if_sip.c revision 1.11.4.3 1 /* $NetBSD: if_sip.c,v 1.11.4.3 2000/10/30 22:51:34 tv Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <vm/vm.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258
259 void sip_shutdown __P((void *));
260
261 void sip_reset __P((struct sip_softc *));
262 int sip_init __P((struct sip_softc *));
263 void sip_stop __P((struct sip_softc *, int));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 int sip_intr __P((void *));
273 void sip_txintr __P((struct sip_softc *));
274 void sip_rxintr __P((struct sip_softc *));
275
276 int sip_sis900_mii_readreg __P((struct device *, int, int));
277 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
278 void sip_sis900_mii_statchg __P((struct device *));
279
280 int sip_dp83815_mii_readreg __P((struct device *, int, int));
281 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
282 void sip_dp83815_mii_statchg __P((struct device *));
283
284 int sip_mediachange __P((struct ifnet *));
285 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286
287 int sip_match __P((struct device *, struct cfdata *, void *));
288 void sip_attach __P((struct device *, struct device *, void *));
289
290 int sip_copy_small = 0;
291
292 struct cfattach sip_ca = {
293 sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295
296 /*
297 * Descriptions of the variants of the SiS900.
298 */
299 struct sip_variant {
300 int (*sipv_mii_readreg) __P((struct device *, int, int));
301 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
302 void (*sipv_mii_statchg) __P((struct device *));
303 void (*sipv_set_filter) __P((struct sip_softc *));
304 };
305
306 const struct sip_variant sip_variant_sis900 = {
307 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
308 sip_sis900_mii_statchg, sip_sis900_set_filter
309 };
310
311 const struct sip_variant sip_variant_dp83815 = {
312 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
313 sip_dp83815_mii_statchg, sip_dp83815_set_filter
314 };
315
316 /*
317 * Devices supported by this driver.
318 */
319 const struct sip_product {
320 pci_vendor_id_t sip_vendor;
321 pci_product_id_t sip_product;
322 const char *sip_name;
323 const struct sip_variant *sip_variant;
324 } sip_products[] = {
325 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
326 "SiS 900 10/100 Ethernet",
327 &sip_variant_sis900 },
328 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
329 "SiS 7016 10/100 Ethernet",
330 &sip_variant_sis900 },
331
332 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
333 "NatSemi DP83815 10/100 Ethernet",
334 &sip_variant_dp83815 },
335
336 { 0, 0,
337 NULL,
338 NULL },
339 };
340
341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
342
343 const struct sip_product *
344 sip_lookup(pa)
345 const struct pci_attach_args *pa;
346 {
347 const struct sip_product *sip;
348
349 for (sip = sip_products; sip->sip_name != NULL; sip++) {
350 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
351 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
352 return (sip);
353 }
354 return (NULL);
355 }
356
357 int
358 sip_match(parent, cf, aux)
359 struct device *parent;
360 struct cfdata *cf;
361 void *aux;
362 {
363 struct pci_attach_args *pa = aux;
364
365 if (sip_lookup(pa) != NULL)
366 return (1);
367
368 return (0);
369 }
370
371 void
372 sip_attach(parent, self, aux)
373 struct device *parent, *self;
374 void *aux;
375 {
376 struct sip_softc *sc = (struct sip_softc *) self;
377 struct pci_attach_args *pa = aux;
378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pci_intr_handle_t ih;
381 const char *intrstr = NULL;
382 bus_space_tag_t iot, memt;
383 bus_space_handle_t ioh, memh;
384 bus_dma_segment_t seg;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct sip_product *sip;
388 pcireg_t pmode;
389 u_int16_t myea[ETHER_ADDR_LEN / 2];
390 u_int8_t enaddr[ETHER_ADDR_LEN];
391 int pmreg;
392
393 callout_init(&sc->sc_tick_ch);
394
395 sip = sip_lookup(pa);
396 if (sip == NULL) {
397 printf("\n");
398 panic("sip_attach: impossible");
399 }
400
401 printf(": %s\n", sip->sip_name);
402
403 sc->sc_model = sip;
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 printf("%s: unable to map device registers\n",
423 sc->sc_dev.dv_xname);
424 return;
425 }
426
427 sc->sc_dmat = pa->pa_dmat;
428
429 /* Enable bus mastering. */
430 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
431 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
432 PCI_COMMAND_MASTER_ENABLE);
433
434 /* Get it out of power save mode if needed. */
435 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
436 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
437 if (pmode == 3) {
438 /*
439 * The card has lost all configuration data in
440 * this state, so punt.
441 */
442 printf("%s: unable to wake up from power state D3\n",
443 sc->sc_dev.dv_xname);
444 return;
445 }
446 if (pmode != 0) {
447 printf("%s: waking up from power state D%d\n",
448 sc->sc_dev.dv_xname, pmode);
449 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
450 }
451 }
452
453 /*
454 * Map and establish our interrupt.
455 */
456 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
457 pa->pa_intrline, &ih)) {
458 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
459 return;
460 }
461 intrstr = pci_intr_string(pc, ih);
462 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
463 if (sc->sc_ih == NULL) {
464 printf("%s: unable to establish interrupt",
465 sc->sc_dev.dv_xname);
466 if (intrstr != NULL)
467 printf(" at %s", intrstr);
468 printf("\n");
469 return;
470 }
471 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
472
473 SIMPLEQ_INIT(&sc->sc_txfreeq);
474 SIMPLEQ_INIT(&sc->sc_txdirtyq);
475
476 /*
477 * Allocate the control data structures, and create and load the
478 * DMA map for it.
479 */
480 if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 0)) != 0) {
483 printf("%s: unable to allocate control data, error = %d\n",
484 sc->sc_dev.dv_xname, error);
485 goto fail_0;
486 }
487
488 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
490 BUS_DMA_COHERENT)) != 0) {
491 printf("%s: unable to map control data, error = %d\n",
492 sc->sc_dev.dv_xname, error);
493 goto fail_1;
494 }
495
496 if ((error = bus_dmamap_create(sc->sc_dmat,
497 sizeof(struct sip_control_data), 1,
498 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 printf("%s: unable to create control data DMA map, "
500 "error = %d\n", sc->sc_dev.dv_xname, error);
501 goto fail_2;
502 }
503
504 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
505 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
506 0)) != 0) {
507 printf("%s: unable to load control data DMA map, error = %d\n",
508 sc->sc_dev.dv_xname, error);
509 goto fail_3;
510 }
511
512 /*
513 * Create the transmit buffer DMA maps.
514 */
515 for (i = 0; i < SIP_TXQUEUELEN; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
517 SIP_NTXSEGS, MCLBYTES, 0, 0,
518 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
519 printf("%s: unable to create tx DMA map %d, "
520 "error = %d\n", sc->sc_dev.dv_xname, i, error);
521 goto fail_4;
522 }
523 }
524
525 /*
526 * Create the receive buffer DMA maps.
