if_sip.c revision 1.104.6.1 1 /* $NetBSD: if_sip.c,v 1.104.6.1 2006/03/28 09:42:13 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.104.6.1 2006/03/28 09:42:13 tron Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 short sc_if_flags;
313
314 int sc_rxptr; /* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322
323 #if NRND > 0
324 rndsource_element_t rnd_source; /* random source */
325 #endif
326 };
327
328 #ifdef DP83820
329 #define SIP_RXCHAIN_RESET(sc) \
330 do { \
331 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
332 *(sc)->sc_rxtailp = NULL; \
333 (sc)->sc_rxlen = 0; \
334 } while (/*CONSTCOND*/0)
335
336 #define SIP_RXCHAIN_LINK(sc, m) \
337 do { \
338 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
339 (sc)->sc_rxtailp = &(m)->m_next; \
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342
343 #ifdef SIP_EVENT_COUNTERS
344 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
345 #else
346 #define SIP_EVCNT_INCR(ev) /* nothing */
347 #endif
348
349 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
351
352 #define SIP_CDTXSYNC(sc, x, n, ops) \
353 do { \
354 int __x, __n; \
355 \
356 __x = (x); \
357 __n = (n); \
358 \
359 /* If it will wrap around, sync to the end of the ring. */ \
360 if ((__x + __n) > SIP_NTXDESC) { \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
363 (SIP_NTXDESC - __x), (ops)); \
364 __n -= (SIP_NTXDESC - __x); \
365 __x = 0; \
366 } \
367 \
368 /* Now sync whatever is left. */ \
369 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
370 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
371 } while (0)
372
373 #define SIP_CDRXSYNC(sc, x, ops) \
374 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
375 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376
377 #ifdef DP83820
378 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
379 #define SIP_RXBUF_LEN (MCLBYTES - 8)
380 #else
381 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
382 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
383 #endif
384 #define SIP_INIT_RXDESC(sc, x) \
385 do { \
386 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
387 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
388 \
389 __sipd->sipd_link = \
390 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
391 __sipd->sipd_bufptr = \
392 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
393 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
394 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
395 SIP_INIT_RXDESC_EXTSTS \
396 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398
399 #define SIP_CHIP_VERS(sc, v, p, r) \
400 ((sc)->sc_model->sip_vendor == (v) && \
401 (sc)->sc_model->sip_product == (p) && \
402 (sc)->sc_rev == (r))
403
404 #define SIP_CHIP_MODEL(sc, v, p) \
405 ((sc)->sc_model->sip_vendor == (v) && \
406 (sc)->sc_model->sip_product == (p))
407
408 #if !defined(DP83820)
409 #define SIP_SIS900_REV(sc, rev) \
410 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412
413 #define SIP_TIMEOUT 1000
414
415 static void SIP_DECL(start)(struct ifnet *);
416 static void SIP_DECL(watchdog)(struct ifnet *);
417 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int SIP_DECL(init)(struct ifnet *);
419 static void SIP_DECL(stop)(struct ifnet *, int);
420
421 static void SIP_DECL(shutdown)(void *);
422
423 static void SIP_DECL(reset)(struct sip_softc *);
424 static void SIP_DECL(rxdrain)(struct sip_softc *);
425 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 u_int16_t *);
428 static void SIP_DECL(tick)(void *);
429
430 #if !defined(DP83820)
431 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434
435 #if defined(DP83820)
436 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445
446 static int SIP_DECL(intr)(void *);
447 static void SIP_DECL(txintr)(struct sip_softc *);
448 static void SIP_DECL(rxintr)(struct sip_softc *);
449
450 #if defined(DP83820)
451 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void SIP_DECL(sis900_mii_statchg)(struct device *);
458
459 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463
464 static int SIP_DECL(mediachange)(struct ifnet *);
465 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466
467 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void SIP_DECL(attach)(struct device *, struct device *, void *);
469
470 int SIP_DECL(copy_small) = 0;
471
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474 gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477 sip_match, sip_attach, NULL, NULL);
478 #endif
479
480 /*
481 * Descriptions of the variants of the SiS900.
482 */
483 struct sip_variant {
484 int (*sipv_mii_readreg)(struct device *, int, int);
485 void (*sipv_mii_writereg)(struct device *, int, int, int);
486 void (*sipv_mii_statchg)(struct device *);
487 void (*sipv_set_filter)(struct sip_softc *);
488 void (*sipv_read_macaddr)(struct sip_softc *,
489 const struct pci_attach_args *, u_int8_t *);
490 };
491
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 SIP_DECL(mii_bitbang_read),
497 SIP_DECL(mii_bitbang_write),
498 {
499 EROMAR_MDIO, /* MII_BIT_MDO */
500 EROMAR_MDIO, /* MII_BIT_MDI */
501 EROMAR_MDC, /* MII_BIT_MDC */
502 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
503 0, /* MII_BIT_DIR_PHY_HOST */
504 }
505 };
506
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 SIP_DECL(dp83820_mii_readreg),
510 SIP_DECL(dp83820_mii_writereg),
511 SIP_DECL(dp83820_mii_statchg),
512 SIP_DECL(dp83815_set_filter),
513 SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 SIP_DECL(sis900_mii_readreg),
518 SIP_DECL(sis900_mii_writereg),
519 SIP_DECL(sis900_mii_statchg),
520 SIP_DECL(sis900_set_filter),
521 SIP_DECL(sis900_read_macaddr),
522 };
523
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 SIP_DECL(dp83815_mii_readreg),
526 SIP_DECL(dp83815_mii_writereg),
527 SIP_DECL(dp83815_mii_statchg),
528 SIP_DECL(dp83815_set_filter),
529 SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532
533 /*
534 * Devices supported by this driver.
535 */
536 static const struct sip_product {
537 pci_vendor_id_t sip_vendor;
538 pci_product_id_t sip_product;
539 const char *sip_name;
540 const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
544 "NatSemi DP83820 Gigabit Ethernet",
545 &SIP_DECL(variant_dp83820) },
546 #else
547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
548 "SiS 900 10/100 Ethernet",
549 &SIP_DECL(variant_sis900) },
550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
551 "SiS 7016 10/100 Ethernet",
552 &SIP_DECL(variant_sis900) },
553
554 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
555 "NatSemi DP83815 10/100 Ethernet",
556 &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558
559 { 0, 0,
560 NULL,
561 NULL },
562 };
563
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 const struct sip_product *sip;
568
569 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 return (sip);
573 }
574 return (NULL);
575 }
576
577 #ifdef DP83820
578 /*
579 * I really hate stupid hardware vendors. There's a bit in the EEPROM
580 * which indicates if the card can do 64-bit data transfers. Unfortunately,
581 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582 * which means we try to use 64-bit data transfers on those cards if we
583 * happen to be plugged into a 32-bit slot.
584 *
585 * What we do is use this table of cards known to be 64-bit cards. If
586 * you have a 64-bit card who's subsystem ID is not listed in this table,
587 * send the output of "pcictl dump ..." of the device to me so that your
588 * card will use the 64-bit data path when plugged into a 64-bit slot.
589 *
590 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
591 * June 30, 2002
592 */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 static const struct {
597 pci_vendor_id_t c64_vendor;
598 pci_product_id_t c64_product;
599 } card64[] = {
600 /* Asante GigaNIX */
601 { 0x128a, 0x0002 },
602
603 /* Accton EN1407-T, Planex GN-1000TE */
604 { 0x1113, 0x1407 },
605
606 /* Netgear GA-621 */
607 { 0x1385, 0x621a },
608
609 /* SMC EZ Card */
610 { 0x10b8, 0x9462 },
611
612 { 0, 0}
613 };
614 pcireg_t subsys;
615 int i;
616
617 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618
619 for (i = 0; card64[i].c64_vendor != 0; i++) {
620 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 PCI_PRODUCT(subsys) == card64[i].c64_product)
622 return (1);
623 }
624
625 return (0);
626 }
627 #endif /* DP83820 */
628
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 struct pci_attach_args *pa = aux;
633
634 if (SIP_DECL(lookup)(pa) != NULL)
635 return (1);
636
637 return (0);
638 }
639
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 struct sip_softc *sc = (struct sip_softc *) self;
644 struct pci_attach_args *pa = aux;
645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 pci_chipset_tag_t pc = pa->pa_pc;
647 pci_intr_handle_t ih;
648 const char *intrstr = NULL;
649 bus_space_tag_t iot, memt;
650 bus_space_handle_t ioh, memh;
651 bus_dma_segment_t seg;
652 int ioh_valid, memh_valid;
653 int i, rseg, error;
654 const struct sip_product *sip;
655 pcireg_t pmode;
656 u_int8_t enaddr[ETHER_ADDR_LEN];
657 int pmreg;
658 #ifdef DP83820
659 pcireg_t memtype;
660 u_int32_t reg;
661 #endif /* DP83820 */
662
663 callout_init(&sc->sc_tick_ch);
664
665 sip = SIP_DECL(lookup)(pa);
666 if (sip == NULL) {
667 printf("\n");
668 panic(SIP_STR(attach) ": impossible");
669 }
670 sc->sc_rev = PCI_REVISION(pa->pa_class);
671
672 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673
674 sc->sc_model = sip;
675
676 /*
677 * XXX Work-around broken PXE firmware on some boards.
678 *
679 * The DP83815 shares an address decoder with the MEM BAR
680 * and the ROM BAR. Make sure the ROM BAR is disabled,
681 * so that memory mapped access works.
682 */
683 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 ~PCI_MAPREG_ROM_ENABLE);
686
687 /*
688 * Map the device.
689 */
690 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 PCI_MAPREG_TYPE_IO, 0,
692 &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 switch (memtype) {
696 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 break;
701 default:
702 memh_valid = 0;
703 }
704 #else
705 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709
710 if (memh_valid) {
711 sc->sc_st = memt;
712 sc->sc_sh = memh;
713 } else if (ioh_valid) {
714 sc->sc_st = iot;
715 sc->sc_sh = ioh;
716 } else {
717 printf("%s: unable to map device registers\n",
718 sc->sc_dev.dv_xname);
719 return;
720 }
721
722 sc->sc_dmat = pa->pa_dmat;
723
724 /*
725 * Make sure bus mastering is enabled. Also make sure
726 * Write/Invalidate is enabled if we're allowed to use it.
727 */
728 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 pmreg | PCI_COMMAND_MASTER_ENABLE);
733
734 /* Get it out of power save mode if needed. */
735 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 PCI_PMCSR_STATE_MASK;
738 if (pmode == PCI_PMCSR_STATE_D3) {
739 /*
740 * The card has lost all configuration data in
741 * this state, so punt.
742 */
743 printf("%s: unable to wake up from power state D3\n",
744 sc->sc_dev.dv_xname);
745 return;
746 }
747 if (pmode != PCI_PMCSR_STATE_D0) {
748 printf("%s: waking up from power state D%d\n",
749 sc->sc_dev.dv_xname, pmode);
750 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 PCI_PMCSR_STATE_D0);
752 }
753 }
754
755 /*
756 * Map and establish our interrupt.
757 */
758 if (pci_intr_map(pa, &ih)) {
759 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 return;
761 }
762 intrstr = pci_intr_string(pc, ih);
763 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 if (sc->sc_ih == NULL) {
765 printf("%s: unable to establish interrupt",
766 sc->sc_dev.dv_xname);
767 if (intrstr != NULL)
768 printf(" at %s", intrstr);
769 printf("\n");
770 return;
771 }
772 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773
774 SIMPLEQ_INIT(&sc->sc_txfreeq);
775 SIMPLEQ_INIT(&sc->sc_txdirtyq);
776
777 /*
778 * Allocate the control data structures, and create and load the
779 * DMA map for it.
