if_rge.c revision 1.8 1 1.8 sevan /* $NetBSD: if_rge.c,v 1.8 2020/02/27 23:15:34 sevan Exp $ */
2 1.1 sevan /* $OpenBSD: if_rge.c,v 1.2 2020/01/02 09:00:45 kevlo Exp $ */
3 1.1 sevan
4 1.1 sevan /*
5 1.1 sevan * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
6 1.1 sevan *
7 1.1 sevan * Permission to use, copy, modify, and distribute this software for any
8 1.1 sevan * purpose with or without fee is hereby granted, provided that the above
9 1.1 sevan * copyright notice and this permission notice appear in all copies.
10 1.1 sevan *
11 1.1 sevan * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 1.1 sevan * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.1 sevan * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 1.1 sevan * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.1 sevan * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.1 sevan * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 1.1 sevan * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 sevan */
19 1.1 sevan
20 1.2 sevan #include <sys/cdefs.h>
21 1.8 sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.8 2020/02/27 23:15:34 sevan Exp $");
22 1.2 sevan
23 1.2 sevan /* #include "vlan.h" Sevan */
24 1.2 sevan
25 1.2 sevan #include <sys/types.h>
26 1.1 sevan
27 1.1 sevan #include <sys/param.h>
28 1.1 sevan #include <sys/systm.h>
29 1.1 sevan #include <sys/sockio.h>
30 1.1 sevan #include <sys/mbuf.h>
31 1.1 sevan #include <sys/malloc.h>
32 1.1 sevan #include <sys/kernel.h>
33 1.1 sevan #include <sys/socket.h>
34 1.1 sevan #include <sys/device.h>
35 1.1 sevan #include <sys/endian.h>
36 1.3 sevan #include <sys/callout.h>
37 1.3 sevan #include <sys/workqueue.h>
38 1.1 sevan
39 1.1 sevan #include <net/if.h>
40 1.2 sevan
41 1.2 sevan #include <net/if_dl.h>
42 1.2 sevan #include <net/if_ether.h>
43 1.2 sevan
44 1.1 sevan #include <net/if_media.h>
45 1.1 sevan
46 1.1 sevan #include <netinet/in.h>
47 1.2 sevan #include <net/if_ether.h>
48 1.1 sevan
49 1.1 sevan #if NBPFILTER > 0
50 1.1 sevan #include <net/bpf.h>
51 1.1 sevan #endif
52 1.1 sevan
53 1.2 sevan #include <sys/bus.h>
54 1.1 sevan #include <machine/intr.h>
55 1.1 sevan
56 1.1 sevan #include <dev/mii/mii.h>
57 1.1 sevan
58 1.1 sevan #include <dev/pci/pcivar.h>
59 1.1 sevan #include <dev/pci/pcireg.h>
60 1.1 sevan #include <dev/pci/pcidevs.h>
61 1.1 sevan
62 1.1 sevan #include <dev/pci/if_rgereg.h>
63 1.1 sevan
64 1.2 sevan #ifdef __NetBSD__
65 1.2 sevan #define letoh32 htole32
66 1.2 sevan #define nitems(x) __arraycount(x)
67 1.2 sevan #define MBUF_LIST_INITIALIZER() { NULL, NULL, 0 }
68 1.2 sevan struct mbuf_list {
69 1.2 sevan struct mbuf *ml_head;
70 1.2 sevan struct mbuf *ml_tail;
71 1.2 sevan u_int ml_len;
72 1.2 sevan };
73 1.7 sevan
74 1.7 sevan static struct mbuf *
75 1.7 sevan MCLGETI(struct rge_softc *sc __unused, int how,
76 1.7 sevan struct ifnet *ifp __unused, u_int size)
77 1.7 sevan {
78 1.7 sevan struct mbuf *m;
79 1.7 sevan
80 1.7 sevan MGETHDR(m, how, MT_DATA);
81 1.7 sevan if (m == NULL)
82 1.7 sevan return NULL;
83 1.7 sevan
84 1.7 sevan MEXTMALLOC(m, size, how);
85 1.7 sevan if ((m->m_flags & M_EXT) == 0) {
86 1.7 sevan m_freem(m);
87 1.7 sevan return NULL;
88 1.7 sevan }
89 1.7 sevan return m;
90 1.7 sevan }
91 1.7 sevan
92 1.3 sevan #ifdef NET_MPSAFE
93 1.3 sevan #define RGE_MPSAFE 1
94 1.3 sevan #define CALLOUT_FLAGS CALLOUT_MPSAFE
95 1.3 sevan #else
96 1.3 sevan #define CALLOUT_FLAGS 0
97 1.3 sevan #endif
98 1.2 sevan #endif
99 1.2 sevan
100 1.2 sevan static int rge_match(device_t, cfdata_t, void *);
101 1.5 skrll static void rge_attach(device_t, device_t, void *);
102 1.1 sevan int rge_intr(void *);
103 1.1 sevan int rge_encap(struct rge_softc *, struct mbuf *, int);
104 1.2 sevan int rge_ioctl(struct ifnet *, u_long, void *);
105 1.2 sevan void rge_start(struct ifnet *);
106 1.1 sevan void rge_watchdog(struct ifnet *);
107 1.1 sevan int rge_init(struct ifnet *);
108 1.1 sevan void rge_stop(struct ifnet *);
109 1.1 sevan int rge_ifmedia_upd(struct ifnet *);
110 1.1 sevan void rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
111 1.1 sevan int rge_allocmem(struct rge_softc *);
112 1.1 sevan int rge_newbuf(struct rge_softc *, int);
113 1.1 sevan void rge_discard_rxbuf(struct rge_softc *, int);
114 1.1 sevan int rge_rx_list_init(struct rge_softc *);
115 1.1 sevan void rge_tx_list_init(struct rge_softc *);
116 1.1 sevan int rge_rxeof(struct rge_softc *);
117 1.1 sevan int rge_txeof(struct rge_softc *);
118 1.1 sevan void rge_reset(struct rge_softc *);
119 1.1 sevan void rge_iff(struct rge_softc *);
120 1.1 sevan void rge_set_phy_power(struct rge_softc *, int);
121 1.1 sevan void rge_phy_config(struct rge_softc *);
122 1.1 sevan void rge_set_macaddr(struct rge_softc *, const uint8_t *);
123 1.1 sevan void rge_get_macaddr(struct rge_softc *, uint8_t *);
124 1.1 sevan void rge_hw_init(struct rge_softc *);
125 1.1 sevan void rge_disable_phy_ocp_pwrsave(struct rge_softc *);
126 1.1 sevan void rge_patch_phy_mcu(struct rge_softc *, int);
127 1.1 sevan void rge_add_media_types(struct rge_softc *);
128 1.1 sevan void rge_config_imtype(struct rge_softc *, int);
129 1.1 sevan void rge_disable_sim_im(struct rge_softc *);
130 1.1 sevan void rge_setup_sim_im(struct rge_softc *);
131 1.1 sevan void rge_setup_intr(struct rge_softc *, int);
132 1.1 sevan void rge_exit_oob(struct rge_softc *);
133 1.1 sevan void rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
134 1.1 sevan uint32_t rge_read_csi(struct rge_softc *, uint32_t);
135 1.1 sevan void rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
136 1.1 sevan uint16_t rge_read_mac_ocp(struct rge_softc *, uint16_t);
137 1.1 sevan void rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
138 1.1 sevan void rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
139 1.1 sevan void rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
140 1.1 sevan uint16_t rge_read_phy_ocp(struct rge_softc *, uint16_t);
141 1.1 sevan int rge_get_link_status(struct rge_softc *);
142 1.3 sevan void rge_txstart(struct work *, void *);
143 1.1 sevan void rge_tick(void *);
144 1.1 sevan void rge_link_state(struct rge_softc *);
145 1.1 sevan
146 1.1 sevan static const struct {
147 1.1 sevan uint16_t reg;
148 1.1 sevan uint16_t val;
149 1.1 sevan } rtl8125_def_bps[] = {
150 1.1 sevan RTL8125_DEF_BPS
151 1.1 sevan }, rtl8125_mac_cfg2_ephy[] = {
152 1.1 sevan RTL8125_MAC_CFG2_EPHY
153 1.1 sevan }, rtl8125_mac_cfg2_mcu[] = {
154 1.1 sevan RTL8125_MAC_CFG2_MCU
155 1.1 sevan }, rtl8125_mac_cfg3_ephy[] = {
156 1.1 sevan RTL8125_MAC_CFG3_EPHY
157 1.1 sevan }, rtl8125_mac_cfg3_mcu[] = {
158 1.1 sevan RTL8125_MAC_CFG3_MCU
159 1.1 sevan };
160 1.1 sevan
161 1.2 sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
162 1.2 sevan NULL, NULL); /* Sevan - detach function? */
163 1.1 sevan
164 1.2 sevan extern struct cfdriver rge_cd;
165 1.1 sevan
166 1.2 sevan static const struct {
167 1.2 sevan pci_vendor_id_t vendor;
168 1.2 sevan pci_product_id_t product;
169 1.2 sevan }rge_devices[] = {
170 1.1 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
171 1.2 sevan { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
172 1.1 sevan };
173 1.1 sevan
174 1.2 sevan static int
175 1.2 sevan rge_match(device_t parent, cfdata_t match, void *aux)
176 1.1 sevan {
177 1.2 sevan struct pci_attach_args *pa =aux;
178 1.2 sevan int n;
179 1.2 sevan
180 1.2 sevan for (n =0; n < __arraycount(rge_devices); n++) {
181 1.2 sevan if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
182 1.2 sevan PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
183 1.2 sevan return 1;
184 1.2 sevan }
185 1.2 sevan
186 1.2 sevan return 0;
187 1.1 sevan }
188 1.1 sevan
189 1.1 sevan void
190 1.2 sevan rge_attach(device_t parent, device_t self, void *aux)
191 1.1 sevan {
192 1.1 sevan struct rge_softc *sc = (struct rge_softc *)self;
193 1.1 sevan struct pci_attach_args *pa = aux;
194 1.1 sevan pci_chipset_tag_t pc = pa->pa_pc;
195 1.1 sevan pci_intr_handle_t ih;
196 1.2 sevan char intrbuf[PCI_INTRSTR_LEN];
197 1.1 sevan const char *intrstr = NULL;
198 1.1 sevan struct ifnet *ifp;
199 1.1 sevan pcireg_t reg;
200 1.1 sevan uint32_t hwrev;
201 1.1 sevan uint8_t eaddr[ETHER_ADDR_LEN];
202 1.1 sevan int offset;
203 1.1 sevan
204 1.1 sevan pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
205 1.1 sevan
206 1.5 skrll /*
207 1.1 sevan * Map control/status registers.
