Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.112
      1 /*	$NetBSD: if_sip.c,v 1.112 2007/03/04 15:05:24 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.112 2007/03/04 15:05:24 yamt Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    131 #else			/* SiS900 and DP83815 */
    132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    133 #endif
    134 
    135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    136 
    137 /*
    138  * Transmit descriptor list size.  This is arbitrary, but allocate
    139  * enough descriptors for 128 pending transmissions, and 8 segments
    140  * per packet (64 for DP83820 for jumbo frames).
    141  *
    142  * This MUST work out to a power of 2.
    143  */
    144 #ifdef DP83820
    145 #define	SIP_NTXSEGS		64
    146 #define	SIP_NTXSEGS_ALLOC	16
    147 #else
    148 #define	SIP_NTXSEGS		16
    149 #define	SIP_NTXSEGS_ALLOC	8
    150 #endif
    151 
    152 #define	SIP_TXQUEUELEN		256
    153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    156 
    157 #if defined(DP83820)
    158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    159 #else
    160 #define	TX_DMAMAP_SIZE		MCLBYTES
    161 #endif
    162 
    163 /*
    164  * Receive descriptor list size.  We have one Rx buffer per incoming
    165  * packet, so this logic is a little simpler.
    166  *
    167  * Actually, on the DP83820, we allow the packet to consume more than
    168  * one buffer, in order to support jumbo Ethernet frames.  In that
    169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    171  * so we'd better be quick about handling receive interrupts.
    172  */
    173 #if defined(DP83820)
    174 #define	SIP_NRXDESC		256
    175 #else
    176 #define	SIP_NRXDESC		128
    177 #endif /* DP83820 */
    178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    180 
    181 /*
    182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    183  * a single clump that maps to a single DMA segment to make several things
    184  * easier.
    185  */
    186 struct sip_control_data {
    187 	/*
    188 	 * The transmit descriptors.
    189 	 */
    190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    191 
    192 	/*
    193 	 * The receive descriptors.
    194 	 */
    195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    196 };
    197 
    198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    201 
    202 /*
    203  * Software state for transmit jobs.
    204  */
    205 struct sip_txsoft {
    206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    208 	int txs_firstdesc;		/* first descriptor in packet */
    209 	int txs_lastdesc;		/* last descriptor in packet */
    210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    211 };
    212 
    213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    214 
    215 /*
    216  * Software state for receive jobs.
    217  */
    218 struct sip_rxsoft {
    219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    221 };
    222 
    223 /*
    224  * Software state per device.
    225  */
    226 struct sip_softc {
    227 	struct device sc_dev;		/* generic device information */
    228 	bus_space_tag_t sc_st;		/* bus space tag */
    229 	bus_space_handle_t sc_sh;	/* bus space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 	void *sc_sdhook;		/* shutdown hook */
    233 
    234 	const struct sip_product *sc_model; /* which model are we? */
    235 	int sc_rev;			/* chip revision */
    236 
    237 	void *sc_ih;			/* interrupt cookie */
    238 
    239 	struct mii_data sc_mii;		/* MII/media information */
    240 
    241 	struct callout sc_tick_ch;	/* tick callout */
    242 
    243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    245 
    246 	/*
    247 	 * Software state for transmit and receive descriptors.
    248 	 */
    249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    251 
    252 	/*
    253 	 * Control data structures.
    254 	 */
    255 	struct sip_control_data *sc_control_data;
    256 #define	sc_txdescs	sc_control_data->scd_txdescs
    257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    258 
    259 #ifdef SIP_EVENT_COUNTERS
    260 	/*
    261 	 * Event counters.
    262 	 */
    263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    271 #ifdef DP83820
    272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    279 #endif /* DP83820 */
    280 #endif /* SIP_EVENT_COUNTERS */
    281 
    282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    284 	u_int32_t sc_imr;		/* prototype IMR register */
    285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    286 
    287 	u_int32_t sc_cfg;		/* prototype CFG register */
    288 
    289 #ifdef DP83820
    290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    291 #endif /* DP83820 */
    292 
    293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    295 
    296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    297 
    298 	int	sc_flowflags;		/* 802.3x flow control flags */
    299 #ifdef DP83820
    300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    301 #else
    302 	int	sc_paused;		/* paused indication */
    303 #endif
    304 
    305 	int	sc_txfree;		/* number of free Tx descriptors */
    306 	int	sc_txnext;		/* next ready Tx descriptor */
    307 	int	sc_txwin;		/* Tx descriptors since last intr */
    308 
    309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    311 
    312 	/* values of interface state at last init */
    313 	struct {
    314 		/* if_capenable */
    315 		uint64_t	if_capenable;
    316 		/* ec_capenable */
    317 		int		ec_capenable;
    318 		/* VLAN_ATTACHED */
    319 		int		is_vlan;
    320 	}	sc_prev;
    321 
    322 	short	sc_if_flags;
    323 
    324 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    325 #if defined(DP83820)
    326 	int	sc_rxdiscard;
    327 	int	sc_rxlen;
    328 	struct mbuf *sc_rxhead;
    329 	struct mbuf *sc_rxtail;
    330 	struct mbuf **sc_rxtailp;
    331 #endif /* DP83820 */
    332 
    333 #if NRND > 0
    334 	rndsource_element_t rnd_source;	/* random source */
    335 #endif
    336 };
    337 
    338 #ifdef DP83820
    339 #define	SIP_RXCHAIN_RESET(sc)						\
    340 do {									\
    341 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    342 	*(sc)->sc_rxtailp = NULL;					\
    343 	(sc)->sc_rxlen = 0;						\
    344 } while (/*CONSTCOND*/0)
    345 
    346 #define	SIP_RXCHAIN_LINK(sc, m)						\
    347 do {									\
    348 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    349 	(sc)->sc_rxtailp = &(m)->m_next;				\
    350 } while (/*CONSTCOND*/0)
    351 #endif /* DP83820 */
    352 
    353 #ifdef SIP_EVENT_COUNTERS
    354 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    355 #else
    356 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    357 #endif
    358 
    359 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    360 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    361 
    362 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    363 do {									\
    364 	int __x, __n;							\
    365 									\
    366 	__x = (x);							\
    367 	__n = (n);							\
    368 									\
    369 	/* If it will wrap around, sync to the end of the ring. */	\
    370 	if ((__x + __n) > SIP_NTXDESC) {				\
    371 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    372 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    373 		    (SIP_NTXDESC - __x), (ops));			\
    374 		__n -= (SIP_NTXDESC - __x);				\
    375 		__x = 0;						\
    376 	}								\
    377 									\
    378 	/* Now sync whatever is left. */				\
    379 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    380 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    381 } while (0)
    382 
    383 #define	SIP_CDRXSYNC(sc, x, ops)					\
    384 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    385 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    386 
    387 #ifdef DP83820
    388 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    389 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
    390 #else
    391 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    392 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    393 #endif
    394 #define	SIP_INIT_RXDESC(sc, x)						\
    395 do {									\
    396 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    397 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    398 									\
    399 	__sipd->sipd_link =						\
    400 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    401 	__sipd->sipd_bufptr =						\
    402 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    403 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    404 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    405 	SIP_INIT_RXDESC_EXTSTS						\
    406 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    407 } while (0)
    408 
    409 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    410 	((sc)->sc_model->sip_vendor == (v) &&				\
    411 	 (sc)->sc_model->sip_product == (p) &&				\
    412 	 (sc)->sc_rev == (r))
    413 
    414 #define	SIP_CHIP_MODEL(sc, v, p)					\
    415 	((sc)->sc_model->sip_vendor == (v) &&				\
    416 	 (sc)->sc_model->sip_product == (p))
    417 
    418 #if !defined(DP83820)
    419 #define	SIP_SIS900_REV(sc, rev)						\
    420 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    421 #endif
    422 
    423 #define SIP_TIMEOUT 1000
    424 
    425 static void	SIP_DECL(start)(struct ifnet *);
    426 static void	SIP_DECL(watchdog)(struct ifnet *);
    427 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, void *);
    428 static int	SIP_DECL(init)(struct ifnet *);
    429 static void	SIP_DECL(stop)(struct ifnet *, int);
    430 
    431 static void	SIP_DECL(shutdown)(void *);
    432 
    433 static void	SIP_DECL(reset)(struct sip_softc *);
    434 static void	SIP_DECL(rxdrain)(struct sip_softc *);
    435 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    436 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
    437 				      u_int16_t *);
    438 static void	SIP_DECL(tick)(void *);
    439 
    440 #if !defined(DP83820)
    441 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    442 #endif /* ! DP83820 */
    443 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    444 
    445 #if defined(DP83820)
    446 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    447 		    const struct pci_attach_args *, u_int8_t *);
    448 #else
    449 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    450 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    451 		    const struct pci_attach_args *, u_int8_t *);
    452 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    453 		    const struct pci_attach_args *, u_int8_t *);
    454 #endif /* DP83820 */
    455 
    456 static int	SIP_DECL(intr)(void *);
    457 static void	SIP_DECL(txintr)(struct sip_softc *);
    458 static void	SIP_DECL(rxintr)(struct sip_softc *);
    459 
    460 #if defined(DP83820)
    461 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    462 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    463 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    464 #else
    465 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    466 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    467 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
    468 
    469 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    470 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    471 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    472 #endif /* DP83820 */
    473 
    474 static int	SIP_DECL(mediachange)(struct ifnet *);
    475 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    476 
    477 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    478 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
    479 
    480 int	SIP_DECL(copy_small) = 0;
    481 
    482 #ifdef DP83820
    483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    484     gsip_match, gsip_attach, NULL, NULL);
    485 #else
    486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    487     sip_match, sip_attach, NULL, NULL);
    488 #endif
    489 
    490 /*
    491  * Descriptions of the variants of the SiS900.
    492  */
    493 struct sip_variant {
    494 	int	(*sipv_mii_readreg)(struct device *, int, int);
    495 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    496 	void	(*sipv_mii_statchg)(struct device *);
    497 	void	(*sipv_set_filter)(struct sip_softc *);
    498 	void	(*sipv_read_macaddr)(struct sip_softc *,
    499 		    const struct pci_attach_args *, u_int8_t *);
    500 };
    501 
    502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
    503 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
    504 
    505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
    506 	SIP_DECL(mii_bitbang_read),
    507 	SIP_DECL(mii_bitbang_write),
    508 	{
    509 		EROMAR_MDIO,		/* MII_BIT_MDO */
    510 		EROMAR_MDIO,		/* MII_BIT_MDI */
    511 		EROMAR_MDC,		/* MII_BIT_MDC */
    512 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    513 		0,			/* MII_BIT_DIR_PHY_HOST */
    514 	}
    515 };
    516 
    517 #if defined(DP83820)
    518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
    519 	SIP_DECL(dp83820_mii_readreg),
    520 	SIP_DECL(dp83820_mii_writereg),
    521 	SIP_DECL(dp83820_mii_statchg),
    522 	SIP_DECL(dp83815_set_filter),
    523 	SIP_DECL(dp83820_read_macaddr),
    524 };
    525 #else
    526 static const struct sip_variant SIP_DECL(variant_sis900) = {
    527 	SIP_DECL(sis900_mii_readreg),
    528 	SIP_DECL(sis900_mii_writereg),
    529 	SIP_DECL(sis900_mii_statchg),
    530 	SIP_DECL(sis900_set_filter),
    531 	SIP_DECL(sis900_read_macaddr),
    532 };
    533 
    534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
    535 	SIP_DECL(dp83815_mii_readreg),
    536 	SIP_DECL(dp83815_mii_writereg),
    537 	SIP_DECL(dp83815_mii_statchg),
    538 	SIP_DECL(dp83815_set_filter),
    539 	SIP_DECL(dp83815_read_macaddr),
    540 };
    541 #endif /* DP83820 */
    542 
    543 /*
    544  * Devices supported by this driver.
    545  */
    546 static const struct sip_product {
    547 	pci_vendor_id_t		sip_vendor;
    548 	pci_product_id_t	sip_product;
    549 	const char		*sip_name;
    550 	const struct sip_variant *sip_variant;
    551 } SIP_DECL(products)[] = {
    552 #if defined(DP83820)
    553 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    554 	  "NatSemi DP83820 Gigabit Ethernet",
    555 	  &SIP_DECL(variant_dp83820) },
    556 #else
    557 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    558 	  "SiS 900 10/100 Ethernet",
    559 	  &SIP_DECL(variant_sis900) },
    560 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    561 	  "SiS 7016 10/100 Ethernet",
    562 	  &SIP_DECL(variant_sis900) },
    563 
    564 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    565 	  "NatSemi DP83815 10/100 Ethernet",
    566 	  &SIP_DECL(variant_dp83815) },
    567 #endif /* DP83820 */
    568 
    569 	{ 0,			0,
    570 	  NULL,
    571 	  NULL },
    572 };
    573 
    574 static const struct sip_product *
    575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    576 {
    577 	const struct sip_product *sip;
    578 
    579 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    580 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    581 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    582 			return (sip);
    583 	}
    584 	return (NULL);
    585 }
    586 
    587 #ifdef DP83820
    588 /*
    589  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    590  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    591  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    592  * which means we try to use 64-bit data transfers on those cards if we
    593  * happen to be plugged into a 32-bit slot.
    594  *
    595  * What we do is use this table of cards known to be 64-bit cards.  If
    596  * you have a 64-bit card who's subsystem ID is not listed in this table,
    597  * send the output of "pcictl dump ..." of the device to me so that your
    598  * card will use the 64-bit data path when plugged into a 64-bit slot.