780 */
781 if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 0)) != 0) {
784 printf("%s: unable to allocate control data, error = %d\n",
785 sc->sc_dev.dv_xname, error);
786 goto fail_0;
787 }
788
789 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 BUS_DMA_COHERENT)) != 0) {
792 printf("%s: unable to map control data, error = %d\n",
793 sc->sc_dev.dv_xname, error);
794 goto fail_1;
795 }
796
797 if ((error = bus_dmamap_create(sc->sc_dmat,
798 sizeof(struct sip_control_data), 1,
799 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 printf("%s: unable to create control data DMA map, "
801 "error = %d\n", sc->sc_dev.dv_xname, error);
802 goto fail_2;
803 }
804
805 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 0)) != 0) {
808 printf("%s: unable to load control data DMA map, error = %d\n",
809 sc->sc_dev.dv_xname, error);
810 goto fail_3;
811 }
812
813 /*
814 * Create the transmit buffer DMA maps.
815 */
816 for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 SIP_NTXSEGS, MCLBYTES, 0, 0,
819 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 printf("%s: unable to create tx DMA map %d, "
821 "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 goto fail_4;
823 }
824 }
825
826 /*
827 * Create the receive buffer DMA maps.
828 */
829 for (i = 0; i < SIP_NRXDESC; i++) {
830 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 printf("%s: unable to create rx DMA map %d, "
833 "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 goto fail_5;
835 }
836 sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 }
838
839 /*
840 * Reset the chip to a known state.
841 */
842 SIP_DECL(reset)(sc);
843
844 /*
845 * Read the Ethernet address from the EEPROM. This might
846 * also fetch other stuff from the EEPROM and stash it
847 * in the softc.
848 */
849 sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 SIP_SIS900_REV(sc,SIS_REV_900B))
853 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854
855 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 SIP_SIS900_REV(sc,SIS_REV_960) ||
857 SIP_SIS900_REV(sc,SIS_REV_900B))
858 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861
862 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863
864 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 ether_sprintf(enaddr));
866
867 /*
868 * Initialize the configuration register: aggressive PCI
869 * bus request algorithm, default backoff, default OW timer,
870 * default parity error detection.
871 *
872 * NOTE: "Big endian mode" is useless on the SiS900 and
873 * friends -- it affects packet data, not descriptors.
874 */
875 #ifdef DP83820
876 /*
877 * Cause the chip to load configuration data from the EEPROM.
878 */
879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 for (i = 0; i < 10000; i++) {
881 delay(10);
882 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 PTSCR_EELOAD_EN) == 0)
884 break;
885 }
886 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 PTSCR_EELOAD_EN) {
888 printf("%s: timeout loading configuration from EEPROM\n",
889 sc->sc_dev.dv_xname);
890 return;
891 }
892
893 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894
895 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 if (reg & CFG_PCI64_DET) {
897 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 /*
899 * Check to see if this card is 64-bit. If so, enable 64-bit
900 * data transfers.
901 *
902 * We can't use the DATA64_EN bit in the EEPROM, because
903 * vendors of 32-bit cards fail to clear that bit in many
904 * cases (yet the card still detects that it's in a 64-bit
905 * slot; go figure).
906 */
907 if (SIP_DECL(check_64bit)(pa)) {
908 sc->sc_cfg |= CFG_DATA64_EN;
909 printf(", using 64-bit data transfers");
910 }
911 printf("\n");
912 }
913
914 /*
915 * XXX Need some PCI flags indicating support for
916 * XXX 64-bit addressing.
917 */
918 #if 0
919 if (reg & CFG_M64ADDR)
920 sc->sc_cfg |= CFG_M64ADDR;
921 if (reg & CFG_T64ADDR)
922 sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924
925 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 const char *sep = "";
927 printf("%s: using ", sc->sc_dev.dv_xname);
928 if (reg & CFG_EXT_125) {
929 sc->sc_cfg |= CFG_EXT_125;
930 printf("%s125MHz clock", sep);
931 sep = ", ";
932 }
933 if (reg & CFG_TBI_EN) {
934 sc->sc_cfg |= CFG_TBI_EN;
935 printf("%sten-bit interface", sep);
936 sep = ", ";
937 }
938 printf("\n");
939 }
940 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 (reg & CFG_MRM_DIS) != 0)
942 sc->sc_cfg |= CFG_MRM_DIS;
943 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 (reg & CFG_MWI_DIS) != 0)
945 sc->sc_cfg |= CFG_MWI_DIS;
946
947 /*
948 * Use the extended descriptor format on the DP83820. This
949 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 * checksumming.
951 */
952 sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954
955 /*
956 * Initialize our media structures and probe the MII.
957 */
958 sc->sc_mii.mii_ifp = ifp;
959 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 SIP_DECL(mediastatus));
964
965 /*
966 * XXX We cannot handle flow control on the DP83815.
967 */
968 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, 0);
971 else
972 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 MII_OFFSET_ANY, MIIF_DOPAUSE);
974 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 } else
978 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979
980 ifp = &sc->sc_ethercom.ec_if;
981 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 ifp->if_softc = sc;
983 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 sc->sc_if_flags = ifp->if_flags;
985 ifp->if_ioctl = SIP_DECL(ioctl);
986 ifp->if_start = SIP_DECL(start);
987 ifp->if_watchdog = SIP_DECL(watchdog);
988 ifp->if_init = SIP_DECL(init);
989 ifp->if_stop = SIP_DECL(stop);
990 IFQ_SET_READY(&ifp->if_snd);
991
992 /*
993 * We can support 802.1Q VLAN-sized frames.
994 */
995 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996
997 #ifdef DP83820
998 /*
999 * And the DP83820 can do VLAN tagging in hardware, and
1000 * support the jumbo Ethernet MTU.
1001 */
1002 sc->sc_ethercom.ec_capabilities |=
1003 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004
1005 /*
1006 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 * in hardware.
1008 */
1009 ifp->if_capabilities |=
1010 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1011 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1012 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1013 #endif /* DP83820 */
1014
1015 /*
1016 * Attach the interface.
1017 */
1018 if_attach(ifp);
1019 ether_ifattach(ifp, enaddr);
1020 #if NRND > 0
1021 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1022 RND_TYPE_NET, 0);
1023 #endif
1024
1025 /*
1026 * The number of bytes that must be available in
1027 * the Tx FIFO before the bus master can DMA more
1028 * data into the FIFO.
1029 */
1030 sc->sc_tx_fill_thresh = 64 / 32;
1031
1032 /*
1033 * Start at a drain threshold of 512 bytes. We will
1034 * increase it if a DMA underrun occurs.
1035 *
1036 * XXX The minimum value of this variable should be
1037 * tuned. We may be able to improve performance
1038 * by starting with a lower value. That, however,
1039 * may trash the first few outgoing packets if the
1040 * PCI bus is saturated.
1041 */
1042 #ifdef DP83820
1043 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1044 #else
1045 sc->sc_tx_drain_thresh = 1504 / 32;
1046 #endif
1047
1048 /*
1049 * Initialize the Rx FIFO drain threshold.
1050 *
1051 * This is in units of 8 bytes.
1052 *
1053 * We should never set this value lower than 2; 14 bytes are
1054 * required to filter the packet.
1055 */
1056 sc->sc_rx_drain_thresh = 128 / 8;
1057
1058 #ifdef SIP_EVENT_COUNTERS
1059 /*
1060 * Attach event counters.
1061 */
1062 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1063 NULL, sc->sc_dev.dv_xname, "txsstall");
1064 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1065 NULL, sc->sc_dev.dv_xname, "txdstall");
1066 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "txforceintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "txdintr");
1070 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1071 NULL, sc->sc_dev.dv_xname, "txiintr");
1072 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "rxintr");
1074 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1075 NULL, sc->sc_dev.dv_xname, "hiberr");
1076 #ifndef DP83820
1077 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1078 NULL, sc->sc_dev.dv_xname, "rxpause");
1079 #endif /* !DP83820 */
1080 #ifdef DP83820
1081 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "rxpause");
1083 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "txpause");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "rxipsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1091 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1092 NULL, sc->sc_dev.dv_xname, "txipsum");
1093 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1094 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1095 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1096 NULL, sc->sc_dev.dv_xname, "txudpsum");
1097 #endif /* DP83820 */
1098 #endif /* SIP_EVENT_COUNTERS */
1099
1100 /*
1101 * Make sure the interface is shutdown during reboot.
1102 */
1103 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1104 if (sc->sc_sdhook == NULL)
1105 printf("%s: WARNING: unable to establish shutdown hook\n",
1106 sc->sc_dev.dv_xname);
1107 return;
1108
1109 /*
1110 * Free any resources we've allocated during the failed attach
1111 * attempt. Do this in reverse order and fall through.
1112 */
1113 fail_5:
1114 for (i = 0; i < SIP_NRXDESC; i++) {
1115 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1116 bus_dmamap_destroy(sc->sc_dmat,
1117 sc->sc_rxsoft[i].rxs_dmamap);
1118 }
1119 fail_4:
1120 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1121 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1122 bus_dmamap_destroy(sc->sc_dmat,
1123 sc->sc_txsoft[i].txs_dmamap);
1124 }
1125 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1126 fail_3:
1127 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1128 fail_2:
1129 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1130 sizeof(struct sip_control_data));
1131 fail_1:
1132 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1133 fail_0:
1134 return;
1135 }
1136
1137 /*
1138 * sip_shutdown:
1139 *
1140 * Make sure the interface is stopped at reboot time.
1141 */
1142 static void
1143 SIP_DECL(shutdown)(void *arg)
1144 {
1145 struct sip_softc *sc = arg;
1146
1147 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1148 }
1149
1150 /*
1151 * sip_start: [ifnet interface function]
1152 *
1153 * Start packet transmission on the interface.
1154 */
1155 static void
1156 SIP_DECL(start)(struct ifnet *ifp)
1157 {
1158 struct sip_softc *sc = ifp->if_softc;
1159 struct mbuf *m0;
1160 #ifndef DP83820
1161 struct mbuf *m;
1162 #endif
1163 struct sip_txsoft *txs;
1164 bus_dmamap_t dmamap;
1165 int error, nexttx, lasttx, seg;
1166 int ofree = sc->sc_txfree;
1167 #if 0
1168 int firsttx = sc->sc_txnext;
1169 #endif
1170 #ifdef DP83820
1171 struct m_tag *mtag;
1172 u_int32_t extsts;
1173 #endif
1174
1175 #ifndef DP83820
1176 /*
1177 * If we've been told to pause, don't transmit any more packets.
1178 */
1179 if (sc->sc_paused)
1180 ifp->if_flags |= IFF_OACTIVE;
1181 #endif
1182
1183 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1184 return;
1185
1186 /*
1187 * Loop through the send queue, setting up transmit descriptors
1188 * until we drain the queue, or use up all available transmit
1189 * descriptors.
1190 */
1191 for (;;) {
1192 /* Get a work queue entry. */
1193 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1194 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1195 break;
1196 }
1197
1198 /*
1199 * Grab a packet off the queue.
1200 */
1201 IFQ_POLL(&ifp->if_snd, m0);
1202 if (m0 == NULL)
1203 break;
1204 #ifndef DP83820
1205 m = NULL;
1206 #endif
1207
1208 dmamap = txs->txs_dmamap;
1209
1210 #ifdef DP83820
1211 /*
1212 * Load the DMA map. If this fails, the packet either
1213 * didn't fit in the allotted number of segments, or we
1214 * were short on resources. For the too-many-segments
1215 * case, we simply report an error and drop the packet,
1216 * since we can't sanely copy a jumbo packet to a single
1217 * buffer.
1218 */
1219 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1220 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1221 if (error) {
1222 if (error == EFBIG) {
1223 printf("%s: Tx packet consumes too many "
1224 "DMA segments, dropping...\n",
1225 sc->sc_dev.dv_xname);
1226 IFQ_DEQUEUE(&ifp->if_snd, m0);
1227 m_freem(m0);
1228 continue;
1229 }
1230 /*
1231 * Short on resources, just stop for now.
1232 */
1233 break;
1234 }
1235 #else /* DP83820 */
1236 /*
1237 * Load the DMA map. If this fails, the packet either
1238 * didn't fit in the alloted number of segments, or we
1239 * were short on resources. In this case, we'll copy
1240 * and try again.
