if_sip.c revision 1.103.6.1 1 /* $NetBSD: if_sip.c,v 1.103.6.1 2006/04/22 11:39:14 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.103.6.1 2006/04/22 11:39:14 simonb Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 /* values of interface state at last init */
313 struct {
314 /* if_capenable */
315 uint64_t if_capenable;
316 /* ec_capenable */
317 int ec_capenable;
318 /* VLAN_ATTACHED */
319 int is_vlan;
320 } sc_prev;
321
322 short sc_if_flags;
323
324 int sc_rxptr; /* next ready Rx descriptor/descsoft */
325 #if defined(DP83820)
326 int sc_rxdiscard;
327 int sc_rxlen;
328 struct mbuf *sc_rxhead;
329 struct mbuf *sc_rxtail;
330 struct mbuf **sc_rxtailp;
331 #endif /* DP83820 */
332
333 #if NRND > 0
334 rndsource_element_t rnd_source; /* random source */
335 #endif
336 };
337
338 #ifdef DP83820
339 #define SIP_RXCHAIN_RESET(sc) \
340 do { \
341 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
342 *(sc)->sc_rxtailp = NULL; \
343 (sc)->sc_rxlen = 0; \
344 } while (/*CONSTCOND*/0)
345
346 #define SIP_RXCHAIN_LINK(sc, m) \
347 do { \
348 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
349 (sc)->sc_rxtailp = &(m)->m_next; \
350 } while (/*CONSTCOND*/0)
351 #endif /* DP83820 */
352
353 #ifdef SIP_EVENT_COUNTERS
354 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
355 #else
356 #define SIP_EVCNT_INCR(ev) /* nothing */
357 #endif
358
359 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
360 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
361
362 #define SIP_CDTXSYNC(sc, x, n, ops) \
363 do { \
364 int __x, __n; \
365 \
366 __x = (x); \
367 __n = (n); \
368 \
369 /* If it will wrap around, sync to the end of the ring. */ \
370 if ((__x + __n) > SIP_NTXDESC) { \
371 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
372 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
373 (SIP_NTXDESC - __x), (ops)); \
374 __n -= (SIP_NTXDESC - __x); \
375 __x = 0; \
376 } \
377 \
378 /* Now sync whatever is left. */ \
379 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
380 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
381 } while (0)
382
383 #define SIP_CDRXSYNC(sc, x, ops) \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
386
387 #ifdef DP83820
388 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
389 #define SIP_RXBUF_LEN (MCLBYTES - 8)
390 #else
391 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
392 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
393 #endif
394 #define SIP_INIT_RXDESC(sc, x) \
395 do { \
396 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
397 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
398 \
399 __sipd->sipd_link = \
400 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
401 __sipd->sipd_bufptr = \
402 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
403 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
404 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
405 SIP_INIT_RXDESC_EXTSTS \
406 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
407 } while (0)
408
409 #define SIP_CHIP_VERS(sc, v, p, r) \
410 ((sc)->sc_model->sip_vendor == (v) && \
411 (sc)->sc_model->sip_product == (p) && \
412 (sc)->sc_rev == (r))
413
414 #define SIP_CHIP_MODEL(sc, v, p) \
415 ((sc)->sc_model->sip_vendor == (v) && \
416 (sc)->sc_model->sip_product == (p))
417
418 #if !defined(DP83820)
419 #define SIP_SIS900_REV(sc, rev) \
420 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421 #endif
422
423 #define SIP_TIMEOUT 1000
424
425 static void SIP_DECL(start)(struct ifnet *);
426 static void SIP_DECL(watchdog)(struct ifnet *);
427 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
428 static int SIP_DECL(init)(struct ifnet *);
429 static void SIP_DECL(stop)(struct ifnet *, int);
430
431 static void SIP_DECL(shutdown)(void *);
432
433 static void SIP_DECL(reset)(struct sip_softc *);
434 static void SIP_DECL(rxdrain)(struct sip_softc *);
435 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
436 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
437 u_int16_t *);
438 static void SIP_DECL(tick)(void *);
439
440 #if !defined(DP83820)
441 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
442 #endif /* ! DP83820 */
443 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
444
445 #if defined(DP83820)
446 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
447 const struct pci_attach_args *, u_int8_t *);
448 #else
449 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
450 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
451 const struct pci_attach_args *, u_int8_t *);
452 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
453 const struct pci_attach_args *, u_int8_t *);
454 #endif /* DP83820 */
455
456 static int SIP_DECL(intr)(void *);
457 static void SIP_DECL(txintr)(struct sip_softc *);
458 static void SIP_DECL(rxintr)(struct sip_softc *);
459
460 #if defined(DP83820)
461 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
462 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
463 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
464 #else
465 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
466 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
467 static void SIP_DECL(sis900_mii_statchg)(struct device *);
468
469 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
470 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
471 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
472 #endif /* DP83820 */
473
474 static int SIP_DECL(mediachange)(struct ifnet *);
475 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
476
477 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
478 static void SIP_DECL(attach)(struct device *, struct device *, void *);
479
480 int SIP_DECL(copy_small) = 0;
481
482 #ifdef DP83820
483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
484 gsip_match, gsip_attach, NULL, NULL);
485 #else
486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
487 sip_match, sip_attach, NULL, NULL);
488 #endif
489
490 /*
491 * Descriptions of the variants of the SiS900.
492 */
493 struct sip_variant {
494 int (*sipv_mii_readreg)(struct device *, int, int);
495 void (*sipv_mii_writereg)(struct device *, int, int, int);
496 void (*sipv_mii_statchg)(struct device *);
497 void (*sipv_set_filter)(struct sip_softc *);
498 void (*sipv_read_macaddr)(struct sip_softc *,
499 const struct pci_attach_args *, u_int8_t *);
500 };
501
502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
503 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
504
505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
506 SIP_DECL(mii_bitbang_read),
507 SIP_DECL(mii_bitbang_write),
508 {
509 EROMAR_MDIO, /* MII_BIT_MDO */
510 EROMAR_MDIO, /* MII_BIT_MDI */
511 EROMAR_MDC, /* MII_BIT_MDC */
512 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
513 0, /* MII_BIT_DIR_PHY_HOST */
514 }
515 };
516
517 #if defined(DP83820)
518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
519 SIP_DECL(dp83820_mii_readreg),
520 SIP_DECL(dp83820_mii_writereg),
521 SIP_DECL(dp83820_mii_statchg),
522 SIP_DECL(dp83815_set_filter),
523 SIP_DECL(dp83820_read_macaddr),
524 };
525 #else
526 static const struct sip_variant SIP_DECL(variant_sis900) = {
527 SIP_DECL(sis900_mii_readreg),
528 SIP_DECL(sis900_mii_writereg),
529 SIP_DECL(sis900_mii_statchg),
530 SIP_DECL(sis900_set_filter),
531 SIP_DECL(sis900_read_macaddr),
532 };
533
534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
535 SIP_DECL(dp83815_mii_readreg),
536 SIP_DECL(dp83815_mii_writereg),
537 SIP_DECL(dp83815_mii_statchg),
538 SIP_DECL(dp83815_set_filter),
539 SIP_DECL(dp83815_read_macaddr),
540 };
541 #endif /* DP83820 */
542
543 /*
544 * Devices supported by this driver.
545 */
546 static const struct sip_product {
547 pci_vendor_id_t sip_vendor;
548 pci_product_id_t sip_product;
549 const char *sip_name;
550 const struct sip_variant *sip_variant;
551 } SIP_DECL(products)[] = {
552 #if defined(DP83820)
553 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
554 "NatSemi DP83820 Gigabit Ethernet",
555 &SIP_DECL(variant_dp83820) },
556 #else
557 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
558 "SiS 900 10/100 Ethernet",
559 &SIP_DECL(variant_sis900) },
560 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
561 "SiS 7016 10/100 Ethernet",
562 &SIP_DECL(variant_sis900) },
563
564 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
565 "NatSemi DP83815 10/100 Ethernet",
566 &SIP_DECL(variant_dp83815) },
567 #endif /* DP83820 */
568
569 { 0, 0,
570 NULL,
571 NULL },
572 };
573
574 static const struct sip_product *
575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
576 {
577 const struct sip_product *sip;
578
579 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
580 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
581 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
582 return (sip);
583 }
584 return (NULL);
585 }
586
587 #ifdef DP83820
588 /*
589 * I really hate stupid hardware vendors. There's a bit in the EEPROM
590 * which indicates if the card can do 64-bit data transfers. Unfortunately,
591 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
592 * which means we try to use 64-bit data transfers on those cards if we
593 * happen to be plugged into a 32-bit slot.
594 *
595 * What we do is use this table of cards known to be 64-bit cards. If
596 * you have a 64-bit card who's subsystem ID is not listed in this table,
597 * send the output of "pcictl dump ..." of the device to me so that your
598 * card will use the 64-bit data path when plugged into a 64-bit slot.
599 *
600 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
601 * June 30, 2002
602 */
603 static int
604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
605 {
606 static const struct {
607 pci_vendor_id_t c64_vendor;
608 pci_product_id_t c64_product;
609 } card64[] = {
610 /* Asante GigaNIX */
611 { 0x128a, 0x0002 },
612
613 /* Accton EN1407-T, Planex GN-1000TE */
614 { 0x1113, 0x1407 },
615
616 /* Netgear GA-621 */
617 { 0x1385, 0x621a },
618
619 /* SMC EZ Card */
620 { 0x10b8, 0x9462 },
621
622 { 0, 0}
623 };
624 pcireg_t subsys;
625 int i;
626
627 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
628
629 for (i = 0; card64[i].c64_vendor != 0; i++) {
630 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
631 PCI_PRODUCT(subsys) == card64[i].c64_product)
632 return (1);
633 }
634
635 return (0);
636 }
637 #endif /* DP83820 */
638
639 static int
640 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
641 {
642 struct pci_attach_args *pa = aux;
643
644 if (SIP_DECL(lookup)(pa) != NULL)
645 return (1);
646
647 return (0);
648 }
649
650 static void
651 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
652 {
653 struct sip_softc *sc = (struct sip_softc *) self;
654 struct pci_attach_args *pa = aux;
655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
656 pci_chipset_tag_t pc = pa->pa_pc;
657 pci_intr_handle_t ih;
658 const char *intrstr = NULL;
659 bus_space_tag_t iot, memt;
660 bus_space_handle_t ioh, memh;
661 bus_dma_segment_t seg;
662 int ioh_valid, memh_valid;
663 int i, rseg, error;
664 const struct sip_product *sip;
665 pcireg_t pmode;
666 u_int8_t enaddr[ETHER_ADDR_LEN];
667 int pmreg;
668 #ifdef DP83820
669 pcireg_t memtype;
670 u_int32_t reg;
671 #endif /* DP83820 */
672
673 callout_init(&sc->sc_tick_ch);
674
675 sip = SIP_DECL(lookup)(pa);
676 if (sip == NULL) {
677 printf("\n");
678 panic(SIP_STR(attach) ": impossible");
679 }
680 sc->sc_rev = PCI_REVISION(pa->pa_class);
681
682 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
683
684 sc->sc_model = sip;
685
686 /*
687 * XXX Work-around broken PXE firmware on some boards.
688 *
689 * The DP83815 shares an address decoder with the MEM BAR
690 * and the ROM BAR. Make sure the ROM BAR is disabled,
691 * so that memory mapped access works.
692 */
693 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
694 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
695 ~PCI_MAPREG_ROM_ENABLE);
696
697 /*
698 * Map the device.
699 */
700 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
701 PCI_MAPREG_TYPE_IO, 0,
702 &iot, &ioh, NULL, NULL) == 0);
703 #ifdef DP83820
704 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
705 switch (memtype) {
706 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
707 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
708 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
709 memtype, 0, &memt, &memh, NULL, NULL) == 0);
710 break;
711 default:
712 memh_valid = 0;
713 }
714 #else
715 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
716 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
717 &memt, &memh, NULL, NULL) == 0);
718 #endif /* DP83820 */
719
720 if (memh_valid) {
721 sc->sc_st = memt;
722 sc->sc_sh = memh;
723 } else if (ioh_valid) {
724 sc->sc_st = iot;
725 sc->sc_sh = ioh;
726 } else {
727 printf("%s: unable to map device registers\n",
728 sc->sc_dev.dv_xname);
729 return;
730 }
731
732 sc->sc_dmat = pa->pa_dmat;
733
734 /*
735 * Make sure bus mastering is enabled. Also make sure
736 * Write/Invalidate is enabled if we're allowed to use it.