    599  *
    600  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    601  *	   June 30, 2002
    602  */
    603 static int
    604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    605 {
    606 	static const struct {
    607 		pci_vendor_id_t c64_vendor;
    608 		pci_product_id_t c64_product;
    609 	} card64[] = {
    610 		/* Asante GigaNIX */
    611 		{ 0x128a,	0x0002 },
    612 
    613 		/* Accton EN1407-T, Planex GN-1000TE */
    614 		{ 0x1113,	0x1407 },
    615 
    616 		/* Netgear GA-621 */
    617 		{ 0x1385,	0x621a },
    618 
    619 		/* SMC EZ Card */
    620 		{ 0x10b8,	0x9462 },
    621 
    622 		{ 0, 0}
    623 	};
    624 	pcireg_t subsys;
    625 	int i;
    626 
    627 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    628 
    629 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    630 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    631 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    632 			return (1);
    633 	}
    634 
    635 	return (0);
    636 }
    637 #endif /* DP83820 */
    638 
    639 static int
    640 SIP_DECL(match)(struct device *parent, struct cfdata *cf,
    641     void *aux)
    642 {
    643 	struct pci_attach_args *pa = aux;
    644 
    645 	if (SIP_DECL(lookup)(pa) != NULL)
    646 		return (1);
    647 
    648 	return (0);
    649 }
    650 
    651 static void
    652 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    653 {
    654 	struct sip_softc *sc = (struct sip_softc *) self;
    655 	struct pci_attach_args *pa = aux;
    656 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    657 	pci_chipset_tag_t pc = pa->pa_pc;
    658 	pci_intr_handle_t ih;
    659 	const char *intrstr = NULL;
    660 	bus_space_tag_t iot, memt;
    661 	bus_space_handle_t ioh, memh;
    662 	bus_dma_segment_t seg;
    663 	int ioh_valid, memh_valid;
    664 	int i, rseg, error;
    665 	const struct sip_product *sip;
    666 	u_int8_t enaddr[ETHER_ADDR_LEN];
    667 	pcireg_t pmreg;
    668 #ifdef DP83820
    669 	pcireg_t memtype;
    670 	u_int32_t reg;
    671 #endif /* DP83820 */
    672 
    673 	callout_init(&sc->sc_tick_ch);
    674 
    675 	sip = SIP_DECL(lookup)(pa);
    676 	if (sip == NULL) {
    677 		printf("\n");
    678 		panic(SIP_STR(attach) ": impossible");
    679 	}
    680 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    681 
    682 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    683 
    684 	sc->sc_model = sip;
    685 
    686 	/*
    687 	 * XXX Work-around broken PXE firmware on some boards.
    688 	 *
    689 	 * The DP83815 shares an address decoder with the MEM BAR
    690 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    691 	 * so that memory mapped access works.
    692 	 */
    693 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    694 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    695 	    ~PCI_MAPREG_ROM_ENABLE);
    696 
    697 	/*
    698 	 * Map the device.
    699 	 */
    700 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    701 	    PCI_MAPREG_TYPE_IO, 0,
    702 	    &iot, &ioh, NULL, NULL) == 0);
    703 #ifdef DP83820
    704 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    705 	switch (memtype) {
    706 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    707 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    708 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    709 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    710 		break;
    711 	default:
    712 		memh_valid = 0;
    713 	}
    714 #else
    715 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    716 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    717 	    &memt, &memh, NULL, NULL) == 0);
    718 #endif /* DP83820 */
    719 
    720 	if (memh_valid) {
    721 		sc->sc_st = memt;
    722 		sc->sc_sh = memh;
    723 	} else if (ioh_valid) {
    724 		sc->sc_st = iot;
    725 		sc->sc_sh = ioh;
    726 	} else {
    727 		printf("%s: unable to map device registers\n",
    728 		    sc->sc_dev.dv_xname);
    729 		return;
    730 	}
    731 
    732 	sc->sc_dmat = pa->pa_dmat;
    733 
    734 	/*
    735 	 * Make sure bus mastering is enabled.  Also make sure
    736 	 * Write/Invalidate is enabled if we're allowed to use it.
    737 	 */
    738 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    739 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    740 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    741 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    742 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    743 
    744 	/* power up chip */
    745 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    746 	    NULL)) && error != EOPNOTSUPP) {
    747 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    748 		    error);
    749 		return;
    750 	}
    751 
    752 	/*
    753 	 * Map and establish our interrupt.
    754 	 */
    755 	if (pci_intr_map(pa, &ih)) {
    756 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    757 		return;
    758 	}
    759 	intrstr = pci_intr_string(pc, ih);
    760 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    761 	if (sc->sc_ih == NULL) {
    762 		printf("%s: unable to establish interrupt",
    763 		    sc->sc_dev.dv_xname);
    764 		if (intrstr != NULL)
    765 			printf(" at %s", intrstr);
    766 		printf("\n");
    767 		return;
    768 	}
    769 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    770 
    771 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    772 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    773 
    774 	/*
    775 	 * Allocate the control data structures, and create and load the
    776 	 * DMA map for it.
    777 	 */
    778 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    779 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    780 	    0)) != 0) {
    781 		printf("%s: unable to allocate control data, error = %d\n",
    782 		    sc->sc_dev.dv_xname, error);
    783 		goto fail_0;
    784 	}
    785 
    786 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    787 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
    788 	    BUS_DMA_COHERENT)) != 0) {
    789 		printf("%s: unable to map control data, error = %d\n",
    790 		    sc->sc_dev.dv_xname, error);
    791 		goto fail_1;
    792 	}
    793 
    794 	if ((error = bus_dmamap_create(sc->sc_dmat,
    795 	    sizeof(struct sip_control_data), 1,
    796 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    797 		printf("%s: unable to create control data DMA map, "
    798 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    799 		goto fail_2;
    800 	}
    801 
    802 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    803 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    804 	    0)) != 0) {
    805 		printf("%s: unable to load control data DMA map, error = %d\n",
    806 		    sc->sc_dev.dv_xname, error);
    807 		goto fail_3;
    808 	}
    809 
    810 	/*
    811 	 * Create the transmit buffer DMA maps.
    812 	 */
    813 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    814 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    815 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    816 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    817 			printf("%s: unable to create tx DMA map %d, "
    818 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    819 			goto fail_4;
    820 		}
    821 	}
    822 
    823 	/*
    824 	 * Create the receive buffer DMA maps.
    825 	 */
    826 	for (i = 0; i < SIP_NRXDESC; i++) {
    827 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    828 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    829 			printf("%s: unable to create rx DMA map %d, "
    830 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    831 			goto fail_5;
    832 		}
    833 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    834 	}
    835 
    836 	/*
    837 	 * Reset the chip to a known state.
    838 	 */
    839 	SIP_DECL(reset)(sc);
    840 
    841 	/*
    842 	 * Read the Ethernet address from the EEPROM.  This might
    843 	 * also fetch other stuff from the EEPROM and stash it
    844 	 * in the softc.
    845 	 */
    846 	sc->sc_cfg = 0;
    847 #if !defined(DP83820)
    848 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    849 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    850 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    851 
    852 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    853 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
    854 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    855 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
    856 						SIP_CFG) & CFG_EDBMASTEN);
    857 #endif
    858 
    859 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    860 
    861 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    862 	    ether_sprintf(enaddr));
    863 
    864 	/*
    865 	 * Initialize the configuration register: aggressive PCI
    866 	 * bus request algorithm, default backoff, default OW timer,
    867 	 * default parity error detection.
    868 	 *
    869 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    870 	 * friends -- it affects packet data, not descriptors.
    871 	 */
    872 #ifdef DP83820
    873 	/*
    874 	 * Cause the chip to load configuration data from the EEPROM.
    875 	 */
    876 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    877 	for (i = 0; i < 10000; i++) {
    878 		delay(10);
    879 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    880 		    PTSCR_EELOAD_EN) == 0)
    881 			break;
    882 	}
    883 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    884 	    PTSCR_EELOAD_EN) {
    885 		printf("%s: timeout loading configuration from EEPROM\n",
    886 		    sc->sc_dev.dv_xname);
    887 		return;
    888 	}
    889 
    890 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    891 
    892 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    893 	if (reg & CFG_PCI64_DET) {
    894 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    895 		/*
    896 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    897 		 * data transfers.
    898 		 *
    899 		 * We can't use the DATA64_EN bit in the EEPROM, because
    900 		 * vendors of 32-bit cards fail to clear that bit in many
    901 		 * cases (yet the card still detects that it's in a 64-bit
    902 		 * slot; go figure).
    903 		 */
    904 		if (SIP_DECL(check_64bit)(pa)) {
    905 			sc->sc_cfg |= CFG_DATA64_EN;
    906 			printf(", using 64-bit data transfers");
    907 		}
    908 		printf("\n");
    909 	}
    910 
    911 	/*
    912 	 * XXX Need some PCI flags indicating support for
    913 	 * XXX 64-bit addressing.
    914 	 */
    915 #if 0
    916 	if (reg & CFG_M64ADDR)
    917 		sc->sc_cfg |= CFG_M64ADDR;
    918 	if (reg & CFG_T64ADDR)
    919 		sc->sc_cfg |= CFG_T64ADDR;
    920 #endif
    921 
    922 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    923 		const char *sep = "";
    924 		printf("%s: using ", sc->sc_dev.dv_xname);
    925 		if (reg & CFG_EXT_125) {
    926 			sc->sc_cfg |= CFG_EXT_125;
    927 			printf("%s125MHz clock", sep);
    928 			sep = ", ";
    929 		}
    930 		if (reg & CFG_TBI_EN) {
    931 			sc->sc_cfg |= CFG_TBI_EN;
    932 			printf("%sten-bit interface", sep);
    933 			sep = ", ";
    934 		}
    935 		printf("\n");
    936 	}
    937 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    938 	    (reg & CFG_MRM_DIS) != 0)
    939 		sc->sc_cfg |= CFG_MRM_DIS;
    940 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    941 	    (reg & CFG_MWI_DIS) != 0)
    942 		sc->sc_cfg |= CFG_MWI_DIS;
    943 
    944 	/*
    945 	 * Use the extended descriptor format on the DP83820.  This
    946 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    947 	 * checksumming.
    948 	 */
    949 	sc->sc_cfg |= CFG_EXTSTS_EN;
    950 #endif /* DP83820 */
    951 
    952 	/*
    953 	 * Initialize our media structures and probe the MII.
    954 	 */
    955 	sc->sc_mii.mii_ifp = ifp;
    956 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    957 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    958 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    959 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    960 	    SIP_DECL(mediastatus));
    961 
    962 	/*
    963 	 * XXX We cannot handle flow control on the DP83815.
    964 	 */
    965 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
    966 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    967 			   MII_OFFSET_ANY, 0);
    968 	else
    969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    970 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
    971 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    972 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    973 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    974 	} else
    975 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    976 
    977 	ifp = &sc->sc_ethercom.ec_if;
    978 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    979 	ifp->if_softc = sc;
    980 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    981 	sc->sc_if_flags = ifp->if_flags;
    982 	ifp->if_ioctl = SIP_DECL(ioctl);
    983 	ifp->if_start = SIP_DECL(start);
    984 	ifp->if_watchdog = SIP_DECL(watchdog);
    985 	ifp->if_init = SIP_DECL(init);
    986 	ifp->if_stop = SIP_DECL(stop);
    987 	IFQ_SET_READY(&ifp->if_snd);
    988 
    989 	/*
    990 	 * We can support 802.1Q VLAN-sized frames.
    991 	 */
    992 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    993 
    994 #ifdef DP83820
    995 	/*
    996 	 * And the DP83820 can do VLAN tagging in hardware, and
    997 	 * support the jumbo Ethernet MTU.
    998 	 */
    999 	sc->sc_ethercom.ec_capabilities |=
   1000 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1001 
   1002 	/*
   1003 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1004 	 * in hardware.
   1005 	 */
   1006 	ifp->if_capabilities |=
   1007 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1008 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1009 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1010 #endif /* DP83820 */
   1011 
   1012 	/*
   1013 	 * Attach the interface.
   1014 	 */
   1015 	if_attach(ifp);
   1016 	ether_ifattach(ifp, enaddr);
   1017 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1018 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1019 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1020 #if NRND > 0
   1021 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1022 	    RND_TYPE_NET, 0);
   1023 #endif
   1024 
   1025 	/*
   1026 	 * The number of bytes that must be available in
   1027 	 * the Tx FIFO before the bus master can DMA more
   1028 	 * data into the FIFO.
   1029 	 */
   1030 	sc->sc_tx_fill_thresh = 64 / 32;
   1031 
   1032 	/*
   1033 	 * Start at a drain threshold of 512 bytes.  We will
   1034 	 * increase it if a DMA underrun occurs.
   1035 	 *
   1036 	 * XXX The minimum value of this variable should be
   1037 	 * tuned.  We may be able to improve performance
   1038 	 * by starting with a lower value.  That, however,
   1039 	 * may trash the first few outgoing packets if the
   1040 	 * PCI bus is saturated.
   1041 	 */
   1042 #ifdef DP83820
   1043 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
   1044 #else
   1045 	sc->sc_tx_drain_thresh = 1504 / 32;
   1046 #endif
   1047 
   1048 	/*
   1049 	 * Initialize the Rx FIFO drain threshold.
   1050 	 *
   1051 	 * This is in units of 8 bytes.
   1052 	 *
   1053 	 * We should never set this value lower than 2; 14 bytes are
   1054 	 * required to filter the packet.
   1055 	 */
   1056 	sc->sc_rx_drain_thresh = 128 / 8;
   1057 
   1058 #ifdef SIP_EVENT_COUNTERS
   1059 	/*
   1060 	 * Attach event counters.
