Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.113.8.2
      1 /*	$NetBSD: if_sip.c,v 1.113.8.2 2008/01/09 01:53:49 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.113.8.2 2008/01/09 01:53:49 matt Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <sys/bus.h>
    116 #include <sys/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 /*
    130  * Transmit descriptor list size.  This is arbitrary, but allocate
    131  * enough descriptors for 128 pending transmissions, and 8 segments
    132  * per packet (64 for DP83820 for jumbo frames).
    133  *
    134  * This MUST work out to a power of 2.
    135  */
    136 #define	GSIP_NTXSEGS_ALLOC 16
    137 #define	SIP_NTXSEGS_ALLOC 8
    138 
    139 #define	SIP_TXQUEUELEN		256
    140 #define	MAX_SIP_NTXDESC	\
    141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    142 
    143 /*
    144  * Receive descriptor list size.  We have one Rx buffer per incoming
    145  * packet, so this logic is a little simpler.
    146  *
    147  * Actually, on the DP83820, we allow the packet to consume more than
    148  * one buffer, in order to support jumbo Ethernet frames.  In that
    149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    151  * so we'd better be quick about handling receive interrupts.
    152  */
    153 #define	GSIP_NRXDESC		256
    154 #define	SIP_NRXDESC		128
    155 
    156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    157 
    158 /*
    159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    160  * a single clump that maps to a single DMA segment to make several things
    161  * easier.
    162  */
    163 struct sip_control_data {
    164 	/*
    165 	 * The transmit descriptors.
    166 	 */
    167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    168 
    169 	/*
    170 	 * The receive descriptors.
    171 	 */
    172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    173 };
    174 
    175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    178 
    179 /*
    180  * Software state for transmit jobs.
    181  */
    182 struct sip_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    188 };
    189 
    190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    191 
    192 /*
    193  * Software state for receive jobs.
    194  */
    195 struct sip_rxsoft {
    196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    198 };
    199 
    200 enum sip_attach_stage {
    201 	  SIP_ATTACH_FIN = 0
    202 	, SIP_ATTACH_CREATE_RXMAP
    203 	, SIP_ATTACH_CREATE_TXMAP
    204 	, SIP_ATTACH_LOAD_MAP
    205 	, SIP_ATTACH_CREATE_MAP
    206 	, SIP_ATTACH_MAP_MEM
    207 	, SIP_ATTACH_ALLOC_MEM
    208 	, SIP_ATTACH_INTR
    209 	, SIP_ATTACH_MAP
    210 };
    211 
    212 /*
    213  * Software state per device.
    214  */
    215 struct sip_softc {
    216 	struct device sc_dev;		/* generic device information */
    217 	bus_space_tag_t sc_st;		/* bus space tag */
    218 	bus_space_handle_t sc_sh;	/* bus space handle */
    219 	bus_size_t sc_sz;		/* bus space size */
    220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    221 	pci_chipset_tag_t sc_pc;
    222 	bus_dma_segment_t sc_seg;
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_gigabit;			/* 1: 83820, 0: other */
    228 	int sc_rev;			/* chip revision */
    229 
    230 	void *sc_ih;			/* interrupt cookie */
    231 
    232 	struct mii_data sc_mii;		/* MII/media information */
    233 
    234 	callout_t sc_tick_ch;		/* tick callout */
    235 
    236 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    237 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    238 
    239 	/*
    240 	 * Software state for transmit and receive descriptors.
    241 	 */
    242 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    243 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    244 
    245 	/*
    246 	 * Control data structures.
    247 	 */
    248 	struct sip_control_data *sc_control_data;
    249 #define	sc_txdescs	sc_control_data->scd_txdescs
    250 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    251 
    252 #ifdef SIP_EVENT_COUNTERS
    253 	/*
    254 	 * Event counters.
