Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.103.6.1
      1 /*	$NetBSD: if_sip.c,v 1.103.6.1 2006/04/22 11:39:14 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.103.6.1 2006/04/22 11:39:14 simonb Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    131 #else			/* SiS900 and DP83815 */
    132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    133 #endif
    134 
    135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    136 
    137 /*
    138  * Transmit descriptor list size.  This is arbitrary, but allocate
    139  * enough descriptors for 128 pending transmissions, and 8 segments
    140  * per packet (64 for DP83820 for jumbo frames).
    141  *
    142  * This MUST work out to a power of 2.
    143  */
    144 #ifdef DP83820
    145 #define	SIP_NTXSEGS		64
    146 #define	SIP_NTXSEGS_ALLOC	16
    147 #else
    148 #define	SIP_NTXSEGS		16
    149 #define	SIP_NTXSEGS_ALLOC	8
    150 #endif
    151 
    152 #define	SIP_TXQUEUELEN		256
    153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    156 
    157 #if defined(DP83820)
    158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    159 #else
    160 #define	TX_DMAMAP_SIZE		MCLBYTES
    161 #endif
    162 
    163 /*
    164  * Receive descriptor list size.  We have one Rx buffer per incoming
    165  * packet, so this logic is a little simpler.
    166  *
    167  * Actually, on the DP83820, we allow the packet to consume more than
    168  * one buffer, in order to support jumbo Ethernet frames.  In that
    169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    171  * so we'd better be quick about handling receive interrupts.
    172  */
    173 #if defined(DP83820)
    174 #define	SIP_NRXDESC		256
    175 #else
    176 #define	SIP_NRXDESC		128
    177 #endif /* DP83820 */
    178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    180 
    181 /*
    182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    183  * a single clump that maps to a single DMA segment to make several things
    184  * easier.
    185  */
    186 struct sip_control_data {
    187 	/*
    188 	 * The transmit descriptors.
    189 	 */
    190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    191 
    192 	/*
    193 	 * The receive descriptors.
    194 	 */
    195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    196 };
    197 
    198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    201 
    202 /*
    203  * Software state for transmit jobs.
    204  */
    205 struct sip_txsoft {
    206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    208 	int txs_firstdesc;		/* first descriptor in packet */
    209 	int txs_lastdesc;		/* last descriptor in packet */
    210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    211 };
    212 
    213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    214 
    215 /*
    216  * Software state for receive jobs.
    217  */
    218 struct sip_rxsoft {
    219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    221 };
    222 
    223 /*
    224  * Software state per device.
    225  */
    226 struct sip_softc {
    227 	struct device sc_dev;		/* generic device information */
    228 	bus_space_tag_t sc_st;		/* bus space tag */
    229 	bus_space_handle_t sc_sh;	/* bus space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 	void *sc_sdhook;		/* shutdown hook */
    233 
    234 	const struct sip_product *sc_model; /* which model are we? */
    235 	int sc_rev;			/* chip revision */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	struct mii_data sc_mii;		/* MII/media information */
    240 
    241 	struct callout sc_tick_ch;	/* tick callout */
    242 
    243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    245 
    246 	/*
    247 	 * Software state for transmit and receive descriptors.
    248 	 */
    249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    251 
    252 	/*
    253 	 * Control data structures.
    254 	 */
    255 	struct sip_control_data *sc_control_data;
    256 #define	sc_txdescs	sc_control_data->scd_txdescs
    257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    258 
    259 #ifdef SIP_EVENT_COUNTERS
    260 	/*
    261 	 * Event counters.
    262 	 */
    263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    271 #ifdef DP83820
    272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    279 #endif /* DP83820 */
    280 #endif /* SIP_EVENT_COUNTERS */
    281 
    282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    284 	u_int32_t sc_imr;		/* prototype IMR register */
    285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    286 
    287 	u_int32_t sc_cfg;		/* prototype CFG register */
    288 
    289 #ifdef DP83820
    290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    291 #endif /* DP83820 */
    292 
    293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    295 
    296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    297 
    298 	int	sc_flowflags;		/* 802.3x flow control flags */
    299 #ifdef DP83820
    300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    301 #else
    302 	int	sc_paused;		/* paused indication */
    303 #endif
    304 
    305 	int	sc_txfree;		/* number of free Tx descriptors */
    306 	int	sc_txnext;		/* next ready Tx descriptor */
    307 	int	sc_txwin;		/* Tx descriptors since last intr */
    308 
    309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    311 
    312 	/* values of interface state at last init */
    313 	struct {
    314 		/* if_capenable */
    315 		uint64_t	if_capenable;
    316 		/* ec_capenable */
    317 		int		ec_capenable;
    318 		/* VLAN_ATTACHED */
    319 		int		is_vlan;
    320 	}	sc_prev;
    321 
    322 	short	sc_if_flags;
    323 
    324 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    325 #if defined(DP83820)
    326 	int	sc_rxdiscard;
    327 	int	sc_rxlen;
    328 	struct mbuf *sc_rxhead;
    329 	struct mbuf *sc_rxtail;
    330 	struct mbuf **sc_rxtailp;
    331 #endif /* DP83820 */
    332 
    333 #if NRND > 0
    334 	rndsource_element_t rnd_source;	/* random source */
    335 #endif
    336 };
    337 
    338 #ifdef DP83820
    339 #define	SIP_RXCHAIN_RESET(sc)						\
    340 do {									\
    341 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    342 	*(sc)->sc_rxtailp = NULL;					\
    343 	(sc)->sc_rxlen = 0;						\
    344 } while (/*CONSTCOND*/0)
    345 
    346 #define	SIP_RXCHAIN_LINK(sc, m)						\
    347 do {									\
    348 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    349 	(sc)->sc_rxtailp = &(m)->m_next;				\
    350 } while (/*CONSTCOND*/0)
    351 #endif /* DP83820 */
    352 
    353 #ifdef SIP_EVENT_COUNTERS
    354 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    355 #else
    356 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    357 #endif
    358 
    359 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    360 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    361 
    362 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    363 do {									\
    364 	int __x, __n;							\
    365 									\
    366 	__x = (x);							\
    367 	__n = (n);							\
    368 									\
    369 	/* If it will wrap around, sync to the end of the ring. */	\
    370 	if ((__x + __n) > SIP_NTXDESC) {				\
    371 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    372 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    373 		    (SIP_NTXDESC - __x), (ops));			\
    374 		__n -= (SIP_NTXDESC - __x);				\
    375 		__x = 0;						\
    376 	}								\
    377 									\
    378 	/* Now sync whatever is left. */				\
    379 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    380 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    381 } while (0)
    382 
    383 #define	SIP_CDRXSYNC(sc, x, ops)					\
    384 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    385 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    386 
    387 #ifdef DP83820
    388 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    389 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
    390 #else
    391 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    392 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    393 #endif
    394 #define	SIP_INIT_RXDESC(sc, x)						\
    395 do {									\
    396 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    397 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    398 									\
    399 	__sipd->sipd_link =						\
    400 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    401 	__sipd->sipd_bufptr =						\
    402 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    403 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    404 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    405 	SIP_INIT_RXDESC_EXTSTS						\
    406 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    407 } while (0)
    408 
    409 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    410 	((sc)->sc_model->sip_vendor == (v) &&				\
    411 	 (sc)->sc_model->sip_product == (p) &&				\
    412 	 (sc)->sc_rev == (r))
    413 
    414 #define	SIP_CHIP_MODEL(sc, v, p)					\
    415 	((sc)->sc_model->sip_vendor == (v) &&				\
    416 	 (sc)->sc_model->sip_product == (p))
    417 
    418 #if !defined(DP83820)
    419 #define	SIP_SIS900_REV(sc, rev)						\
    420 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    421 #endif
    422 
    423 #define SIP_TIMEOUT 1000
    424 
    425 static void	SIP_DECL(start)(struct ifnet *);
    426 static void	SIP_DECL(watchdog)(struct ifnet *);
    427 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    428 static int	SIP_DECL(init)(struct ifnet *);
    429 static void	SIP_DECL(stop)(struct ifnet *, int);
    430 
    431 static void	SIP_DECL(shutdown)(void *);
    432 
    433 static void	SIP_DECL(reset)(struct sip_softc *);
    434 static void	SIP_DECL(rxdrain)(struct sip_softc *);
    435 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    436 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
    437 				      u_int16_t *);
    438 static void	SIP_DECL(tick)(void *);
    439 
    440 #if !defined(DP83820)
    441 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    442 #endif /* ! DP83820 */
    443 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    444 
    445 #if defined(DP83820)
    446 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    447 		    const struct pci_attach_args *, u_int8_t *);
    448 #else
    449 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    450 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    451 		    const struct pci_attach_args *, u_int8_t *);
    452 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    453 		    const struct pci_attach_args *, u_int8_t *);
    454 #endif /* DP83820 */
    455 
    456 static int	SIP_DECL(intr)(void *);
    457 static void	SIP_DECL(txintr)(struct sip_softc *);
    458 static void	SIP_DECL(rxintr)(struct sip_softc *);
    459 
    460 #if defined(DP83820)
    461 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    462 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    463 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    464 #else
    465 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    466 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    467 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
    468 
    469 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    470 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    471 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    472 #endif /* DP83820 */
    473 
    474 static int	SIP_DECL(mediachange)(struct ifnet *);
    475 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    476 
    477 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    478 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
    479 
    480 int	SIP_DECL(copy_small) = 0;
    481 
    482 #ifdef DP83820
    483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    484     gsip_match, gsip_attach, NULL, NULL);
    485 #else
    486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    487     sip_match, sip_attach, NULL, NULL);
    488 #endif
    489 
    490 /*
    491  * Descriptions of the variants of the SiS900.
    492  */
    493 struct sip_variant {
    494 	int	(*sipv_mii_readreg)(struct device *, int, int);
    495 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    496 	void	(*sipv_mii_statchg)(struct device *);
    497 	void	(*sipv_set_filter)(struct sip_softc *);
    498 	void	(*sipv_read_macaddr)(struct sip_softc *,
    499 		    const struct pci_attach_args *, u_int8_t *);
    500 };
    501 
    502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
    503 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
    504 
    505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
    506 	SIP_DECL(mii_bitbang_read),
    507 	SIP_DECL(mii_bitbang_write),
    508 	{
    509 		EROMAR_MDIO,		/* MII_BIT_MDO */
    510 		EROMAR_MDIO,		/* MII_BIT_MDI */
    511 		EROMAR_MDC,		/* MII_BIT_MDC */
    512 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    513 		0,			/* MII_BIT_DIR_PHY_HOST */
    514 	}
    515 };
    516 
    517 #if defined(DP83820)
    518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
    519 	SIP_DECL(dp83820_mii_readreg),
    520 	SIP_DECL(dp83820_mii_writereg),
    521 	SIP_DECL(dp83820_mii_statchg),
    522 	SIP_DECL(dp83815_set_filter),
    523 	SIP_DECL(dp83820_read_macaddr),
    524 };
    525 #else
    526 static const struct sip_variant SIP_DECL(variant_sis900) = {
    527 	SIP_DECL(sis900_mii_readreg),
    528 	SIP_DECL(sis900_mii_writereg),
    529 	SIP_DECL(sis900_mii_statchg),
    530 	SIP_DECL(sis900_set_filter),
    531 	SIP_DECL(sis900_read_macaddr),
    532 };
    533 
    534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
    535 	SIP_DECL(dp83815_mii_readreg),
    536 	SIP_DECL(dp83815_mii_writereg),
    537 	SIP_DECL(dp83815_mii_statchg),
    538 	SIP_DECL(dp83815_set_filter),
    539 	SIP_DECL(dp83815_read_macaddr),
    540 };
    541 #endif /* DP83820 */
    542 
    543 /*
    544  * Devices supported by this driver.
    545  */
    546 static const struct sip_product {
    547 	pci_vendor_id_t		sip_vendor;
    548 	pci_product_id_t	sip_product;
    549 	const char		*sip_name;
    550 	const struct sip_variant *sip_variant;
    551 } SIP_DECL(products)[] = {
    552 #if defined(DP83820)
    553 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    554 	  "NatSemi DP83820 Gigabit Ethernet",
    555 	  &SIP_DECL(variant_dp83820) },
    556 #else
    557 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    558 	  "SiS 900 10/100 Ethernet",
    559 	  &SIP_DECL(variant_sis900) },
    560 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    561 	  "SiS 7016 10/100 Ethernet",
    562 	  &SIP_DECL(variant_sis900) },
    563 
    564 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    565 	  "NatSemi DP83815 10/100 Ethernet",
    566 	  &SIP_DECL(variant_dp83815) },
    567 #endif /* DP83820 */
    568 
    569 	{ 0,			0,
    570 	  NULL,
    571 	  NULL },
    572 };
    573 
    574 static const struct sip_product *
    575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    576 {
    577 	const struct sip_product *sip;
    578 
    579 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    580 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    581 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    582 			return (sip);
    583 	}
    584 	return (NULL);
    585 }
    586 
    587 #ifdef DP83820
    588 /*
    589  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    590  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    591  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    592  * which means we try to use 64-bit data transfers on those cards if we
    593  * happen to be plugged into a 32-bit slot.
    594  *
    595  * What we do is use this table of cards known to be 64-bit cards.  If
    596  * you have a 64-bit card who's subsystem ID is not listed in this table,
    597  * send the output of "pcictl dump ..." of the device to me so that your
    598  * card will use the 64-bit data path when plugged into a 64-bit slot.
