if_sip.c revision 1.101.2.2 1 /* $NetBSD: if_sip.c,v 1.101.2.2 2006/04/21 11:57:35 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.101.2.2 2006/04/21 11:57:35 tron Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 short sc_if_flags;
313
314 int sc_rxptr; /* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322
323 #if NRND > 0
324 rndsource_element_t rnd_source; /* random source */
325 #endif
326 };
327
328 #ifdef DP83820
329 #define SIP_RXCHAIN_RESET(sc) \
330 do { \
331 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
332 *(sc)->sc_rxtailp = NULL; \
333 (sc)->sc_rxlen = 0; \
334 } while (/*CONSTCOND*/0)
335
336 #define SIP_RXCHAIN_LINK(sc, m) \
337 do { \
338 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
339 (sc)->sc_rxtailp = &(m)->m_next; \
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342
343 #ifdef SIP_EVENT_COUNTERS
344 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
345 #else
346 #define SIP_EVCNT_INCR(ev) /* nothing */
347 #endif
348
349 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
351
352 #define SIP_CDTXSYNC(sc, x, n, ops) \
353 do { \
354 int __x, __n; \
355 \
356 __x = (x); \
357 __n = (n); \
358 \
359 /* If it will wrap around, sync to the end of the ring. */ \
360 if ((__x + __n) > SIP_NTXDESC) { \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
363 (SIP_NTXDESC - __x), (ops)); \
364 __n -= (SIP_NTXDESC - __x); \
365 __x = 0; \
366 } \
367 \
368 /* Now sync whatever is left. */ \
369 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
370 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
371 } while (0)
372
373 #define SIP_CDRXSYNC(sc, x, ops) \
374 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
375 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376
377 #ifdef DP83820
378 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
379 #define SIP_RXBUF_LEN (MCLBYTES - 8)
380 #else
381 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
382 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
383 #endif
384 #define SIP_INIT_RXDESC(sc, x) \
385 do { \
386 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
387 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
388 \
389 __sipd->sipd_link = \
390 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
391 __sipd->sipd_bufptr = \
392 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
393 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
394 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
395 SIP_INIT_RXDESC_EXTSTS \
396 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398
399 #define SIP_CHIP_VERS(sc, v, p, r) \
400 ((sc)->sc_model->sip_vendor == (v) && \
401 (sc)->sc_model->sip_product == (p) && \
402 (sc)->sc_rev == (r))
403
404 #define SIP_CHIP_MODEL(sc, v, p) \
405 ((sc)->sc_model->sip_vendor == (v) && \
406 (sc)->sc_model->sip_product == (p))
407
408 #if !defined(DP83820)
409 #define SIP_SIS900_REV(sc, rev) \
410 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412
413 #define SIP_TIMEOUT 1000
414
415 static void SIP_DECL(start)(struct ifnet *);
416 static void SIP_DECL(watchdog)(struct ifnet *);
417 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int SIP_DECL(init)(struct ifnet *);
419 static void SIP_DECL(stop)(struct ifnet *, int);
420
421 static void SIP_DECL(shutdown)(void *);
422
423 static void SIP_DECL(reset)(struct sip_softc *);
424 static void SIP_DECL(rxdrain)(struct sip_softc *);
425 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 u_int16_t *);
428 static void SIP_DECL(tick)(void *);
429
430 #if !defined(DP83820)
431 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434
435 #if defined(DP83820)
436 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445
446 static int SIP_DECL(intr)(void *);
447 static void SIP_DECL(txintr)(struct sip_softc *);
448 static void SIP_DECL(rxintr)(struct sip_softc *);
449
450 #if defined(DP83820)
451 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void SIP_DECL(sis900_mii_statchg)(struct device *);
458
459 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463
464 static int SIP_DECL(mediachange)(struct ifnet *);
465 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466
467 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void SIP_DECL(attach)(struct device *, struct device *, void *);
469
470 int SIP_DECL(copy_small) = 0;
471
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474 gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477 sip_match, sip_attach, NULL, NULL);
478 #endif
479
480 /*
481 * Descriptions of the variants of the SiS900.
482 */
483 struct sip_variant {
484 int (*sipv_mii_readreg)(struct device *, int, int);
485 void (*sipv_mii_writereg)(struct device *, int, int, int);
486 void (*sipv_mii_statchg)(struct device *);
487 void (*sipv_set_filter)(struct sip_softc *);
488 void (*sipv_read_macaddr)(struct sip_softc *,
489 const struct pci_attach_args *, u_int8_t *);
490 };
491
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 SIP_DECL(mii_bitbang_read),
497 SIP_DECL(mii_bitbang_write),
498 {
499 EROMAR_MDIO, /* MII_BIT_MDO */
500 EROMAR_MDIO, /* MII_BIT_MDI */
501 EROMAR_MDC, /* MII_BIT_MDC */
502 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
503 0, /* MII_BIT_DIR_PHY_HOST */
504 }
505 };
506
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 SIP_DECL(dp83820_mii_readreg),
510 SIP_DECL(dp83820_mii_writereg),
511 SIP_DECL(dp83820_mii_statchg),
512 SIP_DECL(dp83815_set_filter),
513 SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 SIP_DECL(sis900_mii_readreg),
518 SIP_DECL(sis900_mii_writereg),
519 SIP_DECL(sis900_mii_statchg),
520 SIP_DECL(sis900_set_filter),
521 SIP_DECL(sis900_read_macaddr),
522 };
523
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 SIP_DECL(dp83815_mii_readreg),
526 SIP_DECL(dp83815_mii_writereg),
527 SIP_DECL(dp83815_mii_statchg),
528 SIP_DECL(dp83815_set_filter),
529 SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532
533 /*
534 * Devices supported by this driver.
535 */
536 static const struct sip_product {
537 pci_vendor_id_t sip_vendor;
538 pci_product_id_t sip_product;
539 const char *sip_name;
540 const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
544 "NatSemi DP83820 Gigabit Ethernet",
545 &SIP_DECL(variant_dp83820) },
546 #else
547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
548 "SiS 900 10/100 Ethernet",
549 &SIP_DECL(variant_sis900) },
550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
551 "SiS 7016 10/100 Ethernet",
552 &SIP_DECL(variant_sis900) },
553
554 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
555 "NatSemi DP83815 10/100 Ethernet",
556 &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558
559 { 0, 0,
560 NULL,
561 NULL },
562 };
563
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 const struct sip_product *sip;
568
569 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 return (sip);
573 }
574 return (NULL);
575 }
576
577 #ifdef DP83820
578 /*
579 * I really hate stupid hardware vendors. There's a bit in the EEPROM
580 * which indicates if the card can do 64-bit data transfers. Unfortunately,
581 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582 * which means we try to use 64-bit data transfers on those cards if we
583 * happen to be plugged into a 32-bit slot.
584 *
585 * What we do is use this table of cards known to be 64-bit cards. If
586 * you have a 64-bit card who's subsystem ID is not listed in this table,
587 * send the output of "pcictl dump ..." of the device to me so that your
588 * card will use the 64-bit data path when plugged into a 64-bit slot.
589 *
590 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
591 * June 30, 2002
592 */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 static const struct {
597 pci_vendor_id_t c64_vendor;
598 pci_product_id_t c64_product;
599 } card64[] = {
600 /* Asante GigaNIX */
601 { 0x128a, 0x0002 },
602
603 /* Accton EN1407-T, Planex GN-1000TE */
604 { 0x1113, 0x1407 },
605
606 /* Netgear GA-621 */
607 { 0x1385, 0x621a },
608
609 /* SMC EZ Card */
610 { 0x10b8, 0x9462 },
611
612 { 0, 0}
613 };
614 pcireg_t subsys;
615 int i;
616
617 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618
619 for (i = 0; card64[i].c64_vendor != 0; i++) {
620 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 PCI_PRODUCT(subsys) == card64[i].c64_product)
622 return (1);
623 }
624
625 return (0);
626 }
627 #endif /* DP83820 */
628
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 struct pci_attach_args *pa = aux;
633
634 if (SIP_DECL(lookup)(pa) != NULL)
635 return (1);
636
637 return (0);
638 }
639
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 struct sip_softc *sc = (struct sip_softc *) self;
644 struct pci_attach_args *pa = aux;
645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 pci_chipset_tag_t pc = pa->pa_pc;
647 pci_intr_handle_t ih;
648 const char *intrstr = NULL;
649 bus_space_tag_t iot, memt;
650 bus_space_handle_t ioh, memh;
651 bus_dma_segment_t seg;
652 int ioh_valid, memh_valid;
653 int i, rseg, error;
654 const struct sip_product *sip;
655 pcireg_t pmode;
656 u_int8_t enaddr[ETHER_ADDR_LEN];
657 int pmreg;
658 #ifdef DP83820
659 pcireg_t memtype;
660 u_int32_t reg;
661 #endif /* DP83820 */
662
663 callout_init(&sc->sc_tick_ch);
664
665 sip = SIP_DECL(lookup)(pa);
666 if (sip == NULL) {
667 printf("\n");
668 panic(SIP_STR(attach) ": impossible");
669 }
670 sc->sc_rev = PCI_REVISION(pa->pa_class);
671
672 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673
674 sc->sc_model = sip;
675
676 /*
677 * XXX Work-around broken PXE firmware on some boards.
678 *
679 * The DP83815 shares an address decoder with the MEM BAR
680 * and the ROM BAR. Make sure the ROM BAR is disabled,
681 * so that memory mapped access works.
682 */
683 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 ~PCI_MAPREG_ROM_ENABLE);
686
687 /*
688 * Map the device.
689 */
690 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 PCI_MAPREG_TYPE_IO, 0,
692 &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 switch (memtype) {
696 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 break;
701 default:
702 memh_valid = 0;
703 }
704 #else
705 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709
710 if (memh_valid) {
711 sc->sc_st = memt;
712 sc->sc_sh = memh;
713 } else if (ioh_valid) {
714 sc->sc_st = iot;
715 sc->sc_sh = ioh;
716 } else {
717 printf("%s: unable to map device registers\n",
718 sc->sc_dev.dv_xname);
719 return;
720 }
721
722 sc->sc_dmat = pa->pa_dmat;
723
724 /*
725 * Make sure bus mastering is enabled. Also make sure
726 * Write/Invalidate is enabled if we're allowed to use it.
727 */
728 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 pmreg | PCI_COMMAND_MASTER_ENABLE);
733
734 /* Get it out of power save mode if needed. */
735 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 PCI_PMCSR_STATE_MASK;
738 if (pmode == PCI_PMCSR_STATE_D3) {
739 /*
740 * The card has lost all configuration data in
741 * this state, so punt.
742 */
743 printf("%s: unable to wake up from power state D3\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (pmode != PCI_PMCSR_STATE_D0) {
748 printf("%s: waking up from power state D%d\n",
749 sc->sc_dev.dv_xname, pmode);
750 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 PCI_PMCSR_STATE_D0);
752 }
753 }
754
755 /*
756 * Map and establish our interrupt.
757 */
758 if (pci_intr_map(pa, &ih)) {
759 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 return;
761 }
762 intrstr = pci_intr_string(pc, ih);
763 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 if (sc->sc_ih == NULL) {
765 printf("%s: unable to establish interrupt",
766 sc->sc_dev.dv_xname);
767 if (intrstr != NULL)
768 printf(" at %s", intrstr);
769 printf("\n");
770 return;
771 }
772 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773
774 SIMPLEQ_INIT(&sc->sc_txfreeq);
775 SIMPLEQ_INIT(&sc->sc_txdirtyq);
776
777 /*
778 * Allocate the control data structures, and create and load the
779 * DMA map for it.