527 */
528 for (i = 0; i < SIP_NRXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
530 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
531 printf("%s: unable to create rx DMA map %d, "
532 "error = %d\n", sc->sc_dev.dv_xname, i, error);
533 goto fail_5;
534 }
535 sc->sc_rxsoft[i].rxs_mbuf = NULL;
536 }
537
538 /*
539 * Reset the chip to a known state.
540 */
541 sip_reset(sc);
542
543 /*
544 * Read the Ethernet address from the EEPROM.
545 */
546 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
547 sizeof(myea) / sizeof(myea[0]), myea);
548
549 enaddr[0] = myea[0] & 0xff;
550 enaddr[1] = myea[0] >> 8;
551 enaddr[2] = myea[1] & 0xff;
552 enaddr[3] = myea[1] >> 8;
553 enaddr[4] = myea[2] & 0xff;
554 enaddr[5] = myea[2] >> 8;
555
556 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
557 ether_sprintf(enaddr));
558
559 /*
560 * Initialize our media structures and probe the MII.
561 */
562 sc->sc_mii.mii_ifp = ifp;
563 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
564 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
565 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
566 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
567 sip_mediastatus);
568 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
569 MII_OFFSET_ANY, 0);
570 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
571 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
572 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
573 } else
574 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
575
576 ifp = &sc->sc_ethercom.ec_if;
577 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
578 ifp->if_softc = sc;
579 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 ifp->if_ioctl = sip_ioctl;
581 ifp->if_start = sip_start;
582 ifp->if_watchdog = sip_watchdog;
583
584 /*
585 * Attach the interface.
586 */
587 if_attach(ifp);
588 ether_ifattach(ifp, enaddr);
589 #if NBPFILTER > 0
590 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
591 sizeof(struct ether_header));
592 #endif
593
594 /*
595 * Make sure the interface is shutdown during reboot.
596 */
597 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
598 if (sc->sc_sdhook == NULL)
599 printf("%s: WARNING: unable to establish shutdown hook\n",
600 sc->sc_dev.dv_xname);
601 return;
602
603 /*
604 * Free any resources we've allocated during the failed attach
605 * attempt. Do this in reverse order and fall through.
606 */
607 fail_5:
608 for (i = 0; i < SIP_NRXDESC; i++) {
609 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
610 bus_dmamap_destroy(sc->sc_dmat,
611 sc->sc_rxsoft[i].rxs_dmamap);
612 }
613 fail_4:
614 for (i = 0; i < SIP_TXQUEUELEN; i++) {
615 if (sc->sc_txsoft[i].txs_dmamap != NULL)
616 bus_dmamap_destroy(sc->sc_dmat,
617 sc->sc_txsoft[i].txs_dmamap);
618 }
619 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
620 fail_3:
621 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
622 fail_2:
623 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
624 sizeof(struct sip_control_data));
625 fail_1:
626 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
627 fail_0:
628 return;
629 }
630
631 /*
632 * sip_shutdown:
633 *
634 * Make sure the interface is stopped at reboot time.
635 */
636 void
637 sip_shutdown(arg)
638 void *arg;
639 {
640 struct sip_softc *sc = arg;
641
642 sip_stop(sc, 1);
643 }
644
645 /*
646 * sip_start: [ifnet interface function]
647 *
648 * Start packet transmission on the interface.
649 */
650 void
651 sip_start(ifp)
652 struct ifnet *ifp;
653 {
654 struct sip_softc *sc = ifp->if_softc;
655 struct mbuf *m0, *m;
656 struct sip_txsoft *txs;
657 bus_dmamap_t dmamap;
658 int error, firsttx, nexttx, lasttx, ofree, seg;
659
660 /*
661 * If we've been told to pause, don't transmit any more packets.
662 */
663 if (sc->sc_flags & SIPF_PAUSED)
664 ifp->if_flags |= IFF_OACTIVE;
665
666 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
667 return;
668
669 /*
670 * Remember the previous number of free descriptors and
671 * the first descriptor we'll use.
672 */
673 ofree = sc->sc_txfree;
674 firsttx = sc->sc_txnext;
675
676 /*
677 * Loop through the send queue, setting up transmit descriptors
678 * until we drain the queue, or use up all available transmit
679 * descriptors.
680 */
681 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
682 sc->sc_txfree != 0) {
683 /*
684 * Grab a packet off the queue.
685 */
686 IF_DEQUEUE(&ifp->if_snd, m0);
687 if (m0 == NULL)
688 break;
689
690 dmamap = txs->txs_dmamap;
691
692 /*
693 * Load the DMA map. If this fails, the packet either
694 * didn't fit in the alloted number of segments, or we
695 * were short on resources. In this case, we'll copy
696 * and try again.
697 */
698 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
699 BUS_DMA_NOWAIT) != 0) {
700 MGETHDR(m, M_DONTWAIT, MT_DATA);
701 if (m == NULL) {
702 printf("%s: unable to allocate Tx mbuf\n",
703 sc->sc_dev.dv_xname);
704 IF_PREPEND(&ifp->if_snd, m0);
705 break;
706 }
707 if (m0->m_pkthdr.len > MHLEN) {
708 MCLGET(m, M_DONTWAIT);
709 if ((m->m_flags & M_EXT) == 0) {
710 printf("%s: unable to allocate Tx "
711 "cluster\n", sc->sc_dev.dv_xname);
712 m_freem(m);
713 IF_PREPEND(&ifp->if_snd, m0);
714 break;
715 }
716 }
717 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
718 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
719 m_freem(m0);
720 m0 = m;
721 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
722 m0, BUS_DMA_NOWAIT);
723 if (error) {
724 printf("%s: unable to load Tx buffer, "
725 "error = %d\n", sc->sc_dev.dv_xname, error);
726 IF_PREPEND(&ifp->if_snd, m0);
727 break;
728 }
729 }
730
731 /*
732 * Ensure we have enough descriptors free to describe
733 * the packet.
734 */
735 if (dmamap->dm_nsegs > sc->sc_txfree) {
736 /*
737 * Not enough free descriptors to transmit this
738 * packet. We haven't committed anything yet,
739 * so just unload the DMA map, put the packet
740 * back on the queue, and punt. Notify the upper
741 * layer that there are not more slots left.
742 *
743 * XXX We could allocate an mbuf and copy, but
744 * XXX is it worth it?
745 */
746 ifp->if_flags |= IFF_OACTIVE;
747 bus_dmamap_unload(sc->sc_dmat, dmamap);
748 IF_PREPEND(&ifp->if_snd, m0);
749 break;
750 }
751
752 /*
753 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
754 */
755
756 /* Sync the DMA map. */
757 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
758 BUS_DMASYNC_PREWRITE);
759
760 /*
761 * Initialize the transmit descriptors.