208 1.1 sevan */
209 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
210 1.1 sevan PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
211 1.2 sevan NULL, &sc->rge_bsize)) {
212 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
213 1.1 sevan PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
214 1.2 sevan &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
215 1.1 sevan if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
216 1.1 sevan 0, &sc->rge_btag, &sc->rge_bhandle, NULL,
217 1.2 sevan &sc->rge_bsize)) {
218 1.1 sevan printf(": can't map mem or i/o space\n");
219 1.1 sevan return;
220 1.1 sevan }
221 1.1 sevan }
222 1.1 sevan }
223 1.1 sevan
224 1.5 skrll /*
225 1.1 sevan * Allocate interrupt.
226 1.1 sevan */
227 1.2 sevan if (pci_intr_map(pa, &ih) == 0)
228 1.1 sevan sc->rge_flags |= RGE_FLAG_MSI;
229 1.1 sevan else if (pci_intr_map(pa, &ih) != 0) {
230 1.1 sevan printf(": couldn't map interrupt\n");
231 1.1 sevan return;
232 1.1 sevan }
233 1.2 sevan intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
234 1.2 sevan sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
235 1.1 sevan sc, sc->sc_dev.dv_xname);
236 1.1 sevan if (sc->sc_ih == NULL) {
237 1.1 sevan printf(": couldn't establish interrupt");
238 1.1 sevan if (intrstr != NULL)
239 1.1 sevan printf(" at %s", intrstr);
240 1.1 sevan printf("\n");
241 1.1 sevan return;
242 1.1 sevan }
243 1.1 sevan printf(": %s", intrstr);
244 1.1 sevan
245 1.1 sevan sc->sc_dmat = pa->pa_dmat;
246 1.1 sevan sc->sc_pc = pa->pa_pc;
247 1.1 sevan sc->sc_tag = pa->pa_tag;
248 1.1 sevan
249 1.1 sevan /* Determine hardware revision */
250 1.1 sevan hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
251 1.1 sevan switch (hwrev) {
252 1.1 sevan case 0x60800000:
253 1.1 sevan sc->rge_type = MAC_CFG2;
254 1.1 sevan break;
255 1.1 sevan case 0x60900000:
256 1.1 sevan sc->rge_type = MAC_CFG3;
257 1.1 sevan break;
258 1.1 sevan default:
259 1.1 sevan printf(": unknown version 0x%08x\n", hwrev);
260 1.1 sevan return;
261 1.1 sevan }
262 1.1 sevan
263 1.1 sevan rge_config_imtype(sc, RGE_IMTYPE_SIM);
264 1.1 sevan
265 1.5 skrll /*
266 1.1 sevan * PCI Express check.
267 1.1 sevan */
268 1.1 sevan if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
269 1.1 sevan &offset, NULL)) {
270 1.2 sevan /* Disable PCIe ASPM. */
271 1.1 sevan reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
272 1.2 sevan offset + PCIE_LCSR);
273 1.2 sevan reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
274 1.2 sevan pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
275 1.1 sevan reg);
276 1.1 sevan }
277 1.1 sevan
278 1.1 sevan rge_exit_oob(sc);
279 1.1 sevan rge_hw_init(sc);
280 1.1 sevan
281 1.1 sevan rge_get_macaddr(sc, eaddr);
282 1.1 sevan printf(", address %s\n", ether_sprintf(eaddr));
283 1.1 sevan
284 1.2 sevan memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
285 1.1 sevan
286 1.1 sevan rge_set_phy_power(sc, 1);
287 1.1 sevan rge_phy_config(sc);
288 1.1 sevan
289 1.1 sevan if (rge_allocmem(sc))
290 1.1 sevan return;
291 1.1 sevan
292 1.2 sevan ifp = &sc->sc_ec.ec_if;
293 1.1 sevan ifp->if_softc = sc;
294 1.1 sevan strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
295 1.1 sevan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
296 1.2 sevan #ifdef RGE_MPSAFE
297 1.2 sevan ifp->if_xflags = IFEF_MPSAFE;
298 1.2 sevan #endif
299 1.1 sevan ifp->if_ioctl = rge_ioctl;
300 1.2 sevan ifp->if_start = rge_start;
301 1.1 sevan ifp->if_watchdog = rge_watchdog;
302 1.1 sevan IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
303 1.2 sevan ifp->if_mtu = RGE_JUMBO_MTU;
304 1.1 sevan
305 1.2 sevan ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
306 1.2 sevan IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
307 1.2 sevan IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
308 1.1 sevan
309 1.1 sevan #if NVLAN > 0
310 1.1 sevan ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
311 1.1 sevan #endif
312 1.1 sevan
313 1.3 sevan callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
314 1.3 sevan callout_setfunc(&sc->sc_timeout, rge_tick, sc);
315 1.3 sevan rge_txstart(&sc->sc_task, sc);
316 1.1 sevan
317 1.1 sevan /* Initialize ifmedia structures. */
318 1.1 sevan ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
319 1.1 sevan rge_ifmedia_sts);
320 1.1 sevan rge_add_media_types(sc);
321 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
322 1.1 sevan ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
323 1.1 sevan sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
324 1.1 sevan
325 1.1 sevan if_attach(ifp);
326 1.2 sevan ether_ifattach(ifp, eaddr);
327 1.1 sevan }
328 1.1 sevan
329 1.1 sevan int
330 1.1 sevan rge_intr(void *arg)
331 1.1 sevan {
332 1.1 sevan struct rge_softc *sc = arg;
333 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
334 1.1 sevan uint32_t status;
335 1.1 sevan int claimed = 0, rx, tx;
336 1.1 sevan
337 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
338 1.1 sevan return (0);
339 1.1 sevan
340 1.1 sevan /* Disable interrupts. */
341 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
342 1.1 sevan
343 1.1 sevan status = RGE_READ_4(sc, RGE_ISR);
344 1.1 sevan if (!(sc->rge_flags & RGE_FLAG_MSI)) {
345 1.1 sevan if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
346 1.1 sevan return (0);
347 1.1 sevan }
348 1.1 sevan if (status)
349 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, status);
350 1.1 sevan
351 1.1 sevan if (status & RGE_ISR_PCS_TIMEOUT)
352 1.1 sevan claimed = 1;
353 1.1 sevan
354 1.1 sevan rx = tx = 0;
355 1.1 sevan if (status & RGE_INTRS) {
356 1.1 sevan if (status &
357 1.1 sevan (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
358 1.1 sevan rx |= rge_rxeof(sc);
359 1.1 sevan claimed = 1;
360 1.1 sevan }
361 1.1 sevan
362 1.1 sevan if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
363 1.1 sevan tx |= rge_txeof(sc);
364 1.1 sevan claimed = 1;
365 1.1 sevan }
366 1.1 sevan
367 1.1 sevan if (status & RGE_ISR_SYSTEM_ERR) {
368 1.2 sevan KERNEL_LOCK(1, NULL);
369 1.1 sevan rge_init(ifp);
370 1.2 sevan KERNEL_UNLOCK_ONE(NULL);
371 1.1 sevan claimed = 1;
372 1.1 sevan }
373 1.1 sevan }
374 1.1 sevan
375 1.1 sevan if (sc->rge_timerintr) {
376 1.1 sevan if ((tx | rx) == 0) {
377 1.1 sevan /*
378 1.1 sevan * Nothing needs to be processed, fallback
379 1.1 sevan * to use TX/RX interrupts.
380 1.1 sevan */
381 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_NONE);
382 1.1 sevan
383 1.1 sevan /*
384 1.1 sevan * Recollect, mainly to avoid the possible
385 1.1 sevan * race introduced by changing interrupt
386 1.1 sevan * masks.
387 1.1 sevan */
388 1.1 sevan rge_rxeof(sc);
389 1.1 sevan rge_txeof(sc);
390 1.1 sevan } else
391 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
392 1.1 sevan } else if (tx | rx) {
393 1.1 sevan /*
394 1.1 sevan * Assume that using simulated interrupt moderation
395 1.1 sevan * (hardware timer based) could reduce the interrupt
396 1.1 sevan * rate.
397 1.1 sevan */
398 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
399 1.1 sevan }
400 1.1 sevan
401 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
402 1.1 sevan
403 1.1 sevan return (claimed);
404 1.1 sevan }
405 1.1 sevan
406 1.1 sevan int
407 1.1 sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
408 1.1 sevan {
409 1.1 sevan struct rge_tx_desc *d = NULL;
410 1.1 sevan struct rge_txq *txq;
411 1.1 sevan bus_dmamap_t txmap;
412 1.1 sevan uint32_t cmdsts, cflags = 0;
413 1.1 sevan int cur, error, i, last, nsegs;
414 1.1 sevan
415 1.1 sevan /*
416 1.1 sevan * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
417 1.1 sevan * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
418 1.1 sevan * take affect.
