if_sip.c revision 1.112 1 /* $NetBSD: if_sip.c,v 1.112 2007/03/04 15:05:24 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.112 2007/03/04 15:05:24 yamt Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 /* values of interface state at last init */
313 struct {
314 /* if_capenable */
315 uint64_t if_capenable;
316 /* ec_capenable */
317 int ec_capenable;
318 /* VLAN_ATTACHED */
319 int is_vlan;
320 } sc_prev;
321
322 short sc_if_flags;
323
324 int sc_rxptr; /* next ready Rx descriptor/descsoft */
325 #if defined(DP83820)
326 int sc_rxdiscard;
327 int sc_rxlen;
328 struct mbuf *sc_rxhead;
329 struct mbuf *sc_rxtail;
330 struct mbuf **sc_rxtailp;
331 #endif /* DP83820 */
332
333 #if NRND > 0
334 rndsource_element_t rnd_source; /* random source */
335 #endif
336 };
337
338 #ifdef DP83820
339 #define SIP_RXCHAIN_RESET(sc) \
340 do { \
341 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
342 *(sc)->sc_rxtailp = NULL; \
343 (sc)->sc_rxlen = 0; \
344 } while (/*CONSTCOND*/0)
345
346 #define SIP_RXCHAIN_LINK(sc, m) \
347 do { \
348 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
349 (sc)->sc_rxtailp = &(m)->m_next; \
350 } while (/*CONSTCOND*/0)
351 #endif /* DP83820 */
352
353 #ifdef SIP_EVENT_COUNTERS
354 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
355 #else
356 #define SIP_EVCNT_INCR(ev) /* nothing */
357 #endif
358
359 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
360 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
361
362 #define SIP_CDTXSYNC(sc, x, n, ops) \
363 do { \
364 int __x, __n; \
365 \
366 __x = (x); \
367 __n = (n); \
368 \
369 /* If it will wrap around, sync to the end of the ring. */ \
370 if ((__x + __n) > SIP_NTXDESC) { \
371 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
372 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
373 (SIP_NTXDESC - __x), (ops)); \
374 __n -= (SIP_NTXDESC - __x); \
375 __x = 0; \
376 } \
377 \
378 /* Now sync whatever is left. */ \
379 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
380 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
381 } while (0)
382
383 #define SIP_CDRXSYNC(sc, x, ops) \
384 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
385 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
386
387 #ifdef DP83820
388 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
389 #define SIP_RXBUF_LEN (MCLBYTES - 8)
390 #else
391 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
392 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
393 #endif
394 #define SIP_INIT_RXDESC(sc, x) \
395 do { \
396 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
397 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
398 \
399 __sipd->sipd_link = \
400 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
401 __sipd->sipd_bufptr = \
402 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
403 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
404 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
405 SIP_INIT_RXDESC_EXTSTS \
406 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
407 } while (0)
408
409 #define SIP_CHIP_VERS(sc, v, p, r) \
410 ((sc)->sc_model->sip_vendor == (v) && \
411 (sc)->sc_model->sip_product == (p) && \
412 (sc)->sc_rev == (r))
413
414 #define SIP_CHIP_MODEL(sc, v, p) \
415 ((sc)->sc_model->sip_vendor == (v) && \
416 (sc)->sc_model->sip_product == (p))
417
418 #if !defined(DP83820)
419 #define SIP_SIS900_REV(sc, rev) \
420 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421 #endif
422
423 #define SIP_TIMEOUT 1000
424
425 static void SIP_DECL(start)(struct ifnet *);
426 static void SIP_DECL(watchdog)(struct ifnet *);
427 static int SIP_DECL(ioctl)(struct ifnet *, u_long, void *);
428 static int SIP_DECL(init)(struct ifnet *);
429 static void SIP_DECL(stop)(struct ifnet *, int);
430
431 static void SIP_DECL(shutdown)(void *);
432
433 static void SIP_DECL(reset)(struct sip_softc *);
434 static void SIP_DECL(rxdrain)(struct sip_softc *);
435 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
436 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
437 u_int16_t *);
438 static void SIP_DECL(tick)(void *);
439
440 #if !defined(DP83820)
441 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
442 #endif /* ! DP83820 */
443 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
444
445 #if defined(DP83820)
446 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
447 const struct pci_attach_args *, u_int8_t *);
448 #else
449 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
450 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
451 const struct pci_attach_args *, u_int8_t *);
452 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
453 const struct pci_attach_args *, u_int8_t *);
454 #endif /* DP83820 */
455
456 static int SIP_DECL(intr)(void *);
457 static void SIP_DECL(txintr)(struct sip_softc *);
458 static void SIP_DECL(rxintr)(struct sip_softc *);
459
460 #if defined(DP83820)
461 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
462 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
463 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
464 #else
465 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
466 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
467 static void SIP_DECL(sis900_mii_statchg)(struct device *);
468
469 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
470 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
471 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
472 #endif /* DP83820 */
473
474 static int SIP_DECL(mediachange)(struct ifnet *);
475 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
476
477 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
478 static void SIP_DECL(attach)(struct device *, struct device *, void *);
479
480 int SIP_DECL(copy_small) = 0;
481
482 #ifdef DP83820
483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
484 gsip_match, gsip_attach, NULL, NULL);
485 #else
486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
487 sip_match, sip_attach, NULL, NULL);
488 #endif
489
490 /*
491 * Descriptions of the variants of the SiS900.
492 */
493 struct sip_variant {
494 int (*sipv_mii_readreg)(struct device *, int, int);
495 void (*sipv_mii_writereg)(struct device *, int, int, int);
496 void (*sipv_mii_statchg)(struct device *);
497 void (*sipv_set_filter)(struct sip_softc *);
498 void (*sipv_read_macaddr)(struct sip_softc *,
499 const struct pci_attach_args *, u_int8_t *);
500 };
501
502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
503 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
504
505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
506 SIP_DECL(mii_bitbang_read),
507 SIP_DECL(mii_bitbang_write),
508 {
509 EROMAR_MDIO, /* MII_BIT_MDO */
510 EROMAR_MDIO, /* MII_BIT_MDI */
511 EROMAR_MDC, /* MII_BIT_MDC */
512 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
513 0, /* MII_BIT_DIR_PHY_HOST */
514 }
515 };
516
517 #if defined(DP83820)
518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
519 SIP_DECL(dp83820_mii_readreg),
520 SIP_DECL(dp83820_mii_writereg),
521 SIP_DECL(dp83820_mii_statchg),
522 SIP_DECL(dp83815_set_filter),
523 SIP_DECL(dp83820_read_macaddr),
524 };
525 #else
526 static const struct sip_variant SIP_DECL(variant_sis900) = {
527 SIP_DECL(sis900_mii_readreg),
528 SIP_DECL(sis900_mii_writereg),
529 SIP_DECL(sis900_mii_statchg),
530 SIP_DECL(sis900_set_filter),
531 SIP_DECL(sis900_read_macaddr),
532 };
533
534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
535 SIP_DECL(dp83815_mii_readreg),
536 SIP_DECL(dp83815_mii_writereg),
537 SIP_DECL(dp83815_mii_statchg),
538 SIP_DECL(dp83815_set_filter),
539 SIP_DECL(dp83815_read_macaddr),
540 };
541 #endif /* DP83820 */
542
543 /*
544 * Devices supported by this driver.
545 */
546 static const struct sip_product {
547 pci_vendor_id_t sip_vendor;
548 pci_product_id_t sip_product;
549 const char *sip_name;
550 const struct sip_variant *sip_variant;
551 } SIP_DECL(products)[] = {
552 #if defined(DP83820)
553 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
554 "NatSemi DP83820 Gigabit Ethernet",
555 &SIP_DECL(variant_dp83820) },
556 #else
557 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
558 "SiS 900 10/100 Ethernet",
559 &SIP_DECL(variant_sis900) },
560 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
561 "SiS 7016 10/100 Ethernet",
562 &SIP_DECL(variant_sis900) },
563
564 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
565 "NatSemi DP83815 10/100 Ethernet",
566 &SIP_DECL(variant_dp83815) },
567 #endif /* DP83820 */
568
569 { 0, 0,
570 NULL,
571 NULL },
572 };
573
574 static const struct sip_product *
575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
576 {
577 const struct sip_product *sip;
578
579 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
580 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
581 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
582 return (sip);
583 }
584 return (NULL);
585 }
586
587 #ifdef DP83820
588 /*
589 * I really hate stupid hardware vendors. There's a bit in the EEPROM
590 * which indicates if the card can do 64-bit data transfers. Unfortunately,
591 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
592 * which means we try to use 64-bit data transfers on those cards if we
593 * happen to be plugged into a 32-bit slot.
594 *
595 * What we do is use this table of cards known to be 64-bit cards. If
596 * you have a 64-bit card who's subsystem ID is not listed in this table,
597 * send the output of "pcictl dump ..." of the device to me so that your
598 * card will use the 64-bit data path when plugged into a 64-bit slot.
599 *
600 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
601 * June 30, 2002
602 */
603 static int
604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
605 {
606 static const struct {
607 pci_vendor_id_t c64_vendor;
608 pci_product_id_t c64_product;
609 } card64[] = {
610 /* Asante GigaNIX */
611 { 0x128a, 0x0002 },
612
613 /* Accton EN1407-T, Planex GN-1000TE */
614 { 0x1113, 0x1407 },
615
616 /* Netgear GA-621 */
617 { 0x1385, 0x621a },
618
619 /* SMC EZ Card */
620 { 0x10b8, 0x9462 },
621
622 { 0, 0}
623 };
624 pcireg_t subsys;
625 int i;
626
627 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
628
629 for (i = 0; card64[i].c64_vendor != 0; i++) {
630 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
631 PCI_PRODUCT(subsys) == card64[i].c64_product)
632 return (1);
633 }
634
635 return (0);
636 }
637 #endif /* DP83820 */
638
639 static int
640 SIP_DECL(match)(struct device *parent, struct cfdata *cf,
641 void *aux)
642 {
643 struct pci_attach_args *pa = aux;
644
645 if (SIP_DECL(lookup)(pa) != NULL)
646 return (1);
647
648 return (0);
649 }
650
651 static void
652 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
653 {
654 struct sip_softc *sc = (struct sip_softc *) self;
655 struct pci_attach_args *pa = aux;
656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
657 pci_chipset_tag_t pc = pa->pa_pc;
658 pci_intr_handle_t ih;
659 const char *intrstr = NULL;
660 bus_space_tag_t iot, memt;
661 bus_space_handle_t ioh, memh;
662 bus_dma_segment_t seg;
663 int ioh_valid, memh_valid;
664 int i, rseg, error;
665 const struct sip_product *sip;
666 u_int8_t enaddr[ETHER_ADDR_LEN];
667 pcireg_t pmreg;
668 #ifdef DP83820
669 pcireg_t memtype;
670 u_int32_t reg;
671 #endif /* DP83820 */
672
673 callout_init(&sc->sc_tick_ch);
674
675 sip = SIP_DECL(lookup)(pa);
676 if (sip == NULL) {
677 printf("\n");
678 panic(SIP_STR(attach) ": impossible");
679 }
680 sc->sc_rev = PCI_REVISION(pa->pa_class);
681
682 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
683
684 sc->sc_model = sip;
685
686 /*
687 * XXX Work-around broken PXE firmware on some boards.
688 *
689 * The DP83815 shares an address decoder with the MEM BAR
690 * and the ROM BAR. Make sure the ROM BAR is disabled,
691 * so that memory mapped access works.
692 */
693 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
694 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
695 ~PCI_MAPREG_ROM_ENABLE);
696
697 /*
698 * Map the device.
699 */
700 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
701 PCI_MAPREG_TYPE_IO, 0,
702 &iot, &ioh, NULL, NULL) == 0);
703 #ifdef DP83820
704 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
705 switch (memtype) {
706 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
707 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
708 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
709 memtype, 0, &memt, &memh, NULL, NULL) == 0);
710 break;
711 default:
712 memh_valid = 0;
713 }
714 #else
715 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
716 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
717 &memt, &memh, NULL, NULL) == 0);
718 #endif /* DP83820 */
719
720 if (memh_valid) {
721 sc->sc_st = memt;
722 sc->sc_sh = memh;
723 } else if (ioh_valid) {
724 sc->sc_st = iot;
725 sc->sc_sh = ioh;
726 } else {
727 printf("%s: unable to map device registers\n",
728 sc->sc_dev.dv_xname);
729 return;
730 }
731
732 sc->sc_dmat = pa->pa_dmat;
733
734 /*
735 * Make sure bus mastering is enabled. Also make sure
736 * Write/Invalidate is enabled if we're allowed to use it.