   1061 	 */
   1062 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1063 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1064 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1065 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1066 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1067 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1068 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1069 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1070 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1071 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1072 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1073 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1074 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1075 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1076 #ifndef DP83820
   1077 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1078 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1079 #endif /* !DP83820 */
   1080 #ifdef DP83820
   1081 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1082 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1083 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1084 	    NULL, sc->sc_dev.dv_xname, "txpause");
   1085 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1086 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1087 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1088 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1089 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1090 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1091 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1092 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1093 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1094 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1095 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1096 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1097 #endif /* DP83820 */
   1098 #endif /* SIP_EVENT_COUNTERS */
   1099 
   1100 	/*
   1101 	 * Make sure the interface is shutdown during reboot.
   1102 	 */
   1103 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1104 	if (sc->sc_sdhook == NULL)
   1105 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1106 		    sc->sc_dev.dv_xname);
   1107 	return;
   1108 
   1109 	/*
   1110 	 * Free any resources we've allocated during the failed attach
   1111 	 * attempt.  Do this in reverse order and fall through.
   1112 	 */
   1113  fail_5:
   1114 	for (i = 0; i < SIP_NRXDESC; i++) {
   1115 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1116 			bus_dmamap_destroy(sc->sc_dmat,
   1117 			    sc->sc_rxsoft[i].rxs_dmamap);
   1118 	}
   1119  fail_4:
   1120 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1121 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1122 			bus_dmamap_destroy(sc->sc_dmat,
   1123 			    sc->sc_txsoft[i].txs_dmamap);
   1124 	}
   1125 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1126  fail_3:
   1127 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1128  fail_2:
   1129 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1130 	    sizeof(struct sip_control_data));
   1131  fail_1:
   1132 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1133  fail_0:
   1134 	return;
   1135 }
   1136 
   1137 /*
   1138  * sip_shutdown:
   1139  *
   1140  *	Make sure the interface is stopped at reboot time.
   1141  */
   1142 static void
   1143 SIP_DECL(shutdown)(void *arg)
   1144 {
   1145 	struct sip_softc *sc = arg;
   1146 
   1147 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1148 }
   1149 
   1150 /*
   1151  * sip_start:		[ifnet interface function]
   1152  *
   1153  *	Start packet transmission on the interface.
   1154  */
   1155 static void
   1156 SIP_DECL(start)(struct ifnet *ifp)
   1157 {
   1158 	struct sip_softc *sc = ifp->if_softc;
   1159 	struct mbuf *m0;
   1160 #ifndef DP83820
   1161 	struct mbuf *m;
   1162 #endif
   1163 	struct sip_txsoft *txs;
   1164 	bus_dmamap_t dmamap;
   1165 	int error, nexttx, lasttx, seg;
   1166 	int ofree = sc->sc_txfree;
   1167 #if 0
   1168 	int firsttx = sc->sc_txnext;
   1169 #endif
   1170 #ifdef DP83820
   1171 	struct m_tag *mtag;
   1172 	u_int32_t extsts;
   1173 #endif
   1174 
   1175 #ifndef DP83820
   1176 	/*
   1177 	 * If we've been told to pause, don't transmit any more packets.
   1178 	 */
   1179 	if (sc->sc_paused)
   1180 		ifp->if_flags |= IFF_OACTIVE;
   1181 #endif
   1182 
   1183 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1184 		return;
   1185 
   1186 	/*
   1187 	 * Loop through the send queue, setting up transmit descriptors
   1188 	 * until we drain the queue, or use up all available transmit
   1189 	 * descriptors.
   1190 	 */
   1191 	for (;;) {
   1192 		/* Get a work queue entry. */
   1193 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1194 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1195 			break;
   1196 		}
   1197 
   1198 		/*
   1199 		 * Grab a packet off the queue.
   1200 		 */
   1201 		IFQ_POLL(&ifp->if_snd, m0);
   1202 		if (m0 == NULL)
   1203 			break;
   1204 #ifndef DP83820
   1205 		m = NULL;
   1206 #endif
   1207 
   1208 		dmamap = txs->txs_dmamap;
   1209 
   1210 #ifdef DP83820
   1211 		/*
   1212 		 * Load the DMA map.  If this fails, the packet either
   1213 		 * didn't fit in the allotted number of segments, or we
   1214 		 * were short on resources.  For the too-many-segments
   1215 		 * case, we simply report an error and drop the packet,
   1216 		 * since we can't sanely copy a jumbo packet to a single
   1217 		 * buffer.
   1218 		 */
   1219 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1220 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1221 		if (error) {
   1222 			if (error == EFBIG) {
   1223 				printf("%s: Tx packet consumes too many "
   1224 				    "DMA segments, dropping...\n",
   1225 				    sc->sc_dev.dv_xname);
   1226 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1227 				m_freem(m0);
   1228 				continue;
   1229 			}
   1230 			/*
   1231 			 * Short on resources, just stop for now.
   1232 			 */
   1233 			break;
   1234 		}
   1235 #else /* DP83820 */
   1236 		/*
   1237 		 * Load the DMA map.  If this fails, the packet either
   1238 		 * didn't fit in the alloted number of segments, or we
   1239 		 * were short on resources.  In this case, we'll copy
   1240 		 * and try again.
   1241 		 */
   1242 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1243 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1244 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1245 			if (m == NULL) {
   1246 				printf("%s: unable to allocate Tx mbuf\n",
   1247 				    sc->sc_dev.dv_xname);
   1248 				break;
   1249 			}
   1250 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1251 			if (m0->m_pkthdr.len > MHLEN) {
   1252 				MCLGET(m, M_DONTWAIT);
   1253 				if ((m->m_flags & M_EXT) == 0) {
   1254 					printf("%s: unable to allocate Tx "
   1255 					    "cluster\n", sc->sc_dev.dv_xname);
   1256 					m_freem(m);
   1257 					break;
   1258 				}
   1259 			}
   1260 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1261 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1262 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1263 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1264 			if (error) {
   1265 				printf("%s: unable to load Tx buffer, "
   1266 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1267 				break;
   1268 			}
   1269 		}
   1270 #endif /* DP83820 */
   1271 
   1272 		/*
   1273 		 * Ensure we have enough descriptors free to describe
   1274 		 * the packet.  Note, we always reserve one descriptor
   1275 		 * at the end of the ring as a termination point, to
   1276 		 * prevent wrap-around.
   1277 		 */
   1278 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1279 			/*
   1280 			 * Not enough free descriptors to transmit this
   1281 			 * packet.  We haven't committed anything yet,
   1282 			 * so just unload the DMA map, put the packet
   1283 			 * back on the queue, and punt.  Notify the upper
   1284 			 * layer that there are not more slots left.
   1285 			 *
   1286 			 * XXX We could allocate an mbuf and copy, but
   1287 			 * XXX is it worth it?
   1288 			 */
   1289 			ifp->if_flags |= IFF_OACTIVE;
   1290 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1291 #ifndef DP83820
   1292 			if (m != NULL)
   1293 				m_freem(m);
   1294 #endif
   1295 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1296 			break;
   1297 		}
   1298 
   1299 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1300 #ifndef DP83820
   1301 		if (m != NULL) {
   1302 			m_freem(m0);
   1303 			m0 = m;
   1304 		}
   1305 #endif
   1306 
   1307 		/*
   1308 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1309 		 */
   1310 
   1311 		/* Sync the DMA map. */
   1312 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1313 		    BUS_DMASYNC_PREWRITE);
   1314 
   1315 		/*
   1316 		 * Initialize the transmit descriptors.
   1317 		 */
   1318 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1319 		     seg < dmamap->dm_nsegs;
   1320 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1321 			/*
   1322 			 * If this is the first descriptor we're
   1323 			 * enqueueing, don't set the OWN bit just
   1324 			 * yet.  That could cause a race condition.
   1325 			 * We'll do it below.
   1326 			 */
   1327 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1328 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1329 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1330 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1331 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1332 #ifdef DP83820
   1333 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1334 #endif /* DP83820 */
   1335 			lasttx = nexttx;
   1336 		}
   1337 
   1338 		/* Clear the MORE bit on the last segment. */
   1339 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1340 
   1341 		/*
   1342 		 * If we're in the interrupt delay window, delay the
   1343 		 * interrupt.
   1344 		 */
   1345 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1346 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1347 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1348 			    htole32(CMDSTS_INTR);
   1349 			sc->sc_txwin = 0;
   1350 		}
   1351 
   1352 #ifdef DP83820
   1353 		/*
   1354 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1355 		 * up the descriptor to encapsulate the packet for us.
   1356 		 *
   1357 		 * This apparently has to be on the last descriptor of
   1358 		 * the packet.
   1359 		 */
   1360 
   1361 		/*
   1362 		 * Byte swapping is tricky. We need to provide the tag
   1363 		 * in a network byte order. On a big-endian machine,
   1364 		 * the byteorder is correct, but we need to swap it
   1365 		 * anyway, because this will be undone by the outside
   1366 		 * htole32(). That's why there must be an
   1367 		 * unconditional swap instead of htons() inside.
   1368 		 */
   1369 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1370 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1371 			    htole32(EXTSTS_VPKT |
   1372 					(bswap16(VLAN_TAG_VALUE(mtag)) &
   1373 					 EXTSTS_VTCI));
   1374 		}
   1375 
   1376 		/*
   1377 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1378 		 * checksumming, set up the descriptor to do this work
   1379 		 * for us.
   1380 		 *
   1381 		 * This apparently has to be on the first descriptor of
   1382 		 * the packet.
   1383 		 *
   1384 		 * Byte-swap constants so the compiler can optimize.
   1385 		 */
   1386 		extsts = 0;
   1387 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1388 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1389 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1390 			extsts |= htole32(EXTSTS_IPPKT);
   1391 		}
   1392 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1393 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1394 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1395 			extsts |= htole32(EXTSTS_TCPPKT);
   1396 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1397 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1398 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1399 			extsts |= htole32(EXTSTS_UDPPKT);
   1400 		}
   1401 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1402 #endif /* DP83820 */
   1403 
   1404 		/* Sync the descriptors we're using. */
   1405 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1406 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1407 
   1408 		/*
   1409 		 * The entire packet is set up.  Give the first descrptor
   1410 		 * to the chip now.
   1411 		 */
   1412 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1413 		    htole32(CMDSTS_OWN);
   1414 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1415 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1416 
   1417 		/*
   1418 		 * Store a pointer to the packet so we can free it later,
   1419 		 * and remember what txdirty will be once the packet is
   1420 		 * done.
   1421 		 */
   1422 		txs->txs_mbuf = m0;
   1423 		txs->txs_firstdesc = sc->sc_txnext;
   1424 		txs->txs_lastdesc = lasttx;
   1425 
   1426 		/* Advance the tx pointer. */
   1427 		sc->sc_txfree -= dmamap->dm_nsegs;
   1428 		sc->sc_txnext = nexttx;
   1429 
   1430 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1431 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1432 
   1433 #if NBPFILTER > 0
   1434 		/*
   1435 		 * Pass the packet to any BPF listeners.
   1436 		 */
   1437 		if (ifp->if_bpf)
   1438 			bpf_mtap(ifp->if_bpf, m0);
   1439 #endif /* NBPFILTER > 0 */
   1440 	}
   1441 
   1442 	if (txs == NULL || sc->sc_txfree == 0) {
   1443 		/* No more slots left; notify upper layer. */
   1444 		ifp->if_flags |= IFF_OACTIVE;
   1445 	}
   1446 
   1447 	if (sc->sc_txfree != ofree) {
   1448 		/*
   1449 		 * Start the transmit process.  Note, the manual says
   1450 		 * that if there are no pending transmissions in the
   1451 		 * chip's internal queue (indicated by TXE being clear),
   1452 		 * then the driver software must set the TXDP to the
   1453 		 * first descriptor to be transmitted.  However, if we
   1454 		 * do this, it causes serious performance degredation on
   1455 		 * the DP83820 under load, not setting TXDP doesn't seem
   1456 		 * to adversely affect the SiS 900 or DP83815.
   1457 		 *
   1458 		 * Well, I guess it wouldn't be the first time a manual
   1459 		 * has lied -- and they could be speaking of the NULL-
   1460 		 * terminated descriptor list case, rather than OWN-
   1461 		 * terminated rings.
   1462 		 */
   1463 #if 0
   1464 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1465 		     CR_TXE) == 0) {
   1466 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1467 			    SIP_CDTXADDR(sc, firsttx));
   1468 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1469 		}
   1470 #else
   1471 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1472 #endif
   1473 
   1474 		/* Set a watchdog timer in case the chip flakes out. */
   1475 #ifdef DP83820
   1476 		/* Gigabit autonegotiation takes 5 seconds. */
   1477 		ifp->if_timer = 10;
   1478 #else
   1479 		ifp->if_timer = 5;
   1480 #endif
   1481 	}
   1482 }
   1483 
   1484 /*
   1485  * sip_watchdog:	[ifnet interface function]
   1486  *
   1487  *	Watchdog timer handler.
   1488  */
   1489 static void
   1490 SIP_DECL(watchdog)(struct ifnet *ifp)
   1491 {
   1492 	struct sip_softc *sc = ifp->if_softc;
   1493 
   1494 	/*
   1495 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1496 	 * If we get a timeout, try and sweep up transmit descriptors.
   1497 	 * If we manage to sweep them all up, ignore the lack of
   1498 	 * interrupt.