    255 	 */
    256 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    257 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    258 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    259 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    260 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    261 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    262 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    263 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    264 	/* DP83820 only */
    265 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* SIP_EVENT_COUNTERS */
    273 
    274 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    275 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    276 	u_int32_t sc_imr;		/* prototype IMR register */
    277 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    278 
    279 	u_int32_t sc_cfg;		/* prototype CFG register */
    280 
    281 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    282 
    283 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    284 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    285 
    286 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    287 
    288 	int	sc_flowflags;		/* 802.3x flow control flags */
    289 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    290 	int	sc_paused;		/* paused indication */
    291 
    292 	int	sc_txfree;		/* number of free Tx descriptors */
    293 	int	sc_txnext;		/* next ready Tx descriptor */
    294 	int	sc_txwin;		/* Tx descriptors since last intr */
    295 
    296 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    297 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    298 
    299 	/* values of interface state at last init */
    300 	struct {
    301 		/* if_capenable */
    302 		uint64_t	if_capenable;
    303 		/* ec_capenable */
    304 		int		ec_capenable;
    305 		/* VLAN_ATTACHED */
    306 		int		is_vlan;
    307 	}	sc_prev;
    308 
    309 	short	sc_if_flags;
    310 
    311 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    312 	int	sc_rxdiscard;
    313 	int	sc_rxlen;
    314 	struct mbuf *sc_rxhead;
    315 	struct mbuf *sc_rxtail;
    316 	struct mbuf **sc_rxtailp;
    317 
    318 	int sc_ntxdesc;
    319 	int sc_ntxdesc_mask;
    320 
    321 	int sc_nrxdesc_mask;
    322 
    323 	const struct sip_parm {
    324 		const struct sip_regs {
    325 			int r_rxcfg;
    326 			int r_txcfg;
    327 		} p_regs;
    328 
    329 		const struct sip_bits {
    330 			uint32_t b_txcfg_mxdma_8;
    331 			uint32_t b_txcfg_mxdma_16;
    332 			uint32_t b_txcfg_mxdma_32;
    333 			uint32_t b_txcfg_mxdma_64;
    334 			uint32_t b_txcfg_mxdma_128;
    335 			uint32_t b_txcfg_mxdma_256;
    336 			uint32_t b_txcfg_mxdma_512;
    337 			uint32_t b_txcfg_flth_mask;
    338 			uint32_t b_txcfg_drth_mask;
    339 
    340 			uint32_t b_rxcfg_mxdma_8;
    341 			uint32_t b_rxcfg_mxdma_16;
    342 			uint32_t b_rxcfg_mxdma_32;
    343 			uint32_t b_rxcfg_mxdma_64;
    344 			uint32_t b_rxcfg_mxdma_128;
    345 			uint32_t b_rxcfg_mxdma_256;
    346 			uint32_t b_rxcfg_mxdma_512;
    347 
    348 			uint32_t b_isr_txrcmp;
    349 			uint32_t b_isr_rxrcmp;
    350 			uint32_t b_isr_dperr;
    351 			uint32_t b_isr_sserr;
    352 			uint32_t b_isr_rmabt;
    353 			uint32_t b_isr_rtabt;
    354 
    355 			uint32_t b_cmdsts_size_mask;
    356 		} p_bits;
    357 		int		p_filtmem;
    358 		int		p_rxbuf_len;
    359 		bus_size_t	p_tx_dmamap_size;
    360 		int		p_ntxsegs;
    361 		int		p_ntxsegs_alloc;
    362 		int		p_nrxdesc;
    363 	} *sc_parm;
    364 
    365 	void (*sc_rxintr)(struct sip_softc *);
    366 
    367 #if NRND > 0
    368 	rndsource_element_t rnd_source;	/* random source */
    369 #endif
    370 };
    371 
    372 #define	sc_bits	sc_parm->p_bits
    373 #define	sc_regs	sc_parm->p_regs
    374 
    375 static const struct sip_parm sip_parm = {
    376 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    377 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    378 	, .p_tx_dmamap_size = MCLBYTES
    379 	, .p_ntxsegs = 16
    380 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    381 	, .p_nrxdesc = SIP_NRXDESC
    382 	, .p_bits = {
    383 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    384 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    385 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    386 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    387 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    388 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    389 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    390 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    391 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    392 
    393 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    394 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    395 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    396 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    397 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    398 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    399 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    400 