780 */
781 if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 0)) != 0) {
784 printf("%s: unable to allocate control data, error = %d\n",
785 sc->sc_dev.dv_xname, error);
786 goto fail_0;
787 }
788
789 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 BUS_DMA_COHERENT)) != 0) {
792 printf("%s: unable to map control data, error = %d\n",
793 sc->sc_dev.dv_xname, error);
794 goto fail_1;
795 }
796
797 if ((error = bus_dmamap_create(sc->sc_dmat,
798 sizeof(struct sip_control_data), 1,
799 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 printf("%s: unable to create control data DMA map, "
801 "error = %d\n", sc->sc_dev.dv_xname, error);
802 goto fail_2;
803 }
804
805 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 0)) != 0) {
808 printf("%s: unable to load control data DMA map, error = %d\n",
809 sc->sc_dev.dv_xname, error);
810 goto fail_3;
811 }
812
813 /*
814 * Create the transmit buffer DMA maps.
815 */
816 for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 SIP_NTXSEGS, MCLBYTES, 0, 0,
819 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 printf("%s: unable to create tx DMA map %d, "
821 "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 goto fail_4;
823 }
824 }
825
826 /*
827 * Create the receive buffer DMA maps.
828 */
829 for (i = 0; i < SIP_NRXDESC; i++) {
830 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 printf("%s: unable to create rx DMA map %d, "
833 "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 goto fail_5;
835 }
836 sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 }
838
839 /*
840 * Reset the chip to a known state.
841 */
842 SIP_DECL(reset)(sc);
843
844 /*
845 * Read the Ethernet address from the EEPROM. This might
846 * also fetch other stuff from the EEPROM and stash it
847 * in the softc.
848 */
849 sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 SIP_SIS900_REV(sc,SIS_REV_900B))
853 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854
855 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 SIP_SIS900_REV(sc,SIS_REV_960) ||
857 SIP_SIS900_REV(sc,SIS_REV_900B))
858 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861
862 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863
864 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 ether_sprintf(enaddr));
866
867 /*
868 * Initialize the configuration register: aggressive PCI
869 * bus request algorithm, default backoff, default OW timer,
870 * default parity error detection.
871 *
872 * NOTE: "Big endian mode" is useless on the SiS900 and
873 * friends -- it affects packet data, not descriptors.
874 */
875 #ifdef DP83820
876 /*
877 * Cause the chip to load configuration data from the EEPROM.
878 */
879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 for (i = 0; i < 10000; i++) {
881 delay(10);
882 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 PTSCR_EELOAD_EN) == 0)
884 break;
885 }
886 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 PTSCR_EELOAD_EN) {
888 printf("%s: timeout loading configuration from EEPROM\n",
889 sc->sc_dev.dv_xname);
890 return;
891 }
892
893 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894
895 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 if (reg & CFG_PCI64_DET) {
897 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 /*
899 * Check to see if this card is 64-bit. If so, enable 64-bit
900 * data transfers.
901 *
902 * We can't use the DATA64_EN bit in the EEPROM, because
903 * vendors of 32-bit cards fail to clear that bit in many
904 * cases (yet the card still detects that it's in a 64-bit
905 * slot; go figure).
906 */
907 if (SIP_DECL(check_64bit)(pa)) {
908 sc->sc_cfg |= CFG_DATA64_EN;
909 printf(", using 64-bit data transfers");
910 }
911 printf("\n");
912 }
913
914 /*
915 * XXX Need some PCI flags indicating support for
916 * XXX 64-bit addressing.
917 */
918 #if 0
919 if (reg & CFG_M64ADDR)
920 sc->sc_cfg |= CFG_M64ADDR;
921 if (reg & CFG_T64ADDR)
922 sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924
925 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 const char *sep = "";
927 printf("%s: using ", sc->sc_dev.dv_xname);
928 if (reg & CFG_EXT_125) {
929 sc->sc_cfg |= CFG_EXT_125;
930 printf("%s125MHz clock", sep);
931 sep = ", ";
932 }
933 if (reg & CFG_TBI_EN) {
934 sc->sc_cfg |= CFG_TBI_EN;
935 printf("%sten-bit interface", sep);
936 sep = ", ";
937 }
938 printf("\n");
939 }
940 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 (reg & CFG_MRM_DIS) != 0)
942 sc->sc_cfg |= CFG_MRM_DIS;
943 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 (reg & CFG_MWI_DIS) != 0)
945 sc->sc_cfg |= CFG_MWI_DIS;
946
947 /*
948 * Use the extended descriptor format on the DP83820. This
949 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 * checksumming.
951 */
952 sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954
955 /*
956 * Initialize our media structures and probe the MII.
957 */
958 sc->sc_mii.mii_ifp = ifp;
959 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 SIP_DECL(mediastatus));
964
965 /*
966 * XXX We cannot handle flow control on the DP83815.
967 */
968 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, 0);
971 else
972 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 MII_OFFSET_ANY, MIIF_DOPAUSE);
974 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 } else
978 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979
980 ifp = &sc->sc_ethercom.ec_if;
981 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 ifp->if_softc = sc;
983 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 sc->sc_if_flags = ifp->if_flags;
985 ifp->if_ioctl = SIP_DECL(ioctl);
986 ifp->if_start = SIP_DECL(start);
987 ifp->if_watchdog = SIP_DECL(watchdog);
988 ifp->if_init = SIP_DECL(init);
989 ifp->if_stop = SIP_DECL(stop);
990 IFQ_SET_READY(&ifp->if_snd);
991
992 /*
993 * We can support 802.1Q VLAN-sized frames.
994 */
995 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996
997 #ifdef DP83820
998 /*
999 * And the DP83820 can do VLAN tagging in hardware, and
1000 * support the jumbo Ethernet MTU.
1001 */
1002 sc->sc_ethercom.ec_capabilities |=
1003 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004
1005 /*
1006 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 * in hardware.
1008 */
1009 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1010 IFCAP_CSUM_UDPv4;
1011 #endif /* DP83820 */
1012
1013 /*
1014 * Attach the interface.
1015 */
1016 if_attach(ifp);
1017 ether_ifattach(ifp, enaddr);
1018 #if NRND > 0
1019 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1020 RND_TYPE_NET, 0);
1021 #endif
1022
1023 /*
1024 * The number of bytes that must be available in
1025 * the Tx FIFO before the bus master can DMA more
1026 * data into the FIFO.
1027 */
1028 sc->sc_tx_fill_thresh = 64 / 32;
1029
1030 /*
1031 * Start at a drain threshold of 512 bytes. We will
1032 * increase it if a DMA underrun occurs.
1033 *
1034 * XXX The minimum value of this variable should be
1035 * tuned. We may be able to improve performance
1036 * by starting with a lower value. That, however,
1037 * may trash the first few outgoing packets if the
1038 * PCI bus is saturated.
1039 */
1040 #ifdef DP83820
1041 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1042 #else
1043 sc->sc_tx_drain_thresh = 1504 / 32;
1044 #endif
1045
1046 /*
1047 * Initialize the Rx FIFO drain threshold.
1048 *
1049 * This is in units of 8 bytes.
1050 *
1051 * We should never set this value lower than 2; 14 bytes are
1052 * required to filter the packet.
1053 */
1054 sc->sc_rx_drain_thresh = 128 / 8;
1055
1056 #ifdef SIP_EVENT_COUNTERS
1057 /*
1058 * Attach event counters.
1059 */
1060 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1061 NULL, sc->sc_dev.dv_xname, "txsstall");
1062 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1063 NULL, sc->sc_dev.dv_xname, "txdstall");
1064 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1065 NULL, sc->sc_dev.dv_xname, "txforceintr");
1066 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "txdintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "txiintr");
1070 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1071 NULL, sc->sc_dev.dv_xname, "rxintr");
1072 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "hiberr");
1074 #ifndef DP83820
1075 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1076 NULL, sc->sc_dev.dv_xname, "rxpause");
1077 #endif /* !DP83820 */
1078 #ifdef DP83820
1079 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1080 NULL, sc->sc_dev.dv_xname, "rxpause");
1081 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "txpause");
1083 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "rxipsum");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "txipsum");
1091 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1092 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1093 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1094 NULL, sc->sc_dev.dv_xname, "txudpsum");
1095 #endif /* DP83820 */
1096 #endif /* SIP_EVENT_COUNTERS */
1097
1098 /*
1099 * Make sure the interface is shutdown during reboot.
1100 */
1101 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1102 if (sc->sc_sdhook == NULL)
1103 printf("%s: WARNING: unable to establish shutdown hook\n",
1104 sc->sc_dev.dv_xname);
1105 return;
1106
1107 /*
1108 * Free any resources we've allocated during the failed attach
1109 * attempt. Do this in reverse order and fall through.
1110 */
1111 fail_5:
1112 for (i = 0; i < SIP_NRXDESC; i++) {
1113 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1114 bus_dmamap_destroy(sc->sc_dmat,
1115 sc->sc_rxsoft[i].rxs_dmamap);
1116 }
1117 fail_4:
1118 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1119 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1120 bus_dmamap_destroy(sc->sc_dmat,
1121 sc->sc_txsoft[i].txs_dmamap);
1122 }
1123 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1124 fail_3:
1125 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1126 fail_2:
1127 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1128 sizeof(struct sip_control_data));
1129 fail_1:
1130 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1131 fail_0:
1132 return;
1133 }
1134
1135 /*
1136 * sip_shutdown:
1137 *
1138 * Make sure the interface is stopped at reboot time.
1139 */
1140 static void
1141 SIP_DECL(shutdown)(void *arg)
1142 {
1143 struct sip_softc *sc = arg;
1144
1145 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1146 }
1147
1148 /*
1149 * sip_start: [ifnet interface function]
1150 *
1151 * Start packet transmission on the interface.
1152 */
1153 static void
1154 SIP_DECL(start)(struct ifnet *ifp)
1155 {
1156 struct sip_softc *sc = ifp->if_softc;
1157 struct mbuf *m0;
1158 #ifndef DP83820
1159 struct mbuf *m;
1160 #endif
1161 struct sip_txsoft *txs;
1162 bus_dmamap_t dmamap;
1163 int error, nexttx, lasttx, seg;
1164 int ofree = sc->sc_txfree;
1165 #if 0
1166 int firsttx = sc->sc_txnext;
1167 #endif
1168 #ifdef DP83820
1169 struct m_tag *mtag;
1170 u_int32_t extsts;
1171 #endif
1172
1173 #ifndef DP83820
1174 /*
1175 * If we've been told to pause, don't transmit any more packets.
1176 */
1177 if (sc->sc_paused)
1178 ifp->if_flags |= IFF_OACTIVE;
1179 #endif
1180
1181 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1182 return;
1183
1184 /*
1185 * Loop through the send queue, setting up transmit descriptors
1186 * until we drain the queue, or use up all available transmit
1187 * descriptors.
1188 */
1189 for (;;) {
1190 /* Get a work queue entry. */
1191 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1192 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1193 break;
1194 }
1195
1196 /*
1197 * Grab a packet off the queue.
1198 */
1199 IFQ_POLL(&ifp->if_snd, m0);
1200 if (m0 == NULL)
1201 break;
1202 #ifndef DP83820
1203 m = NULL;
1204 #endif
1205
1206 dmamap = txs->txs_dmamap;
1207
1208 #ifdef DP83820
1209 /*
1210 * Load the DMA map. If this fails, the packet either
1211 * didn't fit in the allotted number of segments, or we
1212 * were short on resources. For the too-many-segments
1213 * case, we simply report an error and drop the packet,
1214 * since we can't sanely copy a jumbo packet to a single
1215 * buffer.
1216 */
1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1218 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 if (error) {
1220 if (error == EFBIG) {
1221 printf("%s: Tx packet consumes too many "
1222 "DMA segments, dropping...\n",
1223 sc->sc_dev.dv_xname);
1224 IFQ_DEQUEUE(&ifp->if_snd, m0);
1225 m_freem(m0);
1226 continue;
1227 }
1228 /*
1229 * Short on resources, just stop for now.
1230 */
1231 break;
1232 }
1233 #else /* DP83820 */
1234 /*
1235 * Load the DMA map. If this fails, the packet either
1236 * didn't fit in the alloted number of segments, or we
1237 * were short on resources. In this case, we'll copy
1238 * and try again.