   1499 	 */
   1500 	SIP_DECL(txintr)(sc);
   1501 
   1502 	if (sc->sc_txfree != SIP_NTXDESC) {
   1503 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1504 		ifp->if_oerrors++;
   1505 
   1506 		/* Reset the interface. */
   1507 		(void) SIP_DECL(init)(ifp);
   1508 	} else if (ifp->if_flags & IFF_DEBUG)
   1509 		printf("%s: recovered from device timeout\n",
   1510 		    sc->sc_dev.dv_xname);
   1511 
   1512 	/* Try to get more packets going. */
   1513 	SIP_DECL(start)(ifp);
   1514 }
   1515 
   1516 /*
   1517  * sip_ioctl:		[ifnet interface function]
   1518  *
   1519  *	Handle control requests from the operator.
   1520  */
   1521 static int
   1522 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, void *data)
   1523 {
   1524 	struct sip_softc *sc = ifp->if_softc;
   1525 	struct ifreq *ifr = (struct ifreq *)data;
   1526 	int s, error;
   1527 
   1528 	s = splnet();
   1529 
   1530 	switch (cmd) {
   1531 	case SIOCSIFMEDIA:
   1532 		/* Flow control requires full-duplex mode. */
   1533 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1534 		    (ifr->ifr_media & IFM_FDX) == 0)
   1535 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1536 #ifdef DP83820
   1537 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1538 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1539 				/* We can do both TXPAUSE and RXPAUSE. */
   1540 				ifr->ifr_media |=
   1541 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1542 			}
   1543 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1544 		}
   1545 #else
   1546 		/* XXX */
   1547 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1548 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1549 
   1550 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1551 			if (ifr->ifr_media & IFM_FLOW) {
   1552 				/*
   1553 				 * Both TXPAUSE and RXPAUSE must be set.
   1554 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1555 				 * feature.)
   1556 				 *
   1557 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1558 				 */
   1559 				ifr->ifr_media |=
   1560 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1561 			}
   1562 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1563 		}
   1564 #endif
   1565 		/* FALLTHROUGH */
   1566 	case SIOCGIFMEDIA:
   1567 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1568 		break;
   1569 	case SIOCSIFFLAGS:
   1570 		/* If the interface is up and running, only modify the receive
   1571 		 * filter when setting promiscuous or debug mode.  Otherwise
   1572 		 * fall through to ether_ioctl, which will reset the chip.
   1573 		 */
   1574 
   1575 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1576 			 == (sc)->sc_ethercom.ec_capenable)		\
   1577 			&& ((sc)->sc_prev.is_vlan ==			\
   1578 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1579 
   1580 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1581 
   1582 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1583 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1584 		    == (IFF_UP|IFF_RUNNING))
   1585 		    && ((ifp->if_flags & (~RESETIGN))
   1586 		    == (sc->sc_if_flags & (~RESETIGN)))
   1587 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1588 			/* Set up the receive filter. */
   1589 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1590 			error = 0;
   1591 			break;
   1592 #undef RESETIGN
   1593 		}
   1594 		/* FALLTHROUGH */
   1595 	default:
   1596 		error = ether_ioctl(ifp, cmd, data);
   1597 		if (error == ENETRESET) {
   1598 			/*
   1599 			 * Multicast list has changed; set the hardware filter
   1600 			 * accordingly.
   1601 			 */
   1602 			if (ifp->if_flags & IFF_RUNNING)
   1603 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1604 			error = 0;
   1605 		}
   1606 		break;
   1607 	}
   1608 
   1609 	/* Try to get more packets going. */
   1610 	SIP_DECL(start)(ifp);
   1611 
   1612 	sc->sc_if_flags = ifp->if_flags;
   1613 	splx(s);
   1614 	return (error);
   1615 }
   1616 
   1617 /*
   1618  * sip_intr:
   1619  *
   1620  *	Interrupt service routine.
   1621  */
   1622 static int
   1623 SIP_DECL(intr)(void *arg)
   1624 {
   1625 	struct sip_softc *sc = arg;
   1626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1627 	u_int32_t isr;
   1628 	int handled = 0;
   1629 
   1630 	/* Disable interrupts. */
   1631 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1632 
   1633 	for (;;) {
   1634 		/* Reading clears interrupt. */
   1635 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1636 		if ((isr & sc->sc_imr) == 0)
   1637 			break;
   1638 
   1639 #if NRND > 0
   1640 		if (RND_ENABLED(&sc->rnd_source))
   1641 			rnd_add_uint32(&sc->rnd_source, isr);
   1642 #endif
   1643 
   1644 		handled = 1;
   1645 
   1646 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1647 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1648 
   1649 			/* Grab any new packets. */
   1650 			SIP_DECL(rxintr)(sc);
   1651 
   1652 			if (isr & ISR_RXORN) {
   1653 				printf("%s: receive FIFO overrun\n",
   1654 				    sc->sc_dev.dv_xname);
   1655 
   1656 				/* XXX adjust rx_drain_thresh? */
   1657 			}
   1658 
   1659 			if (isr & ISR_RXIDLE) {
   1660 				printf("%s: receive ring overrun\n",
   1661 				    sc->sc_dev.dv_xname);
   1662 
   1663 				/* Get the receive process going again. */
   1664 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1665 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1666 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1667 				    SIP_CR, CR_RXE);
   1668 			}
   1669 		}
   1670 
   1671 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1672 #ifdef SIP_EVENT_COUNTERS
   1673 			if (isr & ISR_TXDESC)
   1674 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1675 			else if (isr & ISR_TXIDLE)
   1676 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1677 #endif
   1678 
   1679 			/* Sweep up transmit descriptors. */
   1680 			SIP_DECL(txintr)(sc);
   1681 
   1682 			if (isr & ISR_TXURN) {
   1683 				u_int32_t thresh;
   1684 
   1685 				printf("%s: transmit FIFO underrun",
   1686 				    sc->sc_dev.dv_xname);
   1687 
   1688 				thresh = sc->sc_tx_drain_thresh + 1;
   1689 				if (thresh <= TXCFG_DRTH &&
   1690 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1691 				     (sc->sc_tx_fill_thresh * 32))) {
   1692 					printf("; increasing Tx drain "
   1693 					    "threshold to %u bytes\n",
   1694 					    thresh * 32);
   1695 					sc->sc_tx_drain_thresh = thresh;
   1696 					(void) SIP_DECL(init)(ifp);
   1697 				} else {
   1698 					(void) SIP_DECL(init)(ifp);
   1699 					printf("\n");
   1700 				}
   1701 			}
   1702 		}
   1703 
   1704 #if !defined(DP83820)
   1705 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1706 			if (isr & ISR_PAUSE_ST) {
   1707 				sc->sc_paused = 1;
   1708 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1709 				ifp->if_flags |= IFF_OACTIVE;
   1710 			}
   1711 			if (isr & ISR_PAUSE_END) {
   1712 				sc->sc_paused = 0;
   1713 				ifp->if_flags &= ~IFF_OACTIVE;
   1714 			}
   1715 		}
   1716 #endif /* ! DP83820 */
   1717 
   1718 		if (isr & ISR_HIBERR) {
   1719 			int want_init = 0;
   1720 
   1721 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1722 
   1723 #define	PRINTERR(bit, str)						\
   1724 			do {						\
   1725 				if ((isr & (bit)) != 0) {		\
   1726 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1727 						printf("%s: %s\n",	\
   1728 						    sc->sc_dev.dv_xname, str); \
   1729 					want_init = 1;			\
   1730 				}					\
   1731 			} while (/*CONSTCOND*/0)
   1732 
   1733 			PRINTERR(ISR_DPERR, "parity error");
   1734 			PRINTERR(ISR_SSERR, "system error");
   1735 			PRINTERR(ISR_RMABT, "master abort");
   1736 			PRINTERR(ISR_RTABT, "target abort");
   1737 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1738 			/*
   1739 			 * Ignore:
   1740 			 *	Tx reset complete
   1741 			 *	Rx reset complete
   1742 			 */
   1743 			if (want_init)
   1744 				(void) SIP_DECL(init)(ifp);
   1745 #undef PRINTERR
   1746 		}
   1747 	}
   1748 
   1749 	/* Re-enable interrupts. */
   1750 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1751 
   1752 	/* Try to get more packets going. */
   1753 	SIP_DECL(start)(ifp);
   1754 
   1755 	return (handled);
   1756 }
   1757 
   1758 /*
   1759  * sip_txintr:
   1760  *
   1761  *	Helper; handle transmit interrupts.
   1762  */
   1763 static void
   1764 SIP_DECL(txintr)(struct sip_softc *sc)
   1765 {
   1766 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1767 	struct sip_txsoft *txs;
   1768 	u_int32_t cmdsts;
   1769 
   1770 #ifndef DP83820
   1771 	if (sc->sc_paused == 0)
   1772 #endif
   1773 		ifp->if_flags &= ~IFF_OACTIVE;
   1774 
   1775 	/*
   1776 	 * Go through our Tx list and free mbufs for those
   1777 	 * frames which have been transmitted.
   1778 	 */
   1779 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1780 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1781 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1782 
   1783 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1784 		if (cmdsts & CMDSTS_OWN)
   1785 			break;
   1786 
   1787 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1788 
   1789 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1790 
   1791 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1792 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1793 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1794 		m_freem(txs->txs_mbuf);
   1795 		txs->txs_mbuf = NULL;
   1796 
   1797 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1798 
   1799 		/*
   1800 		 * Check for errors and collisions.
   1801 		 */
   1802 		if (cmdsts &
   1803 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1804 			ifp->if_oerrors++;
   1805 			if (cmdsts & CMDSTS_Tx_EC)
   1806 				ifp->if_collisions += 16;
   1807 			if (ifp->if_flags & IFF_DEBUG) {
   1808 				if (cmdsts & CMDSTS_Tx_ED)
   1809 					printf("%s: excessive deferral\n",
   1810 					    sc->sc_dev.dv_xname);
   1811 				if (cmdsts & CMDSTS_Tx_EC)
   1812 					printf("%s: excessive collisions\n",
   1813 					    sc->sc_dev.dv_xname);
   1814 			}
   1815 		} else {
   1816 			/* Packet was transmitted successfully. */
   1817 			ifp->if_opackets++;
   1818 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1819 		}
   1820 	}
   1821 
   1822 	/*
   1823 	 * If there are no more pending transmissions, cancel the watchdog
   1824 	 * timer.
   1825 	 */
   1826 	if (txs == NULL) {
   1827 		ifp->if_timer = 0;
   1828 		sc->sc_txwin = 0;
   1829 	}
   1830 }
   1831 
   1832 #if defined(DP83820)
   1833 /*
   1834  * sip_rxintr:
   1835  *
   1836  *	Helper; handle receive interrupts.
   1837  */
   1838 static void
   1839 SIP_DECL(rxintr)(struct sip_softc *sc)
   1840 {
   1841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1842 	struct sip_rxsoft *rxs;
   1843 	struct mbuf *m;
   1844 	u_int32_t cmdsts, extsts;
   1845 	int i, len;
   1846 
   1847 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1848 		rxs = &sc->sc_rxsoft[i];
   1849 
   1850 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1851 
   1852 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1853 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1854 		len = CMDSTS_SIZE(cmdsts);
   1855 
   1856 		/*
   1857 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1858 		 * consumer of the receive ring, so if the bit is clear,
   1859 		 * we have processed all of the packets.
   1860 		 */
   1861 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1862 			/*
   1863 			 * We have processed all of the receive buffers.
   1864 			 */
   1865 			break;
   1866 		}
   1867 
   1868 		if (__predict_false(sc->sc_rxdiscard)) {
   1869 			SIP_INIT_RXDESC(sc, i);
   1870 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1871 				/* Reset our state. */
   1872 				sc->sc_rxdiscard = 0;
   1873 			}
   1874 			continue;
   1875 		}
   1876 
   1877 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1878 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1879 
   1880 		m = rxs->rxs_mbuf;
   1881 
   1882 		/*
   1883 		 * Add a new receive buffer to the ring.
   1884 		 */
   1885 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1886 			/*
   1887 			 * Failed, throw away what we've done so
   1888 			 * far, and discard the rest of the packet.
   1889 			 */
   1890 			ifp->if_ierrors++;
   1891 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1892 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1893 			SIP_INIT_RXDESC(sc, i);
   1894 			if (cmdsts & CMDSTS_MORE)
   1895 				sc->sc_rxdiscard = 1;
   1896 			if (sc->sc_rxhead != NULL)
   1897 				m_freem(sc->sc_rxhead);
   1898 			SIP_RXCHAIN_RESET(sc);
   1899 			continue;
   1900 		}
   1901 
   1902 		SIP_RXCHAIN_LINK(sc, m);
   1903 
   1904 		m->m_len = len;
   1905 
   1906 		/*
   1907 		 * If this is not the end of the packet, keep
   1908 		 * looking.
   1909 		 */
   1910 		if (cmdsts & CMDSTS_MORE) {
   1911 			sc->sc_rxlen += len;
   1912 			continue;
   1913 		}
   1914 
   1915 		/*
   1916 		 * Okay, we have the entire packet now.  The chip includes
   1917 		 * the FCS, so we need to trim it.
   1918 		 */
   1919 		m->m_len -= ETHER_CRC_LEN;
   1920 
   1921 		*sc->sc_rxtailp = NULL;
   1922 		len = m->m_len + sc->sc_rxlen;
   1923 		m = sc->sc_rxhead;
   1924 
   1925 		SIP_RXCHAIN_RESET(sc);
   1926 
   1927 		/*
   1928 		 * If an error occurred, update stats and drop the packet.