    401 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    402 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    403 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    404 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    405 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    406 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    407 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    408 	}
    409 	, .p_regs = {
    410 		.r_rxcfg = OTHER_SIP_RXCFG,
    411 		.r_txcfg = OTHER_SIP_TXCFG
    412 	}
    413 }, gsip_parm = {
    414 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    415 	, .p_rxbuf_len = MCLBYTES - 8
    416 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    417 	, .p_ntxsegs = 64
    418 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    419 	, .p_nrxdesc = GSIP_NRXDESC
    420 	, .p_bits = {
    421 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    422 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    423 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    424 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    425 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    426 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    427 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    428 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    429 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    430 
    431 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    432 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    433 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    434 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    435 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    436 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    437 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    438 
    439 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    440 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    441 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    442 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    443 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    444 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    445 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    446 	}
    447 	, .p_regs = {
    448 		.r_rxcfg = DP83820_SIP_RXCFG,
    449 		.r_txcfg = DP83820_SIP_TXCFG
    450 	}
    451 };
    452 
    453 static inline int
    454 sip_nexttx(const struct sip_softc *sc, int x)
    455 {
    456 	return (x + 1) & sc->sc_ntxdesc_mask;
    457 }
    458 
    459 static inline int
    460 sip_nextrx(const struct sip_softc *sc, int x)
    461 {
    462 	return (x + 1) & sc->sc_nrxdesc_mask;
    463 }
    464 
    465 /* 83820 only */
    466 static inline void
    467 sip_rxchain_reset(struct sip_softc *sc)
    468 {
    469 	sc->sc_rxtailp = &sc->sc_rxhead;
    470 	*sc->sc_rxtailp = NULL;
    471 	sc->sc_rxlen = 0;
    472 }
    473 
    474 /* 83820 only */
    475 static inline void
    476 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    477 {
    478 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    479 	sc->sc_rxtailp = &m->m_next;
    480 }
    481 
    482 #ifdef SIP_EVENT_COUNTERS
    483 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    484 #else
    485 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    486 #endif
    487 
    488 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    489 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    490 
    491 static inline void
    492 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    493 {
    494 	int x, n;
    495 
    496 	x = x0;
    497 	n = n0;
    498 
    499 	/* If it will wrap around, sync to the end of the ring. */
    500 	if (x + n > sc->sc_ntxdesc) {
    501 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    502 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    503 		    (sc->sc_ntxdesc - x), ops);
    504 		n -= (sc->sc_ntxdesc - x);
    505 		x = 0;
    506 	}
    507 
    508 	/* Now sync whatever is left. */
    509 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    510 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    511 }
    512 
    513 static inline void
    514 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    515 {
    516 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    517 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    518 }
    519 
    520 #if 0
    521 #ifdef DP83820
    522 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    523 	u_int32_t	sipd_cmdsts;	/* command/status word */
    524 #else
    525 	u_int32_t	sipd_cmdsts;	/* command/status word */
    526 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    527 #endif /* DP83820 */
    528 #endif /* 0 */
    529 
    530 static inline volatile uint32_t *
    531 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    532 {
    533 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    534 }
    535 
    536 static inline volatile uint32_t *
    537 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    538 {
    539 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    540 }
    541 
    542 static inline void
    543 sip_init_rxdesc(struct sip_softc *sc, int x)
    544 {
    545 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    546 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    547 