    599  *
    600  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    601  *	   June 30, 2002
    602  */
    603 static int
    604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    605 {
    606 	static const struct {
    607 		pci_vendor_id_t c64_vendor;
    608 		pci_product_id_t c64_product;
    609 	} card64[] = {
    610 		/* Asante GigaNIX */
    611 		{ 0x128a,	0x0002 },
    612 
    613 		/* Accton EN1407-T, Planex GN-1000TE */
    614 		{ 0x1113,	0x1407 },
    615 
    616 		/* Netgear GA-621 */
    617 		{ 0x1385,	0x621a },
    618 
    619 		/* SMC EZ Card */
    620 		{ 0x10b8,	0x9462 },
    621 
    622 		{ 0, 0}
    623 	};
    624 	pcireg_t subsys;
    625 	int i;
    626 
    627 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    628 
    629 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    630 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    631 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    632 			return (1);
    633 	}
    634 
    635 	return (0);
    636 }
    637 #endif /* DP83820 */
    638 
    639 static int
    640 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    641 {
    642 	struct pci_attach_args *pa = aux;
    643 
    644 	if (SIP_DECL(lookup)(pa) != NULL)
    645 		return (1);
    646 
    647 	return (0);
    648 }
    649 
    650 static void
    651 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    652 {
    653 	struct sip_softc *sc = (struct sip_softc *) self;
    654 	struct pci_attach_args *pa = aux;
    655 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    656 	pci_chipset_tag_t pc = pa->pa_pc;
    657 	pci_intr_handle_t ih;
    658 	const char *intrstr = NULL;
    659 	bus_space_tag_t iot, memt;
    660 	bus_space_handle_t ioh, memh;
    661 	bus_dma_segment_t seg;
    662 	int ioh_valid, memh_valid;
    663 	int i, rseg, error;
    664 	const struct sip_product *sip;
    665 	pcireg_t pmode;
    666 	u_int8_t enaddr[ETHER_ADDR_LEN];
    667 	int pmreg;
    668 #ifdef DP83820
    669 	pcireg_t memtype;
    670 	u_int32_t reg;
    671 #endif /* DP83820 */
    672 
    673 	callout_init(&sc->sc_tick_ch);
    674 
    675 	sip = SIP_DECL(lookup)(pa);
    676 	if (sip == NULL) {
    677 		printf("\n");
    678 		panic(SIP_STR(attach) ": impossible");
    679 	}
    680 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    681 
    682 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    683 
    684 	sc->sc_model = sip;
    685 
    686 	/*
    687 	 * XXX Work-around broken PXE firmware on some boards.
    688 	 *
    689 	 * The DP83815 shares an address decoder with the MEM BAR
    690 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    691 	 * so that memory mapped access works.
    692 	 */
    693 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    694 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    695 	    ~PCI_MAPREG_ROM_ENABLE);
    696 
    697 	/*
    698 	 * Map the device.
    699 	 */
    700 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    701 	    PCI_MAPREG_TYPE_IO, 0,
    702 	    &iot, &ioh, NULL, NULL) == 0);
    703 #ifdef DP83820
    704 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    705 	switch (memtype) {
    706 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    707 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    708 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    709 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    710 		break;
    711 	default:
    712 		memh_valid = 0;
    713 	}
    714 #else
    715 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    716 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    717 	    &memt, &memh, NULL, NULL) == 0);
    718 #endif /* DP83820 */
    719 
    720 	if (memh_valid) {
    721 		sc->sc_st = memt;
    722 		sc->sc_sh = memh;
    723 	} else if (ioh_valid) {
    724 		sc->sc_st = iot;
    725 		sc->sc_sh = ioh;
    726 	} else {
    727 		printf("%s: unable to map device registers\n",
    728 		    sc->sc_dev.dv_xname);
    729 		return;
    730 	}
    731 
    732 	sc->sc_dmat = pa->pa_dmat;
    733 
    734 	/*
    735 	 * Make sure bus mastering is enabled.  Also make sure
    736 	 * Write/Invalidate is enabled if we're allowed to use it.
    737 	 */
    738 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    739 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    740 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    741 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    742 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    743 
    744 	/* Get it out of power save mode if needed. */
    745 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    746 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    747 		    PCI_PMCSR_STATE_MASK;
    748 		if (pmode == PCI_PMCSR_STATE_D3) {
    749 			/*
    750 			 * The card has lost all configuration data in
    751 			 * this state, so punt.
    752 			 */
    753 			printf("%s: unable to wake up from power state D3\n",
    754 			    sc->sc_dev.dv_xname);
    755 			return;
    756 		}
    757 		if (pmode != PCI_PMCSR_STATE_D0) {
    758 			printf("%s: waking up from power state D%d\n",
    759 			    sc->sc_dev.dv_xname, pmode);
    760 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    761 			    PCI_PMCSR_STATE_D0);
    762 		}
    763 	}
    764 
    765 	/*
    766 	 * Map and establish our interrupt.
    767 	 */
    768 	if (pci_intr_map(pa, &ih)) {
    769 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    770 		return;
    771 	}
    772 	intrstr = pci_intr_string(pc, ih);
    773 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    774 	if (sc->sc_ih == NULL) {
    775 		printf("%s: unable to establish interrupt",
    776 		    sc->sc_dev.dv_xname);
    777 		if (intrstr != NULL)
    778 			printf(" at %s", intrstr);
    779 		printf("\n");
    780 		return;
    781 	}
    782 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    783 
    784 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    785 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    786 
    787 	/*
    788 	 * Allocate the control data structures, and create and load the
    789 	 * DMA map for it.
    790 	 */
    791 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    792 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    793 	    0)) != 0) {
    794 		printf("%s: unable to allocate control data, error = %d\n",
    795 		    sc->sc_dev.dv_xname, error);
    796 		goto fail_0;
    797 	}
    798 
    799 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    800 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    801 	    BUS_DMA_COHERENT)) != 0) {
    802 		printf("%s: unable to map control data, error = %d\n",
    803 		    sc->sc_dev.dv_xname, error);
    804 		goto fail_1;
    805 	}
    806 
    807 	if ((error = bus_dmamap_create(sc->sc_dmat,
    808 	    sizeof(struct sip_control_data), 1,
    809 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    810 		printf("%s: unable to create control data DMA map, "
    811 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    812 		goto fail_2;
    813 	}
    814 
    815 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    816 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    817 	    0)) != 0) {
    818 		printf("%s: unable to load control data DMA map, error = %d\n",
    819 		    sc->sc_dev.dv_xname, error);
    820 		goto fail_3;
    821 	}
    822 
    823 	/*
    824 	 * Create the transmit buffer DMA maps.
    825 	 */
    826 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    827 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    828 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    829 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    830 			printf("%s: unable to create tx DMA map %d, "
    831 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    832 			goto fail_4;
    833 		}
    834 	}
    835 
    836 	/*
    837 	 * Create the receive buffer DMA maps.
    838 	 */
    839 	for (i = 0; i < SIP_NRXDESC; i++) {
    840 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    841 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    842 			printf("%s: unable to create rx DMA map %d, "
    843 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    844 			goto fail_5;
    845 		}
    846 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    847 	}
    848 
    849 	/*
    850 	 * Reset the chip to a known state.
    851 	 */
    852 	SIP_DECL(reset)(sc);
    853 
    854 	/*
    855 	 * Read the Ethernet address from the EEPROM.  This might
    856 	 * also fetch other stuff from the EEPROM and stash it
    857 	 * in the softc.
    858 	 */
    859 	sc->sc_cfg = 0;
    860 #if !defined(DP83820)
    861 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    862 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    863 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    864 
    865 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    866 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
    867 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    868 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
    869 						SIP_CFG) & CFG_EDBMASTEN);
    870 #endif
    871 
    872 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    873 
    874 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    875 	    ether_sprintf(enaddr));
    876 
    877 	/*
    878 	 * Initialize the configuration register: aggressive PCI
    879 	 * bus request algorithm, default backoff, default OW timer,
    880 	 * default parity error detection.
    881 	 *
    882 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    883 	 * friends -- it affects packet data, not descriptors.
    884 	 */
    885 #ifdef DP83820
    886 	/*
    887 	 * Cause the chip to load configuration data from the EEPROM.
    888 	 */
    889 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    890 	for (i = 0; i < 10000; i++) {
    891 		delay(10);
    892 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    893 		    PTSCR_EELOAD_EN) == 0)
    894 			break;
    895 	}
    896 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    897 	    PTSCR_EELOAD_EN) {
    898 		printf("%s: timeout loading configuration from EEPROM\n",
    899 		    sc->sc_dev.dv_xname);
    900 		return;
    901 	}
    902 
    903 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    904 
    905 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    906 	if (reg & CFG_PCI64_DET) {
    907 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    908 		/*
    909 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    910 		 * data transfers.
    911 		 *
    912 		 * We can't use the DATA64_EN bit in the EEPROM, because
    913 		 * vendors of 32-bit cards fail to clear that bit in many
    914 		 * cases (yet the card still detects that it's in a 64-bit
    915 		 * slot; go figure).
    916 		 */
    917 		if (SIP_DECL(check_64bit)(pa)) {
    918 			sc->sc_cfg |= CFG_DATA64_EN;
    919 			printf(", using 64-bit data transfers");
    920 		}
    921 		printf("\n");
    922 	}
    923 
    924 	/*
    925 	 * XXX Need some PCI flags indicating support for
    926 	 * XXX 64-bit addressing.
    927 	 */
    928 #if 0
    929 	if (reg & CFG_M64ADDR)
    930 		sc->sc_cfg |= CFG_M64ADDR;
    931 	if (reg & CFG_T64ADDR)
    932 		sc->sc_cfg |= CFG_T64ADDR;
    933 #endif
    934 
    935 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    936 		const char *sep = "";
    937 		printf("%s: using ", sc->sc_dev.dv_xname);
    938 		if (reg & CFG_EXT_125) {
    939 			sc->sc_cfg |= CFG_EXT_125;
    940 			printf("%s125MHz clock", sep);
    941 			sep = ", ";
    942 		}
    943 		if (reg & CFG_TBI_EN) {
    944 			sc->sc_cfg |= CFG_TBI_EN;
    945 			printf("%sten-bit interface", sep);
    946 			sep = ", ";
    947 		}
    948 		printf("\n");
    949 	}
    950 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    951 	    (reg & CFG_MRM_DIS) != 0)
    952 		sc->sc_cfg |= CFG_MRM_DIS;
    953 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    954 	    (reg & CFG_MWI_DIS) != 0)
    955 		sc->sc_cfg |= CFG_MWI_DIS;
    956 
    957 	/*
    958 	 * Use the extended descriptor format on the DP83820.  This
    959 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    960 	 * checksumming.
    961 	 */
    962 	sc->sc_cfg |= CFG_EXTSTS_EN;
    963 #endif /* DP83820 */
    964 
    965 	/*
    966 	 * Initialize our media structures and probe the MII.
    967 	 */
    968 	sc->sc_mii.mii_ifp = ifp;
    969 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    970 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    971 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    972 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    973 	    SIP_DECL(mediastatus));
    974 
    975 	/*
    976 	 * XXX We cannot handle flow control on the DP83815.
    977 	 */
    978 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
    979 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    980 			   MII_OFFSET_ANY, 0);
    981 	else
    982 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    983 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
    984 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    985 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    986 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    987 	} else
    988 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    989 
    990 	ifp = &sc->sc_ethercom.ec_if;
    991 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    992 	ifp->if_softc = sc;
    993 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    994 	sc->sc_if_flags = ifp->if_flags;
    995 	ifp->if_ioctl = SIP_DECL(ioctl);
    996 	ifp->if_start = SIP_DECL(start);
    997 	ifp->if_watchdog = SIP_DECL(watchdog);
    998 	ifp->if_init = SIP_DECL(init);
    999 	ifp->if_stop = SIP_DECL(stop);
   1000 	IFQ_SET_READY(&ifp->if_snd);
   1001 
   1002 	/*
   1003 	 * We can support 802.1Q VLAN-sized frames.
   1004 	 */
   1005 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1006 
   1007 #ifdef DP83820
   1008 	/*
   1009 	 * And the DP83820 can do VLAN tagging in hardware, and
   1010 	 * support the jumbo Ethernet MTU.
   1011 	 */
   1012 	sc->sc_ethercom.ec_capabilities |=
   1013 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1014 
   1015 	/*
   1016 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1017 	 * in hardware.
   1018 	 */
   1019 	ifp->if_capabilities |=
   1020 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1021 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1022 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1023 #endif /* DP83820 */
   1024 
   1025 	/*
   1026 	 * Attach the interface.
   1027 	 */
   1028 	if_attach(ifp);
   1029 	ether_ifattach(ifp, enaddr);
   1030 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1031 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1032 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1033 #if NRND > 0
   1034 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1035 	    RND_TYPE_NET, 0);
   1036 #endif
   1037 
   1038 	/*
   1039 	 * The number of bytes that must be available in
   1040 	 * the Tx FIFO before the bus master can DMA more
   1041 	 * data into the FIFO.
   1042 	 */
   1043 	sc->sc_tx_fill_thresh = 64 / 32;
   1044 
   1045 	/*
   1046 	 * Start at a drain threshold of 512 bytes.  We will
   1047 	 * increase it if a DMA underrun occurs.
   1048 	 *
   1049 	 * XXX The minimum value of this variable should be
   1050 	 * tuned.  We may be able to improve performance
   1051 	 * by starting with a lower value.  That, however,
   1052 	 * may trash the first few outgoing packets if the
   1053 	 * PCI bus is saturated.
   1054 	 */
   1055 #ifdef DP83820
   1056 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
   1057 #else
   1058 	sc->sc_tx_drain_thresh = 1504 / 32;
   1059 #endif
   1060 
   1061 	/*
   1062 	 * Initialize the Rx FIFO drain threshold.