737 */
738 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
739 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
740 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
741 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
742 pmreg | PCI_COMMAND_MASTER_ENABLE);
743
744 /* power up chip */
745 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
746 NULL)) && error != EOPNOTSUPP) {
747 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
748 error);
749 return;
750 }
751
752 /*
753 * Map and establish our interrupt.
754 */
755 if (pci_intr_map(pa, &ih)) {
756 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
757 return;
758 }
759 intrstr = pci_intr_string(pc, ih);
760 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
761 if (sc->sc_ih == NULL) {
762 printf("%s: unable to establish interrupt",
763 sc->sc_dev.dv_xname);
764 if (intrstr != NULL)
765 printf(" at %s", intrstr);
766 printf("\n");
767 return;
768 }
769 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
770
771 SIMPLEQ_INIT(&sc->sc_txfreeq);
772 SIMPLEQ_INIT(&sc->sc_txdirtyq);
773
774 /*
775 * Allocate the control data structures, and create and load the
776 * DMA map for it.
777 */
778 if ((error = bus_dmamem_alloc(sc->sc_dmat,
779 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
780 0)) != 0) {
781 printf("%s: unable to allocate control data, error = %d\n",
782 sc->sc_dev.dv_xname, error);
783 goto fail_0;
784 }
785
786 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
787 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
788 BUS_DMA_COHERENT)) != 0) {
789 printf("%s: unable to map control data, error = %d\n",
790 sc->sc_dev.dv_xname, error);
791 goto fail_1;
792 }
793
794 if ((error = bus_dmamap_create(sc->sc_dmat,
795 sizeof(struct sip_control_data), 1,
796 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
797 printf("%s: unable to create control data DMA map, "
798 "error = %d\n", sc->sc_dev.dv_xname, error);
799 goto fail_2;
800 }
801
802 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
803 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
804 0)) != 0) {
805 printf("%s: unable to load control data DMA map, error = %d\n",
806 sc->sc_dev.dv_xname, error);
807 goto fail_3;
808 }
809
810 /*
811 * Create the transmit buffer DMA maps.
812 */
813 for (i = 0; i < SIP_TXQUEUELEN; i++) {
814 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
815 SIP_NTXSEGS, MCLBYTES, 0, 0,
816 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
817 printf("%s: unable to create tx DMA map %d, "
818 "error = %d\n", sc->sc_dev.dv_xname, i, error);
819 goto fail_4;
820 }
821 }
822
823 /*
824 * Create the receive buffer DMA maps.
825 */
826 for (i = 0; i < SIP_NRXDESC; i++) {
827 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
828 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
829 printf("%s: unable to create rx DMA map %d, "
830 "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 goto fail_5;
832 }
833 sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 }
835
836 /*
837 * Reset the chip to a known state.
838 */
839 SIP_DECL(reset)(sc);
840
841 /*
842 * Read the Ethernet address from the EEPROM. This might
843 * also fetch other stuff from the EEPROM and stash it
844 * in the softc.
845 */
846 sc->sc_cfg = 0;
847 #if !defined(DP83820)
848 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
849 SIP_SIS900_REV(sc,SIS_REV_900B))
850 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
851
852 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
853 SIP_SIS900_REV(sc,SIS_REV_960) ||
854 SIP_SIS900_REV(sc,SIS_REV_900B))
855 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
856 SIP_CFG) & CFG_EDBMASTEN);
857 #endif
858
859 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
860
861 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
862 ether_sprintf(enaddr));
863
864 /*
865 * Initialize the configuration register: aggressive PCI
866 * bus request algorithm, default backoff, default OW timer,
867 * default parity error detection.
868 *
869 * NOTE: "Big endian mode" is useless on the SiS900 and
870 * friends -- it affects packet data, not descriptors.
871 */
872 #ifdef DP83820
873 /*
874 * Cause the chip to load configuration data from the EEPROM.
875 */
876 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
877 for (i = 0; i < 10000; i++) {
878 delay(10);
879 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
880 PTSCR_EELOAD_EN) == 0)
881 break;
882 }
883 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
884 PTSCR_EELOAD_EN) {
885 printf("%s: timeout loading configuration from EEPROM\n",
886 sc->sc_dev.dv_xname);
887 return;
888 }
889
890 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
891
892 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
893 if (reg & CFG_PCI64_DET) {
894 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
895 /*
896 * Check to see if this card is 64-bit. If so, enable 64-bit
897 * data transfers.
898 *
899 * We can't use the DATA64_EN bit in the EEPROM, because
900 * vendors of 32-bit cards fail to clear that bit in many
901 * cases (yet the card still detects that it's in a 64-bit
902 * slot; go figure).
903 */
904 if (SIP_DECL(check_64bit)(pa)) {
905 sc->sc_cfg |= CFG_DATA64_EN;
906 printf(", using 64-bit data transfers");
907 }
908 printf("\n");
909 }
910
911 /*
912 * XXX Need some PCI flags indicating support for
913 * XXX 64-bit addressing.
914 */
915 #if 0
916 if (reg & CFG_M64ADDR)
917 sc->sc_cfg |= CFG_M64ADDR;
918 if (reg & CFG_T64ADDR)
919 sc->sc_cfg |= CFG_T64ADDR;
920 #endif
921
922 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
923 const char *sep = "";
924 printf("%s: using ", sc->sc_dev.dv_xname);
925 if (reg & CFG_EXT_125) {
926 sc->sc_cfg |= CFG_EXT_125;
927 printf("%s125MHz clock", sep);
928 sep = ", ";
929 }
930 if (reg & CFG_TBI_EN) {
931 sc->sc_cfg |= CFG_TBI_EN;
932 printf("%sten-bit interface", sep);
933 sep = ", ";
934 }
935 printf("\n");
936 }
937 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
938 (reg & CFG_MRM_DIS) != 0)
939 sc->sc_cfg |= CFG_MRM_DIS;
940 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
941 (reg & CFG_MWI_DIS) != 0)
942 sc->sc_cfg |= CFG_MWI_DIS;
943
944 /*
945 * Use the extended descriptor format on the DP83820. This
946 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
947 * checksumming.
948 */
949 sc->sc_cfg |= CFG_EXTSTS_EN;
950 #endif /* DP83820 */
951
952 /*
953 * Initialize our media structures and probe the MII.
954 */
955 sc->sc_mii.mii_ifp = ifp;
956 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
957 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
958 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
959 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
960 SIP_DECL(mediastatus));
961
962 /*
963 * XXX We cannot handle flow control on the DP83815.
964 */
965 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
966 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
967 MII_OFFSET_ANY, 0);
968 else
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, MIIF_DOPAUSE);
971 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
972 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
973 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
974 } else
975 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
976
977 ifp = &sc->sc_ethercom.ec_if;
978 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
979 ifp->if_softc = sc;
980 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
981 sc->sc_if_flags = ifp->if_flags;
982 ifp->if_ioctl = SIP_DECL(ioctl);
983 ifp->if_start = SIP_DECL(start);
984 ifp->if_watchdog = SIP_DECL(watchdog);
985 ifp->if_init = SIP_DECL(init);
986 ifp->if_stop = SIP_DECL(stop);
987 IFQ_SET_READY(&ifp->if_snd);
988
989 /*
990 * We can support 802.1Q VLAN-sized frames.
991 */
992 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993
994 #ifdef DP83820
995 /*
996 * And the DP83820 can do VLAN tagging in hardware, and
997 * support the jumbo Ethernet MTU.
998 */
999 sc->sc_ethercom.ec_capabilities |=
1000 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001
1002 /*
1003 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 * in hardware.
1005 */
1006 ifp->if_capabilities |=
1007 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1008 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1009 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1010 #endif /* DP83820 */
1011
1012 /*
1013 * Attach the interface.
1014 */
1015 if_attach(ifp);
1016 ether_ifattach(ifp, enaddr);
1017 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1018 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1019 sc->sc_prev.if_capenable = ifp->if_capenable;
1020 #if NRND > 0
1021 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1022 RND_TYPE_NET, 0);
1023 #endif
1024
1025 /*
1026 * The number of bytes that must be available in
1027 * the Tx FIFO before the bus master can DMA more
1028 * data into the FIFO.
1029 */
1030 sc->sc_tx_fill_thresh = 64 / 32;
1031
1032 /*
1033 * Start at a drain threshold of 512 bytes. We will
1034 * increase it if a DMA underrun occurs.
1035 *
1036 * XXX The minimum value of this variable should be
1037 * tuned. We may be able to improve performance
1038 * by starting with a lower value. That, however,
1039 * may trash the first few outgoing packets if the
1040 * PCI bus is saturated.
1041 */
1042 #ifdef DP83820
1043 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1044 #else
1045 sc->sc_tx_drain_thresh = 1504 / 32;
1046 #endif
1047
1048 /*
1049 * Initialize the Rx FIFO drain threshold.
1050 *
1051 * This is in units of 8 bytes.
1052 *
1053 * We should never set this value lower than 2; 14 bytes are
1054 * required to filter the packet.
1055 */
1056 sc->sc_rx_drain_thresh = 128 / 8;
1057
1058 #ifdef SIP_EVENT_COUNTERS
1059 /*
1060 * Attach event counters.
1061 */
1062 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1063 NULL, sc->sc_dev.dv_xname, "txsstall");
1064 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1065 NULL, sc->sc_dev.dv_xname, "txdstall");
1066 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "txforceintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "txdintr");
1070 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1071 NULL, sc->sc_dev.dv_xname, "txiintr");
1072 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "rxintr");
1074 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1075 NULL, sc->sc_dev.dv_xname, "hiberr");
1076 #ifndef DP83820
1077 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1078 NULL, sc->sc_dev.dv_xname, "rxpause");
1079 #endif /* !DP83820 */
1080 #ifdef DP83820
1081 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "rxpause");
1083 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "txpause");
1085 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "rxipsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1091 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1092 NULL, sc->sc_dev.dv_xname, "txipsum");
1093 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1094 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1095 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1096 NULL, sc->sc_dev.dv_xname, "txudpsum");
1097 #endif /* DP83820 */
1098 #endif /* SIP_EVENT_COUNTERS */
1099
1100 /*
1101 * Make sure the interface is shutdown during reboot.
1102 */
1103 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1104 if (sc->sc_sdhook == NULL)
1105 printf("%s: WARNING: unable to establish shutdown hook\n",
1106 sc->sc_dev.dv_xname);
1107 return;
1108
1109 /*
1110 * Free any resources we've allocated during the failed attach
1111 * attempt. Do this in reverse order and fall through.
1112 */
1113 fail_5:
1114 for (i = 0; i < SIP_NRXDESC; i++) {
1115 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1116 bus_dmamap_destroy(sc->sc_dmat,
1117 sc->sc_rxsoft[i].rxs_dmamap);
1118 }
1119 fail_4:
1120 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1121 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1122 bus_dmamap_destroy(sc->sc_dmat,
1123 sc->sc_txsoft[i].txs_dmamap);
1124 }
1125 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1126 fail_3:
1127 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1128 fail_2:
1129 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1130 sizeof(struct sip_control_data));
1131 fail_1:
1132 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1133 fail_0:
1134 return;
1135 }
1136
1137 /*
1138 * sip_shutdown:
1139 *
1140 * Make sure the interface is stopped at reboot time.
1141 */
1142 static void
1143 SIP_DECL(shutdown)(void *arg)
1144 {
1145 struct sip_softc *sc = arg;
1146
1147 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1148 }
1149
1150 /*
1151 * sip_start: [ifnet interface function]
1152 *
1153 * Start packet transmission on the interface.
1154 */
1155 static void
1156 SIP_DECL(start)(struct ifnet *ifp)
1157 {
1158 struct sip_softc *sc = ifp->if_softc;
1159 struct mbuf *m0;
1160 #ifndef DP83820
1161 struct mbuf *m;
1162 #endif
1163 struct sip_txsoft *txs;
1164 bus_dmamap_t dmamap;
1165 int error, nexttx, lasttx, seg;
1166 int ofree = sc->sc_txfree;
1167 #if 0
1168 int firsttx = sc->sc_txnext;
1169 #endif
1170 #ifdef DP83820
1171 struct m_tag *mtag;
1172 u_int32_t extsts;
1173 #endif
1174
1175 #ifndef DP83820
1176 /*
1177 * If we've been told to pause, don't transmit any more packets.