419 1.1 sevan */
420 1.1 sevan if ((m->m_pkthdr.csum_flags &
421 1.2 sevan (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
422 1.1 sevan cflags |= RGE_TDEXTSTS_IPCSUM;
423 1.1 sevan if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
424 1.1 sevan cflags |= RGE_TDEXTSTS_TCPCSUM;
425 1.1 sevan if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
426 1.1 sevan cflags |= RGE_TDEXTSTS_UDPCSUM;
427 1.1 sevan }
428 1.1 sevan
429 1.1 sevan txq = &sc->rge_ldata.rge_txq[idx];
430 1.1 sevan txmap = txq->txq_dmamap;
431 1.1 sevan
432 1.1 sevan error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
433 1.1 sevan switch (error) {
434 1.1 sevan case 0:
435 1.1 sevan break;
436 1.1 sevan case EFBIG: /* mbuf chain is too fragmented */
437 1.1 sevan if (m_defrag(m, M_DONTWAIT) == 0 &&
438 1.1 sevan bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
439 1.1 sevan BUS_DMA_NOWAIT) == 0)
440 1.1 sevan break;
441 1.1 sevan
442 1.1 sevan /* FALLTHROUGH */
443 1.1 sevan default:
444 1.1 sevan return (0);
445 1.1 sevan }
446 1.1 sevan
447 1.1 sevan bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
448 1.1 sevan BUS_DMASYNC_PREWRITE);
449 1.1 sevan
450 1.1 sevan nsegs = txmap->dm_nsegs;
451 1.1 sevan
452 1.1 sevan /* Set up hardware VLAN tagging. */
453 1.1 sevan #if NVLAN > 0
454 1.1 sevan if (m->m_flags & M_VLANTAG)
455 1.1 sevan cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
456 1.1 sevan #endif
457 1.1 sevan
458 1.1 sevan cur = idx;
459 1.1 sevan cmdsts = RGE_TDCMDSTS_SOF;
460 1.1 sevan
461 1.1 sevan for (i = 0; i < txmap->dm_nsegs; i++) {
462 1.1 sevan d = &sc->rge_ldata.rge_tx_list[cur];
463 1.1 sevan
464 1.1 sevan d->rge_extsts = htole32(cflags);
465 1.1 sevan d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
466 1.1 sevan d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
467 1.1 sevan
468 1.1 sevan cmdsts |= txmap->dm_segs[i].ds_len;
469 1.1 sevan
470 1.1 sevan if (cur == RGE_TX_LIST_CNT - 1)
471 1.1 sevan cmdsts |= RGE_TDCMDSTS_EOR;
472 1.1 sevan
473 1.1 sevan d->rge_cmdsts = htole32(cmdsts);
474 1.1 sevan
475 1.1 sevan last = cur;
476 1.1 sevan cmdsts = RGE_TDCMDSTS_OWN;
477 1.1 sevan cur = RGE_NEXT_TX_DESC(cur);
478 1.1 sevan }
479 1.1 sevan
480 1.1 sevan /* Set EOF on the last descriptor. */
481 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
482 1.1 sevan
483 1.1 sevan /* Transfer ownership of packet to the chip. */
484 1.1 sevan d = &sc->rge_ldata.rge_tx_list[idx];
485 1.1 sevan
486 1.1 sevan d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
487 1.1 sevan
488 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
489 1.1 sevan cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
490 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
491 1.1 sevan
492 1.1 sevan /* Update info of TX queue and descriptors. */
493 1.1 sevan txq->txq_mbuf = m;
494 1.1 sevan txq->txq_descidx = last;
495 1.1 sevan
496 1.1 sevan return (nsegs);
497 1.1 sevan }
498 1.1 sevan
499 1.1 sevan int
500 1.2 sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
501 1.1 sevan {
502 1.1 sevan struct rge_softc *sc = ifp->if_softc;
503 1.1 sevan struct ifreq *ifr = (struct ifreq *)data;
504 1.1 sevan int s, error = 0;
505 1.1 sevan
506 1.1 sevan s = splnet();
507 1.1 sevan
508 1.1 sevan switch (cmd) {
509 1.1 sevan case SIOCSIFADDR:
510 1.1 sevan ifp->if_flags |= IFF_UP;
511 1.1 sevan if (!(ifp->if_flags & IFF_RUNNING))
512 1.1 sevan rge_init(ifp);
513 1.1 sevan break;
514 1.1 sevan case SIOCSIFFLAGS:
515 1.1 sevan if (ifp->if_flags & IFF_UP) {
516 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
517 1.1 sevan error = ENETRESET;
518 1.1 sevan else
519 1.1 sevan rge_init(ifp);
520 1.1 sevan } else {
521 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
522 1.1 sevan rge_stop(ifp);
523 1.1 sevan }
524 1.1 sevan break;
525 1.1 sevan case SIOCGIFMEDIA:
526 1.1 sevan case SIOCSIFMEDIA:
527 1.1 sevan error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
528 1.1 sevan break;
529 1.1 sevan case SIOCSIFMTU:
530 1.2 sevan if (ifr->ifr_mtu > ifp->if_mtu) {
531 1.1 sevan error = EINVAL;
532 1.1 sevan break;
533 1.1 sevan }
534 1.1 sevan ifp->if_mtu = ifr->ifr_mtu;
535 1.1 sevan break;
536 1.1 sevan default:
537 1.2 sevan error = ether_ioctl(ifp, cmd, data);
538 1.1 sevan }
539 1.1 sevan
540 1.1 sevan if (error == ENETRESET) {
541 1.1 sevan if (ifp->if_flags & IFF_RUNNING)
542 1.1 sevan rge_iff(sc);
543 1.1 sevan error = 0;
544 1.1 sevan }
545 1.1 sevan
546 1.1 sevan splx(s);
547 1.1 sevan return (error);
548 1.1 sevan }
549 1.1 sevan
550 1.1 sevan void
551 1.3 sevan rge_start(struct ifnet *ifp)
552 1.1 sevan {
553 1.1 sevan struct rge_softc *sc = ifp->if_softc;
554 1.1 sevan struct mbuf *m;
555 1.1 sevan int free, idx, used;
556 1.1 sevan int queued = 0;
557 1.1 sevan
558 1.2 sevan #define LINK_STATE_IS_UP(_s) \
559 1.2 sevan ((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
560 1.2 sevan
561 1.1 sevan if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
562 1.1 sevan ifq_purge(ifq);
563 1.1 sevan return;
564 1.1 sevan }
565 1.1 sevan
566 1.1 sevan /* Calculate free space. */
567 1.1 sevan idx = sc->rge_ldata.rge_txq_prodidx;
568 1.1 sevan free = sc->rge_ldata.rge_txq_considx;
569 1.1 sevan if (free <= idx)
570 1.1 sevan free += RGE_TX_LIST_CNT;
571 1.1 sevan free -= idx;
572 1.1 sevan
573 1.1 sevan for (;;) {
574 1.1 sevan if (RGE_TX_NSEGS >= free + 2) {
575 1.3 sevan SET(ifp->if_flags, IFF_OACTIVE);
576 1.1 sevan break;
577 1.1 sevan }
578 1.1 sevan
579 1.3 sevan IFQ_DEQUEUE(&ifp->if_snd, m);
580 1.1 sevan if (m == NULL)
581 1.1 sevan break;
582 1.1 sevan
583 1.1 sevan used = rge_encap(sc, m, idx);
584 1.1 sevan if (used == 0) {
585 1.1 sevan m_freem(m);
586 1.1 sevan continue;
587 1.1 sevan }
588 1.1 sevan
589 1.1 sevan KASSERT(used <= free);
590 1.1 sevan free -= used;
591 1.1 sevan
592 1.1 sevan #if NBPFILTER > 0
593 1.1 sevan if (ifp->if_bpf)
594 1.1 sevan bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
595 1.1 sevan #endif
596 1.1 sevan
597 1.1 sevan idx += used;
598 1.1 sevan if (idx >= RGE_TX_LIST_CNT)
599 1.1 sevan idx -= RGE_TX_LIST_CNT;
600 1.1 sevan
601 1.1 sevan queued++;
602 1.1 sevan }
603 1.1 sevan
604 1.1 sevan if (queued == 0)
605 1.1 sevan return;
606 1.1 sevan
607 1.1 sevan /* Set a timeout in case the chip goes out to lunch. */
608 1.1 sevan ifp->if_timer = 5;
609 1.1 sevan
610 1.1 sevan sc->rge_ldata.rge_txq_prodidx = idx;
611 1.1 sevan ifq_serialize(ifq, &sc->sc_task);
612 1.1 sevan }
613 1.1 sevan
614 1.1 sevan void
615 1.1 sevan rge_watchdog(struct ifnet *ifp)
616 1.1 sevan {
617 1.1 sevan struct rge_softc *sc = ifp->if_softc;
618 1.1 sevan
619 1.1 sevan printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
620 1.4 skrll if_statinc(ifp, if_oerrors);
621 1.1 sevan
622 1.1 sevan rge_init(ifp);
623 1.1 sevan }
624 1.1 sevan
625 1.1 sevan int
626 1.1 sevan rge_init(struct ifnet *ifp)
627 1.1 sevan {
628 1.1 sevan struct rge_softc *sc = ifp->if_softc;
629 1.1 sevan uint32_t val;
630 1.1 sevan uint16_t max_frame_size;
631 1.1 sevan int i;
632 1.1 sevan
633 1.1 sevan rge_stop(ifp);
634 1.1 sevan
635 1.1 sevan /* Set MAC address. */
636 1.2 sevan rge_set_macaddr(sc, sc->sc_enaddr);
637 1.1 sevan
638 1.1 sevan /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
639 1.1 sevan if (ifp->if_mtu < ETHERMTU)
640 1.1 sevan max_frame_size = ETHERMTU;
641 1.1 sevan else
642 1.1 sevan max_frame_size = ifp->if_mtu;
643 1.1 sevan
644 1.1 sevan max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
645 1.1 sevan ETHER_CRC_LEN + 1;
646 1.1 sevan
647 1.1 sevan if (max_frame_size > RGE_JUMBO_FRAMELEN)
648 1.5 skrll max_frame_size -= 1;
649 1.1 sevan
650 1.1 sevan RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
651 1.1 sevan
652 1.1 sevan /* Initialize RX descriptors list. */
653 1.1 sevan if (rge_rx_list_init(sc) == ENOBUFS) {
654 1.1 sevan printf("%s: init failed: no memory for RX buffers\n",
655 1.1 sevan sc->sc_dev.dv_xname);
656 1.1 sevan rge_stop(ifp);
657 1.1 sevan return (ENOBUFS);
658 1.1 sevan }
659 1.1 sevan
660 1.1 sevan /* Initialize TX descriptors. */
661 1.1 sevan rge_tx_list_init(sc);
662 1.1 sevan
663 1.1 sevan /* Load the addresses of the RX and TX lists into the chip. */
664 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
665 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
666 1.1 sevan RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
667 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
668 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
669 1.1 sevan RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
670 1.1 sevan RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
671 1.1 sevan RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
672 1.1 sevan
673 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
674 1.1 sevan
675 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
676 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
677 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
678 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
679 1.1 sevan
680 1.1 sevan /* Clear interrupt moderation timer. */
681 1.1 sevan for (i = 0; i < 64; i++)
682 1.1 sevan RGE_WRITE_4(sc, RGE_IM(i), 0);
683 1.1 sevan
684 1.1 sevan /* Set the initial RX and TX configurations. */
685 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
686 1.1 sevan RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
687 1.1 sevan
688 1.1 sevan val = rge_read_csi(sc, 0x70c) & ~0xff000000;
689 1.1 sevan rge_write_csi(sc, 0x70c, val | 0x27000000);
690 1.1 sevan
691 1.1 sevan /* Enable hardware optimization function. */
692 1.1 sevan val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
693 1.1 sevan pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
694 1.1 sevan
695 1.1 sevan RGE_WRITE_2(sc, 0x0382, 0x221b);
