Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.101.2.2
      1 /*	$NetBSD: if_sip.c,v 1.101.2.2 2006/04/21 11:57:35 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.101.2.2 2006/04/21 11:57:35 tron Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    131 #else			/* SiS900 and DP83815 */
    132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    133 #endif
    134 
    135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    136 
    137 /*
    138  * Transmit descriptor list size.  This is arbitrary, but allocate
    139  * enough descriptors for 128 pending transmissions, and 8 segments
    140  * per packet (64 for DP83820 for jumbo frames).
    141  *
    142  * This MUST work out to a power of 2.
    143  */
    144 #ifdef DP83820
    145 #define	SIP_NTXSEGS		64
    146 #define	SIP_NTXSEGS_ALLOC	16
    147 #else
    148 #define	SIP_NTXSEGS		16
    149 #define	SIP_NTXSEGS_ALLOC	8
    150 #endif
    151 
    152 #define	SIP_TXQUEUELEN		256
    153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    156 
    157 #if defined(DP83820)
    158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    159 #else
    160 #define	TX_DMAMAP_SIZE		MCLBYTES
    161 #endif
    162 
    163 /*
    164  * Receive descriptor list size.  We have one Rx buffer per incoming
    165  * packet, so this logic is a little simpler.
    166  *
    167  * Actually, on the DP83820, we allow the packet to consume more than
    168  * one buffer, in order to support jumbo Ethernet frames.  In that
    169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    171  * so we'd better be quick about handling receive interrupts.
    172  */
    173 #if defined(DP83820)
    174 #define	SIP_NRXDESC		256
    175 #else
    176 #define	SIP_NRXDESC		128
    177 #endif /* DP83820 */
    178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    180 
    181 /*
    182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    183  * a single clump that maps to a single DMA segment to make several things
    184  * easier.
    185  */
    186 struct sip_control_data {
    187 	/*
    188 	 * The transmit descriptors.
    189 	 */
    190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    191 
    192 	/*
    193 	 * The receive descriptors.
    194 	 */
    195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    196 };
    197 
    198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    201 
    202 /*
    203  * Software state for transmit jobs.
    204  */
    205 struct sip_txsoft {
    206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    208 	int txs_firstdesc;		/* first descriptor in packet */
    209 	int txs_lastdesc;		/* last descriptor in packet */
    210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    211 };
    212 
    213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    214 
    215 /*
    216  * Software state for receive jobs.
    217  */
    218 struct sip_rxsoft {
    219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    221 };
    222 
    223 /*
    224  * Software state per device.
    225  */
    226 struct sip_softc {
    227 	struct device sc_dev;		/* generic device information */
    228 	bus_space_tag_t sc_st;		/* bus space tag */
    229 	bus_space_handle_t sc_sh;	/* bus space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 	void *sc_sdhook;		/* shutdown hook */
    233 
    234 	const struct sip_product *sc_model; /* which model are we? */
    235 	int sc_rev;			/* chip revision */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	struct mii_data sc_mii;		/* MII/media information */
    240 
    241 	struct callout sc_tick_ch;	/* tick callout */
    242 
    243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    245 
    246 	/*
    247 	 * Software state for transmit and receive descriptors.
    248 	 */
    249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    251 
    252 	/*
    253 	 * Control data structures.
    254 	 */
    255 	struct sip_control_data *sc_control_data;
    256 #define	sc_txdescs	sc_control_data->scd_txdescs
    257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    258 
    259 #ifdef SIP_EVENT_COUNTERS
    260 	/*
    261 	 * Event counters.
    262 	 */
    263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    271 #ifdef DP83820
    272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    279 #endif /* DP83820 */
    280 #endif /* SIP_EVENT_COUNTERS */
    281 
    282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    284 	u_int32_t sc_imr;		/* prototype IMR register */
    285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    286 
    287 	u_int32_t sc_cfg;		/* prototype CFG register */
    288 
    289 #ifdef DP83820
    290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    291 #endif /* DP83820 */
    292 
    293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    295 
    296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    297 
    298 	int	sc_flowflags;		/* 802.3x flow control flags */
    299 #ifdef DP83820
    300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    301 #else
    302 	int	sc_paused;		/* paused indication */
    303 #endif
    304 
    305 	int	sc_txfree;		/* number of free Tx descriptors */
    306 	int	sc_txnext;		/* next ready Tx descriptor */
    307 	int	sc_txwin;		/* Tx descriptors since last intr */
    308 
    309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    311 
    312 	short	sc_if_flags;
    313 
    314 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    315 #if defined(DP83820)
    316 	int	sc_rxdiscard;
    317 	int	sc_rxlen;
    318 	struct mbuf *sc_rxhead;
    319 	struct mbuf *sc_rxtail;
    320 	struct mbuf **sc_rxtailp;
    321 #endif /* DP83820 */
    322 
    323 #if NRND > 0
    324 	rndsource_element_t rnd_source;	/* random source */
    325 #endif
    326 };
    327 
    328 #ifdef DP83820
    329 #define	SIP_RXCHAIN_RESET(sc)						\
    330 do {									\
    331 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    332 	*(sc)->sc_rxtailp = NULL;					\
    333 	(sc)->sc_rxlen = 0;						\
    334 } while (/*CONSTCOND*/0)
    335 
    336 #define	SIP_RXCHAIN_LINK(sc, m)						\
    337 do {									\
    338 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    339 	(sc)->sc_rxtailp = &(m)->m_next;				\
    340 } while (/*CONSTCOND*/0)
    341 #endif /* DP83820 */
    342 
    343 #ifdef SIP_EVENT_COUNTERS
    344 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    345 #else
    346 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    347 #endif
    348 
    349 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    350 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    351 
    352 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    353 do {									\
    354 	int __x, __n;							\
    355 									\
    356 	__x = (x);							\
    357 	__n = (n);							\
    358 									\
    359 	/* If it will wrap around, sync to the end of the ring. */	\
    360 	if ((__x + __n) > SIP_NTXDESC) {				\
    361 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    362 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    363 		    (SIP_NTXDESC - __x), (ops));			\
    364 		__n -= (SIP_NTXDESC - __x);				\
    365 		__x = 0;						\
    366 	}								\
    367 									\
    368 	/* Now sync whatever is left. */				\
    369 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    370 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    371 } while (0)
    372 
    373 #define	SIP_CDRXSYNC(sc, x, ops)					\
    374 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    375 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    376 
    377 #ifdef DP83820
    378 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    379 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
    380 #else
    381 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    382 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    383 #endif
    384 #define	SIP_INIT_RXDESC(sc, x)						\
    385 do {									\
    386 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    387 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    388 									\
    389 	__sipd->sipd_link =						\
    390 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    391 	__sipd->sipd_bufptr =						\
    392 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    393 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    394 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    395 	SIP_INIT_RXDESC_EXTSTS						\
    396 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    397 } while (0)
    398 
    399 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    400 	((sc)->sc_model->sip_vendor == (v) &&				\
    401 	 (sc)->sc_model->sip_product == (p) &&				\
    402 	 (sc)->sc_rev == (r))
    403 
    404 #define	SIP_CHIP_MODEL(sc, v, p)					\
    405 	((sc)->sc_model->sip_vendor == (v) &&				\
    406 	 (sc)->sc_model->sip_product == (p))
    407 
    408 #if !defined(DP83820)
    409 #define	SIP_SIS900_REV(sc, rev)						\
    410 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    411 #endif
    412 
    413 #define SIP_TIMEOUT 1000
    414 
    415 static void	SIP_DECL(start)(struct ifnet *);
    416 static void	SIP_DECL(watchdog)(struct ifnet *);
    417 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    418 static int	SIP_DECL(init)(struct ifnet *);
    419 static void	SIP_DECL(stop)(struct ifnet *, int);
    420 
    421 static void	SIP_DECL(shutdown)(void *);
    422 
    423 static void	SIP_DECL(reset)(struct sip_softc *);
    424 static void	SIP_DECL(rxdrain)(struct sip_softc *);
    425 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    426 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
    427 				      u_int16_t *);
    428 static void	SIP_DECL(tick)(void *);
    429 
    430 #if !defined(DP83820)
    431 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    432 #endif /* ! DP83820 */
    433 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    434 
    435 #if defined(DP83820)
    436 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    437 		    const struct pci_attach_args *, u_int8_t *);
    438 #else
    439 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    440 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    441 		    const struct pci_attach_args *, u_int8_t *);
    442 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    443 		    const struct pci_attach_args *, u_int8_t *);
    444 #endif /* DP83820 */
    445 
    446 static int	SIP_DECL(intr)(void *);
    447 static void	SIP_DECL(txintr)(struct sip_softc *);
    448 static void	SIP_DECL(rxintr)(struct sip_softc *);
    449 
    450 #if defined(DP83820)
    451 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    452 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    453 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    454 #else
    455 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    456 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    457 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
    458 
    459 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    460 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    461 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    462 #endif /* DP83820 */
    463 
    464 static int	SIP_DECL(mediachange)(struct ifnet *);
    465 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    466 
    467 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    468 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
    469 
    470 int	SIP_DECL(copy_small) = 0;
    471 
    472 #ifdef DP83820
    473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    474     gsip_match, gsip_attach, NULL, NULL);
    475 #else
    476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    477     sip_match, sip_attach, NULL, NULL);
    478 #endif
    479 
    480 /*
    481  * Descriptions of the variants of the SiS900.
    482  */
    483 struct sip_variant {
    484 	int	(*sipv_mii_readreg)(struct device *, int, int);
    485 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    486 	void	(*sipv_mii_statchg)(struct device *);
    487 	void	(*sipv_set_filter)(struct sip_softc *);
    488 	void	(*sipv_read_macaddr)(struct sip_softc *,
    489 		    const struct pci_attach_args *, u_int8_t *);
    490 };
    491 
    492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
    493 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
    494 
    495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
    496 	SIP_DECL(mii_bitbang_read),
    497 	SIP_DECL(mii_bitbang_write),
    498 	{
    499 		EROMAR_MDIO,		/* MII_BIT_MDO */
    500 		EROMAR_MDIO,		/* MII_BIT_MDI */
    501 		EROMAR_MDC,		/* MII_BIT_MDC */
    502 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    503 		0,			/* MII_BIT_DIR_PHY_HOST */
    504 	}
    505 };
    506 
    507 #if defined(DP83820)
    508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
    509 	SIP_DECL(dp83820_mii_readreg),
    510 	SIP_DECL(dp83820_mii_writereg),
    511 	SIP_DECL(dp83820_mii_statchg),
    512 	SIP_DECL(dp83815_set_filter),
    513 	SIP_DECL(dp83820_read_macaddr),
    514 };
    515 #else
    516 static const struct sip_variant SIP_DECL(variant_sis900) = {
    517 	SIP_DECL(sis900_mii_readreg),
    518 	SIP_DECL(sis900_mii_writereg),
    519 	SIP_DECL(sis900_mii_statchg),
    520 	SIP_DECL(sis900_set_filter),
    521 	SIP_DECL(sis900_read_macaddr),
    522 };
    523 
    524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
    525 	SIP_DECL(dp83815_mii_readreg),
    526 	SIP_DECL(dp83815_mii_writereg),
    527 	SIP_DECL(dp83815_mii_statchg),
    528 	SIP_DECL(dp83815_set_filter),
    529 	SIP_DECL(dp83815_read_macaddr),
    530 };
    531 #endif /* DP83820 */
    532 
    533 /*
    534  * Devices supported by this driver.
    535  */
    536 static const struct sip_product {
    537 	pci_vendor_id_t		sip_vendor;
    538 	pci_product_id_t	sip_product;
    539 	const char		*sip_name;
    540 	const struct sip_variant *sip_variant;
    541 } SIP_DECL(products)[] = {
    542 #if defined(DP83820)
    543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    544 	  "NatSemi DP83820 Gigabit Ethernet",
    545 	  &SIP_DECL(variant_dp83820) },
    546 #else
    547 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    548 	  "SiS 900 10/100 Ethernet",
    549 	  &SIP_DECL(variant_sis900) },
    550 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    551 	  "SiS 7016 10/100 Ethernet",
    552 	  &SIP_DECL(variant_sis900) },
    553 
    554 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    555 	  "NatSemi DP83815 10/100 Ethernet",
    556 	  &SIP_DECL(variant_dp83815) },
    557 #endif /* DP83820 */
    558 
    559 	{ 0,			0,
    560 	  NULL,
    561 	  NULL },
    562 };
    563 
    564 static const struct sip_product *
    565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    566 {
    567 	const struct sip_product *sip;
    568 
    569 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    570 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    571 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    572 			return (sip);
    573 	}
    574 	return (NULL);
    575 }
    576 
    577 #ifdef DP83820
    578 /*
    579  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    580  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    581  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    582  * which means we try to use 64-bit data transfers on those cards if we
    583  * happen to be plugged into a 32-bit slot.
    584  *
    585  * What we do is use this table of cards known to be 64-bit cards.  If
    586  * you have a 64-bit card who's subsystem ID is not listed in this table,
    587  * send the output of "pcictl dump ..." of the device to me so that your
    588  * card will use the 64-bit data path when plugged into a 64-bit slot.