762 */
763 for (nexttx = sc->sc_txnext, seg = 0;
764 seg < dmamap->dm_nsegs;
765 seg++, nexttx = SIP_NEXTTX(nexttx)) {
766 /*
767 * If this is the first descriptor we're
768 * enqueueing, don't set the OWN bit just
769 * yet. That could cause a race condition.
770 * We'll do it below.
771 */
772 sc->sc_txdescs[nexttx].sipd_bufptr =
773 htole32(dmamap->dm_segs[seg].ds_addr);
774 sc->sc_txdescs[nexttx].sipd_cmdsts =
775 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
776 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
777 lasttx = nexttx;
778 }
779
780 /* Clear the MORE bit on the last segment. */
781 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
782
783 /* Sync the descriptors we're using. */
784 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 /*
788 * Store a pointer to the packet so we can free it later,
789 * and remember what txdirty will be once the packet is
790 * done.
791 */
792 txs->txs_mbuf = m0;
793 txs->txs_firstdesc = sc->sc_txnext;
794 txs->txs_lastdesc = lasttx;
795
796 /* Advance the tx pointer. */
797 sc->sc_txfree -= dmamap->dm_nsegs;
798 sc->sc_txnext = nexttx;
799
800 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
801 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
802
803 #if NBPFILTER > 0
804 /*
805 * Pass the packet to any BPF listeners.
806 */
807 if (ifp->if_bpf)
808 bpf_mtap(ifp->if_bpf, m0);
809 #endif /* NBPFILTER > 0 */
810 }
811
812 if (txs == NULL || sc->sc_txfree == 0) {
813 /* No more slots left; notify upper layer. */
814 ifp->if_flags |= IFF_OACTIVE;
815 }
816
817 if (sc->sc_txfree != ofree) {
818 /*
819 * Cause a descriptor interrupt to happen on the
820 * last packet we enqueued.
821 */
822 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
823 SIP_CDTXSYNC(sc, lasttx, 1,
824 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
825
826 /*
827 * The entire packet chain is set up. Give the
828 * first descrptor to the chip now.
829 */
830 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
831 SIP_CDTXSYNC(sc, firsttx, 1,
832 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
833
834 /* Start the transmit process. */
835 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
836 CR_TXE) == 0) {
837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
838 SIP_CDTXADDR(sc, firsttx));
839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
840 }
841
842 /* Set a watchdog timer in case the chip flakes out. */
843 ifp->if_timer = 5;
844 }
845 }
846
847 /*
848 * sip_watchdog: [ifnet interface function]
849 *
850 * Watchdog timer handler.
851 */
852 void
853 sip_watchdog(ifp)
854 struct ifnet *ifp;
855 {
856 struct sip_softc *sc = ifp->if_softc;
857
858 /*
859 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
860 * If we get a timeout, try and sweep up transmit descriptors.
861 * If we manage to sweep them all up, ignore the lack of
862 * interrupt.
863 */
864 sip_txintr(sc);
865
866 if (sc->sc_txfree != SIP_NTXDESC) {
867 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
868 ifp->if_oerrors++;
869
870 /* Reset the interface. */
871 (void) sip_init(sc);
872 } else if (ifp->if_flags & IFF_DEBUG)
873 printf("%s: recovered from device timeout\n",
874 sc->sc_dev.dv_xname);
875
876 /* Try to get more packets going. */
877 sip_start(ifp);
878 }
879
880 /*
881 * sip_ioctl: [ifnet interface function]
882 *
883 * Handle control requests from the operator.
884 */
885 int
886 sip_ioctl(ifp, cmd, data)
887 struct ifnet *ifp;
888 u_long cmd;
889 caddr_t data;
890 {
891 struct sip_softc *sc = ifp->if_softc;
892 struct ifreq *ifr = (struct ifreq *)data;
893 struct ifaddr *ifa = (struct ifaddr *)data;
894 int s, error = 0;
895
896 s = splnet();
897
898 switch (cmd) {
899 case SIOCSIFADDR:
900 ifp->if_flags |= IFF_UP;
901
902 switch (ifa->ifa_addr->sa_family) {
903 #ifdef INET
904 case AF_INET:
905 if ((error = sip_init(sc)) != 0)
906 break;
907 arp_ifinit(ifp, ifa);
908 break;
909 #endif /* INET */
910 #ifdef NS
911 case AF_NS:
912 {
913 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
914
915 if (ns_nullhost(*ina))
916 ina->x_host = *(union ns_host *)
917 LLADDR(ifp->if_sadl);
918 else
919 memcpy(LLADDR(ifp->if_sadl),
920 ina->x_host.c_host, ifp->if_addrlen);
921 error = sip_init(sc);
922 break;
923 }
924 #endif /* NS */
925 default:
926 error = sip_init(sc);
927 break;
928 }
929 break;
930
931 case SIOCSIFMTU:
932 if (ifr->ifr_mtu > ETHERMTU)
933 error = EINVAL;
934 else
935 ifp->if_mtu = ifr->ifr_mtu;
936 break;
937
938 case SIOCSIFFLAGS:
939 if ((ifp->if_flags & IFF_UP) == 0 &&
940 (ifp->if_flags & IFF_RUNNING) != 0) {
941 /*
942 * If interface is marked down and it is running, then
943 * stop it.
944 */
945 sip_stop(sc, 1);
946 } else if ((ifp->if_flags & IFF_UP) != 0 &&
947 (ifp->if_flags & IFF_RUNNING) == 0) {
948 /*
949 * If interfase it marked up and it is stopped, then
950 * start it.
951 */
952 error = sip_init(sc);
953 } else if ((ifp->if_flags & IFF_UP) != 0) {
954 /*
955 * Reset the interface to pick up changes in any other
956 * flags that affect the hardware state.
957 */
958 error = sip_init(sc);
959 }
960 break;
961
962 case SIOCADDMULTI:
963 case SIOCDELMULTI:
964 error = (cmd == SIOCADDMULTI) ?
965 ether_addmulti(ifr, &sc->sc_ethercom) :
966 ether_delmulti(ifr, &sc->sc_ethercom);
967
968 if (error == ENETRESET) {
969 /*
970 * Multicast list has changed; set the hardware filter
971 * accordingly.
972 */
973 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
974 error = 0;
975 }
976 break;
977
978 case SIOCSIFMEDIA:
979 case SIOCGIFMEDIA:
980 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
981 break;
982
983 default:
984 error = EINVAL;
985 break;
986 }
987
988 /* Try to get more packets going. */
989 sip_start(ifp);
990
991 splx(s);
992 return (error);
993 }
994
995 /*
996 * sip_intr:
997 *
998 * Interrupt service routine.