   1063 	 *
   1064 	 * This is in units of 8 bytes.
   1065 	 *
   1066 	 * We should never set this value lower than 2; 14 bytes are
   1067 	 * required to filter the packet.
   1068 	 */
   1069 	sc->sc_rx_drain_thresh = 128 / 8;
   1070 
   1071 #ifdef SIP_EVENT_COUNTERS
   1072 	/*
   1073 	 * Attach event counters.
   1074 	 */
   1075 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1076 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1077 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1078 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1079 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1080 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1081 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1082 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1083 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1084 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1085 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1086 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1087 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1088 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1089 #ifndef DP83820
   1090 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1091 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1092 #endif /* !DP83820 */
   1093 #ifdef DP83820
   1094 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1095 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1096 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1097 	    NULL, sc->sc_dev.dv_xname, "txpause");
   1098 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1099 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1100 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1101 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1102 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1103 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1104 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1105 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1106 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1107 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1108 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1109 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1110 #endif /* DP83820 */
   1111 #endif /* SIP_EVENT_COUNTERS */
   1112 
   1113 	/*
   1114 	 * Make sure the interface is shutdown during reboot.
   1115 	 */
   1116 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1117 	if (sc->sc_sdhook == NULL)
   1118 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1119 		    sc->sc_dev.dv_xname);
   1120 	return;
   1121 
   1122 	/*
   1123 	 * Free any resources we've allocated during the failed attach
   1124 	 * attempt.  Do this in reverse order and fall through.
   1125 	 */
   1126  fail_5:
   1127 	for (i = 0; i < SIP_NRXDESC; i++) {
   1128 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1129 			bus_dmamap_destroy(sc->sc_dmat,
   1130 			    sc->sc_rxsoft[i].rxs_dmamap);
   1131 	}
   1132  fail_4:
   1133 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1134 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1135 			bus_dmamap_destroy(sc->sc_dmat,
   1136 			    sc->sc_txsoft[i].txs_dmamap);
   1137 	}
   1138 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1139  fail_3:
   1140 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1141  fail_2:
   1142 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1143 	    sizeof(struct sip_control_data));
   1144  fail_1:
   1145 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1146  fail_0:
   1147 	return;
   1148 }
   1149 
   1150 /*
   1151  * sip_shutdown:
   1152  *
   1153  *	Make sure the interface is stopped at reboot time.
   1154  */
   1155 static void
   1156 SIP_DECL(shutdown)(void *arg)
   1157 {
   1158 	struct sip_softc *sc = arg;
   1159 
   1160 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1161 }
   1162 
   1163 /*
   1164  * sip_start:		[ifnet interface function]
   1165  *
   1166  *	Start packet transmission on the interface.
   1167  */
   1168 static void
   1169 SIP_DECL(start)(struct ifnet *ifp)
   1170 {
   1171 	struct sip_softc *sc = ifp->if_softc;
   1172 	struct mbuf *m0;
   1173 #ifndef DP83820
   1174 	struct mbuf *m;
   1175 #endif
   1176 	struct sip_txsoft *txs;
   1177 	bus_dmamap_t dmamap;
   1178 	int error, nexttx, lasttx, seg;
   1179 	int ofree = sc->sc_txfree;
   1180 #if 0
   1181 	int firsttx = sc->sc_txnext;
   1182 #endif
   1183 #ifdef DP83820
   1184 	struct m_tag *mtag;
   1185 	u_int32_t extsts;
   1186 #endif
   1187 
   1188 #ifndef DP83820
   1189 	/*
   1190 	 * If we've been told to pause, don't transmit any more packets.
   1191 	 */
   1192 	if (sc->sc_paused)
   1193 		ifp->if_flags |= IFF_OACTIVE;
   1194 #endif
   1195 
   1196 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1197 		return;
   1198 
   1199 	/*
   1200 	 * Loop through the send queue, setting up transmit descriptors
   1201 	 * until we drain the queue, or use up all available transmit
   1202 	 * descriptors.
   1203 	 */
   1204 	for (;;) {
   1205 		/* Get a work queue entry. */
   1206 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1207 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1208 			break;
   1209 		}
   1210 
   1211 		/*
   1212 		 * Grab a packet off the queue.
   1213 		 */
   1214 		IFQ_POLL(&ifp->if_snd, m0);
   1215 		if (m0 == NULL)
   1216 			break;
   1217 #ifndef DP83820
   1218 		m = NULL;
   1219 #endif
   1220 
   1221 		dmamap = txs->txs_dmamap;
   1222 
   1223 #ifdef DP83820
   1224 		/*
   1225 		 * Load the DMA map.  If this fails, the packet either
   1226 		 * didn't fit in the allotted number of segments, or we
   1227 		 * were short on resources.  For the too-many-segments
   1228 		 * case, we simply report an error and drop the packet,
   1229 		 * since we can't sanely copy a jumbo packet to a single
   1230 		 * buffer.
   1231 		 */
   1232 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1233 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1234 		if (error) {
   1235 			if (error == EFBIG) {
   1236 				printf("%s: Tx packet consumes too many "
   1237 				    "DMA segments, dropping...\n",
   1238 				    sc->sc_dev.dv_xname);
   1239 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1240 				m_freem(m0);
   1241 				continue;
   1242 			}
   1243 			/*
   1244 			 * Short on resources, just stop for now.
   1245 			 */
   1246 			break;
   1247 		}
   1248 #else /* DP83820 */
   1249 		/*
   1250 		 * Load the DMA map.  If this fails, the packet either
   1251 		 * didn't fit in the alloted number of segments, or we
   1252 		 * were short on resources.  In this case, we'll copy
   1253 		 * and try again.
   1254 		 */
   1255 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1256 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1257 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1258 			if (m == NULL) {
   1259 				printf("%s: unable to allocate Tx mbuf\n",
   1260 				    sc->sc_dev.dv_xname);
   1261 				break;
   1262 			}
   1263 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1264 			if (m0->m_pkthdr.len > MHLEN) {
   1265 				MCLGET(m, M_DONTWAIT);
   1266 				if ((m->m_flags & M_EXT) == 0) {
   1267 					printf("%s: unable to allocate Tx "
   1268 					    "cluster\n", sc->sc_dev.dv_xname);
   1269 					m_freem(m);
   1270 					break;
   1271 				}
   1272 			}
   1273 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1274 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1275 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1276 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1277 			if (error) {
   1278 				printf("%s: unable to load Tx buffer, "
   1279 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1280 				break;
   1281 			}
   1282 		}
   1283 #endif /* DP83820 */
   1284 
   1285 		/*
   1286 		 * Ensure we have enough descriptors free to describe
   1287 		 * the packet.  Note, we always reserve one descriptor
   1288 		 * at the end of the ring as a termination point, to
   1289 		 * prevent wrap-around.
   1290 		 */
   1291 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1292 			/*
   1293 			 * Not enough free descriptors to transmit this
   1294 			 * packet.  We haven't committed anything yet,
   1295 			 * so just unload the DMA map, put the packet
   1296 			 * back on the queue, and punt.  Notify the upper
   1297 			 * layer that there are not more slots left.
   1298 			 *
   1299 			 * XXX We could allocate an mbuf and copy, but
   1300 			 * XXX is it worth it?
   1301 			 */
   1302 			ifp->if_flags |= IFF_OACTIVE;
   1303 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1304 #ifndef DP83820
   1305 			if (m != NULL)
   1306 				m_freem(m);
   1307 #endif
   1308 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1309 			break;
   1310 		}
   1311 
   1312 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1313 #ifndef DP83820
   1314 		if (m != NULL) {
   1315 			m_freem(m0);
   1316 			m0 = m;
   1317 		}
   1318 #endif
   1319 
   1320 		/*
   1321 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1322 		 */
   1323 
   1324 		/* Sync the DMA map. */
   1325 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1326 		    BUS_DMASYNC_PREWRITE);
   1327 
   1328 		/*
   1329 		 * Initialize the transmit descriptors.
   1330 		 */
   1331 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1332 		     seg < dmamap->dm_nsegs;
   1333 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1334 			/*
   1335 			 * If this is the first descriptor we're
   1336 			 * enqueueing, don't set the OWN bit just
   1337 			 * yet.  That could cause a race condition.
   1338 			 * We'll do it below.
   1339 			 */
   1340 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1341 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1342 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1343 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1344 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1345 #ifdef DP83820
   1346 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1347 #endif /* DP83820 */
   1348 			lasttx = nexttx;
   1349 		}
   1350 
   1351 		/* Clear the MORE bit on the last segment. */
   1352 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1353 
   1354 		/*
   1355 		 * If we're in the interrupt delay window, delay the
   1356 		 * interrupt.
   1357 		 */
   1358 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1359 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1360 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1361 			    htole32(CMDSTS_INTR);
   1362 			sc->sc_txwin = 0;
   1363 		}
   1364 
   1365 #ifdef DP83820
   1366 		/*
   1367 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1368 		 * up the descriptor to encapsulate the packet for us.
   1369 		 *
   1370 		 * This apparently has to be on the last descriptor of
   1371 		 * the packet.
   1372 		 */
   1373 
   1374 		/*
   1375 		 * Byte swapping is tricky. We need to provide the tag
   1376 		 * in a network byte order. On a big-endian machine,
   1377 		 * the byteorder is correct, but we need to swap it
   1378 		 * anyway, because this will be undone by the outside
   1379 		 * htole32(). That's why there must be an
   1380 		 * unconditional swap instead of htons() inside.
   1381 		 */
   1382 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1383 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1384 			    htole32(EXTSTS_VPKT |
   1385 					(bswap16(VLAN_TAG_VALUE(mtag)) &
   1386 					 EXTSTS_VTCI));
   1387 		}
   1388 
   1389 		/*
   1390 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1391 		 * checksumming, set up the descriptor to do this work
   1392 		 * for us.
   1393 		 *
   1394 		 * This apparently has to be on the first descriptor of
   1395 		 * the packet.
   1396 		 *
   1397 		 * Byte-swap constants so the compiler can optimize.
   1398 		 */
   1399 		extsts = 0;
   1400 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1401 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1402 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1403 			extsts |= htole32(EXTSTS_IPPKT);
   1404 		}
   1405 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1406 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1407 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1408 			extsts |= htole32(EXTSTS_TCPPKT);
   1409 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1410 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1411 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1412 			extsts |= htole32(EXTSTS_UDPPKT);
   1413 		}
   1414 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1415 #endif /* DP83820 */
   1416 
   1417 		/* Sync the descriptors we're using. */
   1418 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1419 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1420 
   1421 		/*
   1422 		 * The entire packet is set up.  Give the first descrptor
   1423 		 * to the chip now.
   1424 		 */
   1425 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1426 		    htole32(CMDSTS_OWN);
   1427 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1428 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1429 
   1430 		/*
   1431 		 * Store a pointer to the packet so we can free it later,
   1432 		 * and remember what txdirty will be once the packet is
   1433 		 * done.
   1434 		 */
   1435 		txs->txs_mbuf = m0;
   1436 		txs->txs_firstdesc = sc->sc_txnext;
   1437 		txs->txs_lastdesc = lasttx;
   1438 
   1439 		/* Advance the tx pointer. */
   1440 		sc->sc_txfree -= dmamap->dm_nsegs;
   1441 		sc->sc_txnext = nexttx;
   1442 
   1443 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1444 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1445 
   1446 #if NBPFILTER > 0
   1447 		/*
   1448 		 * Pass the packet to any BPF listeners.
   1449 		 */
   1450 		if (ifp->if_bpf)
   1451 			bpf_mtap(ifp->if_bpf, m0);
   1452 #endif /* NBPFILTER > 0 */
   1453 	}
   1454 
   1455 	if (txs == NULL || sc->sc_txfree == 0) {
   1456 		/* No more slots left; notify upper layer. */
   1457 		ifp->if_flags |= IFF_OACTIVE;
   1458 	}
   1459 
   1460 	if (sc->sc_txfree != ofree) {
   1461 		/*
   1462 		 * Start the transmit process.  Note, the manual says
   1463 		 * that if there are no pending transmissions in the
   1464 		 * chip's internal queue (indicated by TXE being clear),
   1465 		 * then the driver software must set the TXDP to the
   1466 		 * first descriptor to be transmitted.  However, if we
   1467 		 * do this, it causes serious performance degredation on
   1468 		 * the DP83820 under load, not setting TXDP doesn't seem
   1469 		 * to adversely affect the SiS 900 or DP83815.
   1470 		 *
   1471 		 * Well, I guess it wouldn't be the first time a manual
   1472 		 * has lied -- and they could be speaking of the NULL-
   1473 		 * terminated descriptor list case, rather than OWN-
   1474 		 * terminated rings.
   1475 		 */
   1476 #if 0
   1477 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1478 		     CR_TXE) == 0) {
   1479 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1480 			    SIP_CDTXADDR(sc, firsttx));
   1481 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1482 		}
   1483 #else
   1484 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1485 #endif
   1486 
   1487 		/* Set a watchdog timer in case the chip flakes out. */
   1488 #ifdef DP83820
   1489 		/* Gigabit autonegotiation takes 5 seconds. */
   1490 		ifp->if_timer = 10;
   1491 #else
   1492 		ifp->if_timer = 5;
   1493 #endif
   1494 	}
   1495 }
   1496 
   1497 /*
   1498  * sip_watchdog:	[ifnet interface function]
   1499  *
   1500  *	Watchdog timer handler.
   1501  */
   1502 static void
   1503 SIP_DECL(watchdog)(struct ifnet *ifp)
   1504 {
   1505 	struct sip_softc *sc = ifp->if_softc;
   1506 
   1507 	/*
   1508 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1509 	 * If we get a timeout, try and sweep up transmit descriptors.
