if_sip.c revision 1.11.4.5 1 /* $NetBSD: if_sip.c,v 1.11.4.5 2001/03/13 20:26:01 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <vm/vm.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258
259 void sip_shutdown __P((void *));
260
261 void sip_reset __P((struct sip_softc *));
262 int sip_init __P((struct sip_softc *));
263 void sip_stop __P((struct sip_softc *, int));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 void sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *));
273 void sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *));
274
275 int sip_intr __P((void *));
276 void sip_txintr __P((struct sip_softc *));
277 void sip_rxintr __P((struct sip_softc *));
278
279 int sip_sis900_mii_readreg __P((struct device *, int, int));
280 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
281 void sip_sis900_mii_statchg __P((struct device *));
282
283 int sip_dp83815_mii_readreg __P((struct device *, int, int));
284 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
285 void sip_dp83815_mii_statchg __P((struct device *));
286
287 int sip_mediachange __P((struct ifnet *));
288 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
289
290 int sip_match __P((struct device *, struct cfdata *, void *));
291 void sip_attach __P((struct device *, struct device *, void *));
292
293 int sip_copy_small = 0;
294
295 struct cfattach sip_ca = {
296 sizeof(struct sip_softc), sip_match, sip_attach,
297 };
298
299 /*
300 * Descriptions of the variants of the SiS900.
301 */
302 struct sip_variant {
303 int (*sipv_mii_readreg) __P((struct device *, int, int));
304 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
305 void (*sipv_mii_statchg) __P((struct device *));
306 void (*sipv_set_filter) __P((struct sip_softc *));
307 void (*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *));
308 };
309
310 const struct sip_variant sip_variant_sis900 = {
311 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
312 sip_sis900_mii_statchg, sip_sis900_set_filter,
313 sip_sis900_read_macaddr
314 };
315
316 const struct sip_variant sip_variant_dp83815 = {
317 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
318 sip_dp83815_mii_statchg, sip_dp83815_set_filter,
319 sip_dp83815_read_macaddr
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 const struct sip_product {
326 pci_vendor_id_t sip_vendor;
327 pci_product_id_t sip_product;
328 const char *sip_name;
329 const struct sip_variant *sip_variant;
330 } sip_products[] = {
331 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
332 "SiS 900 10/100 Ethernet",
333 &sip_variant_sis900 },
334 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
335 "SiS 7016 10/100 Ethernet",
336 &sip_variant_sis900 },
337
338 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
339 "NatSemi DP83815 10/100 Ethernet",
340 &sip_variant_dp83815 },
341
342 { 0, 0,
343 NULL,
344 NULL },
345 };
346
347 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
348
349 const struct sip_product *
350 sip_lookup(pa)
351 const struct pci_attach_args *pa;
352 {
353 const struct sip_product *sip;
354
355 for (sip = sip_products; sip->sip_name != NULL; sip++) {
356 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
357 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
358 return (sip);
359 }
360 return (NULL);
361 }
362
363 int
364 sip_match(parent, cf, aux)
365 struct device *parent;
366 struct cfdata *cf;
367 void *aux;
368 {
369 struct pci_attach_args *pa = aux;
370
371 if (sip_lookup(pa) != NULL)
372 return (1);
373
374 return (0);
375 }
376
377 void
378 sip_attach(parent, self, aux)
379 struct device *parent, *self;
380 void *aux;
381 {
382 struct sip_softc *sc = (struct sip_softc *) self;
383 struct pci_attach_args *pa = aux;
384 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
385 pci_chipset_tag_t pc = pa->pa_pc;
386 pci_intr_handle_t ih;
387 const char *intrstr = NULL;
388 bus_space_tag_t iot, memt;
389 bus_space_handle_t ioh, memh;
390 bus_dma_segment_t seg;
391 int ioh_valid, memh_valid;
392 int i, rseg, error;
393 const struct sip_product *sip;
394 pcireg_t pmode;
395 u_int8_t enaddr[ETHER_ADDR_LEN];
396 int pmreg;
397
398 callout_init(&sc->sc_tick_ch);
399
400 sip = sip_lookup(pa);
401 if (sip == NULL) {
402 printf("\n");
403 panic("sip_attach: impossible");
404 }
405
406 printf(": %s\n", sip->sip_name);
407
408 sc->sc_model = sip;
409
410 /*
411 * Map the device.
412 */
413 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
414 PCI_MAPREG_TYPE_IO, 0,
415 &iot, &ioh, NULL, NULL) == 0);
416 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
417 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
418 &memt, &memh, NULL, NULL) == 0);
419
420 if (memh_valid) {
421 sc->sc_st = memt;
422 sc->sc_sh = memh;
423 } else if (ioh_valid) {
424 sc->sc_st = iot;
425 sc->sc_sh = ioh;
426 } else {
427 printf("%s: unable to map device registers\n",
428 sc->sc_dev.dv_xname);
429 return;
430 }
431
432 sc->sc_dmat = pa->pa_dmat;
433
434 /* Enable bus mastering. */
435 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
436 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
437 PCI_COMMAND_MASTER_ENABLE);
438
439 /* Get it out of power save mode if needed. */
440 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
441 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
442 if (pmode == 3) {
443 /*
444 * The card has lost all configuration data in
445 * this state, so punt.
446 */
447 printf("%s: unable to wake up from power state D3\n",
448 sc->sc_dev.dv_xname);
449 return;
450 }
451 if (pmode != 0) {
452 printf("%s: waking up from power state D%d\n",
453 sc->sc_dev.dv_xname, pmode);
454 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
455 }
456 }
457
458 /*
459 * Map and establish our interrupt.
460 */
461 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
462 pa->pa_intrline, &ih)) {
463 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
464 return;
465 }
466 intrstr = pci_intr_string(pc, ih);
467 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
468 if (sc->sc_ih == NULL) {
469 printf("%s: unable to establish interrupt",
470 sc->sc_dev.dv_xname);
471 if (intrstr != NULL)
472 printf(" at %s", intrstr);
473 printf("\n");
474 return;
475 }
476 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
477
478 SIMPLEQ_INIT(&sc->sc_txfreeq);
479 SIMPLEQ_INIT(&sc->sc_txdirtyq);
480
481 /*
482 * Allocate the control data structures, and create and load the
483 * DMA map for it.
484 */
485 if ((error = bus_dmamem_alloc(sc->sc_dmat,
486 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
487 0)) != 0) {
488 printf("%s: unable to allocate control data, error = %d\n",
489 sc->sc_dev.dv_xname, error);
490 goto fail_0;
491 }
492
493 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
494 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
495 BUS_DMA_COHERENT)) != 0) {
496 printf("%s: unable to map control data, error = %d\n",
497 sc->sc_dev.dv_xname, error);
498 goto fail_1;
499 }
500
501 if ((error = bus_dmamap_create(sc->sc_dmat,
502 sizeof(struct sip_control_data), 1,
503 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
504 printf("%s: unable to create control data DMA map, "
505 "error = %d\n", sc->sc_dev.dv_xname, error);
506 goto fail_2;
507 }
508
509 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
510 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
511 0)) != 0) {
512 printf("%s: unable to load control data DMA map, error = %d\n",
513 sc->sc_dev.dv_xname, error);
514 goto fail_3;
515 }
516
517 /*
518 * Create the transmit buffer DMA maps.
