if_sip.c revision 1.11.4.6 1 /* $NetBSD: if_sip.c,v 1.11.4.6 2001/10/27 17:55:47 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <vm/vm.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 #if !defined(IF_POLL)
90 #define IF_POLL(ifq, m) ((m) = (ifq)->ifq_head)
91 #endif
92
93 /*
94 * Transmit descriptor list size. This is arbitrary, but allocate
95 * enough descriptors for 64 pending transmissions, and 16 segments
96 * per packet. This MUST work out to a power of 2.
97 */
98 #define SIP_NTXSEGS 8
99
100 #define SIP_TXQUEUELEN 256
101 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
102 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
103 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
104
105 /*
106 * Receive descriptor list size. We have one Rx buffer per incoming
107 * packet, so this logic is a little simpler.
108 */
109 #define SIP_NRXDESC 128
110 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
111 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
112
113 /*
114 * Control structures are DMA'd to the SiS900 chip. We allocate them in
115 * a single clump that maps to a single DMA segment to make several things
116 * easier.
117 */
118 struct sip_control_data {
119 /*
120 * The transmit descriptors.
121 */
122 struct sip_desc scd_txdescs[SIP_NTXDESC];
123
124 /*
125 * The receive descriptors.
126 */
127 struct sip_desc scd_rxdescs[SIP_NRXDESC];
128 };
129
130 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
131 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
132 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
133
134 /*
135 * Software state for transmit jobs.
136 */
137 struct sip_txsoft {
138 struct mbuf *txs_mbuf; /* head of our mbuf chain */
139 bus_dmamap_t txs_dmamap; /* our DMA map */
140 int txs_firstdesc; /* first descriptor in packet */
141 int txs_lastdesc; /* last descriptor in packet */
142 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
143 };
144
145 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
146
147 /*
148 * Software state for receive jobs.
149 */
150 struct sip_rxsoft {
151 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
152 bus_dmamap_t rxs_dmamap; /* our DMA map */
153 };
154
155 /*
156 * Software state per device.
157 */
158 struct sip_softc {
159 struct device sc_dev; /* generic device information */
160 bus_space_tag_t sc_st; /* bus space tag */
161 bus_space_handle_t sc_sh; /* bus space handle */
162 bus_dma_tag_t sc_dmat; /* bus DMA tag */
163 struct ethercom sc_ethercom; /* ethernet common data */
164 void *sc_sdhook; /* shutdown hook */
165
166 const struct sip_product *sc_model; /* which model are we? */
167
168 void *sc_ih; /* interrupt cookie */
169
170 struct mii_data sc_mii; /* MII/media information */
171
172 struct callout sc_tick_ch; /* tick callout */
173
174 bus_dmamap_t sc_cddmamap; /* control data DMA map */
175 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
176
177 /*
178 * Software state for transmit and receive descriptors.
179 */
180 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
181 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
182
183 /*
184 * Control data structures.
185 */
186 struct sip_control_data *sc_control_data;
187 #define sc_txdescs sc_control_data->scd_txdescs
188 #define sc_rxdescs sc_control_data->scd_rxdescs
189
190 u_int32_t sc_txcfg; /* prototype TXCFG register */
191 u_int32_t sc_rxcfg; /* prototype RXCFG register */
192 u_int32_t sc_imr; /* prototype IMR register */
193 u_int32_t sc_rfcr; /* prototype RFCR register */
194
195 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
196 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
197
198 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
199
200 int sc_flags; /* misc. flags; see below */
201
202 int sc_txfree; /* number of free Tx descriptors */
203 int sc_txnext; /* next ready Tx descriptor */
204
205 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
206 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
207
208 int sc_rxptr; /* next ready Rx descriptor/descsoft */
209 };
210
211 /* sc_flags */
212 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
213
214 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
215 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
216
217 #define SIP_CDTXSYNC(sc, x, n, ops) \
218 do { \
219 int __x, __n; \
220 \
221 __x = (x); \
222 __n = (n); \
223 \
224 /* If it will wrap around, sync to the end of the ring. */ \
225 if ((__x + __n) > SIP_NTXDESC) { \
226 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
227 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
228 (SIP_NTXDESC - __x), (ops)); \
229 __n -= (SIP_NTXDESC - __x); \
230 __x = 0; \
231 } \
232 \
233 /* Now sync whatever is left. */ \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
236 } while (0)
237
238 #define SIP_CDRXSYNC(sc, x, ops) \
239 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
240 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
241
242 /*
243 * Note we rely on MCLBYTES being a power of two below.
244 */
245 #define SIP_INIT_RXDESC(sc, x) \
246 do { \
247 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
248 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
249 \
250 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
251 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
252 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
253 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
254 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
255 } while (0)
256
257 #define SIP_TIMEOUT 1000
258
259 void sip_start __P((struct ifnet *));
260 void sip_watchdog __P((struct ifnet *));
261 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
262
263 void sip_shutdown __P((void *));
264
265 void sip_reset __P((struct sip_softc *));
266 int sip_init __P((struct sip_softc *));
267 void sip_stop __P((struct sip_softc *, int));
268 void sip_rxdrain __P((struct sip_softc *));
269 int sip_add_rxbuf __P((struct sip_softc *, int));
270 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
271 void sip_tick __P((void *));
272
273 void sip_sis900_set_filter __P((struct sip_softc *));
274 void sip_dp83815_set_filter __P((struct sip_softc *));
275
276 void sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *));
277 void sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *));
278
279 int sip_intr __P((void *));
280 void sip_txintr __P((struct sip_softc *));
281 void sip_rxintr __P((struct sip_softc *));
282
283 int sip_sis900_mii_readreg __P((struct device *, int, int));
284 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
285 void sip_sis900_mii_statchg __P((struct device *));
286
287 int sip_dp83815_mii_readreg __P((struct device *, int, int));
288 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
289 void sip_dp83815_mii_statchg __P((struct device *));
290
291 int sip_mediachange __P((struct ifnet *));
292 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
293
294 int sip_match __P((struct device *, struct cfdata *, void *));
295 void sip_attach __P((struct device *, struct device *, void *));
296
297 int sip_copy_small = 0;
298
299 struct cfattach sip_ca = {
300 sizeof(struct sip_softc), sip_match, sip_attach,
301 };
302
303 /*
304 * Descriptions of the variants of the SiS900.
305 */
306 struct sip_variant {
307 int (*sipv_mii_readreg) __P((struct device *, int, int));
308 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
309 void (*sipv_mii_statchg) __P((struct device *));
310 void (*sipv_set_filter) __P((struct sip_softc *));
311 void (*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *));
312 };
313
314 const struct sip_variant sip_variant_sis900 = {
315 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
316 sip_sis900_mii_statchg, sip_sis900_set_filter,
317 sip_sis900_read_macaddr
318 };
319
320 const struct sip_variant sip_variant_dp83815 = {
321 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
322 sip_dp83815_mii_statchg, sip_dp83815_set_filter,
323 sip_dp83815_read_macaddr
324 };
325
326 /*
327 * Devices supported by this driver.
328 */
329 const struct sip_product {
330 pci_vendor_id_t sip_vendor;
331 pci_product_id_t sip_product;
332 const char *sip_name;
333 const struct sip_variant *sip_variant;
334 } sip_products[] = {
335 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
336 "SiS 900 10/100 Ethernet",
337 &sip_variant_sis900 },
338 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
339 "SiS 7016 10/100 Ethernet",
340 &sip_variant_sis900 },
341
342 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
343 "NatSemi DP83815 10/100 Ethernet",
344 &sip_variant_dp83815 },
345
346 { 0, 0,
347 NULL,
348 NULL },
349 };
350
351 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
352
353 const struct sip_product *
354 sip_lookup(pa)
355 const struct pci_attach_args *pa;
356 {
357 const struct sip_product *sip;
358
359 for (sip = sip_products; sip->sip_name != NULL; sip++) {
360 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
361 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
362 return (sip);
363 }
364 return (NULL);
365 }
366
367 int
368 sip_match(parent, cf, aux)
369 struct device *parent;
370 struct cfdata *cf;
371 void *aux;
372 {
373 struct pci_attach_args *pa = aux;
374
375 if (sip_lookup(pa) != NULL)
376 return (1);
377
378 return (0);
379 }
380
381 void
382 sip_attach(parent, self, aux)
383 struct device *parent, *self;
384 void *aux;
385 {
386 struct sip_softc *sc = (struct sip_softc *) self;
387 struct pci_attach_args *pa = aux;
388 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
389 pci_chipset_tag_t pc = pa->pa_pc;
390 pci_intr_handle_t ih;
391 const char *intrstr = NULL;
392 bus_space_tag_t iot, memt;
393 bus_space_handle_t ioh, memh;
394 bus_dma_segment_t seg;
395 int ioh_valid, memh_valid;
396 int i, rseg, error;
397 const struct sip_product *sip;
398 pcireg_t pmode;
399 u_int8_t enaddr[ETHER_ADDR_LEN];
400 int pmreg;
401
402 callout_init(&sc->sc_tick_ch);
403
404 sip = sip_lookup(pa);
405 if (sip == NULL) {
406 printf("\n");
407 panic("sip_attach: impossible");
408 }
409
410 printf(": %s\n", sip->sip_name);
411
412 sc->sc_model = sip;
413
414 /*
415 * Map the device.