   1510 	 * If we manage to sweep them all up, ignore the lack of
   1511 	 * interrupt.
   1512 	 */
   1513 	SIP_DECL(txintr)(sc);
   1514 
   1515 	if (sc->sc_txfree != SIP_NTXDESC) {
   1516 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1517 		ifp->if_oerrors++;
   1518 
   1519 		/* Reset the interface. */
   1520 		(void) SIP_DECL(init)(ifp);
   1521 	} else if (ifp->if_flags & IFF_DEBUG)
   1522 		printf("%s: recovered from device timeout\n",
   1523 		    sc->sc_dev.dv_xname);
   1524 
   1525 	/* Try to get more packets going. */
   1526 	SIP_DECL(start)(ifp);
   1527 }
   1528 
   1529 /*
   1530  * sip_ioctl:		[ifnet interface function]
   1531  *
   1532  *	Handle control requests from the operator.
   1533  */
   1534 static int
   1535 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1536 {
   1537 	struct sip_softc *sc = ifp->if_softc;
   1538 	struct ifreq *ifr = (struct ifreq *)data;
   1539 	int s, error;
   1540 
   1541 	s = splnet();
   1542 
   1543 	switch (cmd) {
   1544 	case SIOCSIFMEDIA:
   1545 		/* Flow control requires full-duplex mode. */
   1546 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1547 		    (ifr->ifr_media & IFM_FDX) == 0)
   1548 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1549 #ifdef DP83820
   1550 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1551 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1552 				/* We can do both TXPAUSE and RXPAUSE. */
   1553 				ifr->ifr_media |=
   1554 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1555 			}
   1556 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1557 		}
   1558 #else
   1559 		/* XXX */
   1560 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1561 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1562 
   1563 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1564 			if (ifr->ifr_media & IFM_FLOW) {
   1565 				/*
   1566 				 * Both TXPAUSE and RXPAUSE must be set.
   1567 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1568 				 * feature.)
   1569 				 *
   1570 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1571 				 */
   1572 				ifr->ifr_media |=
   1573 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1574 			}
   1575 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1576 		}
   1577 #endif
   1578 		/* FALLTHROUGH */
   1579 	case SIOCGIFMEDIA:
   1580 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1581 		break;
   1582 	case SIOCSIFFLAGS:
   1583 		/* If the interface is up and running, only modify the receive
   1584 		 * filter when setting promiscuous or debug mode.  Otherwise
   1585 		 * fall through to ether_ioctl, which will reset the chip.
   1586 		 */
   1587 
   1588 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1589 			 == (sc)->sc_ethercom.ec_capenable)		\
   1590 			&& ((sc)->sc_prev.is_vlan ==			\
   1591 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1592 
   1593 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1594 
   1595 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1596 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1597 		    == (IFF_UP|IFF_RUNNING))
   1598 		    && ((ifp->if_flags & (~RESETIGN))
   1599 		    == (sc->sc_if_flags & (~RESETIGN)))
   1600 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1601 			/* Set up the receive filter. */
   1602 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1603 			error = 0;
   1604 			break;
   1605 #undef RESETIGN
   1606 		}
   1607 		/* FALLTHROUGH */
   1608 	default:
   1609 		error = ether_ioctl(ifp, cmd, data);
   1610 		if (error == ENETRESET) {
   1611 			/*
   1612 			 * Multicast list has changed; set the hardware filter
   1613 			 * accordingly.
   1614 			 */
   1615 			if (ifp->if_flags & IFF_RUNNING)
   1616 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1617 			error = 0;
   1618 		}
   1619 		break;
   1620 	}
   1621 
   1622 	/* Try to get more packets going. */
   1623 	SIP_DECL(start)(ifp);
   1624 
   1625 	sc->sc_if_flags = ifp->if_flags;
   1626 	splx(s);
   1627 	return (error);
   1628 }
   1629 
   1630 /*
   1631  * sip_intr:
   1632  *
   1633  *	Interrupt service routine.
   1634  */
   1635 static int
   1636 SIP_DECL(intr)(void *arg)
   1637 {
   1638 	struct sip_softc *sc = arg;
   1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1640 	u_int32_t isr;
   1641 	int handled = 0;
   1642 
   1643 	/* Disable interrupts. */
   1644 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1645 
   1646 	for (;;) {
   1647 		/* Reading clears interrupt. */
   1648 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1649 		if ((isr & sc->sc_imr) == 0)
   1650 			break;
   1651 
   1652 #if NRND > 0
   1653 		if (RND_ENABLED(&sc->rnd_source))
   1654 			rnd_add_uint32(&sc->rnd_source, isr);
   1655 #endif
   1656 
   1657 		handled = 1;
   1658 
   1659 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1660 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1661 
   1662 			/* Grab any new packets. */
   1663 			SIP_DECL(rxintr)(sc);
   1664 
   1665 			if (isr & ISR_RXORN) {
   1666 				printf("%s: receive FIFO overrun\n",
   1667 				    sc->sc_dev.dv_xname);
   1668 
   1669 				/* XXX adjust rx_drain_thresh? */
   1670 			}
   1671 
   1672 			if (isr & ISR_RXIDLE) {
   1673 				printf("%s: receive ring overrun\n",
   1674 				    sc->sc_dev.dv_xname);
   1675 
   1676 				/* Get the receive process going again. */
   1677 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1678 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1679 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1680 				    SIP_CR, CR_RXE);
   1681 			}
   1682 		}
   1683 
   1684 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1685 #ifdef SIP_EVENT_COUNTERS
   1686 			if (isr & ISR_TXDESC)
   1687 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1688 			else if (isr & ISR_TXIDLE)
   1689 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1690 #endif
   1691 
   1692 			/* Sweep up transmit descriptors. */
   1693 			SIP_DECL(txintr)(sc);
   1694 
   1695 			if (isr & ISR_TXURN) {
   1696 				u_int32_t thresh;
   1697 
   1698 				printf("%s: transmit FIFO underrun",
   1699 				    sc->sc_dev.dv_xname);
   1700 
   1701 				thresh = sc->sc_tx_drain_thresh + 1;
   1702 				if (thresh <= TXCFG_DRTH &&
   1703 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1704 				     (sc->sc_tx_fill_thresh * 32))) {
   1705 					printf("; increasing Tx drain "
   1706 					    "threshold to %u bytes\n",
   1707 					    thresh * 32);
   1708 					sc->sc_tx_drain_thresh = thresh;
   1709 					(void) SIP_DECL(init)(ifp);
   1710 				} else {
   1711 					(void) SIP_DECL(init)(ifp);
   1712 					printf("\n");
   1713 				}
   1714 			}
   1715 		}
   1716 
   1717 #if !defined(DP83820)
   1718 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1719 			if (isr & ISR_PAUSE_ST) {
   1720 				sc->sc_paused = 1;
   1721 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1722 				ifp->if_flags |= IFF_OACTIVE;
   1723 			}
   1724 			if (isr & ISR_PAUSE_END) {
   1725 				sc->sc_paused = 0;
   1726 				ifp->if_flags &= ~IFF_OACTIVE;
   1727 			}
   1728 		}
   1729 #endif /* ! DP83820 */
   1730 
   1731 		if (isr & ISR_HIBERR) {
   1732 			int want_init = 0;
   1733 
   1734 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1735 
   1736 #define	PRINTERR(bit, str)						\
   1737 			do {						\
   1738 				if ((isr & (bit)) != 0) {		\
   1739 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1740 						printf("%s: %s\n",	\
   1741 						    sc->sc_dev.dv_xname, str); \
   1742 					want_init = 1;			\
   1743 				}					\
   1744 			} while (/*CONSTCOND*/0)
   1745 
   1746 			PRINTERR(ISR_DPERR, "parity error");
   1747 			PRINTERR(ISR_SSERR, "system error");
   1748 			PRINTERR(ISR_RMABT, "master abort");
   1749 			PRINTERR(ISR_RTABT, "target abort");
   1750 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1751 			/*
   1752 			 * Ignore:
   1753 			 *	Tx reset complete
   1754 			 *	Rx reset complete
   1755 			 */
   1756 			if (want_init)
   1757 				(void) SIP_DECL(init)(ifp);
   1758 #undef PRINTERR
   1759 		}
   1760 	}
   1761 
   1762 	/* Re-enable interrupts. */
   1763 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1764 
   1765 	/* Try to get more packets going. */
   1766 	SIP_DECL(start)(ifp);
   1767 
   1768 	return (handled);
   1769 }
   1770 
   1771 /*
   1772  * sip_txintr:
   1773  *
   1774  *	Helper; handle transmit interrupts.
   1775  */
   1776 static void
   1777 SIP_DECL(txintr)(struct sip_softc *sc)
   1778 {
   1779 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1780 	struct sip_txsoft *txs;
   1781 	u_int32_t cmdsts;
   1782 
   1783 #ifndef DP83820
   1784 	if (sc->sc_paused == 0)
   1785 #endif
   1786 		ifp->if_flags &= ~IFF_OACTIVE;
   1787 
   1788 	/*
   1789 	 * Go through our Tx list and free mbufs for those
   1790 	 * frames which have been transmitted.
   1791 	 */
   1792 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1793 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1794 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1795 
   1796 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1797 		if (cmdsts & CMDSTS_OWN)
   1798 			break;
   1799 
   1800 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1801 
   1802 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1803 
   1804 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1805 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1806 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1807 		m_freem(txs->txs_mbuf);
   1808 		txs->txs_mbuf = NULL;
   1809 
   1810 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1811 
   1812 		/*
   1813 		 * Check for errors and collisions.
   1814 		 */
   1815 		if (cmdsts &
   1816 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1817 			ifp->if_oerrors++;
   1818 			if (cmdsts & CMDSTS_Tx_EC)
   1819 				ifp->if_collisions += 16;
   1820 			if (ifp->if_flags & IFF_DEBUG) {
   1821 				if (cmdsts & CMDSTS_Tx_ED)
   1822 					printf("%s: excessive deferral\n",
   1823 					    sc->sc_dev.dv_xname);
   1824 				if (cmdsts & CMDSTS_Tx_EC)
   1825 					printf("%s: excessive collisions\n",
   1826 					    sc->sc_dev.dv_xname);
   1827 			}
   1828 		} else {
   1829 			/* Packet was transmitted successfully. */
   1830 			ifp->if_opackets++;
   1831 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1832 		}
   1833 	}
   1834 
   1835 	/*
   1836 	 * If there are no more pending transmissions, cancel the watchdog
   1837 	 * timer.
   1838 	 */
   1839 	if (txs == NULL) {
   1840 		ifp->if_timer = 0;
   1841 		sc->sc_txwin = 0;
   1842 	}
   1843 }
   1844 
   1845 #if defined(DP83820)
   1846 /*
   1847  * sip_rxintr:
   1848  *
   1849  *	Helper; handle receive interrupts.
   1850  */
   1851 static void
   1852 SIP_DECL(rxintr)(struct sip_softc *sc)
   1853 {
   1854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1855 	struct sip_rxsoft *rxs;
   1856 	struct mbuf *m;
   1857 	u_int32_t cmdsts, extsts;
   1858 	int i, len;
   1859 
   1860 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1861 		rxs = &sc->sc_rxsoft[i];
   1862 
   1863 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1864 
   1865 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1866 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1867 		len = CMDSTS_SIZE(cmdsts);
   1868 
   1869 		/*
   1870 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1871 		 * consumer of the receive ring, so if the bit is clear,
   1872 		 * we have processed all of the packets.
   1873 		 */
   1874 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1875 			/*
   1876 			 * We have processed all of the receive buffers.
   1877 			 */
   1878 			break;
   1879 		}
   1880 
   1881 		if (__predict_false(sc->sc_rxdiscard)) {
   1882 			SIP_INIT_RXDESC(sc, i);
   1883 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1884 				/* Reset our state. */
   1885 				sc->sc_rxdiscard = 0;
   1886 			}
   1887 			continue;
   1888 		}
   1889 
   1890 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1891 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1892 
   1893 		m = rxs->rxs_mbuf;
   1894 
   1895 		/*
   1896 		 * Add a new receive buffer to the ring.
   1897 		 */
   1898 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1899 			/*
   1900 			 * Failed, throw away what we've done so
   1901 			 * far, and discard the rest of the packet.
   1902 			 */
   1903 			ifp->if_ierrors++;
   1904 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1905 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1906 			SIP_INIT_RXDESC(sc, i);
   1907 			if (cmdsts & CMDSTS_MORE)
   1908 				sc->sc_rxdiscard = 1;
   1909 			if (sc->sc_rxhead != NULL)
   1910 				m_freem(sc->sc_rxhead);
   1911 			SIP_RXCHAIN_RESET(sc);
   1912 			continue;
   1913 		}
   1914 
   1915 		SIP_RXCHAIN_LINK(sc, m);
   1916 
   1917 		m->m_len = len;
   1918 
   1919 		/*
   1920 		 * If this is not the end of the packet, keep
   1921 		 * looking.
   1922 		 */
   1923 		if (cmdsts & CMDSTS_MORE) {
   1924 			sc->sc_rxlen += len;
   1925 			continue;
   1926 		}
   1927 
   1928 		/*
   1929 		 * Okay, we have the entire packet now.  The chip includes
   1930 		 * the FCS, so we need to trim it.
   1931 		 */
   1932 		m->m_len -= ETHER_CRC_LEN;
   1933 
   1934 		*sc->sc_rxtailp = NULL;
   1935 		len = m->m_len + sc->sc_rxlen;
   1936 		m = sc->sc_rxhead;
   1937 
   1938 		SIP_RXCHAIN_RESET(sc);
   1939 
   1940 		/*
   1941 		 * If an error occurred, update stats and drop the packet.