519 */
520 for (i = 0; i < SIP_TXQUEUELEN; i++) {
521 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
522 SIP_NTXSEGS, MCLBYTES, 0, 0,
523 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
524 printf("%s: unable to create tx DMA map %d, "
525 "error = %d\n", sc->sc_dev.dv_xname, i, error);
526 goto fail_4;
527 }
528 }
529
530 /*
531 * Create the receive buffer DMA maps.
532 */
533 for (i = 0; i < SIP_NRXDESC; i++) {
534 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
535 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
536 printf("%s: unable to create rx DMA map %d, "
537 "error = %d\n", sc->sc_dev.dv_xname, i, error);
538 goto fail_5;
539 }
540 sc->sc_rxsoft[i].rxs_mbuf = NULL;
541 }
542
543 /*
544 * Reset the chip to a known state.
545 */
546 sip_reset(sc);
547
548 /*
549 * Read the Ethernet address from the EEPROM.
550 */
551 sip->sip_variant->sipv_read_macaddr(sc, enaddr);
552
553 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
554 ether_sprintf(enaddr));
555
556 /*
557 * Initialize our media structures and probe the MII.
558 */
559 sc->sc_mii.mii_ifp = ifp;
560 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
561 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
562 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
563 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
564 sip_mediastatus);
565 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
566 MII_OFFSET_ANY, 0);
567 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
568 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
569 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
570 } else
571 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
572
573 ifp = &sc->sc_ethercom.ec_if;
574 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
575 ifp->if_softc = sc;
576 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
577 ifp->if_ioctl = sip_ioctl;
578 ifp->if_start = sip_start;
579 ifp->if_watchdog = sip_watchdog;
580
581 /*
582 * Attach the interface.
583 */
584 if_attach(ifp);
585 ether_ifattach(ifp, enaddr);
586 #if NBPFILTER > 0
587 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
588 sizeof(struct ether_header));
589 #endif
590
591 /*
592 * Make sure the interface is shutdown during reboot.
593 */
594 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
595 if (sc->sc_sdhook == NULL)
596 printf("%s: WARNING: unable to establish shutdown hook\n",
597 sc->sc_dev.dv_xname);
598 return;
599
600 /*
601 * Free any resources we've allocated during the failed attach
602 * attempt. Do this in reverse order and fall through.
603 */
604 fail_5:
605 for (i = 0; i < SIP_NRXDESC; i++) {
606 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
607 bus_dmamap_destroy(sc->sc_dmat,
608 sc->sc_rxsoft[i].rxs_dmamap);
609 }
610 fail_4:
611 for (i = 0; i < SIP_TXQUEUELEN; i++) {
612 if (sc->sc_txsoft[i].txs_dmamap != NULL)
613 bus_dmamap_destroy(sc->sc_dmat,
614 sc->sc_txsoft[i].txs_dmamap);
615 }
616 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
617 fail_3:
618 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
619 fail_2:
620 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
621 sizeof(struct sip_control_data));
622 fail_1:
623 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
624 fail_0:
625 return;
626 }
627
628 /*
629 * sip_shutdown:
630 *
631 * Make sure the interface is stopped at reboot time.
632 */
633 void
634 sip_shutdown(arg)
635 void *arg;
636 {
637 struct sip_softc *sc = arg;
638
639 sip_stop(sc, 1);
640 }
641
642 /*
643 * sip_start: [ifnet interface function]
644 *
645 * Start packet transmission on the interface.
646 */
647 void
648 sip_start(ifp)
649 struct ifnet *ifp;
650 {
651 struct sip_softc *sc = ifp->if_softc;
652 struct mbuf *m0, *m;
653 struct sip_txsoft *txs;
654 bus_dmamap_t dmamap;
655 int error, firsttx, nexttx, lasttx, ofree, seg;
656
657 /*
658 * If we've been told to pause, don't transmit any more packets.
659 */
660 if (sc->sc_flags & SIPF_PAUSED)
661 ifp->if_flags |= IFF_OACTIVE;
662
663 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
664 return;
665
666 /*
667 * Remember the previous number of free descriptors and
668 * the first descriptor we'll use.
669 */
670 ofree = sc->sc_txfree;
671 firsttx = sc->sc_txnext;
672
673 /*
674 * Loop through the send queue, setting up transmit descriptors
675 * until we drain the queue, or use up all available transmit
676 * descriptors.
677 */
678 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
679 sc->sc_txfree != 0) {
680 /*
681 * Grab a packet off the queue.
682 */
683 IF_DEQUEUE(&ifp->if_snd, m0);
684 if (m0 == NULL)
685 break;
686
687 dmamap = txs->txs_dmamap;
688
689 /*
690 * Load the DMA map. If this fails, the packet either
691 * didn't fit in the alloted number of segments, or we
692 * were short on resources. In this case, we'll copy
693 * and try again.
694 */
695 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
696 BUS_DMA_NOWAIT) != 0) {
697 MGETHDR(m, M_DONTWAIT, MT_DATA);
698 if (m == NULL) {
699 printf("%s: unable to allocate Tx mbuf\n",
700 sc->sc_dev.dv_xname);
701 IF_PREPEND(&ifp->if_snd, m0);
702 break;
703 }
704 if (m0->m_pkthdr.len > MHLEN) {
705 MCLGET(m, M_DONTWAIT);
706 if ((m->m_flags & M_EXT) == 0) {
707 printf("%s: unable to allocate Tx "
708 "cluster\n", sc->sc_dev.dv_xname);
709 m_freem(m);
710 IF_PREPEND(&ifp->if_snd, m0);
711 break;
712 }
713 }
714 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
715 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
716 m_freem(m0);
717 m0 = m;
718 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
719 m0, BUS_DMA_NOWAIT);
720 if (error) {
721 printf("%s: unable to load Tx buffer, "
722 "error = %d\n", sc->sc_dev.dv_xname, error);
723 IF_PREPEND(&ifp->if_snd, m0);
724 break;
725 }
726 }
727
728 /*
729 * Ensure we have enough descriptors free to describe
730 * the packet.
731 */
732 if (dmamap->dm_nsegs > sc->sc_txfree) {
733 /*
734 * Not enough free descriptors to transmit this
735 * packet. We haven't committed anything yet,
736 * so just unload the DMA map, put the packet
737 * back on the queue, and punt. Notify the upper
738 * layer that there are not more slots left.
739 *
740 * XXX We could allocate an mbuf and copy, but
741 * XXX is it worth it?
742 */
743 ifp->if_flags |= IFF_OACTIVE;
744 bus_dmamap_unload(sc->sc_dmat, dmamap);
745 IF_PREPEND(&ifp->if_snd, m0);
746 break;
747 }
748
749 /*
750 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
751 */
752
753 /* Sync the DMA map. */
754 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
755 BUS_DMASYNC_PREWRITE);
756
757 /*
758 * Initialize the transmit descriptors.
759 */
760 for (nexttx = sc->sc_txnext, seg = 0;
761 seg < dmamap->dm_nsegs;
762 seg++, nexttx = SIP_NEXTTX(nexttx)) {
763 /*
764 * If this is the first descriptor we're
765 * enqueueing, don't set the OWN bit just
766 * yet. That could cause a race condition.
767 * We'll do it below.
768 */
769 sc->sc_txdescs[nexttx].sipd_bufptr =
770 htole32(dmamap->dm_segs[seg].ds_addr);
771 sc->sc_txdescs[nexttx].sipd_cmdsts =
772 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
773 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
774 lasttx = nexttx;
775 }
776
777 /* Clear the MORE bit on the last segment. */
778 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
779
780 /* Sync the descriptors we're using. */
781 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
782 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
783
784 /*
785 * Store a pointer to the packet so we can free it later,
786 * and remember what txdirty will be once the packet is
787 * done.