416 */
417 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
418 PCI_MAPREG_TYPE_IO, 0,
419 &iot, &ioh, NULL, NULL) == 0);
420 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
421 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
422 &memt, &memh, NULL, NULL) == 0);
423
424 if (memh_valid) {
425 sc->sc_st = memt;
426 sc->sc_sh = memh;
427 } else if (ioh_valid) {
428 sc->sc_st = iot;
429 sc->sc_sh = ioh;
430 } else {
431 printf("%s: unable to map device registers\n",
432 sc->sc_dev.dv_xname);
433 return;
434 }
435
436 sc->sc_dmat = pa->pa_dmat;
437
438 /* Enable bus mastering. */
439 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
440 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
441 PCI_COMMAND_MASTER_ENABLE);
442
443 /* Get it out of power save mode if needed. */
444 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
445 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
446 if (pmode == 3) {
447 /*
448 * The card has lost all configuration data in
449 * this state, so punt.
450 */
451 printf("%s: unable to wake up from power state D3\n",
452 sc->sc_dev.dv_xname);
453 return;
454 }
455 if (pmode != 0) {
456 printf("%s: waking up from power state D%d\n",
457 sc->sc_dev.dv_xname, pmode);
458 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
459 }
460 }
461
462 /*
463 * Map and establish our interrupt.
464 */
465 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
466 pa->pa_intrline, &ih)) {
467 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
468 return;
469 }
470 intrstr = pci_intr_string(pc, ih);
471 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
472 if (sc->sc_ih == NULL) {
473 printf("%s: unable to establish interrupt",
474 sc->sc_dev.dv_xname);
475 if (intrstr != NULL)
476 printf(" at %s", intrstr);
477 printf("\n");
478 return;
479 }
480 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
481
482 SIMPLEQ_INIT(&sc->sc_txfreeq);
483 SIMPLEQ_INIT(&sc->sc_txdirtyq);
484
485 /*
486 * Allocate the control data structures, and create and load the
487 * DMA map for it.
488 */
489 if ((error = bus_dmamem_alloc(sc->sc_dmat,
490 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
491 0)) != 0) {
492 printf("%s: unable to allocate control data, error = %d\n",
493 sc->sc_dev.dv_xname, error);
494 goto fail_0;
495 }
496
497 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
498 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
499 BUS_DMA_COHERENT)) != 0) {
500 printf("%s: unable to map control data, error = %d\n",
501 sc->sc_dev.dv_xname, error);
502 goto fail_1;
503 }
504
505 if ((error = bus_dmamap_create(sc->sc_dmat,
506 sizeof(struct sip_control_data), 1,
507 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
508 printf("%s: unable to create control data DMA map, "
509 "error = %d\n", sc->sc_dev.dv_xname, error);
510 goto fail_2;
511 }
512
513 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
514 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
515 0)) != 0) {
516 printf("%s: unable to load control data DMA map, error = %d\n",
517 sc->sc_dev.dv_xname, error);
518 goto fail_3;
519 }
520
521 /*
522 * Create the transmit buffer DMA maps.
523 */
524 for (i = 0; i < SIP_TXQUEUELEN; i++) {
525 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
526 SIP_NTXSEGS, MCLBYTES, 0, 0,
527 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
528 printf("%s: unable to create tx DMA map %d, "
529 "error = %d\n", sc->sc_dev.dv_xname, i, error);
530 goto fail_4;
531 }
532 }
533
534 /*
535 * Create the receive buffer DMA maps.
536 */
537 for (i = 0; i < SIP_NRXDESC; i++) {
538 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
539 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
540 printf("%s: unable to create rx DMA map %d, "
541 "error = %d\n", sc->sc_dev.dv_xname, i, error);
542 goto fail_5;
543 }
544 sc->sc_rxsoft[i].rxs_mbuf = NULL;
545 }
546
547 /*
548 * Reset the chip to a known state.
549 */
550 sip_reset(sc);
551
552 /*
553 * Read the Ethernet address from the EEPROM.
554 */
555 sip->sip_variant->sipv_read_macaddr(sc, enaddr);
556
557 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
558 ether_sprintf(enaddr));
559
560 /*
561 * Initialize our media structures and probe the MII.
562 */
563 sc->sc_mii.mii_ifp = ifp;
564 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
565 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
566 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
567 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
568 sip_mediastatus);
569 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
570 MII_OFFSET_ANY, 0);
571 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
572 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
573 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
574 } else
575 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
576
577 ifp = &sc->sc_ethercom.ec_if;
578 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
579 ifp->if_softc = sc;
580 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
581 ifp->if_ioctl = sip_ioctl;
582 ifp->if_start = sip_start;
583 ifp->if_watchdog = sip_watchdog;
584
585 /*
586 * Attach the interface.
587 */
588 if_attach(ifp);
589 ether_ifattach(ifp, enaddr);
590 #if NBPFILTER > 0
591 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
592 sizeof(struct ether_header));
593 #endif
594
595 /*
596 * Make sure the interface is shutdown during reboot.
597 */
598 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
599 if (sc->sc_sdhook == NULL)
600 printf("%s: WARNING: unable to establish shutdown hook\n",
601 sc->sc_dev.dv_xname);
602 return;
603
604 /*
605 * Free any resources we've allocated during the failed attach
606 * attempt. Do this in reverse order and fall through.
607 */
608 fail_5:
609 for (i = 0; i < SIP_NRXDESC; i++) {
610 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
611 bus_dmamap_destroy(sc->sc_dmat,
612 sc->sc_rxsoft[i].rxs_dmamap);
613 }
614 fail_4:
615 for (i = 0; i < SIP_TXQUEUELEN; i++) {
616 if (sc->sc_txsoft[i].txs_dmamap != NULL)
617 bus_dmamap_destroy(sc->sc_dmat,
618 sc->sc_txsoft[i].txs_dmamap);
619 }
620 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621 fail_3:
622 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
623 fail_2:
624 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
625 sizeof(struct sip_control_data));
626 fail_1:
627 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
628 fail_0:
629 return;
630 }
631
632 /*
633 * sip_shutdown:
634 *
635 * Make sure the interface is stopped at reboot time.
636 */
637 void
638 sip_shutdown(arg)
639 void *arg;
640 {
641 struct sip_softc *sc = arg;
642
643 sip_stop(sc, 1);
644 }
645
646 /*
647 * sip_start: [ifnet interface function]
648 *
649 * Start packet transmission on the interface.
650 */
651 void
652 sip_start(ifp)
653 struct ifnet *ifp;
654 {
655 struct sip_softc *sc = ifp->if_softc;
656 struct mbuf *m0, *m;
657 struct sip_txsoft *txs;
658 bus_dmamap_t dmamap;
659 int error, firsttx, nexttx, lasttx, ofree, seg;
660
661 /*
662 * If we've been told to pause, don't transmit any more packets.
663 */
664 if (sc->sc_flags & SIPF_PAUSED)
665 ifp->if_flags |= IFF_OACTIVE;
666
667 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
668 return;
669
670 /*
671 * Remember the previous number of free descriptors and
672 * the first descriptor we'll use.