1239 */
1240 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1241 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1242 MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 if (m == NULL) {
1244 printf("%s: unable to allocate Tx mbuf\n",
1245 sc->sc_dev.dv_xname);
1246 break;
1247 }
1248 if (m0->m_pkthdr.len > MHLEN) {
1249 MCLGET(m, M_DONTWAIT);
1250 if ((m->m_flags & M_EXT) == 0) {
1251 printf("%s: unable to allocate Tx "
1252 "cluster\n", sc->sc_dev.dv_xname);
1253 m_freem(m);
1254 break;
1255 }
1256 }
1257 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1258 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1259 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1260 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1261 if (error) {
1262 printf("%s: unable to load Tx buffer, "
1263 "error = %d\n", sc->sc_dev.dv_xname, error);
1264 break;
1265 }
1266 }
1267 #endif /* DP83820 */
1268
1269 /*
1270 * Ensure we have enough descriptors free to describe
1271 * the packet. Note, we always reserve one descriptor
1272 * at the end of the ring as a termination point, to
1273 * prevent wrap-around.
1274 */
1275 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1276 /*
1277 * Not enough free descriptors to transmit this
1278 * packet. We haven't committed anything yet,
1279 * so just unload the DMA map, put the packet
1280 * back on the queue, and punt. Notify the upper
1281 * layer that there are not more slots left.
1282 *
1283 * XXX We could allocate an mbuf and copy, but
1284 * XXX is it worth it?
1285 */
1286 ifp->if_flags |= IFF_OACTIVE;
1287 bus_dmamap_unload(sc->sc_dmat, dmamap);
1288 #ifndef DP83820
1289 if (m != NULL)
1290 m_freem(m);
1291 #endif
1292 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1293 break;
1294 }
1295
1296 IFQ_DEQUEUE(&ifp->if_snd, m0);
1297 #ifndef DP83820
1298 if (m != NULL) {
1299 m_freem(m0);
1300 m0 = m;
1301 }
1302 #endif
1303
1304 /*
1305 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1306 */
1307
1308 /* Sync the DMA map. */
1309 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1310 BUS_DMASYNC_PREWRITE);
1311
1312 /*
1313 * Initialize the transmit descriptors.
1314 */
1315 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1316 seg < dmamap->dm_nsegs;
1317 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1318 /*
1319 * If this is the first descriptor we're
1320 * enqueueing, don't set the OWN bit just
1321 * yet. That could cause a race condition.
1322 * We'll do it below.
1323 */
1324 sc->sc_txdescs[nexttx].sipd_bufptr =
1325 htole32(dmamap->dm_segs[seg].ds_addr);
1326 sc->sc_txdescs[nexttx].sipd_cmdsts =
1327 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1328 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1329 #ifdef DP83820
1330 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1331 #endif /* DP83820 */
1332 lasttx = nexttx;
1333 }
1334
1335 /* Clear the MORE bit on the last segment. */
1336 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1337
1338 /*
1339 * If we're in the interrupt delay window, delay the
1340 * interrupt.
1341 */
1342 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1343 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1344 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1345 htole32(CMDSTS_INTR);
1346 sc->sc_txwin = 0;
1347 }
1348
1349 #ifdef DP83820
1350 /*
1351 * If VLANs are enabled and the packet has a VLAN tag, set
1352 * up the descriptor to encapsulate the packet for us.
1353 *
1354 * This apparently has to be on the last descriptor of
1355 * the packet.
1356 */
1357
1358 /*
1359 * Byte swapping is tricky. We need to provide the tag
1360 * in a network byte order. On a big-endian machine,
1361 * the byteorder is correct, but we need to swap it
1362 * anyway, because this will be undone by the outside
1363 * htole32(). That's why there must be an
1364 * unconditional swap instead of htons() inside.
1365 */
1366 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1367 sc->sc_txdescs[lasttx].sipd_extsts |=
1368 htole32(EXTSTS_VPKT |
1369 (bswap16(VLAN_TAG_VALUE(mtag)) &
1370 EXTSTS_VTCI));
1371 }
1372
1373 /*
1374 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1375 * checksumming, set up the descriptor to do this work
1376 * for us.
1377 *
1378 * This apparently has to be on the first descriptor of
1379 * the packet.
1380 *
1381 * Byte-swap constants so the compiler can optimize.
1382 */
1383 extsts = 0;
1384 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1385 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1386 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1387 extsts |= htole32(EXTSTS_IPPKT);
1388 }
1389 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1390 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1391 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1392 extsts |= htole32(EXTSTS_TCPPKT);
1393 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1394 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1395 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1396 extsts |= htole32(EXTSTS_UDPPKT);
1397 }
1398 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1399 #endif /* DP83820 */
1400
1401 /* Sync the descriptors we're using. */
1402 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1403 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404
1405 /*
1406 * The entire packet is set up. Give the first descrptor
1407 * to the chip now.
1408 */
1409 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1410 htole32(CMDSTS_OWN);
1411 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1412 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1413
1414 /*
1415 * Store a pointer to the packet so we can free it later,
1416 * and remember what txdirty will be once the packet is
1417 * done.
1418 */
1419 txs->txs_mbuf = m0;
1420 txs->txs_firstdesc = sc->sc_txnext;
1421 txs->txs_lastdesc = lasttx;
1422
1423 /* Advance the tx pointer. */
1424 sc->sc_txfree -= dmamap->dm_nsegs;
1425 sc->sc_txnext = nexttx;
1426
1427 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1428 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1429
1430 #if NBPFILTER > 0
1431 /*
1432 * Pass the packet to any BPF listeners.
1433 */
1434 if (ifp->if_bpf)
1435 bpf_mtap(ifp->if_bpf, m0);
1436 #endif /* NBPFILTER > 0 */
1437 }
1438
1439 if (txs == NULL || sc->sc_txfree == 0) {
1440 /* No more slots left; notify upper layer. */
1441 ifp->if_flags |= IFF_OACTIVE;
1442 }
1443
1444 if (sc->sc_txfree != ofree) {
1445 /*
1446 * Start the transmit process. Note, the manual says
1447 * that if there are no pending transmissions in the
1448 * chip's internal queue (indicated by TXE being clear),
1449 * then the driver software must set the TXDP to the
1450 * first descriptor to be transmitted. However, if we
1451 * do this, it causes serious performance degredation on
1452 * the DP83820 under load, not setting TXDP doesn't seem
1453 * to adversely affect the SiS 900 or DP83815.
1454 *
1455 * Well, I guess it wouldn't be the first time a manual
1456 * has lied -- and they could be speaking of the NULL-
1457 * terminated descriptor list case, rather than OWN-
1458 * terminated rings.
1459 */
1460 #if 0
1461 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1462 CR_TXE) == 0) {
1463 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1464 SIP_CDTXADDR(sc, firsttx));
1465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1466 }
1467 #else
1468 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1469 #endif
1470
1471 /* Set a watchdog timer in case the chip flakes out. */
1472 #ifdef DP83820
1473 /* Gigabit autonegotiation takes 5 seconds. */
1474 ifp->if_timer = 10;
1475 #else
1476 ifp->if_timer = 5;
1477 #endif
1478 }
1479 }
1480
1481 /*
1482 * sip_watchdog: [ifnet interface function]
1483 *
1484 * Watchdog timer handler.
1485 */
1486 static void
1487 SIP_DECL(watchdog)(struct ifnet *ifp)
1488 {
1489 struct sip_softc *sc = ifp->if_softc;
1490
1491 /*
1492 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1493 * If we get a timeout, try and sweep up transmit descriptors.
1494 * If we manage to sweep them all up, ignore the lack of
1495 * interrupt.
1496 */
1497 SIP_DECL(txintr)(sc);
1498
1499 if (sc->sc_txfree != SIP_NTXDESC) {
1500 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1501 ifp->if_oerrors++;
1502
1503 /* Reset the interface. */
1504 (void) SIP_DECL(init)(ifp);
1505 } else if (ifp->if_flags & IFF_DEBUG)
1506 printf("%s: recovered from device timeout\n",
1507 sc->sc_dev.dv_xname);
1508
1509 /* Try to get more packets going. */
1510 SIP_DECL(start)(ifp);
1511 }
1512
1513 /*
1514 * sip_ioctl: [ifnet interface function]
1515 *
1516 * Handle control requests from the operator.
1517 */
1518 static int
1519 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1520 {
1521 struct sip_softc *sc = ifp->if_softc;
1522 struct ifreq *ifr = (struct ifreq *)data;
1523 int s, error;
1524
1525 s = splnet();
1526
1527 switch (cmd) {
1528 case SIOCSIFMEDIA:
1529 /* Flow control requires full-duplex mode. */
1530 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1531 (ifr->ifr_media & IFM_FDX) == 0)
1532 ifr->ifr_media &= ~IFM_ETH_FMASK;
1533 #ifdef DP83820
1534 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1535 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1536 /* We can do both TXPAUSE and RXPAUSE. */
1537 ifr->ifr_media |=
1538 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1539 }
1540 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1541 }
1542 #else
1543 /* XXX */
1544 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1545 ifr->ifr_media &= ~IFM_ETH_FMASK;
1546
1547 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1548 if (ifr->ifr_media & IFM_FLOW) {
1549 /*
1550 * Both TXPAUSE and RXPAUSE must be set.
1551 * (SiS900 and DP83815 don't have PAUSE_ASYM
1552 * feature.)
1553 *
1554 * XXX Can SiS900 and DP83815 send PAUSE?
1555 */
1556 ifr->ifr_media |=
1557 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1558 }
1559 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1560 }
1561 #endif
1562 /* FALLTHROUGH */
1563 case SIOCGIFMEDIA:
1564 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1565 break;
1566 case SIOCSIFFLAGS:
1567 /* If the interface is up and running, only modify the receive
1568 * filter when setting promiscuous or debug mode. Otherwise
1569 * fall through to ether_ioctl, which will reset the chip.
1570 */
1571 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1572 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1573 == (IFF_UP|IFF_RUNNING))
1574 && ((ifp->if_flags & (~RESETIGN))
1575 == (sc->sc_if_flags & (~RESETIGN)))) {
1576 /* Set up the receive filter. */
1577 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1578 error = 0;
1579 break;
1580 #undef RESETIGN
1581 }
1582 /* FALLTHROUGH */
1583 default:
1584 error = ether_ioctl(ifp, cmd, data);
1585 if (error == ENETRESET) {
1586 /*
1587 * Multicast list has changed; set the hardware filter
1588 * accordingly.
1589 */
1590 if (ifp->if_flags & IFF_RUNNING)
1591 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1592 error = 0;
1593 }
1594 break;
1595 }
1596
1597 /* Try to get more packets going. */
1598 SIP_DECL(start)(ifp);
1599
1600 sc->sc_if_flags = ifp->if_flags;
1601 splx(s);
1602 return (error);
1603 }
1604
1605 /*
1606 * sip_intr:
1607 *
1608 * Interrupt service routine.