    589  *
    590  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    591  *	   June 30, 2002
    592  */
    593 static int
    594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    595 {
    596 	static const struct {
    597 		pci_vendor_id_t c64_vendor;
    598 		pci_product_id_t c64_product;
    599 	} card64[] = {
    600 		/* Asante GigaNIX */
    601 		{ 0x128a,	0x0002 },
    602 
    603 		/* Accton EN1407-T, Planex GN-1000TE */
    604 		{ 0x1113,	0x1407 },
    605 
    606 		/* Netgear GA-621 */
    607 		{ 0x1385,	0x621a },
    608 
    609 		/* SMC EZ Card */
    610 		{ 0x10b8,	0x9462 },
    611 
    612 		{ 0, 0}
    613 	};
    614 	pcireg_t subsys;
    615 	int i;
    616 
    617 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    618 
    619 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    620 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    621 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    622 			return (1);
    623 	}
    624 
    625 	return (0);
    626 }
    627 #endif /* DP83820 */
    628 
    629 static int
    630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    631 {
    632 	struct pci_attach_args *pa = aux;
    633 
    634 	if (SIP_DECL(lookup)(pa) != NULL)
    635 		return (1);
    636 
    637 	return (0);
    638 }
    639 
    640 static void
    641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    642 {
    643 	struct sip_softc *sc = (struct sip_softc *) self;
    644 	struct pci_attach_args *pa = aux;
    645 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    646 	pci_chipset_tag_t pc = pa->pa_pc;
    647 	pci_intr_handle_t ih;
    648 	const char *intrstr = NULL;
    649 	bus_space_tag_t iot, memt;
    650 	bus_space_handle_t ioh, memh;
    651 	bus_dma_segment_t seg;
    652 	int ioh_valid, memh_valid;
    653 	int i, rseg, error;
    654 	const struct sip_product *sip;
    655 	pcireg_t pmode;
    656 	u_int8_t enaddr[ETHER_ADDR_LEN];
    657 	int pmreg;
    658 #ifdef DP83820
    659 	pcireg_t memtype;
    660 	u_int32_t reg;
    661 #endif /* DP83820 */
    662 
    663 	callout_init(&sc->sc_tick_ch);
    664 
    665 	sip = SIP_DECL(lookup)(pa);
    666 	if (sip == NULL) {
    667 		printf("\n");
    668 		panic(SIP_STR(attach) ": impossible");
    669 	}
    670 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    671 
    672 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    673 
    674 	sc->sc_model = sip;
    675 
    676 	/*
    677 	 * XXX Work-around broken PXE firmware on some boards.
    678 	 *
    679 	 * The DP83815 shares an address decoder with the MEM BAR
    680 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    681 	 * so that memory mapped access works.
    682 	 */
    683 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    684 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    685 	    ~PCI_MAPREG_ROM_ENABLE);
    686 
    687 	/*
    688 	 * Map the device.
    689 	 */
    690 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    691 	    PCI_MAPREG_TYPE_IO, 0,
    692 	    &iot, &ioh, NULL, NULL) == 0);
    693 #ifdef DP83820
    694 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    695 	switch (memtype) {
    696 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    697 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    698 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    699 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    700 		break;
    701 	default:
    702 		memh_valid = 0;
    703 	}
    704 #else
    705 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    706 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    707 	    &memt, &memh, NULL, NULL) == 0);
    708 #endif /* DP83820 */
    709 
    710 	if (memh_valid) {
    711 		sc->sc_st = memt;
    712 		sc->sc_sh = memh;
    713 	} else if (ioh_valid) {
    714 		sc->sc_st = iot;
    715 		sc->sc_sh = ioh;
    716 	} else {
    717 		printf("%s: unable to map device registers\n",
    718 		    sc->sc_dev.dv_xname);
    719 		return;
    720 	}
    721 
    722 	sc->sc_dmat = pa->pa_dmat;
    723 
    724 	/*
    725 	 * Make sure bus mastering is enabled.  Also make sure
    726 	 * Write/Invalidate is enabled if we're allowed to use it.
    727 	 */
    728 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    729 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    730 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    731 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    732 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    733 
    734 	/* Get it out of power save mode if needed. */
    735 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    736 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    737 		    PCI_PMCSR_STATE_MASK;
    738 		if (pmode == PCI_PMCSR_STATE_D3) {
    739 			/*
    740 			 * The card has lost all configuration data in
    741 			 * this state, so punt.
    742 			 */
    743 			printf("%s: unable to wake up from power state D3\n",
    744 			    sc->sc_dev.dv_xname);
    745 			return;
    746 		}
    747 		if (pmode != PCI_PMCSR_STATE_D0) {
    748 			printf("%s: waking up from power state D%d\n",
    749 			    sc->sc_dev.dv_xname, pmode);
    750 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    751 			    PCI_PMCSR_STATE_D0);
    752 		}
    753 	}
    754 
    755 	/*
    756 	 * Map and establish our interrupt.
    757 	 */
    758 	if (pci_intr_map(pa, &ih)) {
    759 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    760 		return;
    761 	}
    762 	intrstr = pci_intr_string(pc, ih);
    763 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    764 	if (sc->sc_ih == NULL) {
    765 		printf("%s: unable to establish interrupt",
    766 		    sc->sc_dev.dv_xname);
    767 		if (intrstr != NULL)
    768 			printf(" at %s", intrstr);
    769 		printf("\n");
    770 		return;
    771 	}
    772 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    773 
    774 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    775 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    776 
    777 	/*
    778 	 * Allocate the control data structures, and create and load the
    779 	 * DMA map for it.
    780 	 */
    781 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    782 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    783 	    0)) != 0) {
    784 		printf("%s: unable to allocate control data, error = %d\n",
    785 		    sc->sc_dev.dv_xname, error);
    786 		goto fail_0;
    787 	}
    788 
    789 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    790 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    791 	    BUS_DMA_COHERENT)) != 0) {
    792 		printf("%s: unable to map control data, error = %d\n",
    793 		    sc->sc_dev.dv_xname, error);
    794 		goto fail_1;
    795 	}
    796 
    797 	if ((error = bus_dmamap_create(sc->sc_dmat,
    798 	    sizeof(struct sip_control_data), 1,
    799 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    800 		printf("%s: unable to create control data DMA map, "
    801 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    802 		goto fail_2;
    803 	}
    804 
    805 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    806 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    807 	    0)) != 0) {
    808 		printf("%s: unable to load control data DMA map, error = %d\n",
    809 		    sc->sc_dev.dv_xname, error);
    810 		goto fail_3;
    811 	}
    812 
    813 	/*
    814 	 * Create the transmit buffer DMA maps.
    815 	 */
    816 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    817 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    818 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    819 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    820 			printf("%s: unable to create tx DMA map %d, "
    821 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    822 			goto fail_4;
    823 		}
    824 	}
    825 
    826 	/*
    827 	 * Create the receive buffer DMA maps.
    828 	 */
    829 	for (i = 0; i < SIP_NRXDESC; i++) {
    830 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    831 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    832 			printf("%s: unable to create rx DMA map %d, "
    833 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    834 			goto fail_5;
    835 		}
    836 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    837 	}
    838 
    839 	/*
    840 	 * Reset the chip to a known state.
    841 	 */
    842 	SIP_DECL(reset)(sc);
    843 
    844 	/*
    845 	 * Read the Ethernet address from the EEPROM.  This might
    846 	 * also fetch other stuff from the EEPROM and stash it
    847 	 * in the softc.
    848 	 */
    849 	sc->sc_cfg = 0;
    850 #if !defined(DP83820)
    851 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    852 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    853 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    854 
    855 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    856 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
    857 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    858 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
    859 						SIP_CFG) & CFG_EDBMASTEN);
    860 #endif
    861 
    862 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    863 
    864 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    865 	    ether_sprintf(enaddr));
    866 
    867 	/*
    868 	 * Initialize the configuration register: aggressive PCI
    869 	 * bus request algorithm, default backoff, default OW timer,
    870 	 * default parity error detection.
    871 	 *
    872 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    873 	 * friends -- it affects packet data, not descriptors.
    874 	 */
    875 #ifdef DP83820
    876 	/*
    877 	 * Cause the chip to load configuration data from the EEPROM.
    878 	 */
    879 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    880 	for (i = 0; i < 10000; i++) {
    881 		delay(10);
    882 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    883 		    PTSCR_EELOAD_EN) == 0)
    884 			break;
    885 	}
    886 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    887 	    PTSCR_EELOAD_EN) {
    888 		printf("%s: timeout loading configuration from EEPROM\n",
    889 		    sc->sc_dev.dv_xname);
    890 		return;
    891 	}
    892 
    893 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    894 
    895 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    896 	if (reg & CFG_PCI64_DET) {
    897 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    898 		/*
    899 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    900 		 * data transfers.
    901 		 *
    902 		 * We can't use the DATA64_EN bit in the EEPROM, because
    903 		 * vendors of 32-bit cards fail to clear that bit in many
    904 		 * cases (yet the card still detects that it's in a 64-bit
    905 		 * slot; go figure).
    906 		 */
    907 		if (SIP_DECL(check_64bit)(pa)) {
    908 			sc->sc_cfg |= CFG_DATA64_EN;
    909 			printf(", using 64-bit data transfers");
    910 		}
    911 		printf("\n");
    912 	}
    913 
    914 	/*
    915 	 * XXX Need some PCI flags indicating support for
    916 	 * XXX 64-bit addressing.
    917 	 */
    918 #if 0
    919 	if (reg & CFG_M64ADDR)
    920 		sc->sc_cfg |= CFG_M64ADDR;
    921 	if (reg & CFG_T64ADDR)
    922 		sc->sc_cfg |= CFG_T64ADDR;
    923 #endif
    924 
    925 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    926 		const char *sep = "";
    927 		printf("%s: using ", sc->sc_dev.dv_xname);
    928 		if (reg & CFG_EXT_125) {
    929 			sc->sc_cfg |= CFG_EXT_125;
    930 			printf("%s125MHz clock", sep);
    931 			sep = ", ";
    932 		}
    933 		if (reg & CFG_TBI_EN) {
    934 			sc->sc_cfg |= CFG_TBI_EN;
    935 			printf("%sten-bit interface", sep);
    936 			sep = ", ";
    937 		}
    938 		printf("\n");
    939 	}
    940 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    941 	    (reg & CFG_MRM_DIS) != 0)
    942 		sc->sc_cfg |= CFG_MRM_DIS;
    943 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    944 	    (reg & CFG_MWI_DIS) != 0)
    945 		sc->sc_cfg |= CFG_MWI_DIS;
    946 
    947 	/*
    948 	 * Use the extended descriptor format on the DP83820.  This
    949 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    950 	 * checksumming.
    951 	 */
    952 	sc->sc_cfg |= CFG_EXTSTS_EN;
    953 #endif /* DP83820 */
    954 
    955 	/*
    956 	 * Initialize our media structures and probe the MII.
    957 	 */
    958 	sc->sc_mii.mii_ifp = ifp;
    959 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    960 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    961 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    962 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    963 	    SIP_DECL(mediastatus));
    964 
    965 	/*
    966 	 * XXX We cannot handle flow control on the DP83815.
    967 	 */
    968 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
    969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    970 			   MII_OFFSET_ANY, 0);
    971 	else
    972 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    973 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
    974 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    975 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    976 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    977 	} else
    978 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    979 
    980 	ifp = &sc->sc_ethercom.ec_if;
    981 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    982 	ifp->if_softc = sc;
    983 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    984 	sc->sc_if_flags = ifp->if_flags;
    985 	ifp->if_ioctl = SIP_DECL(ioctl);
    986 	ifp->if_start = SIP_DECL(start);
    987 	ifp->if_watchdog = SIP_DECL(watchdog);
    988 	ifp->if_init = SIP_DECL(init);
    989 	ifp->if_stop = SIP_DECL(stop);
    990 	IFQ_SET_READY(&ifp->if_snd);
    991 
    992 	/*
    993 	 * We can support 802.1Q VLAN-sized frames.
    994 	 */
    995 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    996 
    997 #ifdef DP83820
    998 	/*
    999 	 * And the DP83820 can do VLAN tagging in hardware, and
   1000 	 * support the jumbo Ethernet MTU.
   1001 	 */
   1002 	sc->sc_ethercom.ec_capabilities |=
   1003 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1004 
   1005 	/*
   1006 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1007 	 * in hardware.
   1008 	 */
   1009 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
   1010 	    IFCAP_CSUM_UDPv4;
   1011 #endif /* DP83820 */
   1012 
   1013 	/*
   1014 	 * Attach the interface.
   1015 	 */
   1016 	if_attach(ifp);
   1017 	ether_ifattach(ifp, enaddr);
   1018 #if NRND > 0
   1019 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1020 	    RND_TYPE_NET, 0);
   1021 #endif
   1022 
   1023 	/*
   1024 	 * The number of bytes that must be available in
   1025 	 * the Tx FIFO before the bus master can DMA more
   1026 	 * data into the FIFO.
   1027 	 */
   1028 	sc->sc_tx_fill_thresh = 64 / 32;
   1029 
   1030 	/*
   1031 	 * Start at a drain threshold of 512 bytes.  We will
   1032 	 * increase it if a DMA underrun occurs.
   1033 	 *
   1034 	 * XXX The minimum value of this variable should be
   1035 	 * tuned.  We may be able to improve performance
   1036 	 * by starting with a lower value.  That, however,
   1037 	 * may trash the first few outgoing packets if the
   1038 	 * PCI bus is saturated.
   1039 	 */
   1040 #ifdef DP83820
   1041 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
   1042 #else
   1043 	sc->sc_tx_drain_thresh = 1504 / 32;
   1044 #endif
   1045 
   1046 	/*
   1047 	 * Initialize the Rx FIFO drain threshold.
   1048 	 *
   1049 	 * This is in units of 8 bytes.
   1050 	 *
   1051 	 * We should never set this value lower than 2; 14 bytes are
   1052 	 * required to filter the packet.