696 1.1 sevan RGE_WRITE_1(sc, 0x4500, 0);
697 1.1 sevan RGE_WRITE_2(sc, 0x4800, 0);
698 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
699 1.1 sevan
700 1.1 sevan rge_write_mac_ocp(sc, 0xc140, 0xffff);
701 1.1 sevan rge_write_mac_ocp(sc, 0xc142, 0xffff);
702 1.1 sevan
703 1.1 sevan val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
704 1.1 sevan rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
705 1.1 sevan
706 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
707 1.1 sevan RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
708 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
709 1.1 sevan
710 1.1 sevan val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
711 1.1 sevan rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
712 1.1 sevan
713 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
714 1.1 sevan
715 1.1 sevan val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
716 1.1 sevan rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
717 1.1 sevan
718 1.1 sevan RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
719 1.1 sevan
720 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
721 1.1 sevan rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
722 1.1 sevan
723 1.1 sevan val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
724 1.1 sevan rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
725 1.1 sevan
726 1.1 sevan val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
727 1.1 sevan rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
728 1.1 sevan
729 1.1 sevan RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
730 1.1 sevan
731 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
732 1.1 sevan
733 1.1 sevan val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
734 1.1 sevan rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
735 1.1 sevan
736 1.1 sevan RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
737 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
738 1.1 sevan
739 1.1 sevan val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
740 1.1 sevan rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
741 1.1 sevan
742 1.1 sevan val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
743 1.1 sevan rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
744 1.1 sevan
745 1.5 skrll RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
746 1.1 sevan
747 1.1 sevan /* Disable EEE plus. */
748 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
749 1.1 sevan
750 1.1 sevan RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
751 1.1 sevan
752 1.1 sevan RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
753 1.1 sevan DELAY(1);
754 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
755 1.1 sevan
756 1.1 sevan RGE_CLRBIT_4(sc, 0x1880, 0x0030);
757 1.1 sevan
758 1.1 sevan rge_write_mac_ocp(sc, 0xe098, 0xc302);
759 1.1 sevan
760 1.2 sevan if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
761 1.1 sevan RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
762 1.1 sevan
763 1.1 sevan RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
764 1.1 sevan
765 1.1 sevan for (i = 0; i < 10; i++) {
766 1.1 sevan if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
767 1.1 sevan break;
768 1.1 sevan DELAY(1000);
769 1.1 sevan }
770 1.1 sevan
771 1.1 sevan /* Disable RXDV gate. */
772 1.1 sevan RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
773 1.1 sevan DELAY(2000);
774 1.1 sevan
775 1.1 sevan rge_ifmedia_upd(ifp);
776 1.1 sevan
777 1.1 sevan /* Enable transmit and receive. */
778 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
779 1.1 sevan
780 1.1 sevan /* Program promiscuous mode and multicast filters. */
781 1.1 sevan rge_iff(sc);
782 1.1 sevan
783 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
784 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
785 1.1 sevan
786 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
787 1.1 sevan
788 1.1 sevan /* Enable interrupts. */
789 1.1 sevan rge_setup_intr(sc, RGE_IMTYPE_SIM);
790 1.1 sevan
791 1.1 sevan ifp->if_flags |= IFF_RUNNING;
792 1.3 sevan CLR(ifp->if_flags, IFF_OACTIVE);
793 1.1 sevan
794 1.3 sevan callout_schedule(&sc->sc_timeout, 1);
795 1.1 sevan
796 1.1 sevan return (0);
797 1.1 sevan }
798 1.1 sevan
799 1.1 sevan /*
800 1.1 sevan * Stop the adapter and free any mbufs allocated to the RX and TX lists.
801 1.1 sevan */
802 1.1 sevan void
803 1.1 sevan rge_stop(struct ifnet *ifp)
804 1.1 sevan {
805 1.1 sevan struct rge_softc *sc = ifp->if_softc;
806 1.1 sevan int i;
807 1.1 sevan
808 1.1 sevan timeout_del(&sc->sc_timeout);
809 1.1 sevan
810 1.1 sevan ifp->if_timer = 0;
811 1.1 sevan ifp->if_flags &= ~IFF_RUNNING;
812 1.1 sevan sc->rge_timerintr = 0;
813 1.1 sevan
814 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
815 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
816 1.1 sevan RGE_RXCFG_ERRPKT);
817 1.1 sevan
818 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, 0);
819 1.1 sevan RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
820 1.1 sevan
821 1.1 sevan rge_reset(sc);
822 1.1 sevan
823 1.1 sevan intr_barrier(sc->sc_ih);
824 1.1 sevan ifq_barrier(&ifp->if_snd);
825 1.2 sevan /* ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
826 1.1 sevan
827 1.1 sevan if (sc->rge_head != NULL) {
828 1.1 sevan m_freem(sc->rge_head);
829 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
830 1.1 sevan }
831 1.1 sevan
832 1.1 sevan /* Free the TX list buffers. */
833 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
834 1.1 sevan if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
835 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
836 1.1 sevan sc->rge_ldata.rge_txq[i].txq_dmamap);
837 1.1 sevan m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
838 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
839 1.1 sevan }
840 1.1 sevan }
841 1.1 sevan
842 1.1 sevan /* Free the RX list buffers. */
843 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
844 1.1 sevan if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
845 1.1 sevan bus_dmamap_unload(sc->sc_dmat,
846 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_dmamap);
847 1.1 sevan m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
848 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
849 1.1 sevan }
850 1.1 sevan }
851 1.1 sevan }
852 1.1 sevan
853 1.1 sevan /*
854 1.1 sevan * Set media options.
855 1.1 sevan */
856 1.1 sevan int
857 1.1 sevan rge_ifmedia_upd(struct ifnet *ifp)
858 1.1 sevan {
859 1.1 sevan struct rge_softc *sc = ifp->if_softc;
860 1.1 sevan struct ifmedia *ifm = &sc->sc_media;
861 1.1 sevan int anar, gig, val;
862 1.1 sevan
863 1.1 sevan if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
864 1.1 sevan return (EINVAL);
865 1.1 sevan
866 1.1 sevan /* Disable Gigabit Lite. */
867 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
868 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
869 1.1 sevan
870 1.1 sevan val = rge_read_phy_ocp(sc, 0xa5d4);
871 1.1 sevan val &= ~RGE_ADV_2500TFDX;
872 1.1 sevan
873 1.1 sevan anar = gig = 0;
874 1.1 sevan switch (IFM_SUBTYPE(ifm->ifm_media)) {
875 1.1 sevan case IFM_AUTO:
876 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
877 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
878 1.1 sevan val |= RGE_ADV_2500TFDX;
879 1.1 sevan break;
880 1.1 sevan case IFM_2500_T:
881 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
882 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
883 1.1 sevan val |= RGE_ADV_2500TFDX;
884 1.1 sevan ifp->if_baudrate = IF_Mbps(2500);
885 1.1 sevan break;
886 1.1 sevan case IFM_1000_T:
887 1.1 sevan anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
888 1.1 sevan gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
889 1.1 sevan ifp->if_baudrate = IF_Gbps(1);
890 1.1 sevan break;
891 1.1 sevan case IFM_100_TX:
892 1.1 sevan anar |= ANAR_TX | ANAR_TX_FD;
893 1.1 sevan ifp->if_baudrate = IF_Mbps(100);
894 1.1 sevan break;
895 1.1 sevan case IFM_10_T:
896 1.1 sevan anar |= ANAR_10 | ANAR_10_FD;
897 1.1 sevan ifp->if_baudrate = IF_Mbps(10);
898 1.1 sevan break;
899 1.1 sevan default:
900 1.1 sevan printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
901 1.1 sevan return (EINVAL);
902 1.1 sevan }
903 1.1 sevan
904 1.1 sevan rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
905 1.1 sevan rge_write_phy(sc, 0, MII_100T2CR, gig);
906 1.1 sevan rge_write_phy_ocp(sc, 0xa5d4, val);
907 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
908 1.1 sevan
909 1.1 sevan return (0);
910 1.1 sevan }
911 1.1 sevan
912 1.1 sevan /*
913 1.1 sevan * Report current media status.
914 1.1 sevan */
915 1.1 sevan void
916 1.1 sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
917 1.1 sevan {
918 1.1 sevan struct rge_softc *sc = ifp->if_softc;
919 1.1 sevan uint16_t status = 0;
920 1.1 sevan
921 1.1 sevan ifmr->ifm_status = IFM_AVALID;
922 1.1 sevan ifmr->ifm_active = IFM_ETHER;
923 1.1 sevan
924 1.1 sevan if (rge_get_link_status(sc)) {
925 1.1 sevan ifmr->ifm_status |= IFM_ACTIVE;
926 1.1 sevan
927 1.1 sevan status = RGE_READ_2(sc, RGE_PHYSTAT);
928 1.1 sevan if ((status & RGE_PHYSTAT_FDX) ||
929 1.1 sevan (status & RGE_PHYSTAT_2500MBPS))
930 1.1 sevan ifmr->ifm_active |= IFM_FDX;
931 1.1 sevan else
932 1.1 sevan ifmr->ifm_active |= IFM_HDX;
933 1.1 sevan
934 1.1 sevan if (status & RGE_PHYSTAT_10MBPS)
935 1.1 sevan ifmr->ifm_active |= IFM_10_T;
936 1.1 sevan else if (status & RGE_PHYSTAT_100MBPS)
937 1.1 sevan ifmr->ifm_active |= IFM_100_TX;
938 1.1 sevan else if (status & RGE_PHYSTAT_1000MBPS)
939 1.1 sevan ifmr->ifm_active |= IFM_1000_T;
940 1.1 sevan else if (status & RGE_PHYSTAT_2500MBPS)
941 1.1 sevan ifmr->ifm_active |= IFM_2500_T;
942 1.1 sevan }
943 1.1 sevan }
944 1.1 sevan
945 1.5 skrll /*
946 1.1 sevan * Allocate memory for RX/TX rings.