   1942 		 */
   1943 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1944 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1945 			ifp->if_ierrors++;
   1946 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1947 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1948 				/* Receive overrun handled elsewhere. */
   1949 				printf("%s: receive descriptor error\n",
   1950 				    sc->sc_dev.dv_xname);
   1951 			}
   1952 #define	PRINTERR(bit, str)						\
   1953 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1954 			    (cmdsts & (bit)) != 0)			\
   1955 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1956 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1957 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1958 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1959 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1960 #undef PRINTERR
   1961 			m_freem(m);
   1962 			continue;
   1963 		}
   1964 
   1965 		/*
   1966 		 * If the packet is small enough to fit in a
   1967 		 * single header mbuf, allocate one and copy
   1968 		 * the data into it.  This greatly reduces
   1969 		 * memory consumption when we receive lots
   1970 		 * of small packets.
   1971 		 */
   1972 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1973 			struct mbuf *nm;
   1974 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1975 			if (nm == NULL) {
   1976 				ifp->if_ierrors++;
   1977 				m_freem(m);
   1978 				continue;
   1979 			}
   1980 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1981 			nm->m_data += 2;
   1982 			nm->m_pkthdr.len = nm->m_len = len;
   1983 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1984 			m_freem(m);
   1985 			m = nm;
   1986 		}
   1987 #ifndef __NO_STRICT_ALIGNMENT
   1988 		else {
   1989 			/*
   1990 			 * The DP83820's receive buffers must be 4-byte
   1991 			 * aligned.  But this means that the data after
   1992 			 * the Ethernet header is misaligned.  To compensate,
   1993 			 * we have artificially shortened the buffer size
   1994 			 * in the descriptor, and we do an overlapping copy
   1995 			 * of the data two bytes further in (in the first
   1996 			 * buffer of the chain only).
   1997 			 */
   1998 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1999 			    m->m_len);
   2000 			m->m_data += 2;
   2001 		}
   2002 #endif /* ! __NO_STRICT_ALIGNMENT */
   2003 
   2004 		/*
   2005 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2006 		 * for us.  Associate the tag with the packet.
   2007 		 */
   2008 
   2009 		/*
   2010 		 * Again, byte swapping is tricky. Hardware provided
   2011 		 * the tag in the network byte order, but extsts was
   2012 		 * passed through le32toh() in the meantime. On a
   2013 		 * big-endian machine, we need to swap it again. On a
   2014 		 * little-endian machine, we need to convert from the
   2015 		 * network to host byte order. This means that we must
   2016 		 * swap it in any case, so unconditional swap instead
   2017 		 * of htons() is used.
   2018 		 */
   2019 		if ((extsts & EXTSTS_VPKT) != 0) {
   2020 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2021 			    continue);
   2022 		}
   2023 
   2024 		/*
   2025 		 * Set the incoming checksum information for the
   2026 		 * packet.
   2027 		 */
   2028 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2029 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2030 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2031 			if (extsts & EXTSTS_Rx_IPERR)
   2032 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2033 			if (extsts & EXTSTS_TCPPKT) {
   2034 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2035 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2036 				if (extsts & EXTSTS_Rx_TCPERR)
   2037 					m->m_pkthdr.csum_flags |=
   2038 					    M_CSUM_TCP_UDP_BAD;
   2039 			} else if (extsts & EXTSTS_UDPPKT) {
   2040 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2041 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2042 				if (extsts & EXTSTS_Rx_UDPERR)
   2043 					m->m_pkthdr.csum_flags |=
   2044 					    M_CSUM_TCP_UDP_BAD;
   2045 			}
   2046 		}
   2047 
   2048 		ifp->if_ipackets++;
   2049 		m->m_pkthdr.rcvif = ifp;
   2050 		m->m_pkthdr.len = len;
   2051 
   2052 #if NBPFILTER > 0
   2053 		/*
   2054 		 * Pass this up to any BPF listeners, but only
   2055 		 * pass if up the stack if it's for us.
   2056 		 */
   2057 		if (ifp->if_bpf)
   2058 			bpf_mtap(ifp->if_bpf, m);
   2059 #endif /* NBPFILTER > 0 */
   2060 
   2061 		/* Pass it on. */
   2062 		(*ifp->if_input)(ifp, m);
   2063 	}
   2064 
   2065 	/* Update the receive pointer. */
   2066 	sc->sc_rxptr = i;
   2067 }
   2068 #else /* ! DP83820 */
   2069 /*
   2070  * sip_rxintr:
   2071  *
   2072  *	Helper; handle receive interrupts.
   2073  */
   2074 static void
   2075 SIP_DECL(rxintr)(struct sip_softc *sc)
   2076 {
   2077 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2078 	struct sip_rxsoft *rxs;
   2079 	struct mbuf *m;
   2080 	u_int32_t cmdsts;
   2081 	int i, len;
   2082 
   2083 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   2084 		rxs = &sc->sc_rxsoft[i];
   2085 
   2086 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2087 
   2088 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   2089 
   2090 		/*
   2091 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2092 		 * consumer of the receive ring, so if the bit is clear,
   2093 		 * we have processed all of the packets.
   2094 		 */
   2095 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2096 			/*
   2097 			 * We have processed all of the receive buffers.
   2098 			 */
   2099 			break;
   2100 		}
   2101 
   2102 		/*
   2103 		 * If any collisions were seen on the wire, count one.
   2104 		 */
   2105 		if (cmdsts & CMDSTS_Rx_COL)
   2106 			ifp->if_collisions++;
   2107 
   2108 		/*
   2109 		 * If an error occurred, update stats, clear the status
   2110 		 * word, and leave the packet buffer in place.  It will
   2111 		 * simply be reused the next time the ring comes around.
   2112 		 */
   2113 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2114 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2115 			ifp->if_ierrors++;
   2116 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2117 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2118 				/* Receive overrun handled elsewhere. */
   2119 				printf("%s: receive descriptor error\n",
   2120 				    sc->sc_dev.dv_xname);
   2121 			}
   2122 #define	PRINTERR(bit, str)						\
   2123 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2124 			    (cmdsts & (bit)) != 0)			\
   2125 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2126 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2127 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2128 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2129 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2130 #undef PRINTERR
   2131 			SIP_INIT_RXDESC(sc, i);
   2132 			continue;
   2133 		}
   2134 
   2135 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2136 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2137 
   2138 		/*
   2139 		 * No errors; receive the packet.  Note, the SiS 900
   2140 		 * includes the CRC with every packet.
   2141 		 */
   2142 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   2143 
   2144 #ifdef __NO_STRICT_ALIGNMENT
   2145 		/*
   2146 		 * If the packet is small enough to fit in a
   2147 		 * single header mbuf, allocate one and copy
   2148 		 * the data into it.  This greatly reduces
   2149 		 * memory consumption when we receive lots
   2150 		 * of small packets.
   2151 		 *
   2152 		 * Otherwise, we add a new buffer to the receive
   2153 		 * chain.  If this fails, we drop the packet and
   2154 		 * recycle the old buffer.
   2155 		 */
   2156 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2157 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2158 			if (m == NULL)
   2159 				goto dropit;
   2160 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2161 			memcpy(mtod(m, caddr_t),
   2162 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2163 			SIP_INIT_RXDESC(sc, i);
   2164 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2165 			    rxs->rxs_dmamap->dm_mapsize,
   2166 			    BUS_DMASYNC_PREREAD);
   2167 		} else {
   2168 			m = rxs->rxs_mbuf;
   2169 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2170  dropit:
   2171 				ifp->if_ierrors++;
   2172 				SIP_INIT_RXDESC(sc, i);
   2173 				bus_dmamap_sync(sc->sc_dmat,
   2174 				    rxs->rxs_dmamap, 0,
   2175 				    rxs->rxs_dmamap->dm_mapsize,
   2176 				    BUS_DMASYNC_PREREAD);
   2177 				continue;
   2178 			}
   2179 		}
   2180 #else
   2181 		/*
   2182 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2183 		 * But this means that the data after the Ethernet header
   2184 		 * is misaligned.  We must allocate a new buffer and
   2185 		 * copy the data, shifted forward 2 bytes.
   2186 		 */
   2187 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2188 		if (m == NULL) {
   2189  dropit:
   2190 			ifp->if_ierrors++;
   2191 			SIP_INIT_RXDESC(sc, i);
   2192 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2193 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2194 			continue;
   2195 		}
   2196 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2197 		if (len > (MHLEN - 2)) {
   2198 			MCLGET(m, M_DONTWAIT);
   2199 			if ((m->m_flags & M_EXT) == 0) {
   2200 				m_freem(m);
   2201 				goto dropit;
   2202 			}
   2203 		}
   2204 		m->m_data += 2;
   2205 
   2206 		/*
   2207 		 * Note that we use clusters for incoming frames, so the
   2208 		 * buffer is virtually contiguous.
   2209 		 */
   2210 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2211 
   2212 		/* Allow the receive descriptor to continue using its mbuf. */
   2213 		SIP_INIT_RXDESC(sc, i);
   2214 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2215 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2216 #endif /* __NO_STRICT_ALIGNMENT */
   2217 
   2218 		ifp->if_ipackets++;
   2219 		m->m_pkthdr.rcvif = ifp;
   2220 		m->m_pkthdr.len = m->m_len = len;
   2221 
   2222 #if NBPFILTER > 0
   2223 		/*
   2224 		 * Pass this up to any BPF listeners, but only
   2225 		 * pass if up the stack if it's for us.
   2226 		 */
   2227 		if (ifp->if_bpf)
   2228 			bpf_mtap(ifp->if_bpf, m);
   2229 #endif /* NBPFILTER > 0 */
   2230 
   2231 		/* Pass it on. */
   2232 		(*ifp->if_input)(ifp, m);
   2233 	}
   2234 
   2235 	/* Update the receive pointer. */
   2236 	sc->sc_rxptr = i;
   2237 }
   2238 #endif /* DP83820 */
   2239 
   2240 /*
   2241  * sip_tick:
   2242  *
   2243  *	One second timer, used to tick the MII.
   2244  */
   2245 static void
   2246 SIP_DECL(tick)(void *arg)
   2247 {
   2248 	struct sip_softc *sc = arg;
   2249 	int s;
   2250 
   2251 	s = splnet();
   2252 #ifdef DP83820
   2253 #ifdef SIP_EVENT_COUNTERS
   2254 	/* Read PAUSE related counts from MIB registers. */
   2255 	sc->sc_ev_rxpause.ev_count +=
   2256 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2257 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2258 	sc->sc_ev_txpause.ev_count +=
   2259 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2260 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2261 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2262 #endif /* SIP_EVENT_COUNTERS */
   2263 #endif /* DP83820 */
   2264 	mii_tick(&sc->sc_mii);
   2265 	splx(s);
   2266 
   2267 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2268 }
   2269 
   2270 /*
   2271  * sip_reset:
   2272  *
   2273  *	Perform a soft reset on the SiS 900.
   2274  */
   2275 static void
   2276 SIP_DECL(reset)(struct sip_softc *sc)
   2277 {
   2278 	bus_space_tag_t st = sc->sc_st;
   2279 	bus_space_handle_t sh = sc->sc_sh;
   2280 	int i;
   2281 
   2282 	bus_space_write_4(st, sh, SIP_IER, 0);
   2283 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2284 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2285 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2286 
   2287 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2288 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2289 			break;
   2290 		delay(2);
   2291 	}
   2292 
   2293 	if (i == SIP_TIMEOUT)
   2294 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2295 
   2296 	delay(1000);
   2297 
   2298 #ifdef DP83820
   2299 	/*
   2300 	 * Set the general purpose I/O bits.  Do it here in case we
   2301 	 * need to have GPIO set up to talk to the media interface.
   2302 	 */
   2303 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2304 	delay(1000);
   2305 #endif /* DP83820 */
   2306 }
   2307 
   2308 /*
   2309  * sip_init:		[ ifnet interface function ]
   2310  *
   2311  *	Initialize the interface.  Must be called at splnet().
   2312  */
   2313 static int
   2314 SIP_DECL(init)(struct ifnet *ifp)
   2315 {
   2316 	struct sip_softc *sc = ifp->if_softc;
   2317 	bus_space_tag_t st = sc->sc_st;
   2318 	bus_space_handle_t sh = sc->sc_sh;
   2319 	struct sip_txsoft *txs;
   2320 	struct sip_rxsoft *rxs;
   2321 	struct sip_desc *sipd;
   2322 #if defined(DP83820)
   2323 	u_int32_t reg;
   2324 #endif
   2325 	int i, error = 0;
   2326 
   2327 	/*
   2328 	 * Cancel any pending I/O.
   2329 	 */
   2330 	SIP_DECL(stop)(ifp, 0);
   2331 
   2332 	/*
   2333 	 * Reset the chip to a known state.
   2334 	 */
   2335 	SIP_DECL(reset)(sc);
   2336 
   2337 #if !defined(DP83820)
   2338 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2339 		/*
   2340 		 * DP83815 manual, page 78:
   2341 		 *    4.4 Recommended Registers Configuration
   2342 		 *    For optimum performance of the DP83815, version noted
   2343 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2344 		 *    modifications must be followed in sequence...
   2345 		 *
   2346 		 * It's not clear if this should be 302h or 203h because that
   2347 		 * chip name is listed as SRR 302h in the description of the
   2348 		 * SRR register.  However, my revision 302h DP83815 on the
   2349 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2350 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2351 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2352 		 * this set or not.  [briggs -- 09 March 2001]
   2353 		 *
   2354 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2355 		 * and that this sets reserved bits in that register.