   1053 	 */
   1054 	sc->sc_rx_drain_thresh = 128 / 8;
   1055 
   1056 #ifdef SIP_EVENT_COUNTERS
   1057 	/*
   1058 	 * Attach event counters.
   1059 	 */
   1060 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1061 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1062 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1063 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1064 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1065 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1066 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1067 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1068 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1069 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1070 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1071 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1072 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1073 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1074 #ifndef DP83820
   1075 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1076 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1077 #endif /* !DP83820 */
   1078 #ifdef DP83820
   1079 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1080 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1081 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1082 	    NULL, sc->sc_dev.dv_xname, "txpause");
   1083 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1084 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1085 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1086 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1087 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1088 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1089 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1090 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1091 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1092 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1093 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1094 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1095 #endif /* DP83820 */
   1096 #endif /* SIP_EVENT_COUNTERS */
   1097 
   1098 	/*
   1099 	 * Make sure the interface is shutdown during reboot.
   1100 	 */
   1101 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1102 	if (sc->sc_sdhook == NULL)
   1103 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1104 		    sc->sc_dev.dv_xname);
   1105 	return;
   1106 
   1107 	/*
   1108 	 * Free any resources we've allocated during the failed attach
   1109 	 * attempt.  Do this in reverse order and fall through.
   1110 	 */
   1111  fail_5:
   1112 	for (i = 0; i < SIP_NRXDESC; i++) {
   1113 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1114 			bus_dmamap_destroy(sc->sc_dmat,
   1115 			    sc->sc_rxsoft[i].rxs_dmamap);
   1116 	}
   1117  fail_4:
   1118 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1119 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1120 			bus_dmamap_destroy(sc->sc_dmat,
   1121 			    sc->sc_txsoft[i].txs_dmamap);
   1122 	}
   1123 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1124  fail_3:
   1125 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1126  fail_2:
   1127 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1128 	    sizeof(struct sip_control_data));
   1129  fail_1:
   1130 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1131  fail_0:
   1132 	return;
   1133 }
   1134 
   1135 /*
   1136  * sip_shutdown:
   1137  *
   1138  *	Make sure the interface is stopped at reboot time.
   1139  */
   1140 static void
   1141 SIP_DECL(shutdown)(void *arg)
   1142 {
   1143 	struct sip_softc *sc = arg;
   1144 
   1145 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1146 }
   1147 
   1148 /*
   1149  * sip_start:		[ifnet interface function]
   1150  *
   1151  *	Start packet transmission on the interface.
   1152  */
   1153 static void
   1154 SIP_DECL(start)(struct ifnet *ifp)
   1155 {
   1156 	struct sip_softc *sc = ifp->if_softc;
   1157 	struct mbuf *m0;
   1158 #ifndef DP83820
   1159 	struct mbuf *m;
   1160 #endif
   1161 	struct sip_txsoft *txs;
   1162 	bus_dmamap_t dmamap;
   1163 	int error, nexttx, lasttx, seg;
   1164 	int ofree = sc->sc_txfree;
   1165 #if 0
   1166 	int firsttx = sc->sc_txnext;
   1167 #endif
   1168 #ifdef DP83820
   1169 	struct m_tag *mtag;
   1170 	u_int32_t extsts;
   1171 #endif
   1172 
   1173 #ifndef DP83820
   1174 	/*
   1175 	 * If we've been told to pause, don't transmit any more packets.
   1176 	 */
   1177 	if (sc->sc_paused)
   1178 		ifp->if_flags |= IFF_OACTIVE;
   1179 #endif
   1180 
   1181 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1182 		return;
   1183 
   1184 	/*
   1185 	 * Loop through the send queue, setting up transmit descriptors
   1186 	 * until we drain the queue, or use up all available transmit
   1187 	 * descriptors.
   1188 	 */
   1189 	for (;;) {
   1190 		/* Get a work queue entry. */
   1191 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1192 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1193 			break;
   1194 		}
   1195 
   1196 		/*
   1197 		 * Grab a packet off the queue.
   1198 		 */
   1199 		IFQ_POLL(&ifp->if_snd, m0);
   1200 		if (m0 == NULL)
   1201 			break;
   1202 #ifndef DP83820
   1203 		m = NULL;
   1204 #endif
   1205 
   1206 		dmamap = txs->txs_dmamap;
   1207 
   1208 #ifdef DP83820
   1209 		/*
   1210 		 * Load the DMA map.  If this fails, the packet either
   1211 		 * didn't fit in the allotted number of segments, or we
   1212 		 * were short on resources.  For the too-many-segments
   1213 		 * case, we simply report an error and drop the packet,
   1214 		 * since we can't sanely copy a jumbo packet to a single
   1215 		 * buffer.
   1216 		 */
   1217 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1218 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1219 		if (error) {
   1220 			if (error == EFBIG) {
   1221 				printf("%s: Tx packet consumes too many "
   1222 				    "DMA segments, dropping...\n",
   1223 				    sc->sc_dev.dv_xname);
   1224 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1225 				m_freem(m0);
   1226 				continue;
   1227 			}
   1228 			/*
   1229 			 * Short on resources, just stop for now.
   1230 			 */
   1231 			break;
   1232 		}
   1233 #else /* DP83820 */
   1234 		/*
   1235 		 * Load the DMA map.  If this fails, the packet either
   1236 		 * didn't fit in the alloted number of segments, or we
   1237 		 * were short on resources.  In this case, we'll copy
   1238 		 * and try again.
   1239 		 */
   1240 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1241 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1242 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1243 			if (m == NULL) {
   1244 				printf("%s: unable to allocate Tx mbuf\n",
   1245 				    sc->sc_dev.dv_xname);
   1246 				break;
   1247 			}
   1248 			if (m0->m_pkthdr.len > MHLEN) {
   1249 				MCLGET(m, M_DONTWAIT);
   1250 				if ((m->m_flags & M_EXT) == 0) {
   1251 					printf("%s: unable to allocate Tx "
   1252 					    "cluster\n", sc->sc_dev.dv_xname);
   1253 					m_freem(m);
   1254 					break;
   1255 				}
   1256 			}
   1257 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1258 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1259 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1260 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1261 			if (error) {
   1262 				printf("%s: unable to load Tx buffer, "
   1263 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1264 				break;
   1265 			}
   1266 		}
   1267 #endif /* DP83820 */
   1268 
   1269 		/*
   1270 		 * Ensure we have enough descriptors free to describe
   1271 		 * the packet.  Note, we always reserve one descriptor
   1272 		 * at the end of the ring as a termination point, to
   1273 		 * prevent wrap-around.
   1274 		 */
   1275 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1276 			/*
   1277 			 * Not enough free descriptors to transmit this
   1278 			 * packet.  We haven't committed anything yet,
   1279 			 * so just unload the DMA map, put the packet
   1280 			 * back on the queue, and punt.  Notify the upper
   1281 			 * layer that there are not more slots left.
   1282 			 *
   1283 			 * XXX We could allocate an mbuf and copy, but
   1284 			 * XXX is it worth it?
   1285 			 */
   1286 			ifp->if_flags |= IFF_OACTIVE;
   1287 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1288 #ifndef DP83820
   1289 			if (m != NULL)
   1290 				m_freem(m);
   1291 #endif
   1292 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1293 			break;
   1294 		}
   1295 
   1296 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1297 #ifndef DP83820
   1298 		if (m != NULL) {
   1299 			m_freem(m0);
   1300 			m0 = m;
   1301 		}
   1302 #endif
   1303 
   1304 		/*
   1305 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1306 		 */
   1307 
   1308 		/* Sync the DMA map. */
   1309 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1310 		    BUS_DMASYNC_PREWRITE);
   1311 
   1312 		/*
   1313 		 * Initialize the transmit descriptors.
   1314 		 */
   1315 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1316 		     seg < dmamap->dm_nsegs;
   1317 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1318 			/*
   1319 			 * If this is the first descriptor we're
   1320 			 * enqueueing, don't set the OWN bit just
   1321 			 * yet.  That could cause a race condition.
   1322 			 * We'll do it below.
   1323 			 */
   1324 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1325 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1326 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1327 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1328 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1329 #ifdef DP83820
   1330 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1331 #endif /* DP83820 */
   1332 			lasttx = nexttx;
   1333 		}
   1334 
   1335 		/* Clear the MORE bit on the last segment. */
   1336 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1337 
   1338 		/*
   1339 		 * If we're in the interrupt delay window, delay the
   1340 		 * interrupt.
   1341 		 */
   1342 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1343 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1344 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1345 			    htole32(CMDSTS_INTR);
   1346 			sc->sc_txwin = 0;
   1347 		}
   1348 
   1349 #ifdef DP83820
   1350 		/*
   1351 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1352 		 * up the descriptor to encapsulate the packet for us.
   1353 		 *
   1354 		 * This apparently has to be on the last descriptor of
   1355 		 * the packet.
   1356 		 */
   1357 
   1358 		/*
   1359 		 * Byte swapping is tricky. We need to provide the tag
   1360 		 * in a network byte order. On a big-endian machine,
   1361 		 * the byteorder is correct, but we need to swap it
   1362 		 * anyway, because this will be undone by the outside
   1363 		 * htole32(). That's why there must be an
   1364 		 * unconditional swap instead of htons() inside.
   1365 		 */
   1366 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1367 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1368 			    htole32(EXTSTS_VPKT |
   1369 					(bswap16(VLAN_TAG_VALUE(mtag)) &
   1370 					 EXTSTS_VTCI));
   1371 		}
   1372 
   1373 		/*
   1374 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1375 		 * checksumming, set up the descriptor to do this work
   1376 		 * for us.
   1377 		 *
   1378 		 * This apparently has to be on the first descriptor of
   1379 		 * the packet.
   1380 		 *
   1381 		 * Byte-swap constants so the compiler can optimize.
   1382 		 */
   1383 		extsts = 0;
   1384 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1385 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1386 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1387 			extsts |= htole32(EXTSTS_IPPKT);
   1388 		}
   1389 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1390 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1391 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1392 			extsts |= htole32(EXTSTS_TCPPKT);
   1393 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1394 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1395 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1396 			extsts |= htole32(EXTSTS_UDPPKT);
   1397 		}
   1398 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1399 #endif /* DP83820 */
   1400 
   1401 		/* Sync the descriptors we're using. */
   1402 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1403 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1404 
   1405 		/*
   1406 		 * The entire packet is set up.  Give the first descrptor
   1407 		 * to the chip now.
   1408 		 */
   1409 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1410 		    htole32(CMDSTS_OWN);
   1411 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1412 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1413 
   1414 		/*
   1415 		 * Store a pointer to the packet so we can free it later,
   1416 		 * and remember what txdirty will be once the packet is
   1417 		 * done.
   1418 		 */
   1419 		txs->txs_mbuf = m0;
   1420 		txs->txs_firstdesc = sc->sc_txnext;
   1421 		txs->txs_lastdesc = lasttx;
   1422 
   1423 		/* Advance the tx pointer. */
   1424 		sc->sc_txfree -= dmamap->dm_nsegs;
   1425 		sc->sc_txnext = nexttx;
   1426 
   1427 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1428 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1429 
   1430 #if NBPFILTER > 0
   1431 		/*
   1432 		 * Pass the packet to any BPF listeners.
   1433 		 */
   1434 		if (ifp->if_bpf)
   1435 			bpf_mtap(ifp->if_bpf, m0);
   1436 #endif /* NBPFILTER > 0 */
   1437 	}
   1438 
   1439 	if (txs == NULL || sc->sc_txfree == 0) {
   1440 		/* No more slots left; notify upper layer. */
   1441 		ifp->if_flags |= IFF_OACTIVE;
   1442 	}
   1443 
   1444 	if (sc->sc_txfree != ofree) {
   1445 		/*
   1446 		 * Start the transmit process.  Note, the manual says
   1447 		 * that if there are no pending transmissions in the
   1448 		 * chip's internal queue (indicated by TXE being clear),
   1449 		 * then the driver software must set the TXDP to the
   1450 		 * first descriptor to be transmitted.  However, if we
   1451 		 * do this, it causes serious performance degredation on
   1452 		 * the DP83820 under load, not setting TXDP doesn't seem
   1453 		 * to adversely affect the SiS 900 or DP83815.
   1454 		 *
   1455 		 * Well, I guess it wouldn't be the first time a manual
   1456 		 * has lied -- and they could be speaking of the NULL-
   1457 		 * terminated descriptor list case, rather than OWN-
   1458 		 * terminated rings.
   1459 		 */
   1460 #if 0
   1461 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1462 		     CR_TXE) == 0) {
   1463 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1464 			    SIP_CDTXADDR(sc, firsttx));
   1465 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1466 		}
   1467 #else
   1468 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1469 #endif
   1470 
   1471 		/* Set a watchdog timer in case the chip flakes out. */
   1472 #ifdef DP83820
   1473 		/* Gigabit autonegotiation takes 5 seconds. */
   1474 		ifp->if_timer = 10;
   1475 #else
   1476 		ifp->if_timer = 5;
   1477 #endif
   1478 	}
   1479 }
   1480 
   1481 /*
   1482  * sip_watchdog:	[ifnet interface function]
   1483  *
   1484  *	Watchdog timer handler.
   1485  */
   1486 static void
   1487 SIP_DECL(watchdog)(struct ifnet *ifp)
   1488 {
   1489 	struct sip_softc *sc = ifp->if_softc;
   1490 
   1491 	/*
   1492 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1493 	 * If we get a timeout, try and sweep up transmit descriptors.
