
    284  1.1  sevan 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
    285  1.2  sevan 	ifp->if_mtu = RGE_JUMBO_MTU;
    286  1.1  sevan 
    287  1.2  sevan 	ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
    288  1.2  sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    289  1.2  sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    290  1.1  sevan 
    291  1.1  sevan #if NVLAN > 0
    292  1.1  sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    293  1.1  sevan #endif
    294  1.1  sevan 
    295  1.3  sevan 	callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
    296  1.3  sevan 	callout_setfunc(&sc->sc_timeout, rge_tick, sc);
    297  1.3  sevan 	rge_txstart(&sc->sc_task, sc);
    298  1.1  sevan 
    299  1.1  sevan 	/* Initialize ifmedia structures. */
    300  1.1  sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    301  1.1  sevan 	    rge_ifmedia_sts);
    302  1.1  sevan 	rge_add_media_types(sc);
    303  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    304  1.1  sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    305  1.1  sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    306  1.1  sevan 
    307  1.1  sevan 	if_attach(ifp);
    308  1.2  sevan 	ether_ifattach(ifp, eaddr);
    309  1.1  sevan }
    310  1.1  sevan 
    311  1.1  sevan int
    312  1.1  sevan rge_intr(void *arg)
    313  1.1  sevan {
    314  1.1  sevan 	struct rge_softc *sc = arg;
    315  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    316  1.1  sevan 	uint32_t status;
    317  1.1  sevan 	int claimed = 0, rx, tx;
    318  1.1  sevan 
    319  1.1  sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    320  1.1  sevan 		return (0);
    321  1.1  sevan 
    322  1.1  sevan 	/* Disable interrupts. */
    323  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    324  1.1  sevan 
    325  1.1  sevan 	status = RGE_READ_4(sc, RGE_ISR);
    326  1.1  sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    327  1.1  sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    328  1.1  sevan 			return (0);
    329  1.1  sevan 	}
    330  1.1  sevan 	if (status)
    331  1.1  sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    332  1.1  sevan 
    333  1.1  sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    334  1.1  sevan 		claimed = 1;
    335  1.1  sevan 
    336  1.1  sevan 	rx = tx = 0;
    337  1.1  sevan 	if (status & RGE_INTRS) {
    338  1.1  sevan 		if (status &
    339  1.1  sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    340  1.1  sevan 			rx |= rge_rxeof(sc);
    341  1.1  sevan 			claimed = 1;
    342  1.1  sevan 		}
    343  1.1  sevan 
    344  1.1  sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    345  1.1  sevan 			tx |= rge_txeof(sc);
    346  1.1  sevan 			claimed = 1;
    347  1.1  sevan 		}
    348  1.1  sevan 
    349  1.1  sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    350  1.2  sevan 			KERNEL_LOCK(1, NULL);
    351  1.1  sevan 			rge_init(ifp);
    352  1.2  sevan 			KERNEL_UNLOCK_ONE(NULL);
    353  1.1  sevan 			claimed = 1;
    354  1.1  sevan 		}
    355  1.1  sevan 	}
    356  1.1  sevan 
    357  1.1  sevan 	if (sc->rge_timerintr) {
    358  1.1  sevan 		if ((tx | rx) == 0) {
    359  1.1  sevan 			/*
    360  1.1  sevan 			 * Nothing needs to be processed, fallback
    361  1.1  sevan 			 * to use TX/RX interrupts.
    362  1.1  sevan 			 */
    363  1.1  sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    364  1.1  sevan 
    365  1.1  sevan 			/*
    366  1.1  sevan 			 * Recollect, mainly to avoid the possible
    367  1.1  sevan 			 * race introduced by changing interrupt
    368  1.1  sevan 			 * masks.
    369  1.1  sevan 			 */
    370  1.1  sevan 			rge_rxeof(sc);
    371  1.1  sevan 			rge_txeof(sc);
    372  1.1  sevan 		} else
    373  1.1  sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    374  1.1  sevan 	} else if (tx | rx) {
    375  1.1  sevan 		/*
    376  1.1  sevan 		 * Assume that using simulated interrupt moderation
    377  1.1  sevan 		 * (hardware timer based) could reduce the interrupt
    378  1.1  sevan 		 * rate.
    379  1.1  sevan 		 */
    380  1.1  sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    381  1.1  sevan 	}
    382  1.1  sevan 
    383  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    384  1.1  sevan 
    385  1.1  sevan 	return (claimed);
    386  1.1  sevan }
    387  1.1  sevan 
    388  1.1  sevan int
    389  1.1  sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    390  1.1  sevan {
    391  1.1  sevan 	struct rge_tx_desc *d = NULL;
    392  1.1  sevan 	struct rge_txq *txq;
    393  1.1  sevan 	bus_dmamap_t txmap;
    394  1.1  sevan 	uint32_t cmdsts, cflags = 0;
    395  1.1  sevan 	int cur, error, i, last, nsegs;
    396  1.1  sevan 
    397  1.1  sevan 	/*
    398  1.1  sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    399  1.1  sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    400  1.1  sevan 	 * take affect.
    401  1.1  sevan 	 */
    402  1.1  sevan 	if ((m->m_pkthdr.csum_flags &
    403  1.2  sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    404  1.1  sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    405  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    406  1.1  sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    407  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    408  1.1  sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    409  1.1  sevan 	}
    410  1.1  sevan 
    411  1.1  sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    412  1.1  sevan 	txmap = txq->txq_dmamap;
    413  1.1  sevan 
    414  1.1  sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    415  1.1  sevan 	switch (error) {
    416  1.1  sevan 	case 0:
    417  1.1  sevan 		break;
    418  1.1  sevan 	case EFBIG: /* mbuf chain is too fragmented */
    419  1.1  sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    420  1.1  sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    421  1.1  sevan 		    BUS_DMA_NOWAIT) == 0)
    422  1.1  sevan 			break;
    423  1.1  sevan 
    424  1.1  sevan 		/* FALLTHROUGH */
    425  1.1  sevan 	default:
    426  1.1  sevan 		return (0);
    427  1.1  sevan 	}
    428  1.1  sevan 
    429  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    430  1.1  sevan 	    BUS_DMASYNC_PREWRITE);
    431  1.1  sevan 
    432  1.1  sevan 	nsegs = txmap->dm_nsegs;
    433  1.1  sevan 
    434  1.1  sevan 	/* Set up hardware VLAN tagging. */
    435  1.1  sevan #if NVLAN > 0
    436  1.1  sevan 	if (m->m_flags & M_VLANTAG)
    437  1.1  sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    438  1.1  sevan #endif
    439  1.1  sevan 
    440  1.1  sevan 	cur = idx;
    441  1.1  sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    442  1.1  sevan 
    443  1.1  sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    444  1.1  sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    445  1.1  sevan 
    446  1.1  sevan 		d->rge_extsts = htole32(cflags);
    447  1.1  sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    448  1.1  sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    449  1.1  sevan 
    450  1.1  sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    451  1.1  sevan 
    452  1.1  sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    453  1.1  sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    454  1.1  sevan 
    455  1.1  sevan 		d->rge_cmdsts = htole32(cmdsts);
    456  1.1  sevan 
    457  1.1  sevan 		last = cur;
    458  1.1  sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    459  1.1  sevan 		cur = RGE_NEXT_TX_DESC(cur);
    460  1.1  sevan 	}
    461  1.1  sevan 
    462  1.1  sevan 	/* Set EOF on the last descriptor. */
    463  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    464  1.1  sevan 
    465  1.1  sevan 	/* Transfer ownership of packet to the chip. */
    466  1.1  sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    467  1.1  sevan 
    468  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    469  1.1  sevan 
    470  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    471  1.1  sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    472  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    473  1.1  sevan 
    474  1.1  sevan 	/* Update info of TX queue and descriptors. */
    475  1.1  sevan 	txq->txq_mbuf = m;
    476  1.1  sevan 	txq->txq_descidx = last;
    477  1.1  sevan 
    478  1.1  sevan 	return (nsegs);
    479  1.1  sevan }
    480  1.1  sevan 
    481  1.1  sevan int
    482  1.2  sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    483  1.1  sevan {
    484  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    485  1.1  sevan 	struct ifreq *ifr = (struct ifreq *)data;