1178 */
1179 if (sc->sc_paused)
1180 ifp->if_flags |= IFF_OACTIVE;
1181 #endif
1182
1183 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1184 return;
1185
1186 /*
1187 * Loop through the send queue, setting up transmit descriptors
1188 * until we drain the queue, or use up all available transmit
1189 * descriptors.
1190 */
1191 for (;;) {
1192 /* Get a work queue entry. */
1193 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1194 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1195 break;
1196 }
1197
1198 /*
1199 * Grab a packet off the queue.
1200 */
1201 IFQ_POLL(&ifp->if_snd, m0);
1202 if (m0 == NULL)
1203 break;
1204 #ifndef DP83820
1205 m = NULL;
1206 #endif
1207
1208 dmamap = txs->txs_dmamap;
1209
1210 #ifdef DP83820
1211 /*
1212 * Load the DMA map. If this fails, the packet either
1213 * didn't fit in the allotted number of segments, or we
1214 * were short on resources. For the too-many-segments
1215 * case, we simply report an error and drop the packet,
1216 * since we can't sanely copy a jumbo packet to a single
1217 * buffer.
1218 */
1219 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1220 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1221 if (error) {
1222 if (error == EFBIG) {
1223 printf("%s: Tx packet consumes too many "
1224 "DMA segments, dropping...\n",
1225 sc->sc_dev.dv_xname);
1226 IFQ_DEQUEUE(&ifp->if_snd, m0);
1227 m_freem(m0);
1228 continue;
1229 }
1230 /*
1231 * Short on resources, just stop for now.
1232 */
1233 break;
1234 }
1235 #else /* DP83820 */
1236 /*
1237 * Load the DMA map. If this fails, the packet either
1238 * didn't fit in the alloted number of segments, or we
1239 * were short on resources. In this case, we'll copy
1240 * and try again.
1241 */
1242 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1243 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1244 MGETHDR(m, M_DONTWAIT, MT_DATA);
1245 if (m == NULL) {
1246 printf("%s: unable to allocate Tx mbuf\n",
1247 sc->sc_dev.dv_xname);
1248 break;
1249 }
1250 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1251 if (m0->m_pkthdr.len > MHLEN) {
1252 MCLGET(m, M_DONTWAIT);
1253 if ((m->m_flags & M_EXT) == 0) {
1254 printf("%s: unable to allocate Tx "
1255 "cluster\n", sc->sc_dev.dv_xname);
1256 m_freem(m);
1257 break;
1258 }
1259 }
1260 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1261 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1262 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1263 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1264 if (error) {
1265 printf("%s: unable to load Tx buffer, "
1266 "error = %d\n", sc->sc_dev.dv_xname, error);
1267 break;
1268 }
1269 }
1270 #endif /* DP83820 */
1271
1272 /*
1273 * Ensure we have enough descriptors free to describe
1274 * the packet. Note, we always reserve one descriptor
1275 * at the end of the ring as a termination point, to
1276 * prevent wrap-around.
1277 */
1278 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1279 /*
1280 * Not enough free descriptors to transmit this
1281 * packet. We haven't committed anything yet,
1282 * so just unload the DMA map, put the packet
1283 * back on the queue, and punt. Notify the upper
1284 * layer that there are not more slots left.
1285 *
1286 * XXX We could allocate an mbuf and copy, but
1287 * XXX is it worth it?
1288 */
1289 ifp->if_flags |= IFF_OACTIVE;
1290 bus_dmamap_unload(sc->sc_dmat, dmamap);
1291 #ifndef DP83820
1292 if (m != NULL)
1293 m_freem(m);
1294 #endif
1295 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1296 break;
1297 }
1298
1299 IFQ_DEQUEUE(&ifp->if_snd, m0);
1300 #ifndef DP83820
1301 if (m != NULL) {
1302 m_freem(m0);
1303 m0 = m;
1304 }
1305 #endif
1306
1307 /*
1308 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1309 */
1310
1311 /* Sync the DMA map. */
1312 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1313 BUS_DMASYNC_PREWRITE);
1314
1315 /*
1316 * Initialize the transmit descriptors.
1317 */
1318 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1319 seg < dmamap->dm_nsegs;
1320 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1321 /*
1322 * If this is the first descriptor we're
1323 * enqueueing, don't set the OWN bit just
1324 * yet. That could cause a race condition.
1325 * We'll do it below.
1326 */
1327 sc->sc_txdescs[nexttx].sipd_bufptr =
1328 htole32(dmamap->dm_segs[seg].ds_addr);
1329 sc->sc_txdescs[nexttx].sipd_cmdsts =
1330 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1331 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1332 #ifdef DP83820
1333 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1334 #endif /* DP83820 */
1335 lasttx = nexttx;
1336 }
1337
1338 /* Clear the MORE bit on the last segment. */
1339 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1340
1341 /*
1342 * If we're in the interrupt delay window, delay the
1343 * interrupt.
1344 */
1345 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1346 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1347 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1348 htole32(CMDSTS_INTR);
1349 sc->sc_txwin = 0;
1350 }
1351
1352 #ifdef DP83820
1353 /*
1354 * If VLANs are enabled and the packet has a VLAN tag, set
1355 * up the descriptor to encapsulate the packet for us.
1356 *
1357 * This apparently has to be on the last descriptor of
1358 * the packet.
1359 */
1360
1361 /*
1362 * Byte swapping is tricky. We need to provide the tag
1363 * in a network byte order. On a big-endian machine,
1364 * the byteorder is correct, but we need to swap it
1365 * anyway, because this will be undone by the outside
1366 * htole32(). That's why there must be an
1367 * unconditional swap instead of htons() inside.
1368 */
1369 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1370 sc->sc_txdescs[lasttx].sipd_extsts |=
1371 htole32(EXTSTS_VPKT |
1372 (bswap16(VLAN_TAG_VALUE(mtag)) &
1373 EXTSTS_VTCI));
1374 }
1375
1376 /*
1377 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1378 * checksumming, set up the descriptor to do this work
1379 * for us.
1380 *
1381 * This apparently has to be on the first descriptor of
1382 * the packet.
1383 *
1384 * Byte-swap constants so the compiler can optimize.
1385 */
1386 extsts = 0;
1387 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1388 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1389 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1390 extsts |= htole32(EXTSTS_IPPKT);
1391 }
1392 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1393 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1394 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1395 extsts |= htole32(EXTSTS_TCPPKT);
1396 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1397 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1398 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1399 extsts |= htole32(EXTSTS_UDPPKT);
1400 }
1401 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1402 #endif /* DP83820 */
1403
1404 /* Sync the descriptors we're using. */
1405 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1406 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1407
1408 /*
1409 * The entire packet is set up. Give the first descrptor
1410 * to the chip now.
1411 */
1412 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1413 htole32(CMDSTS_OWN);
1414 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1415 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1416
1417 /*
1418 * Store a pointer to the packet so we can free it later,
1419 * and remember what txdirty will be once the packet is
1420 * done.
1421 */
1422 txs->txs_mbuf = m0;
1423 txs->txs_firstdesc = sc->sc_txnext;
1424 txs->txs_lastdesc = lasttx;
1425
1426 /* Advance the tx pointer. */
1427 sc->sc_txfree -= dmamap->dm_nsegs;
1428 sc->sc_txnext = nexttx;
1429
1430 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1431 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1432
1433 #if NBPFILTER > 0
1434 /*
1435 * Pass the packet to any BPF listeners.
1436 */
1437 if (ifp->if_bpf)
1438 bpf_mtap(ifp->if_bpf, m0);
1439 #endif /* NBPFILTER > 0 */
1440 }
1441
1442 if (txs == NULL || sc->sc_txfree == 0) {
1443 /* No more slots left; notify upper layer. */
1444 ifp->if_flags |= IFF_OACTIVE;
1445 }
1446
1447 if (sc->sc_txfree != ofree) {
1448 /*
1449 * Start the transmit process. Note, the manual says
1450 * that if there are no pending transmissions in the
1451 * chip's internal queue (indicated by TXE being clear),
1452 * then the driver software must set the TXDP to the
1453 * first descriptor to be transmitted. However, if we
1454 * do this, it causes serious performance degredation on
1455 * the DP83820 under load, not setting TXDP doesn't seem
1456 * to adversely affect the SiS 900 or DP83815.
1457 *
1458 * Well, I guess it wouldn't be the first time a manual
1459 * has lied -- and they could be speaking of the NULL-
1460 * terminated descriptor list case, rather than OWN-
1461 * terminated rings.
1462 */
1463 #if 0
1464 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1465 CR_TXE) == 0) {
1466 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1467 SIP_CDTXADDR(sc, firsttx));
1468 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1469 }
1470 #else
1471 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1472 #endif
1473
1474 /* Set a watchdog timer in case the chip flakes out. */
1475 #ifdef DP83820
1476 /* Gigabit autonegotiation takes 5 seconds. */
1477 ifp->if_timer = 10;
1478 #else
1479 ifp->if_timer = 5;
1480 #endif
1481 }
1482 }
1483
1484 /*
1485 * sip_watchdog: [ifnet interface function]
1486 *
1487 * Watchdog timer handler.
1488 */
1489 static void
1490 SIP_DECL(watchdog)(struct ifnet *ifp)
1491 {
1492 struct sip_softc *sc = ifp->if_softc;
1493
1494 /*
1495 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1496 * If we get a timeout, try and sweep up transmit descriptors.
1497 * If we manage to sweep them all up, ignore the lack of
1498 * interrupt.
1499 */
1500 SIP_DECL(txintr)(sc);
1501
1502 if (sc->sc_txfree != SIP_NTXDESC) {
1503 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1504 ifp->if_oerrors++;
1505
1506 /* Reset the interface. */
1507 (void) SIP_DECL(init)(ifp);
1508 } else if (ifp->if_flags & IFF_DEBUG)
1509 printf("%s: recovered from device timeout\n",
1510 sc->sc_dev.dv_xname);
1511
1512 /* Try to get more packets going. */
1513 SIP_DECL(start)(ifp);
1514 }
1515
1516 /*
1517 * sip_ioctl: [ifnet interface function]
1518 *
1519 * Handle control requests from the operator.
1520 */
1521 static int
1522 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, void *data)
1523 {
1524 struct sip_softc *sc = ifp->if_softc;
1525 struct ifreq *ifr = (struct ifreq *)data;
1526 int s, error;
1527
1528 s = splnet();
1529
1530 switch (cmd) {
1531 case SIOCSIFMEDIA:
1532 /* Flow control requires full-duplex mode. */
1533 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1534 (ifr->ifr_media & IFM_FDX) == 0)
1535 ifr->ifr_media &= ~IFM_ETH_FMASK;
1536 #ifdef DP83820
1537 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1538 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1539 /* We can do both TXPAUSE and RXPAUSE. */
1540 ifr->ifr_media |=
1541 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1542 }
1543 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1544 }
1545 #else
1546 /* XXX */
1547 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1548 ifr->ifr_media &= ~IFM_ETH_FMASK;
1549
1550 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1551 if (ifr->ifr_media & IFM_FLOW) {
1552 /*
1553 * Both TXPAUSE and RXPAUSE must be set.
1554 * (SiS900 and DP83815 don't have PAUSE_ASYM
1555 * feature.)
1556 *
1557 * XXX Can SiS900 and DP83815 send PAUSE?
1558 */
1559 ifr->ifr_media |=
1560 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1561 }
1562 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1563 }
1564 #endif
1565 /* FALLTHROUGH */
1566 case SIOCGIFMEDIA:
1567 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1568 break;
1569 case SIOCSIFFLAGS:
1570 /* If the interface is up and running, only modify the receive
1571 * filter when setting promiscuous or debug mode. Otherwise
1572 * fall through to ether_ioctl, which will reset the chip.
1573 */
1574
1575 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1576 == (sc)->sc_ethercom.ec_capenable) \
1577 && ((sc)->sc_prev.is_vlan == \
1578 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1579
1580 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1581
1582 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1583 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1584 == (IFF_UP|IFF_RUNNING))
1585 && ((ifp->if_flags & (~RESETIGN))
1586 == (sc->sc_if_flags & (~RESETIGN)))
1587 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1588 /* Set up the receive filter. */
1589 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1590 error = 0;
1591 break;
1592 #undef RESETIGN
1593 }
1594 /* FALLTHROUGH */
1595 default:
1596 error = ether_ioctl(ifp, cmd, data);
1597 if (error == ENETRESET) {
1598 /*
1599 * Multicast list has changed; set the hardware filter
1600 * accordingly.