947 1.1 sevan */
948 1.1 sevan int
949 1.1 sevan rge_allocmem(struct rge_softc *sc)
950 1.1 sevan {
951 1.1 sevan int error, i;
952 1.1 sevan
953 1.1 sevan /* Allocate DMA'able memory for the TX ring. */
954 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
955 1.1 sevan RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
956 1.1 sevan if (error) {
957 1.1 sevan printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
958 1.1 sevan return (error);
959 1.1 sevan }
960 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
961 1.1 sevan &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
962 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
963 1.1 sevan if (error) {
964 1.1 sevan printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
965 1.1 sevan return (error);
966 1.1 sevan }
967 1.1 sevan
968 1.1 sevan /* Load the map for the TX ring. */
969 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
970 1.1 sevan sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
971 1.8 sevan (void **) &sc->rge_ldata.rge_tx_list,
972 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
973 1.1 sevan if (error) {
974 1.1 sevan printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
975 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
976 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
977 1.1 sevan return (error);
978 1.1 sevan }
979 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
980 1.1 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
981 1.1 sevan if (error) {
982 1.1 sevan printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
983 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
984 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
985 1.2 sevan sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
986 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
987 1.1 sevan sc->rge_ldata.rge_tx_listnseg);
988 1.1 sevan return (error);
989 1.1 sevan }
990 1.1 sevan
991 1.1 sevan /* Create DMA maps for TX buffers. */
992 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++) {
993 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
994 1.1 sevan RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
995 1.1 sevan &sc->rge_ldata.rge_txq[i].txq_dmamap);
996 1.1 sevan if (error) {
997 1.1 sevan printf("%s: can't create DMA map for TX\n",
998 1.1 sevan sc->sc_dev.dv_xname);
999 1.1 sevan return (error);
1000 1.1 sevan }
1001 1.1 sevan }
1002 1.1 sevan
1003 1.1 sevan /* Allocate DMA'able memory for the RX ring. */
1004 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
1005 1.1 sevan RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
1006 1.1 sevan if (error) {
1007 1.1 sevan printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
1008 1.1 sevan return (error);
1009 1.1 sevan }
1010 1.1 sevan error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
1011 1.1 sevan &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
1012 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1013 1.1 sevan if (error) {
1014 1.1 sevan printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
1015 1.1 sevan return (error);
1016 1.1 sevan }
1017 1.1 sevan
1018 1.1 sevan /* Load the map for the RX ring. */
1019 1.1 sevan error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1020 1.1 sevan sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
1021 1.8 sevan (void **) &sc->rge_ldata.rge_rx_list,
1022 1.2 sevan BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1023 1.1 sevan if (error) {
1024 1.1 sevan printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
1025 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1026 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1027 1.1 sevan return (error);
1028 1.1 sevan }
1029 1.1 sevan error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1030 1.1 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
1031 1.1 sevan if (error) {
1032 1.1 sevan printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
1033 1.1 sevan bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
1034 1.1 sevan bus_dmamem_unmap(sc->sc_dmat,
1035 1.2 sevan sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
1036 1.1 sevan bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
1037 1.1 sevan sc->rge_ldata.rge_rx_listnseg);
1038 1.1 sevan return (error);
1039 1.1 sevan }
1040 1.1 sevan
1041 1.1 sevan /* Create DMA maps for RX buffers. */
1042 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1043 1.1 sevan error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
1044 1.1 sevan RGE_JUMBO_FRAMELEN, 0, 0,
1045 1.1 sevan &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
1046 1.1 sevan if (error) {
1047 1.1 sevan printf("%s: can't create DMA map for RX\n",
1048 1.1 sevan sc->sc_dev.dv_xname);
1049 1.1 sevan return (error);
1050 1.1 sevan }
1051 1.1 sevan }
1052 1.1 sevan
1053 1.1 sevan return (error);
1054 1.1 sevan }
1055 1.1 sevan
1056 1.1 sevan /*
1057 1.1 sevan * Initialize the RX descriptor and attach an mbuf cluster.
1058 1.1 sevan */
1059 1.1 sevan int
1060 1.1 sevan rge_newbuf(struct rge_softc *sc, int idx)
1061 1.1 sevan {
1062 1.1 sevan struct mbuf *m;
1063 1.1 sevan struct rge_rx_desc *r;
1064 1.1 sevan struct rge_rxq *rxq;
1065 1.1 sevan bus_dmamap_t rxmap;
1066 1.1 sevan
1067 1.1 sevan m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
1068 1.1 sevan if (m == NULL)
1069 1.1 sevan return (ENOBUFS);
1070 1.1 sevan
1071 1.1 sevan m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
1072 1.1 sevan
1073 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[idx];
1074 1.1 sevan rxmap = rxq->rxq_dmamap;
1075 1.1 sevan
1076 1.1 sevan if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
1077 1.1 sevan goto out;
1078 1.1 sevan
1079 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1080 1.1 sevan BUS_DMASYNC_PREREAD);
1081 1.1 sevan
1082 1.1 sevan /* Map the segments into RX descriptors. */
1083 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1084 1.1 sevan
1085 1.1 sevan if (RGE_OWN(r)) {
1086 1.1 sevan printf("%s: tried to map busy RX descriptor\n",
1087 1.1 sevan sc->sc_dev.dv_xname);
1088 1.1 sevan goto out;
1089 1.1 sevan }
1090 1.1 sevan
1091 1.1 sevan rxq->rxq_mbuf = m;
1092 1.1 sevan
1093 1.1 sevan r->rge_extsts = 0;
1094 1.1 sevan r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
1095 1.1 sevan r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
1096 1.1 sevan
1097 1.1 sevan r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
1098 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1099 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1100 1.1 sevan
1101 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1102 1.1 sevan
1103 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1104 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1105 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1106 1.1 sevan
1107 1.1 sevan return (0);
1108 1.1 sevan out:
1109 1.1 sevan if (m != NULL)
1110 1.1 sevan m_freem(m);
1111 1.1 sevan return (ENOMEM);
1112 1.1 sevan }
1113 1.1 sevan
1114 1.1 sevan void
1115 1.1 sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
1116 1.1 sevan {
1117 1.1 sevan struct rge_rx_desc *r;
1118 1.1 sevan
1119 1.1 sevan r = &sc->rge_ldata.rge_rx_list[idx];
1120 1.1 sevan
1121 1.1 sevan r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
1122 1.1 sevan r->rge_extsts = 0;
1123 1.1 sevan if (idx == RGE_RX_LIST_CNT - 1)
1124 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
1125 1.1 sevan r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
1126 1.1 sevan
1127 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1128 1.1 sevan idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1129 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1130 1.1 sevan }
1131 1.1 sevan
1132 1.1 sevan int
1133 1.1 sevan rge_rx_list_init(struct rge_softc *sc)
1134 1.1 sevan {
1135 1.1 sevan int i;
1136 1.1 sevan
1137 1.1 sevan memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
1138 1.1 sevan
1139 1.1 sevan for (i = 0; i < RGE_RX_LIST_CNT; i++) {
1140 1.1 sevan sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
1141 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS)
1142 1.1 sevan return (ENOBUFS);
1143 1.1 sevan }
1144 1.1 sevan
1145 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = 0;
1146 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1147 1.1 sevan
1148 1.1 sevan return (0);
1149 1.1 sevan }
1150 1.1 sevan
1151 1.1 sevan void
1152 1.1 sevan rge_tx_list_init(struct rge_softc *sc)
1153 1.1 sevan {
1154 1.1 sevan int i;
1155 1.1 sevan
1156 1.1 sevan memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
1157 1.1 sevan
1158 1.1 sevan for (i = 0; i < RGE_TX_LIST_CNT; i++)
1159 1.1 sevan sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
1160 1.1 sevan
1161 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
1162 1.1 sevan sc->rge_ldata.rge_tx_list_map->dm_mapsize,
1163 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1164 1.1 sevan
1165 1.1 sevan sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
1166 1.1 sevan }
1167 1.1 sevan
1168 1.1 sevan int
1169 1.1 sevan rge_rxeof(struct rge_softc *sc)
1170 1.1 sevan {
1171 1.1 sevan struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1172 1.1 sevan struct mbuf *m;
1173 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1174 1.1 sevan struct rge_rx_desc *cur_rx;
1175 1.1 sevan struct rge_rxq *rxq;
1176 1.1 sevan uint32_t rxstat, extsts;
1177 1.1 sevan int i, total_len, rx = 0;
1178 1.1 sevan
1179 1.1 sevan for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
1180 1.1 sevan /* Invalidate the descriptor memory. */
1181 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
1182 1.1 sevan i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
1183 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1184 1.1 sevan
1185 1.1 sevan cur_rx = &sc->rge_ldata.rge_rx_list[i];
1186 1.1 sevan
1187 1.1 sevan if (RGE_OWN(cur_rx))
1188 1.1 sevan break;
1189 1.1 sevan
1190 1.1 sevan rxstat = letoh32(cur_rx->rge_cmdsts);
1191 1.1 sevan extsts = letoh32(cur_rx->rge_extsts);
1192 1.5 skrll
1193 1.1 sevan total_len = RGE_RXBYTES(cur_rx);
1194 1.1 sevan rxq = &sc->rge_ldata.rge_rxq[i];
1195 1.1 sevan m = rxq->rxq_mbuf;
1196 1.1 sevan rx = 1;
1197 1.1 sevan
1198 1.1 sevan /* Invalidate the RX mbuf and unload its map. */
1199 1.1 sevan bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
1200 1.1 sevan rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1201 1.1 sevan bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
1202 1.1 sevan
1203 1.1 sevan if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
1204 1.1 sevan (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
1205 1.1 sevan rge_discard_rxbuf(sc, i);
1206 1.1 sevan continue;
1207 1.1 sevan }
1208 1.1 sevan
1209 1.1 sevan if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
1210 1.4 skrll if_statinc(ifp, if_ierrors);
1211 1.1 sevan /*
1212 1.1 sevan * If this is part of a multi-fragment packet,
1213 1.1 sevan * discard all the pieces.
1214 1.1 sevan */
1215 1.1 sevan if (sc->rge_head != NULL) {
1216 1.1 sevan m_freem(sc->rge_head);
1217 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1218 1.1 sevan }
1219 1.1 sevan rge_discard_rxbuf(sc, i);
1220 1.1 sevan continue;
1221 1.1 sevan }
1222 1.1 sevan
1223 1.1 sevan /*
1224 1.1 sevan * If allocating a replacement mbuf fails,
1225 1.1 sevan * reload the current one.
1226 1.1 sevan */
1227 1.1 sevan
1228 1.1 sevan if (rge_newbuf(sc, i) == ENOBUFS) {
1229 1.1 sevan if (sc->rge_head != NULL) {
1230 1.1 sevan m_freem(sc->rge_head);
1231 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1232 1.1 sevan }
1233 1.1 sevan rge_discard_rxbuf(sc, i);
1234 1.1 sevan continue;
1235 1.1 sevan }
1236 1.1 sevan
1237 1.1 sevan if (sc->rge_head != NULL) {
1238 1.1 sevan m->m_len = total_len;
1239 1.1 sevan /*
1240 1.1 sevan * Special case: if there's 4 bytes or less
1241 1.1 sevan * in this buffer, the mbuf can be discarded:
1242 1.1 sevan * the last 4 bytes is the CRC, which we don't
1243 1.1 sevan * care about anyway.