    486  1.1  sevan 	int s, error = 0;
    487  1.1  sevan 
    488  1.1  sevan 	s = splnet();
    489  1.1  sevan 
    490  1.1  sevan 	switch (cmd) {
    491  1.1  sevan 	case SIOCSIFADDR:
    492  1.1  sevan 		ifp->if_flags |= IFF_UP;
    493  1.1  sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    494  1.1  sevan 			rge_init(ifp);
    495  1.1  sevan 		break;
    496  1.1  sevan 	case SIOCSIFFLAGS:
    497  1.1  sevan 		if (ifp->if_flags & IFF_UP) {
    498  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    499  1.1  sevan 				error = ENETRESET;
    500  1.1  sevan 			else
    501  1.1  sevan 				rge_init(ifp);
    502  1.1  sevan 		} else {
    503  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    504  1.1  sevan 				rge_stop(ifp);
    505  1.1  sevan 		}
    506  1.1  sevan 		break;
    507  1.1  sevan 	case SIOCGIFMEDIA:
    508  1.1  sevan 	case SIOCSIFMEDIA:
    509  1.1  sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    510  1.1  sevan 		break;
    511  1.1  sevan 	case SIOCSIFMTU:
    512  1.2  sevan 		if (ifr->ifr_mtu > ifp->if_mtu) {
    513  1.1  sevan 			error = EINVAL;
    514  1.1  sevan 			break;
    515  1.1  sevan 		}
    516  1.1  sevan 		ifp->if_mtu = ifr->ifr_mtu;
    517  1.1  sevan 		break;
    518  1.1  sevan 	default:
    519  1.2  sevan 		error = ether_ioctl(ifp, cmd, data);
    520  1.1  sevan 	}
    521  1.1  sevan 
    522  1.1  sevan 	if (error == ENETRESET) {
    523  1.1  sevan 		if (ifp->if_flags & IFF_RUNNING)
    524  1.1  sevan 			rge_iff(sc);
    525  1.1  sevan 		error = 0;
    526  1.1  sevan 	}
    527  1.1  sevan 
    528  1.1  sevan 	splx(s);
    529  1.1  sevan 	return (error);
    530  1.1  sevan }
    531  1.1  sevan 
    532  1.1  sevan void
    533  1.3  sevan rge_start(struct ifnet *ifp)
    534  1.1  sevan {
    535  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    536  1.1  sevan 	struct mbuf *m;
    537  1.1  sevan 	int free, idx, used;
    538  1.1  sevan 	int queued = 0;
    539  1.1  sevan 
    540  1.2  sevan #define LINK_STATE_IS_UP(_s)    \
    541  1.2  sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    542  1.2  sevan 
    543  1.1  sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    544  1.1  sevan 		ifq_purge(ifq);
    545  1.1  sevan 		return;
    546  1.1  sevan 	}
    547  1.1  sevan 
    548  1.1  sevan 	/* Calculate free space. */
    549  1.1  sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    550  1.1  sevan 	free = sc->rge_ldata.rge_txq_considx;
    551  1.1  sevan 	if (free <= idx)
    552  1.1  sevan 		free += RGE_TX_LIST_CNT;
    553  1.1  sevan 	free -= idx;
    554  1.1  sevan 
    555  1.1  sevan 	for (;;) {
    556  1.1  sevan 		if (RGE_TX_NSEGS >= free + 2) {
    557  1.3  sevan 			SET(ifp->if_flags, IFF_OACTIVE);
    558  1.1  sevan 			break;
    559  1.1  sevan 		}
    560  1.1  sevan 
    561  1.3  sevan 		IFQ_DEQUEUE(&ifp->if_snd, m);
    562  1.1  sevan 		if (m == NULL)
    563  1.1  sevan 			break;
    564  1.1  sevan 
    565  1.1  sevan 		used = rge_encap(sc, m, idx);
    566  1.1  sevan 		if (used == 0) {
    567  1.1  sevan 			m_freem(m);
    568  1.1  sevan 			continue;
    569  1.1  sevan 		}
    570  1.1  sevan 
    571  1.1  sevan 		KASSERT(used <= free);
    572  1.1  sevan 		free -= used;
    573  1.1  sevan 
    574  1.1  sevan #if NBPFILTER > 0
    575  1.1  sevan 		if (ifp->if_bpf)
    576  1.1  sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    577  1.1  sevan #endif
    578  1.1  sevan 
    579  1.1  sevan 		idx += used;
    580  1.1  sevan 		if (idx >= RGE_TX_LIST_CNT)
    581  1.1  sevan 			idx -= RGE_TX_LIST_CNT;
    582  1.1  sevan 
    583  1.1  sevan 		queued++;
    584  1.1  sevan 	}
    585  1.1  sevan 
    586  1.1  sevan 	if (queued == 0)
    587  1.1  sevan 		return;
    588  1.1  sevan 
    589  1.1  sevan 	/* Set a timeout in case the chip goes out to lunch. */
    590  1.1  sevan 	ifp->if_timer = 5;
    591  1.1  sevan 
    592  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    593  1.1  sevan 	ifq_serialize(ifq, &sc->sc_task);
    594  1.1  sevan }
    595  1.1  sevan 
    596  1.1  sevan void
    597  1.1  sevan rge_watchdog(struct ifnet *ifp)
    598  1.1  sevan {
    599  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    600  1.1  sevan 
    601  1.1  sevan 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
    602  1.4  skrll 	if_statinc(ifp, if_oerrors);
    603  1.1  sevan 
    604  1.1  sevan 	rge_init(ifp);
    605  1.1  sevan }
    606  1.1  sevan 
    607  1.1  sevan int
    608  1.1  sevan rge_init(struct ifnet *ifp)
    609  1.1  sevan {
    610  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    611  1.1  sevan 	uint32_t val;
    612  1.1  sevan 	uint16_t max_frame_size;
    613  1.1  sevan 	int i;
    614  1.1  sevan 
    615  1.1  sevan 	rge_stop(ifp);
    616  1.1  sevan 
    617  1.1  sevan 	/* Set MAC address. */
    618  1.2  sevan 	rge_set_macaddr(sc, sc->sc_enaddr);
    619  1.1  sevan 
    620  1.1  sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    621  1.1  sevan 	if (ifp->if_mtu < ETHERMTU)
    622  1.1  sevan 		max_frame_size = ETHERMTU;
    623  1.1  sevan 	else
    624  1.1  sevan 		max_frame_size = ifp->if_mtu;
    625  1.1  sevan 
    626  1.1  sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    627  1.1  sevan 	    ETHER_CRC_LEN + 1;
    628  1.1  sevan 
    629  1.1  sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    630  1.5  skrll 		max_frame_size -= 1;
    631  1.1  sevan 
    632  1.1  sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    633  1.1  sevan 
    634  1.1  sevan 	/* Initialize RX descriptors list. */
    635  1.1  sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    636  1.1  sevan 		printf("%s: init failed: no memory for RX buffers\n",
    637  1.1  sevan 		    sc->sc_dev.dv_xname);
    638  1.1  sevan 		rge_stop(ifp);
    639  1.1  sevan 		return (ENOBUFS);
    640  1.1  sevan 	}
    641  1.1  sevan 
    642  1.1  sevan 	/* Initialize TX descriptors. */
    643  1.1  sevan 	rge_tx_list_init(sc);
    644  1.1  sevan 
    645  1.1  sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    646  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    647  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    648  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    649  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    650  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    651  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    652  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    653  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    654  1.1  sevan 
    655  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    656  1.1  sevan 
    657  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    658  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    659  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    660  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    661  1.1  sevan 
    662  1.1  sevan 	/* Clear interrupt moderation timer. */
    663  1.1  sevan 	for (i = 0; i < 64; i++)
    664  1.1  sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    665  1.1  sevan 
    666  1.1  sevan 	/* Set the initial RX and TX configurations. */
    667  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    668  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    669  1.1  sevan 
    670  1.1  sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    671  1.1  sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    672  1.1  sevan 
    673  1.1  sevan 	/* Enable hardware optimization function. */
    674  1.1  sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    675  1.1  sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    676  1.1  sevan 
    677  1.1  sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    678  1.1  sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    679  1.1  sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    680  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    681  1.1  sevan 
    682  1.1  sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    683  1.1  sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    684  1.1  sevan 
    685  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    686  1.1  sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    687  1.1  sevan 
    688  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    689  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    690  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    691  1.1  sevan 
    692  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    693  1.1  sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    694  1.1  sevan 
    695  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    696  1.1  sevan 
