if_sip.c revision 1.102.2.1 1 /* $NetBSD: if_sip.c,v 1.102.2.1 2006/06/21 15:05:05 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.102.2.1 2006/06/21 15:05:05 yamt Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 /* values of interface state at last init */
313 struct {
314 /* if_capenable */
315 uint64_t if_capenable;
316 /* ec_capenable */
317 int ec_capenable;
318 /* VLAN_ATTACHED */
319 int is_vlan;
320 } sc_prev;
321
322 short sc_if_flags;
323
324 int sc_rxptr; /* next ready Rx descriptor/descsoft */
325 #if defined(DP83820)
326 int sc_rxdiscard;
327 int sc_rxlen;
328 struct mbuf *sc_rxhead;
329 struct mbuf *sc_rxtail;
330 struct mbuf **sc_rxtailp;
331 #endif /* DP83820 */
332
333 #if NRND > 0
334 rndsource_element_t rnd_source; /* random source */
335 #endif
336 };
337
338 #ifdef DP83820
339 #define SIP_RXCHAIN_RESET(sc) \
340 do { \
341 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
342 *(sc)->sc_rxtailp = NULL; \
343 (sc)->sc_rxlen = 0; \
344 } while (/*CONSTCOND*/0)
345
346 #define SIP_RXCHAIN_LINK(sc, m) \
347 do { \
348 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
349 (sc)->sc_rxtailp = &(m)->m_next; \
350 } while (/*CONSTCOND*/0)
351 #endif /* DP83820 */
352
353 #ifdef SIP_EVENT_COUNTERS
354 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
355 #else
356 #define SIP_EVCNT_INCR(ev) /* nothing */
357 #endif
358
359 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
360 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
361
362 #define SIP_CDTXSYNC(sc, x, n, ops) \
363 do { \
364 int __x, __n; \
365 \
366 __x = (x); \
367 __n = (n); \
368 \
369 /* If it will wrap around, sync to the end of the ring. */ \
370 if ((__x + __n) > SIP_NTXDESC) { \
371 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
372 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
373 (SIP_NTXDESC - __x), (ops)); \
374 __n -= (SIP_NTXDESC - __x); \
375 __x = 0; \
376 } \
377 \
378 /* Now sync whatever is left. */ \
379 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
380 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
381 } while (0)
382
383 #define SIP_CDRXSYNC(sc, x, ops) \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
386
387 #ifdef DP83820
388 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
389 #define SIP_RXBUF_LEN (MCLBYTES - 8)
390 #else
391 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
392 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
393 #endif
394 #define SIP_INIT_RXDESC(sc, x) \
395 do { \
396 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
397 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
398 \
399 __sipd->sipd_link = \
400 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
401 __sipd->sipd_bufptr = \
402 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
403 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
404 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
405 SIP_INIT_RXDESC_EXTSTS \
406 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
407 } while (0)
408
409 #define SIP_CHIP_VERS(sc, v, p, r) \
410 ((sc)->sc_model->sip_vendor == (v) && \
411 (sc)->sc_model->sip_product == (p) && \
412 (sc)->sc_rev == (r))
413
414 #define SIP_CHIP_MODEL(sc, v, p) \
415 ((sc)->sc_model->sip_vendor == (v) && \
416 (sc)->sc_model->sip_product == (p))
417
418 #if !defined(DP83820)
419 #define SIP_SIS900_REV(sc, rev) \
420 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421 #endif
422
423 #define SIP_TIMEOUT 1000
424
425 static void SIP_DECL(start)(struct ifnet *);
426 static void SIP_DECL(watchdog)(struct ifnet *);
427 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
428 static int SIP_DECL(init)(struct ifnet *);
429 static void SIP_DECL(stop)(struct ifnet *, int);
430
431 static void SIP_DECL(shutdown)(void *);
432
433 static void SIP_DECL(reset)(struct sip_softc *);
434 static void SIP_DECL(rxdrain)(struct sip_softc *);
435 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
436 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
437 u_int16_t *);
438 static void SIP_DECL(tick)(void *);
439
440 #if !defined(DP83820)
441 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
442 #endif /* ! DP83820 */
443 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
444
445 #if defined(DP83820)
446 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
447 const struct pci_attach_args *, u_int8_t *);
448 #else
449 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
450 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
451 const struct pci_attach_args *, u_int8_t *);
452 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
453 const struct pci_attach_args *, u_int8_t *);
454 #endif /* DP83820 */
455
456 static int SIP_DECL(intr)(void *);
457 static void SIP_DECL(txintr)(struct sip_softc *);
458 static void SIP_DECL(rxintr)(struct sip_softc *);
459
460 #if defined(DP83820)
461 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
462 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
463 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
464 #else
465 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
466 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
467 static void SIP_DECL(sis900_mii_statchg)(struct device *);
468
469 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
470 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
471 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
472 #endif /* DP83820 */
473
474 static int SIP_DECL(mediachange)(struct ifnet *);
475 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
476
477 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
478 static void SIP_DECL(attach)(struct device *, struct device *, void *);
479
480 int SIP_DECL(copy_small) = 0;
481
482 #ifdef DP83820
483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
484 gsip_match, gsip_attach, NULL, NULL);
485 #else
486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
487 sip_match, sip_attach, NULL, NULL);
488 #endif
489
490 /*
491 * Descriptions of the variants of the SiS900.
492 */
493 struct sip_variant {
494 int (*sipv_mii_readreg)(struct device *, int, int);
495 void (*sipv_mii_writereg)(struct device *, int, int, int);
496 void (*sipv_mii_statchg)(struct device *);
497 void (*sipv_set_filter)(struct sip_softc *);
498 void (*sipv_read_macaddr)(struct sip_softc *,
499 const struct pci_attach_args *, u_int8_t *);
500 };
501
502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
503 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
504
505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
506 SIP_DECL(mii_bitbang_read),
507 SIP_DECL(mii_bitbang_write),
508 {
509 EROMAR_MDIO, /* MII_BIT_MDO */
510 EROMAR_MDIO, /* MII_BIT_MDI */
511 EROMAR_MDC, /* MII_BIT_MDC */
512 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
513 0, /* MII_BIT_DIR_PHY_HOST */
514 }
515 };
516
517 #if defined(DP83820)
518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
519 SIP_DECL(dp83820_mii_readreg),
520 SIP_DECL(dp83820_mii_writereg),
521 SIP_DECL(dp83820_mii_statchg),
522 SIP_DECL(dp83815_set_filter),
523 SIP_DECL(dp83820_read_macaddr),
524 };
525 #else
526 static const struct sip_variant SIP_DECL(variant_sis900) = {
527 SIP_DECL(sis900_mii_readreg),
528 SIP_DECL(sis900_mii_writereg),
529 SIP_DECL(sis900_mii_statchg),
530 SIP_DECL(sis900_set_filter),
531 SIP_DECL(sis900_read_macaddr),
532 };
533
534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
535 SIP_DECL(dp83815_mii_readreg),
536 SIP_DECL(dp83815_mii_writereg),
537 SIP_DECL(dp83815_mii_statchg),
538 SIP_DECL(dp83815_set_filter),
539 SIP_DECL(dp83815_read_macaddr),
540 };
541 #endif /* DP83820 */
542
543 /*
544 * Devices supported by this driver.
545 */
546 static const struct sip_product {
547 pci_vendor_id_t sip_vendor;
548 pci_product_id_t sip_product;
549 const char *sip_name;
550 const struct sip_variant *sip_variant;
551 } SIP_DECL(products)[] = {
552 #if defined(DP83820)
553 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
554 "NatSemi DP83820 Gigabit Ethernet",
555 &SIP_DECL(variant_dp83820) },
556 #else
557 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
558 "SiS 900 10/100 Ethernet",
559 &SIP_DECL(variant_sis900) },
560 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
561 "SiS 7016 10/100 Ethernet",
562 &SIP_DECL(variant_sis900) },
563
564 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
565 "NatSemi DP83815 10/100 Ethernet",
566 &SIP_DECL(variant_dp83815) },
567 #endif /* DP83820 */
568
569 { 0, 0,
570 NULL,
571 NULL },
572 };
573
574 static const struct sip_product *
575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
576 {
577 const struct sip_product *sip;
578
579 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
580 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
581 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
582 return (sip);
583 }
584 return (NULL);
585 }
586
587 #ifdef DP83820
588 /*
589 * I really hate stupid hardware vendors. There's a bit in the EEPROM
590 * which indicates if the card can do 64-bit data transfers. Unfortunately,
591 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
592 * which means we try to use 64-bit data transfers on those cards if we
593 * happen to be plugged into a 32-bit slot.
594 *
595 * What we do is use this table of cards known to be 64-bit cards. If
596 * you have a 64-bit card who's subsystem ID is not listed in this table,
597 * send the output of "pcictl dump ..." of the device to me so that your
598 * card will use the 64-bit data path when plugged into a 64-bit slot.
599 *
600 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
601 * June 30, 2002
602 */
603 static int
604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
605 {
606 static const struct {
607 pci_vendor_id_t c64_vendor;
608 pci_product_id_t c64_product;
609 } card64[] = {
610 /* Asante GigaNIX */
611 { 0x128a, 0x0002 },
612
613 /* Accton EN1407-T, Planex GN-1000TE */
614 { 0x1113, 0x1407 },
615
616 /* Netgear GA-621 */
617 { 0x1385, 0x621a },
618
619 /* SMC EZ Card */
620 { 0x10b8, 0x9462 },
621
622 { 0, 0}
623 };
624 pcireg_t subsys;
625 int i;
626
627 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
628
629 for (i = 0; card64[i].c64_vendor != 0; i++) {
630 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
631 PCI_PRODUCT(subsys) == card64[i].c64_product)
632 return (1);
633 }
634
635 return (0);
636 }
637 #endif /* DP83820 */
638
639 static int
640 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
641 {
642 struct pci_attach_args *pa = aux;
643
644 if (SIP_DECL(lookup)(pa) != NULL)
645 return (1);
646
647 return (0);
648 }
649
650 static void
651 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
652 {
653 struct sip_softc *sc = (struct sip_softc *) self;
654 struct pci_attach_args *pa = aux;
655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
656 pci_chipset_tag_t pc = pa->pa_pc;
657 pci_intr_handle_t ih;
658 const char *intrstr = NULL;
659 bus_space_tag_t iot, memt;
660 bus_space_handle_t ioh, memh;
661 bus_dma_segment_t seg;
662 int ioh_valid, memh_valid;
663 int i, rseg, error;
664 const struct sip_product *sip;
665 u_int8_t enaddr[ETHER_ADDR_LEN];
666 pcireg_t pmreg;
667 #ifdef DP83820
668 pcireg_t memtype;
669 u_int32_t reg;
670 #endif /* DP83820 */
671
672 callout_init(&sc->sc_tick_ch);
673
674 sip = SIP_DECL(lookup)(pa);
675 if (sip == NULL) {
676 printf("\n");
677 panic(SIP_STR(attach) ": impossible");
678 }
679 sc->sc_rev = PCI_REVISION(pa->pa_class);
680
681 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
682
683 sc->sc_model = sip;
684
685 /*
686 * XXX Work-around broken PXE firmware on some boards.
687 *
688 * The DP83815 shares an address decoder with the MEM BAR
689 * and the ROM BAR. Make sure the ROM BAR is disabled,
690 * so that memory mapped access works.
691 */
692 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
693 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
694 ~PCI_MAPREG_ROM_ENABLE);
695
696 /*
697 * Map the device.
698 */
699 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
700 PCI_MAPREG_TYPE_IO, 0,
701 &iot, &ioh, NULL, NULL) == 0);
702 #ifdef DP83820
703 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
704 switch (memtype) {
705 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
706 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
707 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
708 memtype, 0, &memt, &memh, NULL, NULL) == 0);
709 break;
710 default:
711 memh_valid = 0;
712 }
713 #else
714 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
715 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
716 &memt, &memh, NULL, NULL) == 0);
717 #endif /* DP83820 */
718
719 if (memh_valid) {
720 sc->sc_st = memt;
721 sc->sc_sh = memh;
722 } else if (ioh_valid) {
723 sc->sc_st = iot;
724 sc->sc_sh = ioh;
725 } else {
726 printf("%s: unable to map device registers\n",
727 sc->sc_dev.dv_xname);
728 return;
729 }
730
731 sc->sc_dmat = pa->pa_dmat;
732
733 /*
734 * Make sure bus mastering is enabled. Also make sure
735 * Write/Invalidate is enabled if we're allowed to use it.