788 */
789 txs->txs_mbuf = m0;
790 txs->txs_firstdesc = sc->sc_txnext;
791 txs->txs_lastdesc = lasttx;
792
793 /* Advance the tx pointer. */
794 sc->sc_txfree -= dmamap->dm_nsegs;
795 sc->sc_txnext = nexttx;
796
797 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
798 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
799
800 #if NBPFILTER > 0
801 /*
802 * Pass the packet to any BPF listeners.
803 */
804 if (ifp->if_bpf)
805 bpf_mtap(ifp->if_bpf, m0);
806 #endif /* NBPFILTER > 0 */
807 }
808
809 if (txs == NULL || sc->sc_txfree == 0) {
810 /* No more slots left; notify upper layer. */
811 ifp->if_flags |= IFF_OACTIVE;
812 }
813
814 if (sc->sc_txfree != ofree) {
815 /*
816 * Cause a descriptor interrupt to happen on the
817 * last packet we enqueued.
818 */
819 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
820 SIP_CDTXSYNC(sc, lasttx, 1,
821 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
822
823 /*
824 * The entire packet chain is set up. Give the
825 * first descrptor to the chip now.
826 */
827 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
828 SIP_CDTXSYNC(sc, firsttx, 1,
829 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
830
831 /* Start the transmit process. */
832 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
833 CR_TXE) == 0) {
834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
835 SIP_CDTXADDR(sc, firsttx));
836 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
837 }
838
839 /* Set a watchdog timer in case the chip flakes out. */
840 ifp->if_timer = 5;
841 }
842 }
843
844 /*
845 * sip_watchdog: [ifnet interface function]
846 *
847 * Watchdog timer handler.
848 */
849 void
850 sip_watchdog(ifp)
851 struct ifnet *ifp;
852 {
853 struct sip_softc *sc = ifp->if_softc;
854
855 /*
856 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
857 * If we get a timeout, try and sweep up transmit descriptors.
858 * If we manage to sweep them all up, ignore the lack of
859 * interrupt.
860 */
861 sip_txintr(sc);
862
863 if (sc->sc_txfree != SIP_NTXDESC) {
864 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
865 ifp->if_oerrors++;
866
867 /* Reset the interface. */
868 (void) sip_init(sc);
869 } else if (ifp->if_flags & IFF_DEBUG)
870 printf("%s: recovered from device timeout\n",
871 sc->sc_dev.dv_xname);
872
873 /* Try to get more packets going. */
874 sip_start(ifp);
875 }
876
877 /*
878 * sip_ioctl: [ifnet interface function]
879 *
880 * Handle control requests from the operator.
881 */
882 int
883 sip_ioctl(ifp, cmd, data)
884 struct ifnet *ifp;
885 u_long cmd;
886 caddr_t data;
887 {
888 struct sip_softc *sc = ifp->if_softc;
889 struct ifreq *ifr = (struct ifreq *)data;
890 struct ifaddr *ifa = (struct ifaddr *)data;
891 int s, error = 0;
892
893 s = splnet();
894
895 switch (cmd) {
896 case SIOCSIFADDR:
897 ifp->if_flags |= IFF_UP;
898
899 switch (ifa->ifa_addr->sa_family) {
900 #ifdef INET
901 case AF_INET:
902 if ((error = sip_init(sc)) != 0)
903 break;
904 arp_ifinit(ifp, ifa);
905 break;
906 #endif /* INET */
907 #ifdef NS
908 case AF_NS:
909 {
910 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
911
912 if (ns_nullhost(*ina))
913 ina->x_host = *(union ns_host *)
914 LLADDR(ifp->if_sadl);
915 else
916 memcpy(LLADDR(ifp->if_sadl),
917 ina->x_host.c_host, ifp->if_addrlen);
918 error = sip_init(sc);
919 break;
920 }
921 #endif /* NS */
922 default:
923 error = sip_init(sc);
924 break;
925 }
926 break;
927
928 case SIOCSIFMTU:
929 if (ifr->ifr_mtu > ETHERMTU)
930 error = EINVAL;
931 else
932 ifp->if_mtu = ifr->ifr_mtu;
933 break;
934
935 case SIOCSIFFLAGS:
936 if ((ifp->if_flags & IFF_UP) == 0 &&
937 (ifp->if_flags & IFF_RUNNING) != 0) {
938 /*
939 * If interface is marked down and it is running, then
940 * stop it.
941 */
942 sip_stop(sc, 1);
943 } else if ((ifp->if_flags & IFF_UP) != 0 &&
944 (ifp->if_flags & IFF_RUNNING) == 0) {
945 /*
946 * If interfase it marked up and it is stopped, then
947 * start it.
948 */
949 error = sip_init(sc);
950 } else if ((ifp->if_flags & IFF_UP) != 0) {
951 /*
952 * Reset the interface to pick up changes in any other
953 * flags that affect the hardware state.
954 */
955 error = sip_init(sc);
956 }
957 break;
958
959 case SIOCADDMULTI:
960 case SIOCDELMULTI:
961 error = (cmd == SIOCADDMULTI) ?
962 ether_addmulti(ifr, &sc->sc_ethercom) :
963 ether_delmulti(ifr, &sc->sc_ethercom);
964
965 if (error == ENETRESET) {
966 /*
967 * Multicast list has changed; set the hardware filter
968 * accordingly.
969 */
970 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
971 error = 0;
972 }
973 break;
974
975 case SIOCSIFMEDIA:
976 case SIOCGIFMEDIA:
977 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
978 break;
979
980 default:
981 error = EINVAL;
982 break;
983 }
984
985 /* Try to get more packets going. */
986 sip_start(ifp);
987
988 splx(s);
989 return (error);
990 }
991
992 /*
993 * sip_intr:
994 *
995 * Interrupt service routine.
996 */
997 int
998 sip_intr(arg)
999 void *arg;
1000 {
1001 struct sip_softc *sc = arg;
1002 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1003 u_int32_t isr;
1004 int handled = 0;
1005
1006 for (;;) {
1007 /* Reading clears interrupt. */
1008 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1009 if ((isr & sc->sc_imr) == 0)
1010 break;
1011
1012 handled = 1;
1013
1014 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1015 /* Grab any new packets. */
1016 sip_rxintr(sc);
1017
1018 if (isr & ISR_RXORN) {
1019 printf("%s: receive FIFO overrun\n",
1020 sc->sc_dev.dv_xname);
1021
1022 /* XXX adjust rx_drain_thresh? */
1023 }
1024
1025 if (isr & ISR_RXIDLE) {
1026 printf("%s: receive ring overrun\n",
1027 sc->sc_dev.dv_xname);
1028
1029 /* Get the receive process going again. */
1030 bus_space_write_4(sc->sc_st, sc->sc_sh,
1031 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1032 bus_space_write_4(sc->sc_st, sc->sc_sh,
1033 SIP_CR, CR_RXE);
1034 }
1035 }
1036
1037 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1038 /* Sweep up transmit descriptors. */
1039 sip_txintr(sc);
1040
1041 if (isr & ISR_TXURN) {
1042 u_int32_t thresh;
1043
1044 printf("%s: transmit FIFO underrun",
1045 sc->sc_dev.dv_xname);
1046
1047 thresh = sc->sc_tx_drain_thresh + 1;
1048 if (thresh <= TXCFG_DRTH &&
1049 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1050 (sc->sc_tx_fill_thresh * 32))) {
1051 printf("; increasing Tx drain "
1052 "threshold to %u bytes\n",
1053 thresh * 32);
1054 sc->sc_tx_drain_thresh = thresh;
1055 (void) sip_init(sc);
1056 } else {
1057 (void) sip_init(sc);
1058 printf("\n");
1059 }
1060 }
1061 }
1062
1063 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1064 if (isr & ISR_PAUSE_ST) {
1065 sc->sc_flags |= SIPF_PAUSED;
1066 ifp->if_flags |= IFF_OACTIVE;
1067 }
1068 if (isr & ISR_PAUSE_END) {
1069 sc->sc_flags &= ~SIPF_PAUSED;
1070 ifp->if_flags &= ~IFF_OACTIVE;
1071 }
1072 }
1073
1074 if (isr & ISR_HIBERR) {
1075 #define PRINTERR(bit, str) \
1076 if (isr & (bit)) \
1077 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1078 PRINTERR(ISR_DPERR, "parity error");
1079 PRINTERR(ISR_SSERR, "system error");
1080 PRINTERR(ISR_RMABT, "master abort");
1081 PRINTERR(ISR_RTABT, "target abort");
1082 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1083 (void) sip_init(sc);
1084 #undef PRINTERR
1085 }
1086 }
1087
1088 /* Try to get more packets going. */
1089 sip_start(ifp);
1090
1091 return (handled);
1092 }
1093
1094 /*
1095 * sip_txintr:
1096 *
1097 * Helper; handle transmit interrupts.
