Home | History | Annotate | Line # | Download | only in pci
if_rge.c revision 1.8
      1  1.8  sevan /*	$NetBSD: if_rge.c,v 1.8 2020/02/27 23:15:34 sevan Exp $	*/
      2  1.1  sevan /*	$OpenBSD: if_rge.c,v 1.2 2020/01/02 09:00:45 kevlo Exp $	*/
      3  1.1  sevan 
      4  1.1  sevan /*
      5  1.1  sevan  * Copyright (c) 2019 Kevin Lo <kevlo (at) openbsd.org>
      6  1.1  sevan  *
      7  1.1  sevan  * Permission to use, copy, modify, and distribute this software for any
      8  1.1  sevan  * purpose with or without fee is hereby granted, provided that the above
      9  1.1  sevan  * copyright notice and this permission notice appear in all copies.
     10  1.1  sevan  *
     11  1.1  sevan  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  1.1  sevan  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  1.1  sevan  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  1.1  sevan  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  1.1  sevan  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  1.1  sevan  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  1.1  sevan  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  1.1  sevan  */
     19  1.1  sevan 
     20  1.2  sevan #include <sys/cdefs.h>
     21  1.8  sevan __KERNEL_RCSID(0, "$NetBSD: if_rge.c,v 1.8 2020/02/27 23:15:34 sevan Exp $");
     22  1.2  sevan 
     23  1.2  sevan /* #include "vlan.h" Sevan */
     24  1.2  sevan 
     25  1.2  sevan #include <sys/types.h>
     26  1.1  sevan 
     27  1.1  sevan #include <sys/param.h>
     28  1.1  sevan #include <sys/systm.h>
     29  1.1  sevan #include <sys/sockio.h>
     30  1.1  sevan #include <sys/mbuf.h>
     31  1.1  sevan #include <sys/malloc.h>
     32  1.1  sevan #include <sys/kernel.h>
     33  1.1  sevan #include <sys/socket.h>
     34  1.1  sevan #include <sys/device.h>
     35  1.1  sevan #include <sys/endian.h>
     36  1.3  sevan #include <sys/callout.h>
     37  1.3  sevan #include <sys/workqueue.h>
     38  1.1  sevan 
     39  1.1  sevan #include <net/if.h>
     40  1.2  sevan 
     41  1.2  sevan #include <net/if_dl.h>
     42  1.2  sevan #include <net/if_ether.h>
     43  1.2  sevan 
     44  1.1  sevan #include <net/if_media.h>
     45  1.1  sevan 
     46  1.1  sevan #include <netinet/in.h>
     47  1.2  sevan #include <net/if_ether.h>
     48  1.1  sevan 
     49  1.1  sevan #if NBPFILTER > 0
     50  1.1  sevan #include <net/bpf.h>
     51  1.1  sevan #endif
     52  1.1  sevan 
     53  1.2  sevan #include <sys/bus.h>
     54  1.1  sevan #include <machine/intr.h>
     55  1.1  sevan 
     56  1.1  sevan #include <dev/mii/mii.h>
     57  1.1  sevan 
     58  1.1  sevan #include <dev/pci/pcivar.h>
     59  1.1  sevan #include <dev/pci/pcireg.h>
     60  1.1  sevan #include <dev/pci/pcidevs.h>
     61  1.1  sevan 
     62  1.1  sevan #include <dev/pci/if_rgereg.h>
     63  1.1  sevan 
     64  1.2  sevan #ifdef __NetBSD__
     65  1.2  sevan #define letoh32 	htole32
     66  1.2  sevan #define nitems(x) 	__arraycount(x)
     67  1.2  sevan #define MBUF_LIST_INITIALIZER() 	{ NULL, NULL, 0 }
     68  1.2  sevan struct mbuf_list {
     69  1.2  sevan 	struct mbuf 	*ml_head;
     70  1.2  sevan 	struct mbuf 	*ml_tail;
     71  1.2  sevan 	u_int 	ml_len;
     72  1.2  sevan };
     73  1.7  sevan 
     74  1.7  sevan static struct mbuf *
     75  1.7  sevan MCLGETI(struct rge_softc *sc __unused, int how,
     76  1.7  sevan     struct ifnet *ifp __unused, u_int size)
     77  1.7  sevan {
     78  1.7  sevan 	struct mbuf *m;
     79  1.7  sevan 
     80  1.7  sevan 	MGETHDR(m, how, MT_DATA);
     81  1.7  sevan 	if (m == NULL)
     82  1.7  sevan 		return NULL;
     83  1.7  sevan 
     84  1.7  sevan 	MEXTMALLOC(m, size, how);
     85  1.7  sevan 	if ((m->m_flags & M_EXT) == 0) {
     86  1.7  sevan 		m_freem(m);
     87  1.7  sevan 		return NULL;
     88  1.7  sevan 	}
     89  1.7  sevan 	return m;
     90  1.7  sevan }
     91  1.7  sevan 
     92  1.3  sevan #ifdef NET_MPSAFE
     93  1.3  sevan #define 	RGE_MPSAFE	1
     94  1.3  sevan #define 	CALLOUT_FLAGS	CALLOUT_MPSAFE
     95  1.3  sevan #else
     96  1.3  sevan #define 	CALLOUT_FLAGS	0
     97  1.3  sevan #endif
     98  1.2  sevan #endif
     99  1.2  sevan 
    100  1.2  sevan static int		rge_match(device_t, cfdata_t, void *);
    101  1.5  skrll static void		rge_attach(device_t, device_t, void *);
    102  1.1  sevan int		rge_intr(void *);
    103  1.1  sevan int		rge_encap(struct rge_softc *, struct mbuf *, int);
    104  1.2  sevan int		rge_ioctl(struct ifnet *, u_long, void *);
    105  1.2  sevan void		rge_start(struct ifnet *);
    106  1.1  sevan void		rge_watchdog(struct ifnet *);
    107  1.1  sevan int		rge_init(struct ifnet *);
    108  1.1  sevan void		rge_stop(struct ifnet *);
    109  1.1  sevan int		rge_ifmedia_upd(struct ifnet *);
    110  1.1  sevan void		rge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    111  1.1  sevan int		rge_allocmem(struct rge_softc *);
    112  1.1  sevan int		rge_newbuf(struct rge_softc *, int);
    113  1.1  sevan void		rge_discard_rxbuf(struct rge_softc *, int);
    114  1.1  sevan int		rge_rx_list_init(struct rge_softc *);
    115  1.1  sevan void		rge_tx_list_init(struct rge_softc *);
    116  1.1  sevan int		rge_rxeof(struct rge_softc *);
    117  1.1  sevan int		rge_txeof(struct rge_softc *);
    118  1.1  sevan void		rge_reset(struct rge_softc *);
    119  1.1  sevan void		rge_iff(struct rge_softc *);
    120  1.1  sevan void		rge_set_phy_power(struct rge_softc *, int);
    121  1.1  sevan void		rge_phy_config(struct rge_softc *);
    122  1.1  sevan void		rge_set_macaddr(struct rge_softc *, const uint8_t *);
    123  1.1  sevan void		rge_get_macaddr(struct rge_softc *, uint8_t *);
    124  1.1  sevan void		rge_hw_init(struct rge_softc *);
    125  1.1  sevan void		rge_disable_phy_ocp_pwrsave(struct rge_softc *);
    126  1.1  sevan void		rge_patch_phy_mcu(struct rge_softc *, int);
    127  1.1  sevan void		rge_add_media_types(struct rge_softc *);
    128  1.1  sevan void		rge_config_imtype(struct rge_softc *, int);
    129  1.1  sevan void		rge_disable_sim_im(struct rge_softc *);
    130  1.1  sevan void		rge_setup_sim_im(struct rge_softc *);
    131  1.1  sevan void		rge_setup_intr(struct rge_softc *, int);
    132  1.1  sevan void		rge_exit_oob(struct rge_softc *);
    133  1.1  sevan void		rge_write_csi(struct rge_softc *, uint32_t, uint32_t);
    134  1.1  sevan uint32_t	rge_read_csi(struct rge_softc *, uint32_t);
    135  1.1  sevan void		rge_write_mac_ocp(struct rge_softc *, uint16_t, uint16_t);
    136  1.1  sevan uint16_t	rge_read_mac_ocp(struct rge_softc *, uint16_t);
    137  1.1  sevan void		rge_write_ephy(struct rge_softc *, uint16_t, uint16_t);
    138  1.1  sevan void		rge_write_phy(struct rge_softc *, uint16_t, uint16_t, uint16_t);
    139  1.1  sevan void		rge_write_phy_ocp(struct rge_softc *, uint16_t, uint16_t);
    140  1.1  sevan uint16_t	rge_read_phy_ocp(struct rge_softc *, uint16_t);
    141  1.1  sevan int		rge_get_link_status(struct rge_softc *);
    142  1.3  sevan void		rge_txstart(struct work *, void *);
    143  1.1  sevan void		rge_tick(void *);
    144  1.1  sevan void		rge_link_state(struct rge_softc *);
    145  1.1  sevan 
    146  1.1  sevan static const struct {
    147  1.1  sevan 	uint16_t reg;
    148  1.1  sevan 	uint16_t val;
    149  1.1  sevan }  rtl8125_def_bps[] = {
    150  1.1  sevan 	RTL8125_DEF_BPS
    151  1.1  sevan }, rtl8125_mac_cfg2_ephy[] = {
    152  1.1  sevan 	RTL8125_MAC_CFG2_EPHY
    153  1.1  sevan }, rtl8125_mac_cfg2_mcu[] = {
    154  1.1  sevan 	RTL8125_MAC_CFG2_MCU
    155  1.1  sevan }, rtl8125_mac_cfg3_ephy[] = {
    156  1.1  sevan 	RTL8125_MAC_CFG3_EPHY
    157  1.1  sevan }, rtl8125_mac_cfg3_mcu[] = {
    158  1.1  sevan 	RTL8125_MAC_CFG3_MCU
    159  1.1  sevan };
    160  1.1  sevan 
    161  1.2  sevan CFATTACH_DECL_NEW(rge, sizeof(struct rge_softc), rge_match, rge_attach,
    162  1.2  sevan 		NULL, NULL); /* Sevan - detach function? */
    163  1.1  sevan 
    164  1.2  sevan extern struct cfdriver rge_cd;
    165  1.1  sevan 
    166  1.2  sevan static const struct {
    167  1.2  sevan 	pci_vendor_id_t 	vendor;
    168  1.2  sevan 	pci_product_id_t 	product;
    169  1.2  sevan }rge_devices[] = {
    170  1.1  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_E3000 },
    171  1.2  sevan 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8125 },
    172  1.1  sevan };
    173  1.1  sevan 
    174  1.2  sevan static int
    175  1.2  sevan rge_match(device_t parent, cfdata_t match, void *aux)
    176  1.1  sevan {
    177  1.2  sevan 	struct pci_attach_args *pa =aux;
    178  1.2  sevan 	int n;
    179  1.2  sevan 
    180  1.2  sevan 	for (n =0; n < __arraycount(rge_devices); n++) {
    181  1.2  sevan 		if (PCI_VENDOR(pa->pa_id) == rge_devices[n].vendor &&
    182  1.2  sevan 		    PCI_PRODUCT(pa->pa_id) == rge_devices[n].product)
    183  1.2  sevan 			return 1;
    184  1.2  sevan 	}
    185  1.2  sevan 
    186  1.2  sevan 	return 0;
    187  1.1  sevan }
    188  1.1  sevan 
    189  1.1  sevan void
    190  1.2  sevan rge_attach(device_t parent, device_t self, void *aux)
    191  1.1  sevan {
    192  1.1  sevan 	struct rge_softc *sc = (struct rge_softc *)self;
    193  1.1  sevan 	struct pci_attach_args *pa = aux;
    194  1.1  sevan 	pci_chipset_tag_t pc = pa->pa_pc;
    195  1.1  sevan 	pci_intr_handle_t ih;
    196  1.2  sevan 	char intrbuf[PCI_INTRSTR_LEN];
    197  1.1  sevan 	const char *intrstr = NULL;
    198  1.1  sevan 	struct ifnet *ifp;
    199  1.1  sevan 	pcireg_t reg;
    200  1.1  sevan 	uint32_t hwrev;
    201  1.1  sevan 	uint8_t eaddr[ETHER_ADDR_LEN];
    202  1.1  sevan 	int offset;
    203  1.1  sevan 
    204  1.1  sevan 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
    205  1.1  sevan 
    206  1.5  skrll 	/*
    207  1.1  sevan 	 * Map control/status registers.
    208  1.1  sevan 	 */
    209  1.1  sevan 	if (pci_mapreg_map(pa, RGE_PCI_BAR2, PCI_MAPREG_TYPE_MEM |
    210  1.1  sevan 	    PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->rge_btag, &sc->rge_bhandle,
    211  1.2  sevan 	    NULL, &sc->rge_bsize)) {
    212  1.1  sevan 		if (pci_mapreg_map(pa, RGE_PCI_BAR1, PCI_MAPREG_TYPE_MEM |
    213  1.1  sevan 		    PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->rge_btag,
    214  1.2  sevan 		    &sc->rge_bhandle, NULL, &sc->rge_bsize)) {
    215  1.1  sevan 			if (pci_mapreg_map(pa, RGE_PCI_BAR0, PCI_MAPREG_TYPE_IO,
    216  1.1  sevan 			    0, &sc->rge_btag, &sc->rge_bhandle, NULL,
    217  1.2  sevan 			    &sc->rge_bsize)) {
    218  1.1  sevan 				printf(": can't map mem or i/o space\n");
    219  1.1  sevan 				return;
    220  1.1  sevan 			}
    221  1.1  sevan 		}
    222  1.1  sevan 	}
    223  1.1  sevan 
    224  1.5  skrll 	/*
    225  1.1  sevan 	 * Allocate interrupt.