   1494 	 * If we manage to sweep them all up, ignore the lack of
   1495 	 * interrupt.
   1496 	 */
   1497 	SIP_DECL(txintr)(sc);
   1498 
   1499 	if (sc->sc_txfree != SIP_NTXDESC) {
   1500 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1501 		ifp->if_oerrors++;
   1502 
   1503 		/* Reset the interface. */
   1504 		(void) SIP_DECL(init)(ifp);
   1505 	} else if (ifp->if_flags & IFF_DEBUG)
   1506 		printf("%s: recovered from device timeout\n",
   1507 		    sc->sc_dev.dv_xname);
   1508 
   1509 	/* Try to get more packets going. */
   1510 	SIP_DECL(start)(ifp);
   1511 }
   1512 
   1513 /*
   1514  * sip_ioctl:		[ifnet interface function]
   1515  *
   1516  *	Handle control requests from the operator.
   1517  */
   1518 static int
   1519 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1520 {
   1521 	struct sip_softc *sc = ifp->if_softc;
   1522 	struct ifreq *ifr = (struct ifreq *)data;
   1523 	int s, error;
   1524 
   1525 	s = splnet();
   1526 
   1527 	switch (cmd) {
   1528 	case SIOCSIFMEDIA:
   1529 		/* Flow control requires full-duplex mode. */
   1530 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1531 		    (ifr->ifr_media & IFM_FDX) == 0)
   1532 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1533 #ifdef DP83820
   1534 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1535 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1536 				/* We can do both TXPAUSE and RXPAUSE. */
   1537 				ifr->ifr_media |=
   1538 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1539 			}
   1540 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1541 		}
   1542 #else
   1543 		/* XXX */
   1544 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1545 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1546 
   1547 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1548 			if (ifr->ifr_media & IFM_FLOW) {
   1549 				/*
   1550 				 * Both TXPAUSE and RXPAUSE must be set.
   1551 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1552 				 * feature.)
   1553 				 *
   1554 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1555 				 */
   1556 				ifr->ifr_media |=
   1557 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1558 			}
   1559 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1560 		}
   1561 #endif
   1562 		/* FALLTHROUGH */
   1563 	case SIOCGIFMEDIA:
   1564 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1565 		break;
   1566 	case SIOCSIFFLAGS:
   1567 		/* If the interface is up and running, only modify the receive
   1568 		 * filter when setting promiscuous or debug mode.  Otherwise
   1569 		 * fall through to ether_ioctl, which will reset the chip.
   1570 		 */
   1571 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1572 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1573 		    == (IFF_UP|IFF_RUNNING))
   1574 		    && ((ifp->if_flags & (~RESETIGN))
   1575 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   1576 			/* Set up the receive filter. */
   1577 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1578 			error = 0;
   1579 			break;
   1580 #undef RESETIGN
   1581 		}
   1582 		/* FALLTHROUGH */
   1583 	default:
   1584 		error = ether_ioctl(ifp, cmd, data);
   1585 		if (error == ENETRESET) {
   1586 			/*
   1587 			 * Multicast list has changed; set the hardware filter
   1588 			 * accordingly.
   1589 			 */
   1590 			if (ifp->if_flags & IFF_RUNNING)
   1591 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1592 			error = 0;
   1593 		}
   1594 		break;
   1595 	}
   1596 
   1597 	/* Try to get more packets going. */
   1598 	SIP_DECL(start)(ifp);
   1599 
   1600 	sc->sc_if_flags = ifp->if_flags;
   1601 	splx(s);
   1602 	return (error);
   1603 }
   1604 
   1605 /*
   1606  * sip_intr:
   1607  *
   1608  *	Interrupt service routine.
   1609  */
   1610 static int
   1611 SIP_DECL(intr)(void *arg)
   1612 {
   1613 	struct sip_softc *sc = arg;
   1614 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1615 	u_int32_t isr;
   1616 	int handled = 0;
   1617 
   1618 	/* Disable interrupts. */
   1619 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1620 
   1621 	for (;;) {
   1622 		/* Reading clears interrupt. */
   1623 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1624 		if ((isr & sc->sc_imr) == 0)
   1625 			break;
   1626 
   1627 #if NRND > 0
   1628 		if (RND_ENABLED(&sc->rnd_source))
   1629 			rnd_add_uint32(&sc->rnd_source, isr);
   1630 #endif
   1631 
   1632 		handled = 1;
   1633 
   1634 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1635 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1636 
   1637 			/* Grab any new packets. */
   1638 			SIP_DECL(rxintr)(sc);
   1639 
   1640 			if (isr & ISR_RXORN) {
   1641 				printf("%s: receive FIFO overrun\n",
   1642 				    sc->sc_dev.dv_xname);
   1643 
   1644 				/* XXX adjust rx_drain_thresh? */
   1645 			}
   1646 
   1647 			if (isr & ISR_RXIDLE) {
   1648 				printf("%s: receive ring overrun\n",
   1649 				    sc->sc_dev.dv_xname);
   1650 
   1651 				/* Get the receive process going again. */
   1652 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1653 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1654 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1655 				    SIP_CR, CR_RXE);
   1656 			}
   1657 		}
   1658 
   1659 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1660 #ifdef SIP_EVENT_COUNTERS
   1661 			if (isr & ISR_TXDESC)
   1662 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1663 			else if (isr & ISR_TXIDLE)
   1664 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1665 #endif
   1666 
   1667 			/* Sweep up transmit descriptors. */
   1668 			SIP_DECL(txintr)(sc);
   1669 
   1670 			if (isr & ISR_TXURN) {
   1671 				u_int32_t thresh;
   1672 
   1673 				printf("%s: transmit FIFO underrun",
   1674 				    sc->sc_dev.dv_xname);
   1675 
   1676 				thresh = sc->sc_tx_drain_thresh + 1;
   1677 				if (thresh <= TXCFG_DRTH &&
   1678 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1679 				     (sc->sc_tx_fill_thresh * 32))) {
   1680 					printf("; increasing Tx drain "
   1681 					    "threshold to %u bytes\n",
   1682 					    thresh * 32);
   1683 					sc->sc_tx_drain_thresh = thresh;
   1684 					(void) SIP_DECL(init)(ifp);
   1685 				} else {
   1686 					(void) SIP_DECL(init)(ifp);
   1687 					printf("\n");
   1688 				}
   1689 			}
   1690 		}
   1691 
   1692 #if !defined(DP83820)
   1693 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1694 			if (isr & ISR_PAUSE_ST) {
   1695 				sc->sc_paused = 1;
   1696 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1697 				ifp->if_flags |= IFF_OACTIVE;
   1698 			}
   1699 			if (isr & ISR_PAUSE_END) {
   1700 				sc->sc_paused = 0;
   1701 				ifp->if_flags &= ~IFF_OACTIVE;
   1702 			}
   1703 		}
   1704 #endif /* ! DP83820 */
   1705 
   1706 		if (isr & ISR_HIBERR) {
   1707 			int want_init = 0;
   1708 
   1709 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1710 
   1711 #define	PRINTERR(bit, str)						\
   1712 			do {						\
   1713 				if ((isr & (bit)) != 0) {		\
   1714 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1715 						printf("%s: %s\n",	\
   1716 						    sc->sc_dev.dv_xname, str); \
   1717 					want_init = 1;			\
   1718 				}					\
   1719 			} while (/*CONSTCOND*/0)
   1720 
   1721 			PRINTERR(ISR_DPERR, "parity error");
   1722 			PRINTERR(ISR_SSERR, "system error");
   1723 			PRINTERR(ISR_RMABT, "master abort");
   1724 			PRINTERR(ISR_RTABT, "target abort");
   1725 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1726 			/*
   1727 			 * Ignore:
   1728 			 *	Tx reset complete
   1729 			 *	Rx reset complete
   1730 			 */
   1731 			if (want_init)
   1732 				(void) SIP_DECL(init)(ifp);
   1733 #undef PRINTERR
   1734 		}
   1735 	}
   1736 
   1737 	/* Re-enable interrupts. */
   1738 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1739 
   1740 	/* Try to get more packets going. */
   1741 	SIP_DECL(start)(ifp);
   1742 
   1743 	return (handled);
   1744 }
   1745 
   1746 /*
   1747  * sip_txintr:
   1748  *
   1749  *	Helper; handle transmit interrupts.
   1750  */
   1751 static void
   1752 SIP_DECL(txintr)(struct sip_softc *sc)
   1753 {
   1754 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1755 	struct sip_txsoft *txs;
   1756 	u_int32_t cmdsts;
   1757 
   1758 #ifndef DP83820
   1759 	if (sc->sc_paused == 0)
   1760 #endif
   1761 		ifp->if_flags &= ~IFF_OACTIVE;
   1762 
   1763 	/*
   1764 	 * Go through our Tx list and free mbufs for those
   1765 	 * frames which have been transmitted.
   1766 	 */
   1767 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1768 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1769 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1770 
   1771 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1772 		if (cmdsts & CMDSTS_OWN)
   1773 			break;
   1774 
   1775 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1776 
   1777 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1778 
   1779 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1780 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1781 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1782 		m_freem(txs->txs_mbuf);
   1783 		txs->txs_mbuf = NULL;
   1784 
   1785 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1786 
   1787 		/*
   1788 		 * Check for errors and collisions.
   1789 		 */
   1790 		if (cmdsts &
   1791 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1792 			ifp->if_oerrors++;
   1793 			if (cmdsts & CMDSTS_Tx_EC)
   1794 				ifp->if_collisions += 16;
   1795 			if (ifp->if_flags & IFF_DEBUG) {
   1796 				if (cmdsts & CMDSTS_Tx_ED)
   1797 					printf("%s: excessive deferral\n",
   1798 					    sc->sc_dev.dv_xname);
   1799 				if (cmdsts & CMDSTS_Tx_EC)
   1800 					printf("%s: excessive collisions\n",
   1801 					    sc->sc_dev.dv_xname);
   1802 			}
   1803 		} else {
   1804 			/* Packet was transmitted successfully. */
   1805 			ifp->if_opackets++;
   1806 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1807 		}
   1808 	}
   1809 
   1810 	/*
   1811 	 * If there are no more pending transmissions, cancel the watchdog
   1812 	 * timer.
   1813 	 */
   1814 	if (txs == NULL) {
   1815 		ifp->if_timer = 0;
   1816 		sc->sc_txwin = 0;
   1817 	}
   1818 }
   1819 
   1820 #if defined(DP83820)
   1821 /*
   1822  * sip_rxintr:
   1823  *
   1824  *	Helper; handle receive interrupts.
   1825  */
   1826 static void
   1827 SIP_DECL(rxintr)(struct sip_softc *sc)
   1828 {
   1829 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1830 	struct sip_rxsoft *rxs;
   1831 	struct mbuf *m;
   1832 	u_int32_t cmdsts, extsts;
   1833 	int i, len;
   1834 
   1835 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1836 		rxs = &sc->sc_rxsoft[i];
   1837 
   1838 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1839 
   1840 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1841 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1842 		len = CMDSTS_SIZE(cmdsts);
   1843 
   1844 		/*
   1845 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1846 		 * consumer of the receive ring, so if the bit is clear,
   1847 		 * we have processed all of the packets.
   1848 		 */
   1849 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1850 			/*
   1851 			 * We have processed all of the receive buffers.
   1852 			 */
   1853 			break;
   1854 		}
   1855 
   1856 		if (__predict_false(sc->sc_rxdiscard)) {
   1857 			SIP_INIT_RXDESC(sc, i);
   1858 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1859 				/* Reset our state. */
   1860 				sc->sc_rxdiscard = 0;
   1861 			}
   1862 			continue;
   1863 		}
   1864 
   1865 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1866 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1867 
   1868 		m = rxs->rxs_mbuf;
   1869 
   1870 		/*
   1871 		 * Add a new receive buffer to the ring.
   1872 		 */
   1873 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1874 			/*
   1875 			 * Failed, throw away what we've done so
   1876 			 * far, and discard the rest of the packet.
   1877 			 */
   1878 			ifp->if_ierrors++;
   1879 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1880 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1881 			SIP_INIT_RXDESC(sc, i);
   1882 			if (cmdsts & CMDSTS_MORE)
   1883 				sc->sc_rxdiscard = 1;
   1884 			if (sc->sc_rxhead != NULL)
   1885 				m_freem(sc->sc_rxhead);
   1886 			SIP_RXCHAIN_RESET(sc);
   1887 			continue;
   1888 		}
   1889 
   1890 		SIP_RXCHAIN_LINK(sc, m);
   1891 
   1892 		m->m_len = len;
   1893 
   1894 		/*
   1895 		 * If this is not the end of the packet, keep
   1896 		 * looking.
   1897 		 */
   1898 		if (cmdsts & CMDSTS_MORE) {
   1899 			sc->sc_rxlen += len;
   1900 			continue;
   1901 		}
   1902 
   1903 		/*
   1904 		 * Okay, we have the entire packet now.  The chip includes
   1905 		 * the FCS, so we need to trim it.
   1906 		 */
   1907 		m->m_len -= ETHER_CRC_LEN;
   1908 
   1909 		*sc->sc_rxtailp = NULL;
   1910 		len = m->m_len + sc->sc_rxlen;
   1911 		m = sc->sc_rxhead;
   1912 
   1913 		SIP_RXCHAIN_RESET(sc);
   1914 
   1915 		/*
   1916 		 * If an error occurred, update stats and drop the packet.