1241 */
1242 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1243 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1244 MGETHDR(m, M_DONTWAIT, MT_DATA);
1245 if (m == NULL) {
1246 printf("%s: unable to allocate Tx mbuf\n",
1247 sc->sc_dev.dv_xname);
1248 break;
1249 }
1250 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1251 if (m0->m_pkthdr.len > MHLEN) {
1252 MCLGET(m, M_DONTWAIT);
1253 if ((m->m_flags & M_EXT) == 0) {
1254 printf("%s: unable to allocate Tx "
1255 "cluster\n", sc->sc_dev.dv_xname);
1256 m_freem(m);
1257 break;
1258 }
1259 }
1260 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1261 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1262 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1263 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1264 if (error) {
1265 printf("%s: unable to load Tx buffer, "
1266 "error = %d\n", sc->sc_dev.dv_xname, error);
1267 break;
1268 }
1269 }
1270 #endif /* DP83820 */
1271
1272 /*
1273 * Ensure we have enough descriptors free to describe
1274 * the packet. Note, we always reserve one descriptor
1275 * at the end of the ring as a termination point, to
1276 * prevent wrap-around.
1277 */
1278 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1279 /*
1280 * Not enough free descriptors to transmit this
1281 * packet. We haven't committed anything yet,
1282 * so just unload the DMA map, put the packet
1283 * back on the queue, and punt. Notify the upper
1284 * layer that there are not more slots left.
1285 *
1286 * XXX We could allocate an mbuf and copy, but
1287 * XXX is it worth it?
1288 */
1289 ifp->if_flags |= IFF_OACTIVE;
1290 bus_dmamap_unload(sc->sc_dmat, dmamap);
1291 #ifndef DP83820
1292 if (m != NULL)
1293 m_freem(m);
1294 #endif
1295 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1296 break;
1297 }
1298
1299 IFQ_DEQUEUE(&ifp->if_snd, m0);
1300 #ifndef DP83820
1301 if (m != NULL) {
1302 m_freem(m0);
1303 m0 = m;
1304 }
1305 #endif
1306
1307 /*
1308 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1309 */
1310
1311 /* Sync the DMA map. */
1312 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1313 BUS_DMASYNC_PREWRITE);
1314
1315 /*
1316 * Initialize the transmit descriptors.
1317 */
1318 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1319 seg < dmamap->dm_nsegs;
1320 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1321 /*
1322 * If this is the first descriptor we're
1323 * enqueueing, don't set the OWN bit just
1324 * yet. That could cause a race condition.
1325 * We'll do it below.
1326 */
1327 sc->sc_txdescs[nexttx].sipd_bufptr =
1328 htole32(dmamap->dm_segs[seg].ds_addr);
1329 sc->sc_txdescs[nexttx].sipd_cmdsts =
1330 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1331 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1332 #ifdef DP83820
1333 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1334 #endif /* DP83820 */
1335 lasttx = nexttx;
1336 }
1337
1338 /* Clear the MORE bit on the last segment. */
1339 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1340
1341 /*
1342 * If we're in the interrupt delay window, delay the
1343 * interrupt.
1344 */
1345 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1346 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1347 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1348 htole32(CMDSTS_INTR);
1349 sc->sc_txwin = 0;
1350 }
1351
1352 #ifdef DP83820
1353 /*
1354 * If VLANs are enabled and the packet has a VLAN tag, set
1355 * up the descriptor to encapsulate the packet for us.
1356 *
1357 * This apparently has to be on the last descriptor of
1358 * the packet.
1359 */
1360 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1361 sc->sc_txdescs[lasttx].sipd_extsts |=
1362 htole32(EXTSTS_VPKT |
1363 (VLAN_TAG_VALUE(mtag) & EXTSTS_VTCI));
1364 }
1365
1366 /*
1367 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1368 * checksumming, set up the descriptor to do this work
1369 * for us.
1370 *
1371 * This apparently has to be on the first descriptor of
1372 * the packet.
1373 *
1374 * Byte-swap constants so the compiler can optimize.
1375 */
1376 extsts = 0;
1377 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1378 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1379 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1380 extsts |= htole32(EXTSTS_IPPKT);
1381 }
1382 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1383 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1384 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1385 extsts |= htole32(EXTSTS_TCPPKT);
1386 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1387 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1388 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1389 extsts |= htole32(EXTSTS_UDPPKT);
1390 }
1391 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1392 #endif /* DP83820 */
1393
1394 /* Sync the descriptors we're using. */
1395 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1396 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1397
1398 /*
1399 * The entire packet is set up. Give the first descrptor
1400 * to the chip now.
1401 */
1402 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1403 htole32(CMDSTS_OWN);
1404 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1405 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1406
1407 /*
1408 * Store a pointer to the packet so we can free it later,
1409 * and remember what txdirty will be once the packet is
1410 * done.
1411 */
1412 txs->txs_mbuf = m0;
1413 txs->txs_firstdesc = sc->sc_txnext;
1414 txs->txs_lastdesc = lasttx;
1415
1416 /* Advance the tx pointer. */
1417 sc->sc_txfree -= dmamap->dm_nsegs;
1418 sc->sc_txnext = nexttx;
1419
1420 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1421 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1422
1423 #if NBPFILTER > 0
1424 /*
1425 * Pass the packet to any BPF listeners.
1426 */
1427 if (ifp->if_bpf)
1428 bpf_mtap(ifp->if_bpf, m0);
1429 #endif /* NBPFILTER > 0 */
1430 }
1431
1432 if (txs == NULL || sc->sc_txfree == 0) {
1433 /* No more slots left; notify upper layer. */
1434 ifp->if_flags |= IFF_OACTIVE;
1435 }
1436
1437 if (sc->sc_txfree != ofree) {
1438 /*
1439 * Start the transmit process. Note, the manual says
1440 * that if there are no pending transmissions in the
1441 * chip's internal queue (indicated by TXE being clear),
1442 * then the driver software must set the TXDP to the
1443 * first descriptor to be transmitted. However, if we
1444 * do this, it causes serious performance degredation on
1445 * the DP83820 under load, not setting TXDP doesn't seem
1446 * to adversely affect the SiS 900 or DP83815.
1447 *
1448 * Well, I guess it wouldn't be the first time a manual
1449 * has lied -- and they could be speaking of the NULL-
1450 * terminated descriptor list case, rather than OWN-
1451 * terminated rings.
1452 */
1453 #if 0
1454 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1455 CR_TXE) == 0) {
1456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1457 SIP_CDTXADDR(sc, firsttx));
1458 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1459 }
1460 #else
1461 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1462 #endif
1463
1464 /* Set a watchdog timer in case the chip flakes out. */
1465 #ifdef DP83820
1466 /* Gigabit autonegotiation takes 5 seconds. */
1467 ifp->if_timer = 10;
1468 #else
1469 ifp->if_timer = 5;
1470 #endif
1471 }
1472 }
1473
1474 /*
1475 * sip_watchdog: [ifnet interface function]
1476 *
1477 * Watchdog timer handler.
1478 */
1479 static void
1480 SIP_DECL(watchdog)(struct ifnet *ifp)
1481 {
1482 struct sip_softc *sc = ifp->if_softc;
1483
1484 /*
1485 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1486 * If we get a timeout, try and sweep up transmit descriptors.
1487 * If we manage to sweep them all up, ignore the lack of
1488 * interrupt.
1489 */
1490 SIP_DECL(txintr)(sc);
1491
1492 if (sc->sc_txfree != SIP_NTXDESC) {
1493 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1494 ifp->if_oerrors++;
1495
1496 /* Reset the interface. */
1497 (void) SIP_DECL(init)(ifp);
1498 } else if (ifp->if_flags & IFF_DEBUG)
1499 printf("%s: recovered from device timeout\n",
1500 sc->sc_dev.dv_xname);
1501
1502 /* Try to get more packets going. */
1503 SIP_DECL(start)(ifp);
1504 }
1505
1506 /*
1507 * sip_ioctl: [ifnet interface function]
1508 *
1509 * Handle control requests from the operator.
1510 */
1511 static int
1512 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1513 {
1514 struct sip_softc *sc = ifp->if_softc;
1515 struct ifreq *ifr = (struct ifreq *)data;
1516 int s, error;
1517
1518 s = splnet();
1519
1520 switch (cmd) {
1521 case SIOCSIFMEDIA:
1522 /* Flow control requires full-duplex mode. */
1523 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1524 (ifr->ifr_media & IFM_FDX) == 0)
1525 ifr->ifr_media &= ~IFM_ETH_FMASK;
1526 #ifdef DP83820
1527 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1528 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1529 /* We can do both TXPAUSE and RXPAUSE. */
1530 ifr->ifr_media |=
1531 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1532 }
1533 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1534 }
1535 #else
1536 /* XXX */
1537 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1538 ifr->ifr_media &= ~IFM_ETH_FMASK;
1539
1540 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1541 if (ifr->ifr_media & IFM_FLOW) {
1542 /*
1543 * Both TXPAUSE and RXPAUSE must be set.
1544 * (SiS900 and DP83815 don't have PAUSE_ASYM
1545 * feature.)
1546 *
1547 * XXX Can SiS900 and DP83815 send PAUSE?
1548 */
1549 ifr->ifr_media |=
1550 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1551 }
1552 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1553 }
1554 #endif
1555 /* FALLTHROUGH */
1556 case SIOCGIFMEDIA:
1557 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1558 break;
1559 case SIOCSIFFLAGS:
1560 /* If the interface is up and running, only modify the receive
1561 * filter when setting promiscuous or debug mode. Otherwise
1562 * fall through to ether_ioctl, which will reset the chip.
1563 */
1564 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1565 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1566 == (IFF_UP|IFF_RUNNING))
1567 && ((ifp->if_flags & (~RESETIGN))
1568 == (sc->sc_if_flags & (~RESETIGN)))) {
1569 /* Set up the receive filter. */
1570 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1571 error = 0;
1572 break;
1573 #undef RESETIGN
1574 }
1575 /* FALLTHROUGH */
1576 default:
1577 error = ether_ioctl(ifp, cmd, data);
1578 if (error == ENETRESET) {
1579 /*
1580 * Multicast list has changed; set the hardware filter
1581 * accordingly.
1582 */
1583 if (ifp->if_flags & IFF_RUNNING)
1584 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1585 error = 0;
1586 }
1587 break;
1588 }
1589
1590 /* Try to get more packets going. */
1591 SIP_DECL(start)(ifp);
1592
1593 sc->sc_if_flags = ifp->if_flags;
1594 splx(s);
1595 return (error);
1596 }
1597
1598 /*
1599 * sip_intr:
1600 *
1601 * Interrupt service routine.