    226  1.1  sevan 	 */
    227  1.2  sevan 	if (pci_intr_map(pa, &ih) == 0)
    228  1.1  sevan 		sc->rge_flags |= RGE_FLAG_MSI;
    229  1.1  sevan 	else if (pci_intr_map(pa, &ih) != 0) {
    230  1.1  sevan 		printf(": couldn't map interrupt\n");
    231  1.1  sevan 		return;
    232  1.1  sevan 	}
    233  1.2  sevan 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    234  1.2  sevan 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, rge_intr,
    235  1.1  sevan 	    sc, sc->sc_dev.dv_xname);
    236  1.1  sevan 	if (sc->sc_ih == NULL) {
    237  1.1  sevan 		printf(": couldn't establish interrupt");
    238  1.1  sevan 		if (intrstr != NULL)
    239  1.1  sevan 			printf(" at %s", intrstr);
    240  1.1  sevan 		printf("\n");
    241  1.1  sevan 		return;
    242  1.1  sevan 	}
    243  1.1  sevan 	printf(": %s", intrstr);
    244  1.1  sevan 
    245  1.1  sevan 	sc->sc_dmat = pa->pa_dmat;
    246  1.1  sevan 	sc->sc_pc = pa->pa_pc;
    247  1.1  sevan 	sc->sc_tag = pa->pa_tag;
    248  1.1  sevan 
    249  1.1  sevan 	/* Determine hardware revision */
    250  1.1  sevan 	hwrev = RGE_READ_4(sc, RGE_TXCFG) & RGE_TXCFG_HWREV;
    251  1.1  sevan 	switch (hwrev) {
    252  1.1  sevan 	case 0x60800000:
    253  1.1  sevan 		sc->rge_type = MAC_CFG2;
    254  1.1  sevan 		break;
    255  1.1  sevan 	case 0x60900000:
    256  1.1  sevan 		sc->rge_type = MAC_CFG3;
    257  1.1  sevan 		break;
    258  1.1  sevan 	default:
    259  1.1  sevan 		printf(": unknown version 0x%08x\n", hwrev);
    260  1.1  sevan 		return;
    261  1.1  sevan 	}
    262  1.1  sevan 
    263  1.1  sevan 	rge_config_imtype(sc, RGE_IMTYPE_SIM);
    264  1.1  sevan 
    265  1.5  skrll 	/*
    266  1.1  sevan 	 * PCI Express check.
    267  1.1  sevan 	 */
    268  1.1  sevan 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
    269  1.1  sevan 	    &offset, NULL)) {
    270  1.2  sevan 		/* Disable PCIe ASPM. */
    271  1.1  sevan 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag,
    272  1.2  sevan 		    offset + PCIE_LCSR);
    273  1.2  sevan 		reg &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1 );
    274  1.2  sevan 		pci_conf_write(pa->pa_pc, pa->pa_tag, offset + PCIE_LCSR,
    275  1.1  sevan 		    reg);
    276  1.1  sevan 	}
    277  1.1  sevan 
    278  1.1  sevan 	rge_exit_oob(sc);
    279  1.1  sevan 	rge_hw_init(sc);
    280  1.1  sevan 
    281  1.1  sevan 	rge_get_macaddr(sc, eaddr);
    282  1.1  sevan 	printf(", address %s\n", ether_sprintf(eaddr));
    283  1.1  sevan 
    284  1.2  sevan 	memcpy(sc->sc_enaddr, eaddr, ETHER_ADDR_LEN);
    285  1.1  sevan 
    286  1.1  sevan 	rge_set_phy_power(sc, 1);
    287  1.1  sevan 	rge_phy_config(sc);
    288  1.1  sevan 
    289  1.1  sevan 	if (rge_allocmem(sc))
    290  1.1  sevan 		return;
    291  1.1  sevan 
    292  1.2  sevan 	ifp = &sc->sc_ec.ec_if;
    293  1.1  sevan 	ifp->if_softc = sc;
    294  1.1  sevan 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    295  1.1  sevan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    296  1.2  sevan #ifdef RGE_MPSAFE
    297  1.2  sevan 	ifp->if_xflags = IFEF_MPSAFE;
    298  1.2  sevan #endif
    299  1.1  sevan 	ifp->if_ioctl = rge_ioctl;
    300  1.2  sevan 	ifp->if_start = rge_start;
    301  1.1  sevan 	ifp->if_watchdog = rge_watchdog;
    302  1.1  sevan 	IFQ_SET_MAXLEN(&ifp->if_snd, RGE_TX_LIST_CNT);
    303  1.2  sevan 	ifp->if_mtu = RGE_JUMBO_MTU;
    304  1.1  sevan 
    305  1.2  sevan 	ifp->if_capabilities = ETHERCAP_VLAN_MTU | IFCAP_CSUM_IPv4_Rx |
    306  1.2  sevan 	    IFCAP_CSUM_IPv4_Tx |IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx|
    307  1.2  sevan 	    IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx;
    308  1.1  sevan 
    309  1.1  sevan #if NVLAN > 0
    310  1.1  sevan 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    311  1.1  sevan #endif
    312  1.1  sevan 
    313  1.3  sevan 	callout_init(&sc->sc_timeout, CALLOUT_FLAGS);
    314  1.3  sevan 	callout_setfunc(&sc->sc_timeout, rge_tick, sc);
    315  1.3  sevan 	rge_txstart(&sc->sc_task, sc);
    316  1.1  sevan 
    317  1.1  sevan 	/* Initialize ifmedia structures. */
    318  1.1  sevan 	ifmedia_init(&sc->sc_media, IFM_IMASK, rge_ifmedia_upd,
    319  1.1  sevan 	    rge_ifmedia_sts);
    320  1.1  sevan 	rge_add_media_types(sc);
    321  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    322  1.1  sevan 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    323  1.1  sevan 	sc->sc_media.ifm_media = sc->sc_media.ifm_cur->ifm_media;
    324  1.1  sevan 
    325  1.1  sevan 	if_attach(ifp);
    326  1.2  sevan 	ether_ifattach(ifp, eaddr);
    327  1.1  sevan }
    328  1.1  sevan 
    329  1.1  sevan int
    330  1.1  sevan rge_intr(void *arg)
    331  1.1  sevan {
    332  1.1  sevan 	struct rge_softc *sc = arg;
    333  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    334  1.1  sevan 	uint32_t status;
    335  1.1  sevan 	int claimed = 0, rx, tx;
    336  1.1  sevan 
    337  1.1  sevan 	if (!(ifp->if_flags & IFF_RUNNING))
    338  1.1  sevan 		return (0);
    339  1.1  sevan 
    340  1.1  sevan 	/* Disable interrupts. */
    341  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    342  1.1  sevan 
    343  1.1  sevan 	status = RGE_READ_4(sc, RGE_ISR);
    344  1.1  sevan 	if (!(sc->rge_flags & RGE_FLAG_MSI)) {
    345  1.1  sevan 		if ((status & RGE_INTRS) == 0 || status == 0xffffffff)
    346  1.1  sevan 			return (0);
    347  1.1  sevan 	}
    348  1.1  sevan 	if (status)
    349  1.1  sevan 		RGE_WRITE_4(sc, RGE_ISR, status);
    350  1.1  sevan 
    351  1.1  sevan 	if (status & RGE_ISR_PCS_TIMEOUT)
    352  1.1  sevan 		claimed = 1;
    353  1.1  sevan 
    354  1.1  sevan 	rx = tx = 0;
    355  1.1  sevan 	if (status & RGE_INTRS) {
    356  1.1  sevan 		if (status &
    357  1.1  sevan 		    (sc->rge_rx_ack | RGE_ISR_RX_ERR | RGE_ISR_RX_FIFO_OFLOW)) {
    358  1.1  sevan 			rx |= rge_rxeof(sc);
    359  1.1  sevan 			claimed = 1;
    360  1.1  sevan 		}
    361  1.1  sevan 
    362  1.1  sevan 		if (status & (sc->rge_tx_ack | RGE_ISR_TX_ERR)) {
    363  1.1  sevan 			tx |= rge_txeof(sc);
    364  1.1  sevan 			claimed = 1;
    365  1.1  sevan 		}
    366  1.1  sevan 
    367  1.1  sevan 		if (status & RGE_ISR_SYSTEM_ERR) {
    368  1.2  sevan 			KERNEL_LOCK(1, NULL);
    369  1.1  sevan 			rge_init(ifp);
    370  1.2  sevan 			KERNEL_UNLOCK_ONE(NULL);
    371  1.1  sevan 			claimed = 1;
    372  1.1  sevan 		}
    373  1.1  sevan 	}
    374  1.1  sevan 
    375  1.1  sevan 	if (sc->rge_timerintr) {
    376  1.1  sevan 		if ((tx | rx) == 0) {
    377  1.1  sevan 			/*
    378  1.1  sevan 			 * Nothing needs to be processed, fallback
    379  1.1  sevan 			 * to use TX/RX interrupts.
    380  1.1  sevan 			 */
    381  1.1  sevan 			rge_setup_intr(sc, RGE_IMTYPE_NONE);
    382  1.1  sevan 
    383  1.1  sevan 			/*
    384  1.1  sevan 			 * Recollect, mainly to avoid the possible
    385  1.1  sevan 			 * race introduced by changing interrupt
    386  1.1  sevan 			 * masks.
    387  1.1  sevan 			 */
    388  1.1  sevan 			rge_rxeof(sc);
    389  1.1  sevan 			rge_txeof(sc);
    390  1.1  sevan 		} else
    391  1.1  sevan 			RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
    392  1.1  sevan 	} else if (tx | rx) {
    393  1.1  sevan 		/*
    394  1.1  sevan 		 * Assume that using simulated interrupt moderation
    395  1.1  sevan 		 * (hardware timer based) could reduce the interrupt
    396  1.1  sevan 		 * rate.
    397  1.1  sevan 		 */
    398  1.1  sevan 		rge_setup_intr(sc, RGE_IMTYPE_SIM);
    399  1.1  sevan 	}
    400  1.1  sevan 
    401  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
    402  1.1  sevan 
    403  1.1  sevan 	return (claimed);
    404  1.1  sevan }
    405  1.1  sevan 
    406  1.1  sevan int
    407  1.1  sevan rge_encap(struct rge_softc *sc, struct mbuf *m, int idx)
    408  1.1  sevan {
    409  1.1  sevan 	struct rge_tx_desc *d = NULL;
    410  1.1  sevan 	struct rge_txq *txq;
    411  1.1  sevan 	bus_dmamap_t txmap;
    412  1.1  sevan 	uint32_t cmdsts, cflags = 0;
    413  1.1  sevan 	int cur, error, i, last, nsegs;
    414  1.1  sevan 
    415  1.1  sevan 	/*
    416  1.1  sevan 	 * Set RGE_TDEXTSTS_IPCSUM if any checksum offloading is requested.
    417  1.1  sevan 	 * Otherwise, RGE_TDEXTSTS_TCPCSUM / RGE_TDEXTSTS_UDPCSUM does not
    418  1.1  sevan 	 * take affect.