736 */
737 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
738 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
739 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
740 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
741 pmreg | PCI_COMMAND_MASTER_ENABLE);
742
743 /* power up chip */
744 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
745 NULL)) && error != EOPNOTSUPP) {
746 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
747 error);
748 return;
749 }
750
751 /*
752 * Map and establish our interrupt.
753 */
754 if (pci_intr_map(pa, &ih)) {
755 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
756 return;
757 }
758 intrstr = pci_intr_string(pc, ih);
759 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
760 if (sc->sc_ih == NULL) {
761 printf("%s: unable to establish interrupt",
762 sc->sc_dev.dv_xname);
763 if (intrstr != NULL)
764 printf(" at %s", intrstr);
765 printf("\n");
766 return;
767 }
768 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
769
770 SIMPLEQ_INIT(&sc->sc_txfreeq);
771 SIMPLEQ_INIT(&sc->sc_txdirtyq);
772
773 /*
774 * Allocate the control data structures, and create and load the
775 * DMA map for it.
776 */
777 if ((error = bus_dmamem_alloc(sc->sc_dmat,
778 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
779 0)) != 0) {
780 printf("%s: unable to allocate control data, error = %d\n",
781 sc->sc_dev.dv_xname, error);
782 goto fail_0;
783 }
784
785 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
786 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
787 BUS_DMA_COHERENT)) != 0) {
788 printf("%s: unable to map control data, error = %d\n",
789 sc->sc_dev.dv_xname, error);
790 goto fail_1;
791 }
792
793 if ((error = bus_dmamap_create(sc->sc_dmat,
794 sizeof(struct sip_control_data), 1,
795 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
796 printf("%s: unable to create control data DMA map, "
797 "error = %d\n", sc->sc_dev.dv_xname, error);
798 goto fail_2;
799 }
800
801 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
802 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
803 0)) != 0) {
804 printf("%s: unable to load control data DMA map, error = %d\n",
805 sc->sc_dev.dv_xname, error);
806 goto fail_3;
807 }
808
809 /*
810 * Create the transmit buffer DMA maps.
811 */
812 for (i = 0; i < SIP_TXQUEUELEN; i++) {
813 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
814 SIP_NTXSEGS, MCLBYTES, 0, 0,
815 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
816 printf("%s: unable to create tx DMA map %d, "
817 "error = %d\n", sc->sc_dev.dv_xname, i, error);
818 goto fail_4;
819 }
820 }
821
822 /*
823 * Create the receive buffer DMA maps.
824 */
825 for (i = 0; i < SIP_NRXDESC; i++) {
826 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
827 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
828 printf("%s: unable to create rx DMA map %d, "
829 "error = %d\n", sc->sc_dev.dv_xname, i, error);
830 goto fail_5;
831 }
832 sc->sc_rxsoft[i].rxs_mbuf = NULL;
833 }
834
835 /*
836 * Reset the chip to a known state.
837 */
838 SIP_DECL(reset)(sc);
839
840 /*
841 * Read the Ethernet address from the EEPROM. This might
842 * also fetch other stuff from the EEPROM and stash it
843 * in the softc.
844 */
845 sc->sc_cfg = 0;
846 #if !defined(DP83820)
847 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
848 SIP_SIS900_REV(sc,SIS_REV_900B))
849 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
850
851 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 SIP_SIS900_REV(sc,SIS_REV_960) ||
853 SIP_SIS900_REV(sc,SIS_REV_900B))
854 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
855 SIP_CFG) & CFG_EDBMASTEN);
856 #endif
857
858 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
859
860 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
861 ether_sprintf(enaddr));
862
863 /*
864 * Initialize the configuration register: aggressive PCI
865 * bus request algorithm, default backoff, default OW timer,
866 * default parity error detection.
867 *
868 * NOTE: "Big endian mode" is useless on the SiS900 and
869 * friends -- it affects packet data, not descriptors.
870 */
871 #ifdef DP83820
872 /*
873 * Cause the chip to load configuration data from the EEPROM.
874 */
875 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
876 for (i = 0; i < 10000; i++) {
877 delay(10);
878 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
879 PTSCR_EELOAD_EN) == 0)
880 break;
881 }
882 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 PTSCR_EELOAD_EN) {
884 printf("%s: timeout loading configuration from EEPROM\n",
885 sc->sc_dev.dv_xname);
886 return;
887 }
888
889 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
890
891 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
892 if (reg & CFG_PCI64_DET) {
893 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
894 /*
895 * Check to see if this card is 64-bit. If so, enable 64-bit
896 * data transfers.
897 *
898 * We can't use the DATA64_EN bit in the EEPROM, because
899 * vendors of 32-bit cards fail to clear that bit in many
900 * cases (yet the card still detects that it's in a 64-bit
901 * slot; go figure).
902 */
903 if (SIP_DECL(check_64bit)(pa)) {
904 sc->sc_cfg |= CFG_DATA64_EN;
905 printf(", using 64-bit data transfers");
906 }
907 printf("\n");
908 }
909
910 /*
911 * XXX Need some PCI flags indicating support for
912 * XXX 64-bit addressing.
913 */
914 #if 0
915 if (reg & CFG_M64ADDR)
916 sc->sc_cfg |= CFG_M64ADDR;
917 if (reg & CFG_T64ADDR)
918 sc->sc_cfg |= CFG_T64ADDR;
919 #endif
920
921 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
922 const char *sep = "";
923 printf("%s: using ", sc->sc_dev.dv_xname);
924 if (reg & CFG_EXT_125) {
925 sc->sc_cfg |= CFG_EXT_125;
926 printf("%s125MHz clock", sep);
927 sep = ", ";
928 }
929 if (reg & CFG_TBI_EN) {
930 sc->sc_cfg |= CFG_TBI_EN;
931 printf("%sten-bit interface", sep);
932 sep = ", ";
933 }
934 printf("\n");
935 }
936 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
937 (reg & CFG_MRM_DIS) != 0)
938 sc->sc_cfg |= CFG_MRM_DIS;
939 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
940 (reg & CFG_MWI_DIS) != 0)
941 sc->sc_cfg |= CFG_MWI_DIS;
942
943 /*
944 * Use the extended descriptor format on the DP83820. This
945 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
946 * checksumming.
947 */
948 sc->sc_cfg |= CFG_EXTSTS_EN;
949 #endif /* DP83820 */
950
951 /*
952 * Initialize our media structures and probe the MII.
953 */
954 sc->sc_mii.mii_ifp = ifp;
955 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
956 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
957 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
958 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
959 SIP_DECL(mediastatus));
960
961 /*
962 * XXX We cannot handle flow control on the DP83815.
963 */
964 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
965 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
966 MII_OFFSET_ANY, 0);
967 else
968 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
969 MII_OFFSET_ANY, MIIF_DOPAUSE);
970 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
971 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
972 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
973 } else
974 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
975
976 ifp = &sc->sc_ethercom.ec_if;
977 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
978 ifp->if_softc = sc;
979 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
980 sc->sc_if_flags = ifp->if_flags;
981 ifp->if_ioctl = SIP_DECL(ioctl);
982 ifp->if_start = SIP_DECL(start);
983 ifp->if_watchdog = SIP_DECL(watchdog);
984 ifp->if_init = SIP_DECL(init);
985 ifp->if_stop = SIP_DECL(stop);
986 IFQ_SET_READY(&ifp->if_snd);
987
988 /*
989 * We can support 802.1Q VLAN-sized frames.
990 */
991 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
992
993 #ifdef DP83820
994 /*
995 * And the DP83820 can do VLAN tagging in hardware, and
996 * support the jumbo Ethernet MTU.
997 */
998 sc->sc_ethercom.ec_capabilities |=
999 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1000
1001 /*
1002 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1003 * in hardware.
1004 */
1005 ifp->if_capabilities |=
1006 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1007 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1008 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1009 #endif /* DP83820 */
1010
1011 /*
1012 * Attach the interface.
1013 */
1014 if_attach(ifp);
1015 ether_ifattach(ifp, enaddr);
1016 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1017 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1018 sc->sc_prev.if_capenable = ifp->if_capenable;
1019 #if NRND > 0
1020 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1021 RND_TYPE_NET, 0);
1022 #endif
1023
1024 /*
1025 * The number of bytes that must be available in
1026 * the Tx FIFO before the bus master can DMA more
1027 * data into the FIFO.
1028 */
1029 sc->sc_tx_fill_thresh = 64 / 32;
1030
1031 /*
1032 * Start at a drain threshold of 512 bytes. We will
1033 * increase it if a DMA underrun occurs.
1034 *
1035 * XXX The minimum value of this variable should be
1036 * tuned. We may be able to improve performance
1037 * by starting with a lower value. That, however,
1038 * may trash the first few outgoing packets if the
1039 * PCI bus is saturated.
1040 */
1041 #ifdef DP83820
1042 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1043 #else
1044 sc->sc_tx_drain_thresh = 1504 / 32;
1045 #endif
1046
1047 /*
1048 * Initialize the Rx FIFO drain threshold.
1049 *
1050 * This is in units of 8 bytes.
1051 *
1052 * We should never set this value lower than 2; 14 bytes are
1053 * required to filter the packet.
1054 */
1055 sc->sc_rx_drain_thresh = 128 / 8;
1056
1057 #ifdef SIP_EVENT_COUNTERS
1058 /*
1059 * Attach event counters.
1060 */
1061 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1062 NULL, sc->sc_dev.dv_xname, "txsstall");
1063 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1064 NULL, sc->sc_dev.dv_xname, "txdstall");
1065 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1066 NULL, sc->sc_dev.dv_xname, "txforceintr");
1067 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1068 NULL, sc->sc_dev.dv_xname, "txdintr");
1069 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1070 NULL, sc->sc_dev.dv_xname, "txiintr");
1071 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1072 NULL, sc->sc_dev.dv_xname, "rxintr");
1073 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1074 NULL, sc->sc_dev.dv_xname, "hiberr");
1075 #ifndef DP83820
1076 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1077 NULL, sc->sc_dev.dv_xname, "rxpause");
1078 #endif /* !DP83820 */
1079 #ifdef DP83820
1080 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1081 NULL, sc->sc_dev.dv_xname, "rxpause");
1082 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1083 NULL, sc->sc_dev.dv_xname, "txpause");
1084 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1085 NULL, sc->sc_dev.dv_xname, "rxipsum");
1086 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1087 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1088 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1089 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1090 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1091 NULL, sc->sc_dev.dv_xname, "txipsum");
1092 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1093 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1094 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1095 NULL, sc->sc_dev.dv_xname, "txudpsum");
1096 #endif /* DP83820 */
1097 #endif /* SIP_EVENT_COUNTERS */
1098
1099 /*
1100 * Make sure the interface is shutdown during reboot.
1101 */
1102 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1103 if (sc->sc_sdhook == NULL)
1104 printf("%s: WARNING: unable to establish shutdown hook\n",
1105 sc->sc_dev.dv_xname);
1106 return;
1107
1108 /*
1109 * Free any resources we've allocated during the failed attach
1110 * attempt. Do this in reverse order and fall through.
1111 */
1112 fail_5:
1113 for (i = 0; i < SIP_NRXDESC; i++) {
1114 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1115 bus_dmamap_destroy(sc->sc_dmat,
1116 sc->sc_rxsoft[i].rxs_dmamap);
1117 }
1118 fail_4:
1119 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1120 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1121 bus_dmamap_destroy(sc->sc_dmat,
1122 sc->sc_txsoft[i].txs_dmamap);
1123 }
1124 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1125 fail_3:
1126 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1127 fail_2:
1128 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1129 sizeof(struct sip_control_data));
1130 fail_1:
1131 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1132 fail_0:
1133 return;
1134 }
1135
1136 /*
1137 * sip_shutdown:
1138 *
1139 * Make sure the interface is stopped at reboot time.
1140 */
1141 static void
1142 SIP_DECL(shutdown)(void *arg)
1143 {
1144 struct sip_softc *sc = arg;
1145
1146 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1147 }
1148
1149 /*
1150 * sip_start: [ifnet interface function]
1151 *
1152 * Start packet transmission on the interface.