673 */
674 ofree = sc->sc_txfree;
675 firsttx = sc->sc_txnext;
676
677 /*
678 * Loop through the send queue, setting up transmit descriptors
679 * until we drain the queue, or use up all available transmit
680 * descriptors.
681 */
682 for (;;) {
683 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
684 break;
685 }
686
687 /*
688 * Grab a packet off the queue.
689 */
690 IF_POLL(&ifp->if_snd, m0);
691 if (m0 == NULL)
692 break;
693
694 dmamap = txs->txs_dmamap;
695
696 /*
697 * Load the DMA map. If this fails, the packet either
698 * didn't fit in the alloted number of segments, or we
699 * were short on resources. In this case, we'll copy
700 * and try again.
701 */
702 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
703 BUS_DMA_NOWAIT) != 0) {
704 MGETHDR(m, M_DONTWAIT, MT_DATA);
705 if (m == NULL) {
706 printf("%s: unable to allocate Tx mbuf\n",
707 sc->sc_dev.dv_xname);
708 break;
709 }
710 if (m0->m_pkthdr.len > MHLEN) {
711 MCLGET(m, M_DONTWAIT);
712 if ((m->m_flags & M_EXT) == 0) {
713 printf("%s: unable to allocate Tx "
714 "cluster\n", sc->sc_dev.dv_xname);
715 m_freem(m);
716 break;
717 }
718 }
719 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
720 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
721 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
722 m, BUS_DMA_NOWAIT);
723 if (error) {
724 printf("%s: unable to load Tx buffer, "
725 "error = %d\n", sc->sc_dev.dv_xname, error);
726 break;
727 }
728 }
729
730 /*
731 * Ensure we have enough descriptors free to describe
732 * the packet. Note, we always reserve one descriptor
733 * at the end of the ring as a termination point, to
734 * prevent wrap-around.
735 */
736 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
737 /*
738 * Not enough free descriptors to transmit this
739 * packet. We haven't committed anything yet,
740 * so just unload the DMA map, put the packet
741 * back on the queue, and punt. Notify the upper
742 * layer that there are not more slots left.
743 *
744 * XXX We could allocate an mbuf and copy, but
745 * XXX is it worth it?
746 */
747 ifp->if_flags |= IFF_OACTIVE;
748 bus_dmamap_unload(sc->sc_dmat, dmamap);
749 if (m != NULL)
750 m_freem(m);
751 break;
752 }
753
754 IF_DEQUEUE(&ifp->if_snd, m0);
755 if (m != NULL) {
756 m_freem(m0);
757 m0 = m;
758 }
759 /*
760 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
761 */
762
763 /* Sync the DMA map. */
764 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
765 BUS_DMASYNC_PREWRITE);
766
767 /*
768 * Initialize the transmit descriptors.
769 */
770 for (nexttx = sc->sc_txnext, seg = 0;
771 seg < dmamap->dm_nsegs;
772 seg++, nexttx = SIP_NEXTTX(nexttx)) {
773 /*
774 * If this is the first descriptor we're
775 * enqueueing, don't set the OWN bit just
776 * yet. That could cause a race condition.
777 * We'll do it below.
778 */
779 sc->sc_txdescs[nexttx].sipd_bufptr =
780 htole32(dmamap->dm_segs[seg].ds_addr);
781 sc->sc_txdescs[nexttx].sipd_cmdsts =
782 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
783 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
784 lasttx = nexttx;
785 }
786
787 /* Clear the MORE bit on the last segment. */
788 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
789
790 /* Sync the descriptors we're using. */
791 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
792 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
793
794 /*
795 * Store a pointer to the packet so we can free it later,
796 * and remember what txdirty will be once the packet is
797 * done.
798 */
799 txs->txs_mbuf = m0;
800 txs->txs_firstdesc = sc->sc_txnext;
801 txs->txs_lastdesc = lasttx;
802
803 /* Advance the tx pointer. */
804 sc->sc_txfree -= dmamap->dm_nsegs;
805 sc->sc_txnext = nexttx;
806
807 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
808 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
809
810 #if NBPFILTER > 0
811 /*
812 * Pass the packet to any BPF listeners.
813 */
814 if (ifp->if_bpf)
815 bpf_mtap(ifp->if_bpf, m0);
816 #endif /* NBPFILTER > 0 */
817 }
818
819 if (txs == NULL || sc->sc_txfree == 0) {
820 /* No more slots left; notify upper layer. */
821 ifp->if_flags |= IFF_OACTIVE;
822 }
823
824 if (sc->sc_txfree != ofree) {
825 /*
826 * Cause a descriptor interrupt to happen on the
827 * last packet we enqueued.
828 */
829 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
830 SIP_CDTXSYNC(sc, lasttx, 1,
831 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
832
833 /*
834 * The entire packet chain is set up. Give the
835 * first descrptor to the chip now.
836 */
837 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
838 SIP_CDTXSYNC(sc, firsttx, 1,
839 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
840
841 /*
842 * Start the transmit process. Note, the manual says
843 * that if there are no pending transmissions in the
844 * chip's internal queue (indicated by TXE being clear),
845 * then the driver software must set the TXDP to the
846 * first descriptor to be transmitted. However, if we
847 * do this, it causes serious performance degredation on
848 * the DP83820 under load, not setting TXDP doesn't seem
849 * to adversely affect the SiS 900 or DP83815.
850 *
851 * Well, I guess it wouldn't be the first time a manual
852 * has lied -- and they could be speaking of the NULL-
853 * terminated descriptor list case, rather than OWN-
854 * terminated rings.
855 */
856 #if 0
857 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
858 CR_TXE) == 0) {
859 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
860 SIP_CDTXADDR(sc, firsttx));
861 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
862 }
863 #else
864 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
865 #endif
866
867 /* Set a watchdog timer in case the chip flakes out. */
868 ifp->if_timer = 5;
869 }
870 }
871
872 /*
873 * sip_watchdog: [ifnet interface function]
874 *
875 * Watchdog timer handler.
876 */
877 void
878 sip_watchdog(ifp)
879 struct ifnet *ifp;
880 {
881 struct sip_softc *sc = ifp->if_softc;
882
883 /*
884 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
885 * If we get a timeout, try and sweep up transmit descriptors.
886 * If we manage to sweep them all up, ignore the lack of
887 * interrupt.
888 */
889 sip_txintr(sc);
890
891 if (sc->sc_txfree != SIP_NTXDESC) {
892 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
893 ifp->if_oerrors++;
894
895 /* Reset the interface. */
896 (void) sip_init(sc);
897 } else if (ifp->if_flags & IFF_DEBUG)
898 printf("%s: recovered from device timeout\n",
899 sc->sc_dev.dv_xname);
900
901 /* Try to get more packets going. */
902 sip_start(ifp);
903 }
904
905 /*
906 * sip_ioctl: [ifnet interface function]
907 *
908 * Handle control requests from the operator.
909 */
910 int
911 sip_ioctl(ifp, cmd, data)
912 struct ifnet *ifp;
913 u_long cmd;
914 caddr_t data;
915 {
916 struct sip_softc *sc = ifp->if_softc;
917 struct ifreq *ifr = (struct ifreq *)data;
918 struct ifaddr *ifa = (struct ifaddr *)data;
919 int s, error = 0;
920
921 s = splnet();
922
923 switch (cmd) {
924 case SIOCSIFADDR:
925 ifp->if_flags |= IFF_UP;
926
927 switch (ifa->ifa_addr->sa_family) {
928 #ifdef INET
929 case AF_INET:
930 if ((error = sip_init(sc)) != 0)
931 break;
932 arp_ifinit(ifp, ifa);
933 break;
934 #endif /* INET */
935 #ifdef NS
936 case AF_NS:
937 {
938 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
939
940 if (ns_nullhost(*ina))
941 ina->x_host = *(union ns_host *)
942 LLADDR(ifp->if_sadl);
943 else
944 memcpy(LLADDR(ifp->if_sadl),
945 ina->x_host.c_host, ifp->if_addrlen);
946 error = sip_init(sc);
947 break;
948 }
949 #endif /* NS */
950 default:
951 error = sip_init(sc);
952 break;
953 }
954 break;
955
956 case SIOCSIFMTU:
957 if (ifr->ifr_mtu > ETHERMTU)
958 error = EINVAL;
959 else
960 ifp->if_mtu = ifr->ifr_mtu;
961 break;
962
963 case SIOCSIFFLAGS:
964 if ((ifp->if_flags & IFF_UP) == 0 &&
965 (ifp->if_flags & IFF_RUNNING) != 0) {
966 /*
967 * If interface is marked down and it is running, then
968 * stop it.