1244 1.1 sevan */
1245 1.1 sevan if (m->m_len <= ETHER_CRC_LEN) {
1246 1.1 sevan sc->rge_tail->m_len -=
1247 1.1 sevan (ETHER_CRC_LEN - m->m_len);
1248 1.1 sevan m_freem(m);
1249 1.1 sevan } else {
1250 1.1 sevan m->m_len -= ETHER_CRC_LEN;
1251 1.1 sevan m->m_flags &= ~M_PKTHDR;
1252 1.1 sevan sc->rge_tail->m_next = m;
1253 1.1 sevan }
1254 1.1 sevan m = sc->rge_head;
1255 1.1 sevan sc->rge_head = sc->rge_tail = NULL;
1256 1.1 sevan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1257 1.1 sevan } else
1258 1.1 sevan m->m_pkthdr.len = m->m_len =
1259 1.1 sevan (total_len - ETHER_CRC_LEN);
1260 1.1 sevan
1261 1.1 sevan /* Check IP header checksum. */
1262 1.1 sevan if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
1263 1.1 sevan (extsts & RGE_RDEXTSTS_IPV4))
1264 1.1 sevan m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1265 1.1 sevan
1266 1.1 sevan /* Check TCP/UDP checksum. */
1267 1.1 sevan if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
1268 1.1 sevan (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
1269 1.1 sevan !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
1270 1.1 sevan ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
1271 1.1 sevan !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
1272 1.1 sevan m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
1273 1.1 sevan M_UDP_CSUM_IN_OK;
1274 1.1 sevan
1275 1.1 sevan #if NVLAN > 0
1276 1.1 sevan if (extsts & RGE_RDEXTSTS_VTAG) {
1277 1.1 sevan m->m_pkthdr.ether_vtag =
1278 1.1 sevan ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
1279 1.1 sevan m->m_flags |= M_VLANTAG;
1280 1.1 sevan }
1281 1.1 sevan #endif
1282 1.1 sevan
1283 1.1 sevan ml_enqueue(&ml, m);
1284 1.1 sevan }
1285 1.1 sevan
1286 1.1 sevan sc->rge_ldata.rge_rxq_prodidx = i;
1287 1.1 sevan
1288 1.1 sevan if_input(ifp, &ml);
1289 1.1 sevan
1290 1.1 sevan return (rx);
1291 1.1 sevan }
1292 1.1 sevan
1293 1.1 sevan int
1294 1.1 sevan rge_txeof(struct rge_softc *sc)
1295 1.1 sevan {
1296 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1297 1.1 sevan struct rge_txq *txq;
1298 1.1 sevan uint32_t txstat;
1299 1.1 sevan int cons, idx, prod;
1300 1.1 sevan int free = 0;
1301 1.1 sevan
1302 1.1 sevan prod = sc->rge_ldata.rge_txq_prodidx;
1303 1.1 sevan cons = sc->rge_ldata.rge_txq_considx;
1304 1.1 sevan
1305 1.1 sevan while (prod != cons) {
1306 1.1 sevan txq = &sc->rge_ldata.rge_txq[cons];
1307 1.1 sevan idx = txq->txq_descidx;
1308 1.1 sevan
1309 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1310 1.1 sevan idx * sizeof(struct rge_tx_desc),
1311 1.1 sevan sizeof(struct rge_tx_desc),
1312 1.1 sevan BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1313 1.1 sevan
1314 1.1 sevan txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
1315 1.1 sevan
1316 1.1 sevan if (txstat & RGE_TDCMDSTS_OWN) {
1317 1.1 sevan free = 2;
1318 1.1 sevan break;
1319 1.1 sevan }
1320 1.1 sevan
1321 1.5 skrll bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
1322 1.1 sevan txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1323 1.1 sevan bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1324 1.1 sevan m_freem(txq->txq_mbuf);
1325 1.1 sevan txq->txq_mbuf = NULL;
1326 1.1 sevan
1327 1.1 sevan if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
1328 1.4 skrll if_statinc(ifp, if_collisions);
1329 1.1 sevan if (txstat & RGE_TDCMDSTS_TXERR)
1330 1.4 skrll if_statinc(ifp, if_oerrors);
1331 1.1 sevan
1332 1.1 sevan bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
1333 1.1 sevan idx * sizeof(struct rge_tx_desc),
1334 1.1 sevan sizeof(struct rge_tx_desc),
1335 1.1 sevan BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1336 1.1 sevan
1337 1.1 sevan cons = RGE_NEXT_TX_DESC(idx);
1338 1.1 sevan free = 1;
1339 1.1 sevan }
1340 1.1 sevan
1341 1.1 sevan if (free == 0)
1342 1.1 sevan return (0);
1343 1.1 sevan
1344 1.1 sevan sc->rge_ldata.rge_txq_considx = cons;
1345 1.1 sevan
1346 1.1 sevan if (ifq_is_oactive(&ifp->if_snd))
1347 1.1 sevan ifq_restart(&ifp->if_snd);
1348 1.1 sevan else if (free == 2)
1349 1.1 sevan ifq_serialize(&ifp->if_snd, &sc->sc_task);
1350 1.1 sevan else
1351 1.1 sevan ifp->if_timer = 0;
1352 1.1 sevan
1353 1.1 sevan return (1);
1354 1.1 sevan }
1355 1.1 sevan
1356 1.1 sevan void
1357 1.1 sevan rge_reset(struct rge_softc *sc)
1358 1.1 sevan {
1359 1.1 sevan int i;
1360 1.1 sevan
1361 1.1 sevan /* Enable RXDV gate. */
1362 1.1 sevan RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
1363 1.1 sevan DELAY(2000);
1364 1.1 sevan
1365 1.1 sevan for (i = 0; i < 10; i++) {
1366 1.1 sevan DELAY(100);
1367 1.1 sevan if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
1368 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
1369 1.1 sevan RGE_MCUCMD_TXFIFO_EMPTY))
1370 1.1 sevan break;
1371 1.1 sevan }
1372 1.1 sevan
1373 1.1 sevan /* Soft reset. */
1374 1.1 sevan RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
1375 1.1 sevan
1376 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1377 1.1 sevan DELAY(100);
1378 1.1 sevan if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
1379 1.1 sevan break;
1380 1.1 sevan }
1381 1.1 sevan if (i == RGE_TIMEOUT)
1382 1.1 sevan printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
1383 1.1 sevan }
1384 1.1 sevan
1385 1.1 sevan void
1386 1.1 sevan rge_iff(struct rge_softc *sc)
1387 1.1 sevan {
1388 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
1389 1.2 sevan struct ethercom *ac = &sc->sc_ec;
1390 1.1 sevan struct ether_multi *enm;
1391 1.1 sevan struct ether_multistep step;
1392 1.1 sevan uint32_t hashes[2];
1393 1.1 sevan uint32_t rxfilt;
1394 1.1 sevan int h = 0;
1395 1.1 sevan
1396 1.1 sevan rxfilt = RGE_READ_4(sc, RGE_RXCFG);
1397 1.1 sevan rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
1398 1.1 sevan ifp->if_flags &= ~IFF_ALLMULTI;
1399 1.1 sevan
1400 1.1 sevan /*
1401 1.1 sevan * Always accept frames destined to our station address.
1402 1.1 sevan * Always accept broadcast frames.
1403 1.1 sevan */
1404 1.1 sevan rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
1405 1.1 sevan
1406 1.1 sevan if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1407 1.1 sevan ifp->if_flags |= IFF_ALLMULTI;
1408 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1409 1.1 sevan if (ifp->if_flags & IFF_PROMISC)
1410 1.1 sevan rxfilt |= RGE_RXCFG_ALLPHYS;
1411 1.1 sevan hashes[0] = hashes[1] = 0xffffffff;
1412 1.1 sevan } else {
1413 1.1 sevan rxfilt |= RGE_RXCFG_MULTI;
1414 1.1 sevan /* Program new filter. */
1415 1.1 sevan memset(hashes, 0, sizeof(hashes));
1416 1.1 sevan
1417 1.1 sevan ETHER_FIRST_MULTI(step, ac, enm);
1418 1.1 sevan while (enm != NULL) {
1419 1.1 sevan h = ether_crc32_be(enm->enm_addrlo,
1420 1.1 sevan ETHER_ADDR_LEN) >> 26;
1421 1.1 sevan
1422 1.1 sevan if (h < 32)
1423 1.1 sevan hashes[0] |= (1 << h);
1424 1.1 sevan else
1425 1.1 sevan hashes[1] |= (1 << (h - 32));
1426 1.1 sevan
1427 1.1 sevan ETHER_NEXT_MULTI(step, enm);
1428 1.1 sevan }
1429 1.1 sevan }
1430 1.1 sevan
1431 1.1 sevan RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
1432 1.2 sevan RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
1433 1.2 sevan RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
1434 1.1 sevan }
1435 1.1 sevan
1436 1.1 sevan void
1437 1.1 sevan rge_set_phy_power(struct rge_softc *sc, int on)
1438 1.1 sevan {
1439 1.1 sevan int i;
1440 1.1 sevan
1441 1.1 sevan if (on) {
1442 1.1 sevan RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
1443 1.1 sevan
1444 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
1445 1.1 sevan
1446 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1447 1.1 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 3)
1448 1.1 sevan break;
1449 1.1 sevan DELAY(1000);
1450 1.1 sevan }
1451 1.1 sevan } else
1452 1.1 sevan rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
1453 1.1 sevan }
1454 1.1 sevan
1455 1.1 sevan void
1456 1.1 sevan rge_phy_config(struct rge_softc *sc)
1457 1.1 sevan {
1458 1.1 sevan uint16_t mcode_ver, val;
1459 1.1 sevan int i;
1460 1.1 sevan static const uint16_t mac_cfg3_a438_value[] =
1461 1.1 sevan { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
1462 1.1 sevan 0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
1463 1.1 sevan
1464 1.1 sevan static const uint16_t mac_cfg3_b88e_value[] =
1465 1.5 skrll { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
1466 1.1 sevan 0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
1467 1.1 sevan 0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
1468 1.1 sevan 0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
1469 1.1 sevan 0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
1470 1.1 sevan 0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
1471 1.1 sevan
1472 1.1 sevan /* Read microcode version. */
1473 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1474 1.1 sevan mcode_ver = rge_read_phy_ocp(sc, 0xa438);
1475 1.1 sevan
1476 1.1 sevan if (sc->rge_type == MAC_CFG2) {
1477 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
1478 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
1479 1.1 sevan rtl8125_mac_cfg2_ephy[i].val);
1480 1.1 sevan }
1481 1.1 sevan
1482 1.1 sevan if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
1483 1.1 sevan /* Disable PHY config. */
1484 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1485 1.1 sevan DELAY(1000);
1486 1.1 sevan
1487 1.1 sevan rge_patch_phy_mcu(sc, 1);
1488 1.1 sevan
1489 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1490 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8600);
1491 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1492 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1493 1.1 sevan
1494 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1495 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
1496 1.1 sevan rge_write_phy_ocp(sc,
1497 1.1 sevan rtl8125_mac_cfg2_mcu[i].reg,
1498 1.1 sevan rtl8125_mac_cfg2_mcu[i].val);
1499 1.1 sevan }
1500 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1501 1.1 sevan
1502 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1503 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1504 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1505 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1506 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1507 1.1 sevan
1508 1.1 sevan rge_patch_phy_mcu(sc, 0);
1509 1.1 sevan
1510 1.1 sevan /* Enable PHY config. */
1511 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1512 1.1 sevan
1513 1.1 sevan /* Write microcode version. */
1514 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1515 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
1516 1.1 sevan }
1517 1.5 skrll
1518 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
1519 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
1520 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1521 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1522 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
1523 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
1524 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1525 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
1526 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