1153 */
1154 static void
1155 SIP_DECL(start)(struct ifnet *ifp)
1156 {
1157 struct sip_softc *sc = ifp->if_softc;
1158 struct mbuf *m0;
1159 #ifndef DP83820
1160 struct mbuf *m;
1161 #endif
1162 struct sip_txsoft *txs;
1163 bus_dmamap_t dmamap;
1164 int error, nexttx, lasttx, seg;
1165 int ofree = sc->sc_txfree;
1166 #if 0
1167 int firsttx = sc->sc_txnext;
1168 #endif
1169 #ifdef DP83820
1170 struct m_tag *mtag;
1171 u_int32_t extsts;
1172 #endif
1173
1174 #ifndef DP83820
1175 /*
1176 * If we've been told to pause, don't transmit any more packets.
1177 */
1178 if (sc->sc_paused)
1179 ifp->if_flags |= IFF_OACTIVE;
1180 #endif
1181
1182 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1183 return;
1184
1185 /*
1186 * Loop through the send queue, setting up transmit descriptors
1187 * until we drain the queue, or use up all available transmit
1188 * descriptors.
1189 */
1190 for (;;) {
1191 /* Get a work queue entry. */
1192 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1193 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1194 break;
1195 }
1196
1197 /*
1198 * Grab a packet off the queue.
1199 */
1200 IFQ_POLL(&ifp->if_snd, m0);
1201 if (m0 == NULL)
1202 break;
1203 #ifndef DP83820
1204 m = NULL;
1205 #endif
1206
1207 dmamap = txs->txs_dmamap;
1208
1209 #ifdef DP83820
1210 /*
1211 * Load the DMA map. If this fails, the packet either
1212 * didn't fit in the allotted number of segments, or we
1213 * were short on resources. For the too-many-segments
1214 * case, we simply report an error and drop the packet,
1215 * since we can't sanely copy a jumbo packet to a single
1216 * buffer.
1217 */
1218 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1219 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1220 if (error) {
1221 if (error == EFBIG) {
1222 printf("%s: Tx packet consumes too many "
1223 "DMA segments, dropping...\n",
1224 sc->sc_dev.dv_xname);
1225 IFQ_DEQUEUE(&ifp->if_snd, m0);
1226 m_freem(m0);
1227 continue;
1228 }
1229 /*
1230 * Short on resources, just stop for now.
1231 */
1232 break;
1233 }
1234 #else /* DP83820 */
1235 /*
1236 * Load the DMA map. If this fails, the packet either
1237 * didn't fit in the alloted number of segments, or we
1238 * were short on resources. In this case, we'll copy
1239 * and try again.
1240 */
1241 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1242 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1243 MGETHDR(m, M_DONTWAIT, MT_DATA);
1244 if (m == NULL) {
1245 printf("%s: unable to allocate Tx mbuf\n",
1246 sc->sc_dev.dv_xname);
1247 break;
1248 }
1249 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1250 if (m0->m_pkthdr.len > MHLEN) {
1251 MCLGET(m, M_DONTWAIT);
1252 if ((m->m_flags & M_EXT) == 0) {
1253 printf("%s: unable to allocate Tx "
1254 "cluster\n", sc->sc_dev.dv_xname);
1255 m_freem(m);
1256 break;
1257 }
1258 }
1259 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1260 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1261 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1262 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1263 if (error) {
1264 printf("%s: unable to load Tx buffer, "
1265 "error = %d\n", sc->sc_dev.dv_xname, error);
1266 break;
1267 }
1268 }
1269 #endif /* DP83820 */
1270
1271 /*
1272 * Ensure we have enough descriptors free to describe
1273 * the packet. Note, we always reserve one descriptor
1274 * at the end of the ring as a termination point, to
1275 * prevent wrap-around.
1276 */
1277 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1278 /*
1279 * Not enough free descriptors to transmit this
1280 * packet. We haven't committed anything yet,
1281 * so just unload the DMA map, put the packet
1282 * back on the queue, and punt. Notify the upper
1283 * layer that there are not more slots left.
1284 *
1285 * XXX We could allocate an mbuf and copy, but
1286 * XXX is it worth it?
1287 */
1288 ifp->if_flags |= IFF_OACTIVE;
1289 bus_dmamap_unload(sc->sc_dmat, dmamap);
1290 #ifndef DP83820
1291 if (m != NULL)
1292 m_freem(m);
1293 #endif
1294 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1295 break;
1296 }
1297
1298 IFQ_DEQUEUE(&ifp->if_snd, m0);
1299 #ifndef DP83820
1300 if (m != NULL) {
1301 m_freem(m0);
1302 m0 = m;
1303 }
1304 #endif
1305
1306 /*
1307 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1308 */
1309
1310 /* Sync the DMA map. */
1311 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1312 BUS_DMASYNC_PREWRITE);
1313
1314 /*
1315 * Initialize the transmit descriptors.
1316 */
1317 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1318 seg < dmamap->dm_nsegs;
1319 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1320 /*
1321 * If this is the first descriptor we're
1322 * enqueueing, don't set the OWN bit just
1323 * yet. That could cause a race condition.
1324 * We'll do it below.
1325 */
1326 sc->sc_txdescs[nexttx].sipd_bufptr =
1327 htole32(dmamap->dm_segs[seg].ds_addr);
1328 sc->sc_txdescs[nexttx].sipd_cmdsts =
1329 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1330 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1331 #ifdef DP83820
1332 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1333 #endif /* DP83820 */
1334 lasttx = nexttx;
1335 }
1336
1337 /* Clear the MORE bit on the last segment. */
1338 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1339
1340 /*
1341 * If we're in the interrupt delay window, delay the
1342 * interrupt.
1343 */
1344 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1345 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1346 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1347 htole32(CMDSTS_INTR);
1348 sc->sc_txwin = 0;
1349 }
1350
1351 #ifdef DP83820
1352 /*
1353 * If VLANs are enabled and the packet has a VLAN tag, set
1354 * up the descriptor to encapsulate the packet for us.
1355 *
1356 * This apparently has to be on the last descriptor of
1357 * the packet.
1358 */
1359
1360 /*
1361 * Byte swapping is tricky. We need to provide the tag
1362 * in a network byte order. On a big-endian machine,
1363 * the byteorder is correct, but we need to swap it
1364 * anyway, because this will be undone by the outside
1365 * htole32(). That's why there must be an
1366 * unconditional swap instead of htons() inside.
1367 */
1368 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1369 sc->sc_txdescs[lasttx].sipd_extsts |=
1370 htole32(EXTSTS_VPKT |
1371 (bswap16(VLAN_TAG_VALUE(mtag)) &
1372 EXTSTS_VTCI));
1373 }
1374
1375 /*
1376 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1377 * checksumming, set up the descriptor to do this work
1378 * for us.
1379 *
1380 * This apparently has to be on the first descriptor of
1381 * the packet.
1382 *
1383 * Byte-swap constants so the compiler can optimize.
1384 */
1385 extsts = 0;
1386 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1387 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1388 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1389 extsts |= htole32(EXTSTS_IPPKT);
1390 }
1391 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1392 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1393 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1394 extsts |= htole32(EXTSTS_TCPPKT);
1395 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1396 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1397 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1398 extsts |= htole32(EXTSTS_UDPPKT);
1399 }
1400 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1401 #endif /* DP83820 */
1402
1403 /* Sync the descriptors we're using. */
1404 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1405 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1406
1407 /*
1408 * The entire packet is set up. Give the first descrptor
1409 * to the chip now.
1410 */
1411 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1412 htole32(CMDSTS_OWN);
1413 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1414 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1415
1416 /*
1417 * Store a pointer to the packet so we can free it later,
1418 * and remember what txdirty will be once the packet is
1419 * done.
1420 */
1421 txs->txs_mbuf = m0;
1422 txs->txs_firstdesc = sc->sc_txnext;
1423 txs->txs_lastdesc = lasttx;
1424
1425 /* Advance the tx pointer. */
1426 sc->sc_txfree -= dmamap->dm_nsegs;
1427 sc->sc_txnext = nexttx;
1428
1429 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1430 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1431
1432 #if NBPFILTER > 0
1433 /*
1434 * Pass the packet to any BPF listeners.
1435 */
1436 if (ifp->if_bpf)
1437 bpf_mtap(ifp->if_bpf, m0);
1438 #endif /* NBPFILTER > 0 */
1439 }
1440
1441 if (txs == NULL || sc->sc_txfree == 0) {
1442 /* No more slots left; notify upper layer. */
1443 ifp->if_flags |= IFF_OACTIVE;
1444 }
1445
1446 if (sc->sc_txfree != ofree) {
1447 /*
1448 * Start the transmit process. Note, the manual says
1449 * that if there are no pending transmissions in the
1450 * chip's internal queue (indicated by TXE being clear),
1451 * then the driver software must set the TXDP to the
1452 * first descriptor to be transmitted. However, if we
1453 * do this, it causes serious performance degredation on
1454 * the DP83820 under load, not setting TXDP doesn't seem
1455 * to adversely affect the SiS 900 or DP83815.
1456 *
1457 * Well, I guess it wouldn't be the first time a manual
1458 * has lied -- and they could be speaking of the NULL-
1459 * terminated descriptor list case, rather than OWN-
1460 * terminated rings.
1461 */
1462 #if 0
1463 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1464 CR_TXE) == 0) {
1465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1466 SIP_CDTXADDR(sc, firsttx));
1467 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1468 }
1469 #else
1470 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1471 #endif
1472
1473 /* Set a watchdog timer in case the chip flakes out. */
1474 #ifdef DP83820
1475 /* Gigabit autonegotiation takes 5 seconds. */
1476 ifp->if_timer = 10;
1477 #else
1478 ifp->if_timer = 5;
1479 #endif
1480 }
1481 }
1482
1483 /*
1484 * sip_watchdog: [ifnet interface function]
1485 *
1486 * Watchdog timer handler.
1487 */
1488 static void
1489 SIP_DECL(watchdog)(struct ifnet *ifp)
1490 {
1491 struct sip_softc *sc = ifp->if_softc;
1492
1493 /*
1494 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1495 * If we get a timeout, try and sweep up transmit descriptors.
1496 * If we manage to sweep them all up, ignore the lack of
1497 * interrupt.
1498 */
1499 SIP_DECL(txintr)(sc);
1500
1501 if (sc->sc_txfree != SIP_NTXDESC) {
1502 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1503 ifp->if_oerrors++;
1504
1505 /* Reset the interface. */
1506 (void) SIP_DECL(init)(ifp);
1507 } else if (ifp->if_flags & IFF_DEBUG)
1508 printf("%s: recovered from device timeout\n",
1509 sc->sc_dev.dv_xname);
1510
1511 /* Try to get more packets going. */
1512 SIP_DECL(start)(ifp);
1513 }
1514
1515 /*
1516 * sip_ioctl: [ifnet interface function]
1517 *
1518 * Handle control requests from the operator.
1519 */
1520 static int
1521 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1522 {
1523 struct sip_softc *sc = ifp->if_softc;
1524 struct ifreq *ifr = (struct ifreq *)data;
1525 int s, error;
1526
1527 s = splnet();
1528
1529 switch (cmd) {
1530 case SIOCSIFMEDIA:
1531 /* Flow control requires full-duplex mode. */
1532 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1533 (ifr->ifr_media & IFM_FDX) == 0)
1534 ifr->ifr_media &= ~IFM_ETH_FMASK;
1535 #ifdef DP83820
1536 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1537 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1538 /* We can do both TXPAUSE and RXPAUSE. */
1539 ifr->ifr_media |=
1540 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1541 }
1542 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1543 }
1544 #else
1545 /* XXX */
1546 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1547 ifr->ifr_media &= ~IFM_ETH_FMASK;
1548
1549 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1550 if (ifr->ifr_media & IFM_FLOW) {
1551 /*
1552 * Both TXPAUSE and RXPAUSE must be set.
1553 * (SiS900 and DP83815 don't have PAUSE_ASYM
1554 * feature.)
1555 *
1556 * XXX Can SiS900 and DP83815 send PAUSE?
1557 */
1558 ifr->ifr_media |=
1559 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1560 }
1561 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1562 }
1563 #endif
1564 /* FALLTHROUGH */
1565 case SIOCGIFMEDIA:
1566 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1567 break;
1568 case SIOCSIFFLAGS:
1569 /* If the interface is up and running, only modify the receive
1570 * filter when setting promiscuous or debug mode. Otherwise
1571 * fall through to ether_ioctl, which will reset the chip.