    697  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    698  1.1  sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    699  1.1  sevan 
    700  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    701  1.1  sevan 
    702  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    703  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    704  1.1  sevan 
    705  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    706  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    707  1.1  sevan 
    708  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    709  1.1  sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    710  1.1  sevan 
    711  1.1  sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    712  1.1  sevan 
    713  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    714  1.1  sevan 
    715  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    716  1.1  sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    717  1.1  sevan 
    718  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    719  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    720  1.1  sevan 
    721  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    722  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    723  1.1  sevan 
    724  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    725  1.1  sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    726  1.1  sevan 
    727  1.5  skrll 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    728  1.1  sevan 
    729  1.1  sevan 	/* Disable EEE plus. */
    730  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    731  1.1  sevan 
    732  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    733  1.1  sevan 
    734  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    735  1.1  sevan 	DELAY(1);
    736  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    737  1.1  sevan 
    738  1.1  sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    739  1.1  sevan 
    740  1.1  sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    741  1.1  sevan 
    742  1.2  sevan 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
    743  1.1  sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    744  1.1  sevan 
    745  1.1  sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    746  1.1  sevan 
    747  1.1  sevan 	for (i = 0; i < 10; i++) {
    748  1.1  sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    749  1.1  sevan 			break;
    750  1.1  sevan 		DELAY(1000);
    751  1.1  sevan 	}
    752  1.1  sevan 
    753  1.1  sevan 	/* Disable RXDV gate. */
    754  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    755  1.1  sevan 	DELAY(2000);
    756  1.1  sevan 
    757  1.1  sevan 	rge_ifmedia_upd(ifp);
    758  1.1  sevan 
    759  1.1  sevan 	/* Enable transmit and receive. */
    760  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    761  1.1  sevan 
    762  1.1  sevan 	/* Program promiscuous mode and multicast filters. */
    763  1.1  sevan 	rge_iff(sc);
    764  1.1  sevan 
    765  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    766  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    767  1.1  sevan 
    768  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    769  1.1  sevan 
    770  1.1  sevan 	/* Enable interrupts. */
    771  1.1  sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    772  1.1  sevan 
    773  1.1  sevan 	ifp->if_flags |= IFF_RUNNING;
    774  1.3  sevan 	CLR(ifp->if_flags, IFF_OACTIVE);
    775  1.1  sevan 
    776  1.3  sevan 	callout_schedule(&sc->sc_timeout, 1);
    777  1.1  sevan 
    778  1.1  sevan 	return (0);
    779  1.1  sevan }
    780  1.1  sevan 
    781  1.1  sevan /*
    782  1.1  sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    783  1.1  sevan  */
    784  1.1  sevan void
    785  1.1  sevan rge_stop(struct ifnet *ifp)
    786  1.1  sevan {
    787  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    788  1.1  sevan 	int i;
    789  1.1  sevan 
    790  1.1  sevan 	timeout_del(&sc->sc_timeout);
    791  1.1  sevan 
    792  1.1  sevan 	ifp->if_timer = 0;
    793  1.1  sevan 	ifp->if_flags &= ~IFF_RUNNING;
    794  1.1  sevan 	sc->rge_timerintr = 0;
    795  1.1  sevan 
    796  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    797  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    798  1.1  sevan 	    RGE_RXCFG_ERRPKT);
    799  1.1  sevan 
    800  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    801  1.1  sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    802  1.1  sevan 
    803  1.1  sevan 	rge_reset(sc);
    804  1.1  sevan 
    805  1.1  sevan 	intr_barrier(sc->sc_ih);
    806  1.1  sevan 	ifq_barrier(&ifp->if_snd);
    807  1.2  sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    808  1.1  sevan 
    809  1.1  sevan 	if (sc->rge_head != NULL) {
    810  1.1  sevan 		m_freem(sc->rge_head);
    811  1.1  sevan 		sc->rge_head = sc->rge_tail = NULL;
    812  1.1  sevan 	}
    813  1.1  sevan 
    814  1.1  sevan 	/* Free the TX list buffers. */
    815  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    816  1.1  sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    817  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    818  1.1  sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    819  1.1  sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    820  1.1  sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    821  1.1  sevan 		}
    822  1.1  sevan 	}
    823  1.1  sevan 
    824  1.1  sevan 	/* Free the RX list buffers. */
    825  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    826  1.1  sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    827  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    828  1.1  sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    829  1.1  sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    830  1.1  sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    831  1.1  sevan 		}
    832  1.1  sevan 	}
    833  1.1  sevan }
    834  1.1  sevan 
    835  1.1  sevan /*
    836  1.1  sevan  * Set media options.
    837  1.1  sevan  */
    838  1.1  sevan int
    839  1.1  sevan rge_ifmedia_upd(struct ifnet *ifp)
    840  1.1  sevan {
    841  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    842  1.1  sevan 	struct ifmedia *ifm = &sc->sc_media;
    843  1.1  sevan 	int anar, gig, val;
    844  1.1  sevan 
    845  1.1  sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    846  1.1  sevan 		return (EINVAL);
    847  1.1  sevan 
    848  1.1  sevan 	/* Disable Gigabit Lite. */
    849  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    850  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    851  1.1  sevan 
    852  1.1  sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    853  1.1  sevan 	val &= ~RGE_ADV_2500TFDX;
    854  1.1  sevan 
    855  1.1  sevan 	anar = gig = 0;
    856  1.1  sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    857  1.1  sevan 	case IFM_AUTO:
    858  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    859  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    860  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    861  1.1  sevan 		break;
    862  1.1  sevan 	case IFM_2500_T:
    863  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    864  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    865  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    866  1.1  sevan 		ifp->if_baudrate = IF_Mbps(2500);
    867  1.1  sevan 		break;
    868  1.1  sevan 	case IFM_1000_T:
    869  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    870  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    871  1.1  sevan 		ifp->if_baudrate = IF_Gbps(1);
    872  1.1  sevan 		break;
    873  1.1  sevan 	case IFM_100_TX:
    874  1.1  sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    875  1.1  sevan 		ifp->if_baudrate = IF_Mbps(100);
    876  1.1  sevan 		break;
    877  1.1  sevan 	case IFM_10_T:
    878  1.1  sevan 		anar |= ANAR_10 | ANAR_10_FD;
    879  1.1  sevan 		ifp->if_baudrate = IF_Mbps(10);
    880  1.1  sevan 		break;
    881  1.1  sevan 	default:
    882  1.1  sevan 		printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
    883  1.1  sevan 		return (EINVAL);
    884  1.1  sevan 	}
    885  1.1  sevan 
    886  1.1  sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    887  1.1  sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    888  1.1  sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    889  1.1  sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    890  1.1  sevan 
    891  1.1  sevan 	return (0);
    892  1.1  sevan }
    893  1.1  sevan 
    894  1.1  sevan /*
    895  1.1  sevan  * Report current media status.