   1917 		 */
   1918 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1919 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1920 			ifp->if_ierrors++;
   1921 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1922 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1923 				/* Receive overrun handled elsewhere. */
   1924 				printf("%s: receive descriptor error\n",
   1925 				    sc->sc_dev.dv_xname);
   1926 			}
   1927 #define	PRINTERR(bit, str)						\
   1928 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1929 			    (cmdsts & (bit)) != 0)			\
   1930 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1931 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1932 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1933 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1934 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1935 #undef PRINTERR
   1936 			m_freem(m);
   1937 			continue;
   1938 		}
   1939 
   1940 		/*
   1941 		 * If the packet is small enough to fit in a
   1942 		 * single header mbuf, allocate one and copy
   1943 		 * the data into it.  This greatly reduces
   1944 		 * memory consumption when we receive lots
   1945 		 * of small packets.
   1946 		 */
   1947 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1948 			struct mbuf *nm;
   1949 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1950 			if (nm == NULL) {
   1951 				ifp->if_ierrors++;
   1952 				m_freem(m);
   1953 				continue;
   1954 			}
   1955 			nm->m_data += 2;
   1956 			nm->m_pkthdr.len = nm->m_len = len;
   1957 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1958 			m_freem(m);
   1959 			m = nm;
   1960 		}
   1961 #ifndef __NO_STRICT_ALIGNMENT
   1962 		else {
   1963 			/*
   1964 			 * The DP83820's receive buffers must be 4-byte
   1965 			 * aligned.  But this means that the data after
   1966 			 * the Ethernet header is misaligned.  To compensate,
   1967 			 * we have artificially shortened the buffer size
   1968 			 * in the descriptor, and we do an overlapping copy
   1969 			 * of the data two bytes further in (in the first
   1970 			 * buffer of the chain only).
   1971 			 */
   1972 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1973 			    m->m_len);
   1974 			m->m_data += 2;
   1975 		}
   1976 #endif /* ! __NO_STRICT_ALIGNMENT */
   1977 
   1978 		/*
   1979 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1980 		 * for us.  Associate the tag with the packet.
   1981 		 */
   1982 
   1983 		/*
   1984 		 * Again, byte swapping is tricky. Hardware provided
   1985 		 * the tag in the network byte order, but extsts was
   1986 		 * passed through le32toh() in the meantime. On a
   1987 		 * big-endian machine, we need to swap it again. On a
   1988 		 * little-endian machine, we need to convert from the
   1989 		 * network to host byte order. This means that we must
   1990 		 * swap it in any case, so unconditional swap instead
   1991 		 * of htons() is used.
   1992 		 */
   1993 		if ((extsts & EXTSTS_VPKT) != 0) {
   1994 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   1995 			    continue);
   1996 		}
   1997 
   1998 		/*
   1999 		 * Set the incoming checksum information for the
   2000 		 * packet.
   2001 		 */
   2002 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2003 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2004 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2005 			if (extsts & EXTSTS_Rx_IPERR)
   2006 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2007 			if (extsts & EXTSTS_TCPPKT) {
   2008 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2009 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2010 				if (extsts & EXTSTS_Rx_TCPERR)
   2011 					m->m_pkthdr.csum_flags |=
   2012 					    M_CSUM_TCP_UDP_BAD;
   2013 			} else if (extsts & EXTSTS_UDPPKT) {
   2014 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2015 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2016 				if (extsts & EXTSTS_Rx_UDPERR)
   2017 					m->m_pkthdr.csum_flags |=
   2018 					    M_CSUM_TCP_UDP_BAD;
   2019 			}
   2020 		}
   2021 
   2022 		ifp->if_ipackets++;
   2023 		m->m_pkthdr.rcvif = ifp;
   2024 		m->m_pkthdr.len = len;
   2025 
   2026 #if NBPFILTER > 0
   2027 		/*
   2028 		 * Pass this up to any BPF listeners, but only
   2029 		 * pass if up the stack if it's for us.
   2030 		 */
   2031 		if (ifp->if_bpf)
   2032 			bpf_mtap(ifp->if_bpf, m);
   2033 #endif /* NBPFILTER > 0 */
   2034 
   2035 		/* Pass it on. */
   2036 		(*ifp->if_input)(ifp, m);
   2037 	}
   2038 
   2039 	/* Update the receive pointer. */
   2040 	sc->sc_rxptr = i;
   2041 }
   2042 #else /* ! DP83820 */
   2043 /*
   2044  * sip_rxintr:
   2045  *
   2046  *	Helper; handle receive interrupts.
   2047  */
   2048 static void
   2049 SIP_DECL(rxintr)(struct sip_softc *sc)
   2050 {
   2051 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2052 	struct sip_rxsoft *rxs;
   2053 	struct mbuf *m;
   2054 	u_int32_t cmdsts;
   2055 	int i, len;
   2056 
   2057 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   2058 		rxs = &sc->sc_rxsoft[i];
   2059 
   2060 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2061 
   2062 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   2063 
   2064 		/*
   2065 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2066 		 * consumer of the receive ring, so if the bit is clear,
   2067 		 * we have processed all of the packets.
   2068 		 */
   2069 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2070 			/*
   2071 			 * We have processed all of the receive buffers.
   2072 			 */
   2073 			break;
   2074 		}
   2075 
   2076 		/*
   2077 		 * If any collisions were seen on the wire, count one.
   2078 		 */
   2079 		if (cmdsts & CMDSTS_Rx_COL)
   2080 			ifp->if_collisions++;
   2081 
   2082 		/*
   2083 		 * If an error occurred, update stats, clear the status
   2084 		 * word, and leave the packet buffer in place.  It will
   2085 		 * simply be reused the next time the ring comes around.
   2086 		 */
   2087 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2088 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2089 			ifp->if_ierrors++;
   2090 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2091 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2092 				/* Receive overrun handled elsewhere. */
   2093 				printf("%s: receive descriptor error\n",
   2094 				    sc->sc_dev.dv_xname);
   2095 			}
   2096 #define	PRINTERR(bit, str)						\
   2097 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2098 			    (cmdsts & (bit)) != 0)			\
   2099 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2100 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2101 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2102 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2103 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2104 #undef PRINTERR
   2105 			SIP_INIT_RXDESC(sc, i);
   2106 			continue;
   2107 		}
   2108 
   2109 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2110 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2111 
   2112 		/*
   2113 		 * No errors; receive the packet.  Note, the SiS 900
   2114 		 * includes the CRC with every packet.
   2115 		 */
   2116 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   2117 
   2118 #ifdef __NO_STRICT_ALIGNMENT
   2119 		/*
   2120 		 * If the packet is small enough to fit in a
   2121 		 * single header mbuf, allocate one and copy
   2122 		 * the data into it.  This greatly reduces
   2123 		 * memory consumption when we receive lots
   2124 		 * of small packets.
   2125 		 *
   2126 		 * Otherwise, we add a new buffer to the receive
   2127 		 * chain.  If this fails, we drop the packet and
   2128 		 * recycle the old buffer.
   2129 		 */
   2130 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2131 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2132 			if (m == NULL)
   2133 				goto dropit;
   2134 			memcpy(mtod(m, caddr_t),
   2135 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2136 			SIP_INIT_RXDESC(sc, i);
   2137 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2138 			    rxs->rxs_dmamap->dm_mapsize,
   2139 			    BUS_DMASYNC_PREREAD);
   2140 		} else {
   2141 			m = rxs->rxs_mbuf;
   2142 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2143  dropit:
   2144 				ifp->if_ierrors++;
   2145 				SIP_INIT_RXDESC(sc, i);
   2146 				bus_dmamap_sync(sc->sc_dmat,
   2147 				    rxs->rxs_dmamap, 0,
   2148 				    rxs->rxs_dmamap->dm_mapsize,
   2149 				    BUS_DMASYNC_PREREAD);
   2150 				continue;
   2151 			}
   2152 		}
   2153 #else
   2154 		/*
   2155 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2156 		 * But this means that the data after the Ethernet header
   2157 		 * is misaligned.  We must allocate a new buffer and
   2158 		 * copy the data, shifted forward 2 bytes.
   2159 		 */
   2160 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2161 		if (m == NULL) {
   2162  dropit:
   2163 			ifp->if_ierrors++;
   2164 			SIP_INIT_RXDESC(sc, i);
   2165 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2166 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2167 			continue;
   2168 		}
   2169 		if (len > (MHLEN - 2)) {
   2170 			MCLGET(m, M_DONTWAIT);
   2171 			if ((m->m_flags & M_EXT) == 0) {
   2172 				m_freem(m);
   2173 				goto dropit;
   2174 			}
   2175 		}
   2176 		m->m_data += 2;
   2177 
   2178 		/*
   2179 		 * Note that we use clusters for incoming frames, so the
   2180 		 * buffer is virtually contiguous.
   2181 		 */
   2182 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2183 
   2184 		/* Allow the receive descriptor to continue using its mbuf. */
   2185 		SIP_INIT_RXDESC(sc, i);
   2186 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2187 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2188 #endif /* __NO_STRICT_ALIGNMENT */
   2189 
   2190 		ifp->if_ipackets++;
   2191 		m->m_pkthdr.rcvif = ifp;
   2192 		m->m_pkthdr.len = m->m_len = len;
   2193 
   2194 #if NBPFILTER > 0
   2195 		/*
   2196 		 * Pass this up to any BPF listeners, but only
   2197 		 * pass if up the stack if it's for us.
   2198 		 */
   2199 		if (ifp->if_bpf)
   2200 			bpf_mtap(ifp->if_bpf, m);
   2201 #endif /* NBPFILTER > 0 */
   2202 
   2203 		/* Pass it on. */
   2204 		(*ifp->if_input)(ifp, m);
   2205 	}
   2206 
   2207 	/* Update the receive pointer. */
   2208 	sc->sc_rxptr = i;
   2209 }
   2210 #endif /* DP83820 */
   2211 
   2212 /*
   2213  * sip_tick:
   2214  *
   2215  *	One second timer, used to tick the MII.
   2216  */
   2217 static void
   2218 SIP_DECL(tick)(void *arg)
   2219 {
   2220 	struct sip_softc *sc = arg;
   2221 	int s;
   2222 
   2223 	s = splnet();
   2224 #ifdef DP83820
   2225 #ifdef SIP_EVENT_COUNTERS
   2226 	/* Read PAUSE related counts from MIB registers. */
   2227 	sc->sc_ev_rxpause.ev_count +=
   2228 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2229 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2230 	sc->sc_ev_txpause.ev_count +=
   2231 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2232 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2233 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2234 #endif /* SIP_EVENT_COUNTERS */
   2235 #endif /* DP83820 */
   2236 	mii_tick(&sc->sc_mii);
   2237 	splx(s);
   2238 
   2239 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2240 }
   2241 
   2242 /*
   2243  * sip_reset:
   2244  *
   2245  *	Perform a soft reset on the SiS 900.
   2246  */
   2247 static void
   2248 SIP_DECL(reset)(struct sip_softc *sc)
   2249 {
   2250 	bus_space_tag_t st = sc->sc_st;
   2251 	bus_space_handle_t sh = sc->sc_sh;
   2252 	int i;
   2253 
   2254 	bus_space_write_4(st, sh, SIP_IER, 0);
   2255 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2256 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2257 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2258 
   2259 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2260 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2261 			break;
   2262 		delay(2);
   2263 	}
   2264 
   2265 	if (i == SIP_TIMEOUT)
   2266 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2267 
   2268 	delay(1000);
   2269 
   2270 #ifdef DP83820
   2271 	/*
   2272 	 * Set the general purpose I/O bits.  Do it here in case we
   2273 	 * need to have GPIO set up to talk to the media interface.
   2274 	 */
   2275 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2276 	delay(1000);
   2277 #endif /* DP83820 */
   2278 }
   2279 
   2280 /*
   2281  * sip_init:		[ ifnet interface function ]
   2282  *
   2283  *	Initialize the interface.  Must be called at splnet().
   2284  */
   2285 static int
   2286 SIP_DECL(init)(struct ifnet *ifp)
   2287 {
   2288 	struct sip_softc *sc = ifp->if_softc;
   2289 	bus_space_tag_t st = sc->sc_st;
   2290 	bus_space_handle_t sh = sc->sc_sh;
   2291 	struct sip_txsoft *txs;
   2292 	struct sip_rxsoft *rxs;
   2293 	struct sip_desc *sipd;
   2294 #if defined(DP83820)
   2295 	u_int32_t reg;
   2296 #endif
   2297 	int i, error = 0;
   2298 
   2299 	/*
   2300 	 * Cancel any pending I/O.
   2301 	 */
   2302 	SIP_DECL(stop)(ifp, 0);
   2303 
   2304 	/*
   2305 	 * Reset the chip to a known state.
   2306 	 */
   2307 	SIP_DECL(reset)(sc);
   2308 
   2309 #if !defined(DP83820)
   2310 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2311 		/*
   2312 		 * DP83815 manual, page 78:
   2313 		 *    4.4 Recommended Registers Configuration
   2314 		 *    For optimum performance of the DP83815, version noted
   2315 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2316 		 *    modifications must be followed in sequence...
   2317 		 *
   2318 		 * It's not clear if this should be 302h or 203h because that
   2319 		 * chip name is listed as SRR 302h in the description of the
   2320 		 * SRR register.  However, my revision 302h DP83815 on the
   2321 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2322 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2323 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2324 		 * this set or not.  [briggs -- 09 March 2001]
   2325 		 *
   2326 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2327 		 * and that this sets reserved bits in that register.
   2328 		 */
   2329 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2330 
   2331 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2332 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2333 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2334 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2335 
   2336 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2337 	}
   2338 #endif /* ! DP83820 */
   2339 
   2340 	/*
   2341 	 * Initialize the transmit descriptor ring.