1572 */
1573
1574 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1575 == (sc)->sc_ethercom.ec_capenable) \
1576 && ((sc)->sc_prev.is_vlan == \
1577 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1578
1579 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1580
1581 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1582 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1583 == (IFF_UP|IFF_RUNNING))
1584 && ((ifp->if_flags & (~RESETIGN))
1585 == (sc->sc_if_flags & (~RESETIGN)))
1586 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1587 /* Set up the receive filter. */
1588 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1589 error = 0;
1590 break;
1591 #undef RESETIGN
1592 }
1593 /* FALLTHROUGH */
1594 default:
1595 error = ether_ioctl(ifp, cmd, data);
1596 if (error == ENETRESET) {
1597 /*
1598 * Multicast list has changed; set the hardware filter
1599 * accordingly.
1600 */
1601 if (ifp->if_flags & IFF_RUNNING)
1602 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1603 error = 0;
1604 }
1605 break;
1606 }
1607
1608 /* Try to get more packets going. */
1609 SIP_DECL(start)(ifp);
1610
1611 sc->sc_if_flags = ifp->if_flags;
1612 splx(s);
1613 return (error);
1614 }
1615
1616 /*
1617 * sip_intr:
1618 *
1619 * Interrupt service routine.
1620 */
1621 static int
1622 SIP_DECL(intr)(void *arg)
1623 {
1624 struct sip_softc *sc = arg;
1625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1626 u_int32_t isr;
1627 int handled = 0;
1628
1629 /* Disable interrupts. */
1630 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1631
1632 for (;;) {
1633 /* Reading clears interrupt. */
1634 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1635 if ((isr & sc->sc_imr) == 0)
1636 break;
1637
1638 #if NRND > 0
1639 if (RND_ENABLED(&sc->rnd_source))
1640 rnd_add_uint32(&sc->rnd_source, isr);
1641 #endif
1642
1643 handled = 1;
1644
1645 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1646 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1647
1648 /* Grab any new packets. */
1649 SIP_DECL(rxintr)(sc);
1650
1651 if (isr & ISR_RXORN) {
1652 printf("%s: receive FIFO overrun\n",
1653 sc->sc_dev.dv_xname);
1654
1655 /* XXX adjust rx_drain_thresh? */
1656 }
1657
1658 if (isr & ISR_RXIDLE) {
1659 printf("%s: receive ring overrun\n",
1660 sc->sc_dev.dv_xname);
1661
1662 /* Get the receive process going again. */
1663 bus_space_write_4(sc->sc_st, sc->sc_sh,
1664 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1665 bus_space_write_4(sc->sc_st, sc->sc_sh,
1666 SIP_CR, CR_RXE);
1667 }
1668 }
1669
1670 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1671 #ifdef SIP_EVENT_COUNTERS
1672 if (isr & ISR_TXDESC)
1673 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1674 else if (isr & ISR_TXIDLE)
1675 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1676 #endif
1677
1678 /* Sweep up transmit descriptors. */
1679 SIP_DECL(txintr)(sc);
1680
1681 if (isr & ISR_TXURN) {
1682 u_int32_t thresh;
1683
1684 printf("%s: transmit FIFO underrun",
1685 sc->sc_dev.dv_xname);
1686
1687 thresh = sc->sc_tx_drain_thresh + 1;
1688 if (thresh <= TXCFG_DRTH &&
1689 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1690 (sc->sc_tx_fill_thresh * 32))) {
1691 printf("; increasing Tx drain "
1692 "threshold to %u bytes\n",
1693 thresh * 32);
1694 sc->sc_tx_drain_thresh = thresh;
1695 (void) SIP_DECL(init)(ifp);
1696 } else {
1697 (void) SIP_DECL(init)(ifp);
1698 printf("\n");
1699 }
1700 }
1701 }
1702
1703 #if !defined(DP83820)
1704 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1705 if (isr & ISR_PAUSE_ST) {
1706 sc->sc_paused = 1;
1707 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1708 ifp->if_flags |= IFF_OACTIVE;
1709 }
1710 if (isr & ISR_PAUSE_END) {
1711 sc->sc_paused = 0;
1712 ifp->if_flags &= ~IFF_OACTIVE;
1713 }
1714 }
1715 #endif /* ! DP83820 */
1716
1717 if (isr & ISR_HIBERR) {
1718 int want_init = 0;
1719
1720 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1721
1722 #define PRINTERR(bit, str) \
1723 do { \
1724 if ((isr & (bit)) != 0) { \
1725 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1726 printf("%s: %s\n", \
1727 sc->sc_dev.dv_xname, str); \
1728 want_init = 1; \
1729 } \
1730 } while (/*CONSTCOND*/0)
1731
1732 PRINTERR(ISR_DPERR, "parity error");
1733 PRINTERR(ISR_SSERR, "system error");
1734 PRINTERR(ISR_RMABT, "master abort");
1735 PRINTERR(ISR_RTABT, "target abort");
1736 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1737 /*
1738 * Ignore:
1739 * Tx reset complete
1740 * Rx reset complete
1741 */
1742 if (want_init)
1743 (void) SIP_DECL(init)(ifp);
1744 #undef PRINTERR
1745 }
1746 }
1747
1748 /* Re-enable interrupts. */
1749 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1750
1751 /* Try to get more packets going. */
1752 SIP_DECL(start)(ifp);
1753
1754 return (handled);
1755 }
1756
1757 /*
1758 * sip_txintr:
1759 *
1760 * Helper; handle transmit interrupts.
1761 */
1762 static void
1763 SIP_DECL(txintr)(struct sip_softc *sc)
1764 {
1765 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1766 struct sip_txsoft *txs;
1767 u_int32_t cmdsts;
1768
1769 #ifndef DP83820
1770 if (sc->sc_paused == 0)
1771 #endif
1772 ifp->if_flags &= ~IFF_OACTIVE;
1773
1774 /*
1775 * Go through our Tx list and free mbufs for those
1776 * frames which have been transmitted.
1777 */
1778 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1779 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1780 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1781
1782 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1783 if (cmdsts & CMDSTS_OWN)
1784 break;
1785
1786 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1787
1788 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1789
1790 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1791 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1792 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1793 m_freem(txs->txs_mbuf);
1794 txs->txs_mbuf = NULL;
1795
1796 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1797
1798 /*
1799 * Check for errors and collisions.
1800 */
1801 if (cmdsts &
1802 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1803 ifp->if_oerrors++;
1804 if (cmdsts & CMDSTS_Tx_EC)
1805 ifp->if_collisions += 16;
1806 if (ifp->if_flags & IFF_DEBUG) {
1807 if (cmdsts & CMDSTS_Tx_ED)
1808 printf("%s: excessive deferral\n",
1809 sc->sc_dev.dv_xname);
1810 if (cmdsts & CMDSTS_Tx_EC)
1811 printf("%s: excessive collisions\n",
1812 sc->sc_dev.dv_xname);
1813 }
1814 } else {
1815 /* Packet was transmitted successfully. */
1816 ifp->if_opackets++;
1817 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1818 }
1819 }
1820
1821 /*
1822 * If there are no more pending transmissions, cancel the watchdog
1823 * timer.
1824 */
1825 if (txs == NULL) {
1826 ifp->if_timer = 0;
1827 sc->sc_txwin = 0;
1828 }
1829 }
1830
1831 #if defined(DP83820)
1832 /*
1833 * sip_rxintr:
1834 *
1835 * Helper; handle receive interrupts.
1836 */
1837 static void
1838 SIP_DECL(rxintr)(struct sip_softc *sc)
1839 {
1840 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1841 struct sip_rxsoft *rxs;
1842 struct mbuf *m;
1843 u_int32_t cmdsts, extsts;
1844 int i, len;
1845
1846 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1847 rxs = &sc->sc_rxsoft[i];
1848
1849 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1850
1851 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1852 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1853 len = CMDSTS_SIZE(cmdsts);
1854
1855 /*
1856 * NOTE: OWN is set if owned by _consumer_. We're the
1857 * consumer of the receive ring, so if the bit is clear,
1858 * we have processed all of the packets.
1859 */
1860 if ((cmdsts & CMDSTS_OWN) == 0) {
1861 /*
1862 * We have processed all of the receive buffers.
1863 */
1864 break;
1865 }
1866
1867 if (__predict_false(sc->sc_rxdiscard)) {
1868 SIP_INIT_RXDESC(sc, i);
1869 if ((cmdsts & CMDSTS_MORE) == 0) {
1870 /* Reset our state. */
1871 sc->sc_rxdiscard = 0;
1872 }
1873 continue;
1874 }
1875
1876 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1877 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1878
1879 m = rxs->rxs_mbuf;
1880
1881 /*
1882 * Add a new receive buffer to the ring.
1883 */
1884 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1885 /*
1886 * Failed, throw away what we've done so
1887 * far, and discard the rest of the packet.
1888 */
1889 ifp->if_ierrors++;
1890 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1891 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1892 SIP_INIT_RXDESC(sc, i);
1893 if (cmdsts & CMDSTS_MORE)
1894 sc->sc_rxdiscard = 1;
1895 if (sc->sc_rxhead != NULL)
1896 m_freem(sc->sc_rxhead);
1897 SIP_RXCHAIN_RESET(sc);
1898 continue;
1899 }
1900
1901 SIP_RXCHAIN_LINK(sc, m);
1902
1903 m->m_len = len;
1904
1905 /*
1906 * If this is not the end of the packet, keep
1907 * looking.
1908 */
1909 if (cmdsts & CMDSTS_MORE) {
1910 sc->sc_rxlen += len;
1911 continue;
1912 }
1913
1914 /*
1915 * Okay, we have the entire packet now. The chip includes
1916 * the FCS, so we need to trim it.
1917 */
1918 m->m_len -= ETHER_CRC_LEN;
1919
1920 *sc->sc_rxtailp = NULL;
1921 len = m->m_len + sc->sc_rxlen;
1922 m = sc->sc_rxhead;
1923
1924 SIP_RXCHAIN_RESET(sc);
1925
1926 /*
1927 * If an error occurred, update stats and drop the packet.
1928 */
1929 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1930 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1931 ifp->if_ierrors++;
1932 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1933 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1934 /* Receive overrun handled elsewhere. */
1935 printf("%s: receive descriptor error\n",
1936 sc->sc_dev.dv_xname);
1937 }
1938 #define PRINTERR(bit, str) \
1939 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1940 (cmdsts & (bit)) != 0) \
1941 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1942 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1943 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1944 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1945 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1946 #undef PRINTERR
1947 m_freem(m);
1948 continue;
1949 }
1950
1951 /*
1952 * If the packet is small enough to fit in a
1953 * single header mbuf, allocate one and copy
1954 * the data into it. This greatly reduces
1955 * memory consumption when we receive lots
1956 * of small packets.
1957 */
1958 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1959 struct mbuf *nm;
1960 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1961 if (nm == NULL) {
1962 ifp->if_ierrors++;
1963 m_freem(m);
1964 continue;
1965 }
1966 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1967 nm->m_data += 2;
1968 nm->m_pkthdr.len = nm->m_len = len;
1969 m_copydata(m, 0, len, mtod(nm, caddr_t));
1970 m_freem(m);
1971 m = nm;
1972 }
1973 #ifndef __NO_STRICT_ALIGNMENT
1974 else {
1975 /*
1976 * The DP83820's receive buffers must be 4-byte
1977 * aligned. But this means that the data after
1978 * the Ethernet header is misaligned. To compensate,
1979 * we have artificially shortened the buffer size
1980 * in the descriptor, and we do an overlapping copy
1981 * of the data two bytes further in (in the first
1982 * buffer of the chain only).
1983 */
1984 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1985 m->m_len);
1986 m->m_data += 2;
1987 }
1988 #endif /* ! __NO_STRICT_ALIGNMENT */
1989
1990 /*
1991 * If VLANs are enabled, VLAN packets have been unwrapped
1992 * for us. Associate the tag with the packet.
1993 */
1994
1995 /*
1996 * Again, byte swapping is tricky. Hardware provided
1997 * the tag in the network byte order, but extsts was
1998 * passed through le32toh() in the meantime. On a
1999 * big-endian machine, we need to swap it again. On a
2000 * little-endian machine, we need to convert from the
2001 * network to host byte order. This means that we must
2002 * swap it in any case, so unconditional swap instead
2003 * of htons() is used.
2004 */
2005 if ((extsts & EXTSTS_VPKT) != 0) {
2006 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2007 continue);
2008 }
2009
2010 /*
2011 * Set the incoming checksum information for the
2012 * packet.