1098 */
1099 void
1100 sip_txintr(sc)
1101 struct sip_softc *sc;
1102 {
1103 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1104 struct sip_txsoft *txs;
1105 u_int32_t cmdsts;
1106
1107 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1108 ifp->if_flags &= ~IFF_OACTIVE;
1109
1110 /*
1111 * Go through our Tx list and free mbufs for those
1112 * frames which have been transmitted.
1113 */
1114 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1115 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1116 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1117
1118 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1119 if (cmdsts & CMDSTS_OWN)
1120 break;
1121
1122 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1123
1124 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1125
1126 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1127 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1128 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1129 m_freem(txs->txs_mbuf);
1130 txs->txs_mbuf = NULL;
1131
1132 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1133
1134 /*
1135 * Check for errors and collisions.
1136 */
1137 if (cmdsts &
1138 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1139 if (ifp->if_flags & IFF_DEBUG) {
1140 if (CMDSTS_Tx_ED)
1141 printf("%s: excessive deferral\n",
1142 sc->sc_dev.dv_xname);
1143 if (CMDSTS_Tx_EC) {
1144 printf("%s: excessive collisions\n",
1145 sc->sc_dev.dv_xname);
1146 ifp->if_collisions += 16;
1147 }
1148 }
1149 } else {
1150 /* Packet was transmitted successfully. */
1151 ifp->if_opackets++;
1152 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1153 }
1154 }
1155
1156 /*
1157 * If there are no more pending transmissions, cancel the watchdog
1158 * timer.
1159 */
1160 if (txs == NULL)
1161 ifp->if_timer = 0;
1162 }
1163
1164 /*
1165 * sip_rxintr:
1166 *
1167 * Helper; handle receive interrupts.
1168 */
1169 void
1170 sip_rxintr(sc)
1171 struct sip_softc *sc;
1172 {
1173 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 struct ether_header *eh;
1175 struct sip_rxsoft *rxs;
1176 struct mbuf *m;
1177 u_int32_t cmdsts;
1178 int i, len;
1179
1180 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1181 rxs = &sc->sc_rxsoft[i];
1182
1183 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1184
1185 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1186
1187 /*
1188 * NOTE: OWN is set if owned by _consumer_. We're the
1189 * consumer of the receive ring, so if the bit is clear,
1190 * we have processed all of the packets.
1191 */
1192 if ((cmdsts & CMDSTS_OWN) == 0) {
1193 /*
1194 * We have processed all of the receive buffers.
1195 */
1196 break;
1197 }
1198
1199 /*
1200 * If any collisions were seen on the wire, count one.
1201 */
1202 if (cmdsts & CMDSTS_Rx_COL)
1203 ifp->if_collisions++;
1204
1205 /*
1206 * If an error occurred, update stats, clear the status
1207 * word, and leave the packet buffer in place. It will
1208 * simply be reused the next time the ring comes around.
1209 */
1210 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1211 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1212 ifp->if_ierrors++;
1213 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1214 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1215 /* Receive overrun handled elsewhere. */
1216 printf("%s: receive descriptor error\n",
1217 sc->sc_dev.dv_xname);
1218 }
1219 #define PRINTERR(bit, str) \
1220 if (cmdsts & (bit)) \
1221 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1222 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1223 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1224 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1225 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1226 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1227 #undef PRINTERR
1228 SIP_INIT_RXDESC(sc, i);
1229 continue;
1230 }
1231
1232 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1233 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1234
1235 /*
1236 * No errors; receive the packet. Note, the SiS 900
1237 * includes the CRC with every packet; trim it.
1238 */
1239 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1240
1241 #ifdef __NO_STRICT_ALIGNMENT
1242 /*
1243 * If the packet is small enough to fit in a
1244 * single header mbuf, allocate one and copy
1245 * the data into it. This greatly reduces
1246 * memory consumption when we receive lots
1247 * of small packets.
1248 *
1249 * Otherwise, we add a new buffer to the receive
1250 * chain. If this fails, we drop the packet and
1251 * recycle the old buffer.
1252 */
1253 if (sip_copy_small != 0 && len <= MHLEN) {
1254 MGETHDR(m, M_DONTWAIT, MT_DATA);
1255 if (m == NULL)
1256 goto dropit;
1257 memcpy(mtod(m, caddr_t),
1258 mtod(rxs->rxs_mbuf, caddr_t), len);
1259 SIP_INIT_RXDESC(sc, i);
1260 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1261 rxs->rxs_dmamap->dm_mapsize,
1262 BUS_DMASYNC_PREREAD);
1263 } else {
1264 m = rxs->rxs_mbuf;
1265 if (sip_add_rxbuf(sc, i) != 0) {
1266 dropit:
1267 ifp->if_ierrors++;
1268 SIP_INIT_RXDESC(sc, i);
1269 bus_dmamap_sync(sc->sc_dmat,
1270 rxs->rxs_dmamap, 0,
1271 rxs->rxs_dmamap->dm_mapsize,
1272 BUS_DMASYNC_PREREAD);
1273 continue;
1274 }
1275 }
1276 #else
1277 /*
1278 * The SiS 900's receive buffers must be 4-byte aligned.
1279 * But this means that the data after the Ethernet header
1280 * is misaligned. We must allocate a new buffer and
1281 * copy the data, shifted forward 2 bytes.
1282 */
1283 MGETHDR(m, M_DONTWAIT, MT_DATA);
1284 if (m == NULL) {
1285 dropit:
1286 ifp->if_ierrors++;
1287 SIP_INIT_RXDESC(sc, i);
1288 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1289 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1290 continue;
1291 }
1292 if (len > (MHLEN - 2)) {
1293 MCLGET(m, M_DONTWAIT);
1294 if ((m->m_flags & M_EXT) == 0) {
1295 m_freem(m);
1296 goto dropit;
1297 }
1298 }
1299 m->m_data += 2;
1300
1301 /*
1302 * Note that we use clusters for incoming frames, so the
1303 * buffer is virtually contiguous.