1601 */
1602 if (ifp->if_flags & IFF_RUNNING)
1603 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1604 error = 0;
1605 }
1606 break;
1607 }
1608
1609 /* Try to get more packets going. */
1610 SIP_DECL(start)(ifp);
1611
1612 sc->sc_if_flags = ifp->if_flags;
1613 splx(s);
1614 return (error);
1615 }
1616
1617 /*
1618 * sip_intr:
1619 *
1620 * Interrupt service routine.
1621 */
1622 static int
1623 SIP_DECL(intr)(void *arg)
1624 {
1625 struct sip_softc *sc = arg;
1626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1627 u_int32_t isr;
1628 int handled = 0;
1629
1630 /* Disable interrupts. */
1631 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1632
1633 for (;;) {
1634 /* Reading clears interrupt. */
1635 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1636 if ((isr & sc->sc_imr) == 0)
1637 break;
1638
1639 #if NRND > 0
1640 if (RND_ENABLED(&sc->rnd_source))
1641 rnd_add_uint32(&sc->rnd_source, isr);
1642 #endif
1643
1644 handled = 1;
1645
1646 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1647 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1648
1649 /* Grab any new packets. */
1650 SIP_DECL(rxintr)(sc);
1651
1652 if (isr & ISR_RXORN) {
1653 printf("%s: receive FIFO overrun\n",
1654 sc->sc_dev.dv_xname);
1655
1656 /* XXX adjust rx_drain_thresh? */
1657 }
1658
1659 if (isr & ISR_RXIDLE) {
1660 printf("%s: receive ring overrun\n",
1661 sc->sc_dev.dv_xname);
1662
1663 /* Get the receive process going again. */
1664 bus_space_write_4(sc->sc_st, sc->sc_sh,
1665 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1666 bus_space_write_4(sc->sc_st, sc->sc_sh,
1667 SIP_CR, CR_RXE);
1668 }
1669 }
1670
1671 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1672 #ifdef SIP_EVENT_COUNTERS
1673 if (isr & ISR_TXDESC)
1674 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1675 else if (isr & ISR_TXIDLE)
1676 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1677 #endif
1678
1679 /* Sweep up transmit descriptors. */
1680 SIP_DECL(txintr)(sc);
1681
1682 if (isr & ISR_TXURN) {
1683 u_int32_t thresh;
1684
1685 printf("%s: transmit FIFO underrun",
1686 sc->sc_dev.dv_xname);
1687
1688 thresh = sc->sc_tx_drain_thresh + 1;
1689 if (thresh <= TXCFG_DRTH &&
1690 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1691 (sc->sc_tx_fill_thresh * 32))) {
1692 printf("; increasing Tx drain "
1693 "threshold to %u bytes\n",
1694 thresh * 32);
1695 sc->sc_tx_drain_thresh = thresh;
1696 (void) SIP_DECL(init)(ifp);
1697 } else {
1698 (void) SIP_DECL(init)(ifp);
1699 printf("\n");
1700 }
1701 }
1702 }
1703
1704 #if !defined(DP83820)
1705 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1706 if (isr & ISR_PAUSE_ST) {
1707 sc->sc_paused = 1;
1708 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1709 ifp->if_flags |= IFF_OACTIVE;
1710 }
1711 if (isr & ISR_PAUSE_END) {
1712 sc->sc_paused = 0;
1713 ifp->if_flags &= ~IFF_OACTIVE;
1714 }
1715 }
1716 #endif /* ! DP83820 */
1717
1718 if (isr & ISR_HIBERR) {
1719 int want_init = 0;
1720
1721 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1722
1723 #define PRINTERR(bit, str) \
1724 do { \
1725 if ((isr & (bit)) != 0) { \
1726 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1727 printf("%s: %s\n", \
1728 sc->sc_dev.dv_xname, str); \
1729 want_init = 1; \
1730 } \
1731 } while (/*CONSTCOND*/0)
1732
1733 PRINTERR(ISR_DPERR, "parity error");
1734 PRINTERR(ISR_SSERR, "system error");
1735 PRINTERR(ISR_RMABT, "master abort");
1736 PRINTERR(ISR_RTABT, "target abort");
1737 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1738 /*
1739 * Ignore:
1740 * Tx reset complete
1741 * Rx reset complete
1742 */
1743 if (want_init)
1744 (void) SIP_DECL(init)(ifp);
1745 #undef PRINTERR
1746 }
1747 }
1748
1749 /* Re-enable interrupts. */
1750 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1751
1752 /* Try to get more packets going. */
1753 SIP_DECL(start)(ifp);
1754
1755 return (handled);
1756 }
1757
1758 /*
1759 * sip_txintr:
1760 *
1761 * Helper; handle transmit interrupts.
1762 */
1763 static void
1764 SIP_DECL(txintr)(struct sip_softc *sc)
1765 {
1766 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1767 struct sip_txsoft *txs;
1768 u_int32_t cmdsts;
1769
1770 #ifndef DP83820
1771 if (sc->sc_paused == 0)
1772 #endif
1773 ifp->if_flags &= ~IFF_OACTIVE;
1774
1775 /*
1776 * Go through our Tx list and free mbufs for those
1777 * frames which have been transmitted.
1778 */
1779 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1780 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1781 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1782
1783 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1784 if (cmdsts & CMDSTS_OWN)
1785 break;
1786
1787 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1788
1789 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1790
1791 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1792 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1793 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1794 m_freem(txs->txs_mbuf);
1795 txs->txs_mbuf = NULL;
1796
1797 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1798
1799 /*
1800 * Check for errors and collisions.
1801 */
1802 if (cmdsts &
1803 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1804 ifp->if_oerrors++;
1805 if (cmdsts & CMDSTS_Tx_EC)
1806 ifp->if_collisions += 16;
1807 if (ifp->if_flags & IFF_DEBUG) {
1808 if (cmdsts & CMDSTS_Tx_ED)
1809 printf("%s: excessive deferral\n",
1810 sc->sc_dev.dv_xname);
1811 if (cmdsts & CMDSTS_Tx_EC)
1812 printf("%s: excessive collisions\n",
1813 sc->sc_dev.dv_xname);
1814 }
1815 } else {
1816 /* Packet was transmitted successfully. */
1817 ifp->if_opackets++;
1818 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1819 }
1820 }
1821
1822 /*
1823 * If there are no more pending transmissions, cancel the watchdog
1824 * timer.
1825 */
1826 if (txs == NULL) {
1827 ifp->if_timer = 0;
1828 sc->sc_txwin = 0;
1829 }
1830 }
1831
1832 #if defined(DP83820)
1833 /*
1834 * sip_rxintr:
1835 *
1836 * Helper; handle receive interrupts.
1837 */
1838 static void
1839 SIP_DECL(rxintr)(struct sip_softc *sc)
1840 {
1841 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1842 struct sip_rxsoft *rxs;
1843 struct mbuf *m;
1844 u_int32_t cmdsts, extsts;
1845 int i, len;
1846
1847 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1848 rxs = &sc->sc_rxsoft[i];
1849
1850 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1851
1852 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1853 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1854 len = CMDSTS_SIZE(cmdsts);
1855
1856 /*
1857 * NOTE: OWN is set if owned by _consumer_. We're the
1858 * consumer of the receive ring, so if the bit is clear,
1859 * we have processed all of the packets.
1860 */
1861 if ((cmdsts & CMDSTS_OWN) == 0) {
1862 /*
1863 * We have processed all of the receive buffers.
1864 */
1865 break;
1866 }
1867
1868 if (__predict_false(sc->sc_rxdiscard)) {
1869 SIP_INIT_RXDESC(sc, i);
1870 if ((cmdsts & CMDSTS_MORE) == 0) {
1871 /* Reset our state. */
1872 sc->sc_rxdiscard = 0;
1873 }
1874 continue;
1875 }
1876
1877 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1878 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1879
1880 m = rxs->rxs_mbuf;
1881
1882 /*
1883 * Add a new receive buffer to the ring.
1884 */
1885 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1886 /*
1887 * Failed, throw away what we've done so
1888 * far, and discard the rest of the packet.
1889 */
1890 ifp->if_ierrors++;
1891 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1892 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1893 SIP_INIT_RXDESC(sc, i);
1894 if (cmdsts & CMDSTS_MORE)
1895 sc->sc_rxdiscard = 1;
1896 if (sc->sc_rxhead != NULL)
1897 m_freem(sc->sc_rxhead);
1898 SIP_RXCHAIN_RESET(sc);
1899 continue;
1900 }
1901
1902 SIP_RXCHAIN_LINK(sc, m);
1903
1904 m->m_len = len;
1905
1906 /*
1907 * If this is not the end of the packet, keep
1908 * looking.
1909 */
1910 if (cmdsts & CMDSTS_MORE) {
1911 sc->sc_rxlen += len;
1912 continue;
1913 }
1914
1915 /*
1916 * Okay, we have the entire packet now. The chip includes
1917 * the FCS, so we need to trim it.
1918 */
1919 m->m_len -= ETHER_CRC_LEN;
1920
1921 *sc->sc_rxtailp = NULL;
1922 len = m->m_len + sc->sc_rxlen;
1923 m = sc->sc_rxhead;
1924
1925 SIP_RXCHAIN_RESET(sc);
1926
1927 /*
1928 * If an error occurred, update stats and drop the packet.
1929 */
1930 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1931 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1932 ifp->if_ierrors++;
1933 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1934 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1935 /* Receive overrun handled elsewhere. */
1936 printf("%s: receive descriptor error\n",
1937 sc->sc_dev.dv_xname);
1938 }
1939 #define PRINTERR(bit, str) \
1940 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1941 (cmdsts & (bit)) != 0) \
1942 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1943 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1944 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1945 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1946 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1947 #undef PRINTERR
1948 m_freem(m);
1949 continue;
1950 }
1951
1952 /*
1953 * If the packet is small enough to fit in a
1954 * single header mbuf, allocate one and copy
1955 * the data into it. This greatly reduces
1956 * memory consumption when we receive lots
1957 * of small packets.
1958 */
1959 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1960 struct mbuf *nm;
1961 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1962 if (nm == NULL) {
1963 ifp->if_ierrors++;
1964 m_freem(m);
1965 continue;
1966 }
1967 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1968 nm->m_data += 2;
1969 nm->m_pkthdr.len = nm->m_len = len;
1970 m_copydata(m, 0, len, mtod(nm, void *));
1971 m_freem(m);
1972 m = nm;
1973 }
1974 #ifndef __NO_STRICT_ALIGNMENT
1975 else {
1976 /*
1977 * The DP83820's receive buffers must be 4-byte
1978 * aligned. But this means that the data after
1979 * the Ethernet header is misaligned. To compensate,
1980 * we have artificially shortened the buffer size
1981 * in the descriptor, and we do an overlapping copy
1982 * of the data two bytes further in (in the first
1983 * buffer of the chain only).
1984 */
1985 memmove(mtod(m, char *) + 2, mtod(m, void *),
1986 m->m_len);
1987 m->m_data += 2;
1988 }
1989 #endif /* ! __NO_STRICT_ALIGNMENT */
1990
1991 /*
1992 * If VLANs are enabled, VLAN packets have been unwrapped
1993 * for us. Associate the tag with the packet.
1994 */
1995
1996 /*
1997 * Again, byte swapping is tricky. Hardware provided
1998 * the tag in the network byte order, but extsts was
1999 * passed through le32toh() in the meantime. On a
2000 * big-endian machine, we need to swap it again. On a
2001 * little-endian machine, we need to convert from the
2002 * network to host byte order. This means that we must
2003 * swap it in any case, so unconditional swap instead
2004 * of htons() is used.
2005 */
2006 if ((extsts & EXTSTS_VPKT) != 0) {
2007 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2008 continue);
2009 }
2010
2011 /*
2012 * Set the incoming checksum information for the
2013 * packet.