2013 */
2014 if ((extsts & EXTSTS_IPPKT) != 0) {
2015 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2016 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2017 if (extsts & EXTSTS_Rx_IPERR)
2018 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2019 if (extsts & EXTSTS_TCPPKT) {
2020 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2021 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2022 if (extsts & EXTSTS_Rx_TCPERR)
2023 m->m_pkthdr.csum_flags |=
2024 M_CSUM_TCP_UDP_BAD;
2025 } else if (extsts & EXTSTS_UDPPKT) {
2026 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2027 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2028 if (extsts & EXTSTS_Rx_UDPERR)
2029 m->m_pkthdr.csum_flags |=
2030 M_CSUM_TCP_UDP_BAD;
2031 }
2032 }
2033
2034 ifp->if_ipackets++;
2035 m->m_pkthdr.rcvif = ifp;
2036 m->m_pkthdr.len = len;
2037
2038 #if NBPFILTER > 0
2039 /*
2040 * Pass this up to any BPF listeners, but only
2041 * pass if up the stack if it's for us.
2042 */
2043 if (ifp->if_bpf)
2044 bpf_mtap(ifp->if_bpf, m);
2045 #endif /* NBPFILTER > 0 */
2046
2047 /* Pass it on. */
2048 (*ifp->if_input)(ifp, m);
2049 }
2050
2051 /* Update the receive pointer. */
2052 sc->sc_rxptr = i;
2053 }
2054 #else /* ! DP83820 */
2055 /*
2056 * sip_rxintr:
2057 *
2058 * Helper; handle receive interrupts.
2059 */
2060 static void
2061 SIP_DECL(rxintr)(struct sip_softc *sc)
2062 {
2063 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2064 struct sip_rxsoft *rxs;
2065 struct mbuf *m;
2066 u_int32_t cmdsts;
2067 int i, len;
2068
2069 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2070 rxs = &sc->sc_rxsoft[i];
2071
2072 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2073
2074 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2075
2076 /*
2077 * NOTE: OWN is set if owned by _consumer_. We're the
2078 * consumer of the receive ring, so if the bit is clear,
2079 * we have processed all of the packets.
2080 */
2081 if ((cmdsts & CMDSTS_OWN) == 0) {
2082 /*
2083 * We have processed all of the receive buffers.
2084 */
2085 break;
2086 }
2087
2088 /*
2089 * If any collisions were seen on the wire, count one.
2090 */
2091 if (cmdsts & CMDSTS_Rx_COL)
2092 ifp->if_collisions++;
2093
2094 /*
2095 * If an error occurred, update stats, clear the status
2096 * word, and leave the packet buffer in place. It will
2097 * simply be reused the next time the ring comes around.
2098 */
2099 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2100 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2101 ifp->if_ierrors++;
2102 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2103 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2104 /* Receive overrun handled elsewhere. */
2105 printf("%s: receive descriptor error\n",
2106 sc->sc_dev.dv_xname);
2107 }
2108 #define PRINTERR(bit, str) \
2109 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2110 (cmdsts & (bit)) != 0) \
2111 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2112 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2113 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2114 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2115 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2116 #undef PRINTERR
2117 SIP_INIT_RXDESC(sc, i);
2118 continue;
2119 }
2120
2121 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2122 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2123
2124 /*
2125 * No errors; receive the packet. Note, the SiS 900
2126 * includes the CRC with every packet.
2127 */
2128 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2129
2130 #ifdef __NO_STRICT_ALIGNMENT
2131 /*
2132 * If the packet is small enough to fit in a
2133 * single header mbuf, allocate one and copy
2134 * the data into it. This greatly reduces
2135 * memory consumption when we receive lots
2136 * of small packets.
2137 *
2138 * Otherwise, we add a new buffer to the receive
2139 * chain. If this fails, we drop the packet and
2140 * recycle the old buffer.
2141 */
2142 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2143 MGETHDR(m, M_DONTWAIT, MT_DATA);
2144 if (m == NULL)
2145 goto dropit;
2146 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2147 memcpy(mtod(m, caddr_t),
2148 mtod(rxs->rxs_mbuf, caddr_t), len);
2149 SIP_INIT_RXDESC(sc, i);
2150 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2151 rxs->rxs_dmamap->dm_mapsize,
2152 BUS_DMASYNC_PREREAD);
2153 } else {
2154 m = rxs->rxs_mbuf;
2155 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2156 dropit:
2157 ifp->if_ierrors++;
2158 SIP_INIT_RXDESC(sc, i);
2159 bus_dmamap_sync(sc->sc_dmat,
2160 rxs->rxs_dmamap, 0,
2161 rxs->rxs_dmamap->dm_mapsize,
2162 BUS_DMASYNC_PREREAD);
2163 continue;
2164 }
2165 }
2166 #else
2167 /*
2168 * The SiS 900's receive buffers must be 4-byte aligned.
2169 * But this means that the data after the Ethernet header
2170 * is misaligned. We must allocate a new buffer and
2171 * copy the data, shifted forward 2 bytes.
2172 */
2173 MGETHDR(m, M_DONTWAIT, MT_DATA);
2174 if (m == NULL) {
2175 dropit:
2176 ifp->if_ierrors++;
2177 SIP_INIT_RXDESC(sc, i);
2178 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180 continue;
2181 }
2182 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2183 if (len > (MHLEN - 2)) {
2184 MCLGET(m, M_DONTWAIT);
2185 if ((m->m_flags & M_EXT) == 0) {
2186 m_freem(m);
2187 goto dropit;
2188 }
2189 }
2190 m->m_data += 2;
2191
2192 /*
2193 * Note that we use clusters for incoming frames, so the
2194 * buffer is virtually contiguous.
2195 */
2196 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2197
2198 /* Allow the receive descriptor to continue using its mbuf. */
2199 SIP_INIT_RXDESC(sc, i);
2200 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2201 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2202 #endif /* __NO_STRICT_ALIGNMENT */
2203
2204 ifp->if_ipackets++;
2205 m->m_pkthdr.rcvif = ifp;
2206 m->m_pkthdr.len = m->m_len = len;
2207
2208 #if NBPFILTER > 0
2209 /*
2210 * Pass this up to any BPF listeners, but only
2211 * pass if up the stack if it's for us.
2212 */
2213 if (ifp->if_bpf)
2214 bpf_mtap(ifp->if_bpf, m);
2215 #endif /* NBPFILTER > 0 */
2216
2217 /* Pass it on. */
2218 (*ifp->if_input)(ifp, m);
2219 }
2220
2221 /* Update the receive pointer. */
2222 sc->sc_rxptr = i;
2223 }
2224 #endif /* DP83820 */
2225
2226 /*
2227 * sip_tick:
2228 *
2229 * One second timer, used to tick the MII.
2230 */
2231 static void
2232 SIP_DECL(tick)(void *arg)
2233 {
2234 struct sip_softc *sc = arg;
2235 int s;
2236
2237 s = splnet();
2238 #ifdef DP83820
2239 #ifdef SIP_EVENT_COUNTERS
2240 /* Read PAUSE related counts from MIB registers. */
2241 sc->sc_ev_rxpause.ev_count +=
2242 bus_space_read_4(sc->sc_st, sc->sc_sh,
2243 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2244 sc->sc_ev_txpause.ev_count +=
2245 bus_space_read_4(sc->sc_st, sc->sc_sh,
2246 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2247 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2248 #endif /* SIP_EVENT_COUNTERS */
2249 #endif /* DP83820 */
2250 mii_tick(&sc->sc_mii);
2251 splx(s);
2252
2253 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2254 }
2255
2256 /*
2257 * sip_reset:
2258 *
2259 * Perform a soft reset on the SiS 900.
2260 */
2261 static void
2262 SIP_DECL(reset)(struct sip_softc *sc)
2263 {
2264 bus_space_tag_t st = sc->sc_st;
2265 bus_space_handle_t sh = sc->sc_sh;
2266 int i;
2267
2268 bus_space_write_4(st, sh, SIP_IER, 0);
2269 bus_space_write_4(st, sh, SIP_IMR, 0);
2270 bus_space_write_4(st, sh, SIP_RFCR, 0);
2271 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2272
2273 for (i = 0; i < SIP_TIMEOUT; i++) {
2274 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2275 break;
2276 delay(2);
2277 }
2278
2279 if (i == SIP_TIMEOUT)
2280 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2281
2282 delay(1000);
2283
2284 #ifdef DP83820
2285 /*
2286 * Set the general purpose I/O bits. Do it here in case we
2287 * need to have GPIO set up to talk to the media interface.
2288 */
2289 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2290 delay(1000);
2291 #endif /* DP83820 */
2292 }
2293
2294 /*
2295 * sip_init: [ ifnet interface function ]
2296 *
2297 * Initialize the interface. Must be called at splnet().
2298 */
2299 static int
2300 SIP_DECL(init)(struct ifnet *ifp)
2301 {
2302 struct sip_softc *sc = ifp->if_softc;
2303 bus_space_tag_t st = sc->sc_st;
2304 bus_space_handle_t sh = sc->sc_sh;
2305 struct sip_txsoft *txs;
2306 struct sip_rxsoft *rxs;
2307 struct sip_desc *sipd;
2308 #if defined(DP83820)
2309 u_int32_t reg;
2310 #endif
2311 int i, error = 0;
2312
2313 /*
2314 * Cancel any pending I/O.
2315 */
2316 SIP_DECL(stop)(ifp, 0);
2317
2318 /*
2319 * Reset the chip to a known state.
2320 */
2321 SIP_DECL(reset)(sc);
2322
2323 #if !defined(DP83820)
2324 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2325 /*
2326 * DP83815 manual, page 78:
2327 * 4.4 Recommended Registers Configuration
2328 * For optimum performance of the DP83815, version noted
2329 * as DP83815CVNG (SRR = 203h), the listed register
2330 * modifications must be followed in sequence...
2331 *
2332 * It's not clear if this should be 302h or 203h because that
2333 * chip name is listed as SRR 302h in the description of the
2334 * SRR register. However, my revision 302h DP83815 on the
2335 * Netgear FA311 purchased in 02/2001 needs these settings
2336 * to avoid tons of errors in AcceptPerfectMatch (non-
2337 * IFF_PROMISC) mode. I do not know if other revisions need
2338 * this set or not. [briggs -- 09 March 2001]
2339 *
2340 * Note that only the low-order 12 bits of 0xe4 are documented
2341 * and that this sets reserved bits in that register.
2342 */
2343 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2344
2345 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2346 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2347 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2348 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2349
2350 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2351 }
2352 #endif /* ! DP83820 */
2353
2354 /*
2355 * Initialize the transmit descriptor ring.
2356 */
2357 for (i = 0; i < SIP_NTXDESC; i++) {
2358 sipd = &sc->sc_txdescs[i];
2359 memset(sipd, 0, sizeof(struct sip_desc));
2360 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2361 }
2362 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2363 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2364 sc->sc_txfree = SIP_NTXDESC;
2365 sc->sc_txnext = 0;
2366 sc->sc_txwin = 0;
2367
2368 /*
2369 * Initialize the transmit job descriptors.
2370 */
2371 SIMPLEQ_INIT(&sc->sc_txfreeq);
2372 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2373 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2374 txs = &sc->sc_txsoft[i];
2375 txs->txs_mbuf = NULL;
2376 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2377 }
2378
2379 /*
2380 * Initialize the receive descriptor and receive job
2381 * descriptor rings.
2382 */
2383 for (i = 0; i < SIP_NRXDESC; i++) {
2384 rxs = &sc->sc_rxsoft[i];
2385 if (rxs->rxs_mbuf == NULL) {
2386 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2387 printf("%s: unable to allocate or map rx "
2388 "buffer %d, error = %d\n",
2389 sc->sc_dev.dv_xname, i, error);
2390 /*
2391 * XXX Should attempt to run with fewer receive
2392 * XXX buffers instead of just failing.
2393 */
2394 SIP_DECL(rxdrain)(sc);
2395 goto out;
2396 }
2397 } else
2398 SIP_INIT_RXDESC(sc, i);
2399 }
2400 sc->sc_rxptr = 0;
2401 #ifdef DP83820
2402 sc->sc_rxdiscard = 0;
2403 SIP_RXCHAIN_RESET(sc);
2404 #endif /* DP83820 */
2405
2406 /*
2407 * Set the configuration register; it's already initialized
2408 * in sip_attach().
2409 */
2410 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2411
2412 /*
2413 * Initialize the prototype TXCFG register.