   2342 	 */
   2343 	for (i = 0; i < SIP_NTXDESC; i++) {
   2344 		sipd = &sc->sc_txdescs[i];
   2345 		memset(sipd, 0, sizeof(struct sip_desc));
   2346 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2347 	}
   2348 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2349 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2350 	sc->sc_txfree = SIP_NTXDESC;
   2351 	sc->sc_txnext = 0;
   2352 	sc->sc_txwin = 0;
   2353 
   2354 	/*
   2355 	 * Initialize the transmit job descriptors.
   2356 	 */
   2357 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2358 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2359 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2360 		txs = &sc->sc_txsoft[i];
   2361 		txs->txs_mbuf = NULL;
   2362 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2363 	}
   2364 
   2365 	/*
   2366 	 * Initialize the receive descriptor and receive job
   2367 	 * descriptor rings.
   2368 	 */
   2369 	for (i = 0; i < SIP_NRXDESC; i++) {
   2370 		rxs = &sc->sc_rxsoft[i];
   2371 		if (rxs->rxs_mbuf == NULL) {
   2372 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2373 				printf("%s: unable to allocate or map rx "
   2374 				    "buffer %d, error = %d\n",
   2375 				    sc->sc_dev.dv_xname, i, error);
   2376 				/*
   2377 				 * XXX Should attempt to run with fewer receive
   2378 				 * XXX buffers instead of just failing.
   2379 				 */
   2380 				SIP_DECL(rxdrain)(sc);
   2381 				goto out;
   2382 			}
   2383 		} else
   2384 			SIP_INIT_RXDESC(sc, i);
   2385 	}
   2386 	sc->sc_rxptr = 0;
   2387 #ifdef DP83820
   2388 	sc->sc_rxdiscard = 0;
   2389 	SIP_RXCHAIN_RESET(sc);
   2390 #endif /* DP83820 */
   2391 
   2392 	/*
   2393 	 * Set the configuration register; it's already initialized
   2394 	 * in sip_attach().
   2395 	 */
   2396 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2397 
   2398 	/*
   2399 	 * Initialize the prototype TXCFG register.
   2400 	 */
   2401 #if defined(DP83820)
   2402 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2403 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2404 #else
   2405 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2406 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2407 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2408 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2409 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2410 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2411 	} else {
   2412 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2413 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2414 	}
   2415 #endif /* DP83820 */
   2416 
   2417 	sc->sc_txcfg |= TXCFG_ATP |
   2418 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2419 	    sc->sc_tx_drain_thresh;
   2420 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2421 
   2422 	/*
   2423 	 * Initialize the receive drain threshold if we have never
   2424 	 * done so.
   2425 	 */
   2426 	if (sc->sc_rx_drain_thresh == 0) {
   2427 		/*
   2428 		 * XXX This value should be tuned.  This is set to the
   2429 		 * maximum of 248 bytes, and we may be able to improve
   2430 		 * performance by decreasing it (although we should never
   2431 		 * set this value lower than 2; 14 bytes are required to
   2432 		 * filter the packet).
   2433 		 */
   2434 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2435 	}
   2436 
   2437 	/*
   2438 	 * Initialize the prototype RXCFG register.
   2439 	 */
   2440 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2441 #ifdef DP83820
   2442 	/*
   2443 	 * Accept long packets (including FCS) so we can handle
   2444 	 * 802.1q-tagged frames and jumbo frames properly.
   2445 	 */
   2446 	if (ifp->if_mtu > ETHERMTU ||
   2447 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2448 		sc->sc_rxcfg |= RXCFG_ALP;
   2449 
   2450 	/*
   2451 	 * Checksum offloading is disabled if the user selects an MTU
   2452 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2453 	 * evidence that >8109 does not work on some boards, such as the
   2454 	 * Planex GN-1000TE).
   2455 	 */
   2456 	if (ifp->if_mtu > 8109 &&
   2457 	    (ifp->if_capenable &
   2458 	     (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
   2459 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2460 		       "disabled.\n", sc->sc_dev.dv_xname);
   2461 		ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
   2462 				       IFCAP_CSUM_UDPv4);
   2463 		ifp->if_csum_flags_tx = 0;
   2464 		ifp->if_csum_flags_rx = 0;
   2465 	}
   2466 #else
   2467 	/*
   2468 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2469 	 * 802.1q-tagged frames properly.
   2470 	 */
   2471 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2472 		sc->sc_rxcfg |= RXCFG_ALP;
   2473 #endif
   2474 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2475 
   2476 #ifdef DP83820
   2477 	/*
   2478 	 * Initialize the VLAN/IP receive control register.
   2479 	 * We enable checksum computation on all incoming
   2480 	 * packets, and do not reject packets w/ bad checksums.
   2481 	 */
   2482 	reg = 0;
   2483 	if (ifp->if_capenable &
   2484 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2485 		reg |= VRCR_IPEN;
   2486 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2487 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2488 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2489 
   2490 	/*
   2491 	 * Initialize the VLAN/IP transmit control register.
   2492 	 * We enable outgoing checksum computation on a
   2493 	 * per-packet basis.
   2494 	 */
   2495 	reg = 0;
   2496 	if (ifp->if_capenable &
   2497 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2498 		reg |= VTCR_PPCHK;
   2499 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2500 		reg |= VTCR_VPPTI;
   2501 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2502 
   2503 	/*
   2504 	 * If we're using VLANs, initialize the VLAN data register.
   2505 	 * To understand why we bswap the VLAN Ethertype, see section
   2506 	 * 4.2.36 of the DP83820 manual.
   2507 	 */
   2508 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2509 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2510 #endif /* DP83820 */
   2511 
   2512 	/*
   2513 	 * Give the transmit and receive rings to the chip.
   2514 	 */
   2515 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2516 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2517 
   2518 	/*
   2519 	 * Initialize the interrupt mask.
   2520 	 */
   2521 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2522 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2523 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2524 
   2525 	/* Set up the receive filter. */
   2526 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2527 
   2528 #ifdef DP83820
   2529 	/*
   2530 	 * Tune sc_rx_flow_thresh.
   2531 	 * XXX "More than 8KB" is too short for jumbo frames.
   2532 	 * XXX TODO: Threshold value should be user-settable.
   2533 	 */
   2534 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2535 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2536 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2537 #endif
   2538 
   2539 	/*
   2540 	 * Set the current media.  Do this after initializing the prototype
   2541 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2542 	 * control.
   2543 	 */
   2544 	mii_mediachg(&sc->sc_mii);
   2545 
   2546 #ifdef DP83820
   2547 	/*
   2548 	 * Set the interrupt hold-off timer to 100us.
   2549 	 */
   2550 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2551 #endif
   2552 
   2553 	/*
   2554 	 * Enable interrupts.
   2555 	 */
   2556 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2557 
   2558 	/*
   2559 	 * Start the transmit and receive processes.
   2560 	 */
   2561 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2562 
   2563 	/*
   2564 	 * Start the one second MII clock.
   2565 	 */
   2566 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2567 
   2568 	/*
   2569 	 * ...all done!
   2570 	 */
   2571 	ifp->if_flags |= IFF_RUNNING;
   2572 	ifp->if_flags &= ~IFF_OACTIVE;
   2573 	sc->sc_if_flags = ifp->if_flags;
   2574 
   2575  out:
   2576 	if (error)
   2577 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2578 	return (error);
   2579 }
   2580 
   2581 /*
   2582  * sip_drain:
   2583  *
   2584  *	Drain the receive queue.
   2585  */
   2586 static void
   2587 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2588 {
   2589 	struct sip_rxsoft *rxs;
   2590 	int i;
   2591 
   2592 	for (i = 0; i < SIP_NRXDESC; i++) {
   2593 		rxs = &sc->sc_rxsoft[i];
   2594 		if (rxs->rxs_mbuf != NULL) {
   2595 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2596 			m_freem(rxs->rxs_mbuf);
   2597 			rxs->rxs_mbuf = NULL;
   2598 		}
   2599 	}
   2600 }
   2601 
   2602 /*
   2603  * sip_stop:		[ ifnet interface function ]
   2604  *
   2605  *	Stop transmission on the interface.
   2606  */
   2607 static void
   2608 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2609 {
   2610 	struct sip_softc *sc = ifp->if_softc;
   2611 	bus_space_tag_t st = sc->sc_st;
   2612 	bus_space_handle_t sh = sc->sc_sh;
   2613 	struct sip_txsoft *txs;
   2614 	u_int32_t cmdsts = 0;		/* DEBUG */
   2615 
   2616 	/*
   2617 	 * Stop the one second clock.
   2618 	 */
   2619 	callout_stop(&sc->sc_tick_ch);
   2620 
   2621 	/* Down the MII. */
   2622 	mii_down(&sc->sc_mii);
   2623 
   2624 	/*
   2625 	 * Disable interrupts.
   2626 	 */
   2627 	bus_space_write_4(st, sh, SIP_IER, 0);
   2628 
   2629 	/*
   2630 	 * Stop receiver and transmitter.
   2631 	 */
   2632 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2633 
   2634 	/*
   2635 	 * Release any queued transmit buffers.
   2636 	 */
   2637 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2638 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2639 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2640 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2641 		     CMDSTS_INTR) == 0)
   2642 			printf("%s: sip_stop: last descriptor does not "
   2643 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2644 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2645 #ifdef DIAGNOSTIC
   2646 		if (txs->txs_mbuf == NULL) {
   2647 			printf("%s: dirty txsoft with no mbuf chain\n",
   2648 			    sc->sc_dev.dv_xname);
   2649 			panic("sip_stop");
   2650 		}
   2651 #endif
   2652 		cmdsts |=		/* DEBUG */
   2653 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2654 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2655 		m_freem(txs->txs_mbuf);
   2656 		txs->txs_mbuf = NULL;
   2657 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2658 	}
   2659 
   2660 	if (disable)
   2661 		SIP_DECL(rxdrain)(sc);
   2662 
   2663 	/*
   2664 	 * Mark the interface down and cancel the watchdog timer.
   2665 	 */
   2666 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2667 	ifp->if_timer = 0;
   2668 
   2669 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2670 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2671 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2672 		    "descriptors\n", sc->sc_dev.dv_xname);
   2673 }
   2674 
   2675 /*
   2676  * sip_read_eeprom:
   2677  *
   2678  *	Read data from the serial EEPROM.
   2679  */
   2680 static void
   2681 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2682     u_int16_t *data)
   2683 {
   2684 	bus_space_tag_t st = sc->sc_st;
   2685 	bus_space_handle_t sh = sc->sc_sh;
   2686 	u_int16_t reg;
   2687 	int i, x;
   2688 
   2689 	for (i = 0; i < wordcnt; i++) {
   2690 		/* Send CHIP SELECT. */
   2691 		reg = EROMAR_EECS;
   2692 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2693 
   2694 		/* Shift in the READ opcode. */
   2695 		for (x = 3; x > 0; x--) {
   2696 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2697 				reg |= EROMAR_EEDI;
   2698 			else
   2699 				reg &= ~EROMAR_EEDI;
   2700 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2701 			bus_space_write_4(st, sh, SIP_EROMAR,
   2702 			    reg | EROMAR_EESK);
   2703 			delay(4);
   2704 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2705 			delay(4);
   2706 		}
   2707 
   2708 		/* Shift in address. */
   2709 		for (x = 6; x > 0; x--) {
   2710 			if ((word + i) & (1 << (x - 1)))
   2711 				reg |= EROMAR_EEDI;
   2712 			else
   2713 				reg &= ~EROMAR_EEDI;
   2714 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2715 			bus_space_write_4(st, sh, SIP_EROMAR,
   2716 			    reg | EROMAR_EESK);
   2717 			delay(4);
   2718 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2719 			delay(4);
   2720 		}
   2721 
   2722 		/* Shift out data. */
   2723 		reg = EROMAR_EECS;
   2724 		data[i] = 0;
   2725 		for (x = 16; x > 0; x--) {
   2726 			bus_space_write_4(st, sh, SIP_EROMAR,
   2727 			    reg | EROMAR_EESK);
   2728 			delay(4);
   2729 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2730 				data[i] |= (1 << (x - 1));
   2731 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2732 			delay(4);
   2733 		}
   2734 
   2735 		/* Clear CHIP SELECT. */
   2736 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2737 		delay(4);
   2738 	}
   2739 }
   2740 
   2741 /*
   2742  * sip_add_rxbuf:
   2743  *
   2744  *	Add a receive buffer to the indicated descriptor.
   2745  */
   2746 static int
   2747 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2748 {
   2749 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2750 	struct mbuf *m;
   2751 	int error;
   2752 
   2753 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2754 	if (m == NULL)
   2755 		return (ENOBUFS);
   2756 
   2757 	MCLGET(m, M_DONTWAIT);
   2758 	if ((m->m_flags & M_EXT) == 0) {
   2759 		m_freem(m);
   2760 		return (ENOBUFS);
   2761 	}
   2762 
   2763 #if defined(DP83820)
   2764 	m->m_len = SIP_RXBUF_LEN;
   2765 #endif /* DP83820 */
   2766 
   2767 	if (rxs->rxs_mbuf != NULL)
   2768 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2769 
   2770 	rxs->rxs_mbuf = m;
   2771 
   2772 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2773 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2774 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2775 	if (error) {
   2776 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2777 		    sc->sc_dev.dv_xname, idx, error);
   2778 		panic("sip_add_rxbuf");		/* XXX */
   2779 	}
   2780 
   2781 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2782 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2783 
   2784 	SIP_INIT_RXDESC(sc, idx);
   2785 
   2786 	return (0);
   2787 }
   2788 
   2789 #if !defined(DP83820)
   2790 /*
   2791  * sip_sis900_set_filter:
   2792  *
   2793  *	Set up the receive filter.