969 */
970 sip_stop(sc, 1);
971 } else if ((ifp->if_flags & IFF_UP) != 0 &&
972 (ifp->if_flags & IFF_RUNNING) == 0) {
973 /*
974 * If interfase it marked up and it is stopped, then
975 * start it.
976 */
977 error = sip_init(sc);
978 } else if ((ifp->if_flags & IFF_UP) != 0) {
979 /*
980 * Reset the interface to pick up changes in any other
981 * flags that affect the hardware state.
982 */
983 error = sip_init(sc);
984 }
985 break;
986
987 case SIOCADDMULTI:
988 case SIOCDELMULTI:
989 error = (cmd == SIOCADDMULTI) ?
990 ether_addmulti(ifr, &sc->sc_ethercom) :
991 ether_delmulti(ifr, &sc->sc_ethercom);
992
993 if (error == ENETRESET) {
994 /*
995 * Multicast list has changed; set the hardware filter
996 * accordingly.
997 */
998 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
999 error = 0;
1000 }
1001 break;
1002
1003 case SIOCSIFMEDIA:
1004 case SIOCGIFMEDIA:
1005 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1006 break;
1007
1008 default:
1009 error = EINVAL;
1010 break;
1011 }
1012
1013 /* Try to get more packets going. */
1014 sip_start(ifp);
1015
1016 splx(s);
1017 return (error);
1018 }
1019
1020 /*
1021 * sip_intr:
1022 *
1023 * Interrupt service routine.
1024 */
1025 int
1026 sip_intr(arg)
1027 void *arg;
1028 {
1029 struct sip_softc *sc = arg;
1030 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1031 u_int32_t isr;
1032 int handled = 0;
1033
1034 for (;;) {
1035 /* Reading clears interrupt. */
1036 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1037 if ((isr & sc->sc_imr) == 0)
1038 break;
1039
1040 handled = 1;
1041
1042 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1043 /* Grab any new packets. */
1044 sip_rxintr(sc);
1045
1046 if (isr & ISR_RXORN) {
1047 printf("%s: receive FIFO overrun\n",
1048 sc->sc_dev.dv_xname);
1049
1050 /* XXX adjust rx_drain_thresh? */
1051 }
1052
1053 if (isr & ISR_RXIDLE) {
1054 printf("%s: receive ring overrun\n",
1055 sc->sc_dev.dv_xname);
1056
1057 /* Get the receive process going again. */
1058 bus_space_write_4(sc->sc_st, sc->sc_sh,
1059 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1060 bus_space_write_4(sc->sc_st, sc->sc_sh,
1061 SIP_CR, CR_RXE);
1062 }
1063 }
1064
1065 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1066 /* Sweep up transmit descriptors. */
1067 sip_txintr(sc);
1068
1069 if (isr & ISR_TXURN) {
1070 u_int32_t thresh;
1071
1072 printf("%s: transmit FIFO underrun",
1073 sc->sc_dev.dv_xname);
1074
1075 thresh = sc->sc_tx_drain_thresh + 1;
1076 if (thresh <= TXCFG_DRTH &&
1077 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1078 (sc->sc_tx_fill_thresh * 32))) {
1079 printf("; increasing Tx drain "
1080 "threshold to %u bytes\n",
1081 thresh * 32);
1082 sc->sc_tx_drain_thresh = thresh;
1083 (void) sip_init(sc);
1084 } else {
1085 (void) sip_init(sc);
1086 printf("\n");
1087 }
1088 }
1089 }
1090
1091 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1092 if (isr & ISR_PAUSE_ST) {
1093 sc->sc_flags |= SIPF_PAUSED;
1094 ifp->if_flags |= IFF_OACTIVE;
1095 }
1096 if (isr & ISR_PAUSE_END) {
1097 sc->sc_flags &= ~SIPF_PAUSED;
1098 ifp->if_flags &= ~IFF_OACTIVE;
1099 }
1100 }
1101
1102 if (isr & ISR_HIBERR) {
1103 #define PRINTERR(bit, str) \
1104 if (isr & (bit)) \
1105 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1106 PRINTERR(ISR_DPERR, "parity error");
1107 PRINTERR(ISR_SSERR, "system error");
1108 PRINTERR(ISR_RMABT, "master abort");
1109 PRINTERR(ISR_RTABT, "target abort");
1110 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1111 (void) sip_init(sc);
1112 #undef PRINTERR
1113 }
1114 }
1115
1116 /* Try to get more packets going. */
1117 sip_start(ifp);
1118
1119 return (handled);
1120 }
1121
1122 /*
1123 * sip_txintr:
1124 *
1125 * Helper; handle transmit interrupts.
1126 */
1127 void
1128 sip_txintr(sc)
1129 struct sip_softc *sc;
1130 {
1131 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1132 struct sip_txsoft *txs;
1133 u_int32_t cmdsts;
1134
1135 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1136 ifp->if_flags &= ~IFF_OACTIVE;
1137
1138 /*
1139 * Go through our Tx list and free mbufs for those
1140 * frames which have been transmitted.
1141 */
1142 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1143 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1144 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1145
1146 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1147 if (cmdsts & CMDSTS_OWN)
1148 break;
1149
1150 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1151
1152 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1153
1154 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1155 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1156 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1157 m_freem(txs->txs_mbuf);
1158 txs->txs_mbuf = NULL;
1159
1160 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1161
1162 /*
1163 * Check for errors and collisions.
1164 */
1165 if (cmdsts &
1166 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1167 ifp->if_opackets++;
1168 if (cmdsts & CMDSTS_Tx_EC)
1169 ifp->if_collisions += 16;
1170 if (ifp->if_flags & IFF_DEBUG) {
1171 if (cmdsts & CMDSTS_Tx_ED)
1172 printf("%s: excessive deferral\n",
1173 sc->sc_dev.dv_xname);
1174 if (cmdsts & CMDSTS_Tx_EC)
1175 printf("%s: excessive collisions\n",
1176 sc->sc_dev.dv_xname);
1177 }
1178 } else {
1179 /* Packet was transmitted successfully. */
1180 ifp->if_opackets++;
1181 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1182 }
1183 }
1184
1185 /*
1186 * If there are no more pending transmissions, cancel the watchdog
1187 * timer.
1188 */
1189 if (txs == NULL)
1190 ifp->if_timer = 0;
1191 }
1192
1193 /*
1194 * sip_rxintr:
1195 *
1196 * Helper; handle receive interrupts.
1197 */
1198 void
1199 sip_rxintr(sc)
1200 struct sip_softc *sc;
1201 {
1202 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1203 struct ether_header *eh;
1204 struct sip_rxsoft *rxs;
1205 struct mbuf *m;
1206 u_int32_t cmdsts;
1207 int i, len;
1208
1209 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1210 rxs = &sc->sc_rxsoft[i];
1211
1212 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1213
1214 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1215
1216 /*
1217 * NOTE: OWN is set if owned by _consumer_. We're the
1218 * consumer of the receive ring, so if the bit is clear,
1219 * we have processed all of the packets.
1220 */
1221 if ((cmdsts & CMDSTS_OWN) == 0) {
1222 /*
1223 * We have processed all of the receive buffers.
1224 */
1225 break;
1226 }
1227
1228 /*
1229 * If any collisions were seen on the wire, count one.
1230 */
1231 if (cmdsts & CMDSTS_Rx_COL)
1232 ifp->if_collisions++;
1233
1234 /*
1235 * If an error occurred, update stats, clear the status
1236 * word, and leave the packet buffer in place. It will
1237 * simply be reused the next time the ring comes around.