   2356 		 */
   2357 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2358 
   2359 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2360 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2361 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2362 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2363 
   2364 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2365 	}
   2366 #endif /* ! DP83820 */
   2367 
   2368 	/*
   2369 	 * Initialize the transmit descriptor ring.
   2370 	 */
   2371 	for (i = 0; i < SIP_NTXDESC; i++) {
   2372 		sipd = &sc->sc_txdescs[i];
   2373 		memset(sipd, 0, sizeof(struct sip_desc));
   2374 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2375 	}
   2376 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2377 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2378 	sc->sc_txfree = SIP_NTXDESC;
   2379 	sc->sc_txnext = 0;
   2380 	sc->sc_txwin = 0;
   2381 
   2382 	/*
   2383 	 * Initialize the transmit job descriptors.
   2384 	 */
   2385 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2386 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2387 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2388 		txs = &sc->sc_txsoft[i];
   2389 		txs->txs_mbuf = NULL;
   2390 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2391 	}
   2392 
   2393 	/*
   2394 	 * Initialize the receive descriptor and receive job
   2395 	 * descriptor rings.
   2396 	 */
   2397 	for (i = 0; i < SIP_NRXDESC; i++) {
   2398 		rxs = &sc->sc_rxsoft[i];
   2399 		if (rxs->rxs_mbuf == NULL) {
   2400 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2401 				printf("%s: unable to allocate or map rx "
   2402 				    "buffer %d, error = %d\n",
   2403 				    sc->sc_dev.dv_xname, i, error);
   2404 				/*
   2405 				 * XXX Should attempt to run with fewer receive
   2406 				 * XXX buffers instead of just failing.
   2407 				 */
   2408 				SIP_DECL(rxdrain)(sc);
   2409 				goto out;
   2410 			}
   2411 		} else
   2412 			SIP_INIT_RXDESC(sc, i);
   2413 	}
   2414 	sc->sc_rxptr = 0;
   2415 #ifdef DP83820
   2416 	sc->sc_rxdiscard = 0;
   2417 	SIP_RXCHAIN_RESET(sc);
   2418 #endif /* DP83820 */
   2419 
   2420 	/*
   2421 	 * Set the configuration register; it's already initialized
   2422 	 * in sip_attach().
   2423 	 */
   2424 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2425 
   2426 	/*
   2427 	 * Initialize the prototype TXCFG register.
   2428 	 */
   2429 #if defined(DP83820)
   2430 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2431 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2432 #else
   2433 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2434 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2435 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2436 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2437 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2438 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2439 	} else {
   2440 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2441 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2442 	}
   2443 #endif /* DP83820 */
   2444 
   2445 	sc->sc_txcfg |= TXCFG_ATP |
   2446 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2447 	    sc->sc_tx_drain_thresh;
   2448 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2449 
   2450 	/*
   2451 	 * Initialize the receive drain threshold if we have never
   2452 	 * done so.
   2453 	 */
   2454 	if (sc->sc_rx_drain_thresh == 0) {
   2455 		/*
   2456 		 * XXX This value should be tuned.  This is set to the
   2457 		 * maximum of 248 bytes, and we may be able to improve
   2458 		 * performance by decreasing it (although we should never
   2459 		 * set this value lower than 2; 14 bytes are required to
   2460 		 * filter the packet).
   2461 		 */
   2462 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2463 	}
   2464 
   2465 	/*
   2466 	 * Initialize the prototype RXCFG register.
   2467 	 */
   2468 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2469 #ifdef DP83820
   2470 	/*
   2471 	 * Accept long packets (including FCS) so we can handle
   2472 	 * 802.1q-tagged frames and jumbo frames properly.
   2473 	 */
   2474 	if (ifp->if_mtu > ETHERMTU ||
   2475 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2476 		sc->sc_rxcfg |= RXCFG_ALP;
   2477 
   2478 	/*
   2479 	 * Checksum offloading is disabled if the user selects an MTU
   2480 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2481 	 * evidence that >8109 does not work on some boards, such as the
   2482 	 * Planex GN-1000TE).
   2483 	 */
   2484 	if (ifp->if_mtu > 8109 &&
   2485 	    (ifp->if_capenable &
   2486 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2487 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2488 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2489 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2490 		       "disabled.\n", sc->sc_dev.dv_xname);
   2491 		ifp->if_capenable &=
   2492 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2493 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2494 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2495 		ifp->if_csum_flags_tx = 0;
   2496 		ifp->if_csum_flags_rx = 0;
   2497 	}
   2498 #else
   2499 	/*
   2500 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2501 	 * 802.1q-tagged frames properly.
   2502 	 */
   2503 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2504 		sc->sc_rxcfg |= RXCFG_ALP;
   2505 #endif
   2506 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2507 
   2508 #ifdef DP83820
   2509 	/*
   2510 	 * Initialize the VLAN/IP receive control register.
   2511 	 * We enable checksum computation on all incoming
   2512 	 * packets, and do not reject packets w/ bad checksums.
   2513 	 */
   2514 	reg = 0;
   2515 	if (ifp->if_capenable &
   2516 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2517 		reg |= VRCR_IPEN;
   2518 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2519 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2520 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2521 
   2522 	/*
   2523 	 * Initialize the VLAN/IP transmit control register.
   2524 	 * We enable outgoing checksum computation on a
   2525 	 * per-packet basis.
   2526 	 */
   2527 	reg = 0;
   2528 	if (ifp->if_capenable &
   2529 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2530 		reg |= VTCR_PPCHK;
   2531 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2532 		reg |= VTCR_VPPTI;
   2533 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2534 
   2535 	/*
   2536 	 * If we're using VLANs, initialize the VLAN data register.
   2537 	 * To understand why we bswap the VLAN Ethertype, see section
   2538 	 * 4.2.36 of the DP83820 manual.
   2539 	 */
   2540 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2541 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2542 #endif /* DP83820 */
   2543 
   2544 	/*
   2545 	 * Give the transmit and receive rings to the chip.
   2546 	 */
   2547 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2548 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2549 
   2550 	/*
   2551 	 * Initialize the interrupt mask.
   2552 	 */
   2553 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2554 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2555 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2556 
   2557 	/* Set up the receive filter. */
   2558 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2559 
   2560 #ifdef DP83820
   2561 	/*
   2562 	 * Tune sc_rx_flow_thresh.
   2563 	 * XXX "More than 8KB" is too short for jumbo frames.
   2564 	 * XXX TODO: Threshold value should be user-settable.
   2565 	 */
   2566 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2567 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2568 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2569 #endif
   2570 
   2571 	/*
   2572 	 * Set the current media.  Do this after initializing the prototype
   2573 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2574 	 * control.
   2575 	 */
   2576 	mii_mediachg(&sc->sc_mii);
   2577 
   2578 #ifdef DP83820
   2579 	/*
   2580 	 * Set the interrupt hold-off timer to 100us.
   2581 	 */
   2582 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2583 #endif
   2584 
   2585 	/*
   2586 	 * Enable interrupts.
   2587 	 */
   2588 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2589 
   2590 	/*
   2591 	 * Start the transmit and receive processes.
   2592 	 */
   2593 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2594 
   2595 	/*
   2596 	 * Start the one second MII clock.
   2597 	 */
   2598 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2599 
   2600 	/*
   2601 	 * ...all done!
   2602 	 */
   2603 	ifp->if_flags |= IFF_RUNNING;
   2604 	ifp->if_flags &= ~IFF_OACTIVE;
   2605 	sc->sc_if_flags = ifp->if_flags;
   2606 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2607 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2608 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2609 
   2610  out:
   2611 	if (error)
   2612 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2613 	return (error);
   2614 }
   2615 
   2616 /*
   2617  * sip_drain:
   2618  *
   2619  *	Drain the receive queue.
   2620  */
   2621 static void
   2622 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2623 {
   2624 	struct sip_rxsoft *rxs;
   2625 	int i;
   2626 
   2627 	for (i = 0; i < SIP_NRXDESC; i++) {
   2628 		rxs = &sc->sc_rxsoft[i];
   2629 		if (rxs->rxs_mbuf != NULL) {
   2630 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2631 			m_freem(rxs->rxs_mbuf);
   2632 			rxs->rxs_mbuf = NULL;
   2633 		}
   2634 	}
   2635 }
   2636 
   2637 /*
   2638  * sip_stop:		[ ifnet interface function ]
   2639  *
   2640  *	Stop transmission on the interface.
   2641  */
   2642 static void
   2643 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2644 {
   2645 	struct sip_softc *sc = ifp->if_softc;
   2646 	bus_space_tag_t st = sc->sc_st;
   2647 	bus_space_handle_t sh = sc->sc_sh;
   2648 	struct sip_txsoft *txs;
   2649 	u_int32_t cmdsts = 0;		/* DEBUG */
   2650 
   2651 	/*
   2652 	 * Stop the one second clock.
   2653 	 */
   2654 	callout_stop(&sc->sc_tick_ch);
   2655 
   2656 	/* Down the MII. */
   2657 	mii_down(&sc->sc_mii);
   2658 
   2659 	/*
   2660 	 * Disable interrupts.
   2661 	 */
   2662 	bus_space_write_4(st, sh, SIP_IER, 0);
   2663 
   2664 	/*
   2665 	 * Stop receiver and transmitter.
   2666 	 */
   2667 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2668 
   2669 	/*
   2670 	 * Release any queued transmit buffers.
   2671 	 */
   2672 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2673 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2674 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2675 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2676 		     CMDSTS_INTR) == 0)
   2677 			printf("%s: sip_stop: last descriptor does not "
   2678 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2679 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2680 #ifdef DIAGNOSTIC
   2681 		if (txs->txs_mbuf == NULL) {
   2682 			printf("%s: dirty txsoft with no mbuf chain\n",
   2683 			    sc->sc_dev.dv_xname);
   2684 			panic("sip_stop");
   2685 		}
   2686 #endif
   2687 		cmdsts |=		/* DEBUG */
   2688 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2689 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2690 		m_freem(txs->txs_mbuf);
   2691 		txs->txs_mbuf = NULL;
   2692 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2693 	}
   2694 
   2695 	if (disable)
   2696 		SIP_DECL(rxdrain)(sc);
   2697 
   2698 	/*
   2699 	 * Mark the interface down and cancel the watchdog timer.
   2700 	 */
   2701 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2702 	ifp->if_timer = 0;
   2703 
   2704 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2705 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2706 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2707 		    "descriptors\n", sc->sc_dev.dv_xname);
   2708 }
   2709 
   2710 /*
   2711  * sip_read_eeprom:
   2712  *
   2713  *	Read data from the serial EEPROM.
   2714  */
   2715 static void
   2716 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2717     u_int16_t *data)
   2718 {
   2719 	bus_space_tag_t st = sc->sc_st;
   2720 	bus_space_handle_t sh = sc->sc_sh;
   2721 	u_int16_t reg;
   2722 	int i, x;
   2723 
   2724 	for (i = 0; i < wordcnt; i++) {
   2725 		/* Send CHIP SELECT. */
   2726 		reg = EROMAR_EECS;
   2727 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2728 
   2729 		/* Shift in the READ opcode. */
   2730 		for (x = 3; x > 0; x--) {
   2731 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2732 				reg |= EROMAR_EEDI;
   2733 			else
   2734 				reg &= ~EROMAR_EEDI;
   2735 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2736 			bus_space_write_4(st, sh, SIP_EROMAR,
   2737 			    reg | EROMAR_EESK);
   2738 			delay(4);
   2739 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2740 			delay(4);
   2741 		}
   2742 
   2743 		/* Shift in address. */
   2744 		for (x = 6; x > 0; x--) {
   2745 			if ((word + i) & (1 << (x - 1)))
   2746 				reg |= EROMAR_EEDI;
   2747 			else
   2748 				reg &= ~EROMAR_EEDI;
   2749 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2750 			bus_space_write_4(st, sh, SIP_EROMAR,
   2751 			    reg | EROMAR_EESK);
   2752 			delay(4);
   2753 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2754 			delay(4);
   2755 		}
   2756 
   2757 		/* Shift out data. */
   2758 		reg = EROMAR_EECS;
   2759 		data[i] = 0;
   2760 		for (x = 16; x > 0; x--) {
   2761 			bus_space_write_4(st, sh, SIP_EROMAR,
   2762 			    reg | EROMAR_EESK);
   2763 			delay(4);
   2764 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2765 				data[i] |= (1 << (x - 1));
   2766 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2767 			delay(4);
   2768 		}
   2769 
   2770 		/* Clear CHIP SELECT. */
   2771 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2772 		delay(4);
   2773 	}
   2774 }
   2775 
   2776 /*
   2777  * sip_add_rxbuf:
   2778  *
   2779  *	Add a receive buffer to the indicated descriptor.
   2780  */
   2781 static int
   2782 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2783 {
   2784 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2785 	struct mbuf *m;
   2786 	int error;
   2787 
   2788 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2789 	if (m == NULL)
   2790 		return (ENOBUFS);
   2791 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2792 
   2793 	MCLGET(m, M_DONTWAIT);
   2794 	if ((m->m_flags & M_EXT) == 0) {
   2795 		m_freem(m);
   2796 		return (ENOBUFS);
   2797 	}
   2798 
   2799 #if defined(DP83820)
   2800 	m->m_len = SIP_RXBUF_LEN;
   2801 #endif /* DP83820 */
   2802 
   2803 	if (rxs->rxs_mbuf != NULL)
   2804 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2805 
   2806 	rxs->rxs_mbuf = m;
   2807 
   2808 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2809 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2810 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2811 	if (error) {
   2812 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2813 		    sc->sc_dev.dv_xname, idx, error);
   2814 		panic("sip_add_rxbuf");		/* XXX */
   2815 	}
   2816 
   2817 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2818 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2819 
   2820 	SIP_INIT_RXDESC(sc, idx);
   2821 
   2822 	return (0);
   2823 }
   2824 
   2825 #if !defined(DP83820)
   2826 /*
   2827  * sip_sis900_set_filter:
   2828  *
   2829  *	Set up the receive filter.