    548 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    549 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    550 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    551 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    552 	sipd->sipd_extsts = 0;
    553 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    554 }
    555 
    556 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    557 	((sc)->sc_model->sip_vendor == (v) &&				\
    558 	 (sc)->sc_model->sip_product == (p) &&				\
    559 	 (sc)->sc_rev == (r))
    560 
    561 #define	SIP_CHIP_MODEL(sc, v, p)					\
    562 	((sc)->sc_model->sip_vendor == (v) &&				\
    563 	 (sc)->sc_model->sip_product == (p))
    564 
    565 #define	SIP_SIS900_REV(sc, rev)						\
    566 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    567 
    568 #define SIP_TIMEOUT 1000
    569 
    570 static void	sipcom_start(struct ifnet *);
    571 static void	sipcom_watchdog(struct ifnet *);
    572 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    573 static int	sipcom_init(struct ifnet *);
    574 static void	sipcom_stop(struct ifnet *, int);
    575 
    576 static void	sipcom_shutdown(void *);
    577 
    578 static bool	sipcom_reset(struct sip_softc *);
    579 static void	sipcom_rxdrain(struct sip_softc *);
    580 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    581 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    582 				      u_int16_t *);
    583 static void	sipcom_tick(void *);
    584 
    585 static void	sipcom_sis900_set_filter(struct sip_softc *);
    586 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    587 
    588 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    589 		    const struct pci_attach_args *, u_int8_t *);
    590 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    591 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    592 		    const struct pci_attach_args *, u_int8_t *);
    593 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    594 		    const struct pci_attach_args *, u_int8_t *);
    595 
    596 static int	sipcom_intr(void *);
    597 static void	sipcom_txintr(struct sip_softc *);
    598 static void	sip_rxintr(struct sip_softc *);
    599 static void	gsip_rxintr(struct sip_softc *);
    600 
    601 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
    602 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
    603 static void	sipcom_dp83820_mii_statchg(struct device *);
    604 
    605 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
    606 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
    607 static void	sipcom_sis900_mii_statchg(struct device *);
    608 
    609 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
    610 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
    611 static void	sipcom_dp83815_mii_statchg(struct device *);
    612 
    613 static int	sipcom_mediachange(struct ifnet *);
    614 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    615 
    616 static int	sipcom_match(struct device *, struct cfdata *, void *);
    617 static void	sipcom_attach(struct device *, struct device *, void *);
    618 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    619 static int	sipcom_detach(device_t, int);
    620 static bool	sipcom_resume(device_t);
    621 
    622 int	gsip_copy_small = 0;
    623 int	sip_copy_small = 0;
    624 
    625 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    626     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    627 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    628     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    629 
    630 /*
    631  * Descriptions of the variants of the SiS900.
    632  */
    633 struct sip_variant {
    634 	int	(*sipv_mii_readreg)(struct device *, int, int);
    635 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    636 	void	(*sipv_mii_statchg)(struct device *);
    637 	void	(*sipv_set_filter)(struct sip_softc *);
    638 	void	(*sipv_read_macaddr)(struct sip_softc *,
    639 		    const struct pci_attach_args *, u_int8_t *);
    640 };
    641 
    642 static u_int32_t sipcom_mii_bitbang_read(struct device *);
    643 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
    644 
    645 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    646 	sipcom_mii_bitbang_read,
    647 	sipcom_mii_bitbang_write,
    648 	{
    649 		EROMAR_MDIO,		/* MII_BIT_MDO */
    650 		EROMAR_MDIO,		/* MII_BIT_MDI */
    651 		EROMAR_MDC,		/* MII_BIT_MDC */
    652 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    653 		0,			/* MII_BIT_DIR_PHY_HOST */
    654 	}
    655 };
    656 
    657 static const struct sip_variant sipcom_variant_dp83820 = {
    658 	sipcom_dp83820_mii_readreg,
    659 	sipcom_dp83820_mii_writereg,
    660 	sipcom_dp83820_mii_statchg,
    661 	sipcom_dp83815_set_filter,
    662 	sipcom_dp83820_read_macaddr,
    663 };
    664 
    665 static const struct sip_variant sipcom_variant_sis900 = {
    666 	sipcom_sis900_mii_readreg,
    667 	sipcom_sis900_mii_writereg,
    668 	sipcom_sis900_mii_statchg,
    669 	sipcom_sis900_set_filter,
    670 	sipcom_sis900_read_macaddr,
    671 };
    672 
    673 static const struct sip_variant sipcom_variant_dp83815 = {
    674 	sipcom_dp83815_mii_readreg,
    675 	sipcom_dp83815_mii_writereg,
    676 	sipcom_dp83815_mii_statchg,
    677 	sipcom_dp83815_set_filter,
    678 	sipcom_dp83815_read_macaddr,
    679 };
    680 
    681 
    682 /*
    683  * Devices supported by this driver.