1304 */
1305 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1306
1307 /* Allow the receive descriptor to continue using its mbuf. */
1308 SIP_INIT_RXDESC(sc, i);
1309 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1310 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1311 #endif /* __NO_STRICT_ALIGNMENT */
1312
1313 ifp->if_ipackets++;
1314 eh = mtod(m, struct ether_header *);
1315 m->m_pkthdr.rcvif = ifp;
1316 m->m_pkthdr.len = m->m_len = len;
1317
1318 #if NBPFILTER > 0
1319 /*
1320 * Pass this up to any BPF listeners, but only
1321 * pass if up the stack if it's for us.
1322 */
1323 if (ifp->if_bpf) {
1324 bpf_mtap(ifp->if_bpf, m);
1325 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1326 (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1327 m_freem(m);
1328 continue;
1329 }
1330 }
1331 #endif /* NBPFILTER > 0 */
1332
1333 /* Pass it on. */
1334 (*ifp->if_input)(ifp, m);
1335 }
1336
1337 /* Update the receive pointer. */
1338 sc->sc_rxptr = i;
1339 }
1340
1341 /*
1342 * sip_tick:
1343 *
1344 * One second timer, used to tick the MII.
1345 */
1346 void
1347 sip_tick(arg)
1348 void *arg;
1349 {
1350 struct sip_softc *sc = arg;
1351 int s;
1352
1353 s = splnet();
1354 mii_tick(&sc->sc_mii);
1355 splx(s);
1356
1357 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1358 }
1359
1360 /*
1361 * sip_reset:
1362 *
1363 * Perform a soft reset on the SiS 900.
1364 */
1365 void
1366 sip_reset(sc)
1367 struct sip_softc *sc;
1368 {
1369 bus_space_tag_t st = sc->sc_st;
1370 bus_space_handle_t sh = sc->sc_sh;
1371 int i;
1372
1373 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1374
1375 for (i = 0; i < SIP_TIMEOUT; i++) {
1376 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1377 break;
1378 delay(2);
1379 }
1380
1381 if (i == SIP_TIMEOUT)
1382 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1383
1384 delay(1000);
1385 }
1386
1387 /*
1388 * sip_init:
1389 *
1390 * Initialize the interface. Must be called at splnet().
1391 */
1392 int
1393 sip_init(sc)
1394 struct sip_softc *sc;
1395 {
1396 bus_space_tag_t st = sc->sc_st;
1397 bus_space_handle_t sh = sc->sc_sh;
1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399 struct sip_txsoft *txs;
1400 struct sip_rxsoft *rxs;
1401 struct sip_desc *sipd;
1402 u_int32_t cfg;
1403 int i, error = 0;
1404
1405 /*
1406 * Cancel any pending I/O.
1407 */
1408 sip_stop(sc, 0);
1409
1410 /*
1411 * Reset the chip to a known state.
1412 */
1413 sip_reset(sc);
1414
1415 if ( sc->sc_model->sip_vendor == PCI_VENDOR_NS
1416 && sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1417 /*
1418 * DP83815 manual, page 78:
1419 * 4.4 Recommended Registers Configuration
1420 * For optimum performance of the DP83815, version noted
1421 * as DP83815CVNG (SRR = 203h), the listed register
1422 * modifications must be followed in sequence...
1423 *
1424 * It's not clear if this should be 302h or 203h because that
1425 * chip name is listed as SRR 302h in the description of the
1426 * SRR register. However, my revision 302h DP83815 on the
1427 * Netgear FA311 purchased in 02/2001 needs these settings
1428 * to avoid tons of errors in AcceptPerfectMatch (non-
1429 * IFF_PROMISC) mode. I do not know if other revisions need
1430 * this set or not. [briggs -- 09 March 2001]
1431 *
1432 * Note that only the low-order 12 bits of 0xe4 are documented
1433 * and that this sets reserved bits in that register.
1434 */
1435 cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
1436 if (cfg == 0x302) {
1437 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1438 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1439 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1440 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1441 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1442 }
1443 }
1444
1445 /*
1446 * Initialize the transmit descriptor ring.
1447 */
1448 for (i = 0; i < SIP_NTXDESC; i++) {
1449 sipd = &sc->sc_txdescs[i];
1450 memset(sipd, 0, sizeof(struct sip_desc));
1451 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1452 }
1453 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1454 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1455 sc->sc_txfree = SIP_NTXDESC;
1456 sc->sc_txnext = 0;
1457
1458 /*
1459 * Initialize the transmit job descriptors.
1460 */
1461 SIMPLEQ_INIT(&sc->sc_txfreeq);
1462 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1463 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1464 txs = &sc->sc_txsoft[i];
1465 txs->txs_mbuf = NULL;
1466 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1467 }
1468
1469 /*
1470 * Initialize the receive descriptor and receive job
1471 * descriptor rings.
1472 */
1473 for (i = 0; i < SIP_NRXDESC; i++) {
1474 rxs = &sc->sc_rxsoft[i];
1475 if (rxs->rxs_mbuf == NULL) {
1476 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1477 printf("%s: unable to allocate or map rx "
1478 "buffer %d, error = %d\n",
1479 sc->sc_dev.dv_xname, i, error);
1480 /*
1481 * XXX Should attempt to run with fewer receive
1482 * XXX buffers instead of just failing.
1483 */
1484 sip_rxdrain(sc);
1485 goto out;
1486 }
1487 }
1488 }
1489 sc->sc_rxptr = 0;
1490
1491 /*
1492 * Initialize the configuration register: aggressive PCI
1493 * bus request algorithm, default backoff, default OW timer,
1494 * default parity error detection.
1495 */
1496 cfg = 0;
1497 #if BYTE_ORDER == BIG_ENDIAN
1498 /*
1499 * ...descriptors in big-endian mode.
1500 */
1501 #if 0
1502 /* "Big endian mode" does not work properly. */
1503 cfg |= CFG_BEM;
1504 #endif
1505 #endif
1506 bus_space_write_4(st, sh, SIP_CFG, cfg);
1507
1508 /*
1509 * Initialize the transmit fill and drain thresholds if
1510 * we have never done so.
1511 */
1512 if (sc->sc_tx_fill_thresh == 0) {
1513 /*
1514 * XXX This value should be tuned. This is the
1515 * minimum (32 bytes), and we may be able to
1516 * improve performance by increasing it.
1517 */
1518 sc->sc_tx_fill_thresh = 1;
1519 }
1520 if (sc->sc_tx_drain_thresh == 0) {
1521 /*
1522 * Start at a drain threshold of 512 bytes. We will
1523 * increase it if a DMA underrun occurs.
1524 *
1525 * XXX The minimum value of this variable should be
1526 * tuned. We may be able to improve performance
1527 * by starting with a lower value. That, however,
1528 * may trash the first few outgoing packets if the
1529 * PCI bus is saturated.
1530 */
1531 sc->sc_tx_drain_thresh = 512 / 32;
1532 }
1533
1534 /*
1535 * Initialize the prototype TXCFG register.
1536 */
1537 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1538 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1539 sc->sc_tx_drain_thresh;
1540 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1541
1542 /*
1543 * Initialize the receive drain threshold if we have never
1544 * done so.
1545 */
1546 if (sc->sc_rx_drain_thresh == 0) {
1547 /*
1548 * XXX This value should be tuned. This is set to the
1549 * maximum of 248 bytes, and we may be able to improve
1550 * performance by decreasing it (although we should never
1551 * set this value lower than 2; 14 bytes are required to
1552 * filter the packet).