737 */
738 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
739 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
740 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
741 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
742 pmreg | PCI_COMMAND_MASTER_ENABLE);
743
744 /* Get it out of power save mode if needed. */
745 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
746 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
747 PCI_PMCSR_STATE_MASK;
748 if (pmode == PCI_PMCSR_STATE_D3) {
749 /*
750 * The card has lost all configuration data in
751 * this state, so punt.
752 */
753 printf("%s: unable to wake up from power state D3\n",
754 sc->sc_dev.dv_xname);
755 return;
756 }
757 if (pmode != PCI_PMCSR_STATE_D0) {
758 printf("%s: waking up from power state D%d\n",
759 sc->sc_dev.dv_xname, pmode);
760 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
761 PCI_PMCSR_STATE_D0);
762 }
763 }
764
765 /*
766 * Map and establish our interrupt.
767 */
768 if (pci_intr_map(pa, &ih)) {
769 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
770 return;
771 }
772 intrstr = pci_intr_string(pc, ih);
773 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
774 if (sc->sc_ih == NULL) {
775 printf("%s: unable to establish interrupt",
776 sc->sc_dev.dv_xname);
777 if (intrstr != NULL)
778 printf(" at %s", intrstr);
779 printf("\n");
780 return;
781 }
782 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
783
784 SIMPLEQ_INIT(&sc->sc_txfreeq);
785 SIMPLEQ_INIT(&sc->sc_txdirtyq);
786
787 /*
788 * Allocate the control data structures, and create and load the
789 * DMA map for it.
790 */
791 if ((error = bus_dmamem_alloc(sc->sc_dmat,
792 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
793 0)) != 0) {
794 printf("%s: unable to allocate control data, error = %d\n",
795 sc->sc_dev.dv_xname, error);
796 goto fail_0;
797 }
798
799 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
800 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
801 BUS_DMA_COHERENT)) != 0) {
802 printf("%s: unable to map control data, error = %d\n",
803 sc->sc_dev.dv_xname, error);
804 goto fail_1;
805 }
806
807 if ((error = bus_dmamap_create(sc->sc_dmat,
808 sizeof(struct sip_control_data), 1,
809 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
810 printf("%s: unable to create control data DMA map, "
811 "error = %d\n", sc->sc_dev.dv_xname, error);
812 goto fail_2;
813 }
814
815 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
816 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
817 0)) != 0) {
818 printf("%s: unable to load control data DMA map, error = %d\n",
819 sc->sc_dev.dv_xname, error);
820 goto fail_3;
821 }
822
823 /*
824 * Create the transmit buffer DMA maps.
825 */
826 for (i = 0; i < SIP_TXQUEUELEN; i++) {
827 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
828 SIP_NTXSEGS, MCLBYTES, 0, 0,
829 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
830 printf("%s: unable to create tx DMA map %d, "
831 "error = %d\n", sc->sc_dev.dv_xname, i, error);
832 goto fail_4;
833 }
834 }
835
836 /*
837 * Create the receive buffer DMA maps.
838 */
839 for (i = 0; i < SIP_NRXDESC; i++) {
840 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
841 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
842 printf("%s: unable to create rx DMA map %d, "
843 "error = %d\n", sc->sc_dev.dv_xname, i, error);
844 goto fail_5;
845 }
846 sc->sc_rxsoft[i].rxs_mbuf = NULL;
847 }
848
849 /*
850 * Reset the chip to a known state.
851 */
852 SIP_DECL(reset)(sc);
853
854 /*
855 * Read the Ethernet address from the EEPROM. This might
856 * also fetch other stuff from the EEPROM and stash it
857 * in the softc.
858 */
859 sc->sc_cfg = 0;
860 #if !defined(DP83820)
861 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
862 SIP_SIS900_REV(sc,SIS_REV_900B))
863 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
864
865 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
866 SIP_SIS900_REV(sc,SIS_REV_960) ||
867 SIP_SIS900_REV(sc,SIS_REV_900B))
868 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
869 SIP_CFG) & CFG_EDBMASTEN);
870 #endif
871
872 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
873
874 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
875 ether_sprintf(enaddr));
876
877 /*
878 * Initialize the configuration register: aggressive PCI
879 * bus request algorithm, default backoff, default OW timer,
880 * default parity error detection.
881 *
882 * NOTE: "Big endian mode" is useless on the SiS900 and
883 * friends -- it affects packet data, not descriptors.
884 */
885 #ifdef DP83820
886 /*
887 * Cause the chip to load configuration data from the EEPROM.
888 */
889 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
890 for (i = 0; i < 10000; i++) {
891 delay(10);
892 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
893 PTSCR_EELOAD_EN) == 0)
894 break;
895 }
896 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
897 PTSCR_EELOAD_EN) {
898 printf("%s: timeout loading configuration from EEPROM\n",
899 sc->sc_dev.dv_xname);
900 return;
901 }
902
903 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
904
905 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
906 if (reg & CFG_PCI64_DET) {
907 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
908 /*
909 * Check to see if this card is 64-bit. If so, enable 64-bit
910 * data transfers.
911 *
912 * We can't use the DATA64_EN bit in the EEPROM, because
913 * vendors of 32-bit cards fail to clear that bit in many
914 * cases (yet the card still detects that it's in a 64-bit
915 * slot; go figure).
916 */
917 if (SIP_DECL(check_64bit)(pa)) {
918 sc->sc_cfg |= CFG_DATA64_EN;
919 printf(", using 64-bit data transfers");
920 }
921 printf("\n");
922 }
923
924 /*
925 * XXX Need some PCI flags indicating support for
926 * XXX 64-bit addressing.
927 */
928 #if 0
929 if (reg & CFG_M64ADDR)
930 sc->sc_cfg |= CFG_M64ADDR;
931 if (reg & CFG_T64ADDR)
932 sc->sc_cfg |= CFG_T64ADDR;
933 #endif
934
935 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
936 const char *sep = "";
937 printf("%s: using ", sc->sc_dev.dv_xname);
938 if (reg & CFG_EXT_125) {
939 sc->sc_cfg |= CFG_EXT_125;
940 printf("%s125MHz clock", sep);
941 sep = ", ";
942 }
943 if (reg & CFG_TBI_EN) {
944 sc->sc_cfg |= CFG_TBI_EN;
945 printf("%sten-bit interface", sep);
946 sep = ", ";
947 }
948 printf("\n");
949 }
950 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
951 (reg & CFG_MRM_DIS) != 0)
952 sc->sc_cfg |= CFG_MRM_DIS;
953 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
954 (reg & CFG_MWI_DIS) != 0)
955 sc->sc_cfg |= CFG_MWI_DIS;
956
957 /*
958 * Use the extended descriptor format on the DP83820. This
959 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
960 * checksumming.
961 */
962 sc->sc_cfg |= CFG_EXTSTS_EN;
963 #endif /* DP83820 */
964
965 /*
966 * Initialize our media structures and probe the MII.
967 */
968 sc->sc_mii.mii_ifp = ifp;
969 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
970 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
971 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
972 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
973 SIP_DECL(mediastatus));
974
975 /*
976 * XXX We cannot handle flow control on the DP83815.
977 */
978 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
979 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
980 MII_OFFSET_ANY, 0);
981 else
982 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
983 MII_OFFSET_ANY, MIIF_DOPAUSE);
984 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
985 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
986 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
987 } else
988 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
989
990 ifp = &sc->sc_ethercom.ec_if;
991 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
992 ifp->if_softc = sc;
993 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
994 sc->sc_if_flags = ifp->if_flags;
995 ifp->if_ioctl = SIP_DECL(ioctl);
996 ifp->if_start = SIP_DECL(start);
997 ifp->if_watchdog = SIP_DECL(watchdog);
998 ifp->if_init = SIP_DECL(init);
999 ifp->if_stop = SIP_DECL(stop);
1000 IFQ_SET_READY(&ifp->if_snd);
1001
1002 /*
1003 * We can support 802.1Q VLAN-sized frames.
1004 */
1005 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1006
1007 #ifdef DP83820
1008 /*
1009 * And the DP83820 can do VLAN tagging in hardware, and
1010 * support the jumbo Ethernet MTU.
1011 */
1012 sc->sc_ethercom.ec_capabilities |=
1013 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1014
1015 /*
1016 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1017 * in hardware.
1018 */
1019 ifp->if_capabilities |=
1020 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1021 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1022 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1023 #endif /* DP83820 */
1024
1025 /*
1026 * Attach the interface.
1027 */
1028 if_attach(ifp);
1029 ether_ifattach(ifp, enaddr);
1030 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1031 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1032 sc->sc_prev.if_capenable = ifp->if_capenable;
1033 #if NRND > 0
1034 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1035 RND_TYPE_NET, 0);
1036 #endif
1037
1038 /*
1039 * The number of bytes that must be available in
1040 * the Tx FIFO before the bus master can DMA more
1041 * data into the FIFO.
1042 */
1043 sc->sc_tx_fill_thresh = 64 / 32;
1044
1045 /*
1046 * Start at a drain threshold of 512 bytes. We will
1047 * increase it if a DMA underrun occurs.
1048 *
1049 * XXX The minimum value of this variable should be
1050 * tuned. We may be able to improve performance
1051 * by starting with a lower value. That, however,
1052 * may trash the first few outgoing packets if the
1053 * PCI bus is saturated.
1054 */
1055 #ifdef DP83820
1056 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1057 #else
1058 sc->sc_tx_drain_thresh = 1504 / 32;
1059 #endif
1060
1061 /*
1062 * Initialize the Rx FIFO drain threshold.
1063 *
1064 * This is in units of 8 bytes.
1065 *
1066 * We should never set this value lower than 2; 14 bytes are
1067 * required to filter the packet.
1068 */
1069 sc->sc_rx_drain_thresh = 128 / 8;
1070
1071 #ifdef SIP_EVENT_COUNTERS
1072 /*
1073 * Attach event counters.
1074 */
1075 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1076 NULL, sc->sc_dev.dv_xname, "txsstall");
1077 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1078 NULL, sc->sc_dev.dv_xname, "txdstall");
1079 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1080 NULL, sc->sc_dev.dv_xname, "txforceintr");
1081 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1082 NULL, sc->sc_dev.dv_xname, "txdintr");
1083 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1084 NULL, sc->sc_dev.dv_xname, "txiintr");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1086 NULL, sc->sc_dev.dv_xname, "rxintr");
1087 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1088 NULL, sc->sc_dev.dv_xname, "hiberr");
1089 #ifndef DP83820
1090 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1091 NULL, sc->sc_dev.dv_xname, "rxpause");
1092 #endif /* !DP83820 */
1093 #ifdef DP83820
1094 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1095 NULL, sc->sc_dev.dv_xname, "rxpause");
1096 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1097 NULL, sc->sc_dev.dv_xname, "txpause");
1098 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1099 NULL, sc->sc_dev.dv_xname, "rxipsum");
1100 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1101 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1102 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1103 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1104 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1105 NULL, sc->sc_dev.dv_xname, "txipsum");
1106 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1107 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1108 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1109 NULL, sc->sc_dev.dv_xname, "txudpsum");
1110 #endif /* DP83820 */
1111 #endif /* SIP_EVENT_COUNTERS */
1112
1113 /*
1114 * Make sure the interface is shutdown during reboot.
1115 */
1116 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1117 if (sc->sc_sdhook == NULL)
1118 printf("%s: WARNING: unable to establish shutdown hook\n",
1119 sc->sc_dev.dv_xname);
1120 return;
1121
1122 /*
1123 * Free any resources we've allocated during the failed attach
1124 * attempt. Do this in reverse order and fall through.
1125 */
1126 fail_5:
1127 for (i = 0; i < SIP_NRXDESC; i++) {
1128 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1129 bus_dmamap_destroy(sc->sc_dmat,
1130 sc->sc_rxsoft[i].rxs_dmamap);
1131 }
1132 fail_4:
1133 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1134 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1135 bus_dmamap_destroy(sc->sc_dmat,
1136 sc->sc_txsoft[i].txs_dmamap);
1137 }
1138 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1139 fail_3:
1140 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1141 fail_2:
1142 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1143 sizeof(struct sip_control_data));
1144 fail_1:
1145 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1146 fail_0:
1147 return;
1148 }
1149
1150 /*
1151 * sip_shutdown:
1152 *
1153 * Make sure the interface is stopped at reboot time.
1154 */
1155 static void
1156 SIP_DECL(shutdown)(void *arg)
1157 {
1158 struct sip_softc *sc = arg;
1159
1160 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1161 }
1162
1163 /*
1164 * sip_start: [ifnet interface function]
1165 *
1166 * Start packet transmission on the interface.