    896  1.1  sevan  */
    897  1.1  sevan void
    898  1.1  sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    899  1.1  sevan {
    900  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    901  1.1  sevan 	uint16_t status = 0;
    902  1.1  sevan 
    903  1.1  sevan 	ifmr->ifm_status = IFM_AVALID;
    904  1.1  sevan 	ifmr->ifm_active = IFM_ETHER;
    905  1.1  sevan 
    906  1.1  sevan 	if (rge_get_link_status(sc)) {
    907  1.1  sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    908  1.1  sevan 
    909  1.1  sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    910  1.1  sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    911  1.1  sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    912  1.1  sevan 			ifmr->ifm_active |= IFM_FDX;
    913  1.1  sevan 		else
    914  1.1  sevan 			ifmr->ifm_active |= IFM_HDX;
    915  1.1  sevan 
    916  1.1  sevan 		if (status & RGE_PHYSTAT_10MBPS)
    917  1.1  sevan 			ifmr->ifm_active |= IFM_10_T;
    918  1.1  sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    919  1.1  sevan 			ifmr->ifm_active |= IFM_100_TX;
    920  1.1  sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    921  1.1  sevan 			ifmr->ifm_active |= IFM_1000_T;
    922  1.1  sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    923  1.1  sevan 			ifmr->ifm_active |= IFM_2500_T;
    924  1.1  sevan 	}
    925  1.1  sevan }
    926  1.1  sevan 
    927  1.5  skrll /*
    928  1.1  sevan  * Allocate memory for RX/TX rings.
    929  1.1  sevan  */
    930  1.1  sevan int
    931  1.1  sevan rge_allocmem(struct rge_softc *sc)
    932  1.1  sevan {
    933  1.1  sevan 	int error, i;
    934  1.1  sevan 
    935  1.1  sevan 	/* Allocate DMA'able memory for the TX ring. */
    936  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    937  1.1  sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    938  1.1  sevan 	if (error) {
    939  1.1  sevan 		printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
    940  1.1  sevan 		return (error);
    941  1.1  sevan 	}
    942  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    943  1.1  sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    944  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
    945  1.1  sevan 	if (error) {
    946  1.1  sevan 		printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
    947  1.1  sevan 		return (error);
    948  1.1  sevan 	}
    949  1.1  sevan 
    950  1.1  sevan 	/* Load the map for the TX ring. */
    951  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    952  1.1  sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    953  1.2  sevan 	    &sc->rge_ldata.rge_tx_list,
    954  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
    955  1.1  sevan 	if (error) {
    956  1.1  sevan 		printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
    957  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    958  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    959  1.1  sevan 		return (error);
    960  1.1  sevan 	}
    961  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    962  1.1  sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    963  1.1  sevan 	if (error) {
    964  1.1  sevan 		printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
    965  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    966  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
    967  1.2  sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    968  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    969  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    970  1.1  sevan 		return (error);
    971  1.1  sevan 	}
    972  1.1  sevan 
    973  1.1  sevan 	/* Create DMA maps for TX buffers. */
    974  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    975  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
    976  1.1  sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
    977  1.1  sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
    978  1.1  sevan 		if (error) {
    979  1.1  sevan 			printf("%s: can't create DMA map for TX\n",
    980  1.1  sevan 			    sc->sc_dev.dv_xname);
    981  1.1  sevan 			return (error);
    982  1.1  sevan 		}
    983  1.1  sevan 	}
    984  1.1  sevan 
    985  1.1  sevan 	/* Allocate DMA'able memory for the RX ring. */
    986  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
    987  1.1  sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
    988  1.1  sevan 	if (error) {
    989  1.1  sevan 		printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
    990  1.1  sevan 		return (error);
    991  1.1  sevan 	}
    992  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
    993  1.1  sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
    994  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_ZERO */
    995  1.1  sevan 	if (error) {
    996  1.1  sevan 		printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
    997  1.1  sevan 		return (error);
    998  1.1  sevan 	}
    999  1.1  sevan 
   1000  1.1  sevan 	/* Load the map for the RX ring. */
   1001  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1002  1.1  sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
   1003  1.2  sevan 	    &sc->rge_ldata.rge_rx_list,
   1004  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1005  1.1  sevan 	if (error) {
   1006  1.1  sevan 		printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
   1007  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1008  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1009  1.1  sevan 		return (error);
   1010  1.1  sevan 	}
   1011  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1012  1.1  sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1013  1.1  sevan 	if (error) {
   1014  1.1  sevan 		printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
   1015  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1016  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1017  1.2  sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1018  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1019  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1020  1.1  sevan 		return (error);
   1021  1.1  sevan 	}
   1022  1.1  sevan 
   1023  1.1  sevan 	/* Create DMA maps for RX buffers. */
   1024  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1025  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1026  1.1  sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1027  1.1  sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1028  1.1  sevan 		if (error) {
   1029  1.1  sevan 			printf("%s: can't create DMA map for RX\n",
   1030  1.1  sevan 			    sc->sc_dev.dv_xname);
   1031  1.1  sevan 			return (error);
   1032  1.1  sevan 		}
   1033  1.1  sevan 	}
   1034  1.1  sevan 
   1035  1.1  sevan 	return (error);
   1036  1.1  sevan }
   1037  1.1  sevan 
   1038  1.1  sevan /*
   1039  1.1  sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1040  1.1  sevan  */
   1041  1.1  sevan int
   1042  1.1  sevan rge_newbuf(struct rge_softc *sc, int idx)
   1043  1.1  sevan {
   1044  1.1  sevan 	struct mbuf *m;
   1045  1.1  sevan 	struct rge_rx_desc *r;
   1046  1.1  sevan 	struct rge_rxq *rxq;
   1047  1.1  sevan 	bus_dmamap_t rxmap;
   1048  1.1  sevan 
   1049  1.1  sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1050  1.1  sevan 	if (m == NULL)
   1051  1.1  sevan 		return (ENOBUFS);
   1052  1.1  sevan 
   1053  1.1  sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1054  1.1  sevan 
   1055  1.1  sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1056  1.1  sevan 	rxmap = rxq->rxq_dmamap;
   1057  1.1  sevan 
   1058  1.1  sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1059  1.1  sevan 		goto out;
   1060  1.1  sevan 
   1061  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1062  1.1  sevan 	    BUS_DMASYNC_PREREAD);
   1063  1.1  sevan 
   1064  1.1  sevan 	/* Map the segments into RX descriptors. */
   1065  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1066  1.1  sevan 
   1067  1.1  sevan 	if (RGE_OWN(r)) {
   1068  1.1  sevan 		printf("%s: tried to map busy RX descriptor\n",
   1069  1.1  sevan 		    sc->sc_dev.dv_xname);
   1070  1.1  sevan 		goto out;
   1071  1.1  sevan 	}
   1072  1.1  sevan 
   1073  1.1  sevan 	rxq->rxq_mbuf = m;
   1074  1.1  sevan 
   1075  1.1  sevan 	r->rge_extsts = 0;
   1076  1.1  sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1077  1.1  sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1078  1.1  sevan 
   1079  1.1  sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1080  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1081  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1082  1.1  sevan 
   1083  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1084  1.1  sevan 
   1085  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1086  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1087  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1088  1.1  sevan 
   1089  1.1  sevan 	return (0);
   1090  1.1  sevan out:
   1091  1.1  sevan 	if (m != NULL)
   1092  1.1  sevan 		m_freem(m);
   1093  1.1  sevan 	return (ENOMEM);
   1094  1.1  sevan }
   1095  1.1  sevan 
   1096  1.1  sevan void
   1097  1.1  sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1098  1.1  sevan {
   1099  1.1  sevan 	struct rge_rx_desc *r;
   1100  1.1  sevan 
   1101  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1102  1.1  sevan 
   1103  1.1  sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1104  1.1  sevan 	r->rge_extsts = 0;
   1105  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1106  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1107  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1108  1.1  sevan 
   1109  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1110  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1111  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1112  1.1  sevan }
   1113  1.1  sevan 
   1114  1.1  sevan int
   1115  1.1  sevan rge_rx_list_init(struct rge_softc *sc)
   1116  1.1  sevan {
   1117  1.1  sevan 	int i;
   1118  1.1  sevan 