1553 */
1554 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1555 }
1556
1557 /*
1558 * Initialize the prototype RXCFG register.
1559 */
1560 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1561 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1562 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1563
1564 /* Set up the receive filter. */
1565 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1566
1567 /*
1568 * Give the transmit and receive rings to the chip.
1569 */
1570 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1571 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1572
1573 /*
1574 * Initialize the interrupt mask.
1575 */
1576 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1577 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1578 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1579
1580 /*
1581 * Set the current media. Do this after initializing the prototype
1582 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1583 * control.
1584 */
1585 mii_mediachg(&sc->sc_mii);
1586
1587 /*
1588 * Enable interrupts.
1589 */
1590 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1591
1592 /*
1593 * Start the transmit and receive processes.
1594 */
1595 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1596
1597 /*
1598 * Start the one second MII clock.
1599 */
1600 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1601
1602 /*
1603 * ...all done!
1604 */
1605 ifp->if_flags |= IFF_RUNNING;
1606 ifp->if_flags &= ~IFF_OACTIVE;
1607
1608 out:
1609 if (error)
1610 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1611 return (error);
1612 }
1613
1614 /*
1615 * sip_drain:
1616 *
1617 * Drain the receive queue.
1618 */
1619 void
1620 sip_rxdrain(sc)
1621 struct sip_softc *sc;
1622 {
1623 struct sip_rxsoft *rxs;
1624 int i;
1625
1626 for (i = 0; i < SIP_NRXDESC; i++) {
1627 rxs = &sc->sc_rxsoft[i];
1628 if (rxs->rxs_mbuf != NULL) {
1629 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1630 m_freem(rxs->rxs_mbuf);
1631 rxs->rxs_mbuf = NULL;
1632 }
1633 }
1634 }
1635
1636 /*
1637 * sip_stop:
1638 *
1639 * Stop transmission on the interface.
1640 */
1641 void
1642 sip_stop(sc, drain)
1643 struct sip_softc *sc;
1644 {
1645 bus_space_tag_t st = sc->sc_st;
1646 bus_space_handle_t sh = sc->sc_sh;
1647 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1648 struct sip_txsoft *txs;
1649 u_int32_t cmdsts = 0; /* DEBUG */
1650
1651 /*
1652 * Stop the one second clock.
1653 */
1654 callout_stop(&sc->sc_tick_ch);
1655
1656 /* Down the MII. */
1657 mii_down(&sc->sc_mii);
1658
1659 /*
1660 * Disable interrupts.
1661 */
1662 bus_space_write_4(st, sh, SIP_IER, 0);
1663
1664 /*
1665 * Stop receiver and transmitter.
1666 */
1667 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1668
1669 /*
1670 * Release any queued transmit buffers.
1671 */
1672 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1673 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1674 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1675 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1676 CMDSTS_INTR) == 0)
1677 printf("%s: sip_stop: last descriptor does not "
1678 "have INTR bit set\n", sc->sc_dev.dv_xname);
1679 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1680 #ifdef DIAGNOSTIC
1681 if (txs->txs_mbuf == NULL) {
1682 printf("%s: dirty txsoft with no mbuf chain\n",
1683 sc->sc_dev.dv_xname);
1684 panic("sip_stop");
1685 }
1686 #endif
1687 cmdsts |= /* DEBUG */
1688 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1689 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1690 m_freem(txs->txs_mbuf);
1691 txs->txs_mbuf = NULL;
1692 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1693 }
1694
1695 if (drain) {
1696 /*
1697 * Release the receive buffers.
1698 */
1699 sip_rxdrain(sc);
1700 }
1701
1702 /*
1703 * Mark the interface down and cancel the watchdog timer.
1704 */
1705 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1706 ifp->if_timer = 0;
1707
1708 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1709 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1710 printf("%s: sip_stop: no INTR bits set in dirty tx "
1711 "descriptors\n", sc->sc_dev.dv_xname);
1712 }
1713
1714 /*
1715 * sip_read_eeprom:
1716 *
1717 * Read data from the serial EEPROM.
1718 */
1719 void
1720 sip_read_eeprom(sc, word, wordcnt, data)
1721 struct sip_softc *sc;
1722 int word, wordcnt;
1723 u_int16_t *data;
1724 {
1725 bus_space_tag_t st = sc->sc_st;
1726 bus_space_handle_t sh = sc->sc_sh;
1727 u_int16_t reg;
1728 int i, x;
1729
1730 for (i = 0; i < wordcnt; i++) {
1731 /* Send CHIP SELECT. */
1732 reg = EROMAR_EECS;
1733 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1734
1735 /* Shift in the READ opcode. */
1736 for (x = 3; x > 0; x--) {
1737 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1738 reg |= EROMAR_EEDI;
1739 else
1740 reg &= ~EROMAR_EEDI;
1741 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1742 bus_space_write_4(st, sh, SIP_EROMAR,
1743 reg | EROMAR_EESK);
1744 delay(4);
1745 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1746 delay(4);
1747 }
1748
1749 /* Shift in address. */
1750 for (x = 6; x > 0; x--) {
1751 if ((word + i) & (1 << (x - 1)))
1752 reg |= EROMAR_EEDI;
1753 else
1754 reg &= ~EROMAR_EEDI;
1755 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1756 bus_space_write_4(st, sh, SIP_EROMAR,
1757 reg | EROMAR_EESK);
1758 delay(4);
1759 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1760 delay(4);
1761 }
1762
1763 /* Shift out data. */
1764 reg = EROMAR_EECS;
1765 data[i] = 0;
1766 for (x = 16; x > 0; x--) {
1767 bus_space_write_4(st, sh, SIP_EROMAR,
1768 reg | EROMAR_EESK);
1769 delay(4);
1770 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1771 data[i] |= (1 << (x - 1));
1772 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1773 delay(4);
1774 }
1775
1776 /* Clear CHIP SELECT. */
1777 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1778 delay(4);
1779 }
1780 }
1781
1782 /*
1783 * sip_add_rxbuf:
1784 *
1785 * Add a receive buffer to the indicated descriptor.
1786 */
1787 int
1788 sip_add_rxbuf(sc, idx)
1789 struct sip_softc *sc;
1790 int idx;
1791 {
1792 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1793 struct mbuf *m;
1794 int error;
1795
1796 MGETHDR(m, M_DONTWAIT, MT_DATA);
1797 if (m == NULL)
1798 return (ENOBUFS);
1799
1800 MCLGET(m, M_DONTWAIT);
1801 if ((m->m_flags & M_EXT) == 0) {
1802 m_freem(m);
1803 return (ENOBUFS);
1804 }
1805
1806 if (rxs->rxs_mbuf != NULL)
1807 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1808
1809 rxs->rxs_mbuf = m;
1810
1811 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1812 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1813 if (error) {
1814 printf("%s: can't load rx DMA map %d, error = %d\n",
1815 sc->sc_dev.dv_xname, idx, error);
1816 panic("sip_add_rxbuf"); /* XXX */
1817 }
1818
1819 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1820 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1821
1822 SIP_INIT_RXDESC(sc, idx);
1823
1824 return (0);
1825 }
1826
1827 /*
1828 * sip_sis900_set_filter:
1829 *
1830 * Set up the receive filter.