   1929 		 */
   1930 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1931 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1932 			ifp->if_ierrors++;
   1933 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1934 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1935 				/* Receive overrun handled elsewhere. */
   1936 				printf("%s: receive descriptor error\n",
   1937 				    sc->sc_dev.dv_xname);
   1938 			}
   1939 #define	PRINTERR(bit, str)						\
   1940 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1941 			    (cmdsts & (bit)) != 0)			\
   1942 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1943 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1944 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1945 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1946 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1947 #undef PRINTERR
   1948 			m_freem(m);
   1949 			continue;
   1950 		}
   1951 
   1952 		/*
   1953 		 * If the packet is small enough to fit in a
   1954 		 * single header mbuf, allocate one and copy
   1955 		 * the data into it.  This greatly reduces
   1956 		 * memory consumption when we receive lots
   1957 		 * of small packets.
   1958 		 */
   1959 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1960 			struct mbuf *nm;
   1961 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1962 			if (nm == NULL) {
   1963 				ifp->if_ierrors++;
   1964 				m_freem(m);
   1965 				continue;
   1966 			}
   1967 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1968 			nm->m_data += 2;
   1969 			nm->m_pkthdr.len = nm->m_len = len;
   1970 			m_copydata(m, 0, len, mtod(nm, void *));
   1971 			m_freem(m);
   1972 			m = nm;
   1973 		}
   1974 #ifndef __NO_STRICT_ALIGNMENT
   1975 		else {
   1976 			/*
   1977 			 * The DP83820's receive buffers must be 4-byte
   1978 			 * aligned.  But this means that the data after
   1979 			 * the Ethernet header is misaligned.  To compensate,
   1980 			 * we have artificially shortened the buffer size
   1981 			 * in the descriptor, and we do an overlapping copy
   1982 			 * of the data two bytes further in (in the first
   1983 			 * buffer of the chain only).
   1984 			 */
   1985 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   1986 			    m->m_len);
   1987 			m->m_data += 2;
   1988 		}
   1989 #endif /* ! __NO_STRICT_ALIGNMENT */
   1990 
   1991 		/*
   1992 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1993 		 * for us.  Associate the tag with the packet.
   1994 		 */
   1995 
   1996 		/*
   1997 		 * Again, byte swapping is tricky. Hardware provided
   1998 		 * the tag in the network byte order, but extsts was
   1999 		 * passed through le32toh() in the meantime. On a
   2000 		 * big-endian machine, we need to swap it again. On a
   2001 		 * little-endian machine, we need to convert from the
   2002 		 * network to host byte order. This means that we must
   2003 		 * swap it in any case, so unconditional swap instead
   2004 		 * of htons() is used.
   2005 		 */
   2006 		if ((extsts & EXTSTS_VPKT) != 0) {
   2007 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2008 			    continue);
   2009 		}
   2010 
   2011 		/*
   2012 		 * Set the incoming checksum information for the
   2013 		 * packet.
   2014 		 */
   2015 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2016 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2017 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2018 			if (extsts & EXTSTS_Rx_IPERR)
   2019 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2020 			if (extsts & EXTSTS_TCPPKT) {
   2021 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2022 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2023 				if (extsts & EXTSTS_Rx_TCPERR)
   2024 					m->m_pkthdr.csum_flags |=
   2025 					    M_CSUM_TCP_UDP_BAD;
   2026 			} else if (extsts & EXTSTS_UDPPKT) {
   2027 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2028 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2029 				if (extsts & EXTSTS_Rx_UDPERR)
   2030 					m->m_pkthdr.csum_flags |=
   2031 					    M_CSUM_TCP_UDP_BAD;
   2032 			}
   2033 		}
   2034 
   2035 		ifp->if_ipackets++;
   2036 		m->m_pkthdr.rcvif = ifp;
   2037 		m->m_pkthdr.len = len;
   2038 
   2039 #if NBPFILTER > 0
   2040 		/*
   2041 		 * Pass this up to any BPF listeners, but only
   2042 		 * pass if up the stack if it's for us.
   2043 		 */
   2044 		if (ifp->if_bpf)
   2045 			bpf_mtap(ifp->if_bpf, m);
   2046 #endif /* NBPFILTER > 0 */
   2047 
   2048 		/* Pass it on. */
   2049 		(*ifp->if_input)(ifp, m);
   2050 	}
   2051 
   2052 	/* Update the receive pointer. */
   2053 	sc->sc_rxptr = i;
   2054 }
   2055 #else /* ! DP83820 */
   2056 /*
   2057  * sip_rxintr:
   2058  *
   2059  *	Helper; handle receive interrupts.
   2060  */
   2061 static void
   2062 SIP_DECL(rxintr)(struct sip_softc *sc)
   2063 {
   2064 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2065 	struct sip_rxsoft *rxs;
   2066 	struct mbuf *m;
   2067 	u_int32_t cmdsts;
   2068 	int i, len;
   2069 
   2070 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   2071 		rxs = &sc->sc_rxsoft[i];
   2072 
   2073 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2074 
   2075 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   2076 
   2077 		/*
   2078 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2079 		 * consumer of the receive ring, so if the bit is clear,
   2080 		 * we have processed all of the packets.
   2081 		 */
   2082 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2083 			/*
   2084 			 * We have processed all of the receive buffers.
   2085 			 */
   2086 			break;
   2087 		}
   2088 
   2089 		/*
   2090 		 * If any collisions were seen on the wire, count one.
   2091 		 */
   2092 		if (cmdsts & CMDSTS_Rx_COL)
   2093 			ifp->if_collisions++;
   2094 
   2095 		/*
   2096 		 * If an error occurred, update stats, clear the status
   2097 		 * word, and leave the packet buffer in place.  It will
   2098 		 * simply be reused the next time the ring comes around.
   2099 		 */
   2100 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2101 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2102 			ifp->if_ierrors++;
   2103 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2104 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2105 				/* Receive overrun handled elsewhere. */
   2106 				printf("%s: receive descriptor error\n",
   2107 				    sc->sc_dev.dv_xname);
   2108 			}
   2109 #define	PRINTERR(bit, str)						\
   2110 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2111 			    (cmdsts & (bit)) != 0)			\
   2112 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2113 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2114 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2115 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2116 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2117 #undef PRINTERR
   2118 			SIP_INIT_RXDESC(sc, i);
   2119 			continue;
   2120 		}
   2121 
   2122 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2123 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2124 
   2125 		/*
   2126 		 * No errors; receive the packet.  Note, the SiS 900
   2127 		 * includes the CRC with every packet.
   2128 		 */
   2129 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   2130 
   2131 #ifdef __NO_STRICT_ALIGNMENT
   2132 		/*
   2133 		 * If the packet is small enough to fit in a
   2134 		 * single header mbuf, allocate one and copy
   2135 		 * the data into it.  This greatly reduces
   2136 		 * memory consumption when we receive lots
   2137 		 * of small packets.
   2138 		 *
   2139 		 * Otherwise, we add a new buffer to the receive
   2140 		 * chain.  If this fails, we drop the packet and
   2141 		 * recycle the old buffer.
   2142 		 */
   2143 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2144 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2145 			if (m == NULL)
   2146 				goto dropit;
   2147 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2148 			memcpy(mtod(m, void *),
   2149 			    mtod(rxs->rxs_mbuf, void *), len);
   2150 			SIP_INIT_RXDESC(sc, i);
   2151 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2152 			    rxs->rxs_dmamap->dm_mapsize,
   2153 			    BUS_DMASYNC_PREREAD);
   2154 		} else {
   2155 			m = rxs->rxs_mbuf;
   2156 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2157  dropit:
   2158 				ifp->if_ierrors++;
   2159 				SIP_INIT_RXDESC(sc, i);
   2160 				bus_dmamap_sync(sc->sc_dmat,
   2161 				    rxs->rxs_dmamap, 0,
   2162 				    rxs->rxs_dmamap->dm_mapsize,
   2163 				    BUS_DMASYNC_PREREAD);
   2164 				continue;
   2165 			}
   2166 		}
   2167 #else
   2168 		/*
   2169 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2170 		 * But this means that the data after the Ethernet header
   2171 		 * is misaligned.  We must allocate a new buffer and
   2172 		 * copy the data, shifted forward 2 bytes.
   2173 		 */
   2174 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2175 		if (m == NULL) {
   2176  dropit:
   2177 			ifp->if_ierrors++;
   2178 			SIP_INIT_RXDESC(sc, i);
   2179 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2180 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2181 			continue;
   2182 		}
   2183 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2184 		if (len > (MHLEN - 2)) {
   2185 			MCLGET(m, M_DONTWAIT);
   2186 			if ((m->m_flags & M_EXT) == 0) {
   2187 				m_freem(m);
   2188 				goto dropit;
   2189 			}
   2190 		}
   2191 		m->m_data += 2;
   2192 
   2193 		/*
   2194 		 * Note that we use clusters for incoming frames, so the
   2195 		 * buffer is virtually contiguous.
   2196 		 */
   2197 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2198 
   2199 		/* Allow the receive descriptor to continue using its mbuf. */
   2200 		SIP_INIT_RXDESC(sc, i);
   2201 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2202 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2203 #endif /* __NO_STRICT_ALIGNMENT */
   2204 
   2205 		ifp->if_ipackets++;
   2206 		m->m_pkthdr.rcvif = ifp;
   2207 		m->m_pkthdr.len = m->m_len = len;
   2208 
   2209 #if NBPFILTER > 0
   2210 		/*
   2211 		 * Pass this up to any BPF listeners, but only
   2212 		 * pass if up the stack if it's for us.
   2213 		 */
   2214 		if (ifp->if_bpf)
   2215 			bpf_mtap(ifp->if_bpf, m);
   2216 #endif /* NBPFILTER > 0 */
   2217 
   2218 		/* Pass it on. */
   2219 		(*ifp->if_input)(ifp, m);
   2220 	}
   2221 
   2222 	/* Update the receive pointer. */
   2223 	sc->sc_rxptr = i;
   2224 }
   2225 #endif /* DP83820 */
   2226 
   2227 /*
   2228  * sip_tick:
   2229  *
   2230  *	One second timer, used to tick the MII.
   2231  */
   2232 static void
   2233 SIP_DECL(tick)(void *arg)
   2234 {
   2235 	struct sip_softc *sc = arg;
   2236 	int s;
   2237 
   2238 	s = splnet();
   2239 #ifdef DP83820
   2240 #ifdef SIP_EVENT_COUNTERS
   2241 	/* Read PAUSE related counts from MIB registers. */
   2242 	sc->sc_ev_rxpause.ev_count +=
   2243 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2244 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2245 	sc->sc_ev_txpause.ev_count +=
   2246 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2247 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2248 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2249 #endif /* SIP_EVENT_COUNTERS */
   2250 #endif /* DP83820 */
   2251 	mii_tick(&sc->sc_mii);
   2252 	splx(s);
   2253 
   2254 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2255 }
   2256 
   2257 /*
   2258  * sip_reset:
   2259  *
   2260  *	Perform a soft reset on the SiS 900.
   2261  */
   2262 static void
   2263 SIP_DECL(reset)(struct sip_softc *sc)
   2264 {
   2265 	bus_space_tag_t st = sc->sc_st;
   2266 	bus_space_handle_t sh = sc->sc_sh;
   2267 	int i;
   2268 
   2269 	bus_space_write_4(st, sh, SIP_IER, 0);
   2270 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2271 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2272 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2273 
   2274 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2275 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2276 			break;
   2277 		delay(2);
   2278 	}
   2279 
   2280 	if (i == SIP_TIMEOUT)
   2281 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2282 
   2283 	delay(1000);
   2284 
   2285 #ifdef DP83820
   2286 	/*
   2287 	 * Set the general purpose I/O bits.  Do it here in case we
   2288 	 * need to have GPIO set up to talk to the media interface.
   2289 	 */
   2290 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2291 	delay(1000);
   2292 #endif /* DP83820 */
   2293 }
   2294 
   2295 /*
   2296  * sip_init:		[ ifnet interface function ]
   2297  *
   2298  *	Initialize the interface.  Must be called at splnet().
   2299  */
   2300 static int
   2301 SIP_DECL(init)(struct ifnet *ifp)
   2302 {
   2303 	struct sip_softc *sc = ifp->if_softc;
   2304 	bus_space_tag_t st = sc->sc_st;
   2305 	bus_space_handle_t sh = sc->sc_sh;
   2306 	struct sip_txsoft *txs;
   2307 	struct sip_rxsoft *rxs;
   2308 	struct sip_desc *sipd;
   2309 #if defined(DP83820)
   2310 	u_int32_t reg;
   2311 #endif
   2312 	int i, error = 0;
   2313 
   2314 	/*
   2315 	 * Cancel any pending I/O.
   2316 	 */
   2317 	SIP_DECL(stop)(ifp, 0);
   2318 
   2319 	/*
   2320 	 * Reset the chip to a known state.
   2321 	 */
   2322 	SIP_DECL(reset)(sc);
   2323 
   2324 #if !defined(DP83820)
   2325 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2326 		/*
   2327 		 * DP83815 manual, page 78:
   2328 		 *    4.4 Recommended Registers Configuration
   2329 		 *    For optimum performance of the DP83815, version noted
   2330 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2331 		 *    modifications must be followed in sequence...
   2332 		 *
   2333 		 * It's not clear if this should be 302h or 203h because that
   2334 		 * chip name is listed as SRR 302h in the description of the
   2335 		 * SRR register.  However, my revision 302h DP83815 on the
   2336 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2337 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2338 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2339 		 * this set or not.  [briggs -- 09 March 2001]
   2340 		 *
   2341 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2342 		 * and that this sets reserved bits in that register.
   2343 		 */
   2344 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2345 
   2346 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2347 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2348 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2349 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2350 
   2351 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2352 	}
   2353 #endif /* ! DP83820 */
   2354 
   2355 	/*
   2356 	 * Initialize the transmit descriptor ring.