2014 */
2015 if ((extsts & EXTSTS_IPPKT) != 0) {
2016 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2017 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2018 if (extsts & EXTSTS_Rx_IPERR)
2019 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2020 if (extsts & EXTSTS_TCPPKT) {
2021 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2022 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2023 if (extsts & EXTSTS_Rx_TCPERR)
2024 m->m_pkthdr.csum_flags |=
2025 M_CSUM_TCP_UDP_BAD;
2026 } else if (extsts & EXTSTS_UDPPKT) {
2027 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2028 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2029 if (extsts & EXTSTS_Rx_UDPERR)
2030 m->m_pkthdr.csum_flags |=
2031 M_CSUM_TCP_UDP_BAD;
2032 }
2033 }
2034
2035 ifp->if_ipackets++;
2036 m->m_pkthdr.rcvif = ifp;
2037 m->m_pkthdr.len = len;
2038
2039 #if NBPFILTER > 0
2040 /*
2041 * Pass this up to any BPF listeners, but only
2042 * pass if up the stack if it's for us.
2043 */
2044 if (ifp->if_bpf)
2045 bpf_mtap(ifp->if_bpf, m);
2046 #endif /* NBPFILTER > 0 */
2047
2048 /* Pass it on. */
2049 (*ifp->if_input)(ifp, m);
2050 }
2051
2052 /* Update the receive pointer. */
2053 sc->sc_rxptr = i;
2054 }
2055 #else /* ! DP83820 */
2056 /*
2057 * sip_rxintr:
2058 *
2059 * Helper; handle receive interrupts.
2060 */
2061 static void
2062 SIP_DECL(rxintr)(struct sip_softc *sc)
2063 {
2064 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2065 struct sip_rxsoft *rxs;
2066 struct mbuf *m;
2067 u_int32_t cmdsts;
2068 int i, len;
2069
2070 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2071 rxs = &sc->sc_rxsoft[i];
2072
2073 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2074
2075 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2076
2077 /*
2078 * NOTE: OWN is set if owned by _consumer_. We're the
2079 * consumer of the receive ring, so if the bit is clear,
2080 * we have processed all of the packets.
2081 */
2082 if ((cmdsts & CMDSTS_OWN) == 0) {
2083 /*
2084 * We have processed all of the receive buffers.
2085 */
2086 break;
2087 }
2088
2089 /*
2090 * If any collisions were seen on the wire, count one.
2091 */
2092 if (cmdsts & CMDSTS_Rx_COL)
2093 ifp->if_collisions++;
2094
2095 /*
2096 * If an error occurred, update stats, clear the status
2097 * word, and leave the packet buffer in place. It will
2098 * simply be reused the next time the ring comes around.
2099 */
2100 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2101 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2102 ifp->if_ierrors++;
2103 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2104 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2105 /* Receive overrun handled elsewhere. */
2106 printf("%s: receive descriptor error\n",
2107 sc->sc_dev.dv_xname);
2108 }
2109 #define PRINTERR(bit, str) \
2110 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2111 (cmdsts & (bit)) != 0) \
2112 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2113 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2114 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2115 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2116 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2117 #undef PRINTERR
2118 SIP_INIT_RXDESC(sc, i);
2119 continue;
2120 }
2121
2122 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2123 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2124
2125 /*
2126 * No errors; receive the packet. Note, the SiS 900
2127 * includes the CRC with every packet.
2128 */
2129 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2130
2131 #ifdef __NO_STRICT_ALIGNMENT
2132 /*
2133 * If the packet is small enough to fit in a
2134 * single header mbuf, allocate one and copy
2135 * the data into it. This greatly reduces
2136 * memory consumption when we receive lots
2137 * of small packets.
2138 *
2139 * Otherwise, we add a new buffer to the receive
2140 * chain. If this fails, we drop the packet and
2141 * recycle the old buffer.
2142 */
2143 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2144 MGETHDR(m, M_DONTWAIT, MT_DATA);
2145 if (m == NULL)
2146 goto dropit;
2147 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2148 memcpy(mtod(m, void *),
2149 mtod(rxs->rxs_mbuf, void *), len);
2150 SIP_INIT_RXDESC(sc, i);
2151 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2152 rxs->rxs_dmamap->dm_mapsize,
2153 BUS_DMASYNC_PREREAD);
2154 } else {
2155 m = rxs->rxs_mbuf;
2156 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2157 dropit:
2158 ifp->if_ierrors++;
2159 SIP_INIT_RXDESC(sc, i);
2160 bus_dmamap_sync(sc->sc_dmat,
2161 rxs->rxs_dmamap, 0,
2162 rxs->rxs_dmamap->dm_mapsize,
2163 BUS_DMASYNC_PREREAD);
2164 continue;
2165 }
2166 }
2167 #else
2168 /*
2169 * The SiS 900's receive buffers must be 4-byte aligned.
2170 * But this means that the data after the Ethernet header
2171 * is misaligned. We must allocate a new buffer and
2172 * copy the data, shifted forward 2 bytes.
2173 */
2174 MGETHDR(m, M_DONTWAIT, MT_DATA);
2175 if (m == NULL) {
2176 dropit:
2177 ifp->if_ierrors++;
2178 SIP_INIT_RXDESC(sc, i);
2179 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2180 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2181 continue;
2182 }
2183 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2184 if (len > (MHLEN - 2)) {
2185 MCLGET(m, M_DONTWAIT);
2186 if ((m->m_flags & M_EXT) == 0) {
2187 m_freem(m);
2188 goto dropit;
2189 }
2190 }
2191 m->m_data += 2;
2192
2193 /*
2194 * Note that we use clusters for incoming frames, so the
2195 * buffer is virtually contiguous.
2196 */
2197 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2198
2199 /* Allow the receive descriptor to continue using its mbuf. */
2200 SIP_INIT_RXDESC(sc, i);
2201 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2202 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2203 #endif /* __NO_STRICT_ALIGNMENT */
2204
2205 ifp->if_ipackets++;
2206 m->m_pkthdr.rcvif = ifp;
2207 m->m_pkthdr.len = m->m_len = len;
2208
2209 #if NBPFILTER > 0
2210 /*
2211 * Pass this up to any BPF listeners, but only
2212 * pass if up the stack if it's for us.
2213 */
2214 if (ifp->if_bpf)
2215 bpf_mtap(ifp->if_bpf, m);
2216 #endif /* NBPFILTER > 0 */
2217
2218 /* Pass it on. */
2219 (*ifp->if_input)(ifp, m);
2220 }
2221
2222 /* Update the receive pointer. */
2223 sc->sc_rxptr = i;
2224 }
2225 #endif /* DP83820 */
2226
2227 /*
2228 * sip_tick:
2229 *
2230 * One second timer, used to tick the MII.
2231 */
2232 static void
2233 SIP_DECL(tick)(void *arg)
2234 {
2235 struct sip_softc *sc = arg;
2236 int s;
2237
2238 s = splnet();
2239 #ifdef DP83820
2240 #ifdef SIP_EVENT_COUNTERS
2241 /* Read PAUSE related counts from MIB registers. */
2242 sc->sc_ev_rxpause.ev_count +=
2243 bus_space_read_4(sc->sc_st, sc->sc_sh,
2244 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2245 sc->sc_ev_txpause.ev_count +=
2246 bus_space_read_4(sc->sc_st, sc->sc_sh,
2247 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2248 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2249 #endif /* SIP_EVENT_COUNTERS */
2250 #endif /* DP83820 */
2251 mii_tick(&sc->sc_mii);
2252 splx(s);
2253
2254 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2255 }
2256
2257 /*
2258 * sip_reset:
2259 *
2260 * Perform a soft reset on the SiS 900.
2261 */
2262 static void
2263 SIP_DECL(reset)(struct sip_softc *sc)
2264 {
2265 bus_space_tag_t st = sc->sc_st;
2266 bus_space_handle_t sh = sc->sc_sh;
2267 int i;
2268
2269 bus_space_write_4(st, sh, SIP_IER, 0);
2270 bus_space_write_4(st, sh, SIP_IMR, 0);
2271 bus_space_write_4(st, sh, SIP_RFCR, 0);
2272 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2273
2274 for (i = 0; i < SIP_TIMEOUT; i++) {
2275 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2276 break;
2277 delay(2);
2278 }
2279
2280 if (i == SIP_TIMEOUT)
2281 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2282
2283 delay(1000);
2284
2285 #ifdef DP83820
2286 /*
2287 * Set the general purpose I/O bits. Do it here in case we
2288 * need to have GPIO set up to talk to the media interface.
2289 */
2290 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2291 delay(1000);
2292 #endif /* DP83820 */
2293 }
2294
2295 /*
2296 * sip_init: [ ifnet interface function ]
2297 *
2298 * Initialize the interface. Must be called at splnet().
2299 */
2300 static int
2301 SIP_DECL(init)(struct ifnet *ifp)
2302 {
2303 struct sip_softc *sc = ifp->if_softc;
2304 bus_space_tag_t st = sc->sc_st;
2305 bus_space_handle_t sh = sc->sc_sh;
2306 struct sip_txsoft *txs;
2307 struct sip_rxsoft *rxs;
2308 struct sip_desc *sipd;
2309 #if defined(DP83820)
2310 u_int32_t reg;
2311 #endif
2312 int i, error = 0;
2313
2314 /*
2315 * Cancel any pending I/O.
2316 */
2317 SIP_DECL(stop)(ifp, 0);
2318
2319 /*
2320 * Reset the chip to a known state.
2321 */
2322 SIP_DECL(reset)(sc);
2323
2324 #if !defined(DP83820)
2325 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2326 /*
2327 * DP83815 manual, page 78:
2328 * 4.4 Recommended Registers Configuration
2329 * For optimum performance of the DP83815, version noted
2330 * as DP83815CVNG (SRR = 203h), the listed register
2331 * modifications must be followed in sequence...
2332 *
2333 * It's not clear if this should be 302h or 203h because that
2334 * chip name is listed as SRR 302h in the description of the
2335 * SRR register. However, my revision 302h DP83815 on the
2336 * Netgear FA311 purchased in 02/2001 needs these settings
2337 * to avoid tons of errors in AcceptPerfectMatch (non-
2338 * IFF_PROMISC) mode. I do not know if other revisions need
2339 * this set or not. [briggs -- 09 March 2001]
2340 *
2341 * Note that only the low-order 12 bits of 0xe4 are documented
2342 * and that this sets reserved bits in that register.
2343 */
2344 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2345
2346 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2347 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2348 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2349 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2350
2351 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2352 }
2353 #endif /* ! DP83820 */
2354
2355 /*
2356 * Initialize the transmit descriptor ring.
2357 */
2358 for (i = 0; i < SIP_NTXDESC; i++) {
2359 sipd = &sc->sc_txdescs[i];
2360 memset(sipd, 0, sizeof(struct sip_desc));
2361 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2362 }
2363 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2364 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2365 sc->sc_txfree = SIP_NTXDESC;
2366 sc->sc_txnext = 0;
2367 sc->sc_txwin = 0;
2368
2369 /*
2370 * Initialize the transmit job descriptors.
2371 */
2372 SIMPLEQ_INIT(&sc->sc_txfreeq);
2373 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2374 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2375 txs = &sc->sc_txsoft[i];
2376 txs->txs_mbuf = NULL;
2377 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2378 }
2379
2380 /*
2381 * Initialize the receive descriptor and receive job
2382 * descriptor rings.
2383 */
2384 for (i = 0; i < SIP_NRXDESC; i++) {
2385 rxs = &sc->sc_rxsoft[i];
2386 if (rxs->rxs_mbuf == NULL) {
2387 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2388 printf("%s: unable to allocate or map rx "
2389 "buffer %d, error = %d\n",
2390 sc->sc_dev.dv_xname, i, error);
2391 /*
2392 * XXX Should attempt to run with fewer receive
2393 * XXX buffers instead of just failing.
2394 */
2395 SIP_DECL(rxdrain)(sc);
2396 goto out;
2397 }
2398 } else
2399 SIP_INIT_RXDESC(sc, i);
2400 }
2401 sc->sc_rxptr = 0;
2402 #ifdef DP83820
2403 sc->sc_rxdiscard = 0;
2404 SIP_RXCHAIN_RESET(sc);
2405 #endif /* DP83820 */
2406
2407 /*
2408 * Set the configuration register; it's already initialized
2409 * in sip_attach().
2410 */
2411 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2412
2413 /*
2414 * Initialize the prototype TXCFG register.