1831 */
1832 void
1833 sip_sis900_set_filter(sc)
1834 struct sip_softc *sc;
1835 {
1836 bus_space_tag_t st = sc->sc_st;
1837 bus_space_handle_t sh = sc->sc_sh;
1838 struct ethercom *ec = &sc->sc_ethercom;
1839 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1840 struct ether_multi *enm;
1841 u_int8_t *cp;
1842 struct ether_multistep step;
1843 u_int32_t crc, mchash[8];
1844
1845 /*
1846 * Initialize the prototype RFCR.
1847 */
1848 sc->sc_rfcr = RFCR_RFEN;
1849 if (ifp->if_flags & IFF_BROADCAST)
1850 sc->sc_rfcr |= RFCR_AAB;
1851 if (ifp->if_flags & IFF_PROMISC) {
1852 sc->sc_rfcr |= RFCR_AAP;
1853 goto allmulti;
1854 }
1855
1856 /*
1857 * Set up the multicast address filter by passing all multicast
1858 * addresses through a CRC generator, and then using the high-order
1859 * 6 bits as an index into the 128 bit multicast hash table (only
1860 * the lower 16 bits of each 32 bit multicast hash register are
1861 * valid). The high order bits select the register, while the
1862 * rest of the bits select the bit within the register.
1863 */
1864
1865 memset(mchash, 0, sizeof(mchash));
1866
1867 ETHER_FIRST_MULTI(step, ec, enm);
1868 while (enm != NULL) {
1869 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1870 /*
1871 * We must listen to a range of multicast addresses.
1872 * For now, just accept all multicasts, rather than
1873 * trying to set only those filter bits needed to match
1874 * the range. (At this time, the only use of address
1875 * ranges is for IP multicast routing, for which the
1876 * range is big enough to require all bits set.)
1877 */
1878 goto allmulti;
1879 }
1880
1881 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1882
1883 /* Just want the 7 most significant bits. */
1884 crc >>= 25;
1885
1886 /* Set the corresponding bit in the hash table. */
1887 mchash[crc >> 4] |= 1 << (crc & 0xf);
1888
1889 ETHER_NEXT_MULTI(step, enm);
1890 }
1891
1892 ifp->if_flags &= ~IFF_ALLMULTI;
1893 goto setit;
1894
1895 allmulti:
1896 ifp->if_flags |= IFF_ALLMULTI;
1897 sc->sc_rfcr |= RFCR_AAM;
1898
1899 setit:
1900 #define FILTER_EMIT(addr, data) \
1901 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1902 delay(1); \
1903 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1904 delay(1)
1905
1906 /*
1907 * Disable receive filter, and program the node address.
1908 */
1909 cp = LLADDR(ifp->if_sadl);
1910 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1911 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1912 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1913
1914 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1915 /*
1916 * Program the multicast hash table.
1917 */
1918 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1919 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1920 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1921 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1922 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1923 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1924 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1925 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1926 }
1927 #undef FILTER_EMIT
1928
1929 /*
1930 * Re-enable the receiver filter.
1931 */
1932 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1933 }
1934
1935 /*
1936 * sip_dp83815_set_filter:
1937 *
1938 * Set up the receive filter.
1939 */
1940 void
1941 sip_dp83815_set_filter(sc)
1942 struct sip_softc *sc;
1943 {
1944 bus_space_tag_t st = sc->sc_st;
1945 bus_space_handle_t sh = sc->sc_sh;
1946 struct ethercom *ec = &sc->sc_ethercom;
1947 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1948 struct ether_multi *enm;
1949 u_int8_t *cp;
1950 struct ether_multistep step;
1951 u_int32_t crc, mchash[16];
1952 int i;
1953
1954 /*
1955 * Initialize the prototype RFCR.
1956 * Enable the receive filter, and accept ARP
1957 * and on Perfect (destination address) Match
1958 * If IFF_BROADCAST, also accept all broadcast packets.
1959 * If IFF_PROMISC, accept all unicast packets (and later, set
1960 * IFF_ALLMULTI and accept all multicast, too).
1961 */
1962 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1963 if (ifp->if_flags & IFF_BROADCAST)
1964 sc->sc_rfcr |= RFCR_AAB;
1965 if (ifp->if_flags & IFF_PROMISC) {
1966 sc->sc_rfcr |= RFCR_AAP;
1967 goto allmulti;
1968 }
1969
1970 /*
1971 * Set up the multicast address filter by passing all multicast
1972 * addresses through a CRC generator, and then using the high-order
1973 * 9 bits as an index into the 512 bit multicast hash table. The
1974 * high-order bits select the slot, while the rest of the bits
1975 * select the bit within the slot. Note that only the low 16-bits
1976 * of each filter word are used, and there are 64 filter words.
1977 */
1978
1979 memset(mchash, 0, sizeof(mchash));
1980
1981 ifp->if_flags &= ~IFF_ALLMULTI;
1982 ETHER_FIRST_MULTI(step, ec, enm);
1983 if (enm != NULL) {
1984 while (enm != NULL) {
1985 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1986 ETHER_ADDR_LEN)) {
1987 /*
1988 * We must listen to a range of multicast addresses.
1989 * For now, just accept all multicasts, rather than
1990 * trying to set only those filter bits needed to match
1991 * the range. (At this time, the only use of address
1992 * ranges is for IP multicast routing, for which the
1993 * range is big enough to require all bits set.)
1994 */
1995 goto allmulti;
1996 }
1997
1998 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1999
2000 /* Just want the 9 most significant bits. */
2001 crc >>= 23;
2002
2003 /* Set the corresponding bit in the hash table. */
2004 mchash[crc >> 5] |= 1 << (crc & 0x1f);
2005
2006 ETHER_NEXT_MULTI(step, enm);
2007 }
2008
2009 sc->sc_rfcr |= RFCR_MHEN;
2010 }
2011 goto setit;
2012
2013 allmulti:
2014 ifp->if_flags |= IFF_ALLMULTI;
2015 sc->sc_rfcr |= RFCR_AAM;
2016
2017 setit:
2018 #define FILTER_EMIT(addr, data) \
2019 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2020 delay(1); \
2021 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2022 delay(1);
2023
2024 /*
2025 * Disable receive filter, and program the node address.
2026 */
2027 cp = LLADDR(ifp->if_sadl);
2028 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2029 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2030 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2031
2032 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2033 /*
2034 * Program the multicast hash table.
2035 */
2036 for (i = 0; i < 16; i++) {
2037 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2038 mchash[i] & 0xffff);
2039 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
2040 (mchash[i] >> 16) & 0xffff);
2041 }
2042 }
2043 #undef FILTER_EMIT
2044
2045 /*
2046 * Re-enable the receiver filter.
2047 */
2048 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2049 }
2050
2051 /*
2052 * sip_sis900_mii_readreg: [mii interface function]
2053 *
2054 * Read a PHY register on the MII.
2055 */
2056 int
2057 sip_sis900_mii_readreg(self, phy, reg)
2058 struct device *self;
2059 int phy, reg;
2060 {
2061 struct sip_softc *sc = (struct sip_softc *) self;
2062 u_int32_t enphy;
2063
2064 /*
2065 * The SiS 900 has only an internal PHY on the MII. Only allow
2066 * MII address 0.
2067 */
2068 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2069 return (0);
2070
2071 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2072 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2073 ENPHY_RWCMD | ENPHY_ACCESS);
2074 do {
2075 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2076 } while (enphy & ENPHY_ACCESS);
2077 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2078 }
2079
2080 /*
2081 * sip_sis900_mii_writereg: [mii interface function]
2082 *
2083 * Write a PHY register on the MII.