1167 */
1168 static void
1169 SIP_DECL(start)(struct ifnet *ifp)
1170 {
1171 struct sip_softc *sc = ifp->if_softc;
1172 struct mbuf *m0;
1173 #ifndef DP83820
1174 struct mbuf *m;
1175 #endif
1176 struct sip_txsoft *txs;
1177 bus_dmamap_t dmamap;
1178 int error, nexttx, lasttx, seg;
1179 int ofree = sc->sc_txfree;
1180 #if 0
1181 int firsttx = sc->sc_txnext;
1182 #endif
1183 #ifdef DP83820
1184 struct m_tag *mtag;
1185 u_int32_t extsts;
1186 #endif
1187
1188 #ifndef DP83820
1189 /*
1190 * If we've been told to pause, don't transmit any more packets.
1191 */
1192 if (sc->sc_paused)
1193 ifp->if_flags |= IFF_OACTIVE;
1194 #endif
1195
1196 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1197 return;
1198
1199 /*
1200 * Loop through the send queue, setting up transmit descriptors
1201 * until we drain the queue, or use up all available transmit
1202 * descriptors.
1203 */
1204 for (;;) {
1205 /* Get a work queue entry. */
1206 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1207 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1208 break;
1209 }
1210
1211 /*
1212 * Grab a packet off the queue.
1213 */
1214 IFQ_POLL(&ifp->if_snd, m0);
1215 if (m0 == NULL)
1216 break;
1217 #ifndef DP83820
1218 m = NULL;
1219 #endif
1220
1221 dmamap = txs->txs_dmamap;
1222
1223 #ifdef DP83820
1224 /*
1225 * Load the DMA map. If this fails, the packet either
1226 * didn't fit in the allotted number of segments, or we
1227 * were short on resources. For the too-many-segments
1228 * case, we simply report an error and drop the packet,
1229 * since we can't sanely copy a jumbo packet to a single
1230 * buffer.
1231 */
1232 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1233 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1234 if (error) {
1235 if (error == EFBIG) {
1236 printf("%s: Tx packet consumes too many "
1237 "DMA segments, dropping...\n",
1238 sc->sc_dev.dv_xname);
1239 IFQ_DEQUEUE(&ifp->if_snd, m0);
1240 m_freem(m0);
1241 continue;
1242 }
1243 /*
1244 * Short on resources, just stop for now.
1245 */
1246 break;
1247 }
1248 #else /* DP83820 */
1249 /*
1250 * Load the DMA map. If this fails, the packet either
1251 * didn't fit in the alloted number of segments, or we
1252 * were short on resources. In this case, we'll copy
1253 * and try again.
1254 */
1255 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1256 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1257 MGETHDR(m, M_DONTWAIT, MT_DATA);
1258 if (m == NULL) {
1259 printf("%s: unable to allocate Tx mbuf\n",
1260 sc->sc_dev.dv_xname);
1261 break;
1262 }
1263 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1264 if (m0->m_pkthdr.len > MHLEN) {
1265 MCLGET(m, M_DONTWAIT);
1266 if ((m->m_flags & M_EXT) == 0) {
1267 printf("%s: unable to allocate Tx "
1268 "cluster\n", sc->sc_dev.dv_xname);
1269 m_freem(m);
1270 break;
1271 }
1272 }
1273 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1274 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1275 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1276 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1277 if (error) {
1278 printf("%s: unable to load Tx buffer, "
1279 "error = %d\n", sc->sc_dev.dv_xname, error);
1280 break;
1281 }
1282 }
1283 #endif /* DP83820 */
1284
1285 /*
1286 * Ensure we have enough descriptors free to describe
1287 * the packet. Note, we always reserve one descriptor
1288 * at the end of the ring as a termination point, to
1289 * prevent wrap-around.
1290 */
1291 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1292 /*
1293 * Not enough free descriptors to transmit this
1294 * packet. We haven't committed anything yet,
1295 * so just unload the DMA map, put the packet
1296 * back on the queue, and punt. Notify the upper
1297 * layer that there are not more slots left.
1298 *
1299 * XXX We could allocate an mbuf and copy, but
1300 * XXX is it worth it?
1301 */
1302 ifp->if_flags |= IFF_OACTIVE;
1303 bus_dmamap_unload(sc->sc_dmat, dmamap);
1304 #ifndef DP83820
1305 if (m != NULL)
1306 m_freem(m);
1307 #endif
1308 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1309 break;
1310 }
1311
1312 IFQ_DEQUEUE(&ifp->if_snd, m0);
1313 #ifndef DP83820
1314 if (m != NULL) {
1315 m_freem(m0);
1316 m0 = m;
1317 }
1318 #endif
1319
1320 /*
1321 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1322 */
1323
1324 /* Sync the DMA map. */
1325 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1326 BUS_DMASYNC_PREWRITE);
1327
1328 /*
1329 * Initialize the transmit descriptors.
1330 */
1331 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1332 seg < dmamap->dm_nsegs;
1333 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1334 /*
1335 * If this is the first descriptor we're
1336 * enqueueing, don't set the OWN bit just
1337 * yet. That could cause a race condition.
1338 * We'll do it below.
1339 */
1340 sc->sc_txdescs[nexttx].sipd_bufptr =
1341 htole32(dmamap->dm_segs[seg].ds_addr);
1342 sc->sc_txdescs[nexttx].sipd_cmdsts =
1343 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1344 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1345 #ifdef DP83820
1346 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1347 #endif /* DP83820 */
1348 lasttx = nexttx;
1349 }
1350
1351 /* Clear the MORE bit on the last segment. */
1352 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1353
1354 /*
1355 * If we're in the interrupt delay window, delay the
1356 * interrupt.
1357 */
1358 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1359 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1360 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1361 htole32(CMDSTS_INTR);
1362 sc->sc_txwin = 0;
1363 }
1364
1365 #ifdef DP83820
1366 /*
1367 * If VLANs are enabled and the packet has a VLAN tag, set
1368 * up the descriptor to encapsulate the packet for us.
1369 *
1370 * This apparently has to be on the last descriptor of
1371 * the packet.
1372 */
1373
1374 /*
1375 * Byte swapping is tricky. We need to provide the tag
1376 * in a network byte order. On a big-endian machine,
1377 * the byteorder is correct, but we need to swap it
1378 * anyway, because this will be undone by the outside
1379 * htole32(). That's why there must be an
1380 * unconditional swap instead of htons() inside.
1381 */
1382 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1383 sc->sc_txdescs[lasttx].sipd_extsts |=
1384 htole32(EXTSTS_VPKT |
1385 (bswap16(VLAN_TAG_VALUE(mtag)) &
1386 EXTSTS_VTCI));
1387 }
1388
1389 /*
1390 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1391 * checksumming, set up the descriptor to do this work
1392 * for us.
1393 *
1394 * This apparently has to be on the first descriptor of
1395 * the packet.
1396 *
1397 * Byte-swap constants so the compiler can optimize.
1398 */
1399 extsts = 0;
1400 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1401 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1402 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1403 extsts |= htole32(EXTSTS_IPPKT);
1404 }
1405 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1406 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1407 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1408 extsts |= htole32(EXTSTS_TCPPKT);
1409 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1410 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1411 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1412 extsts |= htole32(EXTSTS_UDPPKT);
1413 }
1414 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1415 #endif /* DP83820 */
1416
1417 /* Sync the descriptors we're using. */
1418 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1419 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1420
1421 /*
1422 * The entire packet is set up. Give the first descrptor
1423 * to the chip now.
1424 */
1425 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1426 htole32(CMDSTS_OWN);
1427 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1428 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1429
1430 /*
1431 * Store a pointer to the packet so we can free it later,
1432 * and remember what txdirty will be once the packet is
1433 * done.
1434 */
1435 txs->txs_mbuf = m0;
1436 txs->txs_firstdesc = sc->sc_txnext;
1437 txs->txs_lastdesc = lasttx;
1438
1439 /* Advance the tx pointer. */
1440 sc->sc_txfree -= dmamap->dm_nsegs;
1441 sc->sc_txnext = nexttx;
1442
1443 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1444 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1445
1446 #if NBPFILTER > 0
1447 /*
1448 * Pass the packet to any BPF listeners.
1449 */
1450 if (ifp->if_bpf)
1451 bpf_mtap(ifp->if_bpf, m0);
1452 #endif /* NBPFILTER > 0 */
1453 }
1454
1455 if (txs == NULL || sc->sc_txfree == 0) {
1456 /* No more slots left; notify upper layer. */
1457 ifp->if_flags |= IFF_OACTIVE;
1458 }
1459
1460 if (sc->sc_txfree != ofree) {
1461 /*
1462 * Start the transmit process. Note, the manual says
1463 * that if there are no pending transmissions in the
1464 * chip's internal queue (indicated by TXE being clear),
1465 * then the driver software must set the TXDP to the
1466 * first descriptor to be transmitted. However, if we
1467 * do this, it causes serious performance degredation on
1468 * the DP83820 under load, not setting TXDP doesn't seem
1469 * to adversely affect the SiS 900 or DP83815.
1470 *
1471 * Well, I guess it wouldn't be the first time a manual
1472 * has lied -- and they could be speaking of the NULL-
1473 * terminated descriptor list case, rather than OWN-
1474 * terminated rings.
1475 */
1476 #if 0
1477 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1478 CR_TXE) == 0) {
1479 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1480 SIP_CDTXADDR(sc, firsttx));
1481 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1482 }
1483 #else
1484 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1485 #endif
1486
1487 /* Set a watchdog timer in case the chip flakes out. */
1488 #ifdef DP83820
1489 /* Gigabit autonegotiation takes 5 seconds. */
1490 ifp->if_timer = 10;
1491 #else
1492 ifp->if_timer = 5;
1493 #endif
1494 }
1495 }
1496
1497 /*
1498 * sip_watchdog: [ifnet interface function]
1499 *
1500 * Watchdog timer handler.
1501 */
1502 static void
1503 SIP_DECL(watchdog)(struct ifnet *ifp)
1504 {
1505 struct sip_softc *sc = ifp->if_softc;
1506
1507 /*
1508 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1509 * If we get a timeout, try and sweep up transmit descriptors.
1510 * If we manage to sweep them all up, ignore the lack of
1511 * interrupt.
1512 */
1513 SIP_DECL(txintr)(sc);
1514
1515 if (sc->sc_txfree != SIP_NTXDESC) {
1516 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1517 ifp->if_oerrors++;
1518
1519 /* Reset the interface. */
1520 (void) SIP_DECL(init)(ifp);
1521 } else if (ifp->if_flags & IFF_DEBUG)
1522 printf("%s: recovered from device timeout\n",
1523 sc->sc_dev.dv_xname);
1524
1525 /* Try to get more packets going. */
1526 SIP_DECL(start)(ifp);
1527 }
1528
1529 /*
1530 * sip_ioctl: [ifnet interface function]
1531 *
1532 * Handle control requests from the operator.
1533 */
1534 static int
1535 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1536 {
1537 struct sip_softc *sc = ifp->if_softc;
1538 struct ifreq *ifr = (struct ifreq *)data;
1539 int s, error;
1540
1541 s = splnet();
1542
1543 switch (cmd) {
1544 case SIOCSIFMEDIA:
1545 /* Flow control requires full-duplex mode. */
1546 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1547 (ifr->ifr_media & IFM_FDX) == 0)
1548 ifr->ifr_media &= ~IFM_ETH_FMASK;
1549 #ifdef DP83820
1550 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1551 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1552 /* We can do both TXPAUSE and RXPAUSE. */
1553 ifr->ifr_media |=
1554 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1555 }
1556 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1557 }
1558 #else
1559 /* XXX */
1560 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1561 ifr->ifr_media &= ~IFM_ETH_FMASK;
1562
1563 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1564 if (ifr->ifr_media & IFM_FLOW) {
1565 /*
1566 * Both TXPAUSE and RXPAUSE must be set.
1567 * (SiS900 and DP83815 don't have PAUSE_ASYM
1568 * feature.)
1569 *
1570 * XXX Can SiS900 and DP83815 send PAUSE?
1571 */
1572 ifr->ifr_media |=
1573 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1574 }
1575 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1576 }
1577 #endif
1578 /* FALLTHROUGH */
1579 case SIOCGIFMEDIA:
1580 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1581 break;
1582 case SIOCSIFFLAGS:
1583 /* If the interface is up and running, only modify the receive
1584 * filter when setting promiscuous or debug mode. Otherwise
1585 * fall through to ether_ioctl, which will reset the chip.