    684  */
    685 static const struct sip_product {
    686 	pci_vendor_id_t		sip_vendor;
    687 	pci_product_id_t	sip_product;
    688 	const char		*sip_name;
    689 	const struct sip_variant *sip_variant;
    690 	int			sip_gigabit;
    691 } sipcom_products[] = {
    692 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    693 	  "NatSemi DP83820 Gigabit Ethernet",
    694 	  &sipcom_variant_dp83820, 1 },
    695 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    696 	  "SiS 900 10/100 Ethernet",
    697 	  &sipcom_variant_sis900, 0 },
    698 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    699 	  "SiS 7016 10/100 Ethernet",
    700 	  &sipcom_variant_sis900, 0 },
    701 
    702 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    703 	  "NatSemi DP83815 10/100 Ethernet",
    704 	  &sipcom_variant_dp83815, 0 },
    705 
    706 	{ 0,			0,
    707 	  NULL,
    708 	  NULL, 0 },
    709 };
    710 
    711 static const struct sip_product *
    712 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    713 {
    714 	const struct sip_product *sip;
    715 
    716 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    717 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    718 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    719 		    sip->sip_gigabit == gigabit)
    720 			return sip;
    721 	}
    722 	return NULL;
    723 }
    724 
    725 /*
    726  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    727  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    728  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    729  * which means we try to use 64-bit data transfers on those cards if we
    730  * happen to be plugged into a 32-bit slot.
    731  *
    732  * What we do is use this table of cards known to be 64-bit cards.  If
    733  * you have a 64-bit card who's subsystem ID is not listed in this table,
    734  * send the output of "pcictl dump ..." of the device to me so that your
    735  * card will use the 64-bit data path when plugged into a 64-bit slot.
    736  *
    737  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    738  *	   June 30, 2002
    739  */
    740 static int
    741 sipcom_check_64bit(const struct pci_attach_args *pa)
    742 {
    743 	static const struct {
    744 		pci_vendor_id_t c64_vendor;
    745 		pci_product_id_t c64_product;
    746 	} card64[] = {
    747 		/* Asante GigaNIX */
    748 		{ 0x128a,	0x0002 },
    749 
    750 		/* Accton EN1407-T, Planex GN-1000TE */
    751 		{ 0x1113,	0x1407 },
    752 
    753 		/* Netgear GA-621 */
    754 		{ 0x1385,	0x621a },
    755 
    756 		/* SMC EZ Card */
    757 		{ 0x10b8,	0x9462 },
    758 
    759 		{ 0, 0}
    760 	};
    761 	pcireg_t subsys;
    762 	int i;
    763 
    764 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    765 
    766 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    767 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    768 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    769 			return (1);
    770 	}
    771 
    772 	return (0);
    773 }
    774 
    775 static int
    776 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
    777 {
    778 	struct pci_attach_args *pa = aux;
    779 
    780 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    781 		return 1;
    782 
    783 	return 0;
    784 }
    785 
    786 static void
    787 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    788 {
    789 	u_int32_t reg;
    790 	int i;
    791 
    792 	/*
    793 	 * Cause the chip to load configuration data from the EEPROM.
    794 	 */
    795 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    796 	for (i = 0; i < 10000; i++) {
    797 		delay(10);
    798 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    799 		    PTSCR_EELOAD_EN) == 0)
    800 			break;
    801 	}
    802 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    803 	    PTSCR_EELOAD_EN) {
    804 		printf("%s: timeout loading configuration from EEPROM\n",
    805 		    sc->sc_dev.dv_xname);
    806 		return;
    807 	}
    808 
    809 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    810 
    811 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    812 	if (reg & CFG_PCI64_DET) {
    813 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    814 		/*
    815 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    816 		 * data transfers.
    817 		 *
    818 		 * We can't use the DATA64_EN bit in the EEPROM, because
    819 		 * vendors of 32-bit cards fail to clear that bit in many
    820 		 * cases (yet the card still detects that it's in a 64-bit
    821 		 * slot; go figure).
    822 		 */
    823 		if (sipcom_check_64bit(pa)) {
    824 			sc->sc_cfg |= CFG_DATA64_EN;
    825 			printf(", using 64-bit data transfers");
    826 		}
    827 		printf("\n");
    828 	}
    829 
    830 	/*
    831 	 * XXX Need some PCI flags indicating support for
    832 	 * XXX 64-bit addressing.