1609 */
1610 static int
1611 SIP_DECL(intr)(void *arg)
1612 {
1613 struct sip_softc *sc = arg;
1614 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1615 u_int32_t isr;
1616 int handled = 0;
1617
1618 /* Disable interrupts. */
1619 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1620
1621 for (;;) {
1622 /* Reading clears interrupt. */
1623 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1624 if ((isr & sc->sc_imr) == 0)
1625 break;
1626
1627 #if NRND > 0
1628 if (RND_ENABLED(&sc->rnd_source))
1629 rnd_add_uint32(&sc->rnd_source, isr);
1630 #endif
1631
1632 handled = 1;
1633
1634 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1635 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1636
1637 /* Grab any new packets. */
1638 SIP_DECL(rxintr)(sc);
1639
1640 if (isr & ISR_RXORN) {
1641 printf("%s: receive FIFO overrun\n",
1642 sc->sc_dev.dv_xname);
1643
1644 /* XXX adjust rx_drain_thresh? */
1645 }
1646
1647 if (isr & ISR_RXIDLE) {
1648 printf("%s: receive ring overrun\n",
1649 sc->sc_dev.dv_xname);
1650
1651 /* Get the receive process going again. */
1652 bus_space_write_4(sc->sc_st, sc->sc_sh,
1653 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1654 bus_space_write_4(sc->sc_st, sc->sc_sh,
1655 SIP_CR, CR_RXE);
1656 }
1657 }
1658
1659 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1660 #ifdef SIP_EVENT_COUNTERS
1661 if (isr & ISR_TXDESC)
1662 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1663 else if (isr & ISR_TXIDLE)
1664 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1665 #endif
1666
1667 /* Sweep up transmit descriptors. */
1668 SIP_DECL(txintr)(sc);
1669
1670 if (isr & ISR_TXURN) {
1671 u_int32_t thresh;
1672
1673 printf("%s: transmit FIFO underrun",
1674 sc->sc_dev.dv_xname);
1675
1676 thresh = sc->sc_tx_drain_thresh + 1;
1677 if (thresh <= TXCFG_DRTH &&
1678 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1679 (sc->sc_tx_fill_thresh * 32))) {
1680 printf("; increasing Tx drain "
1681 "threshold to %u bytes\n",
1682 thresh * 32);
1683 sc->sc_tx_drain_thresh = thresh;
1684 (void) SIP_DECL(init)(ifp);
1685 } else {
1686 (void) SIP_DECL(init)(ifp);
1687 printf("\n");
1688 }
1689 }
1690 }
1691
1692 #if !defined(DP83820)
1693 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1694 if (isr & ISR_PAUSE_ST) {
1695 sc->sc_paused = 1;
1696 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1697 ifp->if_flags |= IFF_OACTIVE;
1698 }
1699 if (isr & ISR_PAUSE_END) {
1700 sc->sc_paused = 0;
1701 ifp->if_flags &= ~IFF_OACTIVE;
1702 }
1703 }
1704 #endif /* ! DP83820 */
1705
1706 if (isr & ISR_HIBERR) {
1707 int want_init = 0;
1708
1709 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1710
1711 #define PRINTERR(bit, str) \
1712 do { \
1713 if ((isr & (bit)) != 0) { \
1714 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1715 printf("%s: %s\n", \
1716 sc->sc_dev.dv_xname, str); \
1717 want_init = 1; \
1718 } \
1719 } while (/*CONSTCOND*/0)
1720
1721 PRINTERR(ISR_DPERR, "parity error");
1722 PRINTERR(ISR_SSERR, "system error");
1723 PRINTERR(ISR_RMABT, "master abort");
1724 PRINTERR(ISR_RTABT, "target abort");
1725 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1726 /*
1727 * Ignore:
1728 * Tx reset complete
1729 * Rx reset complete
1730 */
1731 if (want_init)
1732 (void) SIP_DECL(init)(ifp);
1733 #undef PRINTERR
1734 }
1735 }
1736
1737 /* Re-enable interrupts. */
1738 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1739
1740 /* Try to get more packets going. */
1741 SIP_DECL(start)(ifp);
1742
1743 return (handled);
1744 }
1745
1746 /*
1747 * sip_txintr:
1748 *
1749 * Helper; handle transmit interrupts.
1750 */
1751 static void
1752 SIP_DECL(txintr)(struct sip_softc *sc)
1753 {
1754 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1755 struct sip_txsoft *txs;
1756 u_int32_t cmdsts;
1757
1758 #ifndef DP83820
1759 if (sc->sc_paused == 0)
1760 #endif
1761 ifp->if_flags &= ~IFF_OACTIVE;
1762
1763 /*
1764 * Go through our Tx list and free mbufs for those
1765 * frames which have been transmitted.
1766 */
1767 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1768 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1769 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1770
1771 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1772 if (cmdsts & CMDSTS_OWN)
1773 break;
1774
1775 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1776
1777 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1778
1779 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1780 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1781 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1782 m_freem(txs->txs_mbuf);
1783 txs->txs_mbuf = NULL;
1784
1785 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1786
1787 /*
1788 * Check for errors and collisions.
1789 */
1790 if (cmdsts &
1791 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1792 ifp->if_oerrors++;
1793 if (cmdsts & CMDSTS_Tx_EC)
1794 ifp->if_collisions += 16;
1795 if (ifp->if_flags & IFF_DEBUG) {
1796 if (cmdsts & CMDSTS_Tx_ED)
1797 printf("%s: excessive deferral\n",
1798 sc->sc_dev.dv_xname);
1799 if (cmdsts & CMDSTS_Tx_EC)
1800 printf("%s: excessive collisions\n",
1801 sc->sc_dev.dv_xname);
1802 }
1803 } else {
1804 /* Packet was transmitted successfully. */
1805 ifp->if_opackets++;
1806 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1807 }
1808 }
1809
1810 /*
1811 * If there are no more pending transmissions, cancel the watchdog
1812 * timer.
1813 */
1814 if (txs == NULL) {
1815 ifp->if_timer = 0;
1816 sc->sc_txwin = 0;
1817 }
1818 }
1819
1820 #if defined(DP83820)
1821 /*
1822 * sip_rxintr:
1823 *
1824 * Helper; handle receive interrupts.
1825 */
1826 static void
1827 SIP_DECL(rxintr)(struct sip_softc *sc)
1828 {
1829 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 struct sip_rxsoft *rxs;
1831 struct mbuf *m;
1832 u_int32_t cmdsts, extsts;
1833 int i, len;
1834
1835 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1836 rxs = &sc->sc_rxsoft[i];
1837
1838 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1839
1840 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1841 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1842 len = CMDSTS_SIZE(cmdsts);
1843
1844 /*
1845 * NOTE: OWN is set if owned by _consumer_. We're the
1846 * consumer of the receive ring, so if the bit is clear,
1847 * we have processed all of the packets.
1848 */
1849 if ((cmdsts & CMDSTS_OWN) == 0) {
1850 /*
1851 * We have processed all of the receive buffers.
1852 */
1853 break;
1854 }
1855
1856 if (__predict_false(sc->sc_rxdiscard)) {
1857 SIP_INIT_RXDESC(sc, i);
1858 if ((cmdsts & CMDSTS_MORE) == 0) {
1859 /* Reset our state. */
1860 sc->sc_rxdiscard = 0;
1861 }
1862 continue;
1863 }
1864
1865 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1866 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1867
1868 m = rxs->rxs_mbuf;
1869
1870 /*
1871 * Add a new receive buffer to the ring.
1872 */
1873 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1874 /*
1875 * Failed, throw away what we've done so
1876 * far, and discard the rest of the packet.
1877 */
1878 ifp->if_ierrors++;
1879 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1880 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1881 SIP_INIT_RXDESC(sc, i);
1882 if (cmdsts & CMDSTS_MORE)
1883 sc->sc_rxdiscard = 1;
1884 if (sc->sc_rxhead != NULL)
1885 m_freem(sc->sc_rxhead);
1886 SIP_RXCHAIN_RESET(sc);
1887 continue;
1888 }
1889
1890 SIP_RXCHAIN_LINK(sc, m);
1891
1892 m->m_len = len;
1893
1894 /*
1895 * If this is not the end of the packet, keep
1896 * looking.
1897 */
1898 if (cmdsts & CMDSTS_MORE) {
1899 sc->sc_rxlen += len;
1900 continue;
1901 }
1902
1903 /*
1904 * Okay, we have the entire packet now. The chip includes
1905 * the FCS, so we need to trim it.
1906 */
1907 m->m_len -= ETHER_CRC_LEN;
1908
1909 *sc->sc_rxtailp = NULL;
1910 len = m->m_len + sc->sc_rxlen;
1911 m = sc->sc_rxhead;
1912
1913 SIP_RXCHAIN_RESET(sc);
1914
1915 /*
1916 * If an error occurred, update stats and drop the packet.
1917 */
1918 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1919 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1920 ifp->if_ierrors++;
1921 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1922 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1923 /* Receive overrun handled elsewhere. */
1924 printf("%s: receive descriptor error\n",
1925 sc->sc_dev.dv_xname);
1926 }
1927 #define PRINTERR(bit, str) \
1928 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1929 (cmdsts & (bit)) != 0) \
1930 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1931 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1932 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1933 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1934 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1935 #undef PRINTERR
1936 m_freem(m);
1937 continue;
1938 }
1939
1940 /*
1941 * If the packet is small enough to fit in a
1942 * single header mbuf, allocate one and copy
1943 * the data into it. This greatly reduces
1944 * memory consumption when we receive lots
1945 * of small packets.
1946 */
1947 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1948 struct mbuf *nm;
1949 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1950 if (nm == NULL) {
1951 ifp->if_ierrors++;
1952 m_freem(m);
1953 continue;
1954 }
1955 nm->m_data += 2;
1956 nm->m_pkthdr.len = nm->m_len = len;
1957 m_copydata(m, 0, len, mtod(nm, caddr_t));
1958 m_freem(m);
1959 m = nm;
1960 }
1961 #ifndef __NO_STRICT_ALIGNMENT
1962 else {
1963 /*
1964 * The DP83820's receive buffers must be 4-byte
1965 * aligned. But this means that the data after
1966 * the Ethernet header is misaligned. To compensate,
1967 * we have artificially shortened the buffer size
1968 * in the descriptor, and we do an overlapping copy
1969 * of the data two bytes further in (in the first
1970 * buffer of the chain only).
1971 */
1972 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1973 m->m_len);
1974 m->m_data += 2;
1975 }
1976 #endif /* ! __NO_STRICT_ALIGNMENT */
1977
1978 /*
1979 * If VLANs are enabled, VLAN packets have been unwrapped
1980 * for us. Associate the tag with the packet.
1981 */
1982
1983 /*
1984 * Again, byte swapping is tricky. Hardware provided
1985 * the tag in the network byte order, but extsts was
1986 * passed through le32toh() in the meantime. On a
1987 * big-endian machine, we need to swap it again. On a
1988 * little-endian machine, we need to convert from the
1989 * network to host byte order. This means that we must
1990 * swap it in any case, so unconditional swap instead
1991 * of htons() is used.
1992 */
1993 if ((extsts & EXTSTS_VPKT) != 0) {
1994 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
1995 continue);
1996 }
1997
1998 /*
1999 * Set the incoming checksum information for the
2000 * packet.
2001 */
2002 if ((extsts & EXTSTS_IPPKT) != 0) {
2003 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2004 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2005 if (extsts & EXTSTS_Rx_IPERR)
2006 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2007 if (extsts & EXTSTS_TCPPKT) {
2008 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2009 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2010 if (extsts & EXTSTS_Rx_TCPERR)
2011 m->m_pkthdr.csum_flags |=
2012 M_CSUM_TCP_UDP_BAD;
2013 } else if (extsts & EXTSTS_UDPPKT) {
2014 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2015 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2016 if (extsts & EXTSTS_Rx_UDPERR)
2017 m->m_pkthdr.csum_flags |=
2018 M_CSUM_TCP_UDP_BAD;
2019 }
2020 }
2021
2022 ifp->if_ipackets++;
2023 m->m_pkthdr.rcvif = ifp;
2024 m->m_pkthdr.len = len;
2025
2026 #if NBPFILTER > 0
2027 /*
2028 * Pass this up to any BPF listeners, but only
2029 * pass if up the stack if it's for us.
2030 */
2031 if (ifp->if_bpf)
2032 bpf_mtap(ifp->if_bpf, m);
2033 #endif /* NBPFILTER > 0 */
2034
2035 /* Pass it on. */
2036 (*ifp->if_input)(ifp, m);
2037 }
2038
2039 /* Update the receive pointer. */
2040 sc->sc_rxptr = i;
2041 }
2042 #else /* ! DP83820 */
2043 /*
2044 * sip_rxintr:
2045 *
2046 * Helper; handle receive interrupts.
2047 */
2048 static void
2049 SIP_DECL(rxintr)(struct sip_softc *sc)
2050 {
2051 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2052 struct sip_rxsoft *rxs;
2053 struct mbuf *m;
2054 u_int32_t cmdsts;
2055 int i, len;
2056
2057 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2058 rxs = &sc->sc_rxsoft[i];
2059
2060 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2061
2062 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2063
2064 /*
2065 * NOTE: OWN is set if owned by _consumer_. We're the
2066 * consumer of the receive ring, so if the bit is clear,
2067 * we have processed all of the packets.