    419  1.1  sevan 	 */
    420  1.1  sevan 	if ((m->m_pkthdr.csum_flags &
    421  1.2  sevan 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
    422  1.1  sevan 		cflags |= RGE_TDEXTSTS_IPCSUM;
    423  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
    424  1.1  sevan 			cflags |= RGE_TDEXTSTS_TCPCSUM;
    425  1.1  sevan 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
    426  1.1  sevan 			cflags |= RGE_TDEXTSTS_UDPCSUM;
    427  1.1  sevan 	}
    428  1.1  sevan 
    429  1.1  sevan 	txq = &sc->rge_ldata.rge_txq[idx];
    430  1.1  sevan 	txmap = txq->txq_dmamap;
    431  1.1  sevan 
    432  1.1  sevan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m, BUS_DMA_NOWAIT);
    433  1.1  sevan 	switch (error) {
    434  1.1  sevan 	case 0:
    435  1.1  sevan 		break;
    436  1.1  sevan 	case EFBIG: /* mbuf chain is too fragmented */
    437  1.1  sevan 		if (m_defrag(m, M_DONTWAIT) == 0 &&
    438  1.1  sevan 		    bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m,
    439  1.1  sevan 		    BUS_DMA_NOWAIT) == 0)
    440  1.1  sevan 			break;
    441  1.1  sevan 
    442  1.1  sevan 		/* FALLTHROUGH */
    443  1.1  sevan 	default:
    444  1.1  sevan 		return (0);
    445  1.1  sevan 	}
    446  1.1  sevan 
    447  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
    448  1.1  sevan 	    BUS_DMASYNC_PREWRITE);
    449  1.1  sevan 
    450  1.1  sevan 	nsegs = txmap->dm_nsegs;
    451  1.1  sevan 
    452  1.1  sevan 	/* Set up hardware VLAN tagging. */
    453  1.1  sevan #if NVLAN > 0
    454  1.1  sevan 	if (m->m_flags & M_VLANTAG)
    455  1.1  sevan 		cflags |= swap16(m->m_pkthdr.ether_vtag | RGE_TDEXTSTS_VTAG);
    456  1.1  sevan #endif
    457  1.1  sevan 
    458  1.1  sevan 	cur = idx;
    459  1.1  sevan 	cmdsts = RGE_TDCMDSTS_SOF;
    460  1.1  sevan 
    461  1.1  sevan 	for (i = 0; i < txmap->dm_nsegs; i++) {
    462  1.1  sevan 		d = &sc->rge_ldata.rge_tx_list[cur];
    463  1.1  sevan 
    464  1.1  sevan 		d->rge_extsts = htole32(cflags);
    465  1.1  sevan 		d->rge_addrlo = htole32(RGE_ADDR_LO(txmap->dm_segs[i].ds_addr));
    466  1.1  sevan 		d->rge_addrhi = htole32(RGE_ADDR_HI(txmap->dm_segs[i].ds_addr));
    467  1.1  sevan 
    468  1.1  sevan 		cmdsts |= txmap->dm_segs[i].ds_len;
    469  1.1  sevan 
    470  1.1  sevan 		if (cur == RGE_TX_LIST_CNT - 1)
    471  1.1  sevan 			cmdsts |= RGE_TDCMDSTS_EOR;
    472  1.1  sevan 
    473  1.1  sevan 		d->rge_cmdsts = htole32(cmdsts);
    474  1.1  sevan 
    475  1.1  sevan 		last = cur;
    476  1.1  sevan 		cmdsts = RGE_TDCMDSTS_OWN;
    477  1.1  sevan 		cur = RGE_NEXT_TX_DESC(cur);
    478  1.1  sevan 	}
    479  1.1  sevan 
    480  1.1  sevan 	/* Set EOF on the last descriptor. */
    481  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_EOF);
    482  1.1  sevan 
    483  1.1  sevan 	/* Transfer ownership of packet to the chip. */
    484  1.1  sevan 	d = &sc->rge_ldata.rge_tx_list[idx];
    485  1.1  sevan 
    486  1.1  sevan 	d->rge_cmdsts |= htole32(RGE_TDCMDSTS_OWN);
    487  1.1  sevan 
    488  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    489  1.1  sevan 	    cur * sizeof(struct rge_tx_desc), sizeof(struct rge_tx_desc),
    490  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    491  1.1  sevan 
    492  1.1  sevan 	/* Update info of TX queue and descriptors. */
    493  1.1  sevan 	txq->txq_mbuf = m;
    494  1.1  sevan 	txq->txq_descidx = last;
    495  1.1  sevan 
    496  1.1  sevan 	return (nsegs);
    497  1.1  sevan }
    498  1.1  sevan 
    499  1.1  sevan int
    500  1.2  sevan rge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    501  1.1  sevan {
    502  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    503  1.1  sevan 	struct ifreq *ifr = (struct ifreq *)data;
    504  1.1  sevan 	int s, error = 0;
    505  1.1  sevan 
    506  1.1  sevan 	s = splnet();
    507  1.1  sevan 
    508  1.1  sevan 	switch (cmd) {
    509  1.1  sevan 	case SIOCSIFADDR:
    510  1.1  sevan 		ifp->if_flags |= IFF_UP;
    511  1.1  sevan 		if (!(ifp->if_flags & IFF_RUNNING))
    512  1.1  sevan 			rge_init(ifp);
    513  1.1  sevan 		break;
    514  1.1  sevan 	case SIOCSIFFLAGS:
    515  1.1  sevan 		if (ifp->if_flags & IFF_UP) {
    516  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    517  1.1  sevan 				error = ENETRESET;
    518  1.1  sevan 			else
    519  1.1  sevan 				rge_init(ifp);
    520  1.1  sevan 		} else {
    521  1.1  sevan 			if (ifp->if_flags & IFF_RUNNING)
    522  1.1  sevan 				rge_stop(ifp);
    523  1.1  sevan 		}
    524  1.1  sevan 		break;
    525  1.1  sevan 	case SIOCGIFMEDIA:
    526  1.1  sevan 	case SIOCSIFMEDIA:
    527  1.1  sevan 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    528  1.1  sevan 		break;
    529  1.1  sevan 	case SIOCSIFMTU:
    530  1.2  sevan 		if (ifr->ifr_mtu > ifp->if_mtu) {
    531  1.1  sevan 			error = EINVAL;
    532  1.1  sevan 			break;
    533  1.1  sevan 		}
    534  1.1  sevan 		ifp->if_mtu = ifr->ifr_mtu;
    535  1.1  sevan 		break;
    536  1.1  sevan 	default:
    537  1.2  sevan 		error = ether_ioctl(ifp, cmd, data);
    538  1.1  sevan 	}
    539  1.1  sevan 
    540  1.1  sevan 	if (error == ENETRESET) {
    541  1.1  sevan 		if (ifp->if_flags & IFF_RUNNING)
    542  1.1  sevan 			rge_iff(sc);
    543  1.1  sevan 		error = 0;
    544  1.1  sevan 	}
    545  1.1  sevan 
    546  1.1  sevan 	splx(s);
    547  1.1  sevan 	return (error);
    548  1.1  sevan }
    549  1.1  sevan 
    550  1.1  sevan void
    551  1.3  sevan rge_start(struct ifnet *ifp)
    552  1.1  sevan {
    553  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    554  1.1  sevan 	struct mbuf *m;
    555  1.1  sevan 	int free, idx, used;
    556  1.1  sevan 	int queued = 0;
    557  1.1  sevan 
    558  1.2  sevan #define LINK_STATE_IS_UP(_s)    \
    559  1.2  sevan 	((_s) >= LINK_STATE_UP || (_s) == LINK_STATE_UNKNOWN)
    560  1.2  sevan 
    561  1.1  sevan 	if (!LINK_STATE_IS_UP(ifp->if_link_state)) {
    562  1.1  sevan 		ifq_purge(ifq);
    563  1.1  sevan 		return;
    564  1.1  sevan 	}
    565  1.1  sevan 
    566  1.1  sevan 	/* Calculate free space. */
    567  1.1  sevan 	idx = sc->rge_ldata.rge_txq_prodidx;
    568  1.1  sevan 	free = sc->rge_ldata.rge_txq_considx;
    569  1.1  sevan 	if (free <= idx)
    570  1.1  sevan 		free += RGE_TX_LIST_CNT;
    571  1.1  sevan 	free -= idx;
    572  1.1  sevan 
    573  1.1  sevan 	for (;;) {
    574  1.1  sevan 		if (RGE_TX_NSEGS >= free + 2) {
    575  1.3  sevan 			SET(ifp->if_flags, IFF_OACTIVE);
    576  1.1  sevan 			break;
    577  1.1  sevan 		}
    578  1.1  sevan 
    579  1.3  sevan 		IFQ_DEQUEUE(&ifp->if_snd, m);
    580  1.1  sevan 		if (m == NULL)
    581  1.1  sevan 			break;
    582  1.1  sevan 
    583  1.1  sevan 		used = rge_encap(sc, m, idx);
    584  1.1  sevan 		if (used == 0) {
    585  1.1  sevan 			m_freem(m);
    586  1.1  sevan 			continue;
    587  1.1  sevan 		}
    588  1.1  sevan 
    589  1.1  sevan 		KASSERT(used <= free);
    590  1.1  sevan 		free -= used;
    591  1.1  sevan 
    592  1.1  sevan #if NBPFILTER > 0
    593  1.1  sevan 		if (ifp->if_bpf)
    594  1.1  sevan 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
    595  1.1  sevan #endif
    596  1.1  sevan 
    597  1.1  sevan 		idx += used;
    598  1.1  sevan 		if (idx >= RGE_TX_LIST_CNT)
    599  1.1  sevan 			idx -= RGE_TX_LIST_CNT;
    600  1.1  sevan 
    601  1.1  sevan 		queued++;
    602  1.1  sevan 	}
    603  1.1  sevan 
    604  1.1  sevan 	if (queued == 0)
    605  1.1  sevan 		return;
    606  1.1  sevan 
    607  1.1  sevan 	/* Set a timeout in case the chip goes out to lunch. */
    608  1.1  sevan 	ifp->if_timer = 5;
    609  1.1  sevan 
    610  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = idx;
    611  1.1  sevan 	ifq_serialize(ifq, &sc->sc_task);
    612  1.1  sevan }
    613  1.1  sevan 
    614  1.1  sevan void
    615  1.1  sevan rge_watchdog(struct ifnet *ifp)
    616  1.1  sevan {
    617  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    618  1.1  sevan 
    619  1.1  sevan 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
    620  1.4  skrll 	if_statinc(ifp, if_oerrors);
    621  1.1  sevan 
    622  1.1  sevan 	rge_init(ifp);
    623  1.1  sevan }
    624  1.1  sevan 
    625  1.1  sevan int
    626  1.1  sevan rge_init(struct ifnet *ifp)
    627  1.1  sevan {
    628  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    629  1.1  sevan 	uint32_t val;
    630  1.1  sevan 	uint16_t max_frame_size;
    631  1.1  sevan 	int i;
    632  1.1  sevan 
    633  1.1  sevan 	rge_stop(ifp);
    634  1.1  sevan 
    635  1.1  sevan 	/* Set MAC address. */
    636  1.2  sevan 	rge_set_macaddr(sc, sc->sc_enaddr);
    637  1.1  sevan 
    638  1.1  sevan 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
    639  1.1  sevan 	if (ifp->if_mtu < ETHERMTU)
    640  1.1  sevan 		max_frame_size = ETHERMTU;
    641  1.1  sevan 	else
    642  1.1  sevan 		max_frame_size = ifp->if_mtu;
    643  1.1  sevan 
    644  1.1  sevan 	max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
    645  1.1  sevan 	    ETHER_CRC_LEN + 1;
    646  1.1  sevan 
    647  1.1  sevan 	if (max_frame_size > RGE_JUMBO_FRAMELEN)
    648  1.5  skrll 		max_frame_size -= 1;
    649  1.1  sevan 
    650  1.1  sevan 	RGE_WRITE_2(sc, RGE_RXMAXSIZE, max_frame_size);
    651  1.1  sevan 
    652  1.1  sevan 	/* Initialize RX descriptors list. */
    653  1.1  sevan 	if (rge_rx_list_init(sc) == ENOBUFS) {
    654  1.1  sevan 		printf("%s: init failed: no memory for RX buffers\n",
    655  1.1  sevan 		    sc->sc_dev.dv_xname);
    656  1.1  sevan 		rge_stop(ifp);
    657  1.1  sevan 		return (ENOBUFS);
    658  1.1  sevan 	}
    659  1.1  sevan 
    660  1.1  sevan 	/* Initialize TX descriptors. */
    661  1.1  sevan 	rge_tx_list_init(sc);
    662  1.1  sevan 
    663  1.1  sevan 	/* Load the addresses of the RX and TX lists into the chip. */
    664  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_LO,
    665  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    666  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXDESC_ADDR_HI,
    667  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_rx_list_map->dm_segs[0].ds_addr));
    668  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_LO,
    669  1.1  sevan 	    RGE_ADDR_LO(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    670  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXDESC_ADDR_HI,
    671  1.1  sevan 	    RGE_ADDR_HI(sc->rge_ldata.rge_tx_list_map->dm_segs[0].ds_addr));
    672  1.1  sevan 
    673  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    674  1.1  sevan 
    675  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
    676  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    677  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    678  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG3, RGE_CFG3_RDY_TO_L23);
    679  1.1  sevan 
    680  1.1  sevan 	/* Clear interrupt moderation timer. */
    681  1.1  sevan 	for (i = 0; i < 64; i++)
    682  1.1  sevan 		RGE_WRITE_4(sc, RGE_IM(i), 0);
    683  1.1  sevan 
    684  1.1  sevan 	/* Set the initial RX and TX configurations. */
    685  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, RGE_RXCFG_CONFIG);
    686  1.1  sevan 	RGE_WRITE_4(sc, RGE_TXCFG, RGE_TXCFG_CONFIG);
    687  1.1  sevan 
    688  1.1  sevan 	val = rge_read_csi(sc, 0x70c) & ~0xff000000;
    689  1.1  sevan 	rge_write_csi(sc, 0x70c, val | 0x27000000);
    690  1.1  sevan 
    691  1.1  sevan 	/* Enable hardware optimization function. */
    692  1.1  sevan 	val = pci_conf_read(sc->sc_pc, sc->sc_tag, 0x78) & ~0x00007000;
    693  1.1  sevan 	pci_conf_write(sc->sc_pc, sc->sc_tag, 0x78, val | 0x00005000);
    694  1.1  sevan 
    695  1.1  sevan 	RGE_WRITE_2(sc, 0x0382, 0x221b);
    696  1.1  sevan 	RGE_WRITE_1(sc, 0x4500, 0);
    697  1.1  sevan 	RGE_WRITE_2(sc, 0x4800, 0);
    698  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG1, RGE_CFG1_SPEED_DOWN);
    699  1.1  sevan 
    700  1.1  sevan 	rge_write_mac_ocp(sc, 0xc140, 0xffff);
    701  1.1  sevan 	rge_write_mac_ocp(sc, 0xc142, 0xffff);
    702  1.1  sevan 
    703  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd3e2) & ~0x0fff;
    704  1.1  sevan 	rge_write_mac_ocp(sc, 0xd3e2, val | 0x03a9);
    705  1.1  sevan 
    706  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd3e4, 0x00ff);
    707  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe860, 0x0080);
    708  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb58, 0x0001);
    709  1.1  sevan 
    710  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe614) & ~0x0700;
    711  1.1  sevan 	rge_write_mac_ocp(sc, 0xe614, val | 0x0400);
    712  1.1  sevan 
    713  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe63e, 0x0c00);
    714  1.1  sevan 
    715  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe63e) & ~0x0030;
    716  1.1  sevan 	rge_write_mac_ocp(sc, 0xe63e, val | 0x0020);
    717  1.1  sevan 
    718  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xc0b4, 0x000c);
    719  1.1  sevan 
    720  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb6a) & ~0x007f;
    721  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb6a, val | 0x0033);
    722  1.1  sevan 
    723  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xeb50) & ~0x03e0;
    724  1.1  sevan 	rge_write_mac_ocp(sc, 0xeb50, val | 0x0040);
    725  1.1  sevan 
    726  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe056) & ~0x00f0;
    727  1.1  sevan 	rge_write_mac_ocp(sc, 0xe056, val | 0x0030);
    728  1.1  sevan 
    729  1.1  sevan 	RGE_WRITE_1(sc, RGE_TDFNR, 0x10);
    730  1.1  sevan 
    731  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x1000);
    732  1.1  sevan 
    733  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xe0c0) & ~0x4f0f;
    734  1.1  sevan 	rge_write_mac_ocp(sc, 0xe0c0, val | 0x4403);
    735  1.1  sevan 
    736  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xe052, 0x0068);
    737  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0080);
    738  1.1  sevan 
    739  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xc0ac) & ~0x0080;
    740  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0ac, val | 0x1f00);
    741  1.1  sevan 
    742  1.1  sevan 	val = rge_read_mac_ocp(sc, 0xd430) & ~0x0fff;
    743  1.1  sevan 	rge_write_mac_ocp(sc, 0xd430, val | 0x047f);
    744  1.1  sevan 
    745  1.5  skrll 	RGE_MAC_SETBIT(sc, 0xe84c, 0x00c0);
    746  1.1  sevan 
    747  1.1  sevan 	/* Disable EEE plus. */
    748  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe080, 0x0002);