    833 	 */
    834 #if 0
    835 	if (reg & CFG_M64ADDR)
    836 		sc->sc_cfg |= CFG_M64ADDR;
    837 	if (reg & CFG_T64ADDR)
    838 		sc->sc_cfg |= CFG_T64ADDR;
    839 #endif
    840 
    841 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    842 		const char *sep = "";
    843 		printf("%s: using ", sc->sc_dev.dv_xname);
    844 		if (reg & CFG_EXT_125) {
    845 			sc->sc_cfg |= CFG_EXT_125;
    846 			printf("%s125MHz clock", sep);
    847 			sep = ", ";
    848 		}
    849 		if (reg & CFG_TBI_EN) {
    850 			sc->sc_cfg |= CFG_TBI_EN;
    851 			printf("%sten-bit interface", sep);
    852 			sep = ", ";
    853 		}
    854 		printf("\n");
    855 	}
    856 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    857 	    (reg & CFG_MRM_DIS) != 0)
    858 		sc->sc_cfg |= CFG_MRM_DIS;
    859 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    860 	    (reg & CFG_MWI_DIS) != 0)
    861 		sc->sc_cfg |= CFG_MWI_DIS;
    862 
    863 	/*
    864 	 * Use the extended descriptor format on the DP83820.  This
    865 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    866 	 * checksumming.
    867 	 */
    868 	sc->sc_cfg |= CFG_EXTSTS_EN;
    869 }
    870 
    871 static int
    872 sipcom_detach(device_t self, int flags)
    873 {
    874 	int s;
    875 
    876 	s = splnet();
    877 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    878 	splx(s);
    879 
    880 	return 0;
    881 }
    882 
    883 static void
    884 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    885 {
    886 	int i;
    887 	struct sip_softc *sc = device_private(self);
    888 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    889 
    890 	/*
    891 	 * Free any resources we've allocated during attach.
    892 	 * Do this in reverse order and fall through.
    893 	 */
    894 	switch (stage) {
    895 	case SIP_ATTACH_FIN:
    896 		sipcom_stop(ifp, 1);
    897 		pmf_device_deregister(self);
    898 #ifdef SIP_EVENT_COUNTERS
    899 		/*
    900 		 * Attach event counters.
    901 		 */
    902 		evcnt_detach(&sc->sc_ev_txforceintr);
    903 		evcnt_detach(&sc->sc_ev_txdstall);
    904 		evcnt_detach(&sc->sc_ev_txsstall);
    905 		evcnt_detach(&sc->sc_ev_hiberr);
    906 		evcnt_detach(&sc->sc_ev_rxintr);
    907 		evcnt_detach(&sc->sc_ev_txiintr);
    908 		evcnt_detach(&sc->sc_ev_txdintr);
    909 		if (!sc->sc_gigabit) {
    910 			evcnt_detach(&sc->sc_ev_rxpause);
    911 		} else {
    912 			evcnt_detach(&sc->sc_ev_txudpsum);
    913 			evcnt_detach(&sc->sc_ev_txtcpsum);
    914 			evcnt_detach(&sc->sc_ev_txipsum);
    915 			evcnt_detach(&sc->sc_ev_rxudpsum);
    916 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    917 			evcnt_detach(&sc->sc_ev_rxipsum);
    918 			evcnt_detach(&sc->sc_ev_txpause);
    919 			evcnt_detach(&sc->sc_ev_rxpause);
    920 		}
    921 #endif /* SIP_EVENT_COUNTERS */
    922 
    923 #if NRND > 0
    924 		rnd_detach_source(&sc->rnd_source);
    925 #endif
    926 
    927 		ether_ifdetach(ifp);
    928 		if_detach(ifp);
    929 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    930 
    931 		if (sc->sc_sdhook != NULL)
    932 			shutdownhook_disestablish(sc->sc_sdhook);
    933 
    934 		/*FALLTHROUGH*/
    935 	case SIP_ATTACH_CREATE_RXMAP:
    936 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    937 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    938 				bus_dmamap_destroy(sc->sc_dmat,
    939 				    sc->sc_rxsoft[i].rxs_dmamap);
    940 		}
    941 		/*FALLTHROUGH*/
    942 	case SIP_ATTACH_CREATE_TXMAP:
    943 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    944 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    945 				bus_dmamap_destroy(sc->sc_dmat,
    946 				    sc->sc_txsoft[i].txs_dmamap);
    947 		}
    948 		/*FALLTHROUGH*/
    949 	case SIP_ATTACH_LOAD_MAP:
    950 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    951 		/*FALLTHROUGH*/
    952 	case SIP_ATTACH_CREATE_MAP:
    953 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    954 		/*FALLTHROUGH*/
    955 	case SIP_ATTACH_MAP_MEM:
    956 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    957 		    sizeof(struct sip_control_data));
    958 		/*FALLTHROUGH*/