1586 */
1587
1588 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1589 == (sc)->sc_ethercom.ec_capenable) \
1590 && ((sc)->sc_prev.is_vlan == \
1591 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1592
1593 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1594
1595 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1596 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1597 == (IFF_UP|IFF_RUNNING))
1598 && ((ifp->if_flags & (~RESETIGN))
1599 == (sc->sc_if_flags & (~RESETIGN)))
1600 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1601 /* Set up the receive filter. */
1602 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1603 error = 0;
1604 break;
1605 #undef RESETIGN
1606 }
1607 /* FALLTHROUGH */
1608 default:
1609 error = ether_ioctl(ifp, cmd, data);
1610 if (error == ENETRESET) {
1611 /*
1612 * Multicast list has changed; set the hardware filter
1613 * accordingly.
1614 */
1615 if (ifp->if_flags & IFF_RUNNING)
1616 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1617 error = 0;
1618 }
1619 break;
1620 }
1621
1622 /* Try to get more packets going. */
1623 SIP_DECL(start)(ifp);
1624
1625 sc->sc_if_flags = ifp->if_flags;
1626 splx(s);
1627 return (error);
1628 }
1629
1630 /*
1631 * sip_intr:
1632 *
1633 * Interrupt service routine.
1634 */
1635 static int
1636 SIP_DECL(intr)(void *arg)
1637 {
1638 struct sip_softc *sc = arg;
1639 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 u_int32_t isr;
1641 int handled = 0;
1642
1643 /* Disable interrupts. */
1644 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1645
1646 for (;;) {
1647 /* Reading clears interrupt. */
1648 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1649 if ((isr & sc->sc_imr) == 0)
1650 break;
1651
1652 #if NRND > 0
1653 if (RND_ENABLED(&sc->rnd_source))
1654 rnd_add_uint32(&sc->rnd_source, isr);
1655 #endif
1656
1657 handled = 1;
1658
1659 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1660 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1661
1662 /* Grab any new packets. */
1663 SIP_DECL(rxintr)(sc);
1664
1665 if (isr & ISR_RXORN) {
1666 printf("%s: receive FIFO overrun\n",
1667 sc->sc_dev.dv_xname);
1668
1669 /* XXX adjust rx_drain_thresh? */
1670 }
1671
1672 if (isr & ISR_RXIDLE) {
1673 printf("%s: receive ring overrun\n",
1674 sc->sc_dev.dv_xname);
1675
1676 /* Get the receive process going again. */
1677 bus_space_write_4(sc->sc_st, sc->sc_sh,
1678 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1679 bus_space_write_4(sc->sc_st, sc->sc_sh,
1680 SIP_CR, CR_RXE);
1681 }
1682 }
1683
1684 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1685 #ifdef SIP_EVENT_COUNTERS
1686 if (isr & ISR_TXDESC)
1687 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1688 else if (isr & ISR_TXIDLE)
1689 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1690 #endif
1691
1692 /* Sweep up transmit descriptors. */
1693 SIP_DECL(txintr)(sc);
1694
1695 if (isr & ISR_TXURN) {
1696 u_int32_t thresh;
1697
1698 printf("%s: transmit FIFO underrun",
1699 sc->sc_dev.dv_xname);
1700
1701 thresh = sc->sc_tx_drain_thresh + 1;
1702 if (thresh <= TXCFG_DRTH &&
1703 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1704 (sc->sc_tx_fill_thresh * 32))) {
1705 printf("; increasing Tx drain "
1706 "threshold to %u bytes\n",
1707 thresh * 32);
1708 sc->sc_tx_drain_thresh = thresh;
1709 (void) SIP_DECL(init)(ifp);
1710 } else {
1711 (void) SIP_DECL(init)(ifp);
1712 printf("\n");
1713 }
1714 }
1715 }
1716
1717 #if !defined(DP83820)
1718 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1719 if (isr & ISR_PAUSE_ST) {
1720 sc->sc_paused = 1;
1721 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1722 ifp->if_flags |= IFF_OACTIVE;
1723 }
1724 if (isr & ISR_PAUSE_END) {
1725 sc->sc_paused = 0;
1726 ifp->if_flags &= ~IFF_OACTIVE;
1727 }
1728 }
1729 #endif /* ! DP83820 */
1730
1731 if (isr & ISR_HIBERR) {
1732 int want_init = 0;
1733
1734 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1735
1736 #define PRINTERR(bit, str) \
1737 do { \
1738 if ((isr & (bit)) != 0) { \
1739 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1740 printf("%s: %s\n", \
1741 sc->sc_dev.dv_xname, str); \
1742 want_init = 1; \
1743 } \
1744 } while (/*CONSTCOND*/0)
1745
1746 PRINTERR(ISR_DPERR, "parity error");
1747 PRINTERR(ISR_SSERR, "system error");
1748 PRINTERR(ISR_RMABT, "master abort");
1749 PRINTERR(ISR_RTABT, "target abort");
1750 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1751 /*
1752 * Ignore:
1753 * Tx reset complete
1754 * Rx reset complete
1755 */
1756 if (want_init)
1757 (void) SIP_DECL(init)(ifp);
1758 #undef PRINTERR
1759 }
1760 }
1761
1762 /* Re-enable interrupts. */
1763 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1764
1765 /* Try to get more packets going. */
1766 SIP_DECL(start)(ifp);
1767
1768 return (handled);
1769 }
1770
1771 /*
1772 * sip_txintr:
1773 *
1774 * Helper; handle transmit interrupts.
1775 */
1776 static void
1777 SIP_DECL(txintr)(struct sip_softc *sc)
1778 {
1779 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1780 struct sip_txsoft *txs;
1781 u_int32_t cmdsts;
1782
1783 #ifndef DP83820
1784 if (sc->sc_paused == 0)
1785 #endif
1786 ifp->if_flags &= ~IFF_OACTIVE;
1787
1788 /*
1789 * Go through our Tx list and free mbufs for those
1790 * frames which have been transmitted.
1791 */
1792 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1793 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1794 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1795
1796 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1797 if (cmdsts & CMDSTS_OWN)
1798 break;
1799
1800 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1801
1802 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1803
1804 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1805 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1806 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1807 m_freem(txs->txs_mbuf);
1808 txs->txs_mbuf = NULL;
1809
1810 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1811
1812 /*
1813 * Check for errors and collisions.
1814 */
1815 if (cmdsts &
1816 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1817 ifp->if_oerrors++;
1818 if (cmdsts & CMDSTS_Tx_EC)
1819 ifp->if_collisions += 16;
1820 if (ifp->if_flags & IFF_DEBUG) {
1821 if (cmdsts & CMDSTS_Tx_ED)
1822 printf("%s: excessive deferral\n",
1823 sc->sc_dev.dv_xname);
1824 if (cmdsts & CMDSTS_Tx_EC)
1825 printf("%s: excessive collisions\n",
1826 sc->sc_dev.dv_xname);
1827 }
1828 } else {
1829 /* Packet was transmitted successfully. */
1830 ifp->if_opackets++;
1831 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1832 }
1833 }
1834
1835 /*
1836 * If there are no more pending transmissions, cancel the watchdog
1837 * timer.
1838 */
1839 if (txs == NULL) {
1840 ifp->if_timer = 0;
1841 sc->sc_txwin = 0;
1842 }
1843 }
1844
1845 #if defined(DP83820)
1846 /*
1847 * sip_rxintr:
1848 *
1849 * Helper; handle receive interrupts.
1850 */
1851 static void
1852 SIP_DECL(rxintr)(struct sip_softc *sc)
1853 {
1854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 struct sip_rxsoft *rxs;
1856 struct mbuf *m;
1857 u_int32_t cmdsts, extsts;
1858 int i, len;
1859
1860 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1861 rxs = &sc->sc_rxsoft[i];
1862
1863 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1864
1865 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1866 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1867 len = CMDSTS_SIZE(cmdsts);
1868
1869 /*
1870 * NOTE: OWN is set if owned by _consumer_. We're the
1871 * consumer of the receive ring, so if the bit is clear,
1872 * we have processed all of the packets.
1873 */
1874 if ((cmdsts & CMDSTS_OWN) == 0) {
1875 /*
1876 * We have processed all of the receive buffers.
1877 */
1878 break;
1879 }
1880
1881 if (__predict_false(sc->sc_rxdiscard)) {
1882 SIP_INIT_RXDESC(sc, i);
1883 if ((cmdsts & CMDSTS_MORE) == 0) {
1884 /* Reset our state. */
1885 sc->sc_rxdiscard = 0;
1886 }
1887 continue;
1888 }
1889
1890 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1891 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1892
1893 m = rxs->rxs_mbuf;
1894
1895 /*
1896 * Add a new receive buffer to the ring.
1897 */
1898 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1899 /*
1900 * Failed, throw away what we've done so
1901 * far, and discard the rest of the packet.
1902 */
1903 ifp->if_ierrors++;
1904 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1905 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1906 SIP_INIT_RXDESC(sc, i);
1907 if (cmdsts & CMDSTS_MORE)
1908 sc->sc_rxdiscard = 1;
1909 if (sc->sc_rxhead != NULL)
1910 m_freem(sc->sc_rxhead);
1911 SIP_RXCHAIN_RESET(sc);
1912 continue;
1913 }
1914
1915 SIP_RXCHAIN_LINK(sc, m);
1916
1917 m->m_len = len;
1918
1919 /*
1920 * If this is not the end of the packet, keep
1921 * looking.
1922 */
1923 if (cmdsts & CMDSTS_MORE) {
1924 sc->sc_rxlen += len;
1925 continue;
1926 }
1927
1928 /*
1929 * Okay, we have the entire packet now. The chip includes
1930 * the FCS, so we need to trim it.
1931 */
1932 m->m_len -= ETHER_CRC_LEN;
1933
1934 *sc->sc_rxtailp = NULL;
1935 len = m->m_len + sc->sc_rxlen;
1936 m = sc->sc_rxhead;
1937
1938 SIP_RXCHAIN_RESET(sc);
1939
1940 /*
1941 * If an error occurred, update stats and drop the packet.
1942 */
1943 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1944 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1945 ifp->if_ierrors++;
1946 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1947 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1948 /* Receive overrun handled elsewhere. */
1949 printf("%s: receive descriptor error\n",
1950 sc->sc_dev.dv_xname);
1951 }
1952 #define PRINTERR(bit, str) \
1953 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1954 (cmdsts & (bit)) != 0) \
1955 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1956 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1957 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1958 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1959 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1960 #undef PRINTERR
1961 m_freem(m);
1962 continue;
1963 }
1964
1965 /*
1966 * If the packet is small enough to fit in a
1967 * single header mbuf, allocate one and copy
1968 * the data into it. This greatly reduces
1969 * memory consumption when we receive lots
1970 * of small packets.
1971 */
1972 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1973 struct mbuf *nm;
1974 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1975 if (nm == NULL) {
1976 ifp->if_ierrors++;
1977 m_freem(m);
1978 continue;
1979 }
1980 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1981 nm->m_data += 2;
1982 nm->m_pkthdr.len = nm->m_len = len;
1983 m_copydata(m, 0, len, mtod(nm, caddr_t));
1984 m_freem(m);
1985 m = nm;
1986 }
1987 #ifndef __NO_STRICT_ALIGNMENT
1988 else {
1989 /*
1990 * The DP83820's receive buffers must be 4-byte
1991 * aligned. But this means that the data after
1992 * the Ethernet header is misaligned. To compensate,
1993 * we have artificially shortened the buffer size
1994 * in the descriptor, and we do an overlapping copy
1995 * of the data two bytes further in (in the first
1996 * buffer of the chain only).
1997 */
1998 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1999 m->m_len);
2000 m->m_data += 2;
2001 }
2002 #endif /* ! __NO_STRICT_ALIGNMENT */
2003
2004 /*
2005 * If VLANs are enabled, VLAN packets have been unwrapped
2006 * for us. Associate the tag with the packet.
2007 */
2008
2009 /*
2010 * Again, byte swapping is tricky. Hardware provided
2011 * the tag in the network byte order, but extsts was
2012 * passed through le32toh() in the meantime. On a
2013 * big-endian machine, we need to swap it again. On a
2014 * little-endian machine, we need to convert from the
2015 * network to host byte order. This means that we must
2016 * swap it in any case, so unconditional swap instead
2017 * of htons() is used.
2018 */
2019 if ((extsts & EXTSTS_VPKT) != 0) {
2020 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2021 continue);
2022 }
2023
2024 /*
2025 * Set the incoming checksum information for the
2026 * packet.