   1119  1.1  sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1120  1.1  sevan 
   1121  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1122  1.1  sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1123  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1124  1.1  sevan 			return (ENOBUFS);
   1125  1.1  sevan 	}
   1126  1.1  sevan 
   1127  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1128  1.1  sevan 	sc->rge_head = sc->rge_tail = NULL;
   1129  1.1  sevan 
   1130  1.1  sevan 	return (0);
   1131  1.1  sevan }
   1132  1.1  sevan 
   1133  1.1  sevan void
   1134  1.1  sevan rge_tx_list_init(struct rge_softc *sc)
   1135  1.1  sevan {
   1136  1.1  sevan 	int i;
   1137  1.1  sevan 
   1138  1.1  sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1139  1.1  sevan 
   1140  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1141  1.1  sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1142  1.1  sevan 
   1143  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1144  1.1  sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1145  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1146  1.1  sevan 
   1147  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1148  1.1  sevan }
   1149  1.1  sevan 
   1150  1.1  sevan int
   1151  1.1  sevan rge_rxeof(struct rge_softc *sc)
   1152  1.1  sevan {
   1153  1.1  sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1154  1.1  sevan 	struct mbuf *m;
   1155  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1156  1.1  sevan 	struct rge_rx_desc *cur_rx;
   1157  1.1  sevan 	struct rge_rxq *rxq;
   1158  1.1  sevan 	uint32_t rxstat, extsts;
   1159  1.1  sevan 	int i, total_len, rx = 0;
   1160  1.1  sevan 
   1161  1.1  sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1162  1.1  sevan 		/* Invalidate the descriptor memory. */
   1163  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1164  1.1  sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1165  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1166  1.1  sevan 
   1167  1.1  sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1168  1.1  sevan 
   1169  1.1  sevan 		if (RGE_OWN(cur_rx))
   1170  1.1  sevan 			break;
   1171  1.1  sevan 
   1172  1.1  sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1173  1.1  sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1174  1.5  skrll 
   1175  1.1  sevan 		total_len = RGE_RXBYTES(cur_rx);
   1176  1.1  sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1177  1.1  sevan 		m = rxq->rxq_mbuf;
   1178  1.1  sevan 		rx = 1;
   1179  1.1  sevan 
   1180  1.1  sevan 		/* Invalidate the RX mbuf and unload its map. */
   1181  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1182  1.1  sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1183  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1184  1.1  sevan 
   1185  1.1  sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1186  1.1  sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1187  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1188  1.1  sevan 			continue;
   1189  1.1  sevan 		}
   1190  1.1  sevan 
   1191  1.1  sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1192  1.4  skrll 			if_statinc(ifp, if_ierrors);
   1193  1.1  sevan 			/*
   1194  1.1  sevan 			 * If this is part of a multi-fragment packet,
   1195  1.1  sevan 			 * discard all the pieces.
   1196  1.1  sevan 			 */
   1197  1.1  sevan 			 if (sc->rge_head != NULL) {
   1198  1.1  sevan 				m_freem(sc->rge_head);
   1199  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1200  1.1  sevan 			}
   1201  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1202  1.1  sevan 			continue;
   1203  1.1  sevan 		}
   1204  1.1  sevan 
   1205  1.1  sevan 		/*
   1206  1.1  sevan 		 * If allocating a replacement mbuf fails,
   1207  1.1  sevan 		 * reload the current one.
   1208  1.1  sevan 		 */
   1209  1.1  sevan 
   1210  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1211  1.1  sevan 			if (sc->rge_head != NULL) {
   1212  1.1  sevan 				m_freem(sc->rge_head);
   1213  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1214  1.1  sevan 			}
   1215  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1216  1.1  sevan 			continue;
   1217  1.1  sevan 		}
   1218  1.1  sevan 
   1219  1.1  sevan 		if (sc->rge_head != NULL) {
   1220  1.1  sevan 			m->m_len = total_len;
   1221  1.1  sevan 			/*
   1222  1.1  sevan 			 * Special case: if there's 4 bytes or less
   1223  1.1  sevan 			 * in this buffer, the mbuf can be discarded:
   1224  1.1  sevan 			 * the last 4 bytes is the CRC, which we don't
   1225  1.1  sevan 			 * care about anyway.
   1226  1.1  sevan 			 */
   1227  1.1  sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1228  1.1  sevan 				sc->rge_tail->m_len -=
   1229  1.1  sevan 				    (ETHER_CRC_LEN - m->m_len);
   1230  1.1  sevan 				m_freem(m);
   1231  1.1  sevan 			} else {
   1232  1.1  sevan 				m->m_len -= ETHER_CRC_LEN;
   1233  1.1  sevan 				m->m_flags &= ~M_PKTHDR;
   1234  1.1  sevan 				sc->rge_tail->m_next = m;
   1235  1.1  sevan 			}
   1236  1.1  sevan 			m = sc->rge_head;
   1237  1.1  sevan 			sc->rge_head = sc->rge_tail = NULL;
   1238  1.1  sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1239  1.1  sevan 		} else
   1240  1.1  sevan 			m->m_pkthdr.len = m->m_len =
   1241  1.1  sevan 			    (total_len - ETHER_CRC_LEN);
   1242  1.1  sevan 
   1243  1.1  sevan 		/* Check IP header checksum. */
   1244  1.1  sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1245  1.1  sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1246  1.1  sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1247  1.1  sevan 
   1248  1.1  sevan 		/* Check TCP/UDP checksum. */
   1249  1.1  sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1250  1.1  sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1251  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1252  1.1  sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1253  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1254  1.1  sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1255  1.1  sevan 			    M_UDP_CSUM_IN_OK;
   1256  1.1  sevan 
   1257  1.1  sevan #if NVLAN > 0
   1258  1.1  sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1259  1.1  sevan 			m->m_pkthdr.ether_vtag =
   1260  1.1  sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1261  1.1  sevan 			m->m_flags |= M_VLANTAG;
   1262  1.1  sevan 		}
   1263  1.1  sevan #endif
   1264  1.1  sevan 
   1265  1.1  sevan 		ml_enqueue(&ml, m);
   1266  1.1  sevan 	}
   1267  1.1  sevan 
   1268  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1269  1.1  sevan 
   1270  1.1  sevan 	if_input(ifp, &ml);
   1271  1.1  sevan 
   1272  1.1  sevan 	return (rx);
   1273  1.1  sevan }
   1274  1.1  sevan 
   1275  1.1  sevan int
   1276  1.1  sevan rge_txeof(struct rge_softc *sc)
   1277  1.1  sevan {
   1278  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1279  1.1  sevan 	struct rge_txq *txq;
   1280  1.1  sevan 	uint32_t txstat;
   1281  1.1  sevan 	int cons, idx, prod;
   1282  1.1  sevan 	int free = 0;
   1283  1.1  sevan 
   1284  1.1  sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1285  1.1  sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1286  1.1  sevan 
   1287  1.1  sevan 	while (prod != cons) {
   1288  1.1  sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1289  1.1  sevan 		idx = txq->txq_descidx;
   1290  1.1  sevan 
   1291  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1292  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1293  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1294  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1295  1.1  sevan 
   1296  1.1  sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1297  1.1  sevan 
   1298  1.1  sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1299  1.1  sevan 			free = 2;
   1300  1.1  sevan 			break;
   1301  1.1  sevan 		}
   1302  1.1  sevan 
   1303  1.5  skrll 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1304  1.1  sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1305  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1306  1.1  sevan 		m_freem(txq->txq_mbuf);
   1307  1.1  sevan 		txq->txq_mbuf = NULL;
   1308  1.1  sevan 
   1309  1.1  sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1310  1.4  skrll 			if_statinc(ifp, if_collisions);
   1311  1.1  sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1312  1.4  skrll 			if_statinc(ifp, if_oerrors);
   1313  1.1  sevan 
   1314  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1315  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1316  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1317  1.1  sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1318  1.1  sevan 
   1319  1.1  sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1320  1.1  sevan 		free = 1;
   1321  1.1  sevan 	}
   1322  1.1  sevan 
   1323  1.1  sevan 	if (free == 0)
   1324  1.1  sevan 		return (0);
   1325  1.1  sevan 
   1326  1.1  sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1327  1.1  sevan 
   1328  1.1  sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1329  1.1  sevan 		ifq_restart(&ifp->if_snd);
   1330  1.1  sevan 	else if (free == 2)
   1331  1.1  sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1332  1.1  sevan 	else
   1333  1.1  sevan 		ifp->if_timer = 0;
   1334  1.1  sevan 
   1335  1.1  sevan 	return (1);
   1336  1.1  sevan }
   1337  1.1  sevan 
   1338  1.1  sevan void
   1339  1.1  sevan rge_reset(struct rge_softc *sc)
   1340  1.1  sevan {
   1341  1.1  sevan 	int i;
   1342  1.1  sevan 
   1343  1.1  sevan 	/* Enable RXDV gate. */
   1344  1.1  sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1345  1.1  sevan 	DELAY(2000);
   1346  1.1  sevan 
   1347  1.1  sevan 	for (i = 0; i < 10; i++) {
   1348  1.1  sevan 		DELAY(100);
   1349  1.1  sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1350  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1351  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1352  1.1  sevan 			break;
   1353  1.1  sevan 	}
   1354  1.1  sevan 
   1355  1.1  sevan 	/* Soft reset. */