2068 */
2069 if ((cmdsts & CMDSTS_OWN) == 0) {
2070 /*
2071 * We have processed all of the receive buffers.
2072 */
2073 break;
2074 }
2075
2076 /*
2077 * If any collisions were seen on the wire, count one.
2078 */
2079 if (cmdsts & CMDSTS_Rx_COL)
2080 ifp->if_collisions++;
2081
2082 /*
2083 * If an error occurred, update stats, clear the status
2084 * word, and leave the packet buffer in place. It will
2085 * simply be reused the next time the ring comes around.
2086 */
2087 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2088 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2089 ifp->if_ierrors++;
2090 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2091 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2092 /* Receive overrun handled elsewhere. */
2093 printf("%s: receive descriptor error\n",
2094 sc->sc_dev.dv_xname);
2095 }
2096 #define PRINTERR(bit, str) \
2097 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2098 (cmdsts & (bit)) != 0) \
2099 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2100 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2101 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2102 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2103 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2104 #undef PRINTERR
2105 SIP_INIT_RXDESC(sc, i);
2106 continue;
2107 }
2108
2109 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2110 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2111
2112 /*
2113 * No errors; receive the packet. Note, the SiS 900
2114 * includes the CRC with every packet.
2115 */
2116 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2117
2118 #ifdef __NO_STRICT_ALIGNMENT
2119 /*
2120 * If the packet is small enough to fit in a
2121 * single header mbuf, allocate one and copy
2122 * the data into it. This greatly reduces
2123 * memory consumption when we receive lots
2124 * of small packets.
2125 *
2126 * Otherwise, we add a new buffer to the receive
2127 * chain. If this fails, we drop the packet and
2128 * recycle the old buffer.
2129 */
2130 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2131 MGETHDR(m, M_DONTWAIT, MT_DATA);
2132 if (m == NULL)
2133 goto dropit;
2134 memcpy(mtod(m, caddr_t),
2135 mtod(rxs->rxs_mbuf, caddr_t), len);
2136 SIP_INIT_RXDESC(sc, i);
2137 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2138 rxs->rxs_dmamap->dm_mapsize,
2139 BUS_DMASYNC_PREREAD);
2140 } else {
2141 m = rxs->rxs_mbuf;
2142 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2143 dropit:
2144 ifp->if_ierrors++;
2145 SIP_INIT_RXDESC(sc, i);
2146 bus_dmamap_sync(sc->sc_dmat,
2147 rxs->rxs_dmamap, 0,
2148 rxs->rxs_dmamap->dm_mapsize,
2149 BUS_DMASYNC_PREREAD);
2150 continue;
2151 }
2152 }
2153 #else
2154 /*
2155 * The SiS 900's receive buffers must be 4-byte aligned.
2156 * But this means that the data after the Ethernet header
2157 * is misaligned. We must allocate a new buffer and
2158 * copy the data, shifted forward 2 bytes.
2159 */
2160 MGETHDR(m, M_DONTWAIT, MT_DATA);
2161 if (m == NULL) {
2162 dropit:
2163 ifp->if_ierrors++;
2164 SIP_INIT_RXDESC(sc, i);
2165 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2166 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2167 continue;
2168 }
2169 if (len > (MHLEN - 2)) {
2170 MCLGET(m, M_DONTWAIT);
2171 if ((m->m_flags & M_EXT) == 0) {
2172 m_freem(m);
2173 goto dropit;
2174 }
2175 }
2176 m->m_data += 2;
2177
2178 /*
2179 * Note that we use clusters for incoming frames, so the
2180 * buffer is virtually contiguous.
2181 */
2182 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2183
2184 /* Allow the receive descriptor to continue using its mbuf. */
2185 SIP_INIT_RXDESC(sc, i);
2186 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2187 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2188 #endif /* __NO_STRICT_ALIGNMENT */
2189
2190 ifp->if_ipackets++;
2191 m->m_pkthdr.rcvif = ifp;
2192 m->m_pkthdr.len = m->m_len = len;
2193
2194 #if NBPFILTER > 0
2195 /*
2196 * Pass this up to any BPF listeners, but only
2197 * pass if up the stack if it's for us.
2198 */
2199 if (ifp->if_bpf)
2200 bpf_mtap(ifp->if_bpf, m);
2201 #endif /* NBPFILTER > 0 */
2202
2203 /* Pass it on. */
2204 (*ifp->if_input)(ifp, m);
2205 }
2206
2207 /* Update the receive pointer. */
2208 sc->sc_rxptr = i;
2209 }
2210 #endif /* DP83820 */
2211
2212 /*
2213 * sip_tick:
2214 *
2215 * One second timer, used to tick the MII.
2216 */
2217 static void
2218 SIP_DECL(tick)(void *arg)
2219 {
2220 struct sip_softc *sc = arg;
2221 int s;
2222
2223 s = splnet();
2224 #ifdef DP83820
2225 #ifdef SIP_EVENT_COUNTERS
2226 /* Read PAUSE related counts from MIB registers. */
2227 sc->sc_ev_rxpause.ev_count +=
2228 bus_space_read_4(sc->sc_st, sc->sc_sh,
2229 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2230 sc->sc_ev_txpause.ev_count +=
2231 bus_space_read_4(sc->sc_st, sc->sc_sh,
2232 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2233 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2234 #endif /* SIP_EVENT_COUNTERS */
2235 #endif /* DP83820 */
2236 mii_tick(&sc->sc_mii);
2237 splx(s);
2238
2239 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2240 }
2241
2242 /*
2243 * sip_reset:
2244 *
2245 * Perform a soft reset on the SiS 900.
2246 */
2247 static void
2248 SIP_DECL(reset)(struct sip_softc *sc)
2249 {
2250 bus_space_tag_t st = sc->sc_st;
2251 bus_space_handle_t sh = sc->sc_sh;
2252 int i;
2253
2254 bus_space_write_4(st, sh, SIP_IER, 0);
2255 bus_space_write_4(st, sh, SIP_IMR, 0);
2256 bus_space_write_4(st, sh, SIP_RFCR, 0);
2257 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2258
2259 for (i = 0; i < SIP_TIMEOUT; i++) {
2260 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2261 break;
2262 delay(2);
2263 }
2264
2265 if (i == SIP_TIMEOUT)
2266 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2267
2268 delay(1000);
2269
2270 #ifdef DP83820
2271 /*
2272 * Set the general purpose I/O bits. Do it here in case we
2273 * need to have GPIO set up to talk to the media interface.
2274 */
2275 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2276 delay(1000);
2277 #endif /* DP83820 */
2278 }
2279
2280 /*
2281 * sip_init: [ ifnet interface function ]
2282 *
2283 * Initialize the interface. Must be called at splnet().
2284 */
2285 static int
2286 SIP_DECL(init)(struct ifnet *ifp)
2287 {
2288 struct sip_softc *sc = ifp->if_softc;
2289 bus_space_tag_t st = sc->sc_st;
2290 bus_space_handle_t sh = sc->sc_sh;
2291 struct sip_txsoft *txs;
2292 struct sip_rxsoft *rxs;
2293 struct sip_desc *sipd;
2294 #if defined(DP83820)
2295 u_int32_t reg;
2296 #endif
2297 int i, error = 0;
2298
2299 /*
2300 * Cancel any pending I/O.
2301 */
2302 SIP_DECL(stop)(ifp, 0);
2303
2304 /*
2305 * Reset the chip to a known state.
2306 */
2307 SIP_DECL(reset)(sc);
2308
2309 #if !defined(DP83820)
2310 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2311 /*
2312 * DP83815 manual, page 78:
2313 * 4.4 Recommended Registers Configuration
2314 * For optimum performance of the DP83815, version noted
2315 * as DP83815CVNG (SRR = 203h), the listed register
2316 * modifications must be followed in sequence...
2317 *
2318 * It's not clear if this should be 302h or 203h because that
2319 * chip name is listed as SRR 302h in the description of the
2320 * SRR register. However, my revision 302h DP83815 on the
2321 * Netgear FA311 purchased in 02/2001 needs these settings
2322 * to avoid tons of errors in AcceptPerfectMatch (non-
2323 * IFF_PROMISC) mode. I do not know if other revisions need
2324 * this set or not. [briggs -- 09 March 2001]
2325 *
2326 * Note that only the low-order 12 bits of 0xe4 are documented
2327 * and that this sets reserved bits in that register.
2328 */
2329 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2330
2331 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2332 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2333 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2334 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2335
2336 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2337 }
2338 #endif /* ! DP83820 */
2339
2340 /*
2341 * Initialize the transmit descriptor ring.
2342 */
2343 for (i = 0; i < SIP_NTXDESC; i++) {
2344 sipd = &sc->sc_txdescs[i];
2345 memset(sipd, 0, sizeof(struct sip_desc));
2346 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2347 }
2348 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2349 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2350 sc->sc_txfree = SIP_NTXDESC;
2351 sc->sc_txnext = 0;
2352 sc->sc_txwin = 0;
2353
2354 /*
2355 * Initialize the transmit job descriptors.
2356 */
2357 SIMPLEQ_INIT(&sc->sc_txfreeq);
2358 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2359 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2360 txs = &sc->sc_txsoft[i];
2361 txs->txs_mbuf = NULL;
2362 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2363 }
2364
2365 /*
2366 * Initialize the receive descriptor and receive job
2367 * descriptor rings.
2368 */
2369 for (i = 0; i < SIP_NRXDESC; i++) {
2370 rxs = &sc->sc_rxsoft[i];
2371 if (rxs->rxs_mbuf == NULL) {
2372 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2373 printf("%s: unable to allocate or map rx "
2374 "buffer %d, error = %d\n",
2375 sc->sc_dev.dv_xname, i, error);
2376 /*
2377 * XXX Should attempt to run with fewer receive
2378 * XXX buffers instead of just failing.
2379 */
2380 SIP_DECL(rxdrain)(sc);
2381 goto out;
2382 }
2383 } else
2384 SIP_INIT_RXDESC(sc, i);
2385 }
2386 sc->sc_rxptr = 0;
2387 #ifdef DP83820
2388 sc->sc_rxdiscard = 0;
2389 SIP_RXCHAIN_RESET(sc);
2390 #endif /* DP83820 */
2391
2392 /*
2393 * Set the configuration register; it's already initialized
2394 * in sip_attach().
2395 */
2396 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2397
2398 /*
2399 * Initialize the prototype TXCFG register.
2400 */
2401 #if defined(DP83820)
2402 sc->sc_txcfg = TXCFG_MXDMA_512;
2403 sc->sc_rxcfg = RXCFG_MXDMA_512;
2404 #else
2405 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2406 SIP_SIS900_REV(sc, SIS_REV_960) ||
2407 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2408 (sc->sc_cfg & CFG_EDBMASTEN)) {
2409 sc->sc_txcfg = TXCFG_MXDMA_64;
2410 sc->sc_rxcfg = RXCFG_MXDMA_64;
2411 } else {
2412 sc->sc_txcfg = TXCFG_MXDMA_512;
2413 sc->sc_rxcfg = RXCFG_MXDMA_512;
2414 }
2415 #endif /* DP83820 */
2416
2417 sc->sc_txcfg |= TXCFG_ATP |
2418 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2419 sc->sc_tx_drain_thresh;
2420 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2421
2422 /*
2423 * Initialize the receive drain threshold if we have never
2424 * done so.
2425 */
2426 if (sc->sc_rx_drain_thresh == 0) {
2427 /*
2428 * XXX This value should be tuned. This is set to the
2429 * maximum of 248 bytes, and we may be able to improve
2430 * performance by decreasing it (although we should never
2431 * set this value lower than 2; 14 bytes are required to
2432 * filter the packet).
2433 */
2434 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2435 }
2436
2437 /*
2438 * Initialize the prototype RXCFG register.
2439 */
2440 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2441 #ifdef DP83820
2442 /*
2443 * Accept long packets (including FCS) so we can handle
2444 * 802.1q-tagged frames and jumbo frames properly.