2414 */
2415 #if defined(DP83820)
2416 sc->sc_txcfg = TXCFG_MXDMA_512;
2417 sc->sc_rxcfg = RXCFG_MXDMA_512;
2418 #else
2419 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2420 SIP_SIS900_REV(sc, SIS_REV_960) ||
2421 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2422 (sc->sc_cfg & CFG_EDBMASTEN)) {
2423 sc->sc_txcfg = TXCFG_MXDMA_64;
2424 sc->sc_rxcfg = RXCFG_MXDMA_64;
2425 } else {
2426 sc->sc_txcfg = TXCFG_MXDMA_512;
2427 sc->sc_rxcfg = RXCFG_MXDMA_512;
2428 }
2429 #endif /* DP83820 */
2430
2431 sc->sc_txcfg |= TXCFG_ATP |
2432 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2433 sc->sc_tx_drain_thresh;
2434 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2435
2436 /*
2437 * Initialize the receive drain threshold if we have never
2438 * done so.
2439 */
2440 if (sc->sc_rx_drain_thresh == 0) {
2441 /*
2442 * XXX This value should be tuned. This is set to the
2443 * maximum of 248 bytes, and we may be able to improve
2444 * performance by decreasing it (although we should never
2445 * set this value lower than 2; 14 bytes are required to
2446 * filter the packet).
2447 */
2448 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2449 }
2450
2451 /*
2452 * Initialize the prototype RXCFG register.
2453 */
2454 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2455 #ifdef DP83820
2456 /*
2457 * Accept long packets (including FCS) so we can handle
2458 * 802.1q-tagged frames and jumbo frames properly.
2459 */
2460 if (ifp->if_mtu > ETHERMTU ||
2461 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2462 sc->sc_rxcfg |= RXCFG_ALP;
2463
2464 /*
2465 * Checksum offloading is disabled if the user selects an MTU
2466 * larger than 8109. (FreeBSD says 8152, but there is emperical
2467 * evidence that >8109 does not work on some boards, such as the
2468 * Planex GN-1000TE).
2469 */
2470 if (ifp->if_mtu > 8109 &&
2471 (ifp->if_capenable &
2472 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2473 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2474 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2475 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2476 "disabled.\n", sc->sc_dev.dv_xname);
2477 ifp->if_capenable &=
2478 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2479 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2480 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2481 ifp->if_csum_flags_tx = 0;
2482 ifp->if_csum_flags_rx = 0;
2483 }
2484 #else
2485 /*
2486 * Accept packets >1518 bytes (including FCS) so we can handle
2487 * 802.1q-tagged frames properly.
2488 */
2489 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2490 sc->sc_rxcfg |= RXCFG_ALP;
2491 #endif
2492 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2493
2494 #ifdef DP83820
2495 /*
2496 * Initialize the VLAN/IP receive control register.
2497 * We enable checksum computation on all incoming
2498 * packets, and do not reject packets w/ bad checksums.
2499 */
2500 reg = 0;
2501 if (ifp->if_capenable &
2502 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2503 reg |= VRCR_IPEN;
2504 if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 reg |= VRCR_VTDEN|VRCR_VTREN;
2506 bus_space_write_4(st, sh, SIP_VRCR, reg);
2507
2508 /*
2509 * Initialize the VLAN/IP transmit control register.
2510 * We enable outgoing checksum computation on a
2511 * per-packet basis.
2512 */
2513 reg = 0;
2514 if (ifp->if_capenable &
2515 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2516 reg |= VTCR_PPCHK;
2517 if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 reg |= VTCR_VPPTI;
2519 bus_space_write_4(st, sh, SIP_VTCR, reg);
2520
2521 /*
2522 * If we're using VLANs, initialize the VLAN data register.
2523 * To understand why we bswap the VLAN Ethertype, see section
2524 * 4.2.36 of the DP83820 manual.
2525 */
2526 if (VLAN_ATTACHED(&sc->sc_ethercom))
2527 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2528 #endif /* DP83820 */
2529
2530 /*
2531 * Give the transmit and receive rings to the chip.
2532 */
2533 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2534 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2535
2536 /*
2537 * Initialize the interrupt mask.
2538 */
2539 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2540 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2541 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2542
2543 /* Set up the receive filter. */
2544 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2545
2546 #ifdef DP83820
2547 /*
2548 * Tune sc_rx_flow_thresh.
2549 * XXX "More than 8KB" is too short for jumbo frames.
2550 * XXX TODO: Threshold value should be user-settable.
2551 */
2552 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2553 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2554 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2555 #endif
2556
2557 /*
2558 * Set the current media. Do this after initializing the prototype
2559 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2560 * control.
2561 */
2562 mii_mediachg(&sc->sc_mii);
2563
2564 #ifdef DP83820
2565 /*
2566 * Set the interrupt hold-off timer to 100us.
2567 */
2568 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2569 #endif
2570
2571 /*
2572 * Enable interrupts.
2573 */
2574 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2575
2576 /*
2577 * Start the transmit and receive processes.
2578 */
2579 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2580
2581 /*
2582 * Start the one second MII clock.
2583 */
2584 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2585
2586 /*
2587 * ...all done!
2588 */
2589 ifp->if_flags |= IFF_RUNNING;
2590 ifp->if_flags &= ~IFF_OACTIVE;
2591 sc->sc_if_flags = ifp->if_flags;
2592 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2593 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2594 sc->sc_prev.if_capenable = ifp->if_capenable;
2595
2596 out:
2597 if (error)
2598 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2599 return (error);
2600 }
2601
2602 /*
2603 * sip_drain:
2604 *
2605 * Drain the receive queue.
2606 */
2607 static void
2608 SIP_DECL(rxdrain)(struct sip_softc *sc)
2609 {
2610 struct sip_rxsoft *rxs;
2611 int i;
2612
2613 for (i = 0; i < SIP_NRXDESC; i++) {
2614 rxs = &sc->sc_rxsoft[i];
2615 if (rxs->rxs_mbuf != NULL) {
2616 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2617 m_freem(rxs->rxs_mbuf);
2618 rxs->rxs_mbuf = NULL;
2619 }
2620 }
2621 }
2622
2623 /*
2624 * sip_stop: [ ifnet interface function ]
2625 *
2626 * Stop transmission on the interface.
2627 */
2628 static void
2629 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2630 {
2631 struct sip_softc *sc = ifp->if_softc;
2632 bus_space_tag_t st = sc->sc_st;
2633 bus_space_handle_t sh = sc->sc_sh;
2634 struct sip_txsoft *txs;
2635 u_int32_t cmdsts = 0; /* DEBUG */
2636
2637 /*
2638 * Stop the one second clock.
2639 */
2640 callout_stop(&sc->sc_tick_ch);
2641
2642 /* Down the MII. */
2643 mii_down(&sc->sc_mii);
2644
2645 /*
2646 * Disable interrupts.
2647 */
2648 bus_space_write_4(st, sh, SIP_IER, 0);
2649
2650 /*
2651 * Stop receiver and transmitter.
2652 */
2653 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2654
2655 /*
2656 * Release any queued transmit buffers.
2657 */
2658 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2659 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2660 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2661 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2662 CMDSTS_INTR) == 0)
2663 printf("%s: sip_stop: last descriptor does not "
2664 "have INTR bit set\n", sc->sc_dev.dv_xname);
2665 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2666 #ifdef DIAGNOSTIC
2667 if (txs->txs_mbuf == NULL) {
2668 printf("%s: dirty txsoft with no mbuf chain\n",
2669 sc->sc_dev.dv_xname);
2670 panic("sip_stop");
2671 }
2672 #endif
2673 cmdsts |= /* DEBUG */
2674 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2675 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2676 m_freem(txs->txs_mbuf);
2677 txs->txs_mbuf = NULL;
2678 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2679 }
2680
2681 if (disable)
2682 SIP_DECL(rxdrain)(sc);
2683
2684 /*
2685 * Mark the interface down and cancel the watchdog timer.
2686 */
2687 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2688 ifp->if_timer = 0;
2689
2690 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2691 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2692 printf("%s: sip_stop: no INTR bits set in dirty tx "
2693 "descriptors\n", sc->sc_dev.dv_xname);
2694 }
2695
2696 /*
2697 * sip_read_eeprom:
2698 *
2699 * Read data from the serial EEPROM.
2700 */
2701 static void
2702 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2703 u_int16_t *data)
2704 {
2705 bus_space_tag_t st = sc->sc_st;
2706 bus_space_handle_t sh = sc->sc_sh;
2707 u_int16_t reg;
2708 int i, x;
2709
2710 for (i = 0; i < wordcnt; i++) {
2711 /* Send CHIP SELECT. */
2712 reg = EROMAR_EECS;
2713 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2714
2715 /* Shift in the READ opcode. */
2716 for (x = 3; x > 0; x--) {
2717 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2718 reg |= EROMAR_EEDI;
2719 else
2720 reg &= ~EROMAR_EEDI;
2721 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2722 bus_space_write_4(st, sh, SIP_EROMAR,
2723 reg | EROMAR_EESK);
2724 delay(4);
2725 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2726 delay(4);
2727 }
2728
2729 /* Shift in address. */
2730 for (x = 6; x > 0; x--) {
2731 if ((word + i) & (1 << (x - 1)))
2732 reg |= EROMAR_EEDI;
2733 else
2734 reg &= ~EROMAR_EEDI;
2735 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2736 bus_space_write_4(st, sh, SIP_EROMAR,
2737 reg | EROMAR_EESK);
2738 delay(4);
2739 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2740 delay(4);
2741 }
2742
2743 /* Shift out data. */
2744 reg = EROMAR_EECS;
2745 data[i] = 0;
2746 for (x = 16; x > 0; x--) {
2747 bus_space_write_4(st, sh, SIP_EROMAR,
2748 reg | EROMAR_EESK);
2749 delay(4);
2750 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2751 data[i] |= (1 << (x - 1));
2752 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2753 delay(4);
2754 }
2755
2756 /* Clear CHIP SELECT. */
2757 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2758 delay(4);
2759 }
2760 }
2761
2762 /*
2763 * sip_add_rxbuf:
2764 *
2765 * Add a receive buffer to the indicated descriptor.
2766 */
2767 static int
2768 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2769 {
2770 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2771 struct mbuf *m;
2772 int error;
2773
2774 MGETHDR(m, M_DONTWAIT, MT_DATA);
2775 if (m == NULL)
2776 return (ENOBUFS);
2777 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2778
2779 MCLGET(m, M_DONTWAIT);
2780 if ((m->m_flags & M_EXT) == 0) {
2781 m_freem(m);
2782 return (ENOBUFS);
2783 }
2784
2785 #if defined(DP83820)
2786 m->m_len = SIP_RXBUF_LEN;
2787 #endif /* DP83820 */
2788
2789 if (rxs->rxs_mbuf != NULL)
2790 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2791
2792 rxs->rxs_mbuf = m;
2793
2794 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2795 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2796 BUS_DMA_READ|BUS_DMA_NOWAIT);
2797 if (error) {
2798 printf("%s: can't load rx DMA map %d, error = %d\n",
2799 sc->sc_dev.dv_xname, idx, error);
2800 panic("sip_add_rxbuf"); /* XXX */
2801 }
2802
2803 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2804 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2805
2806 SIP_INIT_RXDESC(sc, idx);
2807
2808 return (0);
2809 }
2810
2811 #if !defined(DP83820)
2812 /*
2813 * sip_sis900_set_filter:
2814 *
2815 * Set up the receive filter.
2816 */
2817 static void
2818 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2819 {
2820 bus_space_tag_t st = sc->sc_st;
2821 bus_space_handle_t sh = sc->sc_sh;
2822 struct ethercom *ec = &sc->sc_ethercom;
2823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2824 struct ether_multi *enm;
2825 u_int8_t *cp;
2826 struct ether_multistep step;
2827 u_int32_t crc, mchash[16];
2828
2829 /*
2830 * Initialize the prototype RFCR.
2831 */
2832 sc->sc_rfcr = RFCR_RFEN;
2833 if (ifp->if_flags & IFF_BROADCAST)
2834 sc->sc_rfcr |= RFCR_AAB;
2835 if (ifp->if_flags & IFF_PROMISC) {
2836 sc->sc_rfcr |= RFCR_AAP;
2837 goto allmulti;
2838 }
2839
2840 /*
2841 * Set up the multicast address filter by passing all multicast
2842 * addresses through a CRC generator, and then using the high-order
2843 * 6 bits as an index into the 128 bit multicast hash table (only
2844 * the lower 16 bits of each 32 bit multicast hash register are
2845 * valid). The high order bits select the register, while the
2846 * rest of the bits select the bit within the register.