2027 */
2028 if ((extsts & EXTSTS_IPPKT) != 0) {
2029 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2030 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2031 if (extsts & EXTSTS_Rx_IPERR)
2032 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2033 if (extsts & EXTSTS_TCPPKT) {
2034 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2035 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2036 if (extsts & EXTSTS_Rx_TCPERR)
2037 m->m_pkthdr.csum_flags |=
2038 M_CSUM_TCP_UDP_BAD;
2039 } else if (extsts & EXTSTS_UDPPKT) {
2040 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2041 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2042 if (extsts & EXTSTS_Rx_UDPERR)
2043 m->m_pkthdr.csum_flags |=
2044 M_CSUM_TCP_UDP_BAD;
2045 }
2046 }
2047
2048 ifp->if_ipackets++;
2049 m->m_pkthdr.rcvif = ifp;
2050 m->m_pkthdr.len = len;
2051
2052 #if NBPFILTER > 0
2053 /*
2054 * Pass this up to any BPF listeners, but only
2055 * pass if up the stack if it's for us.
2056 */
2057 if (ifp->if_bpf)
2058 bpf_mtap(ifp->if_bpf, m);
2059 #endif /* NBPFILTER > 0 */
2060
2061 /* Pass it on. */
2062 (*ifp->if_input)(ifp, m);
2063 }
2064
2065 /* Update the receive pointer. */
2066 sc->sc_rxptr = i;
2067 }
2068 #else /* ! DP83820 */
2069 /*
2070 * sip_rxintr:
2071 *
2072 * Helper; handle receive interrupts.
2073 */
2074 static void
2075 SIP_DECL(rxintr)(struct sip_softc *sc)
2076 {
2077 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2078 struct sip_rxsoft *rxs;
2079 struct mbuf *m;
2080 u_int32_t cmdsts;
2081 int i, len;
2082
2083 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2084 rxs = &sc->sc_rxsoft[i];
2085
2086 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2087
2088 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2089
2090 /*
2091 * NOTE: OWN is set if owned by _consumer_. We're the
2092 * consumer of the receive ring, so if the bit is clear,
2093 * we have processed all of the packets.
2094 */
2095 if ((cmdsts & CMDSTS_OWN) == 0) {
2096 /*
2097 * We have processed all of the receive buffers.
2098 */
2099 break;
2100 }
2101
2102 /*
2103 * If any collisions were seen on the wire, count one.
2104 */
2105 if (cmdsts & CMDSTS_Rx_COL)
2106 ifp->if_collisions++;
2107
2108 /*
2109 * If an error occurred, update stats, clear the status
2110 * word, and leave the packet buffer in place. It will
2111 * simply be reused the next time the ring comes around.
2112 */
2113 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2114 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2115 ifp->if_ierrors++;
2116 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2117 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2118 /* Receive overrun handled elsewhere. */
2119 printf("%s: receive descriptor error\n",
2120 sc->sc_dev.dv_xname);
2121 }
2122 #define PRINTERR(bit, str) \
2123 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2124 (cmdsts & (bit)) != 0) \
2125 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2126 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2127 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2128 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2129 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2130 #undef PRINTERR
2131 SIP_INIT_RXDESC(sc, i);
2132 continue;
2133 }
2134
2135 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2136 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2137
2138 /*
2139 * No errors; receive the packet. Note, the SiS 900
2140 * includes the CRC with every packet.
2141 */
2142 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2143
2144 #ifdef __NO_STRICT_ALIGNMENT
2145 /*
2146 * If the packet is small enough to fit in a
2147 * single header mbuf, allocate one and copy
2148 * the data into it. This greatly reduces
2149 * memory consumption when we receive lots
2150 * of small packets.
2151 *
2152 * Otherwise, we add a new buffer to the receive
2153 * chain. If this fails, we drop the packet and
2154 * recycle the old buffer.
2155 */
2156 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2157 MGETHDR(m, M_DONTWAIT, MT_DATA);
2158 if (m == NULL)
2159 goto dropit;
2160 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2161 memcpy(mtod(m, caddr_t),
2162 mtod(rxs->rxs_mbuf, caddr_t), len);
2163 SIP_INIT_RXDESC(sc, i);
2164 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2165 rxs->rxs_dmamap->dm_mapsize,
2166 BUS_DMASYNC_PREREAD);
2167 } else {
2168 m = rxs->rxs_mbuf;
2169 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2170 dropit:
2171 ifp->if_ierrors++;
2172 SIP_INIT_RXDESC(sc, i);
2173 bus_dmamap_sync(sc->sc_dmat,
2174 rxs->rxs_dmamap, 0,
2175 rxs->rxs_dmamap->dm_mapsize,
2176 BUS_DMASYNC_PREREAD);
2177 continue;
2178 }
2179 }
2180 #else
2181 /*
2182 * The SiS 900's receive buffers must be 4-byte aligned.
2183 * But this means that the data after the Ethernet header
2184 * is misaligned. We must allocate a new buffer and
2185 * copy the data, shifted forward 2 bytes.
2186 */
2187 MGETHDR(m, M_DONTWAIT, MT_DATA);
2188 if (m == NULL) {
2189 dropit:
2190 ifp->if_ierrors++;
2191 SIP_INIT_RXDESC(sc, i);
2192 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2193 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2194 continue;
2195 }
2196 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2197 if (len > (MHLEN - 2)) {
2198 MCLGET(m, M_DONTWAIT);
2199 if ((m->m_flags & M_EXT) == 0) {
2200 m_freem(m);
2201 goto dropit;
2202 }
2203 }
2204 m->m_data += 2;
2205
2206 /*
2207 * Note that we use clusters for incoming frames, so the
2208 * buffer is virtually contiguous.
2209 */
2210 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2211
2212 /* Allow the receive descriptor to continue using its mbuf. */
2213 SIP_INIT_RXDESC(sc, i);
2214 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2215 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2216 #endif /* __NO_STRICT_ALIGNMENT */
2217
2218 ifp->if_ipackets++;
2219 m->m_pkthdr.rcvif = ifp;
2220 m->m_pkthdr.len = m->m_len = len;
2221
2222 #if NBPFILTER > 0
2223 /*
2224 * Pass this up to any BPF listeners, but only
2225 * pass if up the stack if it's for us.
2226 */
2227 if (ifp->if_bpf)
2228 bpf_mtap(ifp->if_bpf, m);
2229 #endif /* NBPFILTER > 0 */
2230
2231 /* Pass it on. */
2232 (*ifp->if_input)(ifp, m);
2233 }
2234
2235 /* Update the receive pointer. */
2236 sc->sc_rxptr = i;
2237 }
2238 #endif /* DP83820 */
2239
2240 /*
2241 * sip_tick:
2242 *
2243 * One second timer, used to tick the MII.
2244 */
2245 static void
2246 SIP_DECL(tick)(void *arg)
2247 {
2248 struct sip_softc *sc = arg;
2249 int s;
2250
2251 s = splnet();
2252 #ifdef DP83820
2253 #ifdef SIP_EVENT_COUNTERS
2254 /* Read PAUSE related counts from MIB registers. */
2255 sc->sc_ev_rxpause.ev_count +=
2256 bus_space_read_4(sc->sc_st, sc->sc_sh,
2257 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2258 sc->sc_ev_txpause.ev_count +=
2259 bus_space_read_4(sc->sc_st, sc->sc_sh,
2260 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2261 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2262 #endif /* SIP_EVENT_COUNTERS */
2263 #endif /* DP83820 */
2264 mii_tick(&sc->sc_mii);
2265 splx(s);
2266
2267 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2268 }
2269
2270 /*
2271 * sip_reset:
2272 *
2273 * Perform a soft reset on the SiS 900.
2274 */
2275 static void
2276 SIP_DECL(reset)(struct sip_softc *sc)
2277 {
2278 bus_space_tag_t st = sc->sc_st;
2279 bus_space_handle_t sh = sc->sc_sh;
2280 int i;
2281
2282 bus_space_write_4(st, sh, SIP_IER, 0);
2283 bus_space_write_4(st, sh, SIP_IMR, 0);
2284 bus_space_write_4(st, sh, SIP_RFCR, 0);
2285 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2286
2287 for (i = 0; i < SIP_TIMEOUT; i++) {
2288 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2289 break;
2290 delay(2);
2291 }
2292
2293 if (i == SIP_TIMEOUT)
2294 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2295
2296 delay(1000);
2297
2298 #ifdef DP83820
2299 /*
2300 * Set the general purpose I/O bits. Do it here in case we
2301 * need to have GPIO set up to talk to the media interface.
2302 */
2303 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2304 delay(1000);
2305 #endif /* DP83820 */
2306 }
2307
2308 /*
2309 * sip_init: [ ifnet interface function ]
2310 *
2311 * Initialize the interface. Must be called at splnet().
2312 */
2313 static int
2314 SIP_DECL(init)(struct ifnet *ifp)
2315 {
2316 struct sip_softc *sc = ifp->if_softc;
2317 bus_space_tag_t st = sc->sc_st;
2318 bus_space_handle_t sh = sc->sc_sh;
2319 struct sip_txsoft *txs;
2320 struct sip_rxsoft *rxs;
2321 struct sip_desc *sipd;
2322 #if defined(DP83820)
2323 u_int32_t reg;
2324 #endif
2325 int i, error = 0;
2326
2327 /*
2328 * Cancel any pending I/O.
2329 */
2330 SIP_DECL(stop)(ifp, 0);
2331
2332 /*
2333 * Reset the chip to a known state.
2334 */
2335 SIP_DECL(reset)(sc);
2336
2337 #if !defined(DP83820)
2338 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2339 /*
2340 * DP83815 manual, page 78:
2341 * 4.4 Recommended Registers Configuration
2342 * For optimum performance of the DP83815, version noted
2343 * as DP83815CVNG (SRR = 203h), the listed register
2344 * modifications must be followed in sequence...
2345 *
2346 * It's not clear if this should be 302h or 203h because that
2347 * chip name is listed as SRR 302h in the description of the
2348 * SRR register. However, my revision 302h DP83815 on the
2349 * Netgear FA311 purchased in 02/2001 needs these settings
2350 * to avoid tons of errors in AcceptPerfectMatch (non-
2351 * IFF_PROMISC) mode. I do not know if other revisions need
2352 * this set or not. [briggs -- 09 March 2001]
2353 *
2354 * Note that only the low-order 12 bits of 0xe4 are documented
2355 * and that this sets reserved bits in that register.
2356 */
2357 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2358
2359 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2360 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2361 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2362 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2363
2364 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2365 }
2366 #endif /* ! DP83820 */
2367
2368 /*
2369 * Initialize the transmit descriptor ring.
2370 */
2371 for (i = 0; i < SIP_NTXDESC; i++) {
2372 sipd = &sc->sc_txdescs[i];
2373 memset(sipd, 0, sizeof(struct sip_desc));
2374 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2375 }
2376 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2378 sc->sc_txfree = SIP_NTXDESC;
2379 sc->sc_txnext = 0;
2380 sc->sc_txwin = 0;
2381
2382 /*
2383 * Initialize the transmit job descriptors.
2384 */
2385 SIMPLEQ_INIT(&sc->sc_txfreeq);
2386 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2387 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2388 txs = &sc->sc_txsoft[i];
2389 txs->txs_mbuf = NULL;
2390 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2391 }
2392
2393 /*
2394 * Initialize the receive descriptor and receive job
2395 * descriptor rings.
2396 */
2397 for (i = 0; i < SIP_NRXDESC; i++) {
2398 rxs = &sc->sc_rxsoft[i];
2399 if (rxs->rxs_mbuf == NULL) {
2400 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2401 printf("%s: unable to allocate or map rx "
2402 "buffer %d, error = %d\n",
2403 sc->sc_dev.dv_xname, i, error);
2404 /*
2405 * XXX Should attempt to run with fewer receive
2406 * XXX buffers instead of just failing.
2407 */
2408 SIP_DECL(rxdrain)(sc);
2409 goto out;
2410 }
2411 } else
2412 SIP_INIT_RXDESC(sc, i);
2413 }
2414 sc->sc_rxptr = 0;
2415 #ifdef DP83820
2416 sc->sc_rxdiscard = 0;
2417 SIP_RXCHAIN_RESET(sc);
2418 #endif /* DP83820 */
2419
2420 /*
2421 * Set the configuration register; it's already initialized
2422 * in sip_attach().
2423 */
2424 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2425
2426 /*
2427 * Initialize the prototype TXCFG register.