   1356  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1357  1.1  sevan 
   1358  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1359  1.1  sevan 		DELAY(100);
   1360  1.1  sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1361  1.1  sevan 			break;
   1362  1.1  sevan 	}
   1363  1.1  sevan 	if (i == RGE_TIMEOUT)
   1364  1.1  sevan 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
   1365  1.1  sevan }
   1366  1.1  sevan 
   1367  1.1  sevan void
   1368  1.1  sevan rge_iff(struct rge_softc *sc)
   1369  1.1  sevan {
   1370  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1371  1.2  sevan 	struct ethercom *ac = &sc->sc_ec;
   1372  1.1  sevan 	struct ether_multi *enm;
   1373  1.1  sevan 	struct ether_multistep step;
   1374  1.1  sevan 	uint32_t hashes[2];
   1375  1.1  sevan 	uint32_t rxfilt;
   1376  1.1  sevan 	int h = 0;
   1377  1.1  sevan 
   1378  1.1  sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1379  1.1  sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1380  1.1  sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1381  1.1  sevan 
   1382  1.1  sevan 	/*
   1383  1.1  sevan 	 * Always accept frames destined to our station address.
   1384  1.1  sevan 	 * Always accept broadcast frames.
   1385  1.1  sevan 	 */
   1386  1.1  sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1387  1.1  sevan 
   1388  1.1  sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1389  1.1  sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1390  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1391  1.1  sevan 		if (ifp->if_flags & IFF_PROMISC)
   1392  1.1  sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1393  1.1  sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1394  1.1  sevan 	} else {
   1395  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1396  1.1  sevan 		/* Program new filter. */
   1397  1.1  sevan 		memset(hashes, 0, sizeof(hashes));
   1398  1.1  sevan 
   1399  1.1  sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1400  1.1  sevan 		while (enm != NULL) {
   1401  1.1  sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1402  1.1  sevan 			    ETHER_ADDR_LEN) >> 26;
   1403  1.1  sevan 
   1404  1.1  sevan 			if (h < 32)
   1405  1.1  sevan 				hashes[0] |= (1 << h);
   1406  1.1  sevan 			else
   1407  1.1  sevan 				hashes[1] |= (1 << (h - 32));
   1408  1.1  sevan 
   1409  1.1  sevan 			ETHER_NEXT_MULTI(step, enm);
   1410  1.1  sevan 		}
   1411  1.1  sevan 	}
   1412  1.1  sevan 
   1413  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1414  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1415  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1416  1.1  sevan }
   1417  1.1  sevan 
   1418  1.1  sevan void
   1419  1.1  sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1420  1.1  sevan {
   1421  1.1  sevan 	int i;
   1422  1.1  sevan 
   1423  1.1  sevan 	if (on) {
   1424  1.1  sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1425  1.1  sevan 
   1426  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1427  1.1  sevan 
   1428  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1429  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 3)
   1430  1.1  sevan 				break;
   1431  1.1  sevan 			DELAY(1000);
   1432  1.1  sevan 		}
   1433  1.1  sevan 	} else
   1434  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1435  1.1  sevan }
   1436  1.1  sevan 
   1437  1.1  sevan void
   1438  1.1  sevan rge_phy_config(struct rge_softc *sc)
   1439  1.1  sevan {
   1440  1.1  sevan 	uint16_t mcode_ver, val;
   1441  1.1  sevan 	int i;
   1442  1.1  sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1443  1.1  sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1444  1.1  sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1445  1.1  sevan 
   1446  1.1  sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1447  1.5  skrll 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1448  1.1  sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1449  1.1  sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1450  1.1  sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1451  1.1  sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1452  1.1  sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1453  1.1  sevan 
   1454  1.1  sevan 	/* Read microcode version. */
   1455  1.1  sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1456  1.1  sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1457  1.1  sevan 
   1458  1.1  sevan 	if (sc->rge_type == MAC_CFG2) {
   1459  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1460  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1461  1.1  sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1462  1.1  sevan 		}
   1463  1.1  sevan 
   1464  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1465  1.1  sevan 			/* Disable PHY config. */
   1466  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1467  1.1  sevan 			DELAY(1000);
   1468  1.1  sevan 
   1469  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1470  1.1  sevan 
   1471  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1472  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1473  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1474  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1475  1.1  sevan 
   1476  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1477  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1478  1.1  sevan 				rge_write_phy_ocp(sc,
   1479  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1480  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1481  1.1  sevan 			}
   1482  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1483  1.1  sevan 
   1484  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1485  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1486  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1487  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1488  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1489  1.1  sevan 
   1490  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1491  1.1  sevan 
   1492  1.1  sevan 			/* Enable PHY config. */
   1493  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1494  1.1  sevan 
   1495  1.1  sevan 			/* Write microcode version. */
   1496  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1497  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1498  1.1  sevan 		}
   1499  1.5  skrll 
   1500  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1501  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1502  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1503  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1504  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1505  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1506  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1507  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1508  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1509  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1510  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1511  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1512  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1513  1.1  sevan 
   1514  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1515  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1516  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1517  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1518  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1519  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1520  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1521  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1522  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1523  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1524  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1525  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1526  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1527  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1528  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1529  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1530  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1531  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1532  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1533  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1534  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1535  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1536  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1537  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1538  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1539  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1540  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1541  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1542  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1543  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1544  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1545  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1546  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1547  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1548  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1549  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1550  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1551  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1552  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1553  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1554  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1555  1.1  sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1556  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1557  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1558  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1559  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1560  1.1  sevan 	} else {
   1561  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1562  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1563  1.1  sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1564  1.1  sevan 