1238 */
1239 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1240 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1241 ifp->if_ierrors++;
1242 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1243 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1244 /* Receive overrun handled elsewhere. */
1245 printf("%s: receive descriptor error\n",
1246 sc->sc_dev.dv_xname);
1247 }
1248 #define PRINTERR(bit, str) \
1249 if (cmdsts & (bit)) \
1250 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1251 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1252 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1253 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1254 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1255 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1256 #undef PRINTERR
1257 SIP_INIT_RXDESC(sc, i);
1258 continue;
1259 }
1260
1261 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1262 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1263
1264 /*
1265 * No errors; receive the packet. Note, the SiS 900
1266 * includes the CRC with every packet; trim it.
1267 */
1268 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1269
1270 #ifdef __NO_STRICT_ALIGNMENT
1271 /*
1272 * If the packet is small enough to fit in a
1273 * single header mbuf, allocate one and copy
1274 * the data into it. This greatly reduces
1275 * memory consumption when we receive lots
1276 * of small packets.
1277 *
1278 * Otherwise, we add a new buffer to the receive
1279 * chain. If this fails, we drop the packet and
1280 * recycle the old buffer.
1281 */
1282 if (sip_copy_small != 0 && len <= MHLEN) {
1283 MGETHDR(m, M_DONTWAIT, MT_DATA);
1284 if (m == NULL)
1285 goto dropit;
1286 memcpy(mtod(m, caddr_t),
1287 mtod(rxs->rxs_mbuf, caddr_t), len);
1288 SIP_INIT_RXDESC(sc, i);
1289 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1290 rxs->rxs_dmamap->dm_mapsize,
1291 BUS_DMASYNC_PREREAD);
1292 } else {
1293 m = rxs->rxs_mbuf;
1294 if (sip_add_rxbuf(sc, i) != 0) {
1295 dropit:
1296 ifp->if_ierrors++;
1297 SIP_INIT_RXDESC(sc, i);
1298 bus_dmamap_sync(sc->sc_dmat,
1299 rxs->rxs_dmamap, 0,
1300 rxs->rxs_dmamap->dm_mapsize,
1301 BUS_DMASYNC_PREREAD);
1302 continue;
1303 }
1304 }
1305 #else
1306 /*
1307 * The SiS 900's receive buffers must be 4-byte aligned.
1308 * But this means that the data after the Ethernet header
1309 * is misaligned. We must allocate a new buffer and
1310 * copy the data, shifted forward 2 bytes.
1311 */
1312 MGETHDR(m, M_DONTWAIT, MT_DATA);
1313 if (m == NULL) {
1314 dropit:
1315 ifp->if_ierrors++;
1316 SIP_INIT_RXDESC(sc, i);
1317 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1318 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1319 continue;
1320 }
1321 if (len > (MHLEN - 2)) {
1322 MCLGET(m, M_DONTWAIT);
1323 if ((m->m_flags & M_EXT) == 0) {
1324 m_freem(m);
1325 goto dropit;
1326 }
1327 }
1328 m->m_data += 2;
1329
1330 /*
1331 * Note that we use clusters for incoming frames, so the
1332 * buffer is virtually contiguous.
1333 */
1334 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1335
1336 /* Allow the receive descriptor to continue using its mbuf. */
1337 SIP_INIT_RXDESC(sc, i);
1338 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1339 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1340 #endif /* __NO_STRICT_ALIGNMENT */
1341
1342 ifp->if_ipackets++;
1343 eh = mtod(m, struct ether_header *);
1344 m->m_pkthdr.rcvif = ifp;
1345 m->m_pkthdr.len = m->m_len = len;
1346
1347 #if NBPFILTER > 0
1348 /*
1349 * Pass this up to any BPF listeners, but only
1350 * pass if up the stack if it's for us.
1351 */
1352 if (ifp->if_bpf) {
1353 bpf_mtap(ifp->if_bpf, m);
1354 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1355 (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1356 m_freem(m);
1357 continue;
1358 }
1359 }
1360 #endif /* NBPFILTER > 0 */
1361
1362 /* Pass it on. */
1363 (*ifp->if_input)(ifp, m);
1364 }
1365
1366 /* Update the receive pointer. */
1367 sc->sc_rxptr = i;
1368 }
1369
1370 /*
1371 * sip_tick:
1372 *
1373 * One second timer, used to tick the MII.
1374 */
1375 void
1376 sip_tick(arg)
1377 void *arg;
1378 {
1379 struct sip_softc *sc = arg;
1380 int s;
1381
1382 s = splnet();
1383 mii_tick(&sc->sc_mii);
1384 splx(s);
1385
1386 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1387 }
1388
1389 /*
1390 * sip_reset:
1391 *
1392 * Perform a soft reset on the SiS 900.
1393 */
1394 void
1395 sip_reset(sc)
1396 struct sip_softc *sc;
1397 {
1398 bus_space_tag_t st = sc->sc_st;
1399 bus_space_handle_t sh = sc->sc_sh;
1400 int i;
1401
1402 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1403
1404 for (i = 0; i < SIP_TIMEOUT; i++) {
1405 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1406 break;
1407 delay(2);
1408 }
1409
1410 if (i == SIP_TIMEOUT)
1411 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1412
1413 delay(1000);
1414 }
1415
1416 /*
1417 * sip_init:
1418 *
1419 * Initialize the interface. Must be called at splnet().
1420 */
1421 int
1422 sip_init(sc)
1423 struct sip_softc *sc;
1424 {
1425 bus_space_tag_t st = sc->sc_st;
1426 bus_space_handle_t sh = sc->sc_sh;
1427 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1428 struct sip_txsoft *txs;
1429 struct sip_rxsoft *rxs;
1430 struct sip_desc *sipd;
1431 u_int32_t cfg;
1432 int i, error = 0;
1433
1434 /*
1435 * Cancel any pending I/O.
1436 */
1437 sip_stop(sc, 0);
1438
1439 /*
1440 * Reset the chip to a known state.
1441 */
1442 sip_reset(sc);
1443
1444 if ( sc->sc_model->sip_vendor == PCI_VENDOR_NS
1445 && sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1446 /*
1447 * DP83815 manual, page 78:
1448 * 4.4 Recommended Registers Configuration
1449 * For optimum performance of the DP83815, version noted
1450 * as DP83815CVNG (SRR = 203h), the listed register
1451 * modifications must be followed in sequence...
1452 *
1453 * It's not clear if this should be 302h or 203h because that
1454 * chip name is listed as SRR 302h in the description of the
1455 * SRR register. However, my revision 302h DP83815 on the
1456 * Netgear FA311 purchased in 02/2001 needs these settings
1457 * to avoid tons of errors in AcceptPerfectMatch (non-
1458 * IFF_PROMISC) mode. I do not know if other revisions need
1459 * this set or not. [briggs -- 09 March 2001]
1460 *
1461 * Note that only the low-order 12 bits of 0xe4 are documented
1462 * and that this sets reserved bits in that register.
1463 */
1464 cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
1465 if (cfg == 0x302) {
1466 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1467 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1468 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1469 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1470 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1471 }
1472 }
1473
1474 /*
1475 * Initialize the transmit descriptor ring.
1476 */
1477 for (i = 0; i < SIP_NTXDESC; i++) {
1478 sipd = &sc->sc_txdescs[i];
1479 memset(sipd, 0, sizeof(struct sip_desc));
1480 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1481 }
1482 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1484 sc->sc_txfree = SIP_NTXDESC;
1485 sc->sc_txnext = 0;
1486
1487 /*
1488 * Initialize the transmit job descriptors.
1489 */
1490 SIMPLEQ_INIT(&sc->sc_txfreeq);
1491 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1492 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1493 txs = &sc->sc_txsoft[i];
1494 txs->txs_mbuf = NULL;
1495 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1496 }
1497
1498 /*
1499 * Initialize the receive descriptor and receive job
1500 * descriptor rings.
1501 */
1502 for (i = 0; i < SIP_NRXDESC; i++) {
1503 rxs = &sc->sc_rxsoft[i];
1504 if (rxs->rxs_mbuf == NULL) {
1505 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1506 printf("%s: unable to allocate or map rx "
1507 "buffer %d, error = %d\n",
1508 sc->sc_dev.dv_xname, i, error);
1509 /*
1510 * XXX Should attempt to run with fewer receive
1511 * XXX buffers instead of just failing.