2428 */
2429 #if defined(DP83820)
2430 sc->sc_txcfg = TXCFG_MXDMA_512;
2431 sc->sc_rxcfg = RXCFG_MXDMA_512;
2432 #else
2433 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2434 SIP_SIS900_REV(sc, SIS_REV_960) ||
2435 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2436 (sc->sc_cfg & CFG_EDBMASTEN)) {
2437 sc->sc_txcfg = TXCFG_MXDMA_64;
2438 sc->sc_rxcfg = RXCFG_MXDMA_64;
2439 } else {
2440 sc->sc_txcfg = TXCFG_MXDMA_512;
2441 sc->sc_rxcfg = RXCFG_MXDMA_512;
2442 }
2443 #endif /* DP83820 */
2444
2445 sc->sc_txcfg |= TXCFG_ATP |
2446 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2447 sc->sc_tx_drain_thresh;
2448 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2449
2450 /*
2451 * Initialize the receive drain threshold if we have never
2452 * done so.
2453 */
2454 if (sc->sc_rx_drain_thresh == 0) {
2455 /*
2456 * XXX This value should be tuned. This is set to the
2457 * maximum of 248 bytes, and we may be able to improve
2458 * performance by decreasing it (although we should never
2459 * set this value lower than 2; 14 bytes are required to
2460 * filter the packet).
2461 */
2462 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2463 }
2464
2465 /*
2466 * Initialize the prototype RXCFG register.
2467 */
2468 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2469 #ifdef DP83820
2470 /*
2471 * Accept long packets (including FCS) so we can handle
2472 * 802.1q-tagged frames and jumbo frames properly.
2473 */
2474 if (ifp->if_mtu > ETHERMTU ||
2475 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2476 sc->sc_rxcfg |= RXCFG_ALP;
2477
2478 /*
2479 * Checksum offloading is disabled if the user selects an MTU
2480 * larger than 8109. (FreeBSD says 8152, but there is emperical
2481 * evidence that >8109 does not work on some boards, such as the
2482 * Planex GN-1000TE).
2483 */
2484 if (ifp->if_mtu > 8109 &&
2485 (ifp->if_capenable &
2486 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2487 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2488 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2489 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2490 "disabled.\n", sc->sc_dev.dv_xname);
2491 ifp->if_capenable &=
2492 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2493 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2494 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2495 ifp->if_csum_flags_tx = 0;
2496 ifp->if_csum_flags_rx = 0;
2497 }
2498 #else
2499 /*
2500 * Accept packets >1518 bytes (including FCS) so we can handle
2501 * 802.1q-tagged frames properly.
2502 */
2503 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2504 sc->sc_rxcfg |= RXCFG_ALP;
2505 #endif
2506 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2507
2508 #ifdef DP83820
2509 /*
2510 * Initialize the VLAN/IP receive control register.
2511 * We enable checksum computation on all incoming
2512 * packets, and do not reject packets w/ bad checksums.
2513 */
2514 reg = 0;
2515 if (ifp->if_capenable &
2516 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2517 reg |= VRCR_IPEN;
2518 if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 reg |= VRCR_VTDEN|VRCR_VTREN;
2520 bus_space_write_4(st, sh, SIP_VRCR, reg);
2521
2522 /*
2523 * Initialize the VLAN/IP transmit control register.
2524 * We enable outgoing checksum computation on a
2525 * per-packet basis.
2526 */
2527 reg = 0;
2528 if (ifp->if_capenable &
2529 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2530 reg |= VTCR_PPCHK;
2531 if (VLAN_ATTACHED(&sc->sc_ethercom))
2532 reg |= VTCR_VPPTI;
2533 bus_space_write_4(st, sh, SIP_VTCR, reg);
2534
2535 /*
2536 * If we're using VLANs, initialize the VLAN data register.
2537 * To understand why we bswap the VLAN Ethertype, see section
2538 * 4.2.36 of the DP83820 manual.
2539 */
2540 if (VLAN_ATTACHED(&sc->sc_ethercom))
2541 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2542 #endif /* DP83820 */
2543
2544 /*
2545 * Give the transmit and receive rings to the chip.
2546 */
2547 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2548 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2549
2550 /*
2551 * Initialize the interrupt mask.
2552 */
2553 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2554 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2555 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2556
2557 /* Set up the receive filter. */
2558 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2559
2560 #ifdef DP83820
2561 /*
2562 * Tune sc_rx_flow_thresh.
2563 * XXX "More than 8KB" is too short for jumbo frames.
2564 * XXX TODO: Threshold value should be user-settable.
2565 */
2566 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2567 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2568 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2569 #endif
2570
2571 /*
2572 * Set the current media. Do this after initializing the prototype
2573 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2574 * control.
2575 */
2576 mii_mediachg(&sc->sc_mii);
2577
2578 #ifdef DP83820
2579 /*
2580 * Set the interrupt hold-off timer to 100us.
2581 */
2582 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2583 #endif
2584
2585 /*
2586 * Enable interrupts.
2587 */
2588 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2589
2590 /*
2591 * Start the transmit and receive processes.
2592 */
2593 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2594
2595 /*
2596 * Start the one second MII clock.
2597 */
2598 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2599
2600 /*
2601 * ...all done!
2602 */
2603 ifp->if_flags |= IFF_RUNNING;
2604 ifp->if_flags &= ~IFF_OACTIVE;
2605 sc->sc_if_flags = ifp->if_flags;
2606 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2607 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2608 sc->sc_prev.if_capenable = ifp->if_capenable;
2609
2610 out:
2611 if (error)
2612 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2613 return (error);
2614 }
2615
2616 /*
2617 * sip_drain:
2618 *
2619 * Drain the receive queue.
2620 */
2621 static void
2622 SIP_DECL(rxdrain)(struct sip_softc *sc)
2623 {
2624 struct sip_rxsoft *rxs;
2625 int i;
2626
2627 for (i = 0; i < SIP_NRXDESC; i++) {
2628 rxs = &sc->sc_rxsoft[i];
2629 if (rxs->rxs_mbuf != NULL) {
2630 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2631 m_freem(rxs->rxs_mbuf);
2632 rxs->rxs_mbuf = NULL;
2633 }
2634 }
2635 }
2636
2637 /*
2638 * sip_stop: [ ifnet interface function ]
2639 *
2640 * Stop transmission on the interface.
2641 */
2642 static void
2643 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2644 {
2645 struct sip_softc *sc = ifp->if_softc;
2646 bus_space_tag_t st = sc->sc_st;
2647 bus_space_handle_t sh = sc->sc_sh;
2648 struct sip_txsoft *txs;
2649 u_int32_t cmdsts = 0; /* DEBUG */
2650
2651 /*
2652 * Stop the one second clock.
2653 */
2654 callout_stop(&sc->sc_tick_ch);
2655
2656 /* Down the MII. */
2657 mii_down(&sc->sc_mii);
2658
2659 /*
2660 * Disable interrupts.
2661 */
2662 bus_space_write_4(st, sh, SIP_IER, 0);
2663
2664 /*
2665 * Stop receiver and transmitter.
2666 */
2667 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2668
2669 /*
2670 * Release any queued transmit buffers.
2671 */
2672 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2673 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2674 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2675 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2676 CMDSTS_INTR) == 0)
2677 printf("%s: sip_stop: last descriptor does not "
2678 "have INTR bit set\n", sc->sc_dev.dv_xname);
2679 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2680 #ifdef DIAGNOSTIC
2681 if (txs->txs_mbuf == NULL) {
2682 printf("%s: dirty txsoft with no mbuf chain\n",
2683 sc->sc_dev.dv_xname);
2684 panic("sip_stop");
2685 }
2686 #endif
2687 cmdsts |= /* DEBUG */
2688 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2689 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2690 m_freem(txs->txs_mbuf);
2691 txs->txs_mbuf = NULL;
2692 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2693 }
2694
2695 if (disable)
2696 SIP_DECL(rxdrain)(sc);
2697
2698 /*
2699 * Mark the interface down and cancel the watchdog timer.
2700 */
2701 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2702 ifp->if_timer = 0;
2703
2704 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2705 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2706 printf("%s: sip_stop: no INTR bits set in dirty tx "
2707 "descriptors\n", sc->sc_dev.dv_xname);
2708 }
2709
2710 /*
2711 * sip_read_eeprom:
2712 *
2713 * Read data from the serial EEPROM.
2714 */
2715 static void
2716 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2717 u_int16_t *data)
2718 {
2719 bus_space_tag_t st = sc->sc_st;
2720 bus_space_handle_t sh = sc->sc_sh;
2721 u_int16_t reg;
2722 int i, x;
2723
2724 for (i = 0; i < wordcnt; i++) {
2725 /* Send CHIP SELECT. */
2726 reg = EROMAR_EECS;
2727 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2728
2729 /* Shift in the READ opcode. */
2730 for (x = 3; x > 0; x--) {
2731 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2732 reg |= EROMAR_EEDI;
2733 else
2734 reg &= ~EROMAR_EEDI;
2735 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2736 bus_space_write_4(st, sh, SIP_EROMAR,
2737 reg | EROMAR_EESK);
2738 delay(4);
2739 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2740 delay(4);
2741 }
2742
2743 /* Shift in address. */
2744 for (x = 6; x > 0; x--) {
2745 if ((word + i) & (1 << (x - 1)))
2746 reg |= EROMAR_EEDI;
2747 else
2748 reg &= ~EROMAR_EEDI;
2749 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2750 bus_space_write_4(st, sh, SIP_EROMAR,
2751 reg | EROMAR_EESK);
2752 delay(4);
2753 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2754 delay(4);
2755 }
2756
2757 /* Shift out data. */
2758 reg = EROMAR_EECS;
2759 data[i] = 0;
2760 for (x = 16; x > 0; x--) {
2761 bus_space_write_4(st, sh, SIP_EROMAR,
2762 reg | EROMAR_EESK);
2763 delay(4);
2764 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2765 data[i] |= (1 << (x - 1));
2766 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2767 delay(4);
2768 }
2769
2770 /* Clear CHIP SELECT. */
2771 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2772 delay(4);
2773 }
2774 }
2775
2776 /*
2777 * sip_add_rxbuf:
2778 *
2779 * Add a receive buffer to the indicated descriptor.
2780 */
2781 static int
2782 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2783 {
2784 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2785 struct mbuf *m;
2786 int error;
2787
2788 MGETHDR(m, M_DONTWAIT, MT_DATA);
2789 if (m == NULL)
2790 return (ENOBUFS);
2791 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2792
2793 MCLGET(m, M_DONTWAIT);
2794 if ((m->m_flags & M_EXT) == 0) {
2795 m_freem(m);
2796 return (ENOBUFS);
2797 }
2798
2799 #if defined(DP83820)
2800 m->m_len = SIP_RXBUF_LEN;
2801 #endif /* DP83820 */
2802
2803 if (rxs->rxs_mbuf != NULL)
2804 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2805
2806 rxs->rxs_mbuf = m;
2807
2808 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2809 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2810 BUS_DMA_READ|BUS_DMA_NOWAIT);
2811 if (error) {
2812 printf("%s: can't load rx DMA map %d, error = %d\n",
2813 sc->sc_dev.dv_xname, idx, error);
2814 panic("sip_add_rxbuf"); /* XXX */
2815 }
2816
2817 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2818 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2819
2820 SIP_INIT_RXDESC(sc, idx);
2821
2822 return (0);
2823 }
2824
2825 #if !defined(DP83820)
2826 /*
2827 * sip_sis900_set_filter:
2828 *
2829 * Set up the receive filter.
2830 */
2831 static void
2832 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2833 {
2834 bus_space_tag_t st = sc->sc_st;
2835 bus_space_handle_t sh = sc->sc_sh;
2836 struct ethercom *ec = &sc->sc_ethercom;
2837 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2838 struct ether_multi *enm;
2839 u_int8_t *cp;
2840 struct ether_multistep step;
2841 u_int32_t crc, mchash[16];
2842
2843 /*
2844 * Initialize the prototype RFCR.
2845 */
2846 sc->sc_rfcr = RFCR_RFEN;
2847 if (ifp->if_flags & IFF_BROADCAST)
2848 sc->sc_rfcr |= RFCR_AAB;
2849 if (ifp->if_flags & IFF_PROMISC) {
2850 sc->sc_rfcr |= RFCR_AAP;
2851 goto allmulti;
2852 }
2853
2854 /*
2855 * Set up the multicast address filter by passing all multicast
2856 * addresses through a CRC generator, and then using the high-order
2857 * 6 bits as an index into the 128 bit multicast hash table (only
2858 * the lower 16 bits of each 32 bit multicast hash register are
2859 * valid). The high order bits select the register, while the
2860 * rest of the bits select the bit within the register.