2415 */
2416 #if defined(DP83820)
2417 sc->sc_txcfg = TXCFG_MXDMA_512;
2418 sc->sc_rxcfg = RXCFG_MXDMA_512;
2419 #else
2420 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2421 SIP_SIS900_REV(sc, SIS_REV_960) ||
2422 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2423 (sc->sc_cfg & CFG_EDBMASTEN)) {
2424 sc->sc_txcfg = TXCFG_MXDMA_64;
2425 sc->sc_rxcfg = RXCFG_MXDMA_64;
2426 } else {
2427 sc->sc_txcfg = TXCFG_MXDMA_512;
2428 sc->sc_rxcfg = RXCFG_MXDMA_512;
2429 }
2430 #endif /* DP83820 */
2431
2432 sc->sc_txcfg |= TXCFG_ATP |
2433 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2434 sc->sc_tx_drain_thresh;
2435 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2436
2437 /*
2438 * Initialize the receive drain threshold if we have never
2439 * done so.
2440 */
2441 if (sc->sc_rx_drain_thresh == 0) {
2442 /*
2443 * XXX This value should be tuned. This is set to the
2444 * maximum of 248 bytes, and we may be able to improve
2445 * performance by decreasing it (although we should never
2446 * set this value lower than 2; 14 bytes are required to
2447 * filter the packet).
2448 */
2449 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2450 }
2451
2452 /*
2453 * Initialize the prototype RXCFG register.
2454 */
2455 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2456 #ifdef DP83820
2457 /*
2458 * Accept long packets (including FCS) so we can handle
2459 * 802.1q-tagged frames and jumbo frames properly.
2460 */
2461 if (ifp->if_mtu > ETHERMTU ||
2462 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2463 sc->sc_rxcfg |= RXCFG_ALP;
2464
2465 /*
2466 * Checksum offloading is disabled if the user selects an MTU
2467 * larger than 8109. (FreeBSD says 8152, but there is emperical
2468 * evidence that >8109 does not work on some boards, such as the
2469 * Planex GN-1000TE).
2470 */
2471 if (ifp->if_mtu > 8109 &&
2472 (ifp->if_capenable &
2473 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2474 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2475 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2476 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2477 "disabled.\n", sc->sc_dev.dv_xname);
2478 ifp->if_capenable &=
2479 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2480 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2481 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2482 ifp->if_csum_flags_tx = 0;
2483 ifp->if_csum_flags_rx = 0;
2484 }
2485 #else
2486 /*
2487 * Accept packets >1518 bytes (including FCS) so we can handle
2488 * 802.1q-tagged frames properly.
2489 */
2490 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2491 sc->sc_rxcfg |= RXCFG_ALP;
2492 #endif
2493 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2494
2495 #ifdef DP83820
2496 /*
2497 * Initialize the VLAN/IP receive control register.
2498 * We enable checksum computation on all incoming
2499 * packets, and do not reject packets w/ bad checksums.
2500 */
2501 reg = 0;
2502 if (ifp->if_capenable &
2503 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2504 reg |= VRCR_IPEN;
2505 if (VLAN_ATTACHED(&sc->sc_ethercom))
2506 reg |= VRCR_VTDEN|VRCR_VTREN;
2507 bus_space_write_4(st, sh, SIP_VRCR, reg);
2508
2509 /*
2510 * Initialize the VLAN/IP transmit control register.
2511 * We enable outgoing checksum computation on a
2512 * per-packet basis.
2513 */
2514 reg = 0;
2515 if (ifp->if_capenable &
2516 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2517 reg |= VTCR_PPCHK;
2518 if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 reg |= VTCR_VPPTI;
2520 bus_space_write_4(st, sh, SIP_VTCR, reg);
2521
2522 /*
2523 * If we're using VLANs, initialize the VLAN data register.
2524 * To understand why we bswap the VLAN Ethertype, see section
2525 * 4.2.36 of the DP83820 manual.
2526 */
2527 if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2529 #endif /* DP83820 */
2530
2531 /*
2532 * Give the transmit and receive rings to the chip.
2533 */
2534 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2535 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2536
2537 /*
2538 * Initialize the interrupt mask.
2539 */
2540 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2541 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2542 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2543
2544 /* Set up the receive filter. */
2545 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2546
2547 #ifdef DP83820
2548 /*
2549 * Tune sc_rx_flow_thresh.
2550 * XXX "More than 8KB" is too short for jumbo frames.
2551 * XXX TODO: Threshold value should be user-settable.
2552 */
2553 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2554 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2555 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2556 #endif
2557
2558 /*
2559 * Set the current media. Do this after initializing the prototype
2560 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2561 * control.
2562 */
2563 mii_mediachg(&sc->sc_mii);
2564
2565 #ifdef DP83820
2566 /*
2567 * Set the interrupt hold-off timer to 100us.
2568 */
2569 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2570 #endif
2571
2572 /*
2573 * Enable interrupts.
2574 */
2575 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2576
2577 /*
2578 * Start the transmit and receive processes.
2579 */
2580 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2581
2582 /*
2583 * Start the one second MII clock.
2584 */
2585 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2586
2587 /*
2588 * ...all done!
2589 */
2590 ifp->if_flags |= IFF_RUNNING;
2591 ifp->if_flags &= ~IFF_OACTIVE;
2592 sc->sc_if_flags = ifp->if_flags;
2593 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2594 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2595 sc->sc_prev.if_capenable = ifp->if_capenable;
2596
2597 out:
2598 if (error)
2599 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2600 return (error);
2601 }
2602
2603 /*
2604 * sip_drain:
2605 *
2606 * Drain the receive queue.
2607 */
2608 static void
2609 SIP_DECL(rxdrain)(struct sip_softc *sc)
2610 {
2611 struct sip_rxsoft *rxs;
2612 int i;
2613
2614 for (i = 0; i < SIP_NRXDESC; i++) {
2615 rxs = &sc->sc_rxsoft[i];
2616 if (rxs->rxs_mbuf != NULL) {
2617 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2618 m_freem(rxs->rxs_mbuf);
2619 rxs->rxs_mbuf = NULL;
2620 }
2621 }
2622 }
2623
2624 /*
2625 * sip_stop: [ ifnet interface function ]
2626 *
2627 * Stop transmission on the interface.
2628 */
2629 static void
2630 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2631 {
2632 struct sip_softc *sc = ifp->if_softc;
2633 bus_space_tag_t st = sc->sc_st;
2634 bus_space_handle_t sh = sc->sc_sh;
2635 struct sip_txsoft *txs;
2636 u_int32_t cmdsts = 0; /* DEBUG */
2637
2638 /*
2639 * Stop the one second clock.
2640 */
2641 callout_stop(&sc->sc_tick_ch);
2642
2643 /* Down the MII. */
2644 mii_down(&sc->sc_mii);
2645
2646 /*
2647 * Disable interrupts.
2648 */
2649 bus_space_write_4(st, sh, SIP_IER, 0);
2650
2651 /*
2652 * Stop receiver and transmitter.
2653 */
2654 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2655
2656 /*
2657 * Release any queued transmit buffers.
2658 */
2659 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2660 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2661 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2662 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2663 CMDSTS_INTR) == 0)
2664 printf("%s: sip_stop: last descriptor does not "
2665 "have INTR bit set\n", sc->sc_dev.dv_xname);
2666 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2667 #ifdef DIAGNOSTIC
2668 if (txs->txs_mbuf == NULL) {
2669 printf("%s: dirty txsoft with no mbuf chain\n",
2670 sc->sc_dev.dv_xname);
2671 panic("sip_stop");
2672 }
2673 #endif
2674 cmdsts |= /* DEBUG */
2675 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2676 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2677 m_freem(txs->txs_mbuf);
2678 txs->txs_mbuf = NULL;
2679 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2680 }
2681
2682 if (disable)
2683 SIP_DECL(rxdrain)(sc);
2684
2685 /*
2686 * Mark the interface down and cancel the watchdog timer.
2687 */
2688 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2689 ifp->if_timer = 0;
2690
2691 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2692 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2693 printf("%s: sip_stop: no INTR bits set in dirty tx "
2694 "descriptors\n", sc->sc_dev.dv_xname);
2695 }
2696
2697 /*
2698 * sip_read_eeprom:
2699 *
2700 * Read data from the serial EEPROM.
2701 */
2702 static void
2703 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2704 u_int16_t *data)
2705 {
2706 bus_space_tag_t st = sc->sc_st;
2707 bus_space_handle_t sh = sc->sc_sh;
2708 u_int16_t reg;
2709 int i, x;
2710
2711 for (i = 0; i < wordcnt; i++) {
2712 /* Send CHIP SELECT. */
2713 reg = EROMAR_EECS;
2714 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2715
2716 /* Shift in the READ opcode. */
2717 for (x = 3; x > 0; x--) {
2718 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2719 reg |= EROMAR_EEDI;
2720 else
2721 reg &= ~EROMAR_EEDI;
2722 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2723 bus_space_write_4(st, sh, SIP_EROMAR,
2724 reg | EROMAR_EESK);
2725 delay(4);
2726 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2727 delay(4);
2728 }
2729
2730 /* Shift in address. */
2731 for (x = 6; x > 0; x--) {
2732 if ((word + i) & (1 << (x - 1)))
2733 reg |= EROMAR_EEDI;
2734 else
2735 reg &= ~EROMAR_EEDI;
2736 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2737 bus_space_write_4(st, sh, SIP_EROMAR,
2738 reg | EROMAR_EESK);
2739 delay(4);
2740 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2741 delay(4);
2742 }
2743
2744 /* Shift out data. */
2745 reg = EROMAR_EECS;
2746 data[i] = 0;
2747 for (x = 16; x > 0; x--) {
2748 bus_space_write_4(st, sh, SIP_EROMAR,
2749 reg | EROMAR_EESK);
2750 delay(4);
2751 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2752 data[i] |= (1 << (x - 1));
2753 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2754 delay(4);
2755 }
2756
2757 /* Clear CHIP SELECT. */
2758 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2759 delay(4);
2760 }
2761 }
2762
2763 /*
2764 * sip_add_rxbuf:
2765 *
2766 * Add a receive buffer to the indicated descriptor.
2767 */
2768 static int
2769 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2770 {
2771 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2772 struct mbuf *m;
2773 int error;
2774
2775 MGETHDR(m, M_DONTWAIT, MT_DATA);
2776 if (m == NULL)
2777 return (ENOBUFS);
2778 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2779
2780 MCLGET(m, M_DONTWAIT);
2781 if ((m->m_flags & M_EXT) == 0) {
2782 m_freem(m);
2783 return (ENOBUFS);
2784 }
2785
2786 #if defined(DP83820)
2787 m->m_len = SIP_RXBUF_LEN;
2788 #endif /* DP83820 */
2789
2790 if (rxs->rxs_mbuf != NULL)
2791 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2792
2793 rxs->rxs_mbuf = m;
2794
2795 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2796 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2797 BUS_DMA_READ|BUS_DMA_NOWAIT);
2798 if (error) {
2799 printf("%s: can't load rx DMA map %d, error = %d\n",
2800 sc->sc_dev.dv_xname, idx, error);
2801 panic("sip_add_rxbuf"); /* XXX */
2802 }
2803
2804 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2805 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2806
2807 SIP_INIT_RXDESC(sc, idx);
2808
2809 return (0);
2810 }
2811
2812 #if !defined(DP83820)
2813 /*
2814 * sip_sis900_set_filter:
2815 *
2816 * Set up the receive filter.
2817 */
2818 static void
2819 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2820 {
2821 bus_space_tag_t st = sc->sc_st;
2822 bus_space_handle_t sh = sc->sc_sh;
2823 struct ethercom *ec = &sc->sc_ethercom;
2824 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2825 struct ether_multi *enm;
2826 u_int8_t *cp;
2827 struct ether_multistep step;
2828 u_int32_t crc, mchash[16];
2829
2830 /*
2831 * Initialize the prototype RFCR.
2832 */
2833 sc->sc_rfcr = RFCR_RFEN;
2834 if (ifp->if_flags & IFF_BROADCAST)
2835 sc->sc_rfcr |= RFCR_AAB;
2836 if (ifp->if_flags & IFF_PROMISC) {
2837 sc->sc_rfcr |= RFCR_AAP;
2838 goto allmulti;
2839 }
2840
2841 /*
2842 * Set up the multicast address filter by passing all multicast
2843 * addresses through a CRC generator, and then using the high-order
2844 * 6 bits as an index into the 128 bit multicast hash table (only
2845 * the lower 16 bits of each 32 bit multicast hash register are
2846 * valid). The high order bits select the register, while the
2847 * rest of the bits select the bit within the register.