1602 */
1603 static int
1604 SIP_DECL(intr)(void *arg)
1605 {
1606 struct sip_softc *sc = arg;
1607 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1608 u_int32_t isr;
1609 int handled = 0;
1610
1611 /* Disable interrupts. */
1612 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1613
1614 for (;;) {
1615 /* Reading clears interrupt. */
1616 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1617 if ((isr & sc->sc_imr) == 0)
1618 break;
1619
1620 #if NRND > 0
1621 if (RND_ENABLED(&sc->rnd_source))
1622 rnd_add_uint32(&sc->rnd_source, isr);
1623 #endif
1624
1625 handled = 1;
1626
1627 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1628 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1629
1630 /* Grab any new packets. */
1631 SIP_DECL(rxintr)(sc);
1632
1633 if (isr & ISR_RXORN) {
1634 printf("%s: receive FIFO overrun\n",
1635 sc->sc_dev.dv_xname);
1636
1637 /* XXX adjust rx_drain_thresh? */
1638 }
1639
1640 if (isr & ISR_RXIDLE) {
1641 printf("%s: receive ring overrun\n",
1642 sc->sc_dev.dv_xname);
1643
1644 /* Get the receive process going again. */
1645 bus_space_write_4(sc->sc_st, sc->sc_sh,
1646 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1647 bus_space_write_4(sc->sc_st, sc->sc_sh,
1648 SIP_CR, CR_RXE);
1649 }
1650 }
1651
1652 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1653 #ifdef SIP_EVENT_COUNTERS
1654 if (isr & ISR_TXDESC)
1655 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1656 else if (isr & ISR_TXIDLE)
1657 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1658 #endif
1659
1660 /* Sweep up transmit descriptors. */
1661 SIP_DECL(txintr)(sc);
1662
1663 if (isr & ISR_TXURN) {
1664 u_int32_t thresh;
1665
1666 printf("%s: transmit FIFO underrun",
1667 sc->sc_dev.dv_xname);
1668
1669 thresh = sc->sc_tx_drain_thresh + 1;
1670 if (thresh <= TXCFG_DRTH &&
1671 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1672 (sc->sc_tx_fill_thresh * 32))) {
1673 printf("; increasing Tx drain "
1674 "threshold to %u bytes\n",
1675 thresh * 32);
1676 sc->sc_tx_drain_thresh = thresh;
1677 (void) SIP_DECL(init)(ifp);
1678 } else {
1679 (void) SIP_DECL(init)(ifp);
1680 printf("\n");
1681 }
1682 }
1683 }
1684
1685 #if !defined(DP83820)
1686 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1687 if (isr & ISR_PAUSE_ST) {
1688 sc->sc_paused = 1;
1689 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1690 ifp->if_flags |= IFF_OACTIVE;
1691 }
1692 if (isr & ISR_PAUSE_END) {
1693 sc->sc_paused = 0;
1694 ifp->if_flags &= ~IFF_OACTIVE;
1695 }
1696 }
1697 #endif /* ! DP83820 */
1698
1699 if (isr & ISR_HIBERR) {
1700 int want_init = 0;
1701
1702 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1703
1704 #define PRINTERR(bit, str) \
1705 do { \
1706 if ((isr & (bit)) != 0) { \
1707 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1708 printf("%s: %s\n", \
1709 sc->sc_dev.dv_xname, str); \
1710 want_init = 1; \
1711 } \
1712 } while (/*CONSTCOND*/0)
1713
1714 PRINTERR(ISR_DPERR, "parity error");
1715 PRINTERR(ISR_SSERR, "system error");
1716 PRINTERR(ISR_RMABT, "master abort");
1717 PRINTERR(ISR_RTABT, "target abort");
1718 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1719 /*
1720 * Ignore:
1721 * Tx reset complete
1722 * Rx reset complete
1723 */
1724 if (want_init)
1725 (void) SIP_DECL(init)(ifp);
1726 #undef PRINTERR
1727 }
1728 }
1729
1730 /* Re-enable interrupts. */
1731 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1732
1733 /* Try to get more packets going. */
1734 SIP_DECL(start)(ifp);
1735
1736 return (handled);
1737 }
1738
1739 /*
1740 * sip_txintr:
1741 *
1742 * Helper; handle transmit interrupts.
1743 */
1744 static void
1745 SIP_DECL(txintr)(struct sip_softc *sc)
1746 {
1747 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1748 struct sip_txsoft *txs;
1749 u_int32_t cmdsts;
1750
1751 #ifndef DP83820
1752 if (sc->sc_paused == 0)
1753 #endif
1754 ifp->if_flags &= ~IFF_OACTIVE;
1755
1756 /*
1757 * Go through our Tx list and free mbufs for those
1758 * frames which have been transmitted.
1759 */
1760 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1761 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1762 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1763
1764 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1765 if (cmdsts & CMDSTS_OWN)
1766 break;
1767
1768 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1769
1770 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1771
1772 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1773 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1774 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1775 m_freem(txs->txs_mbuf);
1776 txs->txs_mbuf = NULL;
1777
1778 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1779
1780 /*
1781 * Check for errors and collisions.
1782 */
1783 if (cmdsts &
1784 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1785 ifp->if_oerrors++;
1786 if (cmdsts & CMDSTS_Tx_EC)
1787 ifp->if_collisions += 16;
1788 if (ifp->if_flags & IFF_DEBUG) {
1789 if (cmdsts & CMDSTS_Tx_ED)
1790 printf("%s: excessive deferral\n",
1791 sc->sc_dev.dv_xname);
1792 if (cmdsts & CMDSTS_Tx_EC)
1793 printf("%s: excessive collisions\n",
1794 sc->sc_dev.dv_xname);
1795 }
1796 } else {
1797 /* Packet was transmitted successfully. */
1798 ifp->if_opackets++;
1799 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1800 }
1801 }
1802
1803 /*
1804 * If there are no more pending transmissions, cancel the watchdog
1805 * timer.
1806 */
1807 if (txs == NULL) {
1808 ifp->if_timer = 0;
1809 sc->sc_txwin = 0;
1810 }
1811 }
1812
1813 #if defined(DP83820)
1814 /*
1815 * sip_rxintr:
1816 *
1817 * Helper; handle receive interrupts.
1818 */
1819 static void
1820 SIP_DECL(rxintr)(struct sip_softc *sc)
1821 {
1822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1823 struct sip_rxsoft *rxs;
1824 struct mbuf *m;
1825 u_int32_t cmdsts, extsts;
1826 int i, len;
1827
1828 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1829 rxs = &sc->sc_rxsoft[i];
1830
1831 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1832
1833 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1834 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1835 len = CMDSTS_SIZE(cmdsts);
1836
1837 /*
1838 * NOTE: OWN is set if owned by _consumer_. We're the
1839 * consumer of the receive ring, so if the bit is clear,
1840 * we have processed all of the packets.
1841 */
1842 if ((cmdsts & CMDSTS_OWN) == 0) {
1843 /*
1844 * We have processed all of the receive buffers.
1845 */
1846 break;
1847 }
1848
1849 if (__predict_false(sc->sc_rxdiscard)) {
1850 SIP_INIT_RXDESC(sc, i);
1851 if ((cmdsts & CMDSTS_MORE) == 0) {
1852 /* Reset our state. */
1853 sc->sc_rxdiscard = 0;
1854 }
1855 continue;
1856 }
1857
1858 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1859 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1860
1861 m = rxs->rxs_mbuf;
1862
1863 /*
1864 * Add a new receive buffer to the ring.
1865 */
1866 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1867 /*
1868 * Failed, throw away what we've done so
1869 * far, and discard the rest of the packet.
1870 */
1871 ifp->if_ierrors++;
1872 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1873 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1874 SIP_INIT_RXDESC(sc, i);
1875 if (cmdsts & CMDSTS_MORE)
1876 sc->sc_rxdiscard = 1;
1877 if (sc->sc_rxhead != NULL)
1878 m_freem(sc->sc_rxhead);
1879 SIP_RXCHAIN_RESET(sc);
1880 continue;
1881 }
1882
1883 SIP_RXCHAIN_LINK(sc, m);
1884
1885 m->m_len = len;
1886
1887 /*
1888 * If this is not the end of the packet, keep
1889 * looking.
1890 */
1891 if (cmdsts & CMDSTS_MORE) {
1892 sc->sc_rxlen += len;
1893 continue;
1894 }
1895
1896 /*
1897 * Okay, we have the entire packet now. The chip includes
1898 * the FCS, so we need to trim it.
1899 */
1900 m->m_len -= ETHER_CRC_LEN;
1901
1902 *sc->sc_rxtailp = NULL;
1903 len = m->m_len + sc->sc_rxlen;
1904 m = sc->sc_rxhead;
1905
1906 SIP_RXCHAIN_RESET(sc);
1907
1908 /*
1909 * If an error occurred, update stats and drop the packet.
1910 */
1911 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1912 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1913 ifp->if_ierrors++;
1914 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1915 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1916 /* Receive overrun handled elsewhere. */
1917 printf("%s: receive descriptor error\n",
1918 sc->sc_dev.dv_xname);
1919 }
1920 #define PRINTERR(bit, str) \
1921 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1922 (cmdsts & (bit)) != 0) \
1923 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1924 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1925 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1926 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1927 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1928 #undef PRINTERR
1929 m_freem(m);
1930 continue;
1931 }
1932
1933 /*
1934 * If the packet is small enough to fit in a
1935 * single header mbuf, allocate one and copy
1936 * the data into it. This greatly reduces
1937 * memory consumption when we receive lots
1938 * of small packets.
1939 */
1940 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1941 struct mbuf *nm;
1942 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1943 if (nm == NULL) {
1944 ifp->if_ierrors++;
1945 m_freem(m);
1946 continue;
1947 }
1948 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1949 nm->m_data += 2;
1950 nm->m_pkthdr.len = nm->m_len = len;
1951 m_copydata(m, 0, len, mtod(nm, caddr_t));
1952 m_freem(m);
1953 m = nm;
1954 }
1955 #ifndef __NO_STRICT_ALIGNMENT
1956 else {
1957 /*
1958 * The DP83820's receive buffers must be 4-byte
1959 * aligned. But this means that the data after
1960 * the Ethernet header is misaligned. To compensate,
1961 * we have artificially shortened the buffer size
1962 * in the descriptor, and we do an overlapping copy
1963 * of the data two bytes further in (in the first
1964 * buffer of the chain only).
1965 */
1966 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1967 m->m_len);
1968 m->m_data += 2;
1969 }
1970 #endif /* ! __NO_STRICT_ALIGNMENT */
1971
1972 /*
1973 * If VLANs are enabled, VLAN packets have been unwrapped
1974 * for us. Associate the tag with the packet.
1975 */
1976 if ((extsts & EXTSTS_VPKT) != 0) {
1977 VLAN_INPUT_TAG(ifp, m, ntohs(extsts & EXTSTS_VTCI),
1978 continue);
1979 }
1980
1981 /*
1982 * Set the incoming checksum information for the
1983 * packet.
1984 */
1985 if ((extsts & EXTSTS_IPPKT) != 0) {
1986 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1987 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1988 if (extsts & EXTSTS_Rx_IPERR)
1989 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1990 if (extsts & EXTSTS_TCPPKT) {
1991 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1992 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1993 if (extsts & EXTSTS_Rx_TCPERR)
1994 m->m_pkthdr.csum_flags |=
1995 M_CSUM_TCP_UDP_BAD;
1996 } else if (extsts & EXTSTS_UDPPKT) {
1997 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1998 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1999 if (extsts & EXTSTS_Rx_UDPERR)
2000 m->m_pkthdr.csum_flags |=
2001 M_CSUM_TCP_UDP_BAD;
2002 }
2003 }
2004
2005 ifp->if_ipackets++;
2006 m->m_pkthdr.rcvif = ifp;
2007 m->m_pkthdr.len = len;
2008
2009 #if NBPFILTER > 0
2010 /*
2011 * Pass this up to any BPF listeners, but only
2012 * pass if up the stack if it's for us.
2013 */
2014 if (ifp->if_bpf)
2015 bpf_mtap(ifp->if_bpf, m);
2016 #endif /* NBPFILTER > 0 */
2017
2018 /* Pass it on. */
2019 (*ifp->if_input)(ifp, m);
2020 }
2021
2022 /* Update the receive pointer. */
2023 sc->sc_rxptr = i;
2024 }
2025 #else /* ! DP83820 */
2026 /*
2027 * sip_rxintr:
2028 *
2029 * Helper; handle receive interrupts.
2030 */
2031 static void
2032 SIP_DECL(rxintr)(struct sip_softc *sc)
2033 {
2034 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2035 struct sip_rxsoft *rxs;
2036 struct mbuf *m;
2037 u_int32_t cmdsts;
2038 int i, len;
2039
2040 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2041 rxs = &sc->sc_rxsoft[i];
2042
2043 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2044
2045 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2046
2047 /*
2048 * NOTE: OWN is set if owned by _consumer_. We're the
2049 * consumer of the receive ring, so if the bit is clear,
2050 * we have processed all of the packets.
2051 */
2052 if ((cmdsts & CMDSTS_OWN) == 0) {
2053 /*
2054 * We have processed all of the receive buffers.