1527 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
1528 1.1 sevan RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
1529 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
1530 1.1 sevan RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
1531 1.1 sevan
1532 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1533 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1534 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
1535 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80eb);
1536 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
1537 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
1538 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f8);
1539 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1540 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
1541 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80f1);
1542 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1543 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
1544 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80fe);
1545 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1546 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
1547 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8102);
1548 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1549 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
1550 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8105);
1551 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1552 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
1553 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8100);
1554 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1555 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
1556 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8104);
1557 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1558 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
1559 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8106);
1560 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1561 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
1562 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80dc);
1563 1.1 sevan val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
1564 1.1 sevan rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
1565 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80df);
1566 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1567 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80e1);
1568 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
1569 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
1570 1.1 sevan rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
1571 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x819f);
1572 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
1573 1.1 sevan rge_write_phy_ocp(sc, 0xbc34, 0x5555);
1574 1.1 sevan val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
1575 1.1 sevan rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
1576 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
1577 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1578 1.1 sevan } else {
1579 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
1580 1.1 sevan rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
1581 1.1 sevan rtl8125_mac_cfg3_ephy[i].val);
1582 1.1 sevan
1583 1.1 sevan if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
1584 1.1 sevan /* Disable PHY config. */
1585 1.1 sevan RGE_CLRBIT_1(sc, 0xf2, 0x20);
1586 1.1 sevan DELAY(1000);
1587 1.1 sevan
1588 1.1 sevan rge_patch_phy_mcu(sc, 1);
1589 1.1 sevan
1590 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1591 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x8601);
1592 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0xb82e);
1593 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x0001);
1594 1.1 sevan
1595 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
1596 1.1 sevan for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
1597 1.1 sevan rge_write_phy_ocp(sc,
1598 1.1 sevan rtl8125_mac_cfg3_mcu[i].reg,
1599 1.1 sevan rtl8125_mac_cfg3_mcu[i].val);
1600 1.1 sevan }
1601 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
1602 1.1 sevan
1603 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0);
1604 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1605 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
1606 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8024);
1607 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1608 1.1 sevan
1609 1.1 sevan rge_patch_phy_mcu(sc, 0);
1610 1.1 sevan
1611 1.1 sevan /* Enable PHY config. */
1612 1.1 sevan RGE_SETBIT_1(sc, 0xf2, 0x20);
1613 1.1 sevan
1614 1.1 sevan /* Write microcode version. */
1615 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x801e);
1616 1.1 sevan rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
1617 1.1 sevan }
1618 1.1 sevan
1619 1.1 sevan RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
1620 1.1 sevan val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
1621 1.1 sevan rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
1622 1.1 sevan val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
1623 1.1 sevan rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
1624 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
1625 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
1626 1.1 sevan val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
1627 1.1 sevan rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
1628 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
1629 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
1630 1.1 sevan val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
1631 1.1 sevan rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
1632 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
1633 1.1 sevan RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
1634 1.1 sevan val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
1635 1.1 sevan rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
1636 1.1 sevan rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
1637 1.1 sevan rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
1638 1.1 sevan val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
1639 1.1 sevan rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
1640 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
1641 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1642 1.1 sevan rge_write_phy_ocp(sc, 0xb87c, 0x809c);
1643 1.1 sevan rge_write_phy_ocp(sc, 0xb87e, 0x0153);
1644 1.1 sevan
1645 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81b3);
1646 1.1 sevan for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
1647 1.1 sevan rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
1648 1.1 sevan for (i = 0; i < 26; i++)
1649 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0);
1650 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x8257);
1651 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x020f);
1652 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x80ea);
1653 1.1 sevan rge_write_phy_ocp(sc, 0xa438, 0x7843);
1654 1.1 sevan
1655 1.1 sevan rge_patch_phy_mcu(sc, 1);
1656 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
1657 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
1658 1.1 sevan for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
1659 1.1 sevan rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
1660 1.1 sevan rge_write_phy_ocp(sc, 0xb890,
1661 1.1 sevan mac_cfg3_b88e_value[i + 1]);
1662 1.1 sevan }
1663 1.1 sevan RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
1664 1.1 sevan rge_patch_phy_mcu(sc, 0);
1665 1.1 sevan
1666 1.1 sevan RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
1667 1.1 sevan rge_write_phy_ocp(sc, 0xa436, 0x81a2);
1668 1.1 sevan RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
1669 1.1 sevan val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
1670 1.1 sevan rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
1671 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
1672 1.1 sevan RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
1673 1.1 sevan RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
1674 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
1675 1.1 sevan RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
1676 1.1 sevan }
1677 1.1 sevan
1678 1.1 sevan /* Disable EEE. */
1679 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
1680 1.1 sevan RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
1681 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
1682 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
1683 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
1684 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
1685 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
1686 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
1687 1.1 sevan
1688 1.1 sevan rge_patch_phy_mcu(sc, 1);
1689 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
1690 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
1691 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
1692 1.1 sevan rge_patch_phy_mcu(sc, 0);
1693 1.1 sevan }
1694 1.1 sevan
1695 1.1 sevan void
1696 1.1 sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
1697 1.1 sevan {
1698 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1699 1.1 sevan RGE_WRITE_4(sc, RGE_MAC0,
1700 1.1 sevan addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1701 1.1 sevan RGE_WRITE_4(sc, RGE_MAC4,
1702 1.1 sevan addr[5] << 8 | addr[4]);
1703 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1704 1.1 sevan }
1705 1.1 sevan
1706 1.1 sevan void
1707 1.1 sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
1708 1.1 sevan {
1709 1.1 sevan *(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
1710 1.1 sevan *(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
1711 1.1 sevan }
1712 1.1 sevan
1713 1.1 sevan void
1714 1.1 sevan rge_hw_init(struct rge_softc *sc)
1715 1.1 sevan {
1716 1.1 sevan int i;
1717 1.1 sevan
1718 1.1 sevan RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1719 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
1720 1.1 sevan RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
1721 1.1 sevan RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
1722 1.1 sevan RGE_CLRBIT_1(sc, 0xf1, 0x80);
1723 1.1 sevan
1724 1.1 sevan /* Disable UPS. */
1725 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
1726 1.1 sevan
1727 1.1 sevan /* Configure MAC MCU. */
1728 1.1 sevan rge_write_mac_ocp(sc, 0xfc38, 0);
1729 1.1 sevan
1730 1.1 sevan for (i = 0xfc28; i < 0xfc38; i += 2)
1731 1.1 sevan rge_write_mac_ocp(sc, i, 0);
1732 1.1 sevan
1733 1.1 sevan DELAY(3000);
1734 1.1 sevan rge_write_mac_ocp(sc, 0xfc26, 0);
1735 1.1 sevan
1736 1.1 sevan if (sc->rge_type == MAC_CFG3) {
1737 1.1 sevan for (i = 0; i < nitems(rtl8125_def_bps); i++)
1738 1.1 sevan rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
1739 1.1 sevan rtl8125_def_bps[i].val);
1740 1.1 sevan }
1741 1.1 sevan
1742 1.1 sevan /* Disable PHY power saving. */
1743 1.1 sevan rge_disable_phy_ocp_pwrsave(sc);
1744 1.1 sevan