2848 */
2849
2850 memset(mchash, 0, sizeof(mchash));
2851
2852 /*
2853 * SiS900 (at least SiS963) requires us to register the address of
2854 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2855 */
2856 crc = 0x0ed423f9;
2857
2858 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2859 SIP_SIS900_REV(sc, SIS_REV_960) ||
2860 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2861 /* Just want the 8 most significant bits. */
2862 crc >>= 24;
2863 } else {
2864 /* Just want the 7 most significant bits. */
2865 crc >>= 25;
2866 }
2867
2868 /* Set the corresponding bit in the hash table. */
2869 mchash[crc >> 4] |= 1 << (crc & 0xf);
2870
2871 ETHER_FIRST_MULTI(step, ec, enm);
2872 while (enm != NULL) {
2873 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2874 /*
2875 * We must listen to a range of multicast addresses.
2876 * For now, just accept all multicasts, rather than
2877 * trying to set only those filter bits needed to match
2878 * the range. (At this time, the only use of address
2879 * ranges is for IP multicast routing, for which the
2880 * range is big enough to require all bits set.)
2881 */
2882 goto allmulti;
2883 }
2884
2885 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2886
2887 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2888 SIP_SIS900_REV(sc, SIS_REV_960) ||
2889 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2890 /* Just want the 8 most significant bits. */
2891 crc >>= 24;
2892 } else {
2893 /* Just want the 7 most significant bits. */
2894 crc >>= 25;
2895 }
2896
2897 /* Set the corresponding bit in the hash table. */
2898 mchash[crc >> 4] |= 1 << (crc & 0xf);
2899
2900 ETHER_NEXT_MULTI(step, enm);
2901 }
2902
2903 ifp->if_flags &= ~IFF_ALLMULTI;
2904 goto setit;
2905
2906 allmulti:
2907 ifp->if_flags |= IFF_ALLMULTI;
2908 sc->sc_rfcr |= RFCR_AAM;
2909
2910 setit:
2911 #define FILTER_EMIT(addr, data) \
2912 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2913 delay(1); \
2914 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2915 delay(1)
2916
2917 /*
2918 * Disable receive filter, and program the node address.
2919 */
2920 cp = LLADDR(ifp->if_sadl);
2921 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2922 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2923 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2924
2925 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2926 /*
2927 * Program the multicast hash table.
2928 */
2929 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2930 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2931 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2932 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2933 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2934 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2935 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2936 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2937 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2938 SIP_SIS900_REV(sc, SIS_REV_960) ||
2939 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2940 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2941 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2942 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2943 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2944 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2945 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2946 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2947 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2948 }
2949 }
2950 #undef FILTER_EMIT
2951
2952 /*
2953 * Re-enable the receiver filter.
2954 */
2955 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2956 }
2957 #endif /* ! DP83820 */
2958
2959 /*
2960 * sip_dp83815_set_filter:
2961 *
2962 * Set up the receive filter.
2963 */
2964 static void
2965 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2966 {
2967 bus_space_tag_t st = sc->sc_st;
2968 bus_space_handle_t sh = sc->sc_sh;
2969 struct ethercom *ec = &sc->sc_ethercom;
2970 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2971 struct ether_multi *enm;
2972 u_int8_t *cp;
2973 struct ether_multistep step;
2974 u_int32_t crc, hash, slot, bit;
2975 #ifdef DP83820
2976 #define MCHASH_NWORDS 128
2977 #else
2978 #define MCHASH_NWORDS 32
2979 #endif /* DP83820 */
2980 u_int16_t mchash[MCHASH_NWORDS];
2981 int i;
2982
2983 /*
2984 * Initialize the prototype RFCR.
2985 * Enable the receive filter, and accept on
2986 * Perfect (destination address) Match
2987 * If IFF_BROADCAST, also accept all broadcast packets.
2988 * If IFF_PROMISC, accept all unicast packets (and later, set
2989 * IFF_ALLMULTI and accept all multicast, too).
2990 */
2991 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2992 if (ifp->if_flags & IFF_BROADCAST)
2993 sc->sc_rfcr |= RFCR_AAB;
2994 if (ifp->if_flags & IFF_PROMISC) {
2995 sc->sc_rfcr |= RFCR_AAP;
2996 goto allmulti;
2997 }
2998
2999 #ifdef DP83820
3000 /*
3001 * Set up the DP83820 multicast address filter by passing all multicast
3002 * addresses through a CRC generator, and then using the high-order
3003 * 11 bits as an index into the 2048 bit multicast hash table. The
3004 * high-order 7 bits select the slot, while the low-order 4 bits
3005 * select the bit within the slot. Note that only the low 16-bits
3006 * of each filter word are used, and there are 128 filter words.
3007 */
3008 #else
3009 /*
3010 * Set up the DP83815 multicast address filter by passing all multicast
3011 * addresses through a CRC generator, and then using the high-order
3012 * 9 bits as an index into the 512 bit multicast hash table. The
3013 * high-order 5 bits select the slot, while the low-order 4 bits
3014 * select the bit within the slot. Note that only the low 16-bits
3015 * of each filter word are used, and there are 32 filter words.
3016 */
3017 #endif /* DP83820 */
3018
3019 memset(mchash, 0, sizeof(mchash));
3020
3021 ifp->if_flags &= ~IFF_ALLMULTI;
3022 ETHER_FIRST_MULTI(step, ec, enm);
3023 if (enm == NULL)
3024 goto setit;
3025 while (enm != NULL) {
3026 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3027 /*
3028 * We must listen to a range of multicast addresses.
3029 * For now, just accept all multicasts, rather than
3030 * trying to set only those filter bits needed to match
3031 * the range. (At this time, the only use of address
3032 * ranges is for IP multicast routing, for which the
3033 * range is big enough to require all bits set.)
3034 */
3035 goto allmulti;
3036 }
3037
3038 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3039
3040 #ifdef DP83820
3041 /* Just want the 11 most significant bits. */
3042 hash = crc >> 21;
3043 #else
3044 /* Just want the 9 most significant bits. */
3045 hash = crc >> 23;
3046 #endif /* DP83820 */
3047
3048 slot = hash >> 4;
3049 bit = hash & 0xf;
3050
3051 /* Set the corresponding bit in the hash table. */
3052 mchash[slot] |= 1 << bit;
3053
3054 ETHER_NEXT_MULTI(step, enm);
3055 }
3056 sc->sc_rfcr |= RFCR_MHEN;
3057 goto setit;
3058
3059 allmulti:
3060 ifp->if_flags |= IFF_ALLMULTI;
3061 sc->sc_rfcr |= RFCR_AAM;
3062
3063 setit:
3064 #define FILTER_EMIT(addr, data) \
3065 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3066 delay(1); \
3067 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3068 delay(1)
3069
3070 /*
3071 * Disable receive filter, and program the node address.
3072 */
3073 cp = LLADDR(ifp->if_sadl);
3074 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3075 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3076 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3077
3078 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3079 /*
3080 * Program the multicast hash table.
3081 */
3082 for (i = 0; i < MCHASH_NWORDS; i++) {
3083 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3084 mchash[i]);
3085 }
3086 }
3087 #undef FILTER_EMIT
3088 #undef MCHASH_NWORDS
3089
3090 /*
3091 * Re-enable the receiver filter.
3092 */
3093 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3094 }
3095
3096 #if defined(DP83820)
3097 /*
3098 * sip_dp83820_mii_readreg: [mii interface function]
3099 *
3100 * Read a PHY register on the MII of the DP83820.
3101 */
3102 static int
3103 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3104 {
3105 struct sip_softc *sc = (void *) self;
3106
3107 if (sc->sc_cfg & CFG_TBI_EN) {
3108 bus_addr_t tbireg;
3109 int rv;
3110
3111 if (phy != 0)
3112 return (0);
3113
3114 switch (reg) {
3115 case MII_BMCR: tbireg = SIP_TBICR; break;
3116 case MII_BMSR: tbireg = SIP_TBISR; break;
3117 case MII_ANAR: tbireg = SIP_TANAR; break;
3118 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3119 case MII_ANER: tbireg = SIP_TANER; break;
3120 case MII_EXTSR:
3121 /*
3122 * Don't even bother reading the TESR register.
3123 * The manual documents that the device has
3124 * 1000baseX full/half capability, but the
3125 * register itself seems read back 0 on some
3126 * boards. Just hard-code the result.
3127 */
3128 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3129
3130 default:
3131 return (0);
3132 }
3133
3134 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3135 if (tbireg == SIP_TBISR) {
3136 /* LINK and ACOMP are switched! */
3137 int val = rv;
3138
3139 rv = 0;
3140 if (val & TBISR_MR_LINK_STATUS)
3141 rv |= BMSR_LINK;
3142 if (val & TBISR_MR_AN_COMPLETE)
3143 rv |= BMSR_ACOMP;
3144
3145 /*
3146 * The manual claims this register reads back 0
3147 * on hard and soft reset. But we want to let
3148 * the gentbi driver know that we support auto-
3149 * negotiation, so hard-code this bit in the
3150 * result.
3151 */
3152 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3153 }
3154
3155 return (rv);
3156 }
3157
3158 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3159 phy, reg));
3160 }
3161
3162 /*
3163 * sip_dp83820_mii_writereg: [mii interface function]
3164 *
3165 * Write a PHY register on the MII of the DP83820.
3166 */
3167 static void
3168 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3169 {
3170 struct sip_softc *sc = (void *) self;
3171
3172 if (sc->sc_cfg & CFG_TBI_EN) {
3173 bus_addr_t tbireg;
3174
3175 if (phy != 0)
3176 return;
3177
3178 switch (reg) {
3179 case MII_BMCR: tbireg = SIP_TBICR; break;
3180 case MII_ANAR: tbireg = SIP_TANAR; break;
3181 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3182 default:
3183 return;
3184 }
3185
3186 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3187 return;
3188 }
3189
3190 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3191 phy, reg, val);
3192 }
3193
3194 /*
3195 * sip_dp83820_mii_statchg: [mii interface function]
3196 *
3197 * Callback from MII layer when media changes.
3198 */
3199 static void
3200 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3201 {
3202 struct sip_softc *sc = (struct sip_softc *) self;
3203 struct mii_data *mii = &sc->sc_mii;
3204 u_int32_t cfg, pcr;
3205
3206 /*
3207 * Get flow control negotiation result.
3208 */
3209 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3210 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3211 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3212 mii->mii_media_active &= ~IFM_ETH_FMASK;
3213 }
3214
3215 /*
3216 * Update TXCFG for full-duplex operation.
3217 */
3218 if ((mii->mii_media_active & IFM_FDX) != 0)
3219 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3220 else
3221 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3222
3223 /*
3224 * Update RXCFG for full-duplex or loopback.
3225 */
3226 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3227 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3228 sc->sc_rxcfg |= RXCFG_ATX;
3229 else
3230 sc->sc_rxcfg &= ~RXCFG_ATX;
3231
3232 /*
3233 * Update CFG for MII/GMII.
3234 */
3235 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3236 cfg = sc->sc_cfg | CFG_MODE_1000;
3237 else
3238 cfg = sc->sc_cfg;
3239
3240 /*
3241 * 802.3x flow control.
3242 */
3243 pcr = 0;
3244 if (sc->sc_flowflags & IFM_FLOW) {
3245 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3246 pcr |= sc->sc_rx_flow_thresh;
3247 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3248 pcr |= PCR_PSEN | PCR_PS_MCAST;
3249 }
3250
3251 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3252 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3253 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3254 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3255 }
3256 #endif /* ! DP83820 */
3257
3258 /*
3259 * sip_mii_bitbang_read: [mii bit-bang interface function]
3260 *
3261 * Read the MII serial port for the MII bit-bang module.
3262 */
3263 static u_int32_t
3264 SIP_DECL(mii_bitbang_read)(struct device *self)
3265 {
3266 struct sip_softc *sc = (void *) self;
3267
3268 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3269 }
3270
3271 /*
3272 * sip_mii_bitbang_write: [mii big-bang interface function]
3273 *
3274 * Write the MII serial port for the MII bit-bang module.
3275 */
3276 static void
3277 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3278 {
3279 struct sip_softc *sc = (void *) self;
3280
3281 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3282 }
3283
3284 #ifndef DP83820
3285 /*
3286 * sip_sis900_mii_readreg: [mii interface function]
3287 *
3288 * Read a PHY register on the MII.