999 */
1000 int
1001 sip_intr(arg)
1002 void *arg;
1003 {
1004 struct sip_softc *sc = arg;
1005 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1006 u_int32_t isr;
1007 int handled = 0;
1008
1009 for (;;) {
1010 /* Reading clears interrupt. */
1011 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1012 if ((isr & sc->sc_imr) == 0)
1013 break;
1014
1015 handled = 1;
1016
1017 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1018 /* Grab any new packets. */
1019 sip_rxintr(sc);
1020
1021 if (isr & ISR_RXORN) {
1022 printf("%s: receive FIFO overrun\n",
1023 sc->sc_dev.dv_xname);
1024
1025 /* XXX adjust rx_drain_thresh? */
1026 }
1027
1028 if (isr & ISR_RXIDLE) {
1029 printf("%s: receive ring overrun\n",
1030 sc->sc_dev.dv_xname);
1031
1032 /* Get the receive process going again. */
1033 bus_space_write_4(sc->sc_st, sc->sc_sh,
1034 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1035 bus_space_write_4(sc->sc_st, sc->sc_sh,
1036 SIP_CR, CR_RXE);
1037 }
1038 }
1039
1040 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1041 /* Sweep up transmit descriptors. */
1042 sip_txintr(sc);
1043
1044 if (isr & ISR_TXURN) {
1045 u_int32_t thresh;
1046
1047 printf("%s: transmit FIFO underrun",
1048 sc->sc_dev.dv_xname);
1049
1050 thresh = sc->sc_tx_drain_thresh + 1;
1051 if (thresh <= TXCFG_DRTH &&
1052 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1053 (sc->sc_tx_fill_thresh * 32))) {
1054 printf("; increasing Tx drain "
1055 "threshold to %u bytes\n",
1056 thresh * 32);
1057 sc->sc_tx_drain_thresh = thresh;
1058 (void) sip_init(sc);
1059 } else {
1060 (void) sip_init(sc);
1061 printf("\n");
1062 }
1063 }
1064 }
1065
1066 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1067 if (isr & ISR_PAUSE_ST) {
1068 sc->sc_flags |= SIPF_PAUSED;
1069 ifp->if_flags |= IFF_OACTIVE;
1070 }
1071 if (isr & ISR_PAUSE_END) {
1072 sc->sc_flags &= ~SIPF_PAUSED;
1073 ifp->if_flags &= ~IFF_OACTIVE;
1074 }
1075 }
1076
1077 if (isr & ISR_HIBERR) {
1078 #define PRINTERR(bit, str) \
1079 if (isr & (bit)) \
1080 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1081 PRINTERR(ISR_DPERR, "parity error");
1082 PRINTERR(ISR_SSERR, "system error");
1083 PRINTERR(ISR_RMABT, "master abort");
1084 PRINTERR(ISR_RTABT, "target abort");
1085 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1086 (void) sip_init(sc);
1087 #undef PRINTERR
1088 }
1089 }
1090
1091 /* Try to get more packets going. */
1092 sip_start(ifp);
1093
1094 return (handled);
1095 }
1096
1097 /*
1098 * sip_txintr:
1099 *
1100 * Helper; handle transmit interrupts.
1101 */
1102 void
1103 sip_txintr(sc)
1104 struct sip_softc *sc;
1105 {
1106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1107 struct sip_txsoft *txs;
1108 u_int32_t cmdsts;
1109
1110 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1111 ifp->if_flags &= ~IFF_OACTIVE;
1112
1113 /*
1114 * Go through our Tx list and free mbufs for those
1115 * frames which have been transmitted.
1116 */
1117 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1118 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1119 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1120
1121 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1122 if (cmdsts & CMDSTS_OWN)
1123 break;
1124
1125 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1126
1127 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1128
1129 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1130 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1131 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1132 m_freem(txs->txs_mbuf);
1133 txs->txs_mbuf = NULL;
1134
1135 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1136
1137 /*
1138 * Check for errors and collisions.
1139 */
1140 if (cmdsts &
1141 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1142 if (ifp->if_flags & IFF_DEBUG) {
1143 if (CMDSTS_Tx_ED)
1144 printf("%s: excessive deferral\n",
1145 sc->sc_dev.dv_xname);
1146 if (CMDSTS_Tx_EC) {
1147 printf("%s: excessive collisions\n",
1148 sc->sc_dev.dv_xname);
1149 ifp->if_collisions += 16;
1150 }
1151 }
1152 } else {
1153 /* Packet was transmitted successfully. */
1154 ifp->if_opackets++;
1155 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1156 }
1157 }
1158
1159 /*
1160 * If there are no more pending transmissions, cancel the watchdog
1161 * timer.
1162 */
1163 if (txs == NULL)
1164 ifp->if_timer = 0;
1165 }
1166
1167 /*
1168 * sip_rxintr:
1169 *
1170 * Helper; handle receive interrupts.
1171 */
1172 void
1173 sip_rxintr(sc)
1174 struct sip_softc *sc;
1175 {
1176 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177 struct ether_header *eh;
1178 struct sip_rxsoft *rxs;
1179 struct mbuf *m;
1180 u_int32_t cmdsts;
1181 int i, len;
1182
1183 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1184 rxs = &sc->sc_rxsoft[i];
1185
1186 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187
1188 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1189
1190 /*
1191 * NOTE: OWN is set if owned by _consumer_. We're the
1192 * consumer of the receive ring, so if the bit is clear,
1193 * we have processed all of the packets.
1194 */
1195 if ((cmdsts & CMDSTS_OWN) == 0) {
1196 /*
1197 * We have processed all of the receive buffers.
1198 */
1199 break;
1200 }
1201
1202 /*
1203 * If any collisions were seen on the wire, count one.
1204 */
1205 if (cmdsts & CMDSTS_Rx_COL)
1206 ifp->if_collisions++;
1207
1208 /*
1209 * If an error occurred, update stats, clear the status
1210 * word, and leave the packet buffer in place. It will
1211 * simply be reused the next time the ring comes around.
1212 */
1213 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1214 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1215 ifp->if_ierrors++;
1216 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1217 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1218 /* Receive overrun handled elsewhere. */
1219 printf("%s: receive descriptor error\n",
1220 sc->sc_dev.dv_xname);
1221 }
1222 #define PRINTERR(bit, str) \
1223 if (cmdsts & (bit)) \
1224 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1225 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1226 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1227 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1228 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1229 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1230 #undef PRINTERR
1231 SIP_INIT_RXDESC(sc, i);
1232 continue;
1233 }
1234
1235 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1236 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1237
1238 /*
1239 * No errors; receive the packet. Note, the SiS 900
1240 * includes the CRC with every packet; trim it.
1241 */
1242 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1243
1244 #ifdef __NO_STRICT_ALIGNMENT
1245 /*
1246 * If the packet is small enough to fit in a
1247 * single header mbuf, allocate one and copy
1248 * the data into it. This greatly reduces
1249 * memory consumption when we receive lots
1250 * of small packets.
1251 *
1252 * Otherwise, we add a new buffer to the receive
1253 * chain. If this fails, we drop the packet and
1254 * recycle the old buffer.