   2357 	 */
   2358 	for (i = 0; i < SIP_NTXDESC; i++) {
   2359 		sipd = &sc->sc_txdescs[i];
   2360 		memset(sipd, 0, sizeof(struct sip_desc));
   2361 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2362 	}
   2363 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2364 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2365 	sc->sc_txfree = SIP_NTXDESC;
   2366 	sc->sc_txnext = 0;
   2367 	sc->sc_txwin = 0;
   2368 
   2369 	/*
   2370 	 * Initialize the transmit job descriptors.
   2371 	 */
   2372 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2373 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2374 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2375 		txs = &sc->sc_txsoft[i];
   2376 		txs->txs_mbuf = NULL;
   2377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2378 	}
   2379 
   2380 	/*
   2381 	 * Initialize the receive descriptor and receive job
   2382 	 * descriptor rings.
   2383 	 */
   2384 	for (i = 0; i < SIP_NRXDESC; i++) {
   2385 		rxs = &sc->sc_rxsoft[i];
   2386 		if (rxs->rxs_mbuf == NULL) {
   2387 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2388 				printf("%s: unable to allocate or map rx "
   2389 				    "buffer %d, error = %d\n",
   2390 				    sc->sc_dev.dv_xname, i, error);
   2391 				/*
   2392 				 * XXX Should attempt to run with fewer receive
   2393 				 * XXX buffers instead of just failing.
   2394 				 */
   2395 				SIP_DECL(rxdrain)(sc);
   2396 				goto out;
   2397 			}
   2398 		} else
   2399 			SIP_INIT_RXDESC(sc, i);
   2400 	}
   2401 	sc->sc_rxptr = 0;
   2402 #ifdef DP83820
   2403 	sc->sc_rxdiscard = 0;
   2404 	SIP_RXCHAIN_RESET(sc);
   2405 #endif /* DP83820 */
   2406 
   2407 	/*
   2408 	 * Set the configuration register; it's already initialized
   2409 	 * in sip_attach().
   2410 	 */
   2411 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2412 
   2413 	/*
   2414 	 * Initialize the prototype TXCFG register.
   2415 	 */
   2416 #if defined(DP83820)
   2417 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2418 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2419 #else
   2420 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2421 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2422 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2423 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2424 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2425 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2426 	} else {
   2427 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2428 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2429 	}
   2430 #endif /* DP83820 */
   2431 
   2432 	sc->sc_txcfg |= TXCFG_ATP |
   2433 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2434 	    sc->sc_tx_drain_thresh;
   2435 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2436 
   2437 	/*
   2438 	 * Initialize the receive drain threshold if we have never
   2439 	 * done so.
   2440 	 */
   2441 	if (sc->sc_rx_drain_thresh == 0) {
   2442 		/*
   2443 		 * XXX This value should be tuned.  This is set to the
   2444 		 * maximum of 248 bytes, and we may be able to improve
   2445 		 * performance by decreasing it (although we should never
   2446 		 * set this value lower than 2; 14 bytes are required to
   2447 		 * filter the packet).
   2448 		 */
   2449 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2450 	}
   2451 
   2452 	/*
   2453 	 * Initialize the prototype RXCFG register.
   2454 	 */
   2455 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2456 #ifdef DP83820
   2457 	/*
   2458 	 * Accept long packets (including FCS) so we can handle
   2459 	 * 802.1q-tagged frames and jumbo frames properly.
   2460 	 */
   2461 	if (ifp->if_mtu > ETHERMTU ||
   2462 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2463 		sc->sc_rxcfg |= RXCFG_ALP;
   2464 
   2465 	/*
   2466 	 * Checksum offloading is disabled if the user selects an MTU
   2467 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2468 	 * evidence that >8109 does not work on some boards, such as the
   2469 	 * Planex GN-1000TE).
   2470 	 */
   2471 	if (ifp->if_mtu > 8109 &&
   2472 	    (ifp->if_capenable &
   2473 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2474 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2475 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2476 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2477 		       "disabled.\n", sc->sc_dev.dv_xname);
   2478 		ifp->if_capenable &=
   2479 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2480 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2481 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2482 		ifp->if_csum_flags_tx = 0;
   2483 		ifp->if_csum_flags_rx = 0;
   2484 	}
   2485 #else
   2486 	/*
   2487 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2488 	 * 802.1q-tagged frames properly.
   2489 	 */
   2490 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2491 		sc->sc_rxcfg |= RXCFG_ALP;
   2492 #endif
   2493 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2494 
   2495 #ifdef DP83820
   2496 	/*
   2497 	 * Initialize the VLAN/IP receive control register.
   2498 	 * We enable checksum computation on all incoming
   2499 	 * packets, and do not reject packets w/ bad checksums.
   2500 	 */
   2501 	reg = 0;
   2502 	if (ifp->if_capenable &
   2503 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2504 		reg |= VRCR_IPEN;
   2505 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2506 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2507 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2508 
   2509 	/*
   2510 	 * Initialize the VLAN/IP transmit control register.
   2511 	 * We enable outgoing checksum computation on a
   2512 	 * per-packet basis.
   2513 	 */
   2514 	reg = 0;
   2515 	if (ifp->if_capenable &
   2516 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2517 		reg |= VTCR_PPCHK;
   2518 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2519 		reg |= VTCR_VPPTI;
   2520 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2521 
   2522 	/*
   2523 	 * If we're using VLANs, initialize the VLAN data register.
   2524 	 * To understand why we bswap the VLAN Ethertype, see section
   2525 	 * 4.2.36 of the DP83820 manual.
   2526 	 */
   2527 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2528 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2529 #endif /* DP83820 */
   2530 
   2531 	/*
   2532 	 * Give the transmit and receive rings to the chip.
   2533 	 */
   2534 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2535 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2536 
   2537 	/*
   2538 	 * Initialize the interrupt mask.
   2539 	 */
   2540 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2541 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2542 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2543 
   2544 	/* Set up the receive filter. */
   2545 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2546 
   2547 #ifdef DP83820
   2548 	/*
   2549 	 * Tune sc_rx_flow_thresh.
   2550 	 * XXX "More than 8KB" is too short for jumbo frames.
   2551 	 * XXX TODO: Threshold value should be user-settable.
   2552 	 */
   2553 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2554 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2555 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2556 #endif
   2557 
   2558 	/*
   2559 	 * Set the current media.  Do this after initializing the prototype
   2560 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2561 	 * control.
   2562 	 */
   2563 	mii_mediachg(&sc->sc_mii);
   2564 
   2565 #ifdef DP83820
   2566 	/*
   2567 	 * Set the interrupt hold-off timer to 100us.
   2568 	 */
   2569 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2570 #endif
   2571 
   2572 	/*
   2573 	 * Enable interrupts.
   2574 	 */
   2575 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2576 
   2577 	/*
   2578 	 * Start the transmit and receive processes.
   2579 	 */
   2580 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2581 
   2582 	/*
   2583 	 * Start the one second MII clock.
   2584 	 */
   2585 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2586 
   2587 	/*
   2588 	 * ...all done!
   2589 	 */
   2590 	ifp->if_flags |= IFF_RUNNING;
   2591 	ifp->if_flags &= ~IFF_OACTIVE;
   2592 	sc->sc_if_flags = ifp->if_flags;
   2593 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2594 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2595 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2596 
   2597  out:
   2598 	if (error)
   2599 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2600 	return (error);
   2601 }
   2602 
   2603 /*
   2604  * sip_drain:
   2605  *
   2606  *	Drain the receive queue.
   2607  */
   2608 static void
   2609 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2610 {
   2611 	struct sip_rxsoft *rxs;
   2612 	int i;
   2613 
   2614 	for (i = 0; i < SIP_NRXDESC; i++) {
   2615 		rxs = &sc->sc_rxsoft[i];
   2616 		if (rxs->rxs_mbuf != NULL) {
   2617 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2618 			m_freem(rxs->rxs_mbuf);
   2619 			rxs->rxs_mbuf = NULL;
   2620 		}
   2621 	}
   2622 }
   2623 
   2624 /*
   2625  * sip_stop:		[ ifnet interface function ]
   2626  *
   2627  *	Stop transmission on the interface.
   2628  */
   2629 static void
   2630 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2631 {
   2632 	struct sip_softc *sc = ifp->if_softc;
   2633 	bus_space_tag_t st = sc->sc_st;
   2634 	bus_space_handle_t sh = sc->sc_sh;
   2635 	struct sip_txsoft *txs;
   2636 	u_int32_t cmdsts = 0;		/* DEBUG */
   2637 
   2638 	/*
   2639 	 * Stop the one second clock.
   2640 	 */
   2641 	callout_stop(&sc->sc_tick_ch);
   2642 
   2643 	/* Down the MII. */
   2644 	mii_down(&sc->sc_mii);
   2645 
   2646 	/*
   2647 	 * Disable interrupts.
   2648 	 */
   2649 	bus_space_write_4(st, sh, SIP_IER, 0);
   2650 
   2651 	/*
   2652 	 * Stop receiver and transmitter.
   2653 	 */
   2654 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2655 
   2656 	/*
   2657 	 * Release any queued transmit buffers.
   2658 	 */
   2659 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2660 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2661 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2662 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2663 		     CMDSTS_INTR) == 0)
   2664 			printf("%s: sip_stop: last descriptor does not "
   2665 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2666 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2667 #ifdef DIAGNOSTIC
   2668 		if (txs->txs_mbuf == NULL) {
   2669 			printf("%s: dirty txsoft with no mbuf chain\n",
   2670 			    sc->sc_dev.dv_xname);
   2671 			panic("sip_stop");
   2672 		}
   2673 #endif
   2674 		cmdsts |=		/* DEBUG */
   2675 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2676 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2677 		m_freem(txs->txs_mbuf);
   2678 		txs->txs_mbuf = NULL;
   2679 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2680 	}
   2681 
   2682 	if (disable)
   2683 		SIP_DECL(rxdrain)(sc);
   2684 
   2685 	/*
   2686 	 * Mark the interface down and cancel the watchdog timer.
   2687 	 */
   2688 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2689 	ifp->if_timer = 0;
   2690 
   2691 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2692 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2693 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2694 		    "descriptors\n", sc->sc_dev.dv_xname);
   2695 }
   2696 
   2697 /*
   2698  * sip_read_eeprom:
   2699  *
   2700  *	Read data from the serial EEPROM.
   2701  */
   2702 static void
   2703 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2704     u_int16_t *data)
   2705 {
   2706 	bus_space_tag_t st = sc->sc_st;
   2707 	bus_space_handle_t sh = sc->sc_sh;
   2708 	u_int16_t reg;
   2709 	int i, x;
   2710 
   2711 	for (i = 0; i < wordcnt; i++) {
   2712 		/* Send CHIP SELECT. */
   2713 		reg = EROMAR_EECS;
   2714 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2715 
   2716 		/* Shift in the READ opcode. */
   2717 		for (x = 3; x > 0; x--) {
   2718 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2719 				reg |= EROMAR_EEDI;
   2720 			else
   2721 				reg &= ~EROMAR_EEDI;
   2722 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2723 			bus_space_write_4(st, sh, SIP_EROMAR,
   2724 			    reg | EROMAR_EESK);
   2725 			delay(4);
   2726 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2727 			delay(4);
   2728 		}
   2729 
   2730 		/* Shift in address. */
   2731 		for (x = 6; x > 0; x--) {
   2732 			if ((word + i) & (1 << (x - 1)))
   2733 				reg |= EROMAR_EEDI;
   2734 			else
   2735 				reg &= ~EROMAR_EEDI;
   2736 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2737 			bus_space_write_4(st, sh, SIP_EROMAR,
   2738 			    reg | EROMAR_EESK);
   2739 			delay(4);
   2740 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2741 			delay(4);
   2742 		}
   2743 
   2744 		/* Shift out data. */
   2745 		reg = EROMAR_EECS;
   2746 		data[i] = 0;
   2747 		for (x = 16; x > 0; x--) {
   2748 			bus_space_write_4(st, sh, SIP_EROMAR,
   2749 			    reg | EROMAR_EESK);
   2750 			delay(4);
   2751 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2752 				data[i] |= (1 << (x - 1));
   2753 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2754 			delay(4);
   2755 		}
   2756 
   2757 		/* Clear CHIP SELECT. */
   2758 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2759 		delay(4);
   2760 	}
   2761 }
   2762 
   2763 /*
   2764  * sip_add_rxbuf:
   2765  *
   2766  *	Add a receive buffer to the indicated descriptor.
   2767  */
   2768 static int
   2769 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2770 {
   2771 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2772 	struct mbuf *m;
   2773 	int error;
   2774 
   2775 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2776 	if (m == NULL)
   2777 		return (ENOBUFS);
   2778 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2779 
   2780 	MCLGET(m, M_DONTWAIT);
   2781 	if ((m->m_flags & M_EXT) == 0) {
   2782 		m_freem(m);
   2783 		return (ENOBUFS);
   2784 	}
   2785 
   2786 #if defined(DP83820)
   2787 	m->m_len = SIP_RXBUF_LEN;
   2788 #endif /* DP83820 */
   2789 
   2790 	if (rxs->rxs_mbuf != NULL)
   2791 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2792 
   2793 	rxs->rxs_mbuf = m;
   2794 
   2795 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2796 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2797 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2798 	if (error) {
   2799 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2800 		    sc->sc_dev.dv_xname, idx, error);
   2801 		panic("sip_add_rxbuf");		/* XXX */
   2802 	}
   2803 
   2804 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2805 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2806 
   2807 	SIP_INIT_RXDESC(sc, idx);
   2808 
   2809 	return (0);
   2810 }
   2811 
   2812 #if !defined(DP83820)
   2813 /*
   2814  * sip_sis900_set_filter:
   2815  *
   2816  *	Set up the receive filter.