2861 */
2862
2863 memset(mchash, 0, sizeof(mchash));
2864
2865 /*
2866 * SiS900 (at least SiS963) requires us to register the address of
2867 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2868 */
2869 crc = 0x0ed423f9;
2870
2871 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2872 SIP_SIS900_REV(sc, SIS_REV_960) ||
2873 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2874 /* Just want the 8 most significant bits. */
2875 crc >>= 24;
2876 } else {
2877 /* Just want the 7 most significant bits. */
2878 crc >>= 25;
2879 }
2880
2881 /* Set the corresponding bit in the hash table. */
2882 mchash[crc >> 4] |= 1 << (crc & 0xf);
2883
2884 ETHER_FIRST_MULTI(step, ec, enm);
2885 while (enm != NULL) {
2886 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2887 /*
2888 * We must listen to a range of multicast addresses.
2889 * For now, just accept all multicasts, rather than
2890 * trying to set only those filter bits needed to match
2891 * the range. (At this time, the only use of address
2892 * ranges is for IP multicast routing, for which the
2893 * range is big enough to require all bits set.)
2894 */
2895 goto allmulti;
2896 }
2897
2898 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2899
2900 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2901 SIP_SIS900_REV(sc, SIS_REV_960) ||
2902 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2903 /* Just want the 8 most significant bits. */
2904 crc >>= 24;
2905 } else {
2906 /* Just want the 7 most significant bits. */
2907 crc >>= 25;
2908 }
2909
2910 /* Set the corresponding bit in the hash table. */
2911 mchash[crc >> 4] |= 1 << (crc & 0xf);
2912
2913 ETHER_NEXT_MULTI(step, enm);
2914 }
2915
2916 ifp->if_flags &= ~IFF_ALLMULTI;
2917 goto setit;
2918
2919 allmulti:
2920 ifp->if_flags |= IFF_ALLMULTI;
2921 sc->sc_rfcr |= RFCR_AAM;
2922
2923 setit:
2924 #define FILTER_EMIT(addr, data) \
2925 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2926 delay(1); \
2927 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2928 delay(1)
2929
2930 /*
2931 * Disable receive filter, and program the node address.
2932 */
2933 cp = LLADDR(ifp->if_sadl);
2934 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2935 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2936 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2937
2938 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2939 /*
2940 * Program the multicast hash table.
2941 */
2942 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2943 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2944 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2945 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2946 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2947 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2948 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2949 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2950 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2951 SIP_SIS900_REV(sc, SIS_REV_960) ||
2952 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2953 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2954 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2955 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2956 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2957 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2958 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2959 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2960 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2961 }
2962 }
2963 #undef FILTER_EMIT
2964
2965 /*
2966 * Re-enable the receiver filter.
2967 */
2968 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2969 }
2970 #endif /* ! DP83820 */
2971
2972 /*
2973 * sip_dp83815_set_filter:
2974 *
2975 * Set up the receive filter.
2976 */
2977 static void
2978 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2979 {
2980 bus_space_tag_t st = sc->sc_st;
2981 bus_space_handle_t sh = sc->sc_sh;
2982 struct ethercom *ec = &sc->sc_ethercom;
2983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2984 struct ether_multi *enm;
2985 u_int8_t *cp;
2986 struct ether_multistep step;
2987 u_int32_t crc, hash, slot, bit;
2988 #ifdef DP83820
2989 #define MCHASH_NWORDS 128
2990 #else
2991 #define MCHASH_NWORDS 32
2992 #endif /* DP83820 */
2993 u_int16_t mchash[MCHASH_NWORDS];
2994 int i;
2995
2996 /*
2997 * Initialize the prototype RFCR.
2998 * Enable the receive filter, and accept on
2999 * Perfect (destination address) Match
3000 * If IFF_BROADCAST, also accept all broadcast packets.
3001 * If IFF_PROMISC, accept all unicast packets (and later, set
3002 * IFF_ALLMULTI and accept all multicast, too).
3003 */
3004 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3005 if (ifp->if_flags & IFF_BROADCAST)
3006 sc->sc_rfcr |= RFCR_AAB;
3007 if (ifp->if_flags & IFF_PROMISC) {
3008 sc->sc_rfcr |= RFCR_AAP;
3009 goto allmulti;
3010 }
3011
3012 #ifdef DP83820
3013 /*
3014 * Set up the DP83820 multicast address filter by passing all multicast
3015 * addresses through a CRC generator, and then using the high-order
3016 * 11 bits as an index into the 2048 bit multicast hash table. The
3017 * high-order 7 bits select the slot, while the low-order 4 bits
3018 * select the bit within the slot. Note that only the low 16-bits
3019 * of each filter word are used, and there are 128 filter words.
3020 */
3021 #else
3022 /*
3023 * Set up the DP83815 multicast address filter by passing all multicast
3024 * addresses through a CRC generator, and then using the high-order
3025 * 9 bits as an index into the 512 bit multicast hash table. The
3026 * high-order 5 bits select the slot, while the low-order 4 bits
3027 * select the bit within the slot. Note that only the low 16-bits
3028 * of each filter word are used, and there are 32 filter words.
3029 */
3030 #endif /* DP83820 */
3031
3032 memset(mchash, 0, sizeof(mchash));
3033
3034 ifp->if_flags &= ~IFF_ALLMULTI;
3035 ETHER_FIRST_MULTI(step, ec, enm);
3036 if (enm == NULL)
3037 goto setit;
3038 while (enm != NULL) {
3039 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3040 /*
3041 * We must listen to a range of multicast addresses.
3042 * For now, just accept all multicasts, rather than
3043 * trying to set only those filter bits needed to match
3044 * the range. (At this time, the only use of address
3045 * ranges is for IP multicast routing, for which the
3046 * range is big enough to require all bits set.)
3047 */
3048 goto allmulti;
3049 }
3050
3051 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3052
3053 #ifdef DP83820
3054 /* Just want the 11 most significant bits. */
3055 hash = crc >> 21;
3056 #else
3057 /* Just want the 9 most significant bits. */
3058 hash = crc >> 23;
3059 #endif /* DP83820 */
3060
3061 slot = hash >> 4;
3062 bit = hash & 0xf;
3063
3064 /* Set the corresponding bit in the hash table. */
3065 mchash[slot] |= 1 << bit;
3066
3067 ETHER_NEXT_MULTI(step, enm);
3068 }
3069 sc->sc_rfcr |= RFCR_MHEN;
3070 goto setit;
3071
3072 allmulti:
3073 ifp->if_flags |= IFF_ALLMULTI;
3074 sc->sc_rfcr |= RFCR_AAM;
3075
3076 setit:
3077 #define FILTER_EMIT(addr, data) \
3078 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3079 delay(1); \
3080 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3081 delay(1)
3082
3083 /*
3084 * Disable receive filter, and program the node address.
3085 */
3086 cp = LLADDR(ifp->if_sadl);
3087 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3088 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3089 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3090
3091 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3092 /*
3093 * Program the multicast hash table.
3094 */
3095 for (i = 0; i < MCHASH_NWORDS; i++) {
3096 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3097 mchash[i]);
3098 }
3099 }
3100 #undef FILTER_EMIT
3101 #undef MCHASH_NWORDS
3102
3103 /*
3104 * Re-enable the receiver filter.
3105 */
3106 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3107 }
3108
3109 #if defined(DP83820)
3110 /*
3111 * sip_dp83820_mii_readreg: [mii interface function]
3112 *
3113 * Read a PHY register on the MII of the DP83820.
3114 */
3115 static int
3116 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3117 {
3118 struct sip_softc *sc = (void *) self;
3119
3120 if (sc->sc_cfg & CFG_TBI_EN) {
3121 bus_addr_t tbireg;
3122 int rv;
3123
3124 if (phy != 0)
3125 return (0);
3126
3127 switch (reg) {
3128 case MII_BMCR: tbireg = SIP_TBICR; break;
3129 case MII_BMSR: tbireg = SIP_TBISR; break;
3130 case MII_ANAR: tbireg = SIP_TANAR; break;
3131 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3132 case MII_ANER: tbireg = SIP_TANER; break;
3133 case MII_EXTSR:
3134 /*
3135 * Don't even bother reading the TESR register.
3136 * The manual documents that the device has
3137 * 1000baseX full/half capability, but the
3138 * register itself seems read back 0 on some
3139 * boards. Just hard-code the result.
3140 */
3141 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3142
3143 default:
3144 return (0);
3145 }
3146
3147 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3148 if (tbireg == SIP_TBISR) {
3149 /* LINK and ACOMP are switched! */
3150 int val = rv;
3151
3152 rv = 0;
3153 if (val & TBISR_MR_LINK_STATUS)
3154 rv |= BMSR_LINK;
3155 if (val & TBISR_MR_AN_COMPLETE)
3156 rv |= BMSR_ACOMP;
3157
3158 /*
3159 * The manual claims this register reads back 0
3160 * on hard and soft reset. But we want to let
3161 * the gentbi driver know that we support auto-
3162 * negotiation, so hard-code this bit in the
3163 * result.
3164 */
3165 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3166 }
3167
3168 return (rv);
3169 }
3170
3171 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3172 phy, reg));
3173 }
3174
3175 /*
3176 * sip_dp83820_mii_writereg: [mii interface function]
3177 *
3178 * Write a PHY register on the MII of the DP83820.
3179 */
3180 static void
3181 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3182 {
3183 struct sip_softc *sc = (void *) self;
3184
3185 if (sc->sc_cfg & CFG_TBI_EN) {
3186 bus_addr_t tbireg;
3187
3188 if (phy != 0)
3189 return;
3190
3191 switch (reg) {
3192 case MII_BMCR: tbireg = SIP_TBICR; break;
3193 case MII_ANAR: tbireg = SIP_TANAR; break;
3194 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3195 default:
3196 return;
3197 }
3198
3199 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3200 return;
3201 }
3202
3203 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3204 phy, reg, val);
3205 }
3206
3207 /*
3208 * sip_dp83820_mii_statchg: [mii interface function]
3209 *
3210 * Callback from MII layer when media changes.
3211 */
3212 static void
3213 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3214 {
3215 struct sip_softc *sc = (struct sip_softc *) self;
3216 struct mii_data *mii = &sc->sc_mii;
3217 u_int32_t cfg, pcr;
3218
3219 /*
3220 * Get flow control negotiation result.
3221 */
3222 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3223 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3224 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3225 mii->mii_media_active &= ~IFM_ETH_FMASK;
3226 }
3227
3228 /*
3229 * Update TXCFG for full-duplex operation.
3230 */
3231 if ((mii->mii_media_active & IFM_FDX) != 0)
3232 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3233 else
3234 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3235
3236 /*
3237 * Update RXCFG for full-duplex or loopback.
3238 */
3239 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3240 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3241 sc->sc_rxcfg |= RXCFG_ATX;
3242 else
3243 sc->sc_rxcfg &= ~RXCFG_ATX;
3244
3245 /*
3246 * Update CFG for MII/GMII.
3247 */
3248 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3249 cfg = sc->sc_cfg | CFG_MODE_1000;
3250 else
3251 cfg = sc->sc_cfg;
3252
3253 /*
3254 * 802.3x flow control.
3255 */
3256 pcr = 0;
3257 if (sc->sc_flowflags & IFM_FLOW) {
3258 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3259 pcr |= sc->sc_rx_flow_thresh;
3260 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3261 pcr |= PCR_PSEN | PCR_PS_MCAST;
3262 }
3263
3264 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3265 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3266 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3267 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3268 }
3269 #endif /* ! DP83820 */
3270
3271 /*
3272 * sip_mii_bitbang_read: [mii bit-bang interface function]
3273 *
3274 * Read the MII serial port for the MII bit-bang module.
3275 */
3276 static u_int32_t
3277 SIP_DECL(mii_bitbang_read)(struct device *self)
3278 {
3279 struct sip_softc *sc = (void *) self;
3280
3281 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3282 }
3283
3284 /*
3285 * sip_mii_bitbang_write: [mii big-bang interface function]
3286 *
3287 * Write the MII serial port for the MII bit-bang module.
3288 */
3289 static void
3290 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3291 {
3292 struct sip_softc *sc = (void *) self;
3293
3294 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3295 }
3296
3297 #ifndef DP83820
3298 /*
3299 * sip_sis900_mii_readreg: [mii interface function]
3300 *
3301 * Read a PHY register on the MII.