1512 */
1513 sip_rxdrain(sc);
1514 goto out;
1515 }
1516 }
1517 }
1518 sc->sc_rxptr = 0;
1519
1520 /*
1521 * Initialize the configuration register: aggressive PCI
1522 * bus request algorithm, default backoff, default OW timer,
1523 * default parity error detection.
1524 */
1525 cfg = 0;
1526 #if BYTE_ORDER == BIG_ENDIAN
1527 /*
1528 * ...descriptors in big-endian mode.
1529 */
1530 #if 0
1531 /* "Big endian mode" does not work properly. */
1532 cfg |= CFG_BEM;
1533 #endif
1534 #endif
1535 bus_space_write_4(st, sh, SIP_CFG, cfg);
1536
1537 /*
1538 * Initialize the transmit fill and drain thresholds if
1539 * we have never done so.
1540 */
1541 if (sc->sc_tx_fill_thresh == 0) {
1542 /*
1543 * XXX This value should be tuned. This is the
1544 * minimum (32 bytes), and we may be able to
1545 * improve performance by increasing it.
1546 */
1547 sc->sc_tx_fill_thresh = 1;
1548 }
1549 if (sc->sc_tx_drain_thresh == 0) {
1550 /*
1551 * Start at a drain threshold of 512 bytes. We will
1552 * increase it if a DMA underrun occurs.
1553 *
1554 * XXX The minimum value of this variable should be
1555 * tuned. We may be able to improve performance
1556 * by starting with a lower value. That, however,
1557 * may trash the first few outgoing packets if the
1558 * PCI bus is saturated.
1559 */
1560 sc->sc_tx_drain_thresh = 512 / 32;
1561 }
1562
1563 /*
1564 * Initialize the prototype TXCFG register.
1565 */
1566 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1567 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1568 sc->sc_tx_drain_thresh;
1569 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1570
1571 /*
1572 * Initialize the receive drain threshold if we have never
1573 * done so.
1574 */
1575 if (sc->sc_rx_drain_thresh == 0) {
1576 /*
1577 * XXX This value should be tuned. This is set to the
1578 * maximum of 248 bytes, and we may be able to improve
1579 * performance by decreasing it (although we should never
1580 * set this value lower than 2; 14 bytes are required to
1581 * filter the packet).
1582 */
1583 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1584 }
1585
1586 /*
1587 * Initialize the prototype RXCFG register.
1588 */
1589 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1590 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1591 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1592
1593 /* Set up the receive filter. */
1594 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1595
1596 /*
1597 * Give the transmit and receive rings to the chip.
1598 */
1599 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1600 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1601
1602 /*
1603 * Initialize the interrupt mask.
1604 */
1605 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1606 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1607 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1608
1609 /*
1610 * Set the current media. Do this after initializing the prototype
1611 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1612 * control.
1613 */
1614 mii_mediachg(&sc->sc_mii);
1615
1616 /*
1617 * Enable interrupts.
1618 */
1619 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1620
1621 /*
1622 * Start the transmit and receive processes.
1623 */
1624 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1625
1626 /*
1627 * Start the one second MII clock.
1628 */
1629 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1630
1631 /*
1632 * ...all done!
1633 */
1634 ifp->if_flags |= IFF_RUNNING;
1635 ifp->if_flags &= ~IFF_OACTIVE;
1636
1637 out:
1638 if (error)
1639 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1640 return (error);
1641 }
1642
1643 /*
1644 * sip_drain:
1645 *
1646 * Drain the receive queue.
1647 */
1648 void
1649 sip_rxdrain(sc)
1650 struct sip_softc *sc;
1651 {
1652 struct sip_rxsoft *rxs;
1653 int i;
1654
1655 for (i = 0; i < SIP_NRXDESC; i++) {
1656 rxs = &sc->sc_rxsoft[i];
1657 if (rxs->rxs_mbuf != NULL) {
1658 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1659 m_freem(rxs->rxs_mbuf);
1660 rxs->rxs_mbuf = NULL;
1661 }
1662 }
1663 }
1664
1665 /*
1666 * sip_stop:
1667 *
1668 * Stop transmission on the interface.
1669 */
1670 void
1671 sip_stop(sc, drain)
1672 struct sip_softc *sc;
1673 {
1674 bus_space_tag_t st = sc->sc_st;
1675 bus_space_handle_t sh = sc->sc_sh;
1676 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1677 struct sip_txsoft *txs;
1678 u_int32_t cmdsts = 0; /* DEBUG */
1679
1680 /*
1681 * Stop the one second clock.
1682 */
1683 callout_stop(&sc->sc_tick_ch);
1684
1685 /* Down the MII. */
1686 mii_down(&sc->sc_mii);
1687
1688 /*
1689 * Disable interrupts.
1690 */
1691 bus_space_write_4(st, sh, SIP_IER, 0);
1692
1693 /*
1694 * Stop receiver and transmitter.
1695 */
1696 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1697
1698 /*
1699 * Release any queued transmit buffers.
1700 */
1701 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1702 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1703 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1704 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1705 CMDSTS_INTR) == 0)
1706 printf("%s: sip_stop: last descriptor does not "
1707 "have INTR bit set\n", sc->sc_dev.dv_xname);
1708 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1709 #ifdef DIAGNOSTIC
1710 if (txs->txs_mbuf == NULL) {
1711 printf("%s: dirty txsoft with no mbuf chain\n",
1712 sc->sc_dev.dv_xname);
1713 panic("sip_stop");
1714 }
1715 #endif
1716 cmdsts |= /* DEBUG */
1717 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1718 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1719 m_freem(txs->txs_mbuf);
1720 txs->txs_mbuf = NULL;
1721 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1722 }
1723
1724 if (drain) {
1725 /*
1726 * Release the receive buffers.
1727 */
1728 sip_rxdrain(sc);
1729 }
1730
1731 /*
1732 * Mark the interface down and cancel the watchdog timer.
1733 */
1734 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1735 ifp->if_timer = 0;
1736
1737 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1738 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1739 printf("%s: sip_stop: no INTR bits set in dirty tx "
1740 "descriptors\n", sc->sc_dev.dv_xname);
1741 }
1742
1743 /*
1744 * sip_read_eeprom:
1745 *
1746 * Read data from the serial EEPROM.
1747 */
1748 void
1749 sip_read_eeprom(sc, word, wordcnt, data)
1750 struct sip_softc *sc;
1751 int word, wordcnt;
1752 u_int16_t *data;
1753 {
1754 bus_space_tag_t st = sc->sc_st;
1755 bus_space_handle_t sh = sc->sc_sh;
1756 u_int16_t reg;
1757 int i, x;
1758
1759 for (i = 0; i < wordcnt; i++) {
1760 /* Send CHIP SELECT. */
1761 reg = EROMAR_EECS;
1762 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1763
1764 /* Shift in the READ opcode. */
1765 for (x = 3; x > 0; x--) {
1766 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1767 reg |= EROMAR_EEDI;
1768 else
1769 reg &= ~EROMAR_EEDI;
1770 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1771 bus_space_write_4(st, sh, SIP_EROMAR,
1772 reg | EROMAR_EESK);
1773 delay(4);
1774 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1775 delay(4);
1776 }
1777
1778 /* Shift in address. */
1779 for (x = 6; x > 0; x--) {
1780 if ((word + i) & (1 << (x - 1)))
1781 reg |= EROMAR_EEDI;
1782 else
1783 reg &= ~EROMAR_EEDI;
1784 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1785 bus_space_write_4(st, sh, SIP_EROMAR,
1786 reg | EROMAR_EESK);
1787 delay(4);
1788 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1789 delay(4);
1790 }
1791
1792 /* Shift out data. */
1793 reg = EROMAR_EECS;
1794 data[i] = 0;
1795 for (x = 16; x > 0; x--) {
1796 bus_space_write_4(st, sh, SIP_EROMAR,
1797 reg | EROMAR_EESK);
1798 delay(4);
1799 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1800 data[i] |= (1 << (x - 1));
1801 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1802 delay(4);
1803 }
1804
1805 /* Clear CHIP SELECT. */
1806 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1807 delay(4);
1808 }
1809 }
1810
1811 /*
1812 * sip_add_rxbuf:
1813 *
1814 * Add a receive buffer to the indicated descriptor.