   2817  */
   2818 static void
   2819 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2820 {
   2821 	bus_space_tag_t st = sc->sc_st;
   2822 	bus_space_handle_t sh = sc->sc_sh;
   2823 	struct ethercom *ec = &sc->sc_ethercom;
   2824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2825 	struct ether_multi *enm;
   2826 	u_int8_t *cp;
   2827 	struct ether_multistep step;
   2828 	u_int32_t crc, mchash[16];
   2829 
   2830 	/*
   2831 	 * Initialize the prototype RFCR.
   2832 	 */
   2833 	sc->sc_rfcr = RFCR_RFEN;
   2834 	if (ifp->if_flags & IFF_BROADCAST)
   2835 		sc->sc_rfcr |= RFCR_AAB;
   2836 	if (ifp->if_flags & IFF_PROMISC) {
   2837 		sc->sc_rfcr |= RFCR_AAP;
   2838 		goto allmulti;
   2839 	}
   2840 
   2841 	/*
   2842 	 * Set up the multicast address filter by passing all multicast
   2843 	 * addresses through a CRC generator, and then using the high-order
   2844 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2845 	 * the lower 16 bits of each 32 bit multicast hash register are
   2846 	 * valid).  The high order bits select the register, while the
   2847 	 * rest of the bits select the bit within the register.
   2848 	 */
   2849 
   2850 	memset(mchash, 0, sizeof(mchash));
   2851 
   2852 	/*
   2853 	 * SiS900 (at least SiS963) requires us to register the address of
   2854 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   2855 	 */
   2856 	crc = 0x0ed423f9;
   2857 
   2858 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2859 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2860 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2861 		/* Just want the 8 most significant bits. */
   2862 		crc >>= 24;
   2863 	} else {
   2864 		/* Just want the 7 most significant bits. */
   2865 		crc >>= 25;
   2866 	}
   2867 
   2868 	/* Set the corresponding bit in the hash table. */
   2869 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   2870 
   2871 	ETHER_FIRST_MULTI(step, ec, enm);
   2872 	while (enm != NULL) {
   2873 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2874 			/*
   2875 			 * We must listen to a range of multicast addresses.
   2876 			 * For now, just accept all multicasts, rather than
   2877 			 * trying to set only those filter bits needed to match
   2878 			 * the range.  (At this time, the only use of address
   2879 			 * ranges is for IP multicast routing, for which the
   2880 			 * range is big enough to require all bits set.)
   2881 			 */
   2882 			goto allmulti;
   2883 		}
   2884 
   2885 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2886 
   2887 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2888 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2889 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2890 			/* Just want the 8 most significant bits. */
   2891 			crc >>= 24;
   2892 		} else {
   2893 			/* Just want the 7 most significant bits. */
   2894 			crc >>= 25;
   2895 		}
   2896 
   2897 		/* Set the corresponding bit in the hash table. */
   2898 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2899 
   2900 		ETHER_NEXT_MULTI(step, enm);
   2901 	}
   2902 
   2903 	ifp->if_flags &= ~IFF_ALLMULTI;
   2904 	goto setit;
   2905 
   2906  allmulti:
   2907 	ifp->if_flags |= IFF_ALLMULTI;
   2908 	sc->sc_rfcr |= RFCR_AAM;
   2909 
   2910  setit:
   2911 #define	FILTER_EMIT(addr, data)						\
   2912 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2913 	delay(1);							\
   2914 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2915 	delay(1)
   2916 
   2917 	/*
   2918 	 * Disable receive filter, and program the node address.
   2919 	 */
   2920 	cp = LLADDR(ifp->if_sadl);
   2921 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2922 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2923 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2924 
   2925 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2926 		/*
   2927 		 * Program the multicast hash table.
   2928 		 */
   2929 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2930 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2931 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2932 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2933 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2934 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2935 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2936 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2937 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2938 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2939 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2940 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2941 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2942 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2943 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2944 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2945 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2946 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2947 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2948 		}
   2949 	}
   2950 #undef FILTER_EMIT
   2951 
   2952 	/*
   2953 	 * Re-enable the receiver filter.
   2954 	 */
   2955 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2956 }
   2957 #endif /* ! DP83820 */
   2958 
   2959 /*
   2960  * sip_dp83815_set_filter:
   2961  *
   2962  *	Set up the receive filter.
   2963  */
   2964 static void
   2965 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2966 {
   2967 	bus_space_tag_t st = sc->sc_st;
   2968 	bus_space_handle_t sh = sc->sc_sh;
   2969 	struct ethercom *ec = &sc->sc_ethercom;
   2970 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2971 	struct ether_multi *enm;
   2972 	u_int8_t *cp;
   2973 	struct ether_multistep step;
   2974 	u_int32_t crc, hash, slot, bit;
   2975 #ifdef DP83820
   2976 #define	MCHASH_NWORDS	128
   2977 #else
   2978 #define	MCHASH_NWORDS	32
   2979 #endif /* DP83820 */
   2980 	u_int16_t mchash[MCHASH_NWORDS];
   2981 	int i;
   2982 
   2983 	/*
   2984 	 * Initialize the prototype RFCR.
   2985 	 * Enable the receive filter, and accept on
   2986 	 *    Perfect (destination address) Match
   2987 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2988 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2989 	 *    IFF_ALLMULTI and accept all multicast, too).
   2990 	 */
   2991 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2992 	if (ifp->if_flags & IFF_BROADCAST)
   2993 		sc->sc_rfcr |= RFCR_AAB;
   2994 	if (ifp->if_flags & IFF_PROMISC) {
   2995 		sc->sc_rfcr |= RFCR_AAP;
   2996 		goto allmulti;
   2997 	}
   2998 
   2999 #ifdef DP83820
   3000 	/*
   3001 	 * Set up the DP83820 multicast address filter by passing all multicast
   3002 	 * addresses through a CRC generator, and then using the high-order
   3003 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   3004 	 * high-order 7 bits select the slot, while the low-order 4 bits
   3005 	 * select the bit within the slot.  Note that only the low 16-bits
   3006 	 * of each filter word are used, and there are 128 filter words.
   3007 	 */
   3008 #else
   3009 	/*
   3010 	 * Set up the DP83815 multicast address filter by passing all multicast
   3011 	 * addresses through a CRC generator, and then using the high-order
   3012 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   3013 	 * high-order 5 bits select the slot, while the low-order 4 bits
   3014 	 * select the bit within the slot.  Note that only the low 16-bits
   3015 	 * of each filter word are used, and there are 32 filter words.
   3016 	 */
   3017 #endif /* DP83820 */
   3018 
   3019 	memset(mchash, 0, sizeof(mchash));
   3020 
   3021 	ifp->if_flags &= ~IFF_ALLMULTI;
   3022 	ETHER_FIRST_MULTI(step, ec, enm);
   3023 	if (enm == NULL)
   3024 		goto setit;
   3025 	while (enm != NULL) {
   3026 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3027 			/*
   3028 			 * We must listen to a range of multicast addresses.
   3029 			 * For now, just accept all multicasts, rather than
   3030 			 * trying to set only those filter bits needed to match
   3031 			 * the range.  (At this time, the only use of address
   3032 			 * ranges is for IP multicast routing, for which the
   3033 			 * range is big enough to require all bits set.)
   3034 			 */
   3035 			goto allmulti;
   3036 		}
   3037 
   3038 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3039 
   3040 #ifdef DP83820
   3041 		/* Just want the 11 most significant bits. */
   3042 		hash = crc >> 21;
   3043 #else
   3044 		/* Just want the 9 most significant bits. */
   3045 		hash = crc >> 23;
   3046 #endif /* DP83820 */
   3047 
   3048 		slot = hash >> 4;
   3049 		bit = hash & 0xf;
   3050 
   3051 		/* Set the corresponding bit in the hash table. */
   3052 		mchash[slot] |= 1 << bit;
   3053 
   3054 		ETHER_NEXT_MULTI(step, enm);
   3055 	}
   3056 	sc->sc_rfcr |= RFCR_MHEN;
   3057 	goto setit;
   3058 
   3059  allmulti:
   3060 	ifp->if_flags |= IFF_ALLMULTI;
   3061 	sc->sc_rfcr |= RFCR_AAM;
   3062 
   3063  setit:
   3064 #define	FILTER_EMIT(addr, data)						\
   3065 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3066 	delay(1);							\
   3067 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3068 	delay(1)
   3069 
   3070 	/*
   3071 	 * Disable receive filter, and program the node address.
   3072 	 */
   3073 	cp = LLADDR(ifp->if_sadl);
   3074 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3075 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3076 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3077 
   3078 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3079 		/*
   3080 		 * Program the multicast hash table.
   3081 		 */
   3082 		for (i = 0; i < MCHASH_NWORDS; i++) {
   3083 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   3084 			    mchash[i]);
   3085 		}
   3086 	}
   3087 #undef FILTER_EMIT
   3088 #undef MCHASH_NWORDS
   3089 
   3090 	/*
   3091 	 * Re-enable the receiver filter.
   3092 	 */
   3093 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3094 }
   3095 
   3096 #if defined(DP83820)
   3097 /*
   3098  * sip_dp83820_mii_readreg:	[mii interface function]
   3099  *
   3100  *	Read a PHY register on the MII of the DP83820.
   3101  */
   3102 static int
   3103 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   3104 {
   3105 	struct sip_softc *sc = (void *) self;
   3106 
   3107 	if (sc->sc_cfg & CFG_TBI_EN) {
   3108 		bus_addr_t tbireg;
   3109 		int rv;
   3110 
   3111 		if (phy != 0)
   3112 			return (0);
   3113 
   3114 		switch (reg) {
   3115 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3116 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3117 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3118 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3119 		case MII_ANER:		tbireg = SIP_TANER; break;
   3120 		case MII_EXTSR:
   3121 			/*
   3122 			 * Don't even bother reading the TESR register.
   3123 			 * The manual documents that the device has
   3124 			 * 1000baseX full/half capability, but the
   3125 			 * register itself seems read back 0 on some
   3126 			 * boards.  Just hard-code the result.
   3127 			 */
   3128 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3129 
   3130 		default:
   3131 			return (0);
   3132 		}
   3133 
   3134 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3135 		if (tbireg == SIP_TBISR) {
   3136 			/* LINK and ACOMP are switched! */
   3137 			int val = rv;
   3138 
   3139 			rv = 0;
   3140 			if (val & TBISR_MR_LINK_STATUS)
   3141 				rv |= BMSR_LINK;
   3142 			if (val & TBISR_MR_AN_COMPLETE)
   3143 				rv |= BMSR_ACOMP;
   3144 
   3145 			/*
   3146 			 * The manual claims this register reads back 0
   3147 			 * on hard and soft reset.  But we want to let
   3148 			 * the gentbi driver know that we support auto-
   3149 			 * negotiation, so hard-code this bit in the
   3150 			 * result.
   3151 			 */
   3152 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3153 		}
   3154 
   3155 		return (rv);
   3156 	}
   3157 
   3158 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3159 	    phy, reg));
   3160 }
   3161 
   3162 /*
   3163  * sip_dp83820_mii_writereg:	[mii interface function]
   3164  *
   3165  *	Write a PHY register on the MII of the DP83820.
   3166  */
   3167 static void
   3168 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   3169 {
   3170 	struct sip_softc *sc = (void *) self;
   3171 
   3172 	if (sc->sc_cfg & CFG_TBI_EN) {
   3173 		bus_addr_t tbireg;
   3174 
   3175 		if (phy != 0)
   3176 			return;
   3177 
   3178 		switch (reg) {
   3179 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3180 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3181 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3182 		default:
   3183 			return;
   3184 		}
   3185 
   3186 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3187 		return;
   3188 	}
   3189 
   3190 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3191 	    phy, reg, val);
   3192 }
   3193 
   3194 /*
   3195  * sip_dp83820_mii_statchg:	[mii interface function]
   3196  *
   3197  *	Callback from MII layer when media changes.
   3198  */
   3199 static void
   3200 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   3201 {
   3202 	struct sip_softc *sc = (struct sip_softc *) self;
   3203 	struct mii_data *mii = &sc->sc_mii;
   3204 	u_int32_t cfg, pcr;
   3205 
   3206 	/*
   3207 	 * Get flow control negotiation result.
   3208 	 */
   3209 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3210 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3211 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3212 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3213 	}
   3214 
   3215 	/*
   3216 	 * Update TXCFG for full-duplex operation.
   3217 	 */
   3218 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3219 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3220 	else
   3221 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3222 
   3223 	/*
   3224 	 * Update RXCFG for full-duplex or loopback.
   3225 	 */
   3226 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3227 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3228 		sc->sc_rxcfg |= RXCFG_ATX;
   3229 	else
   3230 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3231 
   3232 	/*
   3233 	 * Update CFG for MII/GMII.
   3234 	 */
   3235 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3236 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3237 	else
   3238 		cfg = sc->sc_cfg;
   3239 
   3240 	/*
   3241 	 * 802.3x flow control.
   3242 	 */
   3243 	pcr = 0;
   3244 	if (sc->sc_flowflags & IFM_FLOW) {
   3245 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3246 			pcr |= sc->sc_rx_flow_thresh;
   3247 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3248 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3249 	}
   3250 
   3251 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3252 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3253 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3254 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3255 }
   3256 #endif /* ! DP83820 */
   3257 
   3258 /*
   3259  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3260  *
   3261  *	Read the MII serial port for the MII bit-bang module.