3302 */
3303 static int
3304 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3305 {
3306 struct sip_softc *sc = (struct sip_softc *) self;
3307 u_int32_t enphy;
3308
3309 /*
3310 * The PHY of recent SiS chipsets is accessed through bitbang
3311 * operations.
3312 */
3313 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3314 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3315 phy, reg));
3316
3317 #ifndef SIS900_MII_RESTRICT
3318 /*
3319 * The SiS 900 has only an internal PHY on the MII. Only allow
3320 * MII address 0.
3321 */
3322 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3323 return (0);
3324 #endif
3325
3326 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3327 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3328 ENPHY_RWCMD | ENPHY_ACCESS);
3329 do {
3330 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3331 } while (enphy & ENPHY_ACCESS);
3332 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3333 }
3334
3335 /*
3336 * sip_sis900_mii_writereg: [mii interface function]
3337 *
3338 * Write a PHY register on the MII.
3339 */
3340 static void
3341 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3342 {
3343 struct sip_softc *sc = (struct sip_softc *) self;
3344 u_int32_t enphy;
3345
3346 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3347 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3348 phy, reg, val);
3349 return;
3350 }
3351
3352 #ifndef SIS900_MII_RESTRICT
3353 /*
3354 * The SiS 900 has only an internal PHY on the MII. Only allow
3355 * MII address 0.
3356 */
3357 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3358 return;
3359 #endif
3360
3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3362 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3363 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3364 do {
3365 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3366 } while (enphy & ENPHY_ACCESS);
3367 }
3368
3369 /*
3370 * sip_sis900_mii_statchg: [mii interface function]
3371 *
3372 * Callback from MII layer when media changes.
3373 */
3374 static void
3375 SIP_DECL(sis900_mii_statchg)(struct device *self)
3376 {
3377 struct sip_softc *sc = (struct sip_softc *) self;
3378 struct mii_data *mii = &sc->sc_mii;
3379 u_int32_t flowctl;
3380
3381 /*
3382 * Get flow control negotiation result.
3383 */
3384 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3385 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3386 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3387 mii->mii_media_active &= ~IFM_ETH_FMASK;
3388 }
3389
3390 /*
3391 * Update TXCFG for full-duplex operation.
3392 */
3393 if ((mii->mii_media_active & IFM_FDX) != 0)
3394 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3395 else
3396 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3397
3398 /*
3399 * Update RXCFG for full-duplex or loopback.
3400 */
3401 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3402 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3403 sc->sc_rxcfg |= RXCFG_ATX;
3404 else
3405 sc->sc_rxcfg &= ~RXCFG_ATX;
3406
3407 /*
3408 * Update IMR for use of 802.3x flow control.
3409 */
3410 if (sc->sc_flowflags & IFM_FLOW) {
3411 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3412 flowctl = FLOWCTL_FLOWEN;
3413 } else {
3414 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3415 flowctl = 0;
3416 }
3417
3418 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3419 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3420 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3421 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3422 }
3423
3424 /*
3425 * sip_dp83815_mii_readreg: [mii interface function]
3426 *
3427 * Read a PHY register on the MII.
3428 */
3429 static int
3430 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3431 {
3432 struct sip_softc *sc = (struct sip_softc *) self;
3433 u_int32_t val;
3434
3435 /*
3436 * The DP83815 only has an internal PHY. Only allow
3437 * MII address 0.
3438 */
3439 if (phy != 0)
3440 return (0);
3441
3442 /*
3443 * Apparently, after a reset, the DP83815 can take a while
3444 * to respond. During this recovery period, the BMSR returns
3445 * a value of 0. Catch this -- it's not supposed to happen
3446 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3447 * PHY to come back to life.
3448 *
3449 * This works out because the BMSR is the first register
3450 * read during the PHY probe process.
3451 */
3452 do {
3453 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3454 } while (reg == MII_BMSR && val == 0);
3455
3456 return (val & 0xffff);
3457 }
3458
3459 /*
3460 * sip_dp83815_mii_writereg: [mii interface function]
3461 *
3462 * Write a PHY register to the MII.
3463 */
3464 static void
3465 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3466 {
3467 struct sip_softc *sc = (struct sip_softc *) self;
3468
3469 /*
3470 * The DP83815 only has an internal PHY. Only allow
3471 * MII address 0.
3472 */
3473 if (phy != 0)
3474 return;
3475
3476 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3477 }
3478
3479 /*
3480 * sip_dp83815_mii_statchg: [mii interface function]
3481 *
3482 * Callback from MII layer when media changes.
3483 */
3484 static void
3485 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3486 {
3487 struct sip_softc *sc = (struct sip_softc *) self;
3488
3489 /*
3490 * Update TXCFG for full-duplex operation.
3491 */
3492 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3493 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3494 else
3495 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3496
3497 /*
3498 * Update RXCFG for full-duplex or loopback.
3499 */
3500 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3501 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3502 sc->sc_rxcfg |= RXCFG_ATX;
3503 else
3504 sc->sc_rxcfg &= ~RXCFG_ATX;
3505
3506 /*
3507 * XXX 802.3x flow control.
3508 */
3509
3510 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3511 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3512
3513 /*
3514 * Some DP83815s experience problems when used with short
3515 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3516 * sequence adjusts the DSP's signal attenuation to fix the
3517 * problem.
3518 */
3519 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3520 uint32_t reg;
3521
3522 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3523
3524 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3525 reg &= 0x0fff;
3526 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3527 delay(100);
3528 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3529 reg &= 0x00ff;
3530 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3531 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3532 0x00e8);
3533 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3534 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3535 reg | 0x20);
3536 }
3537
3538 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3539 }
3540 }
3541 #endif /* DP83820 */
3542
3543 #if defined(DP83820)
3544 static void
3545 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3546 const struct pci_attach_args *pa, u_int8_t *enaddr)
3547 {
3548 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3549 u_int8_t cksum, *e, match;
3550 int i;
3551
3552 /*
3553 * EEPROM data format for the DP83820 can be found in
3554 * the DP83820 manual, section 4.2.4.
3555 */
3556
3557 SIP_DECL(read_eeprom)(sc, 0,
3558 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3559
3560 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3561 match = ~(match - 1);
3562
3563 cksum = 0x55;
3564 e = (u_int8_t *) eeprom_data;
3565 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3566 cksum += *e++;
3567
3568 if (cksum != match)
3569 printf("%s: Checksum (%x) mismatch (%x)",
3570 sc->sc_dev.dv_xname, cksum, match);
3571
3572 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3573 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3574 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3575 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3576 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3577 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3578 }
3579 #else /* ! DP83820 */
3580 static void
3581 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3582 {
3583 int i;
3584
3585 /*
3586 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3587 * a reason, but I don't know it.
3588 */
3589 for (i = 0; i < 10; i++)
3590 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3591 }
3592
3593 static void
3594 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3595 const struct pci_attach_args *pa, u_int8_t *enaddr)
3596 {
3597 u_int16_t myea[ETHER_ADDR_LEN / 2];
3598
3599 switch (sc->sc_rev) {
3600 case SIS_REV_630S:
3601 case SIS_REV_630E:
3602 case SIS_REV_630EA1:
3603 case SIS_REV_630ET:
3604 case SIS_REV_635:
3605 /*
3606 * The MAC address for the on-board Ethernet of
3607 * the SiS 630 chipset is in the NVRAM. Kick
3608 * the chip into re-loading it from NVRAM, and
3609 * read the MAC address out of the filter registers.
3610 */
3611 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3612
3613 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3614 RFCR_RFADDR_NODE0);
3615 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3616 0xffff;
3617
3618 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3619 RFCR_RFADDR_NODE2);
3620 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3621 0xffff;
3622
3623 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3624 RFCR_RFADDR_NODE4);
3625 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3626 0xffff;
3627 break;
3628
3629 case SIS_REV_960:
3630 {
3631 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3632 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3633
3634 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3635 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3636
3637 int waittime, i;
3638
3639 /* Allow to read EEPROM from LAN. It is shared
3640 * between a 1394 controller and the NIC and each
3641 * time we access it, we need to set SIS_EECMD_REQ.
3642 */
3643 SIS_SET_EROMAR(sc, EROMAR_REQ);
3644
3645 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3646 /* Force EEPROM to idle state. */
3647
3648 /*
3649 * XXX-cube This is ugly. I'll look for docs about it.
3650 */
3651 SIS_SET_EROMAR(sc, EROMAR_EECS);
3652 SIP_DECL(sis900_eeprom_delay)(sc);
3653 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3654 SIS_SET_EROMAR(sc, EROMAR_EESK);
3655 SIP_DECL(sis900_eeprom_delay)(sc);
3656 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3657 SIP_DECL(sis900_eeprom_delay)(sc);
3658 }
3659 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3660 SIP_DECL(sis900_eeprom_delay)(sc);
3661 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3662
3663 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3664 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3665 sizeof(myea) / sizeof(myea[0]), myea);
3666 break;
3667 }
3668 DELAY(1);
3669 }
3670
3671 /*
3672 * Set SIS_EECTL_CLK to high, so a other master
3673 * can operate on the i2c bus.
3674 */
3675 SIS_SET_EROMAR(sc, EROMAR_EESK);
3676
3677 /* Refuse EEPROM access by LAN */
3678 SIS_SET_EROMAR(sc, EROMAR_DONE);
3679 } break;
3680
3681 default:
3682 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3683 sizeof(myea) / sizeof(myea[0]), myea);
3684 }
3685
3686 enaddr[0] = myea[0] & 0xff;
3687 enaddr[1] = myea[0] >> 8;
3688 enaddr[2] = myea[1] & 0xff;
3689 enaddr[3] = myea[1] >> 8;
3690 enaddr[4] = myea[2] & 0xff;
3691 enaddr[5] = myea[2] >> 8;
3692 }
3693
3694 /* Table and macro to bit-reverse an octet. */
3695 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3696 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3697
3698 static void
3699 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3700 const struct pci_attach_args *pa, u_int8_t *enaddr)
3701 {
3702 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3703 u_int8_t cksum, *e, match;
3704 int i;
3705
3706 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3707 sizeof(eeprom_data[0]), eeprom_data);
3708
3709 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3710 match = ~(match - 1);
3711
3712 cksum = 0x55;
3713 e = (u_int8_t *) eeprom_data;
3714 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3715 cksum += *e++;
3716 }
3717 if (cksum != match) {
3718 printf("%s: Checksum (%x) mismatch (%x)",
3719 sc->sc_dev.dv_xname, cksum, match);
3720 }
3721
3722 /*
3723 * Unrolled because it makes slightly more sense this way.
3724 * The DP83815 stores the MAC address in bit 0 of word 6
3725 * through bit 15 of word 8.
3726 */
3727 ea = &eeprom_data[6];
3728 enaddr[0] = ((*ea & 0x1) << 7);
3729 ea++;
3730 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3731 enaddr[1] = ((*ea & 0x1FE) >> 1);
3732 enaddr[2] = ((*ea & 0x1) << 7);
3733 ea++;
3734 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3735 enaddr[3] = ((*ea & 0x1FE) >> 1);
3736 enaddr[4] = ((*ea & 0x1) << 7);
3737 ea++;
3738 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3739 enaddr[5] = ((*ea & 0x1FE) >> 1);
3740
3741 /*
3742 * In case that's not weird enough, we also need to reverse
3743 * the bits in each byte. This all actually makes more sense
3744 * if you think about the EEPROM storage as an array of bits
3745 * being shifted into bytes, but that's not how we're looking
3746 * at it here...
3747 */
3748 for (i = 0; i < 6 ;i++)
3749 enaddr[i] = bbr(enaddr[i]);
3750 }
3751 #endif /* DP83820 */
3752
3753 /*
3754 * sip_mediastatus: [ifmedia interface function]
3755 *
3756 * Get the current interface media status.
3757 */
3758 static void
3759 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3760 {
3761 struct sip_softc *sc = ifp->if_softc;
3762
3763 mii_pollstat(&sc->sc_mii);
3764 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3765 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3766 sc->sc_flowflags;
3767 }
3768
3769 /*
3770 * sip_mediachange: [ifmedia interface function]
3771 *
3772 * Set hardware to newly-selected media.
3773 */
3774 static int
3775 SIP_DECL(mediachange)(struct ifnet *ifp)
3776 {
3777 struct sip_softc *sc = ifp->if_softc;
3778
3779 if (ifp->if_flags & IFF_UP)
3780 mii_mediachg(&sc->sc_mii);
3781 return (0);
3782 }
3783