1255 */
1256 if (sip_copy_small != 0 && len <= MHLEN) {
1257 MGETHDR(m, M_DONTWAIT, MT_DATA);
1258 if (m == NULL)
1259 goto dropit;
1260 memcpy(mtod(m, caddr_t),
1261 mtod(rxs->rxs_mbuf, caddr_t), len);
1262 SIP_INIT_RXDESC(sc, i);
1263 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1264 rxs->rxs_dmamap->dm_mapsize,
1265 BUS_DMASYNC_PREREAD);
1266 } else {
1267 m = rxs->rxs_mbuf;
1268 if (sip_add_rxbuf(sc, i) != 0) {
1269 dropit:
1270 ifp->if_ierrors++;
1271 SIP_INIT_RXDESC(sc, i);
1272 bus_dmamap_sync(sc->sc_dmat,
1273 rxs->rxs_dmamap, 0,
1274 rxs->rxs_dmamap->dm_mapsize,
1275 BUS_DMASYNC_PREREAD);
1276 continue;
1277 }
1278 }
1279 #else
1280 /*
1281 * The SiS 900's receive buffers must be 4-byte aligned.
1282 * But this means that the data after the Ethernet header
1283 * is misaligned. We must allocate a new buffer and
1284 * copy the data, shifted forward 2 bytes.
1285 */
1286 MGETHDR(m, M_DONTWAIT, MT_DATA);
1287 if (m == NULL) {
1288 dropit:
1289 ifp->if_ierrors++;
1290 SIP_INIT_RXDESC(sc, i);
1291 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1292 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1293 continue;
1294 }
1295 if (len > (MHLEN - 2)) {
1296 MCLGET(m, M_DONTWAIT);
1297 if ((m->m_flags & M_EXT) == 0) {
1298 m_freem(m);
1299 goto dropit;
1300 }
1301 }
1302 m->m_data += 2;
1303
1304 /*
1305 * Note that we use clusters for incoming frames, so the
1306 * buffer is virtually contiguous.
1307 */
1308 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1309
1310 /* Allow the receive descriptor to continue using its mbuf. */
1311 SIP_INIT_RXDESC(sc, i);
1312 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1313 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1314 #endif /* __NO_STRICT_ALIGNMENT */
1315
1316 ifp->if_ipackets++;
1317 eh = mtod(m, struct ether_header *);
1318 m->m_pkthdr.rcvif = ifp;
1319 m->m_pkthdr.len = m->m_len = len;
1320
1321 #if NBPFILTER > 0
1322 /*
1323 * Pass this up to any BPF listeners, but only
1324 * pass if up the stack if it's for us.
1325 */
1326 if (ifp->if_bpf) {
1327 bpf_mtap(ifp->if_bpf, m);
1328 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1329 (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1330 m_freem(m);
1331 continue;
1332 }
1333 }
1334 #endif /* NBPFILTER > 0 */
1335
1336 /* Pass it on. */
1337 (*ifp->if_input)(ifp, m);
1338 }
1339
1340 /* Update the receive pointer. */
1341 sc->sc_rxptr = i;
1342 }
1343
1344 /*
1345 * sip_tick:
1346 *
1347 * One second timer, used to tick the MII.
1348 */
1349 void
1350 sip_tick(arg)
1351 void *arg;
1352 {
1353 struct sip_softc *sc = arg;
1354 int s;
1355
1356 s = splnet();
1357 mii_tick(&sc->sc_mii);
1358 splx(s);
1359
1360 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1361 }
1362
1363 /*
1364 * sip_reset:
1365 *
1366 * Perform a soft reset on the SiS 900.
1367 */
1368 void
1369 sip_reset(sc)
1370 struct sip_softc *sc;
1371 {
1372 bus_space_tag_t st = sc->sc_st;
1373 bus_space_handle_t sh = sc->sc_sh;
1374 int i;
1375
1376 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1377
1378 for (i = 0; i < SIP_TIMEOUT; i++) {
1379 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1380 break;
1381 delay(2);
1382 }
1383
1384 if (i == SIP_TIMEOUT)
1385 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1386
1387 delay(1000);
1388 }
1389
1390 /*
1391 * sip_init:
1392 *
1393 * Initialize the interface. Must be called at splnet().
1394 */
1395 int
1396 sip_init(sc)
1397 struct sip_softc *sc;
1398 {
1399 bus_space_tag_t st = sc->sc_st;
1400 bus_space_handle_t sh = sc->sc_sh;
1401 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1402 struct sip_txsoft *txs;
1403 struct sip_rxsoft *rxs;
1404 struct sip_desc *sipd;
1405 u_int32_t cfg;
1406 int i, error = 0;
1407
1408 /*
1409 * Cancel any pending I/O.
1410 */
1411 sip_stop(sc, 0);
1412
1413 /*
1414 * Reset the chip to a known state.
1415 */
1416 sip_reset(sc);
1417
1418 /*
1419 * Initialize the transmit descriptor ring.
1420 */
1421 for (i = 0; i < SIP_NTXDESC; i++) {
1422 sipd = &sc->sc_txdescs[i];
1423 memset(sipd, 0, sizeof(struct sip_desc));
1424 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1425 }
1426 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1427 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1428 sc->sc_txfree = SIP_NTXDESC;
1429 sc->sc_txnext = 0;
1430
1431 /*
1432 * Initialize the transmit job descriptors.
1433 */
1434 SIMPLEQ_INIT(&sc->sc_txfreeq);
1435 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1436 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1437 txs = &sc->sc_txsoft[i];
1438 txs->txs_mbuf = NULL;
1439 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1440 }
1441
1442 /*
1443 * Initialize the receive descriptor and receive job
1444 * descriptor rings.
1445 */
1446 for (i = 0; i < SIP_NRXDESC; i++) {
1447 rxs = &sc->sc_rxsoft[i];
1448 if (rxs->rxs_mbuf == NULL) {
1449 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1450 printf("%s: unable to allocate or map rx "
1451 "buffer %d, error = %d\n",
1452 sc->sc_dev.dv_xname, i, error);
1453 /*
1454 * XXX Should attempt to run with fewer receive
1455 * XXX buffers instead of just failing.
1456 */
1457 sip_rxdrain(sc);
1458 goto out;
1459 }
1460 }
1461 }
1462 sc->sc_rxptr = 0;
1463
1464 /*
1465 * Initialize the configuration register: aggressive PCI
1466 * bus request algorithm, default backoff, default OW timer,
1467 * default parity error detection.
1468 */
1469 cfg = 0;
1470 #if BYTE_ORDER == BIG_ENDIAN
1471 /*
1472 * ...descriptors in big-endian mode.
1473 */
1474 #if 0
1475 /* "Big endian mode" does not work properly. */
1476 cfg |= CFG_BEM;
1477 #endif
1478 #endif
1479 bus_space_write_4(st, sh, SIP_CFG, cfg);
1480
1481 /*
1482 * Initialize the transmit fill and drain thresholds if
1483 * we have never done so.
1484 */
1485 if (sc->sc_tx_fill_thresh == 0) {
1486 /*
1487 * XXX This value should be tuned. This is the
1488 * minimum (32 bytes), and we may be able to
1489 * improve performance by increasing it.