2445 */
2446 if (ifp->if_mtu > ETHERMTU ||
2447 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2448 sc->sc_rxcfg |= RXCFG_ALP;
2449
2450 /*
2451 * Checksum offloading is disabled if the user selects an MTU
2452 * larger than 8109. (FreeBSD says 8152, but there is emperical
2453 * evidence that >8109 does not work on some boards, such as the
2454 * Planex GN-1000TE).
2455 */
2456 if (ifp->if_mtu > 8109 &&
2457 (ifp->if_capenable &
2458 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2459 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2460 "disabled.\n", sc->sc_dev.dv_xname);
2461 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2462 IFCAP_CSUM_UDPv4);
2463 ifp->if_csum_flags_tx = 0;
2464 ifp->if_csum_flags_rx = 0;
2465 }
2466 #else
2467 /*
2468 * Accept packets >1518 bytes (including FCS) so we can handle
2469 * 802.1q-tagged frames properly.
2470 */
2471 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2472 sc->sc_rxcfg |= RXCFG_ALP;
2473 #endif
2474 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2475
2476 #ifdef DP83820
2477 /*
2478 * Initialize the VLAN/IP receive control register.
2479 * We enable checksum computation on all incoming
2480 * packets, and do not reject packets w/ bad checksums.
2481 */
2482 reg = 0;
2483 if (ifp->if_capenable &
2484 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2485 reg |= VRCR_IPEN;
2486 if (VLAN_ATTACHED(&sc->sc_ethercom))
2487 reg |= VRCR_VTDEN|VRCR_VTREN;
2488 bus_space_write_4(st, sh, SIP_VRCR, reg);
2489
2490 /*
2491 * Initialize the VLAN/IP transmit control register.
2492 * We enable outgoing checksum computation on a
2493 * per-packet basis.
2494 */
2495 reg = 0;
2496 if (ifp->if_capenable &
2497 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2498 reg |= VTCR_PPCHK;
2499 if (VLAN_ATTACHED(&sc->sc_ethercom))
2500 reg |= VTCR_VPPTI;
2501 bus_space_write_4(st, sh, SIP_VTCR, reg);
2502
2503 /*
2504 * If we're using VLANs, initialize the VLAN data register.
2505 * To understand why we bswap the VLAN Ethertype, see section
2506 * 4.2.36 of the DP83820 manual.
2507 */
2508 if (VLAN_ATTACHED(&sc->sc_ethercom))
2509 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2510 #endif /* DP83820 */
2511
2512 /*
2513 * Give the transmit and receive rings to the chip.
2514 */
2515 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2516 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2517
2518 /*
2519 * Initialize the interrupt mask.
2520 */
2521 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2522 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2523 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2524
2525 /* Set up the receive filter. */
2526 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2527
2528 #ifdef DP83820
2529 /*
2530 * Tune sc_rx_flow_thresh.
2531 * XXX "More than 8KB" is too short for jumbo frames.
2532 * XXX TODO: Threshold value should be user-settable.
2533 */
2534 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2535 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2536 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2537 #endif
2538
2539 /*
2540 * Set the current media. Do this after initializing the prototype
2541 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2542 * control.
2543 */
2544 mii_mediachg(&sc->sc_mii);
2545
2546 #ifdef DP83820
2547 /*
2548 * Set the interrupt hold-off timer to 100us.
2549 */
2550 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2551 #endif
2552
2553 /*
2554 * Enable interrupts.
2555 */
2556 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2557
2558 /*
2559 * Start the transmit and receive processes.
2560 */
2561 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2562
2563 /*
2564 * Start the one second MII clock.
2565 */
2566 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2567
2568 /*
2569 * ...all done!
2570 */
2571 ifp->if_flags |= IFF_RUNNING;
2572 ifp->if_flags &= ~IFF_OACTIVE;
2573 sc->sc_if_flags = ifp->if_flags;
2574
2575 out:
2576 if (error)
2577 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2578 return (error);
2579 }
2580
2581 /*
2582 * sip_drain:
2583 *
2584 * Drain the receive queue.
2585 */
2586 static void
2587 SIP_DECL(rxdrain)(struct sip_softc *sc)
2588 {
2589 struct sip_rxsoft *rxs;
2590 int i;
2591
2592 for (i = 0; i < SIP_NRXDESC; i++) {
2593 rxs = &sc->sc_rxsoft[i];
2594 if (rxs->rxs_mbuf != NULL) {
2595 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2596 m_freem(rxs->rxs_mbuf);
2597 rxs->rxs_mbuf = NULL;
2598 }
2599 }
2600 }
2601
2602 /*
2603 * sip_stop: [ ifnet interface function ]
2604 *
2605 * Stop transmission on the interface.
2606 */
2607 static void
2608 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2609 {
2610 struct sip_softc *sc = ifp->if_softc;
2611 bus_space_tag_t st = sc->sc_st;
2612 bus_space_handle_t sh = sc->sc_sh;
2613 struct sip_txsoft *txs;
2614 u_int32_t cmdsts = 0; /* DEBUG */
2615
2616 /*
2617 * Stop the one second clock.
2618 */
2619 callout_stop(&sc->sc_tick_ch);
2620
2621 /* Down the MII. */
2622 mii_down(&sc->sc_mii);
2623
2624 /*
2625 * Disable interrupts.
2626 */
2627 bus_space_write_4(st, sh, SIP_IER, 0);
2628
2629 /*
2630 * Stop receiver and transmitter.
2631 */
2632 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2633
2634 /*
2635 * Release any queued transmit buffers.
2636 */
2637 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2638 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2639 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2640 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2641 CMDSTS_INTR) == 0)
2642 printf("%s: sip_stop: last descriptor does not "
2643 "have INTR bit set\n", sc->sc_dev.dv_xname);
2644 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2645 #ifdef DIAGNOSTIC
2646 if (txs->txs_mbuf == NULL) {
2647 printf("%s: dirty txsoft with no mbuf chain\n",
2648 sc->sc_dev.dv_xname);
2649 panic("sip_stop");
2650 }
2651 #endif
2652 cmdsts |= /* DEBUG */
2653 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2654 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2655 m_freem(txs->txs_mbuf);
2656 txs->txs_mbuf = NULL;
2657 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2658 }
2659
2660 if (disable)
2661 SIP_DECL(rxdrain)(sc);
2662
2663 /*
2664 * Mark the interface down and cancel the watchdog timer.
2665 */
2666 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2667 ifp->if_timer = 0;
2668
2669 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2670 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2671 printf("%s: sip_stop: no INTR bits set in dirty tx "
2672 "descriptors\n", sc->sc_dev.dv_xname);
2673 }
2674
2675 /*
2676 * sip_read_eeprom:
2677 *
2678 * Read data from the serial EEPROM.
2679 */
2680 static void
2681 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2682 u_int16_t *data)
2683 {
2684 bus_space_tag_t st = sc->sc_st;
2685 bus_space_handle_t sh = sc->sc_sh;
2686 u_int16_t reg;
2687 int i, x;
2688
2689 for (i = 0; i < wordcnt; i++) {
2690 /* Send CHIP SELECT. */
2691 reg = EROMAR_EECS;
2692 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2693
2694 /* Shift in the READ opcode. */
2695 for (x = 3; x > 0; x--) {
2696 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2697 reg |= EROMAR_EEDI;
2698 else
2699 reg &= ~EROMAR_EEDI;
2700 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2701 bus_space_write_4(st, sh, SIP_EROMAR,
2702 reg | EROMAR_EESK);
2703 delay(4);
2704 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2705 delay(4);
2706 }
2707
2708 /* Shift in address. */
2709 for (x = 6; x > 0; x--) {
2710 if ((word + i) & (1 << (x - 1)))
2711 reg |= EROMAR_EEDI;
2712 else
2713 reg &= ~EROMAR_EEDI;
2714 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2715 bus_space_write_4(st, sh, SIP_EROMAR,
2716 reg | EROMAR_EESK);
2717 delay(4);
2718 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2719 delay(4);
2720 }
2721
2722 /* Shift out data. */
2723 reg = EROMAR_EECS;
2724 data[i] = 0;
2725 for (x = 16; x > 0; x--) {
2726 bus_space_write_4(st, sh, SIP_EROMAR,
2727 reg | EROMAR_EESK);
2728 delay(4);
2729 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2730 data[i] |= (1 << (x - 1));
2731 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2732 delay(4);
2733 }
2734
2735 /* Clear CHIP SELECT. */
2736 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2737 delay(4);
2738 }
2739 }
2740
2741 /*
2742 * sip_add_rxbuf:
2743 *
2744 * Add a receive buffer to the indicated descriptor.
2745 */
2746 static int
2747 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2748 {
2749 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2750 struct mbuf *m;
2751 int error;
2752
2753 MGETHDR(m, M_DONTWAIT, MT_DATA);
2754 if (m == NULL)
2755 return (ENOBUFS);
2756
2757 MCLGET(m, M_DONTWAIT);
2758 if ((m->m_flags & M_EXT) == 0) {
2759 m_freem(m);
2760 return (ENOBUFS);
2761 }
2762
2763 #if defined(DP83820)
2764 m->m_len = SIP_RXBUF_LEN;
2765 #endif /* DP83820 */
2766
2767 if (rxs->rxs_mbuf != NULL)
2768 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2769
2770 rxs->rxs_mbuf = m;
2771
2772 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2773 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2774 BUS_DMA_READ|BUS_DMA_NOWAIT);
2775 if (error) {
2776 printf("%s: can't load rx DMA map %d, error = %d\n",
2777 sc->sc_dev.dv_xname, idx, error);
2778 panic("sip_add_rxbuf"); /* XXX */
2779 }
2780
2781 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2782 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2783
2784 SIP_INIT_RXDESC(sc, idx);
2785
2786 return (0);
2787 }
2788
2789 #if !defined(DP83820)
2790 /*
2791 * sip_sis900_set_filter:
2792 *
2793 * Set up the receive filter.
2794 */
2795 static void
2796 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2797 {
2798 bus_space_tag_t st = sc->sc_st;
2799 bus_space_handle_t sh = sc->sc_sh;
2800 struct ethercom *ec = &sc->sc_ethercom;
2801 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2802 struct ether_multi *enm;
2803 u_int8_t *cp;
2804 struct ether_multistep step;
2805 u_int32_t crc, mchash[16];
2806
2807 /*
2808 * Initialize the prototype RFCR.
2809 */
2810 sc->sc_rfcr = RFCR_RFEN;
2811 if (ifp->if_flags & IFF_BROADCAST)
2812 sc->sc_rfcr |= RFCR_AAB;
2813 if (ifp->if_flags & IFF_PROMISC) {
2814 sc->sc_rfcr |= RFCR_AAP;
2815 goto allmulti;
2816 }
2817
2818 /*
2819 * Set up the multicast address filter by passing all multicast
2820 * addresses through a CRC generator, and then using the high-order
2821 * 6 bits as an index into the 128 bit multicast hash table (only
2822 * the lower 16 bits of each 32 bit multicast hash register are
2823 * valid). The high order bits select the register, while the
2824 * rest of the bits select the bit within the register.
2825 */
2826
2827 memset(mchash, 0, sizeof(mchash));
2828
2829 /*
2830 * SiS900 (at least SiS963) requires us to register the address of
2831 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2832 */
2833 crc = 0x0ed423f9;
2834
2835 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2836 SIP_SIS900_REV(sc, SIS_REV_960) ||
2837 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2838 /* Just want the 8 most significant bits. */
2839 crc >>= 24;
2840 } else {
2841 /* Just want the 7 most significant bits. */
2842 crc >>= 25;
2843 }
2844
2845 /* Set the corresponding bit in the hash table. */
2846 mchash[crc >> 4] |= 1 << (crc & 0xf);
2847
2848 ETHER_FIRST_MULTI(step, ec, enm);
2849 while (enm != NULL) {
2850 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2851 /*
2852 * We must listen to a range of multicast addresses.