   1565  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1566  1.1  sevan 			/* Disable PHY config. */
   1567  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1568  1.1  sevan 			DELAY(1000);
   1569  1.1  sevan 
   1570  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1571  1.1  sevan 
   1572  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1573  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1574  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1575  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1576  1.1  sevan 
   1577  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1578  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1579  1.1  sevan 				rge_write_phy_ocp(sc,
   1580  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1581  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1582  1.1  sevan 			}
   1583  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1584  1.1  sevan 
   1585  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1586  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1587  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1588  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1589  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1590  1.1  sevan 
   1591  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1592  1.1  sevan 
   1593  1.1  sevan 			/* Enable PHY config. */
   1594  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1595  1.1  sevan 
   1596  1.1  sevan 			/* Write microcode version. */
   1597  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1598  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1599  1.1  sevan 		}
   1600  1.1  sevan 
   1601  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1602  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1603  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1604  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1605  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1606  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1607  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1608  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1609  1.1  sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1610  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1611  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1612  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1613  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1614  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1615  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1616  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1617  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1618  1.1  sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1619  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1620  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1621  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1622  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1623  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1624  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1625  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1626  1.1  sevan 
   1627  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1628  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1629  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1630  1.1  sevan 		for (i = 0; i < 26; i++)
   1631  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1632  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1633  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1634  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1635  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1636  1.1  sevan 
   1637  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1638  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1639  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1640  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1641  1.1  sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1642  1.1  sevan 			rge_write_phy_ocp(sc, 0xb890,
   1643  1.1  sevan 			    mac_cfg3_b88e_value[i + 1]);
   1644  1.1  sevan 		}
   1645  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1646  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1647  1.1  sevan 
   1648  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1649  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1650  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1651  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1652  1.1  sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1653  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1654  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1655  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1656  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1657  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1658  1.1  sevan 	}
   1659  1.1  sevan 
   1660  1.1  sevan 	/* Disable EEE. */
   1661  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1662  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1663  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1664  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1665  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1666  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1667  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1668  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1669  1.1  sevan 
   1670  1.1  sevan 	rge_patch_phy_mcu(sc, 1);
   1671  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1672  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1673  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1674  1.1  sevan 	rge_patch_phy_mcu(sc, 0);
   1675  1.1  sevan }
   1676  1.1  sevan 
   1677  1.1  sevan void
   1678  1.1  sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1679  1.1  sevan {
   1680  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1681  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1682  1.1  sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1683  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1684  1.1  sevan 	    addr[5] <<  8 | addr[4]);
   1685  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1686  1.1  sevan }
   1687  1.1  sevan 
   1688  1.1  sevan void
   1689  1.1  sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1690  1.1  sevan {
   1691  1.1  sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1692  1.1  sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1693  1.1  sevan }
   1694  1.1  sevan 
   1695  1.1  sevan void
   1696  1.1  sevan rge_hw_init(struct rge_softc *sc)
   1697  1.1  sevan {
   1698  1.1  sevan 	int i;
   1699  1.1  sevan 
   1700  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1701  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1702  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1703  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1704  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1705  1.1  sevan 
   1706  1.1  sevan 	/* Disable UPS. */
   1707  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1708  1.1  sevan 
   1709  1.1  sevan 	/* Configure MAC MCU. */
   1710  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1711  1.1  sevan 
   1712  1.1  sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1713  1.1  sevan 		rge_write_mac_ocp(sc, i, 0);
   1714  1.1  sevan 
   1715  1.1  sevan 	DELAY(3000);
   1716  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1717  1.1  sevan 
   1718  1.1  sevan 	if (sc->rge_type == MAC_CFG3) {
   1719  1.1  sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1720  1.1  sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1721  1.1  sevan 			    rtl8125_def_bps[i].val);
   1722  1.1  sevan 	}
   1723  1.1  sevan 
   1724  1.1  sevan 	/* Disable PHY power saving. */
   1725  1.1  sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1726  1.1  sevan 
   1727  1.1  sevan 	/* Set PCIe uncorrectable error status. */
   1728  1.1  sevan 	rge_write_csi(sc, 0x108,
   1729  1.1  sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1730  1.1  sevan }
   1731  1.1  sevan 
   1732  1.1  sevan void
   1733  1.1  sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1734  1.1  sevan {
   1735  1.1  sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1736  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1737  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1738  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1739  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1740  1.1  sevan 	}
   1741  1.1  sevan }
   1742  1.1  sevan 
   1743  1.1  sevan void
   1744  1.1  sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1745  1.1  sevan {
   1746  1.1  sevan 	uint16_t val;
   1747  1.1  sevan 	int i;
   1748  1.1  sevan 
   1749  1.1  sevan 	if (set)
   1750  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1751  1.1  sevan 	else
   1752  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1753  1.1  sevan 
   1754  1.1  sevan 	for (i = 0; i < 1000; i++) {
   1755  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1756  1.1  sevan 		DELAY(100);
   1757  1.1  sevan 		if (val == 0x0040)
   1758  1.1  sevan 			break;
   1759  1.1  sevan 	}
   1760  1.1  sevan 	if (i == 1000)
   1761  1.1  sevan 		printf("%s: timeout waiting to patch phy mcu\n",
   1762  1.1  sevan 		    sc->sc_dev.dv_xname);
   1763  1.1  sevan }
   1764  1.1  sevan 
   1765  1.1  sevan void
   1766  1.1  sevan rge_add_media_types(struct rge_softc *sc)
   1767  1.1  sevan {
   1768  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1769  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1770  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1771  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1772  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1773  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1774  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1775  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1776  1.1  sevan }
   1777  1.1  sevan 
   1778  1.1  sevan void
   1779  1.1  sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1780  1.1  sevan {