    749  1.1  sevan 
    750  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xea1c, 0x0004);
    751  1.1  sevan 
    752  1.1  sevan 	RGE_MAC_SETBIT(sc, 0xeb54, 0x0001);
    753  1.1  sevan 	DELAY(1);
    754  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb54, 0x0001);
    755  1.1  sevan 
    756  1.1  sevan 	RGE_CLRBIT_4(sc, 0x1880, 0x0030);
    757  1.1  sevan 
    758  1.1  sevan 	rge_write_mac_ocp(sc, 0xe098, 0xc302);
    759  1.1  sevan 
    760  1.2  sevan 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
    761  1.1  sevan 		RGE_SETBIT_4(sc, RGE_RXCFG, RGE_RXCFG_VLANSTRIP);
    762  1.1  sevan 
    763  1.1  sevan 	RGE_SETBIT_2(sc, RGE_CPLUSCMD, RGE_CPLUSCMD_RXCSUM);
    764  1.1  sevan 
    765  1.1  sevan 	for (i = 0; i < 10; i++) {
    766  1.1  sevan 		if (!(rge_read_mac_ocp(sc, 0xe00e) & 0x2000))
    767  1.1  sevan 			break;
    768  1.1  sevan 		DELAY(1000);
    769  1.1  sevan 	}
    770  1.1  sevan 
    771  1.1  sevan 	/* Disable RXDV gate. */
    772  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_PPSW, 0x08);
    773  1.1  sevan 	DELAY(2000);
    774  1.1  sevan 
    775  1.1  sevan 	rge_ifmedia_upd(ifp);
    776  1.1  sevan 
    777  1.1  sevan 	/* Enable transmit and receive. */
    778  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_TXENB | RGE_CMD_RXENB);
    779  1.1  sevan 
    780  1.1  sevan 	/* Program promiscuous mode and multicast filters. */
    781  1.1  sevan 	rge_iff(sc);
    782  1.1  sevan 
    783  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
    784  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
    785  1.1  sevan 
    786  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
    787  1.1  sevan 
    788  1.1  sevan 	/* Enable interrupts. */
    789  1.1  sevan 	rge_setup_intr(sc, RGE_IMTYPE_SIM);
    790  1.1  sevan 
    791  1.1  sevan 	ifp->if_flags |= IFF_RUNNING;
    792  1.3  sevan 	CLR(ifp->if_flags, IFF_OACTIVE);
    793  1.1  sevan 
    794  1.3  sevan 	callout_schedule(&sc->sc_timeout, 1);
    795  1.1  sevan 
    796  1.1  sevan 	return (0);
    797  1.1  sevan }
    798  1.1  sevan 
    799  1.1  sevan /*
    800  1.1  sevan  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
    801  1.1  sevan  */
    802  1.1  sevan void
    803  1.1  sevan rge_stop(struct ifnet *ifp)
    804  1.1  sevan {
    805  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    806  1.1  sevan 	int i;
    807  1.1  sevan 
    808  1.1  sevan 	timeout_del(&sc->sc_timeout);
    809  1.1  sevan 
    810  1.1  sevan 	ifp->if_timer = 0;
    811  1.1  sevan 	ifp->if_flags &= ~IFF_RUNNING;
    812  1.1  sevan 	sc->rge_timerintr = 0;
    813  1.1  sevan 
    814  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
    815  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
    816  1.1  sevan 	    RGE_RXCFG_ERRPKT);
    817  1.1  sevan 
    818  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, 0);
    819  1.1  sevan 	RGE_WRITE_4(sc, RGE_ISR, 0xffffffff);
    820  1.1  sevan 
    821  1.1  sevan 	rge_reset(sc);
    822  1.1  sevan 
    823  1.1  sevan 	intr_barrier(sc->sc_ih);
    824  1.1  sevan 	ifq_barrier(&ifp->if_snd);
    825  1.2  sevan /*	ifq_clr_oactive(&ifp->if_snd); Sevan - OpenBSD queue API */
    826  1.1  sevan 
    827  1.1  sevan 	if (sc->rge_head != NULL) {
    828  1.1  sevan 		m_freem(sc->rge_head);
    829  1.1  sevan 		sc->rge_head = sc->rge_tail = NULL;
    830  1.1  sevan 	}
    831  1.1  sevan 
    832  1.1  sevan 	/* Free the TX list buffers. */
    833  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    834  1.1  sevan 		if (sc->rge_ldata.rge_txq[i].txq_mbuf != NULL) {
    835  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    836  1.1  sevan 			    sc->rge_ldata.rge_txq[i].txq_dmamap);
    837  1.1  sevan 			m_freem(sc->rge_ldata.rge_txq[i].txq_mbuf);
    838  1.1  sevan 			sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
    839  1.1  sevan 		}
    840  1.1  sevan 	}
    841  1.1  sevan 
    842  1.1  sevan 	/* Free the RX list buffers. */
    843  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
    844  1.1  sevan 		if (sc->rge_ldata.rge_rxq[i].rxq_mbuf != NULL) {
    845  1.1  sevan 			bus_dmamap_unload(sc->sc_dmat,
    846  1.1  sevan 			    sc->rge_ldata.rge_rxq[i].rxq_dmamap);
    847  1.1  sevan 			m_freem(sc->rge_ldata.rge_rxq[i].rxq_mbuf);
    848  1.1  sevan 			sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
    849  1.1  sevan 		}
    850  1.1  sevan 	}
    851  1.1  sevan }
    852  1.1  sevan 
    853  1.1  sevan /*
    854  1.1  sevan  * Set media options.
    855  1.1  sevan  */
    856  1.1  sevan int
    857  1.1  sevan rge_ifmedia_upd(struct ifnet *ifp)
    858  1.1  sevan {
    859  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    860  1.1  sevan 	struct ifmedia *ifm = &sc->sc_media;
    861  1.1  sevan 	int anar, gig, val;
    862  1.1  sevan 
    863  1.1  sevan 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
    864  1.1  sevan 		return (EINVAL);
    865  1.1  sevan 
    866  1.1  sevan 	/* Disable Gigabit Lite. */
    867  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0200);
    868  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5ea, 0x0001);
    869  1.1  sevan 
    870  1.1  sevan 	val = rge_read_phy_ocp(sc, 0xa5d4);
    871  1.1  sevan 	val &= ~RGE_ADV_2500TFDX;
    872  1.1  sevan 
    873  1.1  sevan 	anar = gig = 0;
    874  1.1  sevan 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
    875  1.1  sevan 	case IFM_AUTO:
    876  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    877  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    878  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    879  1.1  sevan 		break;
    880  1.1  sevan 	case IFM_2500_T:
    881  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    882  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    883  1.1  sevan 		val |= RGE_ADV_2500TFDX;
    884  1.1  sevan 		ifp->if_baudrate = IF_Mbps(2500);
    885  1.1  sevan 		break;
    886  1.1  sevan 	case IFM_1000_T:
    887  1.1  sevan 		anar |= ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10;
    888  1.1  sevan 		gig |= GTCR_ADV_1000TFDX | GTCR_ADV_1000THDX;
    889  1.1  sevan 		ifp->if_baudrate = IF_Gbps(1);
    890  1.1  sevan 		break;
    891  1.1  sevan 	case IFM_100_TX:
    892  1.1  sevan 		anar |= ANAR_TX | ANAR_TX_FD;
    893  1.1  sevan 		ifp->if_baudrate = IF_Mbps(100);
    894  1.1  sevan 		break;
    895  1.1  sevan 	case IFM_10_T:
    896  1.1  sevan 		anar |= ANAR_10 | ANAR_10_FD;
    897  1.1  sevan 		ifp->if_baudrate = IF_Mbps(10);
    898  1.1  sevan 		break;
    899  1.1  sevan 	default:
    900  1.1  sevan 		printf("%s: unsupported media type\n", sc->sc_dev.dv_xname);
    901  1.1  sevan 		return (EINVAL);
    902  1.1  sevan 	}
    903  1.1  sevan 
    904  1.1  sevan 	rge_write_phy(sc, 0, MII_ANAR, anar | ANAR_PAUSE_ASYM | ANAR_FC);
    905  1.1  sevan 	rge_write_phy(sc, 0, MII_100T2CR, gig);
    906  1.1  sevan 	rge_write_phy_ocp(sc, 0xa5d4, val);
    907  1.1  sevan 	rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
    908  1.1  sevan 
    909  1.1  sevan 	return (0);
    910  1.1  sevan }
    911  1.1  sevan 
    912  1.1  sevan /*
    913  1.1  sevan  * Report current media status.
    914  1.1  sevan  */
    915  1.1  sevan void
    916  1.1  sevan rge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
    917  1.1  sevan {
    918  1.1  sevan 	struct rge_softc *sc = ifp->if_softc;
    919  1.1  sevan 	uint16_t status = 0;
    920  1.1  sevan 
    921  1.1  sevan 	ifmr->ifm_status = IFM_AVALID;
    922  1.1  sevan 	ifmr->ifm_active = IFM_ETHER;
    923  1.1  sevan 
    924  1.1  sevan 	if (rge_get_link_status(sc)) {
    925  1.1  sevan 		ifmr->ifm_status |= IFM_ACTIVE;
    926  1.1  sevan 
    927  1.1  sevan 		status = RGE_READ_2(sc, RGE_PHYSTAT);
    928  1.1  sevan 		if ((status & RGE_PHYSTAT_FDX) ||
    929  1.1  sevan 		    (status & RGE_PHYSTAT_2500MBPS))
    930  1.1  sevan 			ifmr->ifm_active |= IFM_FDX;
    931  1.1  sevan 		else
    932  1.1  sevan 			ifmr->ifm_active |= IFM_HDX;
    933  1.1  sevan 
    934  1.1  sevan 		if (status & RGE_PHYSTAT_10MBPS)
    935  1.1  sevan 			ifmr->ifm_active |= IFM_10_T;
    936  1.1  sevan 		else if (status & RGE_PHYSTAT_100MBPS)
    937  1.1  sevan 			ifmr->ifm_active |= IFM_100_TX;
    938  1.1  sevan 		else if (status & RGE_PHYSTAT_1000MBPS)
    939  1.1  sevan 			ifmr->ifm_active |= IFM_1000_T;
    940  1.1  sevan 		else if (status & RGE_PHYSTAT_2500MBPS)
    941  1.1  sevan 			ifmr->ifm_active |= IFM_2500_T;
    942  1.1  sevan 	}
    943  1.1  sevan }
    944  1.1  sevan 
    945  1.5  skrll /*
    946  1.1  sevan  * Allocate memory for RX/TX rings.
    947  1.1  sevan  */
    948  1.1  sevan int
    949  1.1  sevan rge_allocmem(struct rge_softc *sc)
    950  1.1  sevan {
    951  1.1  sevan 	int error, i;
    952  1.1  sevan 
    953  1.1  sevan 	/* Allocate DMA'able memory for the TX ring. */
    954  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_TX_LIST_SZ, 1,
    955  1.1  sevan 	    RGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT, &sc->rge_ldata.rge_tx_list_map);
    956  1.1  sevan 	if (error) {
    957  1.1  sevan 		printf("%s: can't create TX list map\n", sc->sc_dev.dv_xname);
    958  1.1  sevan 		return (error);
    959  1.1  sevan 	}
    960  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_TX_LIST_SZ, RGE_ALIGN, 0,
    961  1.1  sevan 	    &sc->rge_ldata.rge_tx_listseg, 1, &sc->rge_ldata.rge_tx_listnseg,
    962  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
    963  1.1  sevan 	if (error) {
    964  1.1  sevan 		printf("%s: can't alloc TX list\n", sc->sc_dev.dv_xname);
    965  1.1  sevan 		return (error);
    966  1.1  sevan 	}
    967  1.1  sevan 
    968  1.1  sevan 	/* Load the map for the TX ring. */
    969  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    970  1.1  sevan 	    sc->rge_ldata.rge_tx_listnseg, RGE_TX_LIST_SZ,
    971  1.8  sevan 	    (void **) &sc->rge_ldata.rge_tx_list,
    972  1.2  sevan 	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
    973  1.1  sevan 	if (error) {
    974  1.1  sevan 		printf("%s: can't map TX dma buffers\n", sc->sc_dev.dv_xname);
    975  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    976  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    977  1.1  sevan 		return (error);
    978  1.1  sevan 	}
    979  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
    980  1.1  sevan 	    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    981  1.1  sevan 	if (error) {
    982  1.1  sevan 		printf("%s: can't load TX dma map\n", sc->sc_dev.dv_xname);
    983  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map);
    984  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
    985  1.2  sevan 		    sc->rge_ldata.rge_tx_list, RGE_TX_LIST_SZ);
    986  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_tx_listseg,
    987  1.1  sevan 		    sc->rge_ldata.rge_tx_listnseg);
    988  1.1  sevan 		return (error);
    989  1.1  sevan 	}
    990  1.1  sevan 
    991  1.1  sevan 	/* Create DMA maps for TX buffers. */
    992  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++) {
    993  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN,
    994  1.1  sevan 		    RGE_TX_NSEGS, RGE_JUMBO_FRAMELEN, 0, 0,
    995  1.1  sevan 		    &sc->rge_ldata.rge_txq[i].txq_dmamap);
    996  1.1  sevan 		if (error) {
    997  1.1  sevan 			printf("%s: can't create DMA map for TX\n",
    998  1.1  sevan 			    sc->sc_dev.dv_xname);
    999  1.1  sevan 			return (error);
   1000  1.1  sevan 		}
   1001  1.1  sevan 	}
   1002  1.1  sevan 
   1003  1.1  sevan 	/* Allocate DMA'able memory for the RX ring. */
   1004  1.1  sevan 	error = bus_dmamap_create(sc->sc_dmat, RGE_RX_LIST_SZ, 1,
   1005  1.1  sevan 	    RGE_RX_LIST_SZ, 0, 0, &sc->rge_ldata.rge_rx_list_map);
   1006  1.1  sevan 	if (error) {
   1007  1.1  sevan 		printf("%s: can't create RX list map\n", sc->sc_dev.dv_xname);
   1008  1.1  sevan 		return (error);
   1009  1.1  sevan 	}
   1010  1.1  sevan 	error = bus_dmamem_alloc(sc->sc_dmat, RGE_RX_LIST_SZ, RGE_ALIGN, 0,
   1011  1.1  sevan 	    &sc->rge_ldata.rge_rx_listseg, 1, &sc->rge_ldata.rge_rx_listnseg,
   1012  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_ZERO */
   1013  1.1  sevan 	if (error) {
   1014  1.1  sevan 		printf("%s: can't alloc RX list\n", sc->sc_dev.dv_xname);
   1015  1.1  sevan 		return (error);
   1016  1.1  sevan 	}
   1017  1.1  sevan 
   1018  1.1  sevan 	/* Load the map for the RX ring. */
   1019  1.1  sevan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1020  1.1  sevan 	    sc->rge_ldata.rge_rx_listnseg, RGE_RX_LIST_SZ,
   1021  1.8  sevan 	    (void **) &sc->rge_ldata.rge_rx_list,
   1022  1.2  sevan 	    BUS_DMA_NOWAIT);  /* XXX OpenBSD adds BUS_DMA_COHERENT */
   1023  1.1  sevan 	if (error) {
   1024  1.1  sevan 		printf("%s: can't map RX dma buffers\n", sc->sc_dev.dv_xname);
   1025  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1026  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1027  1.1  sevan 		return (error);
   1028  1.1  sevan 	}
   1029  1.1  sevan 	error = bus_dmamap_load(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1030  1.1  sevan 	    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
   1031  1.1  sevan 	if (error) {
   1032  1.1  sevan 		printf("%s: can't load RX dma map\n", sc->sc_dev.dv_xname);
   1033  1.1  sevan 		bus_dmamap_destroy(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map);
   1034  1.1  sevan 		bus_dmamem_unmap(sc->sc_dmat,
   1035  1.2  sevan 		    sc->rge_ldata.rge_rx_list, RGE_RX_LIST_SZ);
   1036  1.1  sevan 		bus_dmamem_free(sc->sc_dmat, &sc->rge_ldata.rge_rx_listseg,
   1037  1.1  sevan 		    sc->rge_ldata.rge_rx_listnseg);
   1038  1.1  sevan 		return (error);
   1039  1.1  sevan 	}
   1040  1.1  sevan 
   1041  1.1  sevan 	/* Create DMA maps for RX buffers. */
   1042  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1043  1.1  sevan 		error = bus_dmamap_create(sc->sc_dmat, RGE_JUMBO_FRAMELEN, 1,
   1044  1.1  sevan 		    RGE_JUMBO_FRAMELEN, 0, 0,
   1045  1.1  sevan 		    &sc->rge_ldata.rge_rxq[i].rxq_dmamap);
   1046  1.1  sevan 		if (error) {
   1047  1.1  sevan 			printf("%s: can't create DMA map for RX\n",
   1048  1.1  sevan 			    sc->sc_dev.dv_xname);
   1049  1.1  sevan 			return (error);
   1050  1.1  sevan 		}
   1051  1.1  sevan 	}
   1052  1.1  sevan 
   1053  1.1  sevan 	return (error);
   1054  1.1  sevan }
   1055  1.1  sevan 
   1056  1.1  sevan /*
   1057  1.1  sevan  * Initialize the RX descriptor and attach an mbuf cluster.