   2830  */
   2831 static void
   2832 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2833 {
   2834 	bus_space_tag_t st = sc->sc_st;
   2835 	bus_space_handle_t sh = sc->sc_sh;
   2836 	struct ethercom *ec = &sc->sc_ethercom;
   2837 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2838 	struct ether_multi *enm;
   2839 	u_int8_t *cp;
   2840 	struct ether_multistep step;
   2841 	u_int32_t crc, mchash[16];
   2842 
   2843 	/*
   2844 	 * Initialize the prototype RFCR.
   2845 	 */
   2846 	sc->sc_rfcr = RFCR_RFEN;
   2847 	if (ifp->if_flags & IFF_BROADCAST)
   2848 		sc->sc_rfcr |= RFCR_AAB;
   2849 	if (ifp->if_flags & IFF_PROMISC) {
   2850 		sc->sc_rfcr |= RFCR_AAP;
   2851 		goto allmulti;
   2852 	}
   2853 
   2854 	/*
   2855 	 * Set up the multicast address filter by passing all multicast
   2856 	 * addresses through a CRC generator, and then using the high-order
   2857 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2858 	 * the lower 16 bits of each 32 bit multicast hash register are
   2859 	 * valid).  The high order bits select the register, while the
   2860 	 * rest of the bits select the bit within the register.
   2861 	 */
   2862 
   2863 	memset(mchash, 0, sizeof(mchash));
   2864 
   2865 	/*
   2866 	 * SiS900 (at least SiS963) requires us to register the address of
   2867 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   2868 	 */
   2869 	crc = 0x0ed423f9;
   2870 
   2871 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2872 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2873 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2874 		/* Just want the 8 most significant bits. */
   2875 		crc >>= 24;
   2876 	} else {
   2877 		/* Just want the 7 most significant bits. */
   2878 		crc >>= 25;
   2879 	}
   2880 
   2881 	/* Set the corresponding bit in the hash table. */
   2882 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   2883 
   2884 	ETHER_FIRST_MULTI(step, ec, enm);
   2885 	while (enm != NULL) {
   2886 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2887 			/*
   2888 			 * We must listen to a range of multicast addresses.
   2889 			 * For now, just accept all multicasts, rather than
   2890 			 * trying to set only those filter bits needed to match
   2891 			 * the range.  (At this time, the only use of address
   2892 			 * ranges is for IP multicast routing, for which the
   2893 			 * range is big enough to require all bits set.)
   2894 			 */
   2895 			goto allmulti;
   2896 		}
   2897 
   2898 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2899 
   2900 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2901 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2902 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2903 			/* Just want the 8 most significant bits. */
   2904 			crc >>= 24;
   2905 		} else {
   2906 			/* Just want the 7 most significant bits. */
   2907 			crc >>= 25;
   2908 		}
   2909 
   2910 		/* Set the corresponding bit in the hash table. */
   2911 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2912 
   2913 		ETHER_NEXT_MULTI(step, enm);
   2914 	}
   2915 
   2916 	ifp->if_flags &= ~IFF_ALLMULTI;
   2917 	goto setit;
   2918 
   2919  allmulti:
   2920 	ifp->if_flags |= IFF_ALLMULTI;
   2921 	sc->sc_rfcr |= RFCR_AAM;
   2922 
   2923  setit:
   2924 #define	FILTER_EMIT(addr, data)						\
   2925 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2926 	delay(1);							\
   2927 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2928 	delay(1)
   2929 
   2930 	/*
   2931 	 * Disable receive filter, and program the node address.
   2932 	 */
   2933 	cp = LLADDR(ifp->if_sadl);
   2934 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2935 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2936 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2937 
   2938 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2939 		/*
   2940 		 * Program the multicast hash table.
   2941 		 */
   2942 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2943 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2944 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2945 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2946 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2947 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2948 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2949 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2950 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2951 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2952 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2953 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2954 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2955 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2956 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2957 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2958 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2959 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2960 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2961 		}
   2962 	}
   2963 #undef FILTER_EMIT
   2964 
   2965 	/*
   2966 	 * Re-enable the receiver filter.
   2967 	 */
   2968 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2969 }
   2970 #endif /* ! DP83820 */
   2971 
   2972 /*
   2973  * sip_dp83815_set_filter:
   2974  *
   2975  *	Set up the receive filter.
   2976  */
   2977 static void
   2978 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2979 {
   2980 	bus_space_tag_t st = sc->sc_st;
   2981 	bus_space_handle_t sh = sc->sc_sh;
   2982 	struct ethercom *ec = &sc->sc_ethercom;
   2983 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2984 	struct ether_multi *enm;
   2985 	u_int8_t *cp;
   2986 	struct ether_multistep step;
   2987 	u_int32_t crc, hash, slot, bit;
   2988 #ifdef DP83820
   2989 #define	MCHASH_NWORDS	128
   2990 #else
   2991 #define	MCHASH_NWORDS	32
   2992 #endif /* DP83820 */
   2993 	u_int16_t mchash[MCHASH_NWORDS];
   2994 	int i;
   2995 
   2996 	/*
   2997 	 * Initialize the prototype RFCR.
   2998 	 * Enable the receive filter, and accept on
   2999 	 *    Perfect (destination address) Match
   3000 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3001 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3002 	 *    IFF_ALLMULTI and accept all multicast, too).
   3003 	 */
   3004 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3005 	if (ifp->if_flags & IFF_BROADCAST)
   3006 		sc->sc_rfcr |= RFCR_AAB;
   3007 	if (ifp->if_flags & IFF_PROMISC) {
   3008 		sc->sc_rfcr |= RFCR_AAP;
   3009 		goto allmulti;
   3010 	}
   3011 
   3012 #ifdef DP83820
   3013 	/*
   3014 	 * Set up the DP83820 multicast address filter by passing all multicast
   3015 	 * addresses through a CRC generator, and then using the high-order
   3016 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   3017 	 * high-order 7 bits select the slot, while the low-order 4 bits
   3018 	 * select the bit within the slot.  Note that only the low 16-bits
   3019 	 * of each filter word are used, and there are 128 filter words.
   3020 	 */
   3021 #else
   3022 	/*
   3023 	 * Set up the DP83815 multicast address filter by passing all multicast
   3024 	 * addresses through a CRC generator, and then using the high-order
   3025 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   3026 	 * high-order 5 bits select the slot, while the low-order 4 bits
   3027 	 * select the bit within the slot.  Note that only the low 16-bits
   3028 	 * of each filter word are used, and there are 32 filter words.
   3029 	 */
   3030 #endif /* DP83820 */
   3031 
   3032 	memset(mchash, 0, sizeof(mchash));
   3033 
   3034 	ifp->if_flags &= ~IFF_ALLMULTI;
   3035 	ETHER_FIRST_MULTI(step, ec, enm);
   3036 	if (enm == NULL)
   3037 		goto setit;
   3038 	while (enm != NULL) {
   3039 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3040 			/*
   3041 			 * We must listen to a range of multicast addresses.
   3042 			 * For now, just accept all multicasts, rather than
   3043 			 * trying to set only those filter bits needed to match
   3044 			 * the range.  (At this time, the only use of address
   3045 			 * ranges is for IP multicast routing, for which the
   3046 			 * range is big enough to require all bits set.)
   3047 			 */
   3048 			goto allmulti;
   3049 		}
   3050 
   3051 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3052 
   3053 #ifdef DP83820
   3054 		/* Just want the 11 most significant bits. */
   3055 		hash = crc >> 21;
   3056 #else
   3057 		/* Just want the 9 most significant bits. */
   3058 		hash = crc >> 23;
   3059 #endif /* DP83820 */
   3060 
   3061 		slot = hash >> 4;
   3062 		bit = hash & 0xf;
   3063 
   3064 		/* Set the corresponding bit in the hash table. */
   3065 		mchash[slot] |= 1 << bit;
   3066 
   3067 		ETHER_NEXT_MULTI(step, enm);
   3068 	}
   3069 	sc->sc_rfcr |= RFCR_MHEN;
   3070 	goto setit;
   3071 
   3072  allmulti:
   3073 	ifp->if_flags |= IFF_ALLMULTI;
   3074 	sc->sc_rfcr |= RFCR_AAM;
   3075 
   3076  setit:
   3077 #define	FILTER_EMIT(addr, data)						\
   3078 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3079 	delay(1);							\
   3080 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3081 	delay(1)
   3082 
   3083 	/*
   3084 	 * Disable receive filter, and program the node address.
   3085 	 */
   3086 	cp = LLADDR(ifp->if_sadl);
   3087 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3088 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3089 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3090 
   3091 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3092 		/*
   3093 		 * Program the multicast hash table.
   3094 		 */
   3095 		for (i = 0; i < MCHASH_NWORDS; i++) {
   3096 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   3097 			    mchash[i]);
   3098 		}
   3099 	}
   3100 #undef FILTER_EMIT
   3101 #undef MCHASH_NWORDS
   3102 
   3103 	/*
   3104 	 * Re-enable the receiver filter.
   3105 	 */
   3106 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3107 }
   3108 
   3109 #if defined(DP83820)
   3110 /*
   3111  * sip_dp83820_mii_readreg:	[mii interface function]
   3112  *
   3113  *	Read a PHY register on the MII of the DP83820.
   3114  */
   3115 static int
   3116 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   3117 {
   3118 	struct sip_softc *sc = (void *) self;
   3119 
   3120 	if (sc->sc_cfg & CFG_TBI_EN) {
   3121 		bus_addr_t tbireg;
   3122 		int rv;
   3123 
   3124 		if (phy != 0)
   3125 			return (0);
   3126 
   3127 		switch (reg) {
   3128 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3129 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3130 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3131 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3132 		case MII_ANER:		tbireg = SIP_TANER; break;
   3133 		case MII_EXTSR:
   3134 			/*
   3135 			 * Don't even bother reading the TESR register.
   3136 			 * The manual documents that the device has
   3137 			 * 1000baseX full/half capability, but the
   3138 			 * register itself seems read back 0 on some
   3139 			 * boards.  Just hard-code the result.
   3140 			 */
   3141 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3142 
   3143 		default:
   3144 			return (0);
   3145 		}
   3146 
   3147 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3148 		if (tbireg == SIP_TBISR) {
   3149 			/* LINK and ACOMP are switched! */
   3150 			int val = rv;
   3151 
   3152 			rv = 0;
   3153 			if (val & TBISR_MR_LINK_STATUS)
   3154 				rv |= BMSR_LINK;
   3155 			if (val & TBISR_MR_AN_COMPLETE)
   3156 				rv |= BMSR_ACOMP;
   3157 
   3158 			/*
   3159 			 * The manual claims this register reads back 0
   3160 			 * on hard and soft reset.  But we want to let
   3161 			 * the gentbi driver know that we support auto-
   3162 			 * negotiation, so hard-code this bit in the
   3163 			 * result.
   3164 			 */
   3165 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3166 		}
   3167 
   3168 		return (rv);
   3169 	}
   3170 
   3171 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3172 	    phy, reg));
   3173 }
   3174 
   3175 /*
   3176  * sip_dp83820_mii_writereg:	[mii interface function]
   3177  *
   3178  *	Write a PHY register on the MII of the DP83820.
   3179  */
   3180 static void
   3181 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   3182 {
   3183 	struct sip_softc *sc = (void *) self;
   3184 
   3185 	if (sc->sc_cfg & CFG_TBI_EN) {
   3186 		bus_addr_t tbireg;
   3187 
   3188 		if (phy != 0)
   3189 			return;
   3190 
   3191 		switch (reg) {
   3192 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3193 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3194 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3195 		default:
   3196 			return;
   3197 		}
   3198 
   3199 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3200 		return;
   3201 	}
   3202 
   3203 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3204 	    phy, reg, val);
   3205 }
   3206 
   3207 /*
   3208  * sip_dp83820_mii_statchg:	[mii interface function]
   3209  *
   3210  *	Callback from MII layer when media changes.
   3211  */
   3212 static void
   3213 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   3214 {
   3215 	struct sip_softc *sc = (struct sip_softc *) self;
   3216 	struct mii_data *mii = &sc->sc_mii;
   3217 	u_int32_t cfg, pcr;
   3218 
   3219 	/*
   3220 	 * Get flow control negotiation result.
   3221 	 */
   3222 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3223 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3224 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3225 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3226 	}
   3227 
   3228 	/*
   3229 	 * Update TXCFG for full-duplex operation.
   3230 	 */
   3231 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3232 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3233 	else
   3234 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3235 
   3236 	/*
   3237 	 * Update RXCFG for full-duplex or loopback.
   3238 	 */
   3239 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3240 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3241 		sc->sc_rxcfg |= RXCFG_ATX;
   3242 	else
   3243 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3244 
   3245 	/*
   3246 	 * Update CFG for MII/GMII.
   3247 	 */
   3248 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3249 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3250 	else
   3251 		cfg = sc->sc_cfg;
   3252 
   3253 	/*
   3254 	 * 802.3x flow control.
   3255 	 */
   3256 	pcr = 0;
   3257 	if (sc->sc_flowflags & IFM_FLOW) {
   3258 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3259 			pcr |= sc->sc_rx_flow_thresh;
   3260 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3261 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3262 	}
   3263 
   3264 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3265 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3266 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3267 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3268 }
   3269 #endif /* ! DP83820 */
   3270 
   3271 /*
   3272  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3273  *
   3274  *	Read the MII serial port for the MII bit-bang module.