2847 */
2848
2849 memset(mchash, 0, sizeof(mchash));
2850
2851 /*
2852 * SiS900 (at least SiS963) requires us to register the address of
2853 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2854 */
2855 crc = 0x0ed423f9;
2856
2857 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2858 SIP_SIS900_REV(sc, SIS_REV_960) ||
2859 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2860 /* Just want the 8 most significant bits. */
2861 crc >>= 24;
2862 } else {
2863 /* Just want the 7 most significant bits. */
2864 crc >>= 25;
2865 }
2866
2867 /* Set the corresponding bit in the hash table. */
2868 mchash[crc >> 4] |= 1 << (crc & 0xf);
2869
2870 ETHER_FIRST_MULTI(step, ec, enm);
2871 while (enm != NULL) {
2872 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2873 /*
2874 * We must listen to a range of multicast addresses.
2875 * For now, just accept all multicasts, rather than
2876 * trying to set only those filter bits needed to match
2877 * the range. (At this time, the only use of address
2878 * ranges is for IP multicast routing, for which the
2879 * range is big enough to require all bits set.)
2880 */
2881 goto allmulti;
2882 }
2883
2884 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2885
2886 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2887 SIP_SIS900_REV(sc, SIS_REV_960) ||
2888 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2889 /* Just want the 8 most significant bits. */
2890 crc >>= 24;
2891 } else {
2892 /* Just want the 7 most significant bits. */
2893 crc >>= 25;
2894 }
2895
2896 /* Set the corresponding bit in the hash table. */
2897 mchash[crc >> 4] |= 1 << (crc & 0xf);
2898
2899 ETHER_NEXT_MULTI(step, enm);
2900 }
2901
2902 ifp->if_flags &= ~IFF_ALLMULTI;
2903 goto setit;
2904
2905 allmulti:
2906 ifp->if_flags |= IFF_ALLMULTI;
2907 sc->sc_rfcr |= RFCR_AAM;
2908
2909 setit:
2910 #define FILTER_EMIT(addr, data) \
2911 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2912 delay(1); \
2913 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2914 delay(1)
2915
2916 /*
2917 * Disable receive filter, and program the node address.
2918 */
2919 cp = LLADDR(ifp->if_sadl);
2920 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2921 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2922 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2923
2924 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2925 /*
2926 * Program the multicast hash table.
2927 */
2928 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2929 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2930 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2931 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2932 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2933 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2934 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2935 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2936 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2937 SIP_SIS900_REV(sc, SIS_REV_960) ||
2938 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2939 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2940 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2941 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2942 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2943 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2944 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2945 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2946 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2947 }
2948 }
2949 #undef FILTER_EMIT
2950
2951 /*
2952 * Re-enable the receiver filter.
2953 */
2954 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2955 }
2956 #endif /* ! DP83820 */
2957
2958 /*
2959 * sip_dp83815_set_filter:
2960 *
2961 * Set up the receive filter.
2962 */
2963 static void
2964 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2965 {
2966 bus_space_tag_t st = sc->sc_st;
2967 bus_space_handle_t sh = sc->sc_sh;
2968 struct ethercom *ec = &sc->sc_ethercom;
2969 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2970 struct ether_multi *enm;
2971 u_int8_t *cp;
2972 struct ether_multistep step;
2973 u_int32_t crc, hash, slot, bit;
2974 #ifdef DP83820
2975 #define MCHASH_NWORDS 128
2976 #else
2977 #define MCHASH_NWORDS 32
2978 #endif /* DP83820 */
2979 u_int16_t mchash[MCHASH_NWORDS];
2980 int i;
2981
2982 /*
2983 * Initialize the prototype RFCR.
2984 * Enable the receive filter, and accept on
2985 * Perfect (destination address) Match
2986 * If IFF_BROADCAST, also accept all broadcast packets.
2987 * If IFF_PROMISC, accept all unicast packets (and later, set
2988 * IFF_ALLMULTI and accept all multicast, too).
2989 */
2990 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2991 if (ifp->if_flags & IFF_BROADCAST)
2992 sc->sc_rfcr |= RFCR_AAB;
2993 if (ifp->if_flags & IFF_PROMISC) {
2994 sc->sc_rfcr |= RFCR_AAP;
2995 goto allmulti;
2996 }
2997
2998 #ifdef DP83820
2999 /*
3000 * Set up the DP83820 multicast address filter by passing all multicast
3001 * addresses through a CRC generator, and then using the high-order
3002 * 11 bits as an index into the 2048 bit multicast hash table. The
3003 * high-order 7 bits select the slot, while the low-order 4 bits
3004 * select the bit within the slot. Note that only the low 16-bits
3005 * of each filter word are used, and there are 128 filter words.
3006 */
3007 #else
3008 /*
3009 * Set up the DP83815 multicast address filter by passing all multicast
3010 * addresses through a CRC generator, and then using the high-order
3011 * 9 bits as an index into the 512 bit multicast hash table. The
3012 * high-order 5 bits select the slot, while the low-order 4 bits
3013 * select the bit within the slot. Note that only the low 16-bits
3014 * of each filter word are used, and there are 32 filter words.
3015 */
3016 #endif /* DP83820 */
3017
3018 memset(mchash, 0, sizeof(mchash));
3019
3020 ifp->if_flags &= ~IFF_ALLMULTI;
3021 ETHER_FIRST_MULTI(step, ec, enm);
3022 if (enm == NULL)
3023 goto setit;
3024 while (enm != NULL) {
3025 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3026 /*
3027 * We must listen to a range of multicast addresses.
3028 * For now, just accept all multicasts, rather than
3029 * trying to set only those filter bits needed to match
3030 * the range. (At this time, the only use of address
3031 * ranges is for IP multicast routing, for which the
3032 * range is big enough to require all bits set.)
3033 */
3034 goto allmulti;
3035 }
3036
3037 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3038
3039 #ifdef DP83820
3040 /* Just want the 11 most significant bits. */
3041 hash = crc >> 21;
3042 #else
3043 /* Just want the 9 most significant bits. */
3044 hash = crc >> 23;
3045 #endif /* DP83820 */
3046
3047 slot = hash >> 4;
3048 bit = hash & 0xf;
3049
3050 /* Set the corresponding bit in the hash table. */
3051 mchash[slot] |= 1 << bit;
3052
3053 ETHER_NEXT_MULTI(step, enm);
3054 }
3055 sc->sc_rfcr |= RFCR_MHEN;
3056 goto setit;
3057
3058 allmulti:
3059 ifp->if_flags |= IFF_ALLMULTI;
3060 sc->sc_rfcr |= RFCR_AAM;
3061
3062 setit:
3063 #define FILTER_EMIT(addr, data) \
3064 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3065 delay(1); \
3066 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3067 delay(1)
3068
3069 /*
3070 * Disable receive filter, and program the node address.
3071 */
3072 cp = LLADDR(ifp->if_sadl);
3073 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3074 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3075 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3076
3077 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3078 /*
3079 * Program the multicast hash table.
3080 */
3081 for (i = 0; i < MCHASH_NWORDS; i++) {
3082 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3083 mchash[i]);
3084 }
3085 }
3086 #undef FILTER_EMIT
3087 #undef MCHASH_NWORDS
3088
3089 /*
3090 * Re-enable the receiver filter.
3091 */
3092 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3093 }
3094
3095 #if defined(DP83820)
3096 /*
3097 * sip_dp83820_mii_readreg: [mii interface function]
3098 *
3099 * Read a PHY register on the MII of the DP83820.
3100 */
3101 static int
3102 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3103 {
3104 struct sip_softc *sc = (void *) self;
3105
3106 if (sc->sc_cfg & CFG_TBI_EN) {
3107 bus_addr_t tbireg;
3108 int rv;
3109
3110 if (phy != 0)
3111 return (0);
3112
3113 switch (reg) {
3114 case MII_BMCR: tbireg = SIP_TBICR; break;
3115 case MII_BMSR: tbireg = SIP_TBISR; break;
3116 case MII_ANAR: tbireg = SIP_TANAR; break;
3117 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3118 case MII_ANER: tbireg = SIP_TANER; break;
3119 case MII_EXTSR:
3120 /*
3121 * Don't even bother reading the TESR register.
3122 * The manual documents that the device has
3123 * 1000baseX full/half capability, but the
3124 * register itself seems read back 0 on some
3125 * boards. Just hard-code the result.
3126 */
3127 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3128
3129 default:
3130 return (0);
3131 }
3132
3133 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3134 if (tbireg == SIP_TBISR) {
3135 /* LINK and ACOMP are switched! */
3136 int val = rv;
3137
3138 rv = 0;
3139 if (val & TBISR_MR_LINK_STATUS)
3140 rv |= BMSR_LINK;
3141 if (val & TBISR_MR_AN_COMPLETE)
3142 rv |= BMSR_ACOMP;
3143
3144 /*
3145 * The manual claims this register reads back 0
3146 * on hard and soft reset. But we want to let
3147 * the gentbi driver know that we support auto-
3148 * negotiation, so hard-code this bit in the
3149 * result.
3150 */
3151 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3152 }
3153
3154 return (rv);
3155 }
3156
3157 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3158 phy, reg));
3159 }
3160
3161 /*
3162 * sip_dp83820_mii_writereg: [mii interface function]
3163 *
3164 * Write a PHY register on the MII of the DP83820.
3165 */
3166 static void
3167 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3168 {
3169 struct sip_softc *sc = (void *) self;
3170
3171 if (sc->sc_cfg & CFG_TBI_EN) {
3172 bus_addr_t tbireg;
3173
3174 if (phy != 0)
3175 return;
3176
3177 switch (reg) {
3178 case MII_BMCR: tbireg = SIP_TBICR; break;
3179 case MII_ANAR: tbireg = SIP_TANAR; break;
3180 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3181 default:
3182 return;
3183 }
3184
3185 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3186 return;
3187 }
3188
3189 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3190 phy, reg, val);
3191 }
3192
3193 /*
3194 * sip_dp83820_mii_statchg: [mii interface function]
3195 *
3196 * Callback from MII layer when media changes.
3197 */
3198 static void
3199 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3200 {
3201 struct sip_softc *sc = (struct sip_softc *) self;
3202 struct mii_data *mii = &sc->sc_mii;
3203 u_int32_t cfg, pcr;
3204
3205 /*
3206 * Get flow control negotiation result.
3207 */
3208 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3209 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3210 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3211 mii->mii_media_active &= ~IFM_ETH_FMASK;
3212 }
3213
3214 /*
3215 * Update TXCFG for full-duplex operation.
3216 */
3217 if ((mii->mii_media_active & IFM_FDX) != 0)
3218 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3219 else
3220 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3221
3222 /*
3223 * Update RXCFG for full-duplex or loopback.
3224 */
3225 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3226 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3227 sc->sc_rxcfg |= RXCFG_ATX;
3228 else
3229 sc->sc_rxcfg &= ~RXCFG_ATX;
3230
3231 /*
3232 * Update CFG for MII/GMII.
3233 */
3234 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3235 cfg = sc->sc_cfg | CFG_MODE_1000;
3236 else
3237 cfg = sc->sc_cfg;
3238
3239 /*
3240 * 802.3x flow control.
3241 */
3242 pcr = 0;
3243 if (sc->sc_flowflags & IFM_FLOW) {
3244 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3245 pcr |= sc->sc_rx_flow_thresh;
3246 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3247 pcr |= PCR_PSEN | PCR_PS_MCAST;
3248 }
3249
3250 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3251 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3252 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3253 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3254 }
3255 #endif /* ! DP83820 */
3256
3257 /*
3258 * sip_mii_bitbang_read: [mii bit-bang interface function]
3259 *
3260 * Read the MII serial port for the MII bit-bang module.
3261 */
3262 static u_int32_t
3263 SIP_DECL(mii_bitbang_read)(struct device *self)
3264 {
3265 struct sip_softc *sc = (void *) self;
3266
3267 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3268 }
3269
3270 /*
3271 * sip_mii_bitbang_write: [mii big-bang interface function]
3272 *
3273 * Write the MII serial port for the MII bit-bang module.
3274 */
3275 static void
3276 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3277 {
3278 struct sip_softc *sc = (void *) self;
3279
3280 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3281 }
3282
3283 #ifndef DP83820
3284 /*
3285 * sip_sis900_mii_readreg: [mii interface function]
3286 *
3287 * Read a PHY register on the MII.