   1058  1.1  sevan  */
   1059  1.1  sevan int
   1060  1.1  sevan rge_newbuf(struct rge_softc *sc, int idx)
   1061  1.1  sevan {
   1062  1.1  sevan 	struct mbuf *m;
   1063  1.1  sevan 	struct rge_rx_desc *r;
   1064  1.1  sevan 	struct rge_rxq *rxq;
   1065  1.1  sevan 	bus_dmamap_t rxmap;
   1066  1.1  sevan 
   1067  1.1  sevan 	m = MCLGETI(NULL, M_DONTWAIT, NULL, RGE_JUMBO_FRAMELEN);
   1068  1.1  sevan 	if (m == NULL)
   1069  1.1  sevan 		return (ENOBUFS);
   1070  1.1  sevan 
   1071  1.1  sevan 	m->m_len = m->m_pkthdr.len = RGE_JUMBO_FRAMELEN;
   1072  1.1  sevan 
   1073  1.1  sevan 	rxq = &sc->rge_ldata.rge_rxq[idx];
   1074  1.1  sevan 	rxmap = rxq->rxq_dmamap;
   1075  1.1  sevan 
   1076  1.1  sevan 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
   1077  1.1  sevan 		goto out;
   1078  1.1  sevan 
   1079  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1080  1.1  sevan 	    BUS_DMASYNC_PREREAD);
   1081  1.1  sevan 
   1082  1.1  sevan 	/* Map the segments into RX descriptors. */
   1083  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1084  1.1  sevan 
   1085  1.1  sevan 	if (RGE_OWN(r)) {
   1086  1.1  sevan 		printf("%s: tried to map busy RX descriptor\n",
   1087  1.1  sevan 		    sc->sc_dev.dv_xname);
   1088  1.1  sevan 		goto out;
   1089  1.1  sevan 	}
   1090  1.1  sevan 
   1091  1.1  sevan 	rxq->rxq_mbuf = m;
   1092  1.1  sevan 
   1093  1.1  sevan 	r->rge_extsts = 0;
   1094  1.1  sevan 	r->rge_addrlo = htole32(RGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
   1095  1.1  sevan 	r->rge_addrhi = htole32(RGE_ADDR_HI(rxmap->dm_segs[0].ds_addr));
   1096  1.1  sevan 
   1097  1.1  sevan 	r->rge_cmdsts = htole32(rxmap->dm_segs[0].ds_len);
   1098  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1099  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1100  1.1  sevan 
   1101  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1102  1.1  sevan 
   1103  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1104  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1105  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1106  1.1  sevan 
   1107  1.1  sevan 	return (0);
   1108  1.1  sevan out:
   1109  1.1  sevan 	if (m != NULL)
   1110  1.1  sevan 		m_freem(m);
   1111  1.1  sevan 	return (ENOMEM);
   1112  1.1  sevan }
   1113  1.1  sevan 
   1114  1.1  sevan void
   1115  1.1  sevan rge_discard_rxbuf(struct rge_softc *sc, int idx)
   1116  1.1  sevan {
   1117  1.1  sevan 	struct rge_rx_desc *r;
   1118  1.1  sevan 
   1119  1.1  sevan 	r = &sc->rge_ldata.rge_rx_list[idx];
   1120  1.1  sevan 
   1121  1.1  sevan 	r->rge_cmdsts = htole32(RGE_JUMBO_FRAMELEN);
   1122  1.1  sevan 	r->rge_extsts = 0;
   1123  1.1  sevan 	if (idx == RGE_RX_LIST_CNT - 1)
   1124  1.1  sevan 		r->rge_cmdsts |= htole32(RGE_RDCMDSTS_EOR);
   1125  1.1  sevan 	r->rge_cmdsts |= htole32(RGE_RDCMDSTS_OWN);
   1126  1.1  sevan 
   1127  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1128  1.1  sevan 	    idx * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1129  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1130  1.1  sevan }
   1131  1.1  sevan 
   1132  1.1  sevan int
   1133  1.1  sevan rge_rx_list_init(struct rge_softc *sc)
   1134  1.1  sevan {
   1135  1.1  sevan 	int i;
   1136  1.1  sevan 
   1137  1.1  sevan 	memset(sc->rge_ldata.rge_rx_list, 0, RGE_RX_LIST_SZ);
   1138  1.1  sevan 
   1139  1.1  sevan 	for (i = 0; i < RGE_RX_LIST_CNT; i++) {
   1140  1.1  sevan 		sc->rge_ldata.rge_rxq[i].rxq_mbuf = NULL;
   1141  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS)
   1142  1.1  sevan 			return (ENOBUFS);
   1143  1.1  sevan 	}
   1144  1.1  sevan 
   1145  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = 0;
   1146  1.1  sevan 	sc->rge_head = sc->rge_tail = NULL;
   1147  1.1  sevan 
   1148  1.1  sevan 	return (0);
   1149  1.1  sevan }
   1150  1.1  sevan 
   1151  1.1  sevan void
   1152  1.1  sevan rge_tx_list_init(struct rge_softc *sc)
   1153  1.1  sevan {
   1154  1.1  sevan 	int i;
   1155  1.1  sevan 
   1156  1.1  sevan 	memset(sc->rge_ldata.rge_tx_list, 0, RGE_TX_LIST_SZ);
   1157  1.1  sevan 
   1158  1.1  sevan 	for (i = 0; i < RGE_TX_LIST_CNT; i++)
   1159  1.1  sevan 		sc->rge_ldata.rge_txq[i].txq_mbuf = NULL;
   1160  1.1  sevan 
   1161  1.1  sevan 	bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map, 0,
   1162  1.1  sevan 	    sc->rge_ldata.rge_tx_list_map->dm_mapsize,
   1163  1.1  sevan 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1164  1.1  sevan 
   1165  1.1  sevan 	sc->rge_ldata.rge_txq_prodidx = sc->rge_ldata.rge_txq_considx = 0;
   1166  1.1  sevan }
   1167  1.1  sevan 
   1168  1.1  sevan int
   1169  1.1  sevan rge_rxeof(struct rge_softc *sc)
   1170  1.1  sevan {
   1171  1.1  sevan 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1172  1.1  sevan 	struct mbuf *m;
   1173  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1174  1.1  sevan 	struct rge_rx_desc *cur_rx;
   1175  1.1  sevan 	struct rge_rxq *rxq;
   1176  1.1  sevan 	uint32_t rxstat, extsts;
   1177  1.1  sevan 	int i, total_len, rx = 0;
   1178  1.1  sevan 
   1179  1.1  sevan 	for (i = sc->rge_ldata.rge_rxq_prodidx; ; i = RGE_NEXT_RX_DESC(i)) {
   1180  1.1  sevan 		/* Invalidate the descriptor memory. */
   1181  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_rx_list_map,
   1182  1.1  sevan 		    i * sizeof(struct rge_rx_desc), sizeof(struct rge_rx_desc),
   1183  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1184  1.1  sevan 
   1185  1.1  sevan 		cur_rx = &sc->rge_ldata.rge_rx_list[i];
   1186  1.1  sevan 
   1187  1.1  sevan 		if (RGE_OWN(cur_rx))
   1188  1.1  sevan 			break;
   1189  1.1  sevan 
   1190  1.1  sevan 		rxstat = letoh32(cur_rx->rge_cmdsts);
   1191  1.1  sevan 		extsts = letoh32(cur_rx->rge_extsts);
   1192  1.5  skrll 
   1193  1.1  sevan 		total_len = RGE_RXBYTES(cur_rx);
   1194  1.1  sevan 		rxq = &sc->rge_ldata.rge_rxq[i];
   1195  1.1  sevan 		m = rxq->rxq_mbuf;
   1196  1.1  sevan 		rx = 1;
   1197  1.1  sevan 
   1198  1.1  sevan 		/* Invalidate the RX mbuf and unload its map. */
   1199  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_dmamap, 0,
   1200  1.1  sevan 		    rxq->rxq_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1201  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, rxq->rxq_dmamap);
   1202  1.1  sevan 
   1203  1.1  sevan 		if ((rxstat & (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) !=
   1204  1.1  sevan 		    (RGE_RDCMDSTS_SOF | RGE_RDCMDSTS_EOF)) {
   1205  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1206  1.1  sevan 			continue;
   1207  1.1  sevan 		}
   1208  1.1  sevan 
   1209  1.1  sevan 		if (rxstat & RGE_RDCMDSTS_RXERRSUM) {
   1210  1.4  skrll 			if_statinc(ifp, if_ierrors);
   1211  1.1  sevan 			/*
   1212  1.1  sevan 			 * If this is part of a multi-fragment packet,
   1213  1.1  sevan 			 * discard all the pieces.
   1214  1.1  sevan 			 */
   1215  1.1  sevan 			 if (sc->rge_head != NULL) {
   1216  1.1  sevan 				m_freem(sc->rge_head);
   1217  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1218  1.1  sevan 			}
   1219  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1220  1.1  sevan 			continue;
   1221  1.1  sevan 		}
   1222  1.1  sevan 
   1223  1.1  sevan 		/*
   1224  1.1  sevan 		 * If allocating a replacement mbuf fails,
   1225  1.1  sevan 		 * reload the current one.
   1226  1.1  sevan 		 */
   1227  1.1  sevan 
   1228  1.1  sevan 		if (rge_newbuf(sc, i) == ENOBUFS) {
   1229  1.1  sevan 			if (sc->rge_head != NULL) {
   1230  1.1  sevan 				m_freem(sc->rge_head);
   1231  1.1  sevan 				sc->rge_head = sc->rge_tail = NULL;
   1232  1.1  sevan 			}
   1233  1.1  sevan 			rge_discard_rxbuf(sc, i);
   1234  1.1  sevan 			continue;
   1235  1.1  sevan 		}
   1236  1.1  sevan 
   1237  1.1  sevan 		if (sc->rge_head != NULL) {
   1238  1.1  sevan 			m->m_len = total_len;
   1239  1.1  sevan 			/*
   1240  1.1  sevan 			 * Special case: if there's 4 bytes or less
   1241  1.1  sevan 			 * in this buffer, the mbuf can be discarded:
   1242  1.1  sevan 			 * the last 4 bytes is the CRC, which we don't
   1243  1.1  sevan 			 * care about anyway.