1815 */
1816 int
1817 sip_add_rxbuf(sc, idx)
1818 struct sip_softc *sc;
1819 int idx;
1820 {
1821 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1822 struct mbuf *m;
1823 int error;
1824
1825 MGETHDR(m, M_DONTWAIT, MT_DATA);
1826 if (m == NULL)
1827 return (ENOBUFS);
1828
1829 MCLGET(m, M_DONTWAIT);
1830 if ((m->m_flags & M_EXT) == 0) {
1831 m_freem(m);
1832 return (ENOBUFS);
1833 }
1834
1835 if (rxs->rxs_mbuf != NULL)
1836 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1837
1838 rxs->rxs_mbuf = m;
1839
1840 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1841 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1842 if (error) {
1843 printf("%s: can't load rx DMA map %d, error = %d\n",
1844 sc->sc_dev.dv_xname, idx, error);
1845 panic("sip_add_rxbuf"); /* XXX */
1846 }
1847
1848 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1849 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1850
1851 SIP_INIT_RXDESC(sc, idx);
1852
1853 return (0);
1854 }
1855
1856 /*
1857 * sip_sis900_set_filter:
1858 *
1859 * Set up the receive filter.
1860 */
1861 void
1862 sip_sis900_set_filter(sc)
1863 struct sip_softc *sc;
1864 {
1865 bus_space_tag_t st = sc->sc_st;
1866 bus_space_handle_t sh = sc->sc_sh;
1867 struct ethercom *ec = &sc->sc_ethercom;
1868 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1869 struct ether_multi *enm;
1870 u_int8_t *cp;
1871 struct ether_multistep step;
1872 u_int32_t crc, mchash[8];
1873
1874 /*
1875 * Initialize the prototype RFCR.
1876 */
1877 sc->sc_rfcr = RFCR_RFEN;
1878 if (ifp->if_flags & IFF_BROADCAST)
1879 sc->sc_rfcr |= RFCR_AAB;
1880 if (ifp->if_flags & IFF_PROMISC) {
1881 sc->sc_rfcr |= RFCR_AAP;
1882 goto allmulti;
1883 }
1884
1885 /*
1886 * Set up the multicast address filter by passing all multicast
1887 * addresses through a CRC generator, and then using the high-order
1888 * 6 bits as an index into the 128 bit multicast hash table (only
1889 * the lower 16 bits of each 32 bit multicast hash register are
1890 * valid). The high order bits select the register, while the
1891 * rest of the bits select the bit within the register.
1892 */
1893
1894 memset(mchash, 0, sizeof(mchash));
1895
1896 ETHER_FIRST_MULTI(step, ec, enm);
1897 while (enm != NULL) {
1898 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1899 /*
1900 * We must listen to a range of multicast addresses.
1901 * For now, just accept all multicasts, rather than
1902 * trying to set only those filter bits needed to match
1903 * the range. (At this time, the only use of address
1904 * ranges is for IP multicast routing, for which the
1905 * range is big enough to require all bits set.)
1906 */
1907 goto allmulti;
1908 }
1909
1910 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1911
1912 /* Just want the 7 most significant bits. */
1913 crc >>= 25;
1914
1915 /* Set the corresponding bit in the hash table. */
1916 mchash[crc >> 4] |= 1 << (crc & 0xf);
1917
1918 ETHER_NEXT_MULTI(step, enm);
1919 }
1920
1921 ifp->if_flags &= ~IFF_ALLMULTI;
1922 goto setit;
1923
1924 allmulti:
1925 ifp->if_flags |= IFF_ALLMULTI;
1926 sc->sc_rfcr |= RFCR_AAM;
1927
1928 setit:
1929 #define FILTER_EMIT(addr, data) \
1930 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1931 delay(1); \
1932 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1933 delay(1)
1934
1935 /*
1936 * Disable receive filter, and program the node address.
1937 */
1938 cp = LLADDR(ifp->if_sadl);
1939 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1940 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1941 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1942
1943 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1944 /*
1945 * Program the multicast hash table.
1946 */
1947 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1948 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1949 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1950 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1951 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1952 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1953 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1954 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1955 }
1956 #undef FILTER_EMIT
1957
1958 /*
1959 * Re-enable the receiver filter.
1960 */
1961 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1962 }
1963
1964 /*
1965 * sip_dp83815_set_filter:
1966 *
1967 * Set up the receive filter.
1968 */
1969 void
1970 sip_dp83815_set_filter(sc)
1971 struct sip_softc *sc;
1972 {
1973 bus_space_tag_t st = sc->sc_st;
1974 bus_space_handle_t sh = sc->sc_sh;
1975 struct ethercom *ec = &sc->sc_ethercom;
1976 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1977 struct ether_multi *enm;
1978 u_int8_t *cp;
1979 struct ether_multistep step;
1980 u_int32_t crc, mchash[16];
1981 int i;
1982
1983 /*
1984 * Initialize the prototype RFCR.
1985 * Enable the receive filter, and accept ARP
1986 * and on Perfect (destination address) Match
1987 * If IFF_BROADCAST, also accept all broadcast packets.
1988 * If IFF_PROMISC, accept all unicast packets (and later, set
1989 * IFF_ALLMULTI and accept all multicast, too).
1990 */
1991 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1992 if (ifp->if_flags & IFF_BROADCAST)
1993 sc->sc_rfcr |= RFCR_AAB;
1994 if (ifp->if_flags & IFF_PROMISC) {
1995 sc->sc_rfcr |= RFCR_AAP;
1996 goto allmulti;
1997 }
1998
1999 /*
2000 * Set up the multicast address filter by passing all multicast
2001 * addresses through a CRC generator, and then using the high-order
2002 * 9 bits as an index into the 512 bit multicast hash table. The
2003 * high-order bits select the slot, while the rest of the bits
2004 * select the bit within the slot. Note that only the low 16-bits
2005 * of each filter word are used, and there are 64 filter words.
2006 */
2007
2008 memset(mchash, 0, sizeof(mchash));
2009
2010 ifp->if_flags &= ~IFF_ALLMULTI;
2011 ETHER_FIRST_MULTI(step, ec, enm);
2012 if (enm != NULL) {
2013 while (enm != NULL) {
2014 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2015 ETHER_ADDR_LEN)) {
2016 /*
2017 * We must listen to a range of multicast addresses.
2018 * For now, just accept all multicasts, rather than
2019 * trying to set only those filter bits needed to match
2020 * the range. (At this time, the only use of address
2021 * ranges is for IP multicast routing, for which the
2022 * range is big enough to require all bits set.)
2023 */
2024 goto allmulti;
2025 }
2026
2027 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2028
2029 /* Just want the 9 most significant bits. */
2030 crc >>= 23;
2031
2032 /* Set the corresponding bit in the hash table. */
2033 mchash[crc >> 5] |= 1 << (crc & 0x1f);
2034
2035 ETHER_NEXT_MULTI(step, enm);
2036 }
2037
2038 sc->sc_rfcr |= RFCR_MHEN;
2039 }
2040 goto setit;
2041
2042 allmulti:
2043 ifp->if_flags |= IFF_ALLMULTI;
2044 sc->sc_rfcr |= RFCR_AAM;
2045
2046 setit:
2047 #define FILTER_EMIT(addr, data) \
2048 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2049 delay(1); \
2050 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2051 delay(1);
2052
2053 /*
2054 * Disable receive filter, and program the node address.
2055 */
2056 cp = LLADDR(ifp->if_sadl);
2057 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2058 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2059 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2060
2061 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2062 /*
2063 * Program the multicast hash table.
2064 */
2065 for (i = 0; i < 16; i++) {
2066 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2067 mchash[i] & 0xffff);
2068 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
2069 (mchash[i] >> 16) & 0xffff);
2070 }
2071 }
2072 #undef FILTER_EMIT
2073
2074 /*
2075 * Re-enable the receiver filter.
2076 */
2077 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2078 }
2079
2080 /*
2081 * sip_sis900_mii_readreg: [mii interface function]
2082 *
2083 * Read a PHY register on the MII.