3289 */
3290 static int
3291 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3292 {
3293 struct sip_softc *sc = (struct sip_softc *) self;
3294 u_int32_t enphy;
3295
3296 /*
3297 * The PHY of recent SiS chipsets is accessed through bitbang
3298 * operations.
3299 */
3300 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3301 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3302 phy, reg));
3303
3304 #ifndef SIS900_MII_RESTRICT
3305 /*
3306 * The SiS 900 has only an internal PHY on the MII. Only allow
3307 * MII address 0.
3308 */
3309 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3310 return (0);
3311 #endif
3312
3313 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3314 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3315 ENPHY_RWCMD | ENPHY_ACCESS);
3316 do {
3317 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3318 } while (enphy & ENPHY_ACCESS);
3319 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3320 }
3321
3322 /*
3323 * sip_sis900_mii_writereg: [mii interface function]
3324 *
3325 * Write a PHY register on the MII.
3326 */
3327 static void
3328 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3329 {
3330 struct sip_softc *sc = (struct sip_softc *) self;
3331 u_int32_t enphy;
3332
3333 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3334 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3335 phy, reg, val);
3336 return;
3337 }
3338
3339 #ifndef SIS900_MII_RESTRICT
3340 /*
3341 * The SiS 900 has only an internal PHY on the MII. Only allow
3342 * MII address 0.
3343 */
3344 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3345 return;
3346 #endif
3347
3348 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3349 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3350 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3351 do {
3352 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3353 } while (enphy & ENPHY_ACCESS);
3354 }
3355
3356 /*
3357 * sip_sis900_mii_statchg: [mii interface function]
3358 *
3359 * Callback from MII layer when media changes.
3360 */
3361 static void
3362 SIP_DECL(sis900_mii_statchg)(struct device *self)
3363 {
3364 struct sip_softc *sc = (struct sip_softc *) self;
3365 struct mii_data *mii = &sc->sc_mii;
3366 u_int32_t flowctl;
3367
3368 /*
3369 * Get flow control negotiation result.
3370 */
3371 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3372 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3373 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3374 mii->mii_media_active &= ~IFM_ETH_FMASK;
3375 }
3376
3377 /*
3378 * Update TXCFG for full-duplex operation.
3379 */
3380 if ((mii->mii_media_active & IFM_FDX) != 0)
3381 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3382 else
3383 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3384
3385 /*
3386 * Update RXCFG for full-duplex or loopback.
3387 */
3388 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3389 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3390 sc->sc_rxcfg |= RXCFG_ATX;
3391 else
3392 sc->sc_rxcfg &= ~RXCFG_ATX;
3393
3394 /*
3395 * Update IMR for use of 802.3x flow control.
3396 */
3397 if (sc->sc_flowflags & IFM_FLOW) {
3398 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3399 flowctl = FLOWCTL_FLOWEN;
3400 } else {
3401 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3402 flowctl = 0;
3403 }
3404
3405 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3406 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3407 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3408 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3409 }
3410
3411 /*
3412 * sip_dp83815_mii_readreg: [mii interface function]
3413 *
3414 * Read a PHY register on the MII.
3415 */
3416 static int
3417 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3418 {
3419 struct sip_softc *sc = (struct sip_softc *) self;
3420 u_int32_t val;
3421
3422 /*
3423 * The DP83815 only has an internal PHY. Only allow
3424 * MII address 0.
3425 */
3426 if (phy != 0)
3427 return (0);
3428
3429 /*
3430 * Apparently, after a reset, the DP83815 can take a while
3431 * to respond. During this recovery period, the BMSR returns
3432 * a value of 0. Catch this -- it's not supposed to happen
3433 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3434 * PHY to come back to life.
3435 *
3436 * This works out because the BMSR is the first register
3437 * read during the PHY probe process.
3438 */
3439 do {
3440 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3441 } while (reg == MII_BMSR && val == 0);
3442
3443 return (val & 0xffff);
3444 }
3445
3446 /*
3447 * sip_dp83815_mii_writereg: [mii interface function]
3448 *
3449 * Write a PHY register to the MII.
3450 */
3451 static void
3452 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3453 {
3454 struct sip_softc *sc = (struct sip_softc *) self;
3455
3456 /*
3457 * The DP83815 only has an internal PHY. Only allow
3458 * MII address 0.
3459 */
3460 if (phy != 0)
3461 return;
3462
3463 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3464 }
3465
3466 /*
3467 * sip_dp83815_mii_statchg: [mii interface function]
3468 *
3469 * Callback from MII layer when media changes.
3470 */
3471 static void
3472 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3473 {
3474 struct sip_softc *sc = (struct sip_softc *) self;
3475
3476 /*
3477 * Update TXCFG for full-duplex operation.
3478 */
3479 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3480 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3481 else
3482 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3483
3484 /*
3485 * Update RXCFG for full-duplex or loopback.
3486 */
3487 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3488 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3489 sc->sc_rxcfg |= RXCFG_ATX;
3490 else
3491 sc->sc_rxcfg &= ~RXCFG_ATX;
3492
3493 /*
3494 * XXX 802.3x flow control.
3495 */
3496
3497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3499
3500 /*
3501 * Some DP83815s experience problems when used with short
3502 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3503 * sequence adjusts the DSP's signal attenuation to fix the
3504 * problem.
3505 */
3506 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3507 uint32_t reg;
3508
3509 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3510
3511 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3512 reg &= 0x0fff;
3513 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3514 delay(100);
3515 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3516 reg &= 0x00ff;
3517 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3518 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3519 0x00e8);
3520 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3521 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3522 reg | 0x20);
3523 }
3524
3525 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3526 }
3527 }
3528 #endif /* DP83820 */
3529
3530 #if defined(DP83820)
3531 static void
3532 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3533 const struct pci_attach_args *pa, u_int8_t *enaddr)
3534 {
3535 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3536 u_int8_t cksum, *e, match;
3537 int i;
3538
3539 /*
3540 * EEPROM data format for the DP83820 can be found in
3541 * the DP83820 manual, section 4.2.4.
3542 */
3543
3544 SIP_DECL(read_eeprom)(sc, 0,
3545 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3546
3547 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3548 match = ~(match - 1);
3549
3550 cksum = 0x55;
3551 e = (u_int8_t *) eeprom_data;
3552 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3553 cksum += *e++;
3554
3555 if (cksum != match)
3556 printf("%s: Checksum (%x) mismatch (%x)",
3557 sc->sc_dev.dv_xname, cksum, match);
3558
3559 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3560 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3561 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3562 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3563 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3564 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3565 }
3566 #else /* ! DP83820 */
3567 static void
3568 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3569 {
3570 int i;
3571
3572 /*
3573 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3574 * a reason, but I don't know it.
3575 */
3576 for (i = 0; i < 10; i++)
3577 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3578 }
3579
3580 static void
3581 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3582 const struct pci_attach_args *pa, u_int8_t *enaddr)
3583 {
3584 u_int16_t myea[ETHER_ADDR_LEN / 2];
3585
3586 switch (sc->sc_rev) {
3587 case SIS_REV_630S:
3588 case SIS_REV_630E:
3589 case SIS_REV_630EA1:
3590 case SIS_REV_630ET:
3591 case SIS_REV_635:
3592 /*
3593 * The MAC address for the on-board Ethernet of
3594 * the SiS 630 chipset is in the NVRAM. Kick
3595 * the chip into re-loading it from NVRAM, and
3596 * read the MAC address out of the filter registers.
3597 */
3598 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3599
3600 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3601 RFCR_RFADDR_NODE0);
3602 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3603 0xffff;
3604
3605 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3606 RFCR_RFADDR_NODE2);
3607 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3608 0xffff;
3609
3610 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3611 RFCR_RFADDR_NODE4);
3612 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3613 0xffff;
3614 break;
3615
3616 case SIS_REV_960:
3617 {
3618 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3619 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3620
3621 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3622 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3623
3624 int waittime, i;
3625
3626 /* Allow to read EEPROM from LAN. It is shared
3627 * between a 1394 controller and the NIC and each
3628 * time we access it, we need to set SIS_EECMD_REQ.
3629 */
3630 SIS_SET_EROMAR(sc, EROMAR_REQ);
3631
3632 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3633 /* Force EEPROM to idle state. */
3634
3635 /*
3636 * XXX-cube This is ugly. I'll look for docs about it.
3637 */
3638 SIS_SET_EROMAR(sc, EROMAR_EECS);
3639 SIP_DECL(sis900_eeprom_delay)(sc);
3640 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3641 SIS_SET_EROMAR(sc, EROMAR_EESK);
3642 SIP_DECL(sis900_eeprom_delay)(sc);
3643 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3644 SIP_DECL(sis900_eeprom_delay)(sc);
3645 }
3646 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3647 SIP_DECL(sis900_eeprom_delay)(sc);
3648 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3649
3650 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3651 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3652 sizeof(myea) / sizeof(myea[0]), myea);
3653 break;
3654 }
3655 DELAY(1);
3656 }
3657
3658 /*
3659 * Set SIS_EECTL_CLK to high, so a other master
3660 * can operate on the i2c bus.
3661 */
3662 SIS_SET_EROMAR(sc, EROMAR_EESK);
3663
3664 /* Refuse EEPROM access by LAN */
3665 SIS_SET_EROMAR(sc, EROMAR_DONE);
3666 } break;
3667
3668 default:
3669 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3670 sizeof(myea) / sizeof(myea[0]), myea);
3671 }
3672
3673 enaddr[0] = myea[0] & 0xff;
3674 enaddr[1] = myea[0] >> 8;
3675 enaddr[2] = myea[1] & 0xff;
3676 enaddr[3] = myea[1] >> 8;
3677 enaddr[4] = myea[2] & 0xff;
3678 enaddr[5] = myea[2] >> 8;
3679 }
3680
3681 /* Table and macro to bit-reverse an octet. */
3682 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3683 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3684
3685 static void
3686 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3687 const struct pci_attach_args *pa, u_int8_t *enaddr)
3688 {
3689 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3690 u_int8_t cksum, *e, match;
3691 int i;
3692
3693 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3694 sizeof(eeprom_data[0]), eeprom_data);
3695
3696 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3697 match = ~(match - 1);
3698
3699 cksum = 0x55;
3700 e = (u_int8_t *) eeprom_data;
3701 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3702 cksum += *e++;
3703 }
3704 if (cksum != match) {
3705 printf("%s: Checksum (%x) mismatch (%x)",
3706 sc->sc_dev.dv_xname, cksum, match);
3707 }
3708
3709 /*
3710 * Unrolled because it makes slightly more sense this way.
3711 * The DP83815 stores the MAC address in bit 0 of word 6
3712 * through bit 15 of word 8.
3713 */
3714 ea = &eeprom_data[6];
3715 enaddr[0] = ((*ea & 0x1) << 7);
3716 ea++;
3717 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3718 enaddr[1] = ((*ea & 0x1FE) >> 1);
3719 enaddr[2] = ((*ea & 0x1) << 7);
3720 ea++;
3721 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3722 enaddr[3] = ((*ea & 0x1FE) >> 1);
3723 enaddr[4] = ((*ea & 0x1) << 7);
3724 ea++;
3725 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3726 enaddr[5] = ((*ea & 0x1FE) >> 1);
3727
3728 /*
3729 * In case that's not weird enough, we also need to reverse
3730 * the bits in each byte. This all actually makes more sense
3731 * if you think about the EEPROM storage as an array of bits
3732 * being shifted into bytes, but that's not how we're looking
3733 * at it here...
3734 */
3735 for (i = 0; i < 6 ;i++)
3736 enaddr[i] = bbr(enaddr[i]);
3737 }
3738 #endif /* DP83820 */
3739
3740 /*
3741 * sip_mediastatus: [ifmedia interface function]
3742 *
3743 * Get the current interface media status.
3744 */
3745 static void
3746 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3747 {
3748 struct sip_softc *sc = ifp->if_softc;
3749
3750 mii_pollstat(&sc->sc_mii);
3751 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3752 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3753 sc->sc_flowflags;
3754 }
3755
3756 /*
3757 * sip_mediachange: [ifmedia interface function]
3758 *
3759 * Set hardware to newly-selected media.
3760 */
3761 static int
3762 SIP_DECL(mediachange)(struct ifnet *ifp)
3763 {
3764 struct sip_softc *sc = ifp->if_softc;
3765
3766 if (ifp->if_flags & IFF_UP)
3767 mii_mediachg(&sc->sc_mii);
3768 return (0);
3769 }
3770