1490 */
1491 sc->sc_tx_fill_thresh = 1;
1492 }
1493 if (sc->sc_tx_drain_thresh == 0) {
1494 /*
1495 * Start at a drain threshold of 512 bytes. We will
1496 * increase it if a DMA underrun occurs.
1497 *
1498 * XXX The minimum value of this variable should be
1499 * tuned. We may be able to improve performance
1500 * by starting with a lower value. That, however,
1501 * may trash the first few outgoing packets if the
1502 * PCI bus is saturated.
1503 */
1504 sc->sc_tx_drain_thresh = 512 / 32;
1505 }
1506
1507 /*
1508 * Initialize the prototype TXCFG register.
1509 */
1510 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1511 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1512 sc->sc_tx_drain_thresh;
1513 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1514
1515 /*
1516 * Initialize the receive drain threshold if we have never
1517 * done so.
1518 */
1519 if (sc->sc_rx_drain_thresh == 0) {
1520 /*
1521 * XXX This value should be tuned. This is set to the
1522 * maximum of 248 bytes, and we may be able to improve
1523 * performance by decreasing it (although we should never
1524 * set this value lower than 2; 14 bytes are required to
1525 * filter the packet).
1526 */
1527 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1528 }
1529
1530 /*
1531 * Initialize the prototype RXCFG register.
1532 */
1533 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1534 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1535 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1536
1537 /* Set up the receive filter. */
1538 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1539
1540 /*
1541 * Give the transmit and receive rings to the chip.
1542 */
1543 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1544 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1545
1546 /*
1547 * Initialize the interrupt mask.
1548 */
1549 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1550 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1551 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1552
1553 /*
1554 * Set the current media. Do this after initializing the prototype
1555 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1556 * control.
1557 */
1558 mii_mediachg(&sc->sc_mii);
1559
1560 /*
1561 * Enable interrupts.
1562 */
1563 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1564
1565 /*
1566 * Start the transmit and receive processes.
1567 */
1568 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1569
1570 /*
1571 * Start the one second MII clock.
1572 */
1573 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1574
1575 /*
1576 * ...all done!
1577 */
1578 ifp->if_flags |= IFF_RUNNING;
1579 ifp->if_flags &= ~IFF_OACTIVE;
1580
1581 out:
1582 if (error)
1583 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1584 return (error);
1585 }
1586
1587 /*
1588 * sip_drain:
1589 *
1590 * Drain the receive queue.
1591 */
1592 void
1593 sip_rxdrain(sc)
1594 struct sip_softc *sc;
1595 {
1596 struct sip_rxsoft *rxs;
1597 int i;
1598
1599 for (i = 0; i < SIP_NRXDESC; i++) {
1600 rxs = &sc->sc_rxsoft[i];
1601 if (rxs->rxs_mbuf != NULL) {
1602 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1603 m_freem(rxs->rxs_mbuf);
1604 rxs->rxs_mbuf = NULL;
1605 }
1606 }
1607 }
1608
1609 /*
1610 * sip_stop:
1611 *
1612 * Stop transmission on the interface.
1613 */
1614 void
1615 sip_stop(sc, drain)
1616 struct sip_softc *sc;
1617 {
1618 bus_space_tag_t st = sc->sc_st;
1619 bus_space_handle_t sh = sc->sc_sh;
1620 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1621 struct sip_txsoft *txs;
1622 u_int32_t cmdsts = 0; /* DEBUG */
1623
1624 /*
1625 * Stop the one second clock.
1626 */
1627 callout_stop(&sc->sc_tick_ch);
1628
1629 /* Down the MII. */
1630 mii_down(&sc->sc_mii);
1631
1632 /*
1633 * Disable interrupts.
1634 */
1635 bus_space_write_4(st, sh, SIP_IER, 0);
1636
1637 /*
1638 * Stop receiver and transmitter.
1639 */
1640 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1641
1642 /*
1643 * Release any queued transmit buffers.
1644 */
1645 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1646 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1647 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1648 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1649 CMDSTS_INTR) == 0)
1650 printf("%s: sip_stop: last descriptor does not "
1651 "have INTR bit set\n", sc->sc_dev.dv_xname);
1652 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1653 #ifdef DIAGNOSTIC
1654 if (txs->txs_mbuf == NULL) {
1655 printf("%s: dirty txsoft with no mbuf chain\n",
1656 sc->sc_dev.dv_xname);
1657 panic("sip_stop");
1658 }
1659 #endif
1660 cmdsts |= /* DEBUG */
1661 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1662 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1663 m_freem(txs->txs_mbuf);
1664 txs->txs_mbuf = NULL;
1665 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1666 }
1667
1668 if (drain) {
1669 /*
1670 * Release the receive buffers.
1671 */
1672 sip_rxdrain(sc);
1673 }
1674
1675 /*
1676 * Mark the interface down and cancel the watchdog timer.
1677 */
1678 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1679 ifp->if_timer = 0;
1680
1681 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1682 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1683 printf("%s: sip_stop: no INTR bits set in dirty tx "
1684 "descriptors\n", sc->sc_dev.dv_xname);
1685 }
1686
1687 /*
1688 * sip_read_eeprom:
1689 *
1690 * Read data from the serial EEPROM.
1691 */
1692 void
1693 sip_read_eeprom(sc, word, wordcnt, data)
1694 struct sip_softc *sc;
1695 int word, wordcnt;
1696 u_int16_t *data;
1697 {
1698 bus_space_tag_t st = sc->sc_st;
1699 bus_space_handle_t sh = sc->sc_sh;
1700 u_int16_t reg;
1701 int i, x;
1702
1703 for (i = 0; i < wordcnt; i++) {
1704 /* Send CHIP SELECT. */
1705 reg = EROMAR_EECS;
1706 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1707
1708 /* Shift in the READ opcode. */
1709 for (x = 3; x > 0; x--) {
1710 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1711 reg |= EROMAR_EEDI;
1712 else
1713 reg &= ~EROMAR_EEDI;
1714 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1715 bus_space_write_4(st, sh, SIP_EROMAR,
1716 reg | EROMAR_EESK);
1717 delay(4);
1718 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1719 delay(4);
1720 }
1721
1722 /* Shift in address. */
1723 for (x = 6; x > 0; x--) {
1724 if ((word + i) & (1 << (x - 1)))
1725 reg |= EROMAR_EEDI;
1726 else
1727 reg &= ~EROMAR_EEDI;
1728 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1729 bus_space_write_4(st, sh, SIP_EROMAR,
1730 reg | EROMAR_EESK);
1731 delay(4);
1732 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1733 delay(4);
1734 }
1735
1736 /* Shift out data. */
1737 reg = EROMAR_EECS;
1738 data[i] = 0;
1739 for (x = 16; x > 0; x--) {
1740 bus_space_write_4(st, sh, SIP_EROMAR,
1741 reg | EROMAR_EESK);
1742 delay(4);
1743 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1744 data[i] |= (1 << (x - 1));
1745 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1746 delay(4);
1747 }
1748
1749 /* Clear CHIP SELECT. */
1750 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1751 delay(4);
1752 }
1753 }
1754
1755 /*
1756 * sip_add_rxbuf:
1757 *
1758 * Add a receive buffer to the indicated descriptor.