2055 */
2056 break;
2057 }
2058
2059 /*
2060 * If any collisions were seen on the wire, count one.
2061 */
2062 if (cmdsts & CMDSTS_Rx_COL)
2063 ifp->if_collisions++;
2064
2065 /*
2066 * If an error occurred, update stats, clear the status
2067 * word, and leave the packet buffer in place. It will
2068 * simply be reused the next time the ring comes around.
2069 */
2070 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2071 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2072 ifp->if_ierrors++;
2073 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2074 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2075 /* Receive overrun handled elsewhere. */
2076 printf("%s: receive descriptor error\n",
2077 sc->sc_dev.dv_xname);
2078 }
2079 #define PRINTERR(bit, str) \
2080 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2081 (cmdsts & (bit)) != 0) \
2082 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2083 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2084 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2085 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2086 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2087 #undef PRINTERR
2088 SIP_INIT_RXDESC(sc, i);
2089 continue;
2090 }
2091
2092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2094
2095 /*
2096 * No errors; receive the packet. Note, the SiS 900
2097 * includes the CRC with every packet.
2098 */
2099 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2100
2101 #ifdef __NO_STRICT_ALIGNMENT
2102 /*
2103 * If the packet is small enough to fit in a
2104 * single header mbuf, allocate one and copy
2105 * the data into it. This greatly reduces
2106 * memory consumption when we receive lots
2107 * of small packets.
2108 *
2109 * Otherwise, we add a new buffer to the receive
2110 * chain. If this fails, we drop the packet and
2111 * recycle the old buffer.
2112 */
2113 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2114 MGETHDR(m, M_DONTWAIT, MT_DATA);
2115 if (m == NULL)
2116 goto dropit;
2117 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2118 memcpy(mtod(m, caddr_t),
2119 mtod(rxs->rxs_mbuf, caddr_t), len);
2120 SIP_INIT_RXDESC(sc, i);
2121 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2122 rxs->rxs_dmamap->dm_mapsize,
2123 BUS_DMASYNC_PREREAD);
2124 } else {
2125 m = rxs->rxs_mbuf;
2126 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2127 dropit:
2128 ifp->if_ierrors++;
2129 SIP_INIT_RXDESC(sc, i);
2130 bus_dmamap_sync(sc->sc_dmat,
2131 rxs->rxs_dmamap, 0,
2132 rxs->rxs_dmamap->dm_mapsize,
2133 BUS_DMASYNC_PREREAD);
2134 continue;
2135 }
2136 }
2137 #else
2138 /*
2139 * The SiS 900's receive buffers must be 4-byte aligned.
2140 * But this means that the data after the Ethernet header
2141 * is misaligned. We must allocate a new buffer and
2142 * copy the data, shifted forward 2 bytes.
2143 */
2144 MGETHDR(m, M_DONTWAIT, MT_DATA);
2145 if (m == NULL) {
2146 dropit:
2147 ifp->if_ierrors++;
2148 SIP_INIT_RXDESC(sc, i);
2149 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2150 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2151 continue;
2152 }
2153 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2154 if (len > (MHLEN - 2)) {
2155 MCLGET(m, M_DONTWAIT);
2156 if ((m->m_flags & M_EXT) == 0) {
2157 m_freem(m);
2158 goto dropit;
2159 }
2160 }
2161 m->m_data += 2;
2162
2163 /*
2164 * Note that we use clusters for incoming frames, so the
2165 * buffer is virtually contiguous.
2166 */
2167 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2168
2169 /* Allow the receive descriptor to continue using its mbuf. */
2170 SIP_INIT_RXDESC(sc, i);
2171 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2172 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2173 #endif /* __NO_STRICT_ALIGNMENT */
2174
2175 ifp->if_ipackets++;
2176 m->m_pkthdr.rcvif = ifp;
2177 m->m_pkthdr.len = m->m_len = len;
2178
2179 #if NBPFILTER > 0
2180 /*
2181 * Pass this up to any BPF listeners, but only
2182 * pass if up the stack if it's for us.
2183 */
2184 if (ifp->if_bpf)
2185 bpf_mtap(ifp->if_bpf, m);
2186 #endif /* NBPFILTER > 0 */
2187
2188 /* Pass it on. */
2189 (*ifp->if_input)(ifp, m);
2190 }
2191
2192 /* Update the receive pointer. */
2193 sc->sc_rxptr = i;
2194 }
2195 #endif /* DP83820 */
2196
2197 /*
2198 * sip_tick:
2199 *
2200 * One second timer, used to tick the MII.
2201 */
2202 static void
2203 SIP_DECL(tick)(void *arg)
2204 {
2205 struct sip_softc *sc = arg;
2206 int s;
2207
2208 s = splnet();
2209 #ifdef DP83820
2210 #ifdef SIP_EVENT_COUNTERS
2211 /* Read PAUSE related counts from MIB registers. */
2212 sc->sc_ev_rxpause.ev_count +=
2213 bus_space_read_4(sc->sc_st, sc->sc_sh,
2214 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2215 sc->sc_ev_txpause.ev_count +=
2216 bus_space_read_4(sc->sc_st, sc->sc_sh,
2217 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2218 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2219 #endif /* SIP_EVENT_COUNTERS */
2220 #endif /* DP83820 */
2221 mii_tick(&sc->sc_mii);
2222 splx(s);
2223
2224 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2225 }
2226
2227 /*
2228 * sip_reset:
2229 *
2230 * Perform a soft reset on the SiS 900.
2231 */
2232 static void
2233 SIP_DECL(reset)(struct sip_softc *sc)
2234 {
2235 bus_space_tag_t st = sc->sc_st;
2236 bus_space_handle_t sh = sc->sc_sh;
2237 int i;
2238
2239 bus_space_write_4(st, sh, SIP_IER, 0);
2240 bus_space_write_4(st, sh, SIP_IMR, 0);
2241 bus_space_write_4(st, sh, SIP_RFCR, 0);
2242 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2243
2244 for (i = 0; i < SIP_TIMEOUT; i++) {
2245 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2246 break;
2247 delay(2);
2248 }
2249
2250 if (i == SIP_TIMEOUT)
2251 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2252
2253 delay(1000);
2254
2255 #ifdef DP83820
2256 /*
2257 * Set the general purpose I/O bits. Do it here in case we
2258 * need to have GPIO set up to talk to the media interface.
2259 */
2260 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2261 delay(1000);
2262 #endif /* DP83820 */
2263 }
2264
2265 /*
2266 * sip_init: [ ifnet interface function ]
2267 *
2268 * Initialize the interface. Must be called at splnet().
2269 */
2270 static int
2271 SIP_DECL(init)(struct ifnet *ifp)
2272 {
2273 struct sip_softc *sc = ifp->if_softc;
2274 bus_space_tag_t st = sc->sc_st;
2275 bus_space_handle_t sh = sc->sc_sh;
2276 struct sip_txsoft *txs;
2277 struct sip_rxsoft *rxs;
2278 struct sip_desc *sipd;
2279 #if defined(DP83820)
2280 u_int32_t reg;
2281 #endif
2282 int i, error = 0;
2283
2284 /*
2285 * Cancel any pending I/O.
2286 */
2287 SIP_DECL(stop)(ifp, 0);
2288
2289 /*
2290 * Reset the chip to a known state.
2291 */
2292 SIP_DECL(reset)(sc);
2293
2294 #if !defined(DP83820)
2295 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2296 /*
2297 * DP83815 manual, page 78:
2298 * 4.4 Recommended Registers Configuration
2299 * For optimum performance of the DP83815, version noted
2300 * as DP83815CVNG (SRR = 203h), the listed register
2301 * modifications must be followed in sequence...
2302 *
2303 * It's not clear if this should be 302h or 203h because that
2304 * chip name is listed as SRR 302h in the description of the
2305 * SRR register. However, my revision 302h DP83815 on the
2306 * Netgear FA311 purchased in 02/2001 needs these settings
2307 * to avoid tons of errors in AcceptPerfectMatch (non-
2308 * IFF_PROMISC) mode. I do not know if other revisions need
2309 * this set or not. [briggs -- 09 March 2001]
2310 *
2311 * Note that only the low-order 12 bits of 0xe4 are documented
2312 * and that this sets reserved bits in that register.
2313 */
2314 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2315
2316 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2317 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2318 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2319 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2320
2321 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2322 }
2323 #endif /* ! DP83820 */
2324
2325 /*
2326 * Initialize the transmit descriptor ring.
2327 */
2328 for (i = 0; i < SIP_NTXDESC; i++) {
2329 sipd = &sc->sc_txdescs[i];
2330 memset(sipd, 0, sizeof(struct sip_desc));
2331 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2332 }
2333 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2334 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2335 sc->sc_txfree = SIP_NTXDESC;
2336 sc->sc_txnext = 0;
2337 sc->sc_txwin = 0;
2338
2339 /*
2340 * Initialize the transmit job descriptors.
2341 */
2342 SIMPLEQ_INIT(&sc->sc_txfreeq);
2343 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2344 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2345 txs = &sc->sc_txsoft[i];
2346 txs->txs_mbuf = NULL;
2347 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2348 }
2349
2350 /*
2351 * Initialize the receive descriptor and receive job
2352 * descriptor rings.
2353 */
2354 for (i = 0; i < SIP_NRXDESC; i++) {
2355 rxs = &sc->sc_rxsoft[i];
2356 if (rxs->rxs_mbuf == NULL) {
2357 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2358 printf("%s: unable to allocate or map rx "
2359 "buffer %d, error = %d\n",
2360 sc->sc_dev.dv_xname, i, error);
2361 /*
2362 * XXX Should attempt to run with fewer receive
2363 * XXX buffers instead of just failing.
2364 */
2365 SIP_DECL(rxdrain)(sc);
2366 goto out;
2367 }
2368 } else
2369 SIP_INIT_RXDESC(sc, i);
2370 }
2371 sc->sc_rxptr = 0;
2372 #ifdef DP83820
2373 sc->sc_rxdiscard = 0;
2374 SIP_RXCHAIN_RESET(sc);
2375 #endif /* DP83820 */
2376
2377 /*
2378 * Set the configuration register; it's already initialized
2379 * in sip_attach().
2380 */
2381 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2382
2383 /*
2384 * Initialize the prototype TXCFG register.
2385 */
2386 #if defined(DP83820)
2387 sc->sc_txcfg = TXCFG_MXDMA_512;
2388 sc->sc_rxcfg = RXCFG_MXDMA_512;
2389 #else
2390 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2391 SIP_SIS900_REV(sc, SIS_REV_960) ||
2392 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2393 (sc->sc_cfg & CFG_EDBMASTEN)) {
2394 sc->sc_txcfg = TXCFG_MXDMA_64;
2395 sc->sc_rxcfg = RXCFG_MXDMA_64;
2396 } else {
2397 sc->sc_txcfg = TXCFG_MXDMA_512;
2398 sc->sc_rxcfg = RXCFG_MXDMA_512;
2399 }
2400 #endif /* DP83820 */
2401
2402 sc->sc_txcfg |= TXCFG_ATP |
2403 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2404 sc->sc_tx_drain_thresh;
2405 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2406
2407 /*
2408 * Initialize the receive drain threshold if we have never
2409 * done so.
2410 */
2411 if (sc->sc_rx_drain_thresh == 0) {
2412 /*
2413 * XXX This value should be tuned. This is set to the
2414 * maximum of 248 bytes, and we may be able to improve
2415 * performance by decreasing it (although we should never
2416 * set this value lower than 2; 14 bytes are required to
2417 * filter the packet).
2418 */
2419 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2420 }
2421
2422 /*
2423 * Initialize the prototype RXCFG register.
2424 */
2425 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2426 #ifdef DP83820
2427 /*
2428 * Accept long packets (including FCS) so we can handle
2429 * 802.1q-tagged frames and jumbo frames properly.