2853 * For now, just accept all multicasts, rather than
2854 * trying to set only those filter bits needed to match
2855 * the range. (At this time, the only use of address
2856 * ranges is for IP multicast routing, for which the
2857 * range is big enough to require all bits set.)
2858 */
2859 goto allmulti;
2860 }
2861
2862 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2863
2864 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2865 SIP_SIS900_REV(sc, SIS_REV_960) ||
2866 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2867 /* Just want the 8 most significant bits. */
2868 crc >>= 24;
2869 } else {
2870 /* Just want the 7 most significant bits. */
2871 crc >>= 25;
2872 }
2873
2874 /* Set the corresponding bit in the hash table. */
2875 mchash[crc >> 4] |= 1 << (crc & 0xf);
2876
2877 ETHER_NEXT_MULTI(step, enm);
2878 }
2879
2880 ifp->if_flags &= ~IFF_ALLMULTI;
2881 goto setit;
2882
2883 allmulti:
2884 ifp->if_flags |= IFF_ALLMULTI;
2885 sc->sc_rfcr |= RFCR_AAM;
2886
2887 setit:
2888 #define FILTER_EMIT(addr, data) \
2889 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2890 delay(1); \
2891 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2892 delay(1)
2893
2894 /*
2895 * Disable receive filter, and program the node address.
2896 */
2897 cp = LLADDR(ifp->if_sadl);
2898 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2899 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2900 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2901
2902 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2903 /*
2904 * Program the multicast hash table.
2905 */
2906 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2907 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2908 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2909 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2910 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2911 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2912 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2913 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2914 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2915 SIP_SIS900_REV(sc, SIS_REV_960) ||
2916 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2917 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2918 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2919 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2920 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2921 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2922 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2923 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2924 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2925 }
2926 }
2927 #undef FILTER_EMIT
2928
2929 /*
2930 * Re-enable the receiver filter.
2931 */
2932 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2933 }
2934 #endif /* ! DP83820 */
2935
2936 /*
2937 * sip_dp83815_set_filter:
2938 *
2939 * Set up the receive filter.
2940 */
2941 static void
2942 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2943 {
2944 bus_space_tag_t st = sc->sc_st;
2945 bus_space_handle_t sh = sc->sc_sh;
2946 struct ethercom *ec = &sc->sc_ethercom;
2947 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2948 struct ether_multi *enm;
2949 u_int8_t *cp;
2950 struct ether_multistep step;
2951 u_int32_t crc, hash, slot, bit;
2952 #ifdef DP83820
2953 #define MCHASH_NWORDS 128
2954 #else
2955 #define MCHASH_NWORDS 32
2956 #endif /* DP83820 */
2957 u_int16_t mchash[MCHASH_NWORDS];
2958 int i;
2959
2960 /*
2961 * Initialize the prototype RFCR.
2962 * Enable the receive filter, and accept on
2963 * Perfect (destination address) Match
2964 * If IFF_BROADCAST, also accept all broadcast packets.
2965 * If IFF_PROMISC, accept all unicast packets (and later, set
2966 * IFF_ALLMULTI and accept all multicast, too).
2967 */
2968 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2969 if (ifp->if_flags & IFF_BROADCAST)
2970 sc->sc_rfcr |= RFCR_AAB;
2971 if (ifp->if_flags & IFF_PROMISC) {
2972 sc->sc_rfcr |= RFCR_AAP;
2973 goto allmulti;
2974 }
2975
2976 #ifdef DP83820
2977 /*
2978 * Set up the DP83820 multicast address filter by passing all multicast
2979 * addresses through a CRC generator, and then using the high-order
2980 * 11 bits as an index into the 2048 bit multicast hash table. The
2981 * high-order 7 bits select the slot, while the low-order 4 bits
2982 * select the bit within the slot. Note that only the low 16-bits
2983 * of each filter word are used, and there are 128 filter words.
2984 */
2985 #else
2986 /*
2987 * Set up the DP83815 multicast address filter by passing all multicast
2988 * addresses through a CRC generator, and then using the high-order
2989 * 9 bits as an index into the 512 bit multicast hash table. The
2990 * high-order 5 bits select the slot, while the low-order 4 bits
2991 * select the bit within the slot. Note that only the low 16-bits
2992 * of each filter word are used, and there are 32 filter words.
2993 */
2994 #endif /* DP83820 */
2995
2996 memset(mchash, 0, sizeof(mchash));
2997
2998 ifp->if_flags &= ~IFF_ALLMULTI;
2999 ETHER_FIRST_MULTI(step, ec, enm);
3000 if (enm == NULL)
3001 goto setit;
3002 while (enm != NULL) {
3003 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3004 /*
3005 * We must listen to a range of multicast addresses.
3006 * For now, just accept all multicasts, rather than
3007 * trying to set only those filter bits needed to match
3008 * the range. (At this time, the only use of address
3009 * ranges is for IP multicast routing, for which the
3010 * range is big enough to require all bits set.)
3011 */
3012 goto allmulti;
3013 }
3014
3015 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3016
3017 #ifdef DP83820
3018 /* Just want the 11 most significant bits. */
3019 hash = crc >> 21;
3020 #else
3021 /* Just want the 9 most significant bits. */
3022 hash = crc >> 23;
3023 #endif /* DP83820 */
3024
3025 slot = hash >> 4;
3026 bit = hash & 0xf;
3027
3028 /* Set the corresponding bit in the hash table. */
3029 mchash[slot] |= 1 << bit;
3030
3031 ETHER_NEXT_MULTI(step, enm);
3032 }
3033 sc->sc_rfcr |= RFCR_MHEN;
3034 goto setit;
3035
3036 allmulti:
3037 ifp->if_flags |= IFF_ALLMULTI;
3038 sc->sc_rfcr |= RFCR_AAM;
3039
3040 setit:
3041 #define FILTER_EMIT(addr, data) \
3042 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3043 delay(1); \
3044 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3045 delay(1)
3046
3047 /*
3048 * Disable receive filter, and program the node address.
3049 */
3050 cp = LLADDR(ifp->if_sadl);
3051 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3052 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3053 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3054
3055 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3056 /*
3057 * Program the multicast hash table.
3058 */
3059 for (i = 0; i < MCHASH_NWORDS; i++) {
3060 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3061 mchash[i]);
3062 }
3063 }
3064 #undef FILTER_EMIT
3065 #undef MCHASH_NWORDS
3066
3067 /*
3068 * Re-enable the receiver filter.
3069 */
3070 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3071 }
3072
3073 #if defined(DP83820)
3074 /*
3075 * sip_dp83820_mii_readreg: [mii interface function]
3076 *
3077 * Read a PHY register on the MII of the DP83820.
3078 */
3079 static int
3080 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3081 {
3082 struct sip_softc *sc = (void *) self;
3083
3084 if (sc->sc_cfg & CFG_TBI_EN) {
3085 bus_addr_t tbireg;
3086 int rv;
3087
3088 if (phy != 0)
3089 return (0);
3090
3091 switch (reg) {
3092 case MII_BMCR: tbireg = SIP_TBICR; break;
3093 case MII_BMSR: tbireg = SIP_TBISR; break;
3094 case MII_ANAR: tbireg = SIP_TANAR; break;
3095 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3096 case MII_ANER: tbireg = SIP_TANER; break;
3097 case MII_EXTSR:
3098 /*
3099 * Don't even bother reading the TESR register.
3100 * The manual documents that the device has
3101 * 1000baseX full/half capability, but the
3102 * register itself seems read back 0 on some
3103 * boards. Just hard-code the result.
3104 */
3105 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3106
3107 default:
3108 return (0);
3109 }
3110
3111 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3112 if (tbireg == SIP_TBISR) {
3113 /* LINK and ACOMP are switched! */
3114 int val = rv;
3115
3116 rv = 0;
3117 if (val & TBISR_MR_LINK_STATUS)
3118 rv |= BMSR_LINK;
3119 if (val & TBISR_MR_AN_COMPLETE)
3120 rv |= BMSR_ACOMP;
3121
3122 /*
3123 * The manual claims this register reads back 0
3124 * on hard and soft reset. But we want to let
3125 * the gentbi driver know that we support auto-
3126 * negotiation, so hard-code this bit in the
3127 * result.
3128 */
3129 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3130 }
3131
3132 return (rv);
3133 }
3134
3135 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3136 phy, reg));
3137 }
3138
3139 /*
3140 * sip_dp83820_mii_writereg: [mii interface function]
3141 *
3142 * Write a PHY register on the MII of the DP83820.
3143 */
3144 static void
3145 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3146 {
3147 struct sip_softc *sc = (void *) self;
3148
3149 if (sc->sc_cfg & CFG_TBI_EN) {
3150 bus_addr_t tbireg;
3151
3152 if (phy != 0)
3153 return;
3154
3155 switch (reg) {
3156 case MII_BMCR: tbireg = SIP_TBICR; break;
3157 case MII_ANAR: tbireg = SIP_TANAR; break;
3158 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3159 default:
3160 return;
3161 }
3162
3163 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3164 return;
3165 }
3166
3167 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3168 phy, reg, val);
3169 }
3170
3171 /*
3172 * sip_dp83820_mii_statchg: [mii interface function]
3173 *
3174 * Callback from MII layer when media changes.
3175 */
3176 static void
3177 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3178 {
3179 struct sip_softc *sc = (struct sip_softc *) self;
3180 struct mii_data *mii = &sc->sc_mii;
3181 u_int32_t cfg, pcr;
3182
3183 /*
3184 * Get flow control negotiation result.
3185 */
3186 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3187 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3188 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3189 mii->mii_media_active &= ~IFM_ETH_FMASK;
3190 }
3191
3192 /*
3193 * Update TXCFG for full-duplex operation.
3194 */
3195 if ((mii->mii_media_active & IFM_FDX) != 0)
3196 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3197 else
3198 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3199
3200 /*
3201 * Update RXCFG for full-duplex or loopback.
3202 */
3203 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3204 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3205 sc->sc_rxcfg |= RXCFG_ATX;
3206 else
3207 sc->sc_rxcfg &= ~RXCFG_ATX;
3208
3209 /*
3210 * Update CFG for MII/GMII.
3211 */
3212 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3213 cfg = sc->sc_cfg | CFG_MODE_1000;
3214 else
3215 cfg = sc->sc_cfg;
3216
3217 /*
3218 * 802.3x flow control.
3219 */
3220 pcr = 0;
3221 if (sc->sc_flowflags & IFM_FLOW) {
3222 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3223 pcr |= sc->sc_rx_flow_thresh;
3224 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3225 pcr |= PCR_PSEN | PCR_PS_MCAST;
3226 }
3227
3228 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3229 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3230 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3231 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3232 }
3233 #endif /* ! DP83820 */
3234
3235 /*
3236 * sip_mii_bitbang_read: [mii bit-bang interface function]
3237 *
3238 * Read the MII serial port for the MII bit-bang module.
3239 */
3240 static u_int32_t
3241 SIP_DECL(mii_bitbang_read)(struct device *self)
3242 {
3243 struct sip_softc *sc = (void *) self;
3244
3245 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3246 }
3247
3248 /*
3249 * sip_mii_bitbang_write: [mii big-bang interface function]
3250 *
3251 * Write the MII serial port for the MII bit-bang module.
3252 */
3253 static void
3254 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3255 {
3256 struct sip_softc *sc = (void *) self;
3257
3258 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3259 }
3260
3261 #ifndef DP83820
3262 /*
3263 * sip_sis900_mii_readreg: [mii interface function]
3264 *
3265 * Read a PHY register on the MII.
3266 */
3267 static int
3268 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3269 {
3270 struct sip_softc *sc = (struct sip_softc *) self;
3271 u_int32_t enphy;
3272
3273 /*
3274 * The PHY of recent SiS chipsets is accessed through bitbang
3275 * operations.
3276 */
3277 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3278 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3279 phy, reg));
3280
3281 #ifndef SIS900_MII_RESTRICT
3282 /*
3283 * The SiS 900 has only an internal PHY on the MII. Only allow
3284 * MII address 0.