   2794  */
   2795 static void
   2796 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2797 {
   2798 	bus_space_tag_t st = sc->sc_st;
   2799 	bus_space_handle_t sh = sc->sc_sh;
   2800 	struct ethercom *ec = &sc->sc_ethercom;
   2801 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2802 	struct ether_multi *enm;
   2803 	u_int8_t *cp;
   2804 	struct ether_multistep step;
   2805 	u_int32_t crc, mchash[16];
   2806 
   2807 	/*
   2808 	 * Initialize the prototype RFCR.
   2809 	 */
   2810 	sc->sc_rfcr = RFCR_RFEN;
   2811 	if (ifp->if_flags & IFF_BROADCAST)
   2812 		sc->sc_rfcr |= RFCR_AAB;
   2813 	if (ifp->if_flags & IFF_PROMISC) {
   2814 		sc->sc_rfcr |= RFCR_AAP;
   2815 		goto allmulti;
   2816 	}
   2817 
   2818 	/*
   2819 	 * Set up the multicast address filter by passing all multicast
   2820 	 * addresses through a CRC generator, and then using the high-order
   2821 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2822 	 * the lower 16 bits of each 32 bit multicast hash register are
   2823 	 * valid).  The high order bits select the register, while the
   2824 	 * rest of the bits select the bit within the register.
   2825 	 */
   2826 
   2827 	memset(mchash, 0, sizeof(mchash));
   2828 
   2829 	/*
   2830 	 * SiS900 (at least SiS963) requires us to register the address of
   2831 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   2832 	 */
   2833 	crc = 0x0ed423f9;
   2834 
   2835 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2836 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2837 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2838 		/* Just want the 8 most significant bits. */
   2839 		crc >>= 24;
   2840 	} else {
   2841 		/* Just want the 7 most significant bits. */
   2842 		crc >>= 25;
   2843 	}
   2844 
   2845 	/* Set the corresponding bit in the hash table. */
   2846 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   2847 
   2848 	ETHER_FIRST_MULTI(step, ec, enm);
   2849 	while (enm != NULL) {
   2850 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2851 			/*
   2852 			 * We must listen to a range of multicast addresses.
   2853 			 * For now, just accept all multicasts, rather than
   2854 			 * trying to set only those filter bits needed to match
   2855 			 * the range.  (At this time, the only use of address
   2856 			 * ranges is for IP multicast routing, for which the
   2857 			 * range is big enough to require all bits set.)
   2858 			 */
   2859 			goto allmulti;
   2860 		}
   2861 
   2862 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2863 
   2864 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2865 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2866 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2867 			/* Just want the 8 most significant bits. */
   2868 			crc >>= 24;
   2869 		} else {
   2870 			/* Just want the 7 most significant bits. */
   2871 			crc >>= 25;
   2872 		}
   2873 
   2874 		/* Set the corresponding bit in the hash table. */
   2875 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2876 
   2877 		ETHER_NEXT_MULTI(step, enm);
   2878 	}
   2879 
   2880 	ifp->if_flags &= ~IFF_ALLMULTI;
   2881 	goto setit;
   2882 
   2883  allmulti:
   2884 	ifp->if_flags |= IFF_ALLMULTI;
   2885 	sc->sc_rfcr |= RFCR_AAM;
   2886 
   2887  setit:
   2888 #define	FILTER_EMIT(addr, data)						\
   2889 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2890 	delay(1);							\
   2891 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2892 	delay(1)
   2893 
   2894 	/*
   2895 	 * Disable receive filter, and program the node address.
   2896 	 */
   2897 	cp = LLADDR(ifp->if_sadl);
   2898 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2899 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2900 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2901 
   2902 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2903 		/*
   2904 		 * Program the multicast hash table.
   2905 		 */
   2906 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2907 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2908 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2909 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2910 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2911 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2912 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2913 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2914 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2915 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2916 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2917 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2918 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2919 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2920 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2921 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2922 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2923 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2924 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2925 		}
   2926 	}
   2927 #undef FILTER_EMIT
   2928 
   2929 	/*
   2930 	 * Re-enable the receiver filter.
   2931 	 */
   2932 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2933 }
   2934 #endif /* ! DP83820 */
   2935 
   2936 /*
   2937  * sip_dp83815_set_filter:
   2938  *
   2939  *	Set up the receive filter.
   2940  */
   2941 static void
   2942 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2943 {
   2944 	bus_space_tag_t st = sc->sc_st;
   2945 	bus_space_handle_t sh = sc->sc_sh;
   2946 	struct ethercom *ec = &sc->sc_ethercom;
   2947 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2948 	struct ether_multi *enm;
   2949 	u_int8_t *cp;
   2950 	struct ether_multistep step;
   2951 	u_int32_t crc, hash, slot, bit;
   2952 #ifdef DP83820
   2953 #define	MCHASH_NWORDS	128
   2954 #else
   2955 #define	MCHASH_NWORDS	32
   2956 #endif /* DP83820 */
   2957 	u_int16_t mchash[MCHASH_NWORDS];
   2958 	int i;
   2959 
   2960 	/*
   2961 	 * Initialize the prototype RFCR.
   2962 	 * Enable the receive filter, and accept on
   2963 	 *    Perfect (destination address) Match
   2964 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2965 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2966 	 *    IFF_ALLMULTI and accept all multicast, too).
   2967 	 */
   2968 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2969 	if (ifp->if_flags & IFF_BROADCAST)
   2970 		sc->sc_rfcr |= RFCR_AAB;
   2971 	if (ifp->if_flags & IFF_PROMISC) {
   2972 		sc->sc_rfcr |= RFCR_AAP;
   2973 		goto allmulti;
   2974 	}
   2975 
   2976 #ifdef DP83820
   2977 	/*
   2978 	 * Set up the DP83820 multicast address filter by passing all multicast
   2979 	 * addresses through a CRC generator, and then using the high-order
   2980 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2981 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2982 	 * select the bit within the slot.  Note that only the low 16-bits
   2983 	 * of each filter word are used, and there are 128 filter words.
   2984 	 */
   2985 #else
   2986 	/*
   2987 	 * Set up the DP83815 multicast address filter by passing all multicast
   2988 	 * addresses through a CRC generator, and then using the high-order
   2989 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2990 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2991 	 * select the bit within the slot.  Note that only the low 16-bits
   2992 	 * of each filter word are used, and there are 32 filter words.
   2993 	 */
   2994 #endif /* DP83820 */
   2995 
   2996 	memset(mchash, 0, sizeof(mchash));
   2997 
   2998 	ifp->if_flags &= ~IFF_ALLMULTI;
   2999 	ETHER_FIRST_MULTI(step, ec, enm);
   3000 	if (enm == NULL)
   3001 		goto setit;
   3002 	while (enm != NULL) {
   3003 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3004 			/*
   3005 			 * We must listen to a range of multicast addresses.
   3006 			 * For now, just accept all multicasts, rather than
   3007 			 * trying to set only those filter bits needed to match
   3008 			 * the range.  (At this time, the only use of address
   3009 			 * ranges is for IP multicast routing, for which the
   3010 			 * range is big enough to require all bits set.)
   3011 			 */
   3012 			goto allmulti;
   3013 		}
   3014 
   3015 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3016 
   3017 #ifdef DP83820
   3018 		/* Just want the 11 most significant bits. */
   3019 		hash = crc >> 21;
   3020 #else
   3021 		/* Just want the 9 most significant bits. */
   3022 		hash = crc >> 23;
   3023 #endif /* DP83820 */
   3024 
   3025 		slot = hash >> 4;
   3026 		bit = hash & 0xf;
   3027 
   3028 		/* Set the corresponding bit in the hash table. */
   3029 		mchash[slot] |= 1 << bit;
   3030 
   3031 		ETHER_NEXT_MULTI(step, enm);
   3032 	}
   3033 	sc->sc_rfcr |= RFCR_MHEN;
   3034 	goto setit;
   3035 
   3036  allmulti:
   3037 	ifp->if_flags |= IFF_ALLMULTI;
   3038 	sc->sc_rfcr |= RFCR_AAM;
   3039 
   3040  setit:
   3041 #define	FILTER_EMIT(addr, data)						\
   3042 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3043 	delay(1);							\
   3044 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3045 	delay(1)
   3046 
   3047 	/*
   3048 	 * Disable receive filter, and program the node address.
   3049 	 */
   3050 	cp = LLADDR(ifp->if_sadl);
   3051 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3052 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3053 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3054 
   3055 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3056 		/*
   3057 		 * Program the multicast hash table.
   3058 		 */
   3059 		for (i = 0; i < MCHASH_NWORDS; i++) {
   3060 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   3061 			    mchash[i]);
   3062 		}
   3063 	}
   3064 #undef FILTER_EMIT
   3065 #undef MCHASH_NWORDS
   3066 
   3067 	/*
   3068 	 * Re-enable the receiver filter.
   3069 	 */
   3070 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3071 }
   3072 
   3073 #if defined(DP83820)
   3074 /*
   3075  * sip_dp83820_mii_readreg:	[mii interface function]
   3076  *
   3077  *	Read a PHY register on the MII of the DP83820.
   3078  */
   3079 static int
   3080 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   3081 {
   3082 	struct sip_softc *sc = (void *) self;
   3083 
   3084 	if (sc->sc_cfg & CFG_TBI_EN) {
   3085 		bus_addr_t tbireg;
   3086 		int rv;
   3087 
   3088 		if (phy != 0)
   3089 			return (0);
   3090 
   3091 		switch (reg) {
   3092 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3093 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3094 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3095 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3096 		case MII_ANER:		tbireg = SIP_TANER; break;
   3097 		case MII_EXTSR:
   3098 			/*
   3099 			 * Don't even bother reading the TESR register.
   3100 			 * The manual documents that the device has
   3101 			 * 1000baseX full/half capability, but the
   3102 			 * register itself seems read back 0 on some
   3103 			 * boards.  Just hard-code the result.
   3104 			 */
   3105 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3106 
   3107 		default:
   3108 			return (0);
   3109 		}
   3110 
   3111 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3112 		if (tbireg == SIP_TBISR) {
   3113 			/* LINK and ACOMP are switched! */
   3114 			int val = rv;
   3115 
   3116 			rv = 0;
   3117 			if (val & TBISR_MR_LINK_STATUS)
   3118 				rv |= BMSR_LINK;
   3119 			if (val & TBISR_MR_AN_COMPLETE)
   3120 				rv |= BMSR_ACOMP;
   3121 
   3122 			/*
   3123 			 * The manual claims this register reads back 0
   3124 			 * on hard and soft reset.  But we want to let
   3125 			 * the gentbi driver know that we support auto-
   3126 			 * negotiation, so hard-code this bit in the
   3127 			 * result.
   3128 			 */
   3129 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3130 		}
   3131 
   3132 		return (rv);
   3133 	}
   3134 
   3135 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3136 	    phy, reg));
   3137 }
   3138 
   3139 /*
   3140  * sip_dp83820_mii_writereg:	[mii interface function]
   3141  *
   3142  *	Write a PHY register on the MII of the DP83820.
   3143  */
   3144 static void
   3145 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   3146 {
   3147 	struct sip_softc *sc = (void *) self;
   3148 
   3149 	if (sc->sc_cfg & CFG_TBI_EN) {
   3150 		bus_addr_t tbireg;
   3151 
   3152 		if (phy != 0)
   3153 			return;
   3154 
   3155 		switch (reg) {
   3156 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3157 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3158 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3159 		default:
   3160 			return;
   3161 		}
   3162 
   3163 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3164 		return;
   3165 	}
   3166 
   3167 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3168 	    phy, reg, val);
   3169 }
   3170 
   3171 /*
   3172  * sip_dp83820_mii_statchg:	[mii interface function]
   3173  *
   3174  *	Callback from MII layer when media changes.
   3175  */
   3176 static void
   3177 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   3178 {
   3179 	struct sip_softc *sc = (struct sip_softc *) self;
   3180 	struct mii_data *mii = &sc->sc_mii;
   3181 	u_int32_t cfg, pcr;
   3182 
   3183 	/*
   3184 	 * Get flow control negotiation result.
   3185 	 */
   3186 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3187 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3188 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3189 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3190 	}
   3191 
   3192 	/*
   3193 	 * Update TXCFG for full-duplex operation.
   3194 	 */
   3195 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3196 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3197 	else
   3198 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3199 
   3200 	/*
   3201 	 * Update RXCFG for full-duplex or loopback.
   3202 	 */
   3203 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3204 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3205 		sc->sc_rxcfg |= RXCFG_ATX;
   3206 	else
   3207 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3208 
   3209 	/*
   3210 	 * Update CFG for MII/GMII.
   3211 	 */
   3212 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3213 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3214 	else
   3215 		cfg = sc->sc_cfg;
   3216 
   3217 	/*
   3218 	 * 802.3x flow control.
   3219 	 */
   3220 	pcr = 0;
   3221 	if (sc->sc_flowflags & IFM_FLOW) {
   3222 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3223 			pcr |= sc->sc_rx_flow_thresh;
   3224 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3225 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3226 	}
   3227 
   3228 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3229 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3230 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3231 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3232 }
   3233 #endif /* ! DP83820 */
   3234 
   3235 /*
   3236  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3237  *
   3238  *	Read the MII serial port for the MII bit-bang module.