2430 */
2431 if (ifp->if_mtu > ETHERMTU ||
2432 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2433 sc->sc_rxcfg |= RXCFG_ALP;
2434
2435 /*
2436 * Checksum offloading is disabled if the user selects an MTU
2437 * larger than 8109. (FreeBSD says 8152, but there is emperical
2438 * evidence that >8109 does not work on some boards, such as the
2439 * Planex GN-1000TE).
2440 */
2441 if (ifp->if_mtu > 8109 &&
2442 (ifp->if_capenable &
2443 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2444 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2445 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2446 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2447 "disabled.\n", sc->sc_dev.dv_xname);
2448 ifp->if_capenable &=
2449 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2450 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2451 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2452 ifp->if_csum_flags_tx = 0;
2453 ifp->if_csum_flags_rx = 0;
2454 }
2455 #else
2456 /*
2457 * Accept packets >1518 bytes (including FCS) so we can handle
2458 * 802.1q-tagged frames properly.
2459 */
2460 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2461 sc->sc_rxcfg |= RXCFG_ALP;
2462 #endif
2463 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2464
2465 #ifdef DP83820
2466 /*
2467 * Initialize the VLAN/IP receive control register.
2468 * We enable checksum computation on all incoming
2469 * packets, and do not reject packets w/ bad checksums.
2470 */
2471 reg = 0;
2472 if (ifp->if_capenable &
2473 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2474 reg |= VRCR_IPEN;
2475 if (VLAN_ATTACHED(&sc->sc_ethercom))
2476 reg |= VRCR_VTDEN|VRCR_VTREN;
2477 bus_space_write_4(st, sh, SIP_VRCR, reg);
2478
2479 /*
2480 * Initialize the VLAN/IP transmit control register.
2481 * We enable outgoing checksum computation on a
2482 * per-packet basis.
2483 */
2484 reg = 0;
2485 if (ifp->if_capenable &
2486 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2487 reg |= VTCR_PPCHK;
2488 if (VLAN_ATTACHED(&sc->sc_ethercom))
2489 reg |= VTCR_VPPTI;
2490 bus_space_write_4(st, sh, SIP_VTCR, reg);
2491
2492 /*
2493 * If we're using VLANs, initialize the VLAN data register.
2494 * To understand why we bswap the VLAN Ethertype, see section
2495 * 4.2.36 of the DP83820 manual.
2496 */
2497 if (VLAN_ATTACHED(&sc->sc_ethercom))
2498 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2499 #endif /* DP83820 */
2500
2501 /*
2502 * Give the transmit and receive rings to the chip.
2503 */
2504 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2505 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2506
2507 /*
2508 * Initialize the interrupt mask.
2509 */
2510 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2511 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2512 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2513
2514 /* Set up the receive filter. */
2515 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2516
2517 #ifdef DP83820
2518 /*
2519 * Tune sc_rx_flow_thresh.
2520 * XXX "More than 8KB" is too short for jumbo frames.
2521 * XXX TODO: Threshold value should be user-settable.
2522 */
2523 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2524 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2525 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2526 #endif
2527
2528 /*
2529 * Set the current media. Do this after initializing the prototype
2530 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2531 * control.
2532 */
2533 mii_mediachg(&sc->sc_mii);
2534
2535 #ifdef DP83820
2536 /*
2537 * Set the interrupt hold-off timer to 100us.
2538 */
2539 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2540 #endif
2541
2542 /*
2543 * Enable interrupts.
2544 */
2545 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2546
2547 /*
2548 * Start the transmit and receive processes.
2549 */
2550 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2551
2552 /*
2553 * Start the one second MII clock.
2554 */
2555 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2556
2557 /*
2558 * ...all done!
2559 */
2560 ifp->if_flags |= IFF_RUNNING;
2561 ifp->if_flags &= ~IFF_OACTIVE;
2562 sc->sc_if_flags = ifp->if_flags;
2563
2564 out:
2565 if (error)
2566 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2567 return (error);
2568 }
2569
2570 /*
2571 * sip_drain:
2572 *
2573 * Drain the receive queue.
2574 */
2575 static void
2576 SIP_DECL(rxdrain)(struct sip_softc *sc)
2577 {
2578 struct sip_rxsoft *rxs;
2579 int i;
2580
2581 for (i = 0; i < SIP_NRXDESC; i++) {
2582 rxs = &sc->sc_rxsoft[i];
2583 if (rxs->rxs_mbuf != NULL) {
2584 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2585 m_freem(rxs->rxs_mbuf);
2586 rxs->rxs_mbuf = NULL;
2587 }
2588 }
2589 }
2590
2591 /*
2592 * sip_stop: [ ifnet interface function ]
2593 *
2594 * Stop transmission on the interface.
2595 */
2596 static void
2597 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2598 {
2599 struct sip_softc *sc = ifp->if_softc;
2600 bus_space_tag_t st = sc->sc_st;
2601 bus_space_handle_t sh = sc->sc_sh;
2602 struct sip_txsoft *txs;
2603 u_int32_t cmdsts = 0; /* DEBUG */
2604
2605 /*
2606 * Stop the one second clock.
2607 */
2608 callout_stop(&sc->sc_tick_ch);
2609
2610 /* Down the MII. */
2611 mii_down(&sc->sc_mii);
2612
2613 /*
2614 * Disable interrupts.
2615 */
2616 bus_space_write_4(st, sh, SIP_IER, 0);
2617
2618 /*
2619 * Stop receiver and transmitter.
2620 */
2621 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2622
2623 /*
2624 * Release any queued transmit buffers.
2625 */
2626 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2627 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2628 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2629 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2630 CMDSTS_INTR) == 0)
2631 printf("%s: sip_stop: last descriptor does not "
2632 "have INTR bit set\n", sc->sc_dev.dv_xname);
2633 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2634 #ifdef DIAGNOSTIC
2635 if (txs->txs_mbuf == NULL) {
2636 printf("%s: dirty txsoft with no mbuf chain\n",
2637 sc->sc_dev.dv_xname);
2638 panic("sip_stop");
2639 }
2640 #endif
2641 cmdsts |= /* DEBUG */
2642 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2643 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2644 m_freem(txs->txs_mbuf);
2645 txs->txs_mbuf = NULL;
2646 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2647 }
2648
2649 if (disable)
2650 SIP_DECL(rxdrain)(sc);
2651
2652 /*
2653 * Mark the interface down and cancel the watchdog timer.
2654 */
2655 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2656 ifp->if_timer = 0;
2657
2658 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2659 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2660 printf("%s: sip_stop: no INTR bits set in dirty tx "
2661 "descriptors\n", sc->sc_dev.dv_xname);
2662 }
2663
2664 /*
2665 * sip_read_eeprom:
2666 *
2667 * Read data from the serial EEPROM.
2668 */
2669 static void
2670 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2671 u_int16_t *data)
2672 {
2673 bus_space_tag_t st = sc->sc_st;
2674 bus_space_handle_t sh = sc->sc_sh;
2675 u_int16_t reg;
2676 int i, x;
2677
2678 for (i = 0; i < wordcnt; i++) {
2679 /* Send CHIP SELECT. */
2680 reg = EROMAR_EECS;
2681 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2682
2683 /* Shift in the READ opcode. */
2684 for (x = 3; x > 0; x--) {
2685 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2686 reg |= EROMAR_EEDI;
2687 else
2688 reg &= ~EROMAR_EEDI;
2689 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2690 bus_space_write_4(st, sh, SIP_EROMAR,
2691 reg | EROMAR_EESK);
2692 delay(4);
2693 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2694 delay(4);
2695 }
2696
2697 /* Shift in address. */
2698 for (x = 6; x > 0; x--) {
2699 if ((word + i) & (1 << (x - 1)))
2700 reg |= EROMAR_EEDI;
2701 else
2702 reg &= ~EROMAR_EEDI;
2703 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2704 bus_space_write_4(st, sh, SIP_EROMAR,
2705 reg | EROMAR_EESK);
2706 delay(4);
2707 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2708 delay(4);
2709 }
2710
2711 /* Shift out data. */
2712 reg = EROMAR_EECS;
2713 data[i] = 0;
2714 for (x = 16; x > 0; x--) {
2715 bus_space_write_4(st, sh, SIP_EROMAR,
2716 reg | EROMAR_EESK);
2717 delay(4);
2718 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2719 data[i] |= (1 << (x - 1));
2720 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2721 delay(4);
2722 }
2723
2724 /* Clear CHIP SELECT. */
2725 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2726 delay(4);
2727 }
2728 }
2729
2730 /*
2731 * sip_add_rxbuf:
2732 *
2733 * Add a receive buffer to the indicated descriptor.
2734 */
2735 static int
2736 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2737 {
2738 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2739 struct mbuf *m;
2740 int error;
2741
2742 MGETHDR(m, M_DONTWAIT, MT_DATA);
2743 if (m == NULL)
2744 return (ENOBUFS);
2745 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2746
2747 MCLGET(m, M_DONTWAIT);
2748 if ((m->m_flags & M_EXT) == 0) {
2749 m_freem(m);
2750 return (ENOBUFS);
2751 }
2752
2753 #if defined(DP83820)
2754 m->m_len = SIP_RXBUF_LEN;
2755 #endif /* DP83820 */
2756
2757 if (rxs->rxs_mbuf != NULL)
2758 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2759
2760 rxs->rxs_mbuf = m;
2761
2762 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2763 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2764 BUS_DMA_READ|BUS_DMA_NOWAIT);
2765 if (error) {
2766 printf("%s: can't load rx DMA map %d, error = %d\n",
2767 sc->sc_dev.dv_xname, idx, error);
2768 panic("sip_add_rxbuf"); /* XXX */
2769 }
2770
2771 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2772 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2773
2774 SIP_INIT_RXDESC(sc, idx);
2775
2776 return (0);
2777 }
2778
2779 #if !defined(DP83820)
2780 /*
2781 * sip_sis900_set_filter:
2782 *
2783 * Set up the receive filter.
2784 */
2785 static void
2786 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2787 {
2788 bus_space_tag_t st = sc->sc_st;
2789 bus_space_handle_t sh = sc->sc_sh;
2790 struct ethercom *ec = &sc->sc_ethercom;
2791 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2792 struct ether_multi *enm;
2793 u_int8_t *cp;
2794 struct ether_multistep step;
2795 u_int32_t crc, mchash[16];
2796
2797 /*
2798 * Initialize the prototype RFCR.
2799 */
2800 sc->sc_rfcr = RFCR_RFEN;
2801 if (ifp->if_flags & IFF_BROADCAST)
2802 sc->sc_rfcr |= RFCR_AAB;
2803 if (ifp->if_flags & IFF_PROMISC) {
2804 sc->sc_rfcr |= RFCR_AAP;
2805 goto allmulti;
2806 }
2807
2808 /*
2809 * Set up the multicast address filter by passing all multicast
2810 * addresses through a CRC generator, and then using the high-order
2811 * 6 bits as an index into the 128 bit multicast hash table (only
2812 * the lower 16 bits of each 32 bit multicast hash register are
2813 * valid). The high order bits select the register, while the
2814 * rest of the bits select the bit within the register.
2815 */
2816
2817 memset(mchash, 0, sizeof(mchash));
2818
2819 /*
2820 * SiS900 (at least SiS963) requires us to register the address of
2821 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2822 */
2823 crc = 0x0ed423f9;
2824
2825 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2826 SIP_SIS900_REV(sc, SIS_REV_960) ||
2827 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2828 /* Just want the 8 most significant bits. */
2829 crc >>= 24;
2830 } else {
2831 /* Just want the 7 most significant bits. */
2832 crc >>= 25;
2833 }
2834
2835 /* Set the corresponding bit in the hash table. */
2836 mchash[crc >> 4] |= 1 << (crc & 0xf);
2837
2838 ETHER_FIRST_MULTI(step, ec, enm);
2839 while (enm != NULL) {
2840 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2841 /*
2842 * We must listen to a range of multicast addresses.
2843 * For now, just accept all multicasts, rather than
2844 * trying to set only those filter bits needed to match
2845 * the range. (At this time, the only use of address
2846 * ranges is for IP multicast routing, for which the
2847 * range is big enough to require all bits set.)