   1781  1.1  sevan 	switch (imtype) {
   1782  1.1  sevan 	case RGE_IMTYPE_NONE:
   1783  1.1  sevan 		sc->rge_intrs = RGE_INTRS;
   1784  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1785  1.1  sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1786  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1787  1.1  sevan 		break;
   1788  1.1  sevan 	case RGE_IMTYPE_SIM:
   1789  1.1  sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1790  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1791  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1792  1.1  sevan 		break;
   1793  1.1  sevan 	default:
   1794  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1795  1.1  sevan 	}
   1796  1.1  sevan }
   1797  1.1  sevan 
   1798  1.1  sevan void
   1799  1.1  sevan rge_disable_sim_im(struct rge_softc *sc)
   1800  1.1  sevan {
   1801  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1802  1.1  sevan 	sc->rge_timerintr = 0;
   1803  1.1  sevan }
   1804  1.1  sevan 
   1805  1.1  sevan void
   1806  1.1  sevan rge_setup_sim_im(struct rge_softc *sc)
   1807  1.1  sevan {
   1808  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1809  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1810  1.1  sevan 	sc->rge_timerintr = 1;
   1811  1.1  sevan }
   1812  1.1  sevan 
   1813  1.1  sevan void
   1814  1.1  sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1815  1.1  sevan {
   1816  1.1  sevan 	rge_config_imtype(sc, imtype);
   1817  1.1  sevan 
   1818  1.1  sevan 	/* Enable interrupts. */
   1819  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1820  1.1  sevan 
   1821  1.1  sevan 	switch (imtype) {
   1822  1.1  sevan 	case RGE_IMTYPE_NONE:
   1823  1.1  sevan 		rge_disable_sim_im(sc);
   1824  1.1  sevan 		break;
   1825  1.1  sevan 	case RGE_IMTYPE_SIM:
   1826  1.1  sevan 		rge_setup_sim_im(sc);
   1827  1.1  sevan 		break;
   1828  1.1  sevan 	default:
   1829  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1830  1.1  sevan 	}
   1831  1.1  sevan }
   1832  1.1  sevan 
   1833  1.1  sevan void
   1834  1.1  sevan rge_exit_oob(struct rge_softc *sc)
   1835  1.1  sevan {
   1836  1.1  sevan 	int i;
   1837  1.1  sevan 
   1838  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1839  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1840  1.1  sevan 	    RGE_RXCFG_ERRPKT);
   1841  1.1  sevan 
   1842  1.1  sevan 	/* Disable RealWoW. */
   1843  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1844  1.1  sevan 
   1845  1.1  sevan 	rge_reset(sc);
   1846  1.1  sevan 
   1847  1.1  sevan 	/* Disable OOB. */
   1848  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1849  1.1  sevan 
   1850  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1851  1.1  sevan 
   1852  1.1  sevan 	for (i = 0; i < 10; i++) {
   1853  1.1  sevan 		DELAY(100);
   1854  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1855  1.1  sevan 			break;
   1856  1.1  sevan 	}
   1857  1.1  sevan 
   1858  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1859  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1860  1.1  sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1861  1.1  sevan 
   1862  1.1  sevan 	for (i = 0; i < 10; i++) {
   1863  1.1  sevan 		DELAY(100);
   1864  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1865  1.1  sevan 			break;
   1866  1.1  sevan 	}
   1867  1.1  sevan 
   1868  1.1  sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1869  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1870  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 2)
   1871  1.1  sevan 				break;
   1872  1.1  sevan 			DELAY(1000);
   1873  1.1  sevan 		}
   1874  1.1  sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1875  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1876  1.1  sevan 	}
   1877  1.1  sevan }
   1878  1.1  sevan 
   1879  1.1  sevan void
   1880  1.1  sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1881  1.1  sevan {
   1882  1.1  sevan 	int i;
   1883  1.1  sevan 
   1884  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1885  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1886  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1887  1.1  sevan 
   1888  1.1  sevan 	for (i = 0; i < 10; i++) {
   1889  1.1  sevan 		 DELAY(100);
   1890  1.1  sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1891  1.1  sevan 			break;
   1892  1.1  sevan 	}
   1893  1.1  sevan 
   1894  1.1  sevan 	DELAY(20);
   1895  1.1  sevan }
   1896  1.1  sevan 
   1897  1.1  sevan uint32_t
   1898  1.1  sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1899  1.1  sevan {
   1900  1.1  sevan 	int i;
   1901  1.1  sevan 
   1902  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1903  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1904  1.1  sevan 
   1905  1.1  sevan 	for (i = 0; i < 10; i++) {
   1906  1.1  sevan 		 DELAY(100);
   1907  1.1  sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1908  1.1  sevan 			break;
   1909  1.1  sevan 	}
   1910  1.1  sevan 
   1911  1.1  sevan 	DELAY(20);
   1912  1.1  sevan 
   1913  1.1  sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1914  1.1  sevan }
   1915  1.1  sevan 
   1916  1.1  sevan void
   1917  1.1  sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1918  1.1  sevan {
   1919  1.1  sevan 	uint32_t tmp;
   1920  1.1  sevan 
   1921  1.1  sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1922  1.1  sevan 	tmp += val;
   1923  1.1  sevan 	tmp |= RGE_MACOCP_BUSY;
   1924  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1925  1.1  sevan }
   1926  1.1  sevan 
   1927  1.1  sevan uint16_t
   1928  1.1  sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1929  1.1  sevan {
   1930  1.1  sevan 	uint32_t val;
   1931  1.1  sevan 
   1932  1.1  sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1933  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1934  1.1  sevan 
   1935  1.1  sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1936  1.1  sevan }
   1937  1.1  sevan 
   1938  1.1  sevan void
   1939  1.1  sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1940  1.1  sevan {
   1941  1.1  sevan 	uint32_t tmp;
   1942  1.1  sevan 	int i;
   1943  1.1  sevan 
   1944  1.1  sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1945  1.1  sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1946  1.1  sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1947  1.1  sevan 
   1948  1.1  sevan 	for (i = 0; i < 10; i++) {
   1949  1.1  sevan 		DELAY(100);
   1950  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1951  1.1  sevan 			break;
   1952  1.1  sevan 	}
   1953  1.1  sevan 
   1954  1.1  sevan 	DELAY(20);
   1955  1.1  sevan }
   1956  1.1  sevan 
   1957  1.1  sevan void
   1958  1.1  sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1959  1.1  sevan {
   1960  1.1  sevan 	uint16_t off, phyaddr;
   1961  1.1  sevan 
   1962  1.1  sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1963  1.1  sevan 	phyaddr <<= 4;
   1964  1.1  sevan 
   1965  1.1  sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1966  1.1  sevan 
   1967  1.1  sevan 	phyaddr += (off - 16) << 1;
   1968  1.1  sevan 
   1969  1.1  sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1970  1.1  sevan }
   1971  1.1  sevan 
   1972  1.1  sevan void
   1973  1.1  sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1974  1.1  sevan {
   1975  1.1  sevan 	uint32_t tmp;
   1976  1.1  sevan 	int i;
   1977  1.1  sevan 
   1978  1.1  sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1979  1.1  sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   1980  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   1981  1.1  sevan 
   1982  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1983  1.1  sevan 		DELAY(1);
   1984  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   1985  1.1  sevan 			break;
   1986  1.1  sevan 	}
   1987  1.1  sevan }
   1988  1.1  sevan 
   1989  1.1  sevan uint16_t
   1990  1.1  sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   1991  1.1  sevan {
   1992  1.1  sevan 	uint32_t val;
   1993  1.1  sevan 	int i;
   1994  1.1  sevan 
   1995  1.1  sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1996  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   1997  1.1  sevan 
   1998  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1999  1.1  sevan 		DELAY(1);
   2000  1.1  sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   2001  1.1  sevan 		if (val & RGE_PHYOCP_BUSY)
   2002  1.1  sevan 			break;
   2003  1.1  sevan 	}
   2004  1.1  sevan 
   2005  1.1  sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   2006  1.1  sevan }
   2007  1.1  sevan 
   2008  1.1  sevan int
   2009  1.1  sevan rge_get_link_status(struct rge_softc *sc)
   2010  1.1  sevan {
   2011  1.1  sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2012  1.1  sevan }
   2013  1.1  sevan 
   2014  1.1  sevan void
   2015  1.3  sevan rge_txstart(struct work *wk, void *arg)
   2016  1.1  sevan {
   2017  1.1  sevan 	struct rge_softc *sc = arg;
   2018  1.1  sevan 
   2019  1.1  sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2020  1.1  sevan }
   2021  1.1  sevan 
   2022  1.1  sevan void
   2023  1.1  sevan rge_tick(void *arg)
   2024  1.1  sevan {
   2025  1.1  sevan 	struct rge_softc *sc = arg;
   2026  1.1  sevan 	int s;
   2027  1.1  sevan 
   2028  1.1  sevan 	s = splnet();
   2029  1.1  sevan 	rge_link_state(sc);
   2030  1.1  sevan 	splx(s);
   2031  1.1  sevan 
   2032  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   2033  1.1  sevan }
   2034  1.1  sevan 
   2035  1.1  sevan void
   2036  1.1  sevan rge_link_state(struct rge_softc *sc)
   2037  1.1  sevan {
   2038  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2039  1.1  sevan 	int link = LINK_STATE_DOWN;
   2040  1.1  sevan 
   2041  1.1  sevan 	if (rge_get_link_status(sc))
   2042  1.1  sevan 		link = LINK_STATE_UP;
   2043  1.1  sevan 
   2044  1.1  sevan 	if (ifp->if_link_state != link) {
   2045  1.1  sevan 		ifp->if_link_state = link;
   2046  1.2  sevan 		if_link_state_change(ifp, LINK_STATE_DOWN);
   2047  1.1  sevan 	}
   2048  1.1  sevan }
   2049