1759 */
1760 int
1761 sip_add_rxbuf(sc, idx)
1762 struct sip_softc *sc;
1763 int idx;
1764 {
1765 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1766 struct mbuf *m;
1767 int error;
1768
1769 MGETHDR(m, M_DONTWAIT, MT_DATA);
1770 if (m == NULL)
1771 return (ENOBUFS);
1772
1773 MCLGET(m, M_DONTWAIT);
1774 if ((m->m_flags & M_EXT) == 0) {
1775 m_freem(m);
1776 return (ENOBUFS);
1777 }
1778
1779 if (rxs->rxs_mbuf != NULL)
1780 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1781
1782 rxs->rxs_mbuf = m;
1783
1784 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1785 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1786 if (error) {
1787 printf("%s: can't load rx DMA map %d, error = %d\n",
1788 sc->sc_dev.dv_xname, idx, error);
1789 panic("sip_add_rxbuf"); /* XXX */
1790 }
1791
1792 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1793 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1794
1795 SIP_INIT_RXDESC(sc, idx);
1796
1797 return (0);
1798 }
1799
1800 /*
1801 * sip_sis900_set_filter:
1802 *
1803 * Set up the receive filter.
1804 */
1805 void
1806 sip_sis900_set_filter(sc)
1807 struct sip_softc *sc;
1808 {
1809 bus_space_tag_t st = sc->sc_st;
1810 bus_space_handle_t sh = sc->sc_sh;
1811 struct ethercom *ec = &sc->sc_ethercom;
1812 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1813 struct ether_multi *enm;
1814 u_int8_t *cp;
1815 struct ether_multistep step;
1816 u_int32_t crc, mchash[8];
1817
1818 /*
1819 * Initialize the prototype RFCR.
1820 */
1821 sc->sc_rfcr = RFCR_RFEN;
1822 if (ifp->if_flags & IFF_BROADCAST)
1823 sc->sc_rfcr |= RFCR_AAB;
1824 if (ifp->if_flags & IFF_PROMISC) {
1825 sc->sc_rfcr |= RFCR_AAP;
1826 goto allmulti;
1827 }
1828
1829 /*
1830 * Set up the multicast address filter by passing all multicast
1831 * addresses through a CRC generator, and then using the high-order
1832 * 6 bits as an index into the 128 bit multicast hash table (only
1833 * the lower 16 bits of each 32 bit multicast hash register are
1834 * valid). The high order bits select the register, while the
1835 * rest of the bits select the bit within the register.
1836 */
1837
1838 memset(mchash, 0, sizeof(mchash));
1839
1840 ETHER_FIRST_MULTI(step, ec, enm);
1841 while (enm != NULL) {
1842 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1843 /*
1844 * We must listen to a range of multicast addresses.
1845 * For now, just accept all multicasts, rather than
1846 * trying to set only those filter bits needed to match
1847 * the range. (At this time, the only use of address
1848 * ranges is for IP multicast routing, for which the
1849 * range is big enough to require all bits set.)
1850 */
1851 goto allmulti;
1852 }
1853
1854 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1855
1856 /* Just want the 7 most significant bits. */
1857 crc >>= 25;
1858
1859 /* Set the corresponding bit in the hash table. */
1860 mchash[crc >> 4] |= 1 << (crc & 0xf);
1861
1862 ETHER_NEXT_MULTI(step, enm);
1863 }
1864
1865 ifp->if_flags &= ~IFF_ALLMULTI;
1866 goto setit;
1867
1868 allmulti:
1869 ifp->if_flags |= IFF_ALLMULTI;
1870 sc->sc_rfcr |= RFCR_AAM;
1871
1872 setit:
1873 #define FILTER_EMIT(addr, data) \
1874 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1875 delay(1); \
1876 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1877 delay(1)
1878
1879 /*
1880 * Disable receive filter, and program the node address.
1881 */
1882 cp = LLADDR(ifp->if_sadl);
1883 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1884 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1885 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1886
1887 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1888 /*
1889 * Program the multicast hash table.
1890 */
1891 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1892 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1893 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1894 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1895 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1896 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1897 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1898 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1899 }
1900 #undef FILTER_EMIT
1901
1902 /*
1903 * Re-enable the receiver filter.
1904 */
1905 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1906 }
1907
1908 /*
1909 * sip_dp83815_set_filter:
1910 *
1911 * Set up the receive filter.
1912 */
1913 void
1914 sip_dp83815_set_filter(sc)
1915 struct sip_softc *sc;
1916 {
1917 bus_space_tag_t st = sc->sc_st;
1918 bus_space_handle_t sh = sc->sc_sh;
1919 struct ethercom *ec = &sc->sc_ethercom;
1920 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1921 struct ether_multi *enm;
1922 u_int8_t *cp;
1923 struct ether_multistep step;
1924 u_int32_t crc, mchash[16];
1925 int i;
1926
1927 /*
1928 * Initialize the prototype RFCR.
1929 */
1930 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1931 if (ifp->if_flags & IFF_BROADCAST)
1932 sc->sc_rfcr |= RFCR_AAB;
1933 if (ifp->if_flags & IFF_PROMISC) {
1934 sc->sc_rfcr |= RFCR_AAP;
1935 goto allmulti;
1936 }
1937
1938 /*
1939 * Set up the multicast address filter by passing all multicast
1940 * addresses through a CRC generator, and then using the high-order
1941 * 9 bits as an index into the 512 bit multicast hash table. The
1942 * high-order bits select the slot, while the rest of the bits
1943 * select the bit within the slot. Note that only the low 16-bits
1944 * of each filter word are used, and there are 64 filter words.
1945 */
1946
1947 memset(mchash, 0, sizeof(mchash));
1948
1949 ETHER_FIRST_MULTI(step, ec, enm);
1950 while (enm != NULL) {
1951 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1952 /*
1953 * We must listen to a range of multicast addresses.
1954 * For now, just accept all multicasts, rather than
1955 * trying to set only those filter bits needed to match
1956 * the range. (At this time, the only use of address
1957 * ranges is for IP multicast routing, for which the
1958 * range is big enough to require all bits set.)