   3239  */
   3240 static u_int32_t
   3241 SIP_DECL(mii_bitbang_read)(struct device *self)
   3242 {
   3243 	struct sip_softc *sc = (void *) self;
   3244 
   3245 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3246 }
   3247 
   3248 /*
   3249  * sip_mii_bitbang_write: [mii big-bang interface function]
   3250  *
   3251  *	Write the MII serial port for the MII bit-bang module.
   3252  */
   3253 static void
   3254 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
   3255 {
   3256 	struct sip_softc *sc = (void *) self;
   3257 
   3258 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3259 }
   3260 
   3261 #ifndef DP83820
   3262 /*
   3263  * sip_sis900_mii_readreg:	[mii interface function]
   3264  *
   3265  *	Read a PHY register on the MII.
   3266  */
   3267 static int
   3268 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3269 {
   3270 	struct sip_softc *sc = (struct sip_softc *) self;
   3271 	u_int32_t enphy;
   3272 
   3273 	/*
   3274 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3275 	 * operations.
   3276 	 */
   3277 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3278 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3279 		    phy, reg));
   3280 
   3281 #ifndef SIS900_MII_RESTRICT
   3282 	/*
   3283 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3284 	 * MII address 0.
   3285 	 */
   3286 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3287 		return (0);
   3288 #endif
   3289 
   3290 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3291 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3292 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3293 	do {
   3294 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3295 	} while (enphy & ENPHY_ACCESS);
   3296 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3297 }
   3298 
   3299 /*
   3300  * sip_sis900_mii_writereg:	[mii interface function]
   3301  *
   3302  *	Write a PHY register on the MII.
   3303  */
   3304 static void
   3305 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3306 {
   3307 	struct sip_softc *sc = (struct sip_softc *) self;
   3308 	u_int32_t enphy;
   3309 
   3310 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3311 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3312 		    phy, reg, val);
   3313 		return;
   3314 	}
   3315 
   3316 #ifndef SIS900_MII_RESTRICT
   3317 	/*
   3318 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3319 	 * MII address 0.
   3320 	 */
   3321 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3322 		return;
   3323 #endif
   3324 
   3325 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3326 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3327 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3328 	do {
   3329 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3330 	} while (enphy & ENPHY_ACCESS);
   3331 }
   3332 
   3333 /*
   3334  * sip_sis900_mii_statchg:	[mii interface function]
   3335  *
   3336  *	Callback from MII layer when media changes.
   3337  */
   3338 static void
   3339 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3340 {
   3341 	struct sip_softc *sc = (struct sip_softc *) self;
   3342 	struct mii_data *mii = &sc->sc_mii;
   3343 	u_int32_t flowctl;
   3344 
   3345 	/*
   3346 	 * Get flow control negotiation result.
   3347 	 */
   3348 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3349 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3350 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3351 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3352 	}
   3353 
   3354 	/*
   3355 	 * Update TXCFG for full-duplex operation.
   3356 	 */
   3357 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3358 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3359 	else
   3360 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3361 
   3362 	/*
   3363 	 * Update RXCFG for full-duplex or loopback.
   3364 	 */
   3365 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3366 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3367 		sc->sc_rxcfg |= RXCFG_ATX;
   3368 	else
   3369 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3370 
   3371 	/*
   3372 	 * Update IMR for use of 802.3x flow control.
   3373 	 */
   3374 	if (sc->sc_flowflags & IFM_FLOW) {
   3375 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3376 		flowctl = FLOWCTL_FLOWEN;
   3377 	} else {
   3378 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3379 		flowctl = 0;
   3380 	}
   3381 
   3382 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3383 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3384 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3385 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3386 }
   3387 
   3388 /*
   3389  * sip_dp83815_mii_readreg:	[mii interface function]
   3390  *
   3391  *	Read a PHY register on the MII.
   3392  */
   3393 static int
   3394 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3395 {
   3396 	struct sip_softc *sc = (struct sip_softc *) self;
   3397 	u_int32_t val;
   3398 
   3399 	/*
   3400 	 * The DP83815 only has an internal PHY.  Only allow
   3401 	 * MII address 0.
   3402 	 */
   3403 	if (phy != 0)
   3404 		return (0);
   3405 
   3406 	/*
   3407 	 * Apparently, after a reset, the DP83815 can take a while
   3408 	 * to respond.  During this recovery period, the BMSR returns
   3409 	 * a value of 0.  Catch this -- it's not supposed to happen
   3410 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3411 	 * PHY to come back to life.
   3412 	 *
   3413 	 * This works out because the BMSR is the first register
   3414 	 * read during the PHY probe process.
   3415 	 */
   3416 	do {
   3417 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3418 	} while (reg == MII_BMSR && val == 0);
   3419 
   3420 	return (val & 0xffff);
   3421 }
   3422 
   3423 /*
   3424  * sip_dp83815_mii_writereg:	[mii interface function]
   3425  *
   3426  *	Write a PHY register to the MII.
   3427  */
   3428 static void
   3429 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3430 {
   3431 	struct sip_softc *sc = (struct sip_softc *) self;
   3432 
   3433 	/*
   3434 	 * The DP83815 only has an internal PHY.  Only allow
   3435 	 * MII address 0.
   3436 	 */
   3437 	if (phy != 0)
   3438 		return;
   3439 
   3440 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3441 }
   3442 
   3443 /*
   3444  * sip_dp83815_mii_statchg:	[mii interface function]
   3445  *
   3446  *	Callback from MII layer when media changes.
   3447  */
   3448 static void
   3449 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3450 {
   3451 	struct sip_softc *sc = (struct sip_softc *) self;
   3452 
   3453 	/*
   3454 	 * Update TXCFG for full-duplex operation.
   3455 	 */
   3456 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3457 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3458 	else
   3459 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3460 
   3461 	/*
   3462 	 * Update RXCFG for full-duplex or loopback.
   3463 	 */
   3464 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3465 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3466 		sc->sc_rxcfg |= RXCFG_ATX;
   3467 	else
   3468 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3469 
   3470 	/*
   3471 	 * XXX 802.3x flow control.
   3472 	 */
   3473 
   3474 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3475 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3476 
   3477 	/*
   3478 	 * Some DP83815s experience problems when used with short
   3479 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3480 	 * sequence adjusts the DSP's signal attenuation to fix the
   3481 	 * problem.
   3482 	 */
   3483 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3484 		uint32_t reg;
   3485 
   3486 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3487 
   3488 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3489 		reg &= 0x0fff;
   3490 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3491 		delay(100);
   3492 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3493 		reg &= 0x00ff;
   3494 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3495 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3496 			    0x00e8);
   3497 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3498 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3499 			    reg | 0x20);
   3500 		}
   3501 
   3502 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3503 	}
   3504 }
   3505 #endif /* DP83820 */
   3506 
   3507 #if defined(DP83820)
   3508 static void
   3509 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3510     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3511 {
   3512 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3513 	u_int8_t cksum, *e, match;
   3514 	int i;
   3515 
   3516 	/*
   3517 	 * EEPROM data format for the DP83820 can be found in
   3518 	 * the DP83820 manual, section 4.2.4.
   3519 	 */
   3520 
   3521 	SIP_DECL(read_eeprom)(sc, 0,
   3522 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3523 
   3524 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3525 	match = ~(match - 1);
   3526 
   3527 	cksum = 0x55;
   3528 	e = (u_int8_t *) eeprom_data;
   3529 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3530 		cksum += *e++;
   3531 
   3532 	if (cksum != match)
   3533 		printf("%s: Checksum (%x) mismatch (%x)",
   3534 		    sc->sc_dev.dv_xname, cksum, match);
   3535 
   3536 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3537 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3538 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3539 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3540 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3541 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3542 }
   3543 #else /* ! DP83820 */
   3544 static void
   3545 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3546 {
   3547 	int i;
   3548 
   3549 	/*
   3550 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3551 	 * a reason, but I don't know it.
   3552 	 */
   3553 	for (i = 0; i < 10; i++)
   3554 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3555 }
   3556 
   3557 static void
   3558 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3559     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3560 {
   3561 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3562 
   3563 	switch (sc->sc_rev) {
   3564 	case SIS_REV_630S:
   3565 	case SIS_REV_630E:
   3566 	case SIS_REV_630EA1:
   3567 	case SIS_REV_630ET:
   3568 	case SIS_REV_635:
   3569 		/*
   3570 		 * The MAC address for the on-board Ethernet of
   3571 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3572 		 * the chip into re-loading it from NVRAM, and
   3573 		 * read the MAC address out of the filter registers.
   3574 		 */
   3575 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3576 
   3577 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3578 		    RFCR_RFADDR_NODE0);
   3579 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3580 		    0xffff;
   3581 
   3582 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3583 		    RFCR_RFADDR_NODE2);
   3584 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3585 		    0xffff;
   3586 
   3587 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3588 		    RFCR_RFADDR_NODE4);
   3589 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3590 		    0xffff;
   3591 		break;
   3592 
   3593 	case SIS_REV_960:
   3594 		{
   3595 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3596 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3597 
   3598 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3599 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3600 
   3601 			int waittime, i;
   3602 
   3603 			/* Allow to read EEPROM from LAN. It is shared
   3604 			 * between a 1394 controller and the NIC and each
   3605 			 * time we access it, we need to set SIS_EECMD_REQ.
   3606 			 */
   3607 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3608 
   3609 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3610 				/* Force EEPROM to idle state. */
   3611 
   3612 				/*
   3613 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3614 				 */
   3615 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3616 				SIP_DECL(sis900_eeprom_delay)(sc);
   3617 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3618 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3619 					SIP_DECL(sis900_eeprom_delay)(sc);
   3620 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3621 					SIP_DECL(sis900_eeprom_delay)(sc);
   3622 				}
   3623 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3624 				SIP_DECL(sis900_eeprom_delay)(sc);
   3625 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3626 
   3627 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3628 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3629 					    sizeof(myea) / sizeof(myea[0]), myea);
   3630 					break;
   3631 				}
   3632 				DELAY(1);
   3633 			}
   3634 
   3635 			/*
   3636 			 * Set SIS_EECTL_CLK to high, so a other master
   3637 			 * can operate on the i2c bus.
   3638 			 */
   3639 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3640 
   3641 			/* Refuse EEPROM access by LAN */
   3642 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3643 		} break;
   3644 
   3645 	default:
   3646 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3647 		    sizeof(myea) / sizeof(myea[0]), myea);
   3648 	}
   3649 
   3650 	enaddr[0] = myea[0] & 0xff;
   3651 	enaddr[1] = myea[0] >> 8;
   3652 	enaddr[2] = myea[1] & 0xff;
   3653 	enaddr[3] = myea[1] >> 8;
   3654 	enaddr[4] = myea[2] & 0xff;
   3655 	enaddr[5] = myea[2] >> 8;
   3656 }
   3657 
   3658 /* Table and macro to bit-reverse an octet. */
   3659 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3660 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3661 
   3662 static void
   3663 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3664     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3665 {
   3666 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3667 	u_int8_t cksum, *e, match;
   3668 	int i;
   3669 
   3670 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3671 	    sizeof(eeprom_data[0]), eeprom_data);
   3672 
   3673 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3674 	match = ~(match - 1);
   3675 
   3676 	cksum = 0x55;
   3677 	e = (u_int8_t *) eeprom_data;
   3678 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3679 		cksum += *e++;
   3680 	}
   3681 	if (cksum != match) {
   3682 		printf("%s: Checksum (%x) mismatch (%x)",
   3683 		    sc->sc_dev.dv_xname, cksum, match);
   3684 	}
   3685 
   3686 	/*
   3687 	 * Unrolled because it makes slightly more sense this way.
   3688 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3689 	 * through bit 15 of word 8.
   3690 	 */
   3691 	ea = &eeprom_data[6];
   3692 	enaddr[0] = ((*ea & 0x1) << 7);
   3693 	ea++;
   3694 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3695 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3696 	enaddr[2] = ((*ea & 0x1) << 7);
   3697 	ea++;
   3698 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3699 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3700 	enaddr[4] = ((*ea & 0x1) << 7);
   3701 	ea++;
   3702 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3703 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3704 
   3705 	/*
   3706 	 * In case that's not weird enough, we also need to reverse
   3707 	 * the bits in each byte.  This all actually makes more sense
   3708 	 * if you think about the EEPROM storage as an array of bits
   3709 	 * being shifted into bytes, but that's not how we're looking
   3710 	 * at it here...
   3711 	 */
   3712 	for (i = 0; i < 6 ;i++)
   3713 		enaddr[i] = bbr(enaddr[i]);
   3714 }
   3715 #endif /* DP83820 */
   3716 
   3717 /*
   3718  * sip_mediastatus:	[ifmedia interface function]
   3719  *
   3720  *	Get the current interface media status.
   3721  */
   3722 static void
   3723 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3724 {
   3725 	struct sip_softc *sc = ifp->if_softc;
   3726 
   3727 	mii_pollstat(&sc->sc_mii);
   3728 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3729 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3730 			   sc->sc_flowflags;
   3731 }
   3732 
   3733 /*
   3734  * sip_mediachange:	[ifmedia interface function]
   3735  *
   3736  *	Set hardware to newly-selected media.
   3737  */
   3738 static int
   3739 SIP_DECL(mediachange)(struct ifnet *ifp)
   3740 {
   3741 	struct sip_softc *sc = ifp->if_softc;
   3742 
   3743 	if (ifp->if_flags & IFF_UP)
   3744 		mii_mediachg(&sc->sc_mii);
   3745 	return (0);
   3746 }
   3747