    959 	case SIP_ATTACH_ALLOC_MEM:
    960 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    961 		/* FALLTHROUGH*/
    962 	case SIP_ATTACH_INTR:
    963 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    964 		/* FALLTHROUGH*/
    965 	case SIP_ATTACH_MAP:
    966 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    967 		break;
    968 	default:
    969 		break;
    970 	}
    971 	return;
    972 }
    973 
    974 static bool
    975 sipcom_resume(device_t self)
    976 {
    977 	struct sip_softc *sc = device_private(self);
    978 
    979 	return sipcom_reset(sc);
    980 }
    981 
    982 static void
    983 sipcom_attach(device_t parent, device_t self, void *aux)
    984 {
    985 	struct sip_softc *sc = (struct sip_softc *) self;
    986 	struct pci_attach_args *pa = aux;
    987 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    988 	pci_chipset_tag_t pc = pa->pa_pc;
    989 	pci_intr_handle_t ih;
    990 	const char *intrstr = NULL;
    991 	bus_space_tag_t iot, memt;
    992 	bus_space_handle_t ioh, memh;
    993 	bus_size_t iosz, memsz;
    994 	int ioh_valid, memh_valid;
    995 	int i, rseg, error;
    996 	const struct sip_product *sip;
    997 	u_int8_t enaddr[ETHER_ADDR_LEN];
    998 	pcireg_t pmreg;
    999 	pcireg_t memtype;
   1000 	bus_size_t tx_dmamap_size;
   1001 	int ntxsegs_alloc;
   1002 	cfdata_t cf = device_cfdata(self);
   1003 
   1004 	callout_init(&sc->sc_tick_ch, 0);
   1005 
   1006 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1007 	if (sip == NULL) {
   1008 		printf("\n");
   1009 		panic("%s: impossible", __func__);
   1010 	}
   1011 	sc->sc_gigabit = sip->sip_gigabit;
   1012 
   1013 	sc->sc_pc = pc;
   1014 
   1015 	if (sc->sc_gigabit) {
   1016 		sc->sc_rxintr = gsip_rxintr;
   1017 		sc->sc_parm = &gsip_parm;
   1018 	} else {
   1019 		sc->sc_rxintr = sip_rxintr;
   1020 		sc->sc_parm = &sip_parm;
   1021 	}
   1022 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1023 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1024 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1025 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1026 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1027 
   1028 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1029 
   1030 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1031 
   1032 	sc->sc_model = sip;
   1033 
   1034 	/*
   1035 	 * XXX Work-around broken PXE firmware on some boards.
   1036 	 *
   1037 	 * The DP83815 shares an address decoder with the MEM BAR
   1038 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1039 	 * so that memory mapped access works.
   1040 	 */
   1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1042 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1043 	    ~PCI_MAPREG_ROM_ENABLE);
   1044 
   1045 	/*
   1046 	 * Map the device.
   1047 	 */
   1048 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1049 	    PCI_MAPREG_TYPE_IO, 0,
   1050 	    &iot, &ioh, NULL, &iosz) == 0);
   1051 	if (sc->sc_gigabit) {
   1052 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1053 		switch (memtype) {
   1054 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1055 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1056 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1057 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1058 			break;
   1059 		default:
   1060 			memh_valid = 0;
   1061 		}
   1062 	} else {
   1063 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1064 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1065 		    &memt, &memh, NULL, &memsz) == 0);
   1066 	}
   1067 
   1068 	if (memh_valid) {
   1069 		sc->sc_st = memt;
   1070 		sc->sc_sh = memh;
   1071 		sc->sc_sz = memsz;
   1072 	} else if (ioh_valid) {
   1073 		sc->sc_st = iot;
   1074 		sc->sc_sh = ioh;
   1075 		sc->sc_sz = iosz;
   1076 	} else {
   1077 		printf("%s: unable to map device registers\n",
   1078 		    sc->sc_dev.dv_xname);
   1079 		return;
   1080 	}
   1081 
   1082 	sc->sc_dmat = pa->pa_dmat;
   1083 
   1084 	/*
   1085 	 * Make sure bus mastering is enabled.  Also make sure
   1086 	 * Write/Invalidate is enabled if we're allowed to use it.