2084 */
2085 int
2086 sip_sis900_mii_readreg(self, phy, reg)
2087 struct device *self;
2088 int phy, reg;
2089 {
2090 struct sip_softc *sc = (struct sip_softc *) self;
2091 u_int32_t enphy;
2092
2093 /*
2094 * The SiS 900 has only an internal PHY on the MII. Only allow
2095 * MII address 0.
2096 */
2097 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2098 return (0);
2099
2100 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2101 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2102 ENPHY_RWCMD | ENPHY_ACCESS);
2103 do {
2104 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2105 } while (enphy & ENPHY_ACCESS);
2106 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2107 }
2108
2109 /*
2110 * sip_sis900_mii_writereg: [mii interface function]
2111 *
2112 * Write a PHY register on the MII.
2113 */
2114 void
2115 sip_sis900_mii_writereg(self, phy, reg, val)
2116 struct device *self;
2117 int phy, reg, val;
2118 {
2119 struct sip_softc *sc = (struct sip_softc *) self;
2120 u_int32_t enphy;
2121
2122 /*
2123 * The SiS 900 has only an internal PHY on the MII. Only allow
2124 * MII address 0.
2125 */
2126 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2127 return;
2128
2129 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2130 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2131 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2132 do {
2133 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2134 } while (enphy & ENPHY_ACCESS);
2135 }
2136
2137 /*
2138 * sip_sis900_mii_statchg: [mii interface function]
2139 *
2140 * Callback from MII layer when media changes.
2141 */
2142 void
2143 sip_sis900_mii_statchg(self)
2144 struct device *self;
2145 {
2146 struct sip_softc *sc = (struct sip_softc *) self;
2147 u_int32_t flowctl;
2148
2149 /*
2150 * Update TXCFG for full-duplex operation.
2151 */
2152 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2153 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2154 else
2155 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2156
2157 /*
2158 * Update RXCFG for full-duplex or loopback.
2159 */
2160 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2161 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2162 sc->sc_rxcfg |= RXCFG_ATX;
2163 else
2164 sc->sc_rxcfg &= ~RXCFG_ATX;
2165
2166 /*
2167 * Update IMR for use of 802.3x flow control.
2168 */
2169 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2170 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2171 flowctl = FLOWCTL_FLOWEN;
2172 } else {
2173 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2174 flowctl = 0;
2175 }
2176
2177 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2178 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2179 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2180 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2181 }
2182
2183 /*
2184 * sip_dp83815_mii_readreg: [mii interface function]
2185 *
2186 * Read a PHY register on the MII.
2187 */
2188 int
2189 sip_dp83815_mii_readreg(self, phy, reg)
2190 struct device *self;
2191 int phy, reg;
2192 {
2193 struct sip_softc *sc = (struct sip_softc *) self;
2194 u_int32_t val;
2195
2196 /*
2197 * The DP83815 only has an internal PHY. Only allow
2198 * MII address 0.
2199 */
2200 if (phy != 0)
2201 return (0);
2202
2203 /*
2204 * Apparently, after a reset, the DP83815 can take a while
2205 * to respond. During this recovery period, the BMSR returns
2206 * a value of 0. Catch this -- it's not supposed to happen
2207 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2208 * PHY to come back to life.
2209 *
2210 * This works out because the BMSR is the first register
2211 * read during the PHY probe process.
2212 */
2213 do {
2214 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2215 } while (reg == MII_BMSR && val == 0);
2216
2217 return (val & 0xffff);
2218 }
2219
2220 /*
2221 * sip_dp83815_mii_writereg: [mii interface function]
2222 *
2223 * Write a PHY register to the MII.
2224 */
2225 void
2226 sip_dp83815_mii_writereg(self, phy, reg, val)
2227 struct device *self;
2228 int phy, reg, val;
2229 {
2230 struct sip_softc *sc = (struct sip_softc *) self;
2231
2232 /*
2233 * The DP83815 only has an internal PHY. Only allow
2234 * MII address 0.
2235 */
2236 if (phy != 0)
2237 return;
2238
2239 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2240 }
2241
2242 /*
2243 * sip_dp83815_mii_statchg: [mii interface function]
2244 *
2245 * Callback from MII layer when media changes.
2246 */
2247 void
2248 sip_dp83815_mii_statchg(self)
2249 struct device *self;
2250 {
2251 struct sip_softc *sc = (struct sip_softc *) self;
2252
2253 /*
2254 * Update TXCFG for full-duplex operation.
2255 */
2256 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2257 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2258 else
2259 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2260
2261 /*
2262 * Update RXCFG for full-duplex or loopback.
2263 */
2264 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2265 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2266 sc->sc_rxcfg |= RXCFG_ATX;
2267 else
2268 sc->sc_rxcfg &= ~RXCFG_ATX;
2269
2270 /*
2271 * XXX 802.3x flow control.
2272 */
2273
2274 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2275 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2276 }
2277
2278 void
2279 sip_sis900_read_macaddr(sc, enaddr)
2280 struct sip_softc *sc;
2281 u_int8_t *enaddr;
2282 {
2283 u_int16_t myea[ETHER_ADDR_LEN / 2];
2284
2285 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2286 sizeof(myea) / sizeof(myea[0]), myea);
2287
2288 enaddr[0] = myea[0] & 0xff;
2289 enaddr[1] = myea[0] >> 8;
2290 enaddr[2] = myea[1] & 0xff;
2291 enaddr[3] = myea[1] >> 8;
2292 enaddr[4] = myea[2] & 0xff;
2293 enaddr[5] = myea[2] >> 8;
2294 }
2295
2296 static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2297 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2298
2299 void
2300 sip_dp83815_read_macaddr(sc, enaddr)
2301 struct sip_softc *sc;
2302 u_int8_t *enaddr;
2303 {
2304 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2305 u_int8_t cksum, *e, match;
2306 int i;
2307
2308 sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
2309 eeprom_data);
2310
2311 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2312 match = ~(match - 1);
2313
2314 cksum = 0x55;
2315 e = (u_int8_t *) eeprom_data;
2316 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2317 cksum += *e++;
2318 }
2319 if (cksum != match) {
2320 printf("%s: Checksum (%x) mismatch (%x)",
2321 sc->sc_dev.dv_xname, cksum, match);
2322 }
2323
2324 /*
2325 * Unrolled because it makes slightly more sense this way.
2326 * The DP83815 stores the MAC address in bit 0 of word 6
2327 * through bit 15 of word 8.
2328 */
2329 ea = &eeprom_data[6];
2330 enaddr[0] = ((*ea & 0x1) << 7);
2331 ea++;
2332 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2333 enaddr[1] = ((*ea & 0x1FE) >> 1);
2334 enaddr[2] = ((*ea & 0x1) << 7);
2335 ea++;
2336 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2337 enaddr[3] = ((*ea & 0x1FE) >> 1);
2338 enaddr[4] = ((*ea & 0x1) << 7);
2339 ea++;
2340 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2341 enaddr[5] = ((*ea & 0x1FE) >> 1);
2342
2343 /*
2344 * In case that's not weird enough, we also need to reverse
2345 * the bits in each byte. This all actually makes more sense
2346 * if you think about the EEPROM storage as an array of bits
2347 * being shifted into bytes, but that's not how we're looking
2348 * at it here...
2349 */
2350 for (i=0 ; i<6 ; i++)
2351 enaddr[i] = bbr(enaddr[i]);
2352 }
2353
2354 /*
2355 * sip_mediastatus: [ifmedia interface function]
2356 *
2357 * Get the current interface media status.
2358 */
2359 void
2360 sip_mediastatus(ifp, ifmr)
2361 struct ifnet *ifp;
2362 struct ifmediareq *ifmr;
2363 {
2364 struct sip_softc *sc = ifp->if_softc;
2365
2366 mii_pollstat(&sc->sc_mii);
2367 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2368 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2369 }
2370
2371 /*
2372 * sip_mediachange: [ifmedia interface function]
2373 *
2374 * Set hardware to newly-selected media.
2375 */
2376 int
2377 sip_mediachange(ifp)
2378 struct ifnet *ifp;
2379 {
2380 struct sip_softc *sc = ifp->if_softc;
2381
2382 if (ifp->if_flags & IFF_UP)
2383 mii_mediachg(&sc->sc_mii);
2384 return (0);
2385 }
2386