   1244  1.1  sevan 			 */
   1245  1.1  sevan 			if (m->m_len <= ETHER_CRC_LEN) {
   1246  1.1  sevan 				sc->rge_tail->m_len -=
   1247  1.1  sevan 				    (ETHER_CRC_LEN - m->m_len);
   1248  1.1  sevan 				m_freem(m);
   1249  1.1  sevan 			} else {
   1250  1.1  sevan 				m->m_len -= ETHER_CRC_LEN;
   1251  1.1  sevan 				m->m_flags &= ~M_PKTHDR;
   1252  1.1  sevan 				sc->rge_tail->m_next = m;
   1253  1.1  sevan 			}
   1254  1.1  sevan 			m = sc->rge_head;
   1255  1.1  sevan 			sc->rge_head = sc->rge_tail = NULL;
   1256  1.1  sevan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1257  1.1  sevan 		} else
   1258  1.1  sevan 			m->m_pkthdr.len = m->m_len =
   1259  1.1  sevan 			    (total_len - ETHER_CRC_LEN);
   1260  1.1  sevan 
   1261  1.1  sevan 		/* Check IP header checksum. */
   1262  1.1  sevan 		if (!(rxstat & RGE_RDCMDSTS_IPCSUMERR) &&
   1263  1.1  sevan 		    (extsts & RGE_RDEXTSTS_IPV4))
   1264  1.1  sevan 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
   1265  1.1  sevan 
   1266  1.1  sevan 		/* Check TCP/UDP checksum. */
   1267  1.1  sevan 		if ((extsts & (RGE_RDEXTSTS_IPV4 | RGE_RDEXTSTS_IPV6)) &&
   1268  1.1  sevan 		    (((rxstat & RGE_RDCMDSTS_TCPPKT) &&
   1269  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_TCPCSUMERR)) ||
   1270  1.1  sevan 		    ((rxstat & RGE_RDCMDSTS_UDPPKT) &&
   1271  1.1  sevan 		    !(rxstat & RGE_RDCMDSTS_UDPCSUMERR))))
   1272  1.1  sevan 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
   1273  1.1  sevan 			    M_UDP_CSUM_IN_OK;
   1274  1.1  sevan 
   1275  1.1  sevan #if NVLAN > 0
   1276  1.1  sevan 		if (extsts & RGE_RDEXTSTS_VTAG) {
   1277  1.1  sevan 			m->m_pkthdr.ether_vtag =
   1278  1.1  sevan 			    ntohs(extsts & RGE_RDEXTSTS_VLAN_MASK);
   1279  1.1  sevan 			m->m_flags |= M_VLANTAG;
   1280  1.1  sevan 		}
   1281  1.1  sevan #endif
   1282  1.1  sevan 
   1283  1.1  sevan 		ml_enqueue(&ml, m);
   1284  1.1  sevan 	}
   1285  1.1  sevan 
   1286  1.1  sevan 	sc->rge_ldata.rge_rxq_prodidx = i;
   1287  1.1  sevan 
   1288  1.1  sevan 	if_input(ifp, &ml);
   1289  1.1  sevan 
   1290  1.1  sevan 	return (rx);
   1291  1.1  sevan }
   1292  1.1  sevan 
   1293  1.1  sevan int
   1294  1.1  sevan rge_txeof(struct rge_softc *sc)
   1295  1.1  sevan {
   1296  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1297  1.1  sevan 	struct rge_txq *txq;
   1298  1.1  sevan 	uint32_t txstat;
   1299  1.1  sevan 	int cons, idx, prod;
   1300  1.1  sevan 	int free = 0;
   1301  1.1  sevan 
   1302  1.1  sevan 	prod = sc->rge_ldata.rge_txq_prodidx;
   1303  1.1  sevan 	cons = sc->rge_ldata.rge_txq_considx;
   1304  1.1  sevan 
   1305  1.1  sevan 	while (prod != cons) {
   1306  1.1  sevan 		txq = &sc->rge_ldata.rge_txq[cons];
   1307  1.1  sevan 		idx = txq->txq_descidx;
   1308  1.1  sevan 
   1309  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1310  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1311  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1312  1.1  sevan 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1313  1.1  sevan 
   1314  1.1  sevan 		txstat = letoh32(sc->rge_ldata.rge_tx_list[idx].rge_cmdsts);
   1315  1.1  sevan 
   1316  1.1  sevan 		if (txstat & RGE_TDCMDSTS_OWN) {
   1317  1.1  sevan 			free = 2;
   1318  1.1  sevan 			break;
   1319  1.1  sevan 		}
   1320  1.1  sevan 
   1321  1.5  skrll 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0,
   1322  1.1  sevan 		    txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1323  1.1  sevan 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1324  1.1  sevan 		m_freem(txq->txq_mbuf);
   1325  1.1  sevan 		txq->txq_mbuf = NULL;
   1326  1.1  sevan 
   1327  1.1  sevan 		if (txstat & (RGE_TDCMDSTS_EXCESSCOLL | RGE_TDCMDSTS_COLL))
   1328  1.4  skrll 			if_statinc(ifp, if_collisions);
   1329  1.1  sevan 		if (txstat & RGE_TDCMDSTS_TXERR)
   1330  1.4  skrll 			if_statinc(ifp, if_oerrors);
   1331  1.1  sevan 
   1332  1.1  sevan 		bus_dmamap_sync(sc->sc_dmat, sc->rge_ldata.rge_tx_list_map,
   1333  1.1  sevan 		    idx * sizeof(struct rge_tx_desc),
   1334  1.1  sevan 		    sizeof(struct rge_tx_desc),
   1335  1.1  sevan 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1336  1.1  sevan 
   1337  1.1  sevan 		cons = RGE_NEXT_TX_DESC(idx);
   1338  1.1  sevan 		free = 1;
   1339  1.1  sevan 	}
   1340  1.1  sevan 
   1341  1.1  sevan 	if (free == 0)
   1342  1.1  sevan 		return (0);
   1343  1.1  sevan 
   1344  1.1  sevan 	sc->rge_ldata.rge_txq_considx = cons;
   1345  1.1  sevan 
   1346  1.1  sevan 	if (ifq_is_oactive(&ifp->if_snd))
   1347  1.1  sevan 		ifq_restart(&ifp->if_snd);
   1348  1.1  sevan 	else if (free == 2)
   1349  1.1  sevan 		ifq_serialize(&ifp->if_snd, &sc->sc_task);
   1350  1.1  sevan 	else
   1351  1.1  sevan 		ifp->if_timer = 0;
   1352  1.1  sevan 
   1353  1.1  sevan 	return (1);
   1354  1.1  sevan }
   1355  1.1  sevan 
   1356  1.1  sevan void
   1357  1.1  sevan rge_reset(struct rge_softc *sc)
   1358  1.1  sevan {
   1359  1.1  sevan 	int i;
   1360  1.1  sevan 
   1361  1.1  sevan 	/* Enable RXDV gate. */
   1362  1.1  sevan 	RGE_SETBIT_1(sc, RGE_PPSW, 0x08);
   1363  1.1  sevan 	DELAY(2000);
   1364  1.1  sevan 
   1365  1.1  sevan 	for (i = 0; i < 10; i++) {
   1366  1.1  sevan 		DELAY(100);
   1367  1.1  sevan 		if ((RGE_READ_1(sc, RGE_MCUCMD) & (RGE_MCUCMD_RXFIFO_EMPTY |
   1368  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY)) == (RGE_MCUCMD_RXFIFO_EMPTY |
   1369  1.1  sevan 		    RGE_MCUCMD_TXFIFO_EMPTY))
   1370  1.1  sevan 			break;
   1371  1.1  sevan 	}
   1372  1.1  sevan 
   1373  1.1  sevan 	/* Soft reset. */
   1374  1.1  sevan 	RGE_WRITE_1(sc, RGE_CMD, RGE_CMD_RESET);
   1375  1.1  sevan 
   1376  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   1377  1.1  sevan 		DELAY(100);
   1378  1.1  sevan 		if (!(RGE_READ_1(sc, RGE_CMD) & RGE_CMD_RESET))
   1379  1.1  sevan 			break;
   1380  1.1  sevan 	}
   1381  1.1  sevan 	if (i == RGE_TIMEOUT)
   1382  1.1  sevan 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
   1383  1.1  sevan }
   1384  1.1  sevan 
   1385  1.1  sevan void
   1386  1.1  sevan rge_iff(struct rge_softc *sc)
   1387  1.1  sevan {
   1388  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1389  1.2  sevan 	struct ethercom *ac = &sc->sc_ec;
   1390  1.1  sevan 	struct ether_multi *enm;
   1391  1.1  sevan 	struct ether_multistep step;
   1392  1.1  sevan 	uint32_t hashes[2];
   1393  1.1  sevan 	uint32_t rxfilt;
   1394  1.1  sevan 	int h = 0;
   1395  1.1  sevan 
   1396  1.1  sevan 	rxfilt = RGE_READ_4(sc, RGE_RXCFG);
   1397  1.1  sevan 	rxfilt &= ~(RGE_RXCFG_ALLPHYS | RGE_RXCFG_MULTI);
   1398  1.1  sevan 	ifp->if_flags &= ~IFF_ALLMULTI;
   1399  1.1  sevan 
   1400  1.1  sevan 	/*
   1401  1.1  sevan 	 * Always accept frames destined to our station address.
   1402  1.1  sevan 	 * Always accept broadcast frames.
   1403  1.1  sevan 	 */
   1404  1.1  sevan 	rxfilt |= RGE_RXCFG_INDIV | RGE_RXCFG_BROAD;
   1405  1.1  sevan 
   1406  1.1  sevan 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
   1407  1.1  sevan 		ifp->if_flags |= IFF_ALLMULTI;
   1408  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1409  1.1  sevan 		if (ifp->if_flags & IFF_PROMISC)
   1410  1.1  sevan 			rxfilt |= RGE_RXCFG_ALLPHYS;
   1411  1.1  sevan 		hashes[0] = hashes[1] = 0xffffffff;
   1412  1.1  sevan 	} else {
   1413  1.1  sevan 		rxfilt |= RGE_RXCFG_MULTI;
   1414  1.1  sevan 		/* Program new filter. */
   1415  1.1  sevan 		memset(hashes, 0, sizeof(hashes));
   1416  1.1  sevan 
   1417  1.1  sevan 		ETHER_FIRST_MULTI(step, ac, enm);
   1418  1.1  sevan 		while (enm != NULL) {
   1419  1.1  sevan 			h = ether_crc32_be(enm->enm_addrlo,
   1420  1.1  sevan 			    ETHER_ADDR_LEN) >> 26;
   1421  1.1  sevan 
   1422  1.1  sevan 			if (h < 32)
   1423  1.1  sevan 				hashes[0] |= (1 << h);
   1424  1.1  sevan 			else
   1425  1.1  sevan 				hashes[1] |= (1 << (h - 32));
   1426  1.1  sevan 
   1427  1.1  sevan 			ETHER_NEXT_MULTI(step, enm);
   1428  1.1  sevan 		}
   1429  1.1  sevan 	}
   1430  1.1  sevan 
   1431  1.1  sevan 	RGE_WRITE_4(sc, RGE_RXCFG, rxfilt);
   1432  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR0, bswap32(hashes[1]));
   1433  1.2  sevan 	RGE_WRITE_4(sc, RGE_MAR4, bswap32(hashes[0]));
   1434  1.1  sevan }
   1435  1.1  sevan 
   1436  1.1  sevan void
   1437  1.1  sevan rge_set_phy_power(struct rge_softc *sc, int on)
   1438  1.1  sevan {
   1439  1.1  sevan 	int i;
   1440  1.1  sevan 
   1441  1.1  sevan 	if (on) {
   1442  1.1  sevan 		RGE_SETBIT_1(sc, RGE_PMCH, 0xc0);
   1443  1.1  sevan 
   1444  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN);
   1445  1.1  sevan 
   1446  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1447  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 3)
   1448  1.1  sevan 				break;
   1449  1.1  sevan 			DELAY(1000);
   1450  1.1  sevan 		}
   1451  1.1  sevan 	} else
   1452  1.1  sevan 		rge_write_phy(sc, 0, MII_BMCR, BMCR_AUTOEN | BMCR_PDOWN);
   1453  1.1  sevan }
   1454  1.1  sevan 
   1455  1.1  sevan void
   1456  1.1  sevan rge_phy_config(struct rge_softc *sc)
   1457  1.1  sevan {
   1458  1.1  sevan 	uint16_t mcode_ver, val;
   1459  1.1  sevan 	int i;
   1460  1.1  sevan 	static const uint16_t mac_cfg3_a438_value[] =
   1461  1.1  sevan 	    { 0x0043, 0x00a7, 0x00d6, 0x00ec, 0x00f6, 0x00fb, 0x00fd, 0x00ff,
   1462  1.1  sevan 	      0x00bb, 0x0058, 0x0029, 0x0013, 0x0009, 0x0004, 0x0002 };
   1463  1.1  sevan 
   1464  1.1  sevan 	static const uint16_t mac_cfg3_b88e_value[] =
   1465  1.5  skrll 	    { 0xc091, 0x6e12, 0xc092, 0x1214, 0xc094, 0x1516, 0xc096, 0x171b,
   1466  1.1  sevan 	      0xc098, 0x1b1c, 0xc09a, 0x1f1f, 0xc09c, 0x2021, 0xc09e, 0x2224,
   1467  1.1  sevan 	      0xc0a0, 0x2424, 0xc0a2, 0x2424, 0xc0a4, 0x2424, 0xc018, 0x0af2,
   1468  1.1  sevan 	      0xc01a, 0x0d4a, 0xc01c, 0x0f26, 0xc01e, 0x118d, 0xc020, 0x14f3,
   1469  1.1  sevan 	      0xc022, 0x175a, 0xc024, 0x19c0, 0xc026, 0x1c26, 0xc089, 0x6050,
   1470  1.1  sevan 	      0xc08a, 0x5f6e, 0xc08c, 0x6e6e, 0xc08e, 0x6e6e, 0xc090, 0x6e12 };
   1471  1.1  sevan 
   1472  1.1  sevan 	/* Read microcode version. */
   1473  1.1  sevan 	rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1474  1.1  sevan 	mcode_ver = rge_read_phy_ocp(sc, 0xa438);
   1475  1.1  sevan 
   1476  1.1  sevan 	if (sc->rge_type == MAC_CFG2) {
   1477  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg2_ephy); i++) {
   1478  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg2_ephy[i].reg,
   1479  1.1  sevan 			    rtl8125_mac_cfg2_ephy[i].val);
   1480  1.1  sevan 		}
   1481  1.1  sevan 
   1482  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG2_MCODE_VER) {
   1483  1.1  sevan 			/* Disable PHY config. */
   1484  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1485  1.1  sevan 			DELAY(1000);
   1486  1.1  sevan 
   1487  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1488  1.1  sevan 
   1489  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1490  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8600);
   1491  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1492  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1493  1.1  sevan 
   1494  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1495  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg2_mcu); i++) {
   1496  1.1  sevan 				rge_write_phy_ocp(sc,
   1497  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].reg,
   1498  1.1  sevan 				    rtl8125_mac_cfg2_mcu[i].val);
   1499  1.1  sevan 			}
   1500  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1501  1.1  sevan 
   1502  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1503  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1504  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1505  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1506  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1507  1.1  sevan 
   1508  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1509  1.1  sevan 
   1510  1.1  sevan 			/* Enable PHY config. */
   1511  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1512  1.1  sevan 
   1513  1.1  sevan 			/* Write microcode version. */
   1514  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1515  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG2_MCODE_VER);
   1516  1.1  sevan 		}
   1517  1.5  skrll 
   1518  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x03ff;
   1519  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0084);
   1520  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1521  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1522  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x0006);
   1523  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x03ff;
   1524  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1525  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1100);