1745 1.1 sevan /* Set PCIe uncorrectable error status. */
1746 1.1 sevan rge_write_csi(sc, 0x108,
1747 1.1 sevan rge_read_csi(sc, 0x108) | 0x00100000);
1748 1.1 sevan }
1749 1.1 sevan
1750 1.1 sevan void
1751 1.1 sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
1752 1.1 sevan {
1753 1.1 sevan if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
1754 1.1 sevan rge_patch_phy_mcu(sc, 1);
1755 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0);
1756 1.1 sevan rge_write_phy_ocp(sc, 0xc416, 0x0500);
1757 1.1 sevan rge_patch_phy_mcu(sc, 0);
1758 1.1 sevan }
1759 1.1 sevan }
1760 1.1 sevan
1761 1.1 sevan void
1762 1.1 sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
1763 1.1 sevan {
1764 1.1 sevan uint16_t val;
1765 1.1 sevan int i;
1766 1.1 sevan
1767 1.1 sevan if (set)
1768 1.1 sevan RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
1769 1.1 sevan else
1770 1.1 sevan RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
1771 1.1 sevan
1772 1.1 sevan for (i = 0; i < 1000; i++) {
1773 1.1 sevan val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
1774 1.1 sevan DELAY(100);
1775 1.1 sevan if (val == 0x0040)
1776 1.1 sevan break;
1777 1.1 sevan }
1778 1.1 sevan if (i == 1000)
1779 1.1 sevan printf("%s: timeout waiting to patch phy mcu\n",
1780 1.1 sevan sc->sc_dev.dv_xname);
1781 1.1 sevan }
1782 1.1 sevan
1783 1.1 sevan void
1784 1.1 sevan rge_add_media_types(struct rge_softc *sc)
1785 1.1 sevan {
1786 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
1787 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1788 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
1789 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1790 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
1791 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1792 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
1793 1.1 sevan ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1794 1.1 sevan }
1795 1.1 sevan
1796 1.1 sevan void
1797 1.1 sevan rge_config_imtype(struct rge_softc *sc, int imtype)
1798 1.1 sevan {
1799 1.1 sevan switch (imtype) {
1800 1.1 sevan case RGE_IMTYPE_NONE:
1801 1.1 sevan sc->rge_intrs = RGE_INTRS;
1802 1.1 sevan sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
1803 1.1 sevan RGE_ISR_RX_FIFO_OFLOW;
1804 1.1 sevan sc->rge_tx_ack = RGE_ISR_TX_OK;
1805 1.1 sevan break;
1806 1.1 sevan case RGE_IMTYPE_SIM:
1807 1.1 sevan sc->rge_intrs = RGE_INTRS_TIMER;
1808 1.1 sevan sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
1809 1.1 sevan sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
1810 1.1 sevan break;
1811 1.1 sevan default:
1812 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1813 1.1 sevan }
1814 1.1 sevan }
1815 1.1 sevan
1816 1.1 sevan void
1817 1.1 sevan rge_disable_sim_im(struct rge_softc *sc)
1818 1.1 sevan {
1819 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0);
1820 1.1 sevan sc->rge_timerintr = 0;
1821 1.1 sevan }
1822 1.1 sevan
1823 1.1 sevan void
1824 1.1 sevan rge_setup_sim_im(struct rge_softc *sc)
1825 1.1 sevan {
1826 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
1827 1.1 sevan RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
1828 1.1 sevan sc->rge_timerintr = 1;
1829 1.1 sevan }
1830 1.1 sevan
1831 1.1 sevan void
1832 1.1 sevan rge_setup_intr(struct rge_softc *sc, int imtype)
1833 1.1 sevan {
1834 1.1 sevan rge_config_imtype(sc, imtype);
1835 1.1 sevan
1836 1.1 sevan /* Enable interrupts. */
1837 1.1 sevan RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
1838 1.1 sevan
1839 1.1 sevan switch (imtype) {
1840 1.1 sevan case RGE_IMTYPE_NONE:
1841 1.1 sevan rge_disable_sim_im(sc);
1842 1.1 sevan break;
1843 1.1 sevan case RGE_IMTYPE_SIM:
1844 1.1 sevan rge_setup_sim_im(sc);
1845 1.1 sevan break;
1846 1.1 sevan default:
1847 1.1 sevan panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
1848 1.1 sevan }
1849 1.1 sevan }
1850 1.1 sevan
1851 1.1 sevan void
1852 1.1 sevan rge_exit_oob(struct rge_softc *sc)
1853 1.1 sevan {
1854 1.1 sevan int i;
1855 1.1 sevan
1856 1.1 sevan RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
1857 1.1 sevan RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
1858 1.1 sevan RGE_RXCFG_ERRPKT);
1859 1.1 sevan
1860 1.1 sevan /* Disable RealWoW. */
1861 1.1 sevan rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
1862 1.1 sevan
1863 1.1 sevan rge_reset(sc);
1864 1.1 sevan
1865 1.1 sevan /* Disable OOB. */
1866 1.1 sevan RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
1867 1.1 sevan
1868 1.1 sevan RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
1869 1.1 sevan
1870 1.1 sevan for (i = 0; i < 10; i++) {
1871 1.1 sevan DELAY(100);
1872 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1873 1.1 sevan break;
1874 1.1 sevan }
1875 1.1 sevan
1876 1.1 sevan rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
1877 1.1 sevan rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
1878 1.1 sevan rge_write_mac_ocp(sc, 0xc01e, 0x5555);
1879 1.1 sevan
1880 1.1 sevan for (i = 0; i < 10; i++) {
1881 1.1 sevan DELAY(100);
1882 1.1 sevan if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
1883 1.1 sevan break;
1884 1.1 sevan }
1885 1.1 sevan
1886 1.1 sevan if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
1887 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
1888 1.1 sevan if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 2)
1889 1.1 sevan break;
1890 1.1 sevan DELAY(1000);
1891 1.1 sevan }
1892 1.1 sevan RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
1893 1.1 sevan RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
1894 1.1 sevan }
1895 1.1 sevan }
1896 1.1 sevan
1897 1.1 sevan void
1898 1.1 sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
1899 1.1 sevan {
1900 1.1 sevan int i;
1901 1.1 sevan
1902 1.1 sevan RGE_WRITE_4(sc, RGE_CSIDR, val);
1903 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1904 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
1905 1.1 sevan
1906 1.1 sevan for (i = 0; i < 10; i++) {
1907 1.1 sevan DELAY(100);
1908 1.1 sevan if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
1909 1.1 sevan break;
1910 1.1 sevan }
1911 1.1 sevan
1912 1.1 sevan DELAY(20);
1913 1.1 sevan }
1914 1.1 sevan
1915 1.1 sevan uint32_t
1916 1.1 sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
1917 1.1 sevan {
1918 1.1 sevan int i;
1919 1.1 sevan
1920 1.1 sevan RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
1921 1.1 sevan (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
1922 1.1 sevan
1923 1.1 sevan for (i = 0; i < 10; i++) {
1924 1.1 sevan DELAY(100);
1925 1.1 sevan if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
1926 1.1 sevan break;
1927 1.1 sevan }
1928 1.1 sevan
1929 1.1 sevan DELAY(20);
1930 1.1 sevan
1931 1.1 sevan return (RGE_READ_4(sc, RGE_CSIDR));
1932 1.1 sevan }
1933 1.1 sevan
1934 1.1 sevan void
1935 1.1 sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1936 1.1 sevan {
1937 1.1 sevan uint32_t tmp;
1938 1.1 sevan
1939 1.1 sevan tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1940 1.1 sevan tmp += val;
1941 1.1 sevan tmp |= RGE_MACOCP_BUSY;
1942 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, tmp);
1943 1.1 sevan }
1944 1.1 sevan
1945 1.1 sevan uint16_t
1946 1.1 sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
1947 1.1 sevan {
1948 1.1 sevan uint32_t val;
1949 1.1 sevan
1950 1.1 sevan val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
1951 1.1 sevan RGE_WRITE_4(sc, RGE_MACOCP, val);
1952 1.1 sevan
1953 1.1 sevan return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
1954 1.1 sevan }
1955 1.1 sevan
1956 1.1 sevan void
1957 1.1 sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
1958 1.1 sevan {
1959 1.1 sevan uint32_t tmp;
1960 1.1 sevan int i;
1961 1.1 sevan
1962 1.1 sevan tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
1963 1.1 sevan tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
1964 1.1 sevan RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
1965 1.1 sevan
1966 1.1 sevan for (i = 0; i < 10; i++) {
1967 1.1 sevan DELAY(100);
1968 1.1 sevan if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
1969 1.1 sevan break;
1970 1.1 sevan }
1971 1.1 sevan
1972 1.1 sevan DELAY(20);
1973 1.1 sevan }
1974 1.1 sevan
1975 1.1 sevan void
1976 1.1 sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
1977 1.1 sevan {
1978 1.1 sevan uint16_t off, phyaddr;
1979 1.1 sevan
1980 1.1 sevan phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
1981 1.1 sevan phyaddr <<= 4;
1982 1.1 sevan
1983 1.1 sevan off = addr ? reg : 0x10 + (reg % 8);
1984 1.1 sevan
1985 1.1 sevan phyaddr += (off - 16) << 1;
1986 1.1 sevan
1987 1.1 sevan rge_write_phy_ocp(sc, phyaddr, val);
1988 1.1 sevan }
1989 1.1 sevan
1990 1.1 sevan void
1991 1.1 sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
1992 1.1 sevan {
1993 1.1 sevan uint32_t tmp;
1994 1.1 sevan int i;
1995 1.1 sevan
1996 1.1 sevan tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
1997 1.1 sevan tmp |= RGE_PHYOCP_BUSY | val;
1998 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
1999 1.1 sevan
2000 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2001 1.1 sevan DELAY(1);
2002 1.1 sevan if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
2003 1.1 sevan break;
2004 1.1 sevan }
2005 1.1 sevan }
2006 1.1 sevan
2007 1.1 sevan uint16_t
2008 1.1 sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
2009 1.1 sevan {
2010 1.1 sevan uint32_t val;
2011 1.1 sevan int i;
2012 1.1 sevan
2013 1.1 sevan val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
2014 1.1 sevan RGE_WRITE_4(sc, RGE_PHYOCP, val);
2015 1.1 sevan
2016 1.1 sevan for (i = 0; i < RGE_TIMEOUT; i++) {
2017 1.1 sevan DELAY(1);
2018 1.1 sevan val = RGE_READ_4(sc, RGE_PHYOCP);
2019 1.1 sevan if (val & RGE_PHYOCP_BUSY)
2020 1.1 sevan break;
2021 1.1 sevan }
2022 1.1 sevan
2023 1.1 sevan return (val & RGE_PHYOCP_DATA_MASK);
2024 1.1 sevan }
2025 1.1 sevan
2026 1.1 sevan int
2027 1.1 sevan rge_get_link_status(struct rge_softc *sc)
2028 1.1 sevan {
2029 1.1 sevan return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
2030 1.1 sevan }
2031 1.1 sevan
2032 1.1 sevan void
2033 1.3 sevan rge_txstart(struct work *wk, void *arg)
2034 1.1 sevan {
2035 1.1 sevan struct rge_softc *sc = arg;
2036 1.1 sevan
2037 1.1 sevan RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
2038 1.1 sevan }
2039 1.1 sevan
2040 1.1 sevan void
2041 1.1 sevan rge_tick(void *arg)
2042 1.1 sevan {
2043 1.1 sevan struct rge_softc *sc = arg;
2044 1.1 sevan int s;
2045 1.1 sevan
2046 1.1 sevan s = splnet();
2047 1.1 sevan rge_link_state(sc);
2048 1.1 sevan splx(s);
2049 1.1 sevan
2050 1.1 sevan timeout_add_sec(&sc->sc_timeout, 1);
2051 1.1 sevan }
2052 1.1 sevan
2053 1.1 sevan void
2054 1.1 sevan rge_link_state(struct rge_softc *sc)
2055 1.1 sevan {
2056 1.2 sevan struct ifnet *ifp = &sc->sc_ec.ec_if;
2057 1.1 sevan int link = LINK_STATE_DOWN;
2058 1.1 sevan
2059 1.1 sevan if (rge_get_link_status(sc))
2060 1.1 sevan link = LINK_STATE_UP;
2061 1.1 sevan
2062 1.1 sevan if (ifp->if_link_state != link) {
2063 1.1 sevan ifp->if_link_state = link;
2064 1.2 sevan if_link_state_change(ifp, LINK_STATE_DOWN);
2065 1.1 sevan }
2066 1.1 sevan }
2067