3288 */
3289 static int
3290 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3291 {
3292 struct sip_softc *sc = (struct sip_softc *) self;
3293 u_int32_t enphy;
3294
3295 /*
3296 * The PHY of recent SiS chipsets is accessed through bitbang
3297 * operations.
3298 */
3299 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3300 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3301 phy, reg));
3302
3303 #ifndef SIS900_MII_RESTRICT
3304 /*
3305 * The SiS 900 has only an internal PHY on the MII. Only allow
3306 * MII address 0.
3307 */
3308 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3309 return (0);
3310 #endif
3311
3312 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3313 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3314 ENPHY_RWCMD | ENPHY_ACCESS);
3315 do {
3316 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3317 } while (enphy & ENPHY_ACCESS);
3318 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3319 }
3320
3321 /*
3322 * sip_sis900_mii_writereg: [mii interface function]
3323 *
3324 * Write a PHY register on the MII.
3325 */
3326 static void
3327 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3328 {
3329 struct sip_softc *sc = (struct sip_softc *) self;
3330 u_int32_t enphy;
3331
3332 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3333 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3334 phy, reg, val);
3335 return;
3336 }
3337
3338 #ifndef SIS900_MII_RESTRICT
3339 /*
3340 * The SiS 900 has only an internal PHY on the MII. Only allow
3341 * MII address 0.
3342 */
3343 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3344 return;
3345 #endif
3346
3347 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3348 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3349 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3350 do {
3351 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3352 } while (enphy & ENPHY_ACCESS);
3353 }
3354
3355 /*
3356 * sip_sis900_mii_statchg: [mii interface function]
3357 *
3358 * Callback from MII layer when media changes.
3359 */
3360 static void
3361 SIP_DECL(sis900_mii_statchg)(struct device *self)
3362 {
3363 struct sip_softc *sc = (struct sip_softc *) self;
3364 struct mii_data *mii = &sc->sc_mii;
3365 u_int32_t flowctl;
3366
3367 /*
3368 * Get flow control negotiation result.
3369 */
3370 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3371 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3372 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3373 mii->mii_media_active &= ~IFM_ETH_FMASK;
3374 }
3375
3376 /*
3377 * Update TXCFG for full-duplex operation.
3378 */
3379 if ((mii->mii_media_active & IFM_FDX) != 0)
3380 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3381 else
3382 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3383
3384 /*
3385 * Update RXCFG for full-duplex or loopback.
3386 */
3387 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3388 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3389 sc->sc_rxcfg |= RXCFG_ATX;
3390 else
3391 sc->sc_rxcfg &= ~RXCFG_ATX;
3392
3393 /*
3394 * Update IMR for use of 802.3x flow control.
3395 */
3396 if (sc->sc_flowflags & IFM_FLOW) {
3397 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3398 flowctl = FLOWCTL_FLOWEN;
3399 } else {
3400 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3401 flowctl = 0;
3402 }
3403
3404 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3405 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3406 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3407 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3408 }
3409
3410 /*
3411 * sip_dp83815_mii_readreg: [mii interface function]
3412 *
3413 * Read a PHY register on the MII.
3414 */
3415 static int
3416 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3417 {
3418 struct sip_softc *sc = (struct sip_softc *) self;
3419 u_int32_t val;
3420
3421 /*
3422 * The DP83815 only has an internal PHY. Only allow
3423 * MII address 0.
3424 */
3425 if (phy != 0)
3426 return (0);
3427
3428 /*
3429 * Apparently, after a reset, the DP83815 can take a while
3430 * to respond. During this recovery period, the BMSR returns
3431 * a value of 0. Catch this -- it's not supposed to happen
3432 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3433 * PHY to come back to life.
3434 *
3435 * This works out because the BMSR is the first register
3436 * read during the PHY probe process.
3437 */
3438 do {
3439 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3440 } while (reg == MII_BMSR && val == 0);
3441
3442 return (val & 0xffff);
3443 }
3444
3445 /*
3446 * sip_dp83815_mii_writereg: [mii interface function]
3447 *
3448 * Write a PHY register to the MII.
3449 */
3450 static void
3451 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3452 {
3453 struct sip_softc *sc = (struct sip_softc *) self;
3454
3455 /*
3456 * The DP83815 only has an internal PHY. Only allow
3457 * MII address 0.
3458 */
3459 if (phy != 0)
3460 return;
3461
3462 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3463 }
3464
3465 /*
3466 * sip_dp83815_mii_statchg: [mii interface function]
3467 *
3468 * Callback from MII layer when media changes.
3469 */
3470 static void
3471 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3472 {
3473 struct sip_softc *sc = (struct sip_softc *) self;
3474
3475 /*
3476 * Update TXCFG for full-duplex operation.
3477 */
3478 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3479 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3480 else
3481 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3482
3483 /*
3484 * Update RXCFG for full-duplex or loopback.
3485 */
3486 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3487 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3488 sc->sc_rxcfg |= RXCFG_ATX;
3489 else
3490 sc->sc_rxcfg &= ~RXCFG_ATX;
3491
3492 /*
3493 * XXX 802.3x flow control.
3494 */
3495
3496 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3498
3499 /*
3500 * Some DP83815s experience problems when used with short
3501 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3502 * sequence adjusts the DSP's signal attenuation to fix the
3503 * problem.
3504 */
3505 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3506 uint32_t reg;
3507
3508 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3509
3510 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3511 reg &= 0x0fff;
3512 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3513 delay(100);
3514 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3515 reg &= 0x00ff;
3516 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3517 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3518 0x00e8);
3519 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3520 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3521 reg | 0x20);
3522 }
3523
3524 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3525 }
3526 }
3527 #endif /* DP83820 */
3528
3529 #if defined(DP83820)
3530 static void
3531 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3532 const struct pci_attach_args *pa, u_int8_t *enaddr)
3533 {
3534 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3535 u_int8_t cksum, *e, match;
3536 int i;
3537
3538 /*
3539 * EEPROM data format for the DP83820 can be found in
3540 * the DP83820 manual, section 4.2.4.
3541 */
3542
3543 SIP_DECL(read_eeprom)(sc, 0,
3544 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3545
3546 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3547 match = ~(match - 1);
3548
3549 cksum = 0x55;
3550 e = (u_int8_t *) eeprom_data;
3551 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3552 cksum += *e++;
3553
3554 if (cksum != match)
3555 printf("%s: Checksum (%x) mismatch (%x)",
3556 sc->sc_dev.dv_xname, cksum, match);
3557
3558 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3559 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3560 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3561 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3562 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3563 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3564 }
3565 #else /* ! DP83820 */
3566 static void
3567 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3568 {
3569 int i;
3570
3571 /*
3572 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3573 * a reason, but I don't know it.
3574 */
3575 for (i = 0; i < 10; i++)
3576 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3577 }
3578
3579 static void
3580 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3581 const struct pci_attach_args *pa, u_int8_t *enaddr)
3582 {
3583 u_int16_t myea[ETHER_ADDR_LEN / 2];
3584
3585 switch (sc->sc_rev) {
3586 case SIS_REV_630S:
3587 case SIS_REV_630E:
3588 case SIS_REV_630EA1:
3589 case SIS_REV_630ET:
3590 case SIS_REV_635:
3591 /*
3592 * The MAC address for the on-board Ethernet of
3593 * the SiS 630 chipset is in the NVRAM. Kick
3594 * the chip into re-loading it from NVRAM, and
3595 * read the MAC address out of the filter registers.
3596 */
3597 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3598
3599 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3600 RFCR_RFADDR_NODE0);
3601 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3602 0xffff;
3603
3604 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3605 RFCR_RFADDR_NODE2);
3606 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3607 0xffff;
3608
3609 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3610 RFCR_RFADDR_NODE4);
3611 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3612 0xffff;
3613 break;
3614
3615 case SIS_REV_960:
3616 {
3617 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3618 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3619
3620 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3621 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3622
3623 int waittime, i;
3624
3625 /* Allow to read EEPROM from LAN. It is shared
3626 * between a 1394 controller and the NIC and each
3627 * time we access it, we need to set SIS_EECMD_REQ.
3628 */
3629 SIS_SET_EROMAR(sc, EROMAR_REQ);
3630
3631 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3632 /* Force EEPROM to idle state. */
3633
3634 /*
3635 * XXX-cube This is ugly. I'll look for docs about it.
3636 */
3637 SIS_SET_EROMAR(sc, EROMAR_EECS);
3638 SIP_DECL(sis900_eeprom_delay)(sc);
3639 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3640 SIS_SET_EROMAR(sc, EROMAR_EESK);
3641 SIP_DECL(sis900_eeprom_delay)(sc);
3642 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3643 SIP_DECL(sis900_eeprom_delay)(sc);
3644 }
3645 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3646 SIP_DECL(sis900_eeprom_delay)(sc);
3647 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3648
3649 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3650 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3651 sizeof(myea) / sizeof(myea[0]), myea);
3652 break;
3653 }
3654 DELAY(1);
3655 }
3656
3657 /*
3658 * Set SIS_EECTL_CLK to high, so a other master
3659 * can operate on the i2c bus.
3660 */
3661 SIS_SET_EROMAR(sc, EROMAR_EESK);
3662
3663 /* Refuse EEPROM access by LAN */
3664 SIS_SET_EROMAR(sc, EROMAR_DONE);
3665 } break;
3666
3667 default:
3668 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3669 sizeof(myea) / sizeof(myea[0]), myea);
3670 }
3671
3672 enaddr[0] = myea[0] & 0xff;
3673 enaddr[1] = myea[0] >> 8;
3674 enaddr[2] = myea[1] & 0xff;
3675 enaddr[3] = myea[1] >> 8;
3676 enaddr[4] = myea[2] & 0xff;
3677 enaddr[5] = myea[2] >> 8;
3678 }
3679
3680 /* Table and macro to bit-reverse an octet. */
3681 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3682 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3683
3684 static void
3685 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3686 const struct pci_attach_args *pa, u_int8_t *enaddr)
3687 {
3688 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3689 u_int8_t cksum, *e, match;
3690 int i;
3691
3692 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3693 sizeof(eeprom_data[0]), eeprom_data);
3694
3695 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3696 match = ~(match - 1);
3697
3698 cksum = 0x55;
3699 e = (u_int8_t *) eeprom_data;
3700 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3701 cksum += *e++;
3702 }
3703 if (cksum != match) {
3704 printf("%s: Checksum (%x) mismatch (%x)",
3705 sc->sc_dev.dv_xname, cksum, match);
3706 }
3707
3708 /*
3709 * Unrolled because it makes slightly more sense this way.
3710 * The DP83815 stores the MAC address in bit 0 of word 6
3711 * through bit 15 of word 8.
3712 */
3713 ea = &eeprom_data[6];
3714 enaddr[0] = ((*ea & 0x1) << 7);
3715 ea++;
3716 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3717 enaddr[1] = ((*ea & 0x1FE) >> 1);
3718 enaddr[2] = ((*ea & 0x1) << 7);
3719 ea++;
3720 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3721 enaddr[3] = ((*ea & 0x1FE) >> 1);
3722 enaddr[4] = ((*ea & 0x1) << 7);
3723 ea++;
3724 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3725 enaddr[5] = ((*ea & 0x1FE) >> 1);
3726
3727 /*
3728 * In case that's not weird enough, we also need to reverse
3729 * the bits in each byte. This all actually makes more sense
3730 * if you think about the EEPROM storage as an array of bits
3731 * being shifted into bytes, but that's not how we're looking
3732 * at it here...
3733 */
3734 for (i = 0; i < 6 ;i++)
3735 enaddr[i] = bbr(enaddr[i]);
3736 }
3737 #endif /* DP83820 */
3738
3739 /*
3740 * sip_mediastatus: [ifmedia interface function]
3741 *
3742 * Get the current interface media status.
3743 */
3744 static void
3745 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3746 {
3747 struct sip_softc *sc = ifp->if_softc;
3748
3749 mii_pollstat(&sc->sc_mii);
3750 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3751 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3752 sc->sc_flowflags;
3753 }
3754
3755 /*
3756 * sip_mediachange: [ifmedia interface function]
3757 *
3758 * Set hardware to newly-selected media.
3759 */
3760 static int
3761 SIP_DECL(mediachange)(struct ifnet *ifp)
3762 {
3763 struct sip_softc *sc = ifp->if_softc;
3764
3765 if (ifp->if_flags & IFF_UP)
3766 mii_mediachg(&sc->sc_mii);
3767 return (0);
3768 }
3769