   1087 	 */
   1088 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1089 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1090 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
   1091 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1092 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
   1093 
   1094 	/* power up chip */
   1095 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1096 	    NULL)) && error != EOPNOTSUPP) {
   1097 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1098 		    error);
   1099 		return;
   1100 	}
   1101 
   1102 	/*
   1103 	 * Map and establish our interrupt.
   1104 	 */
   1105 	if (pci_intr_map(pa, &ih)) {
   1106 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
   1107 		return;
   1108 	}
   1109 	intrstr = pci_intr_string(pc, ih);
   1110 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1111 	if (sc->sc_ih == NULL) {
   1112 		printf("%s: unable to establish interrupt",
   1113 		    sc->sc_dev.dv_xname);
   1114 		if (intrstr != NULL)
   1115 			printf(" at %s", intrstr);
   1116 		printf("\n");
   1117 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1118 	}
   1119 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1120 
   1121 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1122 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1123 
   1124 	/*
   1125 	 * Allocate the control data structures, and create and load the
   1126 	 * DMA map for it.
   1127 	 */
   1128 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1129 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1130 	    &rseg, 0)) != 0) {
   1131 		printf("%s: unable to allocate control data, error = %d\n",
   1132 		    sc->sc_dev.dv_xname, error);
   1133 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1134 	}
   1135 
   1136 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1137 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1138 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1139 		printf("%s: unable to map control data, error = %d\n",
   1140 		    sc->sc_dev.dv_xname, error);
   1141 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1142 	}
   1143 
   1144 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1145 	    sizeof(struct sip_control_data), 1,
   1146 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1147 		printf("%s: unable to create control data DMA map, "
   1148 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1149 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1150 	}
   1151 
   1152 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1153 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1154 	    0)) != 0) {
   1155 		printf("%s: unable to load control data DMA map, error = %d\n",
   1156 		    sc->sc_dev.dv_xname, error);
   1157 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1158 	}
   1159 
   1160 	/*
   1161 	 * Create the transmit buffer DMA maps.
   1162 	 */
   1163 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1164 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1165 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1166 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1167 			printf("%s: unable to create tx DMA map %d, "
   1168 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1169 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1170 		}
   1171 	}
   1172 
   1173 	/*
   1174 	 * Create the receive buffer DMA maps.
   1175 	 */
   1176 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1177 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1178 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1179 			printf("%s: unable to create rx DMA map %d, "
   1180 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1181 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1182 		}
   1183 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1184 	}
   1185 
   1186 	/*
   1187 	 * Reset the chip to a known state.
   1188 	 */
   1189 	sipcom_reset(sc);
   1190 
   1191 	/*
   1192 	 * Read the Ethernet address from the EEPROM.  This might
   1193 	 * also fetch other stuff from the EEPROM and stash it
   1194 	 * in the softc.
   1195 	 */
   1196 	sc->sc_cfg = 0;
   1197 	if (!sc->sc_gigabit) {
   1198 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1199 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1200 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1201 
   1202 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1203 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1204 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1205 			sc->sc_cfg |=
   1206 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1207 			     CFG_EDBMASTEN);
   1208 	}
   1209 
   1210 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1211 
   1212 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1213 	    ether_sprintf(enaddr));
   1214 
   1215 	/*
   1216 	 * Initialize the configuration register: aggressive PCI
   1217 	 * bus request algorithm, default backoff, default OW timer,
   1218 	 * default parity error detection.
   1219 	 *
   1220 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1221 	 * friends -- it affects packet data, not descriptors.
   1222 	 */
   1223 	if (sc->sc_gigabit)
   1224 		sipcom_dp83820_attach(sc, pa);
   1225 
   1226 	/*
   1227 	 * Initialize our media structures and probe the MII.
   1228 	