   3262  */
   3263 static u_int32_t
   3264 SIP_DECL(mii_bitbang_read)(struct device *self)
   3265 {
   3266 	struct sip_softc *sc = (void *) self;
   3267 
   3268 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3269 }
   3270 
   3271 /*
   3272  * sip_mii_bitbang_write: [mii big-bang interface function]
   3273  *
   3274  *	Write the MII serial port for the MII bit-bang module.
   3275  */
   3276 static void
   3277 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
   3278 {
   3279 	struct sip_softc *sc = (void *) self;
   3280 
   3281 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3282 }
   3283 
   3284 #ifndef DP83820
   3285 /*
   3286  * sip_sis900_mii_readreg:	[mii interface function]
   3287  *
   3288  *	Read a PHY register on the MII.
   3289  */
   3290 static int
   3291 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3292 {
   3293 	struct sip_softc *sc = (struct sip_softc *) self;
   3294 	u_int32_t enphy;
   3295 
   3296 	/*
   3297 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3298 	 * operations.
   3299 	 */
   3300 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3301 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3302 		    phy, reg));
   3303 
   3304 #ifndef SIS900_MII_RESTRICT
   3305 	/*
   3306 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3307 	 * MII address 0.
   3308 	 */
   3309 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3310 		return (0);
   3311 #endif
   3312 
   3313 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3314 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3315 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3316 	do {
   3317 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3318 	} while (enphy & ENPHY_ACCESS);
   3319 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3320 }
   3321 
   3322 /*
   3323  * sip_sis900_mii_writereg:	[mii interface function]
   3324  *
   3325  *	Write a PHY register on the MII.
   3326  */
   3327 static void
   3328 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3329 {
   3330 	struct sip_softc *sc = (struct sip_softc *) self;
   3331 	u_int32_t enphy;
   3332 
   3333 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3334 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3335 		    phy, reg, val);
   3336 		return;
   3337 	}
   3338 
   3339 #ifndef SIS900_MII_RESTRICT
   3340 	/*
   3341 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3342 	 * MII address 0.
   3343 	 */
   3344 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3345 		return;
   3346 #endif
   3347 
   3348 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3349 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3350 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3351 	do {
   3352 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3353 	} while (enphy & ENPHY_ACCESS);
   3354 }
   3355 
   3356 /*
   3357  * sip_sis900_mii_statchg:	[mii interface function]
   3358  *
   3359  *	Callback from MII layer when media changes.
   3360  */
   3361 static void
   3362 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3363 {
   3364 	struct sip_softc *sc = (struct sip_softc *) self;
   3365 	struct mii_data *mii = &sc->sc_mii;
   3366 	u_int32_t flowctl;
   3367 
   3368 	/*
   3369 	 * Get flow control negotiation result.
   3370 	 */
   3371 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3372 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3373 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3374 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3375 	}
   3376 
   3377 	/*
   3378 	 * Update TXCFG for full-duplex operation.
   3379 	 */
   3380 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3381 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3382 	else
   3383 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3384 
   3385 	/*
   3386 	 * Update RXCFG for full-duplex or loopback.
   3387 	 */
   3388 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3389 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3390 		sc->sc_rxcfg |= RXCFG_ATX;
   3391 	else
   3392 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3393 
   3394 	/*
   3395 	 * Update IMR for use of 802.3x flow control.
   3396 	 */
   3397 	if (sc->sc_flowflags & IFM_FLOW) {
   3398 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3399 		flowctl = FLOWCTL_FLOWEN;
   3400 	} else {
   3401 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3402 		flowctl = 0;
   3403 	}
   3404 
   3405 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3406 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3407 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3408 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3409 }
   3410 
   3411 /*
   3412  * sip_dp83815_mii_readreg:	[mii interface function]
   3413  *
   3414  *	Read a PHY register on the MII.
   3415  */
   3416 static int
   3417 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3418 {
   3419 	struct sip_softc *sc = (struct sip_softc *) self;
   3420 	u_int32_t val;
   3421 
   3422 	/*
   3423 	 * The DP83815 only has an internal PHY.  Only allow
   3424 	 * MII address 0.
   3425 	 */
   3426 	if (phy != 0)
   3427 		return (0);
   3428 
   3429 	/*
   3430 	 * Apparently, after a reset, the DP83815 can take a while
   3431 	 * to respond.  During this recovery period, the BMSR returns
   3432 	 * a value of 0.  Catch this -- it's not supposed to happen
   3433 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3434 	 * PHY to come back to life.
   3435 	 *
   3436 	 * This works out because the BMSR is the first register
   3437 	 * read during the PHY probe process.
   3438 	 */
   3439 	do {
   3440 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3441 	} while (reg == MII_BMSR && val == 0);
   3442 
   3443 	return (val & 0xffff);
   3444 }
   3445 
   3446 /*
   3447  * sip_dp83815_mii_writereg:	[mii interface function]
   3448  *
   3449  *	Write a PHY register to the MII.
   3450  */
   3451 static void
   3452 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3453 {
   3454 	struct sip_softc *sc = (struct sip_softc *) self;
   3455 
   3456 	/*
   3457 	 * The DP83815 only has an internal PHY.  Only allow
   3458 	 * MII address 0.
   3459 	 */
   3460 	if (phy != 0)
   3461 		return;
   3462 
   3463 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3464 }
   3465 
   3466 /*
   3467  * sip_dp83815_mii_statchg:	[mii interface function]
   3468  *
   3469  *	Callback from MII layer when media changes.
   3470  */
   3471 static void
   3472 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3473 {
   3474 	struct sip_softc *sc = (struct sip_softc *) self;
   3475 
   3476 	/*
   3477 	 * Update TXCFG for full-duplex operation.
   3478 	 */
   3479 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3480 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3481 	else
   3482 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3483 
   3484 	/*
   3485 	 * Update RXCFG for full-duplex or loopback.
   3486 	 */
   3487 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3488 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3489 		sc->sc_rxcfg |= RXCFG_ATX;
   3490 	else
   3491 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3492 
   3493 	/*
   3494 	 * XXX 802.3x flow control.
   3495 	 */
   3496 
   3497 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3498 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3499 
   3500 	/*
   3501 	 * Some DP83815s experience problems when used with short
   3502 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3503 	 * sequence adjusts the DSP's signal attenuation to fix the
   3504 	 * problem.
   3505 	 */
   3506 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3507 		uint32_t reg;
   3508 
   3509 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3510 
   3511 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3512 		reg &= 0x0fff;
   3513 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3514 		delay(100);
   3515 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3516 		reg &= 0x00ff;
   3517 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3518 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3519 			    0x00e8);
   3520 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3521 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3522 			    reg | 0x20);
   3523 		}
   3524 
   3525 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3526 	}
   3527 }
   3528 #endif /* DP83820 */
   3529 
   3530 #if defined(DP83820)
   3531 static void
   3532 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3533     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3534 {
   3535 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3536 	u_int8_t cksum, *e, match;
   3537 	int i;
   3538 
   3539 	/*
   3540 	 * EEPROM data format for the DP83820 can be found in
   3541 	 * the DP83820 manual, section 4.2.4.
   3542 	 */
   3543 
   3544 	SIP_DECL(read_eeprom)(sc, 0,
   3545 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3546 
   3547 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3548 	match = ~(match - 1);
   3549 
   3550 	cksum = 0x55;
   3551 	e = (u_int8_t *) eeprom_data;
   3552 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3553 		cksum += *e++;
   3554 
   3555 	if (cksum != match)
   3556 		printf("%s: Checksum (%x) mismatch (%x)",
   3557 		    sc->sc_dev.dv_xname, cksum, match);
   3558 
   3559 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3560 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3561 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3562 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3563 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3564 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3565 }
   3566 #else /* ! DP83820 */
   3567 static void
   3568 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3569 {
   3570 	int i;
   3571 
   3572 	/*
   3573 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3574 	 * a reason, but I don't know it.
   3575 	 */
   3576 	for (i = 0; i < 10; i++)
   3577 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3578 }
   3579 
   3580 static void
   3581 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3582     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3583 {
   3584 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3585 
   3586 	switch (sc->sc_rev) {
   3587 	case SIS_REV_630S:
   3588 	case SIS_REV_630E:
   3589 	case SIS_REV_630EA1:
   3590 	case SIS_REV_630ET:
   3591 	case SIS_REV_635:
   3592 		/*
   3593 		 * The MAC address for the on-board Ethernet of
   3594 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3595 		 * the chip into re-loading it from NVRAM, and
   3596 		 * read the MAC address out of the filter registers.
   3597 		 */
   3598 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3599 
   3600 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3601 		    RFCR_RFADDR_NODE0);
   3602 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3603 		    0xffff;
   3604 
   3605 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3606 		    RFCR_RFADDR_NODE2);
   3607 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3608 		    0xffff;
   3609 
   3610 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3611 		    RFCR_RFADDR_NODE4);
   3612 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3613 		    0xffff;
   3614 		break;
   3615 
   3616 	case SIS_REV_960:
   3617 		{
   3618 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3619 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3620 
   3621 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3622 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3623 
   3624 			int waittime, i;
   3625 
   3626 			/* Allow to read EEPROM from LAN. It is shared
   3627 			 * between a 1394 controller and the NIC and each
   3628 			 * time we access it, we need to set SIS_EECMD_REQ.
   3629 			 */
   3630 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3631 
   3632 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3633 				/* Force EEPROM to idle state. */
   3634 
   3635 				/*
   3636 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3637 				 */
   3638 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3639 				SIP_DECL(sis900_eeprom_delay)(sc);
   3640 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3641 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3642 					SIP_DECL(sis900_eeprom_delay)(sc);
   3643 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3644 					SIP_DECL(sis900_eeprom_delay)(sc);
   3645 				}
   3646 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3647 				SIP_DECL(sis900_eeprom_delay)(sc);
   3648 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3649 
   3650 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3651 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3652 					    sizeof(myea) / sizeof(myea[0]), myea);
   3653 					break;
   3654 				}
   3655 				DELAY(1);
   3656 			}
   3657 
   3658 			/*
   3659 			 * Set SIS_EECTL_CLK to high, so a other master
   3660 			 * can operate on the i2c bus.
   3661 			 */
   3662 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3663 
   3664 			/* Refuse EEPROM access by LAN */
   3665 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3666 		} break;
   3667 
   3668 	default:
   3669 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3670 		    sizeof(myea) / sizeof(myea[0]), myea);
   3671 	}
   3672 
   3673 	enaddr[0] = myea[0] & 0xff;
   3674 	enaddr[1] = myea[0] >> 8;
   3675 	enaddr[2] = myea[1] & 0xff;
   3676 	enaddr[3] = myea[1] >> 8;
   3677 	enaddr[4] = myea[2] & 0xff;
   3678 	enaddr[5] = myea[2] >> 8;
   3679 }
   3680 
   3681 /* Table and macro to bit-reverse an octet. */
   3682 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3683 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3684 
   3685 static void
   3686 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3687     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3688 {
   3689 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3690 	u_int8_t cksum, *e, match;
   3691 	int i;
   3692 
   3693 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3694 	    sizeof(eeprom_data[0]), eeprom_data);
   3695 
   3696 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3697 	match = ~(match - 1);
   3698 
   3699 	cksum = 0x55;
   3700 	e = (u_int8_t *) eeprom_data;
   3701 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3702 		cksum += *e++;
   3703 	}
   3704 	if (cksum != match) {
   3705 		printf("%s: Checksum (%x) mismatch (%x)",
   3706 		    sc->sc_dev.dv_xname, cksum, match);
   3707 	}
   3708 
   3709 	/*
   3710 	 * Unrolled because it makes slightly more sense this way.
   3711 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3712 	 * through bit 15 of word 8.
   3713 	 */
   3714 	ea = &eeprom_data[6];
   3715 	enaddr[0] = ((*ea & 0x1) << 7);
   3716 	ea++;
   3717 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3718 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3719 	enaddr[2] = ((*ea & 0x1) << 7);
   3720 	ea++;
   3721 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3722 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3723 	enaddr[4] = ((*ea & 0x1) << 7);
   3724 	ea++;
   3725 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3726 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3727 
   3728 	/*
   3729 	 * In case that's not weird enough, we also need to reverse
   3730 	 * the bits in each byte.  This all actually makes more sense
   3731 	 * if you think about the EEPROM storage as an array of bits
   3732 	 * being shifted into bytes, but that's not how we're looking
   3733 	 * at it here...
   3734 	 */
   3735 	for (i = 0; i < 6 ;i++)
   3736 		enaddr[i] = bbr(enaddr[i]);
   3737 }
   3738 #endif /* DP83820 */
   3739 
   3740 /*
   3741  * sip_mediastatus:	[ifmedia interface function]
   3742  *
   3743  *	Get the current interface media status.
   3744  */
   3745 static void
   3746 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3747 {
   3748 	struct sip_softc *sc = ifp->if_softc;
   3749 
   3750 	mii_pollstat(&sc->sc_mii);
   3751 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3752 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3753 			   sc->sc_flowflags;
   3754 }
   3755 
   3756 /*
   3757  * sip_mediachange:	[ifmedia interface function]
   3758  *
   3759  *	Set hardware to newly-selected media.
   3760  */
   3761 static int
   3762 SIP_DECL(mediachange)(struct ifnet *ifp)
   3763 {
   3764 	struct sip_softc *sc = ifp->if_softc;
   3765 
   3766 	if (ifp->if_flags & IFF_UP)
   3767 		mii_mediachg(&sc->sc_mii);
   3768 	return (0);
   3769 }
   3770