2848 */
2849 goto allmulti;
2850 }
2851
2852 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2853
2854 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2855 SIP_SIS900_REV(sc, SIS_REV_960) ||
2856 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2857 /* Just want the 8 most significant bits. */
2858 crc >>= 24;
2859 } else {
2860 /* Just want the 7 most significant bits. */
2861 crc >>= 25;
2862 }
2863
2864 /* Set the corresponding bit in the hash table. */
2865 mchash[crc >> 4] |= 1 << (crc & 0xf);
2866
2867 ETHER_NEXT_MULTI(step, enm);
2868 }
2869
2870 ifp->if_flags &= ~IFF_ALLMULTI;
2871 goto setit;
2872
2873 allmulti:
2874 ifp->if_flags |= IFF_ALLMULTI;
2875 sc->sc_rfcr |= RFCR_AAM;
2876
2877 setit:
2878 #define FILTER_EMIT(addr, data) \
2879 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2880 delay(1); \
2881 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2882 delay(1)
2883
2884 /*
2885 * Disable receive filter, and program the node address.
2886 */
2887 cp = LLADDR(ifp->if_sadl);
2888 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2889 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2890 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2891
2892 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2893 /*
2894 * Program the multicast hash table.
2895 */
2896 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2897 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2898 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2899 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2900 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2901 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2902 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2903 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2904 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2905 SIP_SIS900_REV(sc, SIS_REV_960) ||
2906 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2907 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2908 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2909 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2910 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2911 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2912 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2913 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2914 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2915 }
2916 }
2917 #undef FILTER_EMIT
2918
2919 /*
2920 * Re-enable the receiver filter.
2921 */
2922 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2923 }
2924 #endif /* ! DP83820 */
2925
2926 /*
2927 * sip_dp83815_set_filter:
2928 *
2929 * Set up the receive filter.
2930 */
2931 static void
2932 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2933 {
2934 bus_space_tag_t st = sc->sc_st;
2935 bus_space_handle_t sh = sc->sc_sh;
2936 struct ethercom *ec = &sc->sc_ethercom;
2937 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2938 struct ether_multi *enm;
2939 u_int8_t *cp;
2940 struct ether_multistep step;
2941 u_int32_t crc, hash, slot, bit;
2942 #ifdef DP83820
2943 #define MCHASH_NWORDS 128
2944 #else
2945 #define MCHASH_NWORDS 32
2946 #endif /* DP83820 */
2947 u_int16_t mchash[MCHASH_NWORDS];
2948 int i;
2949
2950 /*
2951 * Initialize the prototype RFCR.
2952 * Enable the receive filter, and accept on
2953 * Perfect (destination address) Match
2954 * If IFF_BROADCAST, also accept all broadcast packets.
2955 * If IFF_PROMISC, accept all unicast packets (and later, set
2956 * IFF_ALLMULTI and accept all multicast, too).
2957 */
2958 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2959 if (ifp->if_flags & IFF_BROADCAST)
2960 sc->sc_rfcr |= RFCR_AAB;
2961 if (ifp->if_flags & IFF_PROMISC) {
2962 sc->sc_rfcr |= RFCR_AAP;
2963 goto allmulti;
2964 }
2965
2966 #ifdef DP83820
2967 /*
2968 * Set up the DP83820 multicast address filter by passing all multicast
2969 * addresses through a CRC generator, and then using the high-order
2970 * 11 bits as an index into the 2048 bit multicast hash table. The
2971 * high-order 7 bits select the slot, while the low-order 4 bits
2972 * select the bit within the slot. Note that only the low 16-bits
2973 * of each filter word are used, and there are 128 filter words.
2974 */
2975 #else
2976 /*
2977 * Set up the DP83815 multicast address filter by passing all multicast
2978 * addresses through a CRC generator, and then using the high-order
2979 * 9 bits as an index into the 512 bit multicast hash table. The
2980 * high-order 5 bits select the slot, while the low-order 4 bits
2981 * select the bit within the slot. Note that only the low 16-bits
2982 * of each filter word are used, and there are 32 filter words.
2983 */
2984 #endif /* DP83820 */
2985
2986 memset(mchash, 0, sizeof(mchash));
2987
2988 ifp->if_flags &= ~IFF_ALLMULTI;
2989 ETHER_FIRST_MULTI(step, ec, enm);
2990 if (enm == NULL)
2991 goto setit;
2992 while (enm != NULL) {
2993 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2994 /*
2995 * We must listen to a range of multicast addresses.
2996 * For now, just accept all multicasts, rather than
2997 * trying to set only those filter bits needed to match
2998 * the range. (At this time, the only use of address
2999 * ranges is for IP multicast routing, for which the
3000 * range is big enough to require all bits set.)
3001 */
3002 goto allmulti;
3003 }
3004
3005 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3006
3007 #ifdef DP83820
3008 /* Just want the 11 most significant bits. */
3009 hash = crc >> 21;
3010 #else
3011 /* Just want the 9 most significant bits. */
3012 hash = crc >> 23;
3013 #endif /* DP83820 */
3014
3015 slot = hash >> 4;
3016 bit = hash & 0xf;
3017
3018 /* Set the corresponding bit in the hash table. */
3019 mchash[slot] |= 1 << bit;
3020
3021 ETHER_NEXT_MULTI(step, enm);
3022 }
3023 sc->sc_rfcr |= RFCR_MHEN;
3024 goto setit;
3025
3026 allmulti:
3027 ifp->if_flags |= IFF_ALLMULTI;
3028 sc->sc_rfcr |= RFCR_AAM;
3029
3030 setit:
3031 #define FILTER_EMIT(addr, data) \
3032 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3033 delay(1); \
3034 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3035 delay(1)
3036
3037 /*
3038 * Disable receive filter, and program the node address.
3039 */
3040 cp = LLADDR(ifp->if_sadl);
3041 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3042 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3043 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3044
3045 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3046 /*
3047 * Program the multicast hash table.
3048 */
3049 for (i = 0; i < MCHASH_NWORDS; i++) {
3050 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3051 mchash[i]);
3052 }
3053 }
3054 #undef FILTER_EMIT
3055 #undef MCHASH_NWORDS
3056
3057 /*
3058 * Re-enable the receiver filter.
3059 */
3060 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3061 }
3062
3063 #if defined(DP83820)
3064 /*
3065 * sip_dp83820_mii_readreg: [mii interface function]
3066 *
3067 * Read a PHY register on the MII of the DP83820.
3068 */
3069 static int
3070 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3071 {
3072 struct sip_softc *sc = (void *) self;
3073
3074 if (sc->sc_cfg & CFG_TBI_EN) {
3075 bus_addr_t tbireg;
3076 int rv;
3077
3078 if (phy != 0)
3079 return (0);
3080
3081 switch (reg) {
3082 case MII_BMCR: tbireg = SIP_TBICR; break;
3083 case MII_BMSR: tbireg = SIP_TBISR; break;
3084 case MII_ANAR: tbireg = SIP_TANAR; break;
3085 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3086 case MII_ANER: tbireg = SIP_TANER; break;
3087 case MII_EXTSR:
3088 /*
3089 * Don't even bother reading the TESR register.
3090 * The manual documents that the device has
3091 * 1000baseX full/half capability, but the
3092 * register itself seems read back 0 on some
3093 * boards. Just hard-code the result.
3094 */
3095 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3096
3097 default:
3098 return (0);
3099 }
3100
3101 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3102 if (tbireg == SIP_TBISR) {
3103 /* LINK and ACOMP are switched! */
3104 int val = rv;
3105
3106 rv = 0;
3107 if (val & TBISR_MR_LINK_STATUS)
3108 rv |= BMSR_LINK;
3109 if (val & TBISR_MR_AN_COMPLETE)
3110 rv |= BMSR_ACOMP;
3111
3112 /*
3113 * The manual claims this register reads back 0
3114 * on hard and soft reset. But we want to let
3115 * the gentbi driver know that we support auto-
3116 * negotiation, so hard-code this bit in the
3117 * result.
3118 */
3119 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3120 }
3121
3122 return (rv);
3123 }
3124
3125 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3126 phy, reg));
3127 }
3128
3129 /*
3130 * sip_dp83820_mii_writereg: [mii interface function]
3131 *
3132 * Write a PHY register on the MII of the DP83820.
3133 */
3134 static void
3135 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3136 {
3137 struct sip_softc *sc = (void *) self;
3138
3139 if (sc->sc_cfg & CFG_TBI_EN) {
3140 bus_addr_t tbireg;
3141
3142 if (phy != 0)
3143 return;
3144
3145 switch (reg) {
3146 case MII_BMCR: tbireg = SIP_TBICR; break;
3147 case MII_ANAR: tbireg = SIP_TANAR; break;
3148 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3149 default:
3150 return;
3151 }
3152
3153 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3154 return;
3155 }
3156
3157 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3158 phy, reg, val);
3159 }
3160
3161 /*
3162 * sip_dp83820_mii_statchg: [mii interface function]
3163 *
3164 * Callback from MII layer when media changes.
3165 */
3166 static void
3167 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3168 {
3169 struct sip_softc *sc = (struct sip_softc *) self;
3170 struct mii_data *mii = &sc->sc_mii;
3171 u_int32_t cfg, pcr;
3172
3173 /*
3174 * Get flow control negotiation result.
3175 */
3176 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3177 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3178 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3179 mii->mii_media_active &= ~IFM_ETH_FMASK;
3180 }
3181
3182 /*
3183 * Update TXCFG for full-duplex operation.
3184 */
3185 if ((mii->mii_media_active & IFM_FDX) != 0)
3186 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3187 else
3188 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3189
3190 /*
3191 * Update RXCFG for full-duplex or loopback.
3192 */
3193 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3194 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3195 sc->sc_rxcfg |= RXCFG_ATX;
3196 else
3197 sc->sc_rxcfg &= ~RXCFG_ATX;
3198
3199 /*
3200 * Update CFG for MII/GMII.
3201 */
3202 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3203 cfg = sc->sc_cfg | CFG_MODE_1000;
3204 else
3205 cfg = sc->sc_cfg;
3206
3207 /*
3208 * 802.3x flow control.
3209 */
3210 pcr = 0;
3211 if (sc->sc_flowflags & IFM_FLOW) {
3212 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3213 pcr |= sc->sc_rx_flow_thresh;
3214 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3215 pcr |= PCR_PSEN | PCR_PS_MCAST;
3216 }
3217
3218 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3219 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3220 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3221 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3222 }
3223 #endif /* ! DP83820 */
3224
3225 /*
3226 * sip_mii_bitbang_read: [mii bit-bang interface function]
3227 *
3228 * Read the MII serial port for the MII bit-bang module.
3229 */
3230 static u_int32_t
3231 SIP_DECL(mii_bitbang_read)(struct device *self)
3232 {
3233 struct sip_softc *sc = (void *) self;
3234
3235 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3236 }
3237
3238 /*
3239 * sip_mii_bitbang_write: [mii big-bang interface function]
3240 *
3241 * Write the MII serial port for the MII bit-bang module.
3242 */
3243 static void
3244 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3245 {
3246 struct sip_softc *sc = (void *) self;
3247
3248 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3249 }
3250
3251 #ifndef DP83820
3252 /*
3253 * sip_sis900_mii_readreg: [mii interface function]
3254 *
3255 * Read a PHY register on the MII.
3256 */
3257 static int
3258 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3259 {
3260 struct sip_softc *sc = (struct sip_softc *) self;
3261 u_int32_t enphy;
3262
3263 /*
3264 * The PHY of recent SiS chipsets is accessed through bitbang
3265 * operations.
3266 */
3267 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3268 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3269 phy, reg));
3270
3271 #ifndef SIS900_MII_RESTRICT
3272 /*
3273 * The SiS 900 has only an internal PHY on the MII. Only allow
3274 * MII address 0.