   1526  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0xf000;
   1527  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x7000);
   1528  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad18, 0x0400);
   1529  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1a, 0x03ff);
   1530  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad1c, 0x03ff);
   1531  1.1  sevan 
   1532  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1533  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1534  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xc400);
   1535  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80eb);
   1536  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0x0700;
   1537  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x0300);
   1538  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f8);
   1539  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1540  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x1c00);
   1541  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80f1);
   1542  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1543  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3000);
   1544  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80fe);
   1545  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1546  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xa500);
   1547  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8102);
   1548  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1549  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x5000);
   1550  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8105);
   1551  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1552  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x3300);
   1553  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8100);
   1554  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1555  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x7000);
   1556  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8104);
   1557  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1558  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xf000);
   1559  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8106);
   1560  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1561  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0x6500);
   1562  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80dc);
   1563  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xa438) & ~0xff00;
   1564  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, val | 0xed00);
   1565  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80df);
   1566  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1567  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80e1);
   1568  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa438, 0x0100);
   1569  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf06) & ~0x003f;
   1570  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf06, val | 0x0038);
   1571  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x819f);
   1572  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0xd0b6);
   1573  1.1  sevan 		rge_write_phy_ocp(sc, 0xbc34, 0x5555);
   1574  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xbf0a) & ~0x0e00;
   1575  1.1  sevan 		rge_write_phy_ocp(sc, 0xbf0a, val | 0x0a00);
   1576  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa5c0, 0x0400);
   1577  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1578  1.1  sevan 	} else {
   1579  1.1  sevan 		for (i = 0; i < nitems(rtl8125_mac_cfg3_ephy); i++)
   1580  1.1  sevan 			rge_write_ephy(sc, rtl8125_mac_cfg3_ephy[i].reg,
   1581  1.1  sevan 			    rtl8125_mac_cfg3_ephy[i].val);
   1582  1.1  sevan 
   1583  1.1  sevan 		if (mcode_ver != RGE_MAC_CFG3_MCODE_VER) {
   1584  1.1  sevan 			/* Disable PHY config. */
   1585  1.1  sevan 			RGE_CLRBIT_1(sc, 0xf2, 0x20);
   1586  1.1  sevan 			DELAY(1000);
   1587  1.1  sevan 
   1588  1.1  sevan 			rge_patch_phy_mcu(sc, 1);
   1589  1.1  sevan 
   1590  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1591  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x8601);
   1592  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0xb82e);
   1593  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0x0001);
   1594  1.1  sevan 
   1595  1.1  sevan 			RGE_PHY_SETBIT(sc, 0xb820, 0x0080);
   1596  1.1  sevan 			for (i = 0; i < nitems(rtl8125_mac_cfg3_mcu); i++) {
   1597  1.1  sevan 				rge_write_phy_ocp(sc,
   1598  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].reg,
   1599  1.1  sevan 				    rtl8125_mac_cfg3_mcu[i].val);
   1600  1.1  sevan 			}
   1601  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb820, 0x0080);
   1602  1.1  sevan 
   1603  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0);
   1604  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1605  1.1  sevan 			RGE_PHY_CLRBIT(sc, 0xb82e, 0x0001);
   1606  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x8024);
   1607  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1608  1.1  sevan 
   1609  1.1  sevan 			rge_patch_phy_mcu(sc, 0);
   1610  1.1  sevan 
   1611  1.1  sevan 			/* Enable PHY config. */
   1612  1.1  sevan 			RGE_SETBIT_1(sc, 0xf2, 0x20);
   1613  1.1  sevan 
   1614  1.1  sevan 			/* Write microcode version. */
   1615  1.1  sevan 			rge_write_phy_ocp(sc, 0xa436, 0x801e);
   1616  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, RGE_MAC_CFG3_MCODE_VER);
   1617  1.1  sevan 		}
   1618  1.1  sevan 
   1619  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xad4e, 0x0010);
   1620  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad16) & ~0x03ff;
   1621  1.1  sevan 		rge_write_phy_ocp(sc, 0xad16, val | 0x03ff);
   1622  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad32) & ~0x003f;
   1623  1.1  sevan 		rge_write_phy_ocp(sc, 0xad32, val | 0x0006);
   1624  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x1000);
   1625  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac08, 0x0100);
   1626  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xacc0) & ~0x0003;
   1627  1.1  sevan 		rge_write_phy_ocp(sc, 0xacc0, val | 0x0002);
   1628  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x00e0;
   1629  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0040);
   1630  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xad40) & ~0x0007;
   1631  1.1  sevan 		rge_write_phy_ocp(sc, 0xad40, val | 0x0004);
   1632  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac14, 0x0080);
   1633  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xac80, 0x0300);
   1634  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac5e) & ~0x0007;
   1635  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5e, val | 0x0002);
   1636  1.1  sevan 		rge_write_phy_ocp(sc, 0xad4c, 0x00a8);
   1637  1.1  sevan 		rge_write_phy_ocp(sc, 0xac5c, 0x01ff);
   1638  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xac8a) & ~0x00f0;
   1639  1.1  sevan 		rge_write_phy_ocp(sc, 0xac8a, val | 0x0030);
   1640  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x80a2);
   1641  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1642  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87c, 0x809c);
   1643  1.1  sevan 		rge_write_phy_ocp(sc, 0xb87e, 0x0153);
   1644  1.1  sevan 
   1645  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81b3);
   1646  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_a438_value); i++)
   1647  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, mac_cfg3_a438_value[i]);
   1648  1.1  sevan 		for (i = 0; i < 26; i++)
   1649  1.1  sevan 			rge_write_phy_ocp(sc, 0xa438, 0);
   1650  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x8257);
   1651  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x020f);
   1652  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x80ea);
   1653  1.1  sevan 		rge_write_phy_ocp(sc, 0xa438, 0x7843);
   1654  1.1  sevan 
   1655  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1656  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb896, 0x0001);
   1657  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb892, 0xff00);
   1658  1.1  sevan 		for (i = 0; i < nitems(mac_cfg3_b88e_value); i += 2) {
   1659  1.1  sevan 			rge_write_phy_ocp(sc, 0xb88e, mac_cfg3_b88e_value[i]);
   1660  1.1  sevan 			rge_write_phy_ocp(sc, 0xb890,
   1661  1.1  sevan 			    mac_cfg3_b88e_value[i + 1]);
   1662  1.1  sevan 		}
   1663  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb896, 0x0001);
   1664  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1665  1.1  sevan 
   1666  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xd068, 0x2000);
   1667  1.1  sevan 		rge_write_phy_ocp(sc, 0xa436, 0x81a2);
   1668  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa438, 0x0100);
   1669  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb54c) & ~0xff00;
   1670  1.1  sevan 		rge_write_phy_ocp(sc, 0xb54c, val | 0xdb00);
   1671  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa454, 0x0001);
   1672  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa5d4, 0x0020);
   1673  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xad4e, 0x0010);
   1674  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa86a, 0x0001);
   1675  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xa442, 0x0800);
   1676  1.1  sevan 	}
   1677  1.1  sevan 
   1678  1.1  sevan 	/* Disable EEE. */
   1679  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe040, 0x0003);
   1680  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xeb62, 0x0006);
   1681  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa432, 0x0010);
   1682  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa5d0, 0x0006);
   1683  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d4, 0x0001);
   1684  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa6d8, 0x0010);
   1685  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa428, 0x0080);
   1686  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa4a2, 0x0200);
   1687  1.1  sevan 
   1688  1.1  sevan 	rge_patch_phy_mcu(sc, 1);
   1689  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe052, 0x0001);
   1690  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa442, 0x3000);
   1691  1.1  sevan 	RGE_PHY_CLRBIT(sc, 0xa430, 0x8000);
   1692  1.1  sevan 	rge_patch_phy_mcu(sc, 0);
   1693  1.1  sevan }
   1694  1.1  sevan 
   1695  1.1  sevan void
   1696  1.1  sevan rge_set_macaddr(struct rge_softc *sc, const uint8_t *addr)
   1697  1.1  sevan {
   1698  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1699  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC0,
   1700  1.1  sevan 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1701  1.1  sevan 	RGE_WRITE_4(sc, RGE_MAC4,
   1702  1.1  sevan 	    addr[5] <<  8 | addr[4]);
   1703  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1704  1.1  sevan }
   1705  1.1  sevan 
   1706  1.1  sevan void
   1707  1.1  sevan rge_get_macaddr(struct rge_softc *sc, uint8_t *addr)
   1708  1.1  sevan {
   1709  1.1  sevan 	*(uint32_t *)&addr[0] = RGE_READ_4(sc, RGE_ADDR0);
   1710  1.1  sevan 	*(uint16_t *)&addr[4] = RGE_READ_2(sc, RGE_ADDR1);
   1711  1.1  sevan }
   1712  1.1  sevan 
   1713  1.1  sevan void
   1714  1.1  sevan rge_hw_init(struct rge_softc *sc)
   1715  1.1  sevan {
   1716  1.1  sevan 	int i;
   1717  1.1  sevan 
   1718  1.1  sevan 	RGE_SETBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1719  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG5, RGE_CFG5_PME_STS);
   1720  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_CFG2, RGE_CFG2_CLKREQ_EN);
   1721  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_EECMD, RGE_EECMD_WRITECFG);
   1722  1.1  sevan 	RGE_CLRBIT_1(sc, 0xf1, 0x80);
   1723  1.1  sevan 
   1724  1.1  sevan 	/* Disable UPS. */
   1725  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xd40a, 0x0010);
   1726  1.1  sevan 
   1727  1.1  sevan 	/* Configure MAC MCU. */
   1728  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc38, 0);
   1729  1.1  sevan 
   1730  1.1  sevan 	for (i = 0xfc28; i < 0xfc38; i += 2)
   1731  1.1  sevan 		rge_write_mac_ocp(sc, i, 0);
   1732  1.1  sevan 
   1733  1.1  sevan 	DELAY(3000);
   1734  1.1  sevan 	rge_write_mac_ocp(sc, 0xfc26, 0);
   1735  1.1  sevan 
   1736  1.1  sevan 	if (sc->rge_type == MAC_CFG3) {
   1737  1.1  sevan 		for (i = 0; i < nitems(rtl8125_def_bps); i++)
   1738  1.1  sevan 			rge_write_mac_ocp(sc, rtl8125_def_bps[i].reg,
   1739  1.1  sevan 			    rtl8125_def_bps[i].val);
   1740  1.1  sevan 	}
   1741  1.1  sevan 
   1742  1.1  sevan 	/* Disable PHY power saving. */
   1743  1.1  sevan 	rge_disable_phy_ocp_pwrsave(sc);
   1744  1.1  sevan 
   1745  1.1  sevan 	/* Set PCIe uncorrectable error status. */
   1746  1.1  sevan 	rge_write_csi(sc, 0x108,