   3275  */
   3276 static u_int32_t
   3277 SIP_DECL(mii_bitbang_read)(struct device *self)
   3278 {
   3279 	struct sip_softc *sc = (void *) self;
   3280 
   3281 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3282 }
   3283 
   3284 /*
   3285  * sip_mii_bitbang_write: [mii big-bang interface function]
   3286  *
   3287  *	Write the MII serial port for the MII bit-bang module.
   3288  */
   3289 static void
   3290 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
   3291 {
   3292 	struct sip_softc *sc = (void *) self;
   3293 
   3294 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3295 }
   3296 
   3297 #ifndef DP83820
   3298 /*
   3299  * sip_sis900_mii_readreg:	[mii interface function]
   3300  *
   3301  *	Read a PHY register on the MII.
   3302  */
   3303 static int
   3304 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3305 {
   3306 	struct sip_softc *sc = (struct sip_softc *) self;
   3307 	u_int32_t enphy;
   3308 
   3309 	/*
   3310 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3311 	 * operations.
   3312 	 */
   3313 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3314 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3315 		    phy, reg));
   3316 
   3317 #ifndef SIS900_MII_RESTRICT
   3318 	/*
   3319 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3320 	 * MII address 0.
   3321 	 */
   3322 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3323 		return (0);
   3324 #endif
   3325 
   3326 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3327 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3328 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3329 	do {
   3330 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3331 	} while (enphy & ENPHY_ACCESS);
   3332 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3333 }
   3334 
   3335 /*
   3336  * sip_sis900_mii_writereg:	[mii interface function]
   3337  *
   3338  *	Write a PHY register on the MII.
   3339  */
   3340 static void
   3341 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3342 {
   3343 	struct sip_softc *sc = (struct sip_softc *) self;
   3344 	u_int32_t enphy;
   3345 
   3346 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3347 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3348 		    phy, reg, val);
   3349 		return;
   3350 	}
   3351 
   3352 #ifndef SIS900_MII_RESTRICT
   3353 	/*
   3354 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3355 	 * MII address 0.
   3356 	 */
   3357 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3358 		return;
   3359 #endif
   3360 
   3361 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3362 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3363 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3364 	do {
   3365 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3366 	} while (enphy & ENPHY_ACCESS);
   3367 }
   3368 
   3369 /*
   3370  * sip_sis900_mii_statchg:	[mii interface function]
   3371  *
   3372  *	Callback from MII layer when media changes.
   3373  */
   3374 static void
   3375 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3376 {
   3377 	struct sip_softc *sc = (struct sip_softc *) self;
   3378 	struct mii_data *mii = &sc->sc_mii;
   3379 	u_int32_t flowctl;
   3380 
   3381 	/*
   3382 	 * Get flow control negotiation result.
   3383 	 */
   3384 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3385 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3386 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3387 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3388 	}
   3389 
   3390 	/*
   3391 	 * Update TXCFG for full-duplex operation.
   3392 	 */
   3393 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3394 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3395 	else
   3396 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3397 
   3398 	/*
   3399 	 * Update RXCFG for full-duplex or loopback.
   3400 	 */
   3401 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3402 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3403 		sc->sc_rxcfg |= RXCFG_ATX;
   3404 	else
   3405 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3406 
   3407 	/*
   3408 	 * Update IMR for use of 802.3x flow control.
   3409 	 */
   3410 	if (sc->sc_flowflags & IFM_FLOW) {
   3411 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3412 		flowctl = FLOWCTL_FLOWEN;
   3413 	} else {
   3414 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3415 		flowctl = 0;
   3416 	}
   3417 
   3418 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3419 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3420 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3421 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3422 }
   3423 
   3424 /*
   3425  * sip_dp83815_mii_readreg:	[mii interface function]
   3426  *
   3427  *	Read a PHY register on the MII.
   3428  */
   3429 static int
   3430 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3431 {
   3432 	struct sip_softc *sc = (struct sip_softc *) self;
   3433 	u_int32_t val;
   3434 
   3435 	/*
   3436 	 * The DP83815 only has an internal PHY.  Only allow
   3437 	 * MII address 0.
   3438 	 */
   3439 	if (phy != 0)
   3440 		return (0);
   3441 
   3442 	/*
   3443 	 * Apparently, after a reset, the DP83815 can take a while
   3444 	 * to respond.  During this recovery period, the BMSR returns
   3445 	 * a value of 0.  Catch this -- it's not supposed to happen
   3446 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3447 	 * PHY to come back to life.
   3448 	 *
   3449 	 * This works out because the BMSR is the first register
   3450 	 * read during the PHY probe process.
   3451 	 */
   3452 	do {
   3453 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3454 	} while (reg == MII_BMSR && val == 0);
   3455 
   3456 	return (val & 0xffff);
   3457 }
   3458 
   3459 /*
   3460  * sip_dp83815_mii_writereg:	[mii interface function]
   3461  *
   3462  *	Write a PHY register to the MII.
   3463  */
   3464 static void
   3465 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3466 {
   3467 	struct sip_softc *sc = (struct sip_softc *) self;
   3468 
   3469 	/*
   3470 	 * The DP83815 only has an internal PHY.  Only allow
   3471 	 * MII address 0.
   3472 	 */
   3473 	if (phy != 0)
   3474 		return;
   3475 
   3476 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3477 }
   3478 
   3479 /*
   3480  * sip_dp83815_mii_statchg:	[mii interface function]
   3481  *
   3482  *	Callback from MII layer when media changes.
   3483  */
   3484 static void
   3485 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3486 {
   3487 	struct sip_softc *sc = (struct sip_softc *) self;
   3488 
   3489 	/*
   3490 	 * Update TXCFG for full-duplex operation.
   3491 	 */
   3492 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3493 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3494 	else
   3495 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3496 
   3497 	/*
   3498 	 * Update RXCFG for full-duplex or loopback.
   3499 	 */
   3500 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3501 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3502 		sc->sc_rxcfg |= RXCFG_ATX;
   3503 	else
   3504 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3505 
   3506 	/*
   3507 	 * XXX 802.3x flow control.
   3508 	 */
   3509 
   3510 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3511 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3512 
   3513 	/*
   3514 	 * Some DP83815s experience problems when used with short
   3515 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3516 	 * sequence adjusts the DSP's signal attenuation to fix the
   3517 	 * problem.
   3518 	 */
   3519 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3520 		uint32_t reg;
   3521 
   3522 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3523 
   3524 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3525 		reg &= 0x0fff;
   3526 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3527 		delay(100);
   3528 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3529 		reg &= 0x00ff;
   3530 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3531 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3532 			    0x00e8);
   3533 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3534 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3535 			    reg | 0x20);
   3536 		}
   3537 
   3538 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3539 	}
   3540 }
   3541 #endif /* DP83820 */
   3542 
   3543 #if defined(DP83820)
   3544 static void
   3545 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3546     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3547 {
   3548 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3549 	u_int8_t cksum, *e, match;
   3550 	int i;
   3551 
   3552 	/*
   3553 	 * EEPROM data format for the DP83820 can be found in
   3554 	 * the DP83820 manual, section 4.2.4.
   3555 	 */
   3556 
   3557 	SIP_DECL(read_eeprom)(sc, 0,
   3558 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3559 
   3560 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3561 	match = ~(match - 1);
   3562 
   3563 	cksum = 0x55;
   3564 	e = (u_int8_t *) eeprom_data;
   3565 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3566 		cksum += *e++;
   3567 
   3568 	if (cksum != match)
   3569 		printf("%s: Checksum (%x) mismatch (%x)",
   3570 		    sc->sc_dev.dv_xname, cksum, match);
   3571 
   3572 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3573 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3574 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3575 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3576 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3577 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3578 }
   3579 #else /* ! DP83820 */
   3580 static void
   3581 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3582 {
   3583 	int i;
   3584 
   3585 	/*
   3586 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3587 	 * a reason, but I don't know it.
   3588 	 */
   3589 	for (i = 0; i < 10; i++)
   3590 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3591 }
   3592 
   3593 static void
   3594 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3595     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3596 {
   3597 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3598 
   3599 	switch (sc->sc_rev) {
   3600 	case SIS_REV_630S:
   3601 	case SIS_REV_630E:
   3602 	case SIS_REV_630EA1:
   3603 	case SIS_REV_630ET:
   3604 	case SIS_REV_635:
   3605 		/*
   3606 		 * The MAC address for the on-board Ethernet of
   3607 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3608 		 * the chip into re-loading it from NVRAM, and
   3609 		 * read the MAC address out of the filter registers.
   3610 		 */
   3611 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3612 
   3613 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3614 		    RFCR_RFADDR_NODE0);
   3615 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3616 		    0xffff;
   3617 
   3618 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3619 		    RFCR_RFADDR_NODE2);
   3620 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3621 		    0xffff;
   3622 
   3623 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3624 		    RFCR_RFADDR_NODE4);
   3625 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3626 		    0xffff;
   3627 		break;
   3628 
   3629 	case SIS_REV_960:
   3630 		{
   3631 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3632 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3633 
   3634 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3635 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3636 
   3637 			int waittime, i;
   3638 
   3639 			/* Allow to read EEPROM from LAN. It is shared
   3640 			 * between a 1394 controller and the NIC and each
   3641 			 * time we access it, we need to set SIS_EECMD_REQ.
   3642 			 */
   3643 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3644 
   3645 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3646 				/* Force EEPROM to idle state. */
   3647 
   3648 				/*
   3649 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3650 				 */
   3651 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3652 				SIP_DECL(sis900_eeprom_delay)(sc);
   3653 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3654 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3655 					SIP_DECL(sis900_eeprom_delay)(sc);
   3656 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3657 					SIP_DECL(sis900_eeprom_delay)(sc);
   3658 				}
   3659 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3660 				SIP_DECL(sis900_eeprom_delay)(sc);
   3661 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3662 
   3663 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3664 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3665 					    sizeof(myea) / sizeof(myea[0]), myea);
   3666 					break;
   3667 				}
   3668 				DELAY(1);
   3669 			}
   3670 
   3671 			/*
   3672 			 * Set SIS_EECTL_CLK to high, so a other master
   3673 			 * can operate on the i2c bus.
   3674 			 */
   3675 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3676 
   3677 			/* Refuse EEPROM access by LAN */
   3678 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3679 		} break;
   3680 
   3681 	default:
   3682 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3683 		    sizeof(myea) / sizeof(myea[0]), myea);
   3684 	}
   3685 
   3686 	enaddr[0] = myea[0] & 0xff;
   3687 	enaddr[1] = myea[0] >> 8;
   3688 	enaddr[2] = myea[1] & 0xff;
   3689 	enaddr[3] = myea[1] >> 8;
   3690 	enaddr[4] = myea[2] & 0xff;
   3691 	enaddr[5] = myea[2] >> 8;
   3692 }
   3693 
   3694 /* Table and macro to bit-reverse an octet. */
   3695 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3696 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3697 
   3698 static void
   3699 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3700     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3701 {
   3702 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3703 	u_int8_t cksum, *e, match;
   3704 	int i;
   3705 
   3706 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3707 	    sizeof(eeprom_data[0]), eeprom_data);
   3708 
   3709 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3710 	match = ~(match - 1);
   3711 
   3712 	cksum = 0x55;
   3713 	e = (u_int8_t *) eeprom_data;
   3714 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3715 		cksum += *e++;
   3716 	}
   3717 	if (cksum != match) {
   3718 		printf("%s: Checksum (%x) mismatch (%x)",
   3719 		    sc->sc_dev.dv_xname, cksum, match);
   3720 	}
   3721 
   3722 	/*
   3723 	 * Unrolled because it makes slightly more sense this way.
   3724 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3725 	 * through bit 15 of word 8.
   3726 	 */
   3727 	ea = &eeprom_data[6];
   3728 	enaddr[0] = ((*ea & 0x1) << 7);
   3729 	ea++;
   3730 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3731 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3732 	enaddr[2] = ((*ea & 0x1) << 7);
   3733 	ea++;
   3734 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3735 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3736 	enaddr[4] = ((*ea & 0x1) << 7);
   3737 	ea++;
   3738 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3739 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3740 
   3741 	/*
   3742 	 * In case that's not weird enough, we also need to reverse
   3743 	 * the bits in each byte.  This all actually makes more sense
   3744 	 * if you think about the EEPROM storage as an array of bits
   3745 	 * being shifted into bytes, but that's not how we're looking
   3746 	 * at it here...
   3747 	 */
   3748 	for (i = 0; i < 6 ;i++)
   3749 		enaddr[i] = bbr(enaddr[i]);
   3750 }
   3751 #endif /* DP83820 */
   3752 
   3753 /*
   3754  * sip_mediastatus:	[ifmedia interface function]
   3755  *
   3756  *	Get the current interface media status.
   3757  */
   3758 static void
   3759 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3760 {
   3761 	struct sip_softc *sc = ifp->if_softc;
   3762 
   3763 	mii_pollstat(&sc->sc_mii);
   3764 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3765 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3766 			   sc->sc_flowflags;
   3767 }
   3768 
   3769 /*
   3770  * sip_mediachange:	[ifmedia interface function]
   3771  *
   3772  *	Set hardware to newly-selected media.
   3773  */
   3774 static int
   3775 SIP_DECL(mediachange)(struct ifnet *ifp)
   3776 {
   3777 	struct sip_softc *sc = ifp->if_softc;
   3778 
   3779 	if (ifp->if_flags & IFF_UP)
   3780 		mii_mediachg(&sc->sc_mii);
   3781 	return (0);
   3782 }
   3783