1959 */
1960 goto allmulti;
1961 }
1962
1963 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1964
1965 /* Just want the 9 most significant bits. */
1966 crc >>= 23;
1967
1968 /* Set the corresponding bit in the hash table. */
1969 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1970
1971 ETHER_NEXT_MULTI(step, enm);
1972 }
1973
1974 ifp->if_flags |= ~IFF_ALLMULTI;
1975 sc->sc_rfcr |= RFCR_MHEN;
1976 goto setit;
1977
1978 allmulti:
1979 ifp->if_flags |= IFF_ALLMULTI;
1980 sc->sc_rfcr |= RFCR_AAM;
1981
1982 setit:
1983 #define FILTER_EMIT(addr, data) \
1984 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1985 delay(1); \
1986 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1987 delay(1);
1988
1989 /*
1990 * Disable receive filter, and program the node address.
1991 */
1992 cp = LLADDR(ifp->if_sadl);
1993 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
1994 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
1995 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
1996
1997 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1998 /*
1999 * Program the multicast hash table.
2000 */
2001 for (i = 0; i < 16; i++) {
2002 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2003 mchash[i] & 0xffff);
2004 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
2005 (mchash[i] >> 16) & 0xffff);
2006 }
2007 }
2008 #undef FILTER_EMIT
2009
2010 /*
2011 * Re-enable the receiver filter.
2012 */
2013 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2014 }
2015
2016 /*
2017 * sip_sis900_mii_readreg: [mii interface function]
2018 *
2019 * Read a PHY register on the MII.
2020 */
2021 int
2022 sip_sis900_mii_readreg(self, phy, reg)
2023 struct device *self;
2024 int phy, reg;
2025 {
2026 struct sip_softc *sc = (struct sip_softc *) self;
2027 u_int32_t enphy;
2028
2029 /*
2030 * The SiS 900 has only an internal PHY on the MII. Only allow
2031 * MII address 0.
2032 */
2033 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2034 return (0);
2035
2036 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2037 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2038 ENPHY_RWCMD | ENPHY_ACCESS);
2039 do {
2040 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2041 } while (enphy & ENPHY_ACCESS);
2042 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2043 }
2044
2045 /*
2046 * sip_sis900_mii_writereg: [mii interface function]
2047 *
2048 * Write a PHY register on the MII.
2049 */
2050 void
2051 sip_sis900_mii_writereg(self, phy, reg, val)
2052 struct device *self;
2053 int phy, reg, val;
2054 {
2055 struct sip_softc *sc = (struct sip_softc *) self;
2056 u_int32_t enphy;
2057
2058 /*
2059 * The SiS 900 has only an internal PHY on the MII. Only allow
2060 * MII address 0.
2061 */
2062 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2063 return;
2064
2065 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2066 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2067 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2068 do {
2069 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2070 } while (enphy & ENPHY_ACCESS);
2071 }
2072
2073 /*
2074 * sip_sis900_mii_statchg: [mii interface function]
2075 *
2076 * Callback from MII layer when media changes.
2077 */
2078 void
2079 sip_sis900_mii_statchg(self)
2080 struct device *self;
2081 {
2082 struct sip_softc *sc = (struct sip_softc *) self;
2083 u_int32_t flowctl;
2084
2085 /*
2086 * Update TXCFG for full-duplex operation.
2087 */
2088 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2089 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2090 else
2091 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2092
2093 /*
2094 * Update RXCFG for full-duplex or loopback.
2095 */
2096 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2097 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2098 sc->sc_rxcfg |= RXCFG_ATX;
2099 else
2100 sc->sc_rxcfg &= ~RXCFG_ATX;
2101
2102 /*
2103 * Update IMR for use of 802.3x flow control.
2104 */
2105 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2106 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2107 flowctl = FLOWCTL_FLOWEN;
2108 } else {
2109 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2110 flowctl = 0;
2111 }
2112
2113 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2114 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2115 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2116 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2117 }
2118
2119 /*
2120 * sip_dp83815_mii_readreg: [mii interface function]
2121 *
2122 * Read a PHY register on the MII.
2123 */
2124 int
2125 sip_dp83815_mii_readreg(self, phy, reg)
2126 struct device *self;
2127 int phy, reg;
2128 {
2129 struct sip_softc *sc = (struct sip_softc *) self;
2130 u_int32_t val;
2131
2132 /*
2133 * The DP83815 only has an internal PHY. Only allow
2134 * MII address 0.
2135 */
2136 if (phy != 0)
2137 return (0);
2138
2139 /*
2140 * Apparently, after a reset, the DP83815 can take a while
2141 * to respond. During this recovery period, the BMSR returns
2142 * a value of 0. Catch this -- it's not supposed to happen
2143 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2144 * PHY to come back to life.
2145 *
2146 * This works out because the BMSR is the first register
2147 * read during the PHY probe process.
2148 */
2149 do {
2150 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2151 } while (reg == MII_BMSR && val == 0);
2152
2153 return (val & 0xffff);
2154 }
2155
2156 /*
2157 * sip_dp83815_mii_writereg: [mii interface function]
2158 *
2159 * Write a PHY register to the MII.
2160 */
2161 void
2162 sip_dp83815_mii_writereg(self, phy, reg, val)
2163 struct device *self;
2164 int phy, reg, val;
2165 {
2166 struct sip_softc *sc = (struct sip_softc *) self;
2167
2168 /*
2169 * The DP83815 only has an internal PHY. Only allow
2170 * MII address 0.
2171 */
2172 if (phy != 0)
2173 return;
2174
2175 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2176 }
2177
2178 /*
2179 * sip_dp83815_mii_statchg: [mii interface function]
2180 *
2181 * Callback from MII layer when media changes.
2182 */
2183 void
2184 sip_dp83815_mii_statchg(self)
2185 struct device *self;
2186 {
2187 struct sip_softc *sc = (struct sip_softc *) self;
2188
2189 /*
2190 * Update TXCFG for full-duplex operation.
2191 */
2192 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2193 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2194 else
2195 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2196
2197 /*
2198 * Update RXCFG for full-duplex or loopback.
2199 */
2200 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2201 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2202 sc->sc_rxcfg |= RXCFG_ATX;
2203 else
2204 sc->sc_rxcfg &= ~RXCFG_ATX;
2205
2206 /*
2207 * XXX 802.3x flow control.
2208 */
2209
2210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2211 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2212 }
2213
2214 /*
2215 * sip_mediastatus: [ifmedia interface function]
2216 *
2217 * Get the current interface media status.
2218 */
2219 void
2220 sip_mediastatus(ifp, ifmr)
2221 struct ifnet *ifp;
2222 struct ifmediareq *ifmr;
2223 {
2224 struct sip_softc *sc = ifp->if_softc;
2225
2226 mii_pollstat(&sc->sc_mii);
2227 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2228 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2229 }
2230
2231 /*
2232 * sip_mediachange: [ifmedia interface function]
2233 *
2234 * Set hardware to newly-selected media.
2235 */
2236 int
2237 sip_mediachange(ifp)
2238 struct ifnet *ifp;
2239 {
2240 struct sip_softc *sc = ifp->if_softc;
2241
2242 if (ifp->if_flags & IFF_UP)
2243 mii_mediachg(&sc->sc_mii);
2244 return (0);
2245 }
2246