   1747  1.1  sevan 	    rge_read_csi(sc, 0x108) | 0x00100000);
   1748  1.1  sevan }
   1749  1.1  sevan 
   1750  1.1  sevan void
   1751  1.1  sevan rge_disable_phy_ocp_pwrsave(struct rge_softc *sc)
   1752  1.1  sevan {
   1753  1.1  sevan 	if (rge_read_phy_ocp(sc, 0xc416) != 0x0500) {
   1754  1.1  sevan 		rge_patch_phy_mcu(sc, 1);
   1755  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0);
   1756  1.1  sevan 		rge_write_phy_ocp(sc, 0xc416, 0x0500);
   1757  1.1  sevan 		rge_patch_phy_mcu(sc, 0);
   1758  1.1  sevan 	}
   1759  1.1  sevan }
   1760  1.1  sevan 
   1761  1.1  sevan void
   1762  1.1  sevan rge_patch_phy_mcu(struct rge_softc *sc, int set)
   1763  1.1  sevan {
   1764  1.1  sevan 	uint16_t val;
   1765  1.1  sevan 	int i;
   1766  1.1  sevan 
   1767  1.1  sevan 	if (set)
   1768  1.1  sevan 		RGE_PHY_SETBIT(sc, 0xb820, 0x0010);
   1769  1.1  sevan 	else
   1770  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xb820, 0x0010);
   1771  1.1  sevan 
   1772  1.1  sevan 	for (i = 0; i < 1000; i++) {
   1773  1.1  sevan 		val = rge_read_phy_ocp(sc, 0xb800) & 0x0040;
   1774  1.1  sevan 		DELAY(100);
   1775  1.1  sevan 		if (val == 0x0040)
   1776  1.1  sevan 			break;
   1777  1.1  sevan 	}
   1778  1.1  sevan 	if (i == 1000)
   1779  1.1  sevan 		printf("%s: timeout waiting to patch phy mcu\n",
   1780  1.1  sevan 		    sc->sc_dev.dv_xname);
   1781  1.1  sevan }
   1782  1.1  sevan 
   1783  1.1  sevan void
   1784  1.1  sevan rge_add_media_types(struct rge_softc *sc)
   1785  1.1  sevan {
   1786  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
   1787  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1788  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1789  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1790  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T, 0, NULL);
   1791  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1792  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T, 0, NULL);
   1793  1.1  sevan 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1794  1.1  sevan }
   1795  1.1  sevan 
   1796  1.1  sevan void
   1797  1.1  sevan rge_config_imtype(struct rge_softc *sc, int imtype)
   1798  1.1  sevan {
   1799  1.1  sevan 	switch (imtype) {
   1800  1.1  sevan 	case RGE_IMTYPE_NONE:
   1801  1.1  sevan 		sc->rge_intrs = RGE_INTRS;
   1802  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_RX_OK | RGE_ISR_RX_DESC_UNAVAIL |
   1803  1.1  sevan 		    RGE_ISR_RX_FIFO_OFLOW;
   1804  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_TX_OK;
   1805  1.1  sevan 		break;
   1806  1.1  sevan 	case RGE_IMTYPE_SIM:
   1807  1.1  sevan 		sc->rge_intrs = RGE_INTRS_TIMER;
   1808  1.1  sevan 		sc->rge_rx_ack = RGE_ISR_PCS_TIMEOUT;
   1809  1.1  sevan 		sc->rge_tx_ack = RGE_ISR_PCS_TIMEOUT;
   1810  1.1  sevan 		break;
   1811  1.1  sevan 	default:
   1812  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1813  1.1  sevan 	}
   1814  1.1  sevan }
   1815  1.1  sevan 
   1816  1.1  sevan void
   1817  1.1  sevan rge_disable_sim_im(struct rge_softc *sc)
   1818  1.1  sevan {
   1819  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0);
   1820  1.1  sevan 	sc->rge_timerintr = 0;
   1821  1.1  sevan }
   1822  1.1  sevan 
   1823  1.1  sevan void
   1824  1.1  sevan rge_setup_sim_im(struct rge_softc *sc)
   1825  1.1  sevan {
   1826  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERINT, 0x2600);
   1827  1.1  sevan 	RGE_WRITE_4(sc, RGE_TIMERCNT, 1);
   1828  1.1  sevan 	sc->rge_timerintr = 1;
   1829  1.1  sevan }
   1830  1.1  sevan 
   1831  1.1  sevan void
   1832  1.1  sevan rge_setup_intr(struct rge_softc *sc, int imtype)
   1833  1.1  sevan {
   1834  1.1  sevan 	rge_config_imtype(sc, imtype);
   1835  1.1  sevan 
   1836  1.1  sevan 	/* Enable interrupts. */
   1837  1.1  sevan 	RGE_WRITE_4(sc, RGE_IMR, sc->rge_intrs);
   1838  1.1  sevan 
   1839  1.1  sevan 	switch (imtype) {
   1840  1.1  sevan 	case RGE_IMTYPE_NONE:
   1841  1.1  sevan 		rge_disable_sim_im(sc);
   1842  1.1  sevan 		break;
   1843  1.1  sevan 	case RGE_IMTYPE_SIM:
   1844  1.1  sevan 		rge_setup_sim_im(sc);
   1845  1.1  sevan 		break;
   1846  1.1  sevan 	default:
   1847  1.1  sevan 		panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype);
   1848  1.1  sevan 	}
   1849  1.1  sevan }
   1850  1.1  sevan 
   1851  1.1  sevan void
   1852  1.1  sevan rge_exit_oob(struct rge_softc *sc)
   1853  1.1  sevan {
   1854  1.1  sevan 	int i;
   1855  1.1  sevan 
   1856  1.1  sevan 	RGE_CLRBIT_4(sc, RGE_RXCFG, RGE_RXCFG_ALLPHYS | RGE_RXCFG_INDIV |
   1857  1.1  sevan 	    RGE_RXCFG_MULTI | RGE_RXCFG_BROAD | RGE_RXCFG_RUNT |
   1858  1.1  sevan 	    RGE_RXCFG_ERRPKT);
   1859  1.1  sevan 
   1860  1.1  sevan 	/* Disable RealWoW. */
   1861  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0bc, 0x00ff);
   1862  1.1  sevan 
   1863  1.1  sevan 	rge_reset(sc);
   1864  1.1  sevan 
   1865  1.1  sevan 	/* Disable OOB. */
   1866  1.1  sevan 	RGE_CLRBIT_1(sc, RGE_MCUCMD, RGE_MCUCMD_IS_OOB);
   1867  1.1  sevan 
   1868  1.1  sevan 	RGE_MAC_CLRBIT(sc, 0xe8de, 0x4000);
   1869  1.1  sevan 
   1870  1.1  sevan 	for (i = 0; i < 10; i++) {
   1871  1.1  sevan 		DELAY(100);
   1872  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1873  1.1  sevan 			break;
   1874  1.1  sevan 	}
   1875  1.1  sevan 
   1876  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0aa, 0x07d0);
   1877  1.1  sevan 	rge_write_mac_ocp(sc, 0xc0a6, 0x0150);
   1878  1.1  sevan 	rge_write_mac_ocp(sc, 0xc01e, 0x5555);
   1879  1.1  sevan 
   1880  1.1  sevan 	for (i = 0; i < 10; i++) {
   1881  1.1  sevan 		DELAY(100);
   1882  1.1  sevan 		if (RGE_READ_2(sc, RGE_TWICMD) & 0x0200)
   1883  1.1  sevan 			break;
   1884  1.1  sevan 	}
   1885  1.1  sevan 
   1886  1.1  sevan 	if (rge_read_mac_ocp(sc, 0xd42c) & 0x0100) {
   1887  1.1  sevan 		for (i = 0; i < RGE_TIMEOUT; i++) {
   1888  1.1  sevan 			if ((rge_read_phy_ocp(sc, 0xa420) & 0x0080) == 2)
   1889  1.1  sevan 				break;
   1890  1.1  sevan 			DELAY(1000);
   1891  1.1  sevan 		}
   1892  1.1  sevan 		RGE_MAC_CLRBIT(sc, 0xd408, 0x0100);
   1893  1.1  sevan 		RGE_PHY_CLRBIT(sc, 0xa468, 0x000a);
   1894  1.1  sevan 	}
   1895  1.1  sevan }
   1896  1.1  sevan 
   1897  1.1  sevan void
   1898  1.1  sevan rge_write_csi(struct rge_softc *sc, uint32_t reg, uint32_t val)
   1899  1.1  sevan {
   1900  1.1  sevan 	int i;
   1901  1.1  sevan 
   1902  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIDR, val);
   1903  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1904  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT) | RGE_CSIAR_BUSY);
   1905  1.1  sevan 
   1906  1.1  sevan 	for (i = 0; i < 10; i++) {
   1907  1.1  sevan 		 DELAY(100);
   1908  1.1  sevan 		 if (!(RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY))
   1909  1.1  sevan 			break;
   1910  1.1  sevan 	}
   1911  1.1  sevan 
   1912  1.1  sevan 	DELAY(20);
   1913  1.1  sevan }
   1914  1.1  sevan 
   1915  1.1  sevan uint32_t
   1916  1.1  sevan rge_read_csi(struct rge_softc *sc, uint32_t reg)
   1917  1.1  sevan {
   1918  1.1  sevan 	int i;
   1919  1.1  sevan 
   1920  1.1  sevan 	RGE_WRITE_4(sc, RGE_CSIAR, (1 << 16) | (reg & RGE_CSIAR_ADDR_MASK) |
   1921  1.1  sevan 	    (RGE_CSIAR_BYTE_EN << RGE_CSIAR_BYTE_EN_SHIFT));
   1922  1.1  sevan 
   1923  1.1  sevan 	for (i = 0; i < 10; i++) {
   1924  1.1  sevan 		 DELAY(100);
   1925  1.1  sevan 		 if (RGE_READ_4(sc, RGE_CSIAR) & RGE_CSIAR_BUSY)
   1926  1.1  sevan 			break;
   1927  1.1  sevan 	}
   1928  1.1  sevan 
   1929  1.1  sevan 	DELAY(20);
   1930  1.1  sevan 
   1931  1.1  sevan 	return (RGE_READ_4(sc, RGE_CSIDR));
   1932  1.1  sevan }
   1933  1.1  sevan 
   1934  1.1  sevan void
   1935  1.1  sevan rge_write_mac_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1936  1.1  sevan {
   1937  1.1  sevan 	uint32_t tmp;
   1938  1.1  sevan 
   1939  1.1  sevan 	tmp = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1940  1.1  sevan 	tmp += val;
   1941  1.1  sevan 	tmp |= RGE_MACOCP_BUSY;
   1942  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, tmp);
   1943  1.1  sevan }
   1944  1.1  sevan 
   1945  1.1  sevan uint16_t
   1946  1.1  sevan rge_read_mac_ocp(struct rge_softc *sc, uint16_t reg)
   1947  1.1  sevan {
   1948  1.1  sevan 	uint32_t val;
   1949  1.1  sevan 
   1950  1.1  sevan 	val = (reg >> 1) << RGE_MACOCP_ADDR_SHIFT;
   1951  1.1  sevan 	RGE_WRITE_4(sc, RGE_MACOCP, val);
   1952  1.1  sevan 
   1953  1.1  sevan 	return (RGE_READ_4(sc, RGE_MACOCP) & RGE_MACOCP_DATA_MASK);
   1954  1.1  sevan }
   1955  1.1  sevan 
   1956  1.1  sevan void
   1957  1.1  sevan rge_write_ephy(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1958  1.1  sevan {
   1959  1.1  sevan 	uint32_t tmp;
   1960  1.1  sevan 	int i;
   1961  1.1  sevan 
   1962  1.1  sevan 	tmp = (reg & RGE_EPHYAR_ADDR_MASK) << RGE_EPHYAR_ADDR_SHIFT;
   1963  1.1  sevan 	tmp |= RGE_EPHYAR_BUSY | (val & RGE_EPHYAR_DATA_MASK);
   1964  1.1  sevan 	RGE_WRITE_4(sc, RGE_EPHYAR, tmp);
   1965  1.1  sevan 
   1966  1.1  sevan 	for (i = 0; i < 10; i++) {
   1967  1.1  sevan 		DELAY(100);
   1968  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_EPHYAR) & RGE_EPHYAR_BUSY))
   1969  1.1  sevan 			break;
   1970  1.1  sevan 	}
   1971  1.1  sevan 
   1972  1.1  sevan 	DELAY(20);
   1973  1.1  sevan }
   1974  1.1  sevan 
   1975  1.1  sevan void
   1976  1.1  sevan rge_write_phy(struct rge_softc *sc, uint16_t addr, uint16_t reg, uint16_t val)
   1977  1.1  sevan {
   1978  1.1  sevan 	uint16_t off, phyaddr;
   1979  1.1  sevan 
   1980  1.1  sevan 	phyaddr = addr ? addr : RGE_PHYBASE + (reg / 8);
   1981  1.1  sevan 	phyaddr <<= 4;
   1982  1.1  sevan 
   1983  1.1  sevan 	off = addr ? reg : 0x10 + (reg % 8);
   1984  1.1  sevan 
   1985  1.1  sevan 	phyaddr += (off - 16) << 1;
   1986  1.1  sevan 
   1987  1.1  sevan 	rge_write_phy_ocp(sc, phyaddr, val);
   1988  1.1  sevan }
   1989  1.1  sevan 
   1990  1.1  sevan void
   1991  1.1  sevan rge_write_phy_ocp(struct rge_softc *sc, uint16_t reg, uint16_t val)
   1992  1.1  sevan {
   1993  1.1  sevan 	uint32_t tmp;
   1994  1.1  sevan 	int i;
   1995  1.1  sevan 
   1996  1.1  sevan 	tmp = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   1997  1.1  sevan 	tmp |= RGE_PHYOCP_BUSY | val;
   1998  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, tmp);
   1999  1.1  sevan 
   2000  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2001  1.1  sevan 		DELAY(1);
   2002  1.1  sevan 		if (!(RGE_READ_4(sc, RGE_PHYOCP) & RGE_PHYOCP_BUSY))
   2003  1.1  sevan 			break;
   2004  1.1  sevan 	}
   2005  1.1  sevan }
   2006  1.1  sevan 
   2007  1.1  sevan uint16_t
   2008  1.1  sevan rge_read_phy_ocp(struct rge_softc *sc, uint16_t reg)
   2009  1.1  sevan {
   2010  1.1  sevan 	uint32_t val;
   2011  1.1  sevan 	int i;
   2012  1.1  sevan 
   2013  1.1  sevan 	val = (reg >> 1) << RGE_PHYOCP_ADDR_SHIFT;
   2014  1.1  sevan 	RGE_WRITE_4(sc, RGE_PHYOCP, val);
   2015  1.1  sevan 
   2016  1.1  sevan 	for (i = 0; i < RGE_TIMEOUT; i++) {
   2017  1.1  sevan 		DELAY(1);
   2018  1.1  sevan 		val = RGE_READ_4(sc, RGE_PHYOCP);
   2019  1.1  sevan 		if (val & RGE_PHYOCP_BUSY)
   2020  1.1  sevan 			break;
   2021  1.1  sevan 	}
   2022  1.1  sevan 
   2023  1.1  sevan 	return (val & RGE_PHYOCP_DATA_MASK);
   2024  1.1  sevan }
   2025  1.1  sevan 
   2026  1.1  sevan int
   2027  1.1  sevan rge_get_link_status(struct rge_softc *sc)
   2028  1.1  sevan {
   2029  1.1  sevan 	return ((RGE_READ_2(sc, RGE_PHYSTAT) & RGE_PHYSTAT_LINK) ? 1 : 0);
   2030  1.1  sevan }
   2031  1.1  sevan 
   2032  1.1  sevan void
   2033  1.3  sevan rge_txstart(struct work *wk, void *arg)
   2034  1.1  sevan {
   2035  1.1  sevan 	struct rge_softc *sc = arg;
   2036  1.1  sevan 
   2037  1.1  sevan 	RGE_WRITE_2(sc, RGE_TXSTART, RGE_TXSTART_START);
   2038  1.1  sevan }
   2039  1.1  sevan 
   2040  1.1  sevan void
   2041  1.1  sevan rge_tick(void *arg)
   2042  1.1  sevan {
   2043  1.1  sevan 	struct rge_softc *sc = arg;
   2044  1.1  sevan 	int s;
   2045  1.1  sevan 
   2046  1.1  sevan 	s = splnet();
   2047  1.1  sevan 	rge_link_state(sc);
   2048  1.1  sevan 	splx(s);
   2049  1.1  sevan 
   2050  1.1  sevan 	timeout_add_sec(&sc->sc_timeout, 1);
   2051  1.1  sevan }
   2052  1.1  sevan 
   2053  1.1  sevan void
   2054  1.1  sevan rge_link_state(struct rge_softc *sc)
   2055  1.1  sevan {
   2056  1.2  sevan 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2057  1.1  sevan 	int link = LINK_STATE_DOWN;
   2058  1.1  sevan 
   2059  1.1  sevan 	if (rge_get_link_status(sc))
   2060  1.1  sevan 		link = LINK_STATE_UP;
   2061  1.1  sevan 
   2062  1.1  sevan 	if (ifp->if_link_state != link) {
   2063  1.1  sevan 		ifp->if_link_state = link;
   2064  1.2  sevan 		if_link_state_change(ifp, LINK_STATE_DOWN);
   2065  1.1  sevan 	}
   2066  1.1  sevan }
   2067