3275 */
3276 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3277 return (0);
3278 #endif
3279
3280 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3281 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3282 ENPHY_RWCMD | ENPHY_ACCESS);
3283 do {
3284 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3285 } while (enphy & ENPHY_ACCESS);
3286 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3287 }
3288
3289 /*
3290 * sip_sis900_mii_writereg: [mii interface function]
3291 *
3292 * Write a PHY register on the MII.
3293 */
3294 static void
3295 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3296 {
3297 struct sip_softc *sc = (struct sip_softc *) self;
3298 u_int32_t enphy;
3299
3300 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3301 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3302 phy, reg, val);
3303 return;
3304 }
3305
3306 #ifndef SIS900_MII_RESTRICT
3307 /*
3308 * The SiS 900 has only an internal PHY on the MII. Only allow
3309 * MII address 0.
3310 */
3311 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3312 return;
3313 #endif
3314
3315 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3316 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3317 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3318 do {
3319 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3320 } while (enphy & ENPHY_ACCESS);
3321 }
3322
3323 /*
3324 * sip_sis900_mii_statchg: [mii interface function]
3325 *
3326 * Callback from MII layer when media changes.
3327 */
3328 static void
3329 SIP_DECL(sis900_mii_statchg)(struct device *self)
3330 {
3331 struct sip_softc *sc = (struct sip_softc *) self;
3332 struct mii_data *mii = &sc->sc_mii;
3333 u_int32_t flowctl;
3334
3335 /*
3336 * Get flow control negotiation result.
3337 */
3338 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3339 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3340 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3341 mii->mii_media_active &= ~IFM_ETH_FMASK;
3342 }
3343
3344 /*
3345 * Update TXCFG for full-duplex operation.
3346 */
3347 if ((mii->mii_media_active & IFM_FDX) != 0)
3348 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3349 else
3350 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3351
3352 /*
3353 * Update RXCFG for full-duplex or loopback.
3354 */
3355 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3356 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3357 sc->sc_rxcfg |= RXCFG_ATX;
3358 else
3359 sc->sc_rxcfg &= ~RXCFG_ATX;
3360
3361 /*
3362 * Update IMR for use of 802.3x flow control.
3363 */
3364 if (sc->sc_flowflags & IFM_FLOW) {
3365 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3366 flowctl = FLOWCTL_FLOWEN;
3367 } else {
3368 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3369 flowctl = 0;
3370 }
3371
3372 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3373 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3374 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3375 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3376 }
3377
3378 /*
3379 * sip_dp83815_mii_readreg: [mii interface function]
3380 *
3381 * Read a PHY register on the MII.
3382 */
3383 static int
3384 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3385 {
3386 struct sip_softc *sc = (struct sip_softc *) self;
3387 u_int32_t val;
3388
3389 /*
3390 * The DP83815 only has an internal PHY. Only allow
3391 * MII address 0.
3392 */
3393 if (phy != 0)
3394 return (0);
3395
3396 /*
3397 * Apparently, after a reset, the DP83815 can take a while
3398 * to respond. During this recovery period, the BMSR returns
3399 * a value of 0. Catch this -- it's not supposed to happen
3400 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3401 * PHY to come back to life.
3402 *
3403 * This works out because the BMSR is the first register
3404 * read during the PHY probe process.
3405 */
3406 do {
3407 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3408 } while (reg == MII_BMSR && val == 0);
3409
3410 return (val & 0xffff);
3411 }
3412
3413 /*
3414 * sip_dp83815_mii_writereg: [mii interface function]
3415 *
3416 * Write a PHY register to the MII.
3417 */
3418 static void
3419 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3420 {
3421 struct sip_softc *sc = (struct sip_softc *) self;
3422
3423 /*
3424 * The DP83815 only has an internal PHY. Only allow
3425 * MII address 0.
3426 */
3427 if (phy != 0)
3428 return;
3429
3430 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3431 }
3432
3433 /*
3434 * sip_dp83815_mii_statchg: [mii interface function]
3435 *
3436 * Callback from MII layer when media changes.
3437 */
3438 static void
3439 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3440 {
3441 struct sip_softc *sc = (struct sip_softc *) self;
3442
3443 /*
3444 * Update TXCFG for full-duplex operation.
3445 */
3446 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3447 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3448 else
3449 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3450
3451 /*
3452 * Update RXCFG for full-duplex or loopback.
3453 */
3454 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3455 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3456 sc->sc_rxcfg |= RXCFG_ATX;
3457 else
3458 sc->sc_rxcfg &= ~RXCFG_ATX;
3459
3460 /*
3461 * XXX 802.3x flow control.
3462 */
3463
3464 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3466
3467 /*
3468 * Some DP83815s experience problems when used with short
3469 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3470 * sequence adjusts the DSP's signal attenuation to fix the
3471 * problem.
3472 */
3473 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3474 uint32_t reg;
3475
3476 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3477
3478 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3479 reg &= 0x0fff;
3480 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3481 delay(100);
3482 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3483 reg &= 0x00ff;
3484 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3485 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3486 0x00e8);
3487 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3488 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3489 reg | 0x20);
3490 }
3491
3492 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3493 }
3494 }
3495 #endif /* DP83820 */
3496
3497 #if defined(DP83820)
3498 static void
3499 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3500 const struct pci_attach_args *pa, u_int8_t *enaddr)
3501 {
3502 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3503 u_int8_t cksum, *e, match;
3504 int i;
3505
3506 /*
3507 * EEPROM data format for the DP83820 can be found in
3508 * the DP83820 manual, section 4.2.4.
3509 */
3510
3511 SIP_DECL(read_eeprom)(sc, 0,
3512 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3513
3514 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3515 match = ~(match - 1);
3516
3517 cksum = 0x55;
3518 e = (u_int8_t *) eeprom_data;
3519 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3520 cksum += *e++;
3521
3522 if (cksum != match)
3523 printf("%s: Checksum (%x) mismatch (%x)",
3524 sc->sc_dev.dv_xname, cksum, match);
3525
3526 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3527 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3528 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3529 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3530 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3531 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3532 }
3533 #else /* ! DP83820 */
3534 static void
3535 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3536 {
3537 int i;
3538
3539 /*
3540 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3541 * a reason, but I don't know it.
3542 */
3543 for (i = 0; i < 10; i++)
3544 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3545 }
3546
3547 static void
3548 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3549 const struct pci_attach_args *pa, u_int8_t *enaddr)
3550 {
3551 u_int16_t myea[ETHER_ADDR_LEN / 2];
3552
3553 switch (sc->sc_rev) {
3554 case SIS_REV_630S:
3555 case SIS_REV_630E:
3556 case SIS_REV_630EA1:
3557 case SIS_REV_630ET:
3558 case SIS_REV_635:
3559 /*
3560 * The MAC address for the on-board Ethernet of
3561 * the SiS 630 chipset is in the NVRAM. Kick
3562 * the chip into re-loading it from NVRAM, and
3563 * read the MAC address out of the filter registers.
3564 */
3565 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3566
3567 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3568 RFCR_RFADDR_NODE0);
3569 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3570 0xffff;
3571
3572 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3573 RFCR_RFADDR_NODE2);
3574 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3575 0xffff;
3576
3577 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3578 RFCR_RFADDR_NODE4);
3579 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3580 0xffff;
3581 break;
3582
3583 case SIS_REV_960:
3584 {
3585 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3586 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3587
3588 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3589 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3590
3591 int waittime, i;
3592
3593 /* Allow to read EEPROM from LAN. It is shared
3594 * between a 1394 controller and the NIC and each
3595 * time we access it, we need to set SIS_EECMD_REQ.
3596 */
3597 SIS_SET_EROMAR(sc, EROMAR_REQ);
3598
3599 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3600 /* Force EEPROM to idle state. */
3601
3602 /*
3603 * XXX-cube This is ugly. I'll look for docs about it.
3604 */
3605 SIS_SET_EROMAR(sc, EROMAR_EECS);
3606 SIP_DECL(sis900_eeprom_delay)(sc);
3607 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3608 SIS_SET_EROMAR(sc, EROMAR_EESK);
3609 SIP_DECL(sis900_eeprom_delay)(sc);
3610 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3611 SIP_DECL(sis900_eeprom_delay)(sc);
3612 }
3613 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3614 SIP_DECL(sis900_eeprom_delay)(sc);
3615 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3616
3617 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3618 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3619 sizeof(myea) / sizeof(myea[0]), myea);
3620 break;
3621 }
3622 DELAY(1);
3623 }
3624
3625 /*
3626 * Set SIS_EECTL_CLK to high, so a other master
3627 * can operate on the i2c bus.
3628 */
3629 SIS_SET_EROMAR(sc, EROMAR_EESK);
3630
3631 /* Refuse EEPROM access by LAN */
3632 SIS_SET_EROMAR(sc, EROMAR_DONE);
3633 } break;
3634
3635 default:
3636 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3637 sizeof(myea) / sizeof(myea[0]), myea);
3638 }
3639
3640 enaddr[0] = myea[0] & 0xff;
3641 enaddr[1] = myea[0] >> 8;
3642 enaddr[2] = myea[1] & 0xff;
3643 enaddr[3] = myea[1] >> 8;
3644 enaddr[4] = myea[2] & 0xff;
3645 enaddr[5] = myea[2] >> 8;
3646 }
3647
3648 /* Table and macro to bit-reverse an octet. */
3649 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3650 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3651
3652 static void
3653 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3654 const struct pci_attach_args *pa, u_int8_t *enaddr)
3655 {
3656 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3657 u_int8_t cksum, *e, match;
3658 int i;
3659
3660 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3661 sizeof(eeprom_data[0]), eeprom_data);
3662
3663 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3664 match = ~(match - 1);
3665
3666 cksum = 0x55;
3667 e = (u_int8_t *) eeprom_data;
3668 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3669 cksum += *e++;
3670 }
3671 if (cksum != match) {
3672 printf("%s: Checksum (%x) mismatch (%x)",
3673 sc->sc_dev.dv_xname, cksum, match);
3674 }
3675
3676 /*
3677 * Unrolled because it makes slightly more sense this way.
3678 * The DP83815 stores the MAC address in bit 0 of word 6
3679 * through bit 15 of word 8.
3680 */
3681 ea = &eeprom_data[6];
3682 enaddr[0] = ((*ea & 0x1) << 7);
3683 ea++;
3684 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3685 enaddr[1] = ((*ea & 0x1FE) >> 1);
3686 enaddr[2] = ((*ea & 0x1) << 7);
3687 ea++;
3688 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3689 enaddr[3] = ((*ea & 0x1FE) >> 1);
3690 enaddr[4] = ((*ea & 0x1) << 7);
3691 ea++;
3692 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3693 enaddr[5] = ((*ea & 0x1FE) >> 1);
3694
3695 /*
3696 * In case that's not weird enough, we also need to reverse
3697 * the bits in each byte. This all actually makes more sense
3698 * if you think about the EEPROM storage as an array of bits
3699 * being shifted into bytes, but that's not how we're looking
3700 * at it here...
3701 */
3702 for (i = 0; i < 6 ;i++)
3703 enaddr[i] = bbr(enaddr[i]);
3704 }
3705 #endif /* DP83820 */
3706
3707 /*
3708 * sip_mediastatus: [ifmedia interface function]
3709 *
3710 * Get the current interface media status.
3711 */
3712 static void
3713 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3714 {
3715 struct sip_softc *sc = ifp->if_softc;
3716
3717 mii_pollstat(&sc->sc_mii);
3718 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3719 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3720 sc->sc_flowflags;
3721 }
3722
3723 /*
3724 * sip_mediachange: [ifmedia interface function]
3725 *
3726 * Set hardware to newly-selected media.
3727 */
3728 static int
3729 SIP_DECL(mediachange)(struct ifnet *ifp)
3730 {
3731 struct sip_softc *sc = ifp->if_softc;
3732
3733 if (ifp->if_flags & IFF_UP)
3734 mii_mediachg(&sc->sc_mii);
3735 return (0);
3736 }
3737