3285 */
3286 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3287 return (0);
3288 #endif
3289
3290 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3291 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3292 ENPHY_RWCMD | ENPHY_ACCESS);
3293 do {
3294 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3295 } while (enphy & ENPHY_ACCESS);
3296 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3297 }
3298
3299 /*
3300 * sip_sis900_mii_writereg: [mii interface function]
3301 *
3302 * Write a PHY register on the MII.
3303 */
3304 static void
3305 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3306 {
3307 struct sip_softc *sc = (struct sip_softc *) self;
3308 u_int32_t enphy;
3309
3310 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3311 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3312 phy, reg, val);
3313 return;
3314 }
3315
3316 #ifndef SIS900_MII_RESTRICT
3317 /*
3318 * The SiS 900 has only an internal PHY on the MII. Only allow
3319 * MII address 0.
3320 */
3321 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3322 return;
3323 #endif
3324
3325 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3326 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3327 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3328 do {
3329 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3330 } while (enphy & ENPHY_ACCESS);
3331 }
3332
3333 /*
3334 * sip_sis900_mii_statchg: [mii interface function]
3335 *
3336 * Callback from MII layer when media changes.
3337 */
3338 static void
3339 SIP_DECL(sis900_mii_statchg)(struct device *self)
3340 {
3341 struct sip_softc *sc = (struct sip_softc *) self;
3342 struct mii_data *mii = &sc->sc_mii;
3343 u_int32_t flowctl;
3344
3345 /*
3346 * Get flow control negotiation result.
3347 */
3348 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3349 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3350 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3351 mii->mii_media_active &= ~IFM_ETH_FMASK;
3352 }
3353
3354 /*
3355 * Update TXCFG for full-duplex operation.
3356 */
3357 if ((mii->mii_media_active & IFM_FDX) != 0)
3358 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3359 else
3360 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3361
3362 /*
3363 * Update RXCFG for full-duplex or loopback.
3364 */
3365 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3366 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3367 sc->sc_rxcfg |= RXCFG_ATX;
3368 else
3369 sc->sc_rxcfg &= ~RXCFG_ATX;
3370
3371 /*
3372 * Update IMR for use of 802.3x flow control.
3373 */
3374 if (sc->sc_flowflags & IFM_FLOW) {
3375 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3376 flowctl = FLOWCTL_FLOWEN;
3377 } else {
3378 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3379 flowctl = 0;
3380 }
3381
3382 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3383 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3384 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3385 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3386 }
3387
3388 /*
3389 * sip_dp83815_mii_readreg: [mii interface function]
3390 *
3391 * Read a PHY register on the MII.
3392 */
3393 static int
3394 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3395 {
3396 struct sip_softc *sc = (struct sip_softc *) self;
3397 u_int32_t val;
3398
3399 /*
3400 * The DP83815 only has an internal PHY. Only allow
3401 * MII address 0.
3402 */
3403 if (phy != 0)
3404 return (0);
3405
3406 /*
3407 * Apparently, after a reset, the DP83815 can take a while
3408 * to respond. During this recovery period, the BMSR returns
3409 * a value of 0. Catch this -- it's not supposed to happen
3410 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3411 * PHY to come back to life.
3412 *
3413 * This works out because the BMSR is the first register
3414 * read during the PHY probe process.
3415 */
3416 do {
3417 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3418 } while (reg == MII_BMSR && val == 0);
3419
3420 return (val & 0xffff);
3421 }
3422
3423 /*
3424 * sip_dp83815_mii_writereg: [mii interface function]
3425 *
3426 * Write a PHY register to the MII.
3427 */
3428 static void
3429 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3430 {
3431 struct sip_softc *sc = (struct sip_softc *) self;
3432
3433 /*
3434 * The DP83815 only has an internal PHY. Only allow
3435 * MII address 0.
3436 */
3437 if (phy != 0)
3438 return;
3439
3440 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3441 }
3442
3443 /*
3444 * sip_dp83815_mii_statchg: [mii interface function]
3445 *
3446 * Callback from MII layer when media changes.
3447 */
3448 static void
3449 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3450 {
3451 struct sip_softc *sc = (struct sip_softc *) self;
3452
3453 /*
3454 * Update TXCFG for full-duplex operation.
3455 */
3456 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3457 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3458 else
3459 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3460
3461 /*
3462 * Update RXCFG for full-duplex or loopback.
3463 */
3464 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3465 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3466 sc->sc_rxcfg |= RXCFG_ATX;
3467 else
3468 sc->sc_rxcfg &= ~RXCFG_ATX;
3469
3470 /*
3471 * XXX 802.3x flow control.
3472 */
3473
3474 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3475 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3476
3477 /*
3478 * Some DP83815s experience problems when used with short
3479 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3480 * sequence adjusts the DSP's signal attenuation to fix the
3481 * problem.
3482 */
3483 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3484 uint32_t reg;
3485
3486 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3487
3488 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3489 reg &= 0x0fff;
3490 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3491 delay(100);
3492 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3493 reg &= 0x00ff;
3494 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3495 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3496 0x00e8);
3497 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3498 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3499 reg | 0x20);
3500 }
3501
3502 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3503 }
3504 }
3505 #endif /* DP83820 */
3506
3507 #if defined(DP83820)
3508 static void
3509 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3510 const struct pci_attach_args *pa, u_int8_t *enaddr)
3511 {
3512 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3513 u_int8_t cksum, *e, match;
3514 int i;
3515
3516 /*
3517 * EEPROM data format for the DP83820 can be found in
3518 * the DP83820 manual, section 4.2.4.
3519 */
3520
3521 SIP_DECL(read_eeprom)(sc, 0,
3522 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3523
3524 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3525 match = ~(match - 1);
3526
3527 cksum = 0x55;
3528 e = (u_int8_t *) eeprom_data;
3529 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3530 cksum += *e++;
3531
3532 if (cksum != match)
3533 printf("%s: Checksum (%x) mismatch (%x)",
3534 sc->sc_dev.dv_xname, cksum, match);
3535
3536 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3537 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3538 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3539 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3540 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3541 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3542 }
3543 #else /* ! DP83820 */
3544 static void
3545 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3546 {
3547 int i;
3548
3549 /*
3550 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3551 * a reason, but I don't know it.
3552 */
3553 for (i = 0; i < 10; i++)
3554 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3555 }
3556
3557 static void
3558 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3559 const struct pci_attach_args *pa, u_int8_t *enaddr)
3560 {
3561 u_int16_t myea[ETHER_ADDR_LEN / 2];
3562
3563 switch (sc->sc_rev) {
3564 case SIS_REV_630S:
3565 case SIS_REV_630E:
3566 case SIS_REV_630EA1:
3567 case SIS_REV_630ET:
3568 case SIS_REV_635:
3569 /*
3570 * The MAC address for the on-board Ethernet of
3571 * the SiS 630 chipset is in the NVRAM. Kick
3572 * the chip into re-loading it from NVRAM, and
3573 * read the MAC address out of the filter registers.
3574 */
3575 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3576
3577 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3578 RFCR_RFADDR_NODE0);
3579 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3580 0xffff;
3581
3582 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3583 RFCR_RFADDR_NODE2);
3584 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3585 0xffff;
3586
3587 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3588 RFCR_RFADDR_NODE4);
3589 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3590 0xffff;
3591 break;
3592
3593 case SIS_REV_960:
3594 {
3595 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3596 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3597
3598 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3599 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3600
3601 int waittime, i;
3602
3603 /* Allow to read EEPROM from LAN. It is shared
3604 * between a 1394 controller and the NIC and each
3605 * time we access it, we need to set SIS_EECMD_REQ.
3606 */
3607 SIS_SET_EROMAR(sc, EROMAR_REQ);
3608
3609 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3610 /* Force EEPROM to idle state. */
3611
3612 /*
3613 * XXX-cube This is ugly. I'll look for docs about it.
3614 */
3615 SIS_SET_EROMAR(sc, EROMAR_EECS);
3616 SIP_DECL(sis900_eeprom_delay)(sc);
3617 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3618 SIS_SET_EROMAR(sc, EROMAR_EESK);
3619 SIP_DECL(sis900_eeprom_delay)(sc);
3620 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3621 SIP_DECL(sis900_eeprom_delay)(sc);
3622 }
3623 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3624 SIP_DECL(sis900_eeprom_delay)(sc);
3625 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3626
3627 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3628 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3629 sizeof(myea) / sizeof(myea[0]), myea);
3630 break;
3631 }
3632 DELAY(1);
3633 }
3634
3635 /*
3636 * Set SIS_EECTL_CLK to high, so a other master
3637 * can operate on the i2c bus.
3638 */
3639 SIS_SET_EROMAR(sc, EROMAR_EESK);
3640
3641 /* Refuse EEPROM access by LAN */
3642 SIS_SET_EROMAR(sc, EROMAR_DONE);
3643 } break;
3644
3645 default:
3646 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3647 sizeof(myea) / sizeof(myea[0]), myea);
3648 }
3649
3650 enaddr[0] = myea[0] & 0xff;
3651 enaddr[1] = myea[0] >> 8;
3652 enaddr[2] = myea[1] & 0xff;
3653 enaddr[3] = myea[1] >> 8;
3654 enaddr[4] = myea[2] & 0xff;
3655 enaddr[5] = myea[2] >> 8;
3656 }
3657
3658 /* Table and macro to bit-reverse an octet. */
3659 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3660 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3661
3662 static void
3663 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3664 const struct pci_attach_args *pa, u_int8_t *enaddr)
3665 {
3666 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3667 u_int8_t cksum, *e, match;
3668 int i;
3669
3670 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3671 sizeof(eeprom_data[0]), eeprom_data);
3672
3673 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3674 match = ~(match - 1);
3675
3676 cksum = 0x55;
3677 e = (u_int8_t *) eeprom_data;
3678 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3679 cksum += *e++;
3680 }
3681 if (cksum != match) {
3682 printf("%s: Checksum (%x) mismatch (%x)",
3683 sc->sc_dev.dv_xname, cksum, match);
3684 }
3685
3686 /*
3687 * Unrolled because it makes slightly more sense this way.
3688 * The DP83815 stores the MAC address in bit 0 of word 6
3689 * through bit 15 of word 8.
3690 */
3691 ea = &eeprom_data[6];
3692 enaddr[0] = ((*ea & 0x1) << 7);
3693 ea++;
3694 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3695 enaddr[1] = ((*ea & 0x1FE) >> 1);
3696 enaddr[2] = ((*ea & 0x1) << 7);
3697 ea++;
3698 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3699 enaddr[3] = ((*ea & 0x1FE) >> 1);
3700 enaddr[4] = ((*ea & 0x1) << 7);
3701 ea++;
3702 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3703 enaddr[5] = ((*ea & 0x1FE) >> 1);
3704
3705 /*
3706 * In case that's not weird enough, we also need to reverse
3707 * the bits in each byte. This all actually makes more sense
3708 * if you think about the EEPROM storage as an array of bits
3709 * being shifted into bytes, but that's not how we're looking
3710 * at it here...
3711 */
3712 for (i = 0; i < 6 ;i++)
3713 enaddr[i] = bbr(enaddr[i]);
3714 }
3715 #endif /* DP83820 */
3716
3717 /*
3718 * sip_mediastatus: [ifmedia interface function]
3719 *
3720 * Get the current interface media status.
3721 */
3722 static void
3723 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3724 {
3725 struct sip_softc *sc = ifp->if_softc;
3726
3727 mii_pollstat(&sc->sc_mii);
3728 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3729 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3730 sc->sc_flowflags;
3731 }
3732
3733 /*
3734 * sip_mediachange: [ifmedia interface function]
3735 *
3736 * Set hardware to newly-selected media.
3737 */
3738 static int
3739 SIP_DECL(mediachange)(struct ifnet *ifp)
3740 {
3741 struct sip_softc *sc = ifp->if_softc;
3742
3743 if (ifp->if_flags & IFF_UP)
3744 mii_mediachg(&sc->sc_mii);
3745 return (0);
3746 }
3747