2084 */
2085 void
2086 sip_sis900_mii_writereg(self, phy, reg, val)
2087 struct device *self;
2088 int phy, reg, val;
2089 {
2090 struct sip_softc *sc = (struct sip_softc *) self;
2091 u_int32_t enphy;
2092
2093 /*
2094 * The SiS 900 has only an internal PHY on the MII. Only allow
2095 * MII address 0.
2096 */
2097 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2098 return;
2099
2100 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2101 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2102 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2103 do {
2104 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2105 } while (enphy & ENPHY_ACCESS);
2106 }
2107
2108 /*
2109 * sip_sis900_mii_statchg: [mii interface function]
2110 *
2111 * Callback from MII layer when media changes.
2112 */
2113 void
2114 sip_sis900_mii_statchg(self)
2115 struct device *self;
2116 {
2117 struct sip_softc *sc = (struct sip_softc *) self;
2118 u_int32_t flowctl;
2119
2120 /*
2121 * Update TXCFG for full-duplex operation.
2122 */
2123 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2124 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2125 else
2126 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2127
2128 /*
2129 * Update RXCFG for full-duplex or loopback.
2130 */
2131 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2132 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2133 sc->sc_rxcfg |= RXCFG_ATX;
2134 else
2135 sc->sc_rxcfg &= ~RXCFG_ATX;
2136
2137 /*
2138 * Update IMR for use of 802.3x flow control.
2139 */
2140 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2141 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2142 flowctl = FLOWCTL_FLOWEN;
2143 } else {
2144 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2145 flowctl = 0;
2146 }
2147
2148 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2149 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2150 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2151 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2152 }
2153
2154 /*
2155 * sip_dp83815_mii_readreg: [mii interface function]
2156 *
2157 * Read a PHY register on the MII.
2158 */
2159 int
2160 sip_dp83815_mii_readreg(self, phy, reg)
2161 struct device *self;
2162 int phy, reg;
2163 {
2164 struct sip_softc *sc = (struct sip_softc *) self;
2165 u_int32_t val;
2166
2167 /*
2168 * The DP83815 only has an internal PHY. Only allow
2169 * MII address 0.
2170 */
2171 if (phy != 0)
2172 return (0);
2173
2174 /*
2175 * Apparently, after a reset, the DP83815 can take a while
2176 * to respond. During this recovery period, the BMSR returns
2177 * a value of 0. Catch this -- it's not supposed to happen
2178 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2179 * PHY to come back to life.
2180 *
2181 * This works out because the BMSR is the first register
2182 * read during the PHY probe process.
2183 */
2184 do {
2185 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2186 } while (reg == MII_BMSR && val == 0);
2187
2188 return (val & 0xffff);
2189 }
2190
2191 /*
2192 * sip_dp83815_mii_writereg: [mii interface function]
2193 *
2194 * Write a PHY register to the MII.
2195 */
2196 void
2197 sip_dp83815_mii_writereg(self, phy, reg, val)
2198 struct device *self;
2199 int phy, reg, val;
2200 {
2201 struct sip_softc *sc = (struct sip_softc *) self;
2202
2203 /*
2204 * The DP83815 only has an internal PHY. Only allow
2205 * MII address 0.
2206 */
2207 if (phy != 0)
2208 return;
2209
2210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2211 }
2212
2213 /*
2214 * sip_dp83815_mii_statchg: [mii interface function]
2215 *
2216 * Callback from MII layer when media changes.
2217 */
2218 void
2219 sip_dp83815_mii_statchg(self)
2220 struct device *self;
2221 {
2222 struct sip_softc *sc = (struct sip_softc *) self;
2223
2224 /*
2225 * Update TXCFG for full-duplex operation.
2226 */
2227 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2228 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2229 else
2230 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2231
2232 /*
2233 * Update RXCFG for full-duplex or loopback.
2234 */
2235 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2236 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2237 sc->sc_rxcfg |= RXCFG_ATX;
2238 else
2239 sc->sc_rxcfg &= ~RXCFG_ATX;
2240
2241 /*
2242 * XXX 802.3x flow control.
2243 */
2244
2245 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2246 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2247 }
2248
2249 void
2250 sip_sis900_read_macaddr(sc, enaddr)
2251 struct sip_softc *sc;
2252 u_int8_t *enaddr;
2253 {
2254 u_int16_t myea[ETHER_ADDR_LEN / 2];
2255
2256 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2257 sizeof(myea) / sizeof(myea[0]), myea);
2258
2259 enaddr[0] = myea[0] & 0xff;
2260 enaddr[1] = myea[0] >> 8;
2261 enaddr[2] = myea[1] & 0xff;
2262 enaddr[3] = myea[1] >> 8;
2263 enaddr[4] = myea[2] & 0xff;
2264 enaddr[5] = myea[2] >> 8;
2265 }
2266
2267 static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2268 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2269
2270 void
2271 sip_dp83815_read_macaddr(sc, enaddr)
2272 struct sip_softc *sc;
2273 u_int8_t *enaddr;
2274 {
2275 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2276 u_int8_t cksum, *e, match;
2277 int i;
2278
2279 sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
2280 eeprom_data);
2281
2282 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2283 match = ~(match - 1);
2284
2285 cksum = 0x55;
2286 e = (u_int8_t *) eeprom_data;
2287 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2288 cksum += *e++;
2289 }
2290 if (cksum != match) {
2291 printf("%s: Checksum (%x) mismatch (%x)",
2292 sc->sc_dev.dv_xname, cksum, match);
2293 }
2294
2295 /*
2296 * Unrolled because it makes slightly more sense this way.
2297 * The DP83815 stores the MAC address in bit 0 of word 6
2298 * through bit 15 of word 8.
2299 */
2300 ea = &eeprom_data[6];
2301 enaddr[0] = ((*ea & 0x1) << 7);
2302 ea++;
2303 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2304 enaddr[1] = ((*ea & 0x1FE) >> 1);
2305 enaddr[2] = ((*ea & 0x1) << 7);
2306 ea++;
2307 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2308 enaddr[3] = ((*ea & 0x1FE) >> 1);
2309 enaddr[4] = ((*ea & 0x1) << 7);
2310 ea++;
2311 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2312 enaddr[5] = ((*ea & 0x1FE) >> 1);
2313
2314 /*
2315 * In case that's not weird enough, we also need to reverse
2316 * the bits in each byte. This all actually makes more sense
2317 * if you think about the EEPROM storage as an array of bits
2318 * being shifted into bytes, but that's not how we're looking
2319 * at it here...
2320 */
2321 for (i=0 ; i<6 ; i++)
2322 enaddr[i] = bbr(enaddr[i]);
2323 }
2324
2325 /*
2326 * sip_mediastatus: [ifmedia interface function]
2327 *
2328 * Get the current interface media status.
2329 */
2330 void
2331 sip_mediastatus(ifp, ifmr)
2332 struct ifnet *ifp;
2333 struct ifmediareq *ifmr;
2334 {
2335 struct sip_softc *sc = ifp->if_softc;
2336
2337 mii_pollstat(&sc->sc_mii);
2338 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2339 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2340 }
2341
2342 /*
2343 * sip_mediachange: [ifmedia interface function]
2344 *
2345 * Set hardware to newly-selected media.
2346 */
2347 int
2348 sip_mediachange(ifp)
2349 struct ifnet *ifp;
2350 {
2351 struct sip_softc *sc = ifp->if_softc;
2352
2353 if (ifp->if_flags & IFF_UP)
2354 mii_mediachg(&sc->sc_mii);
2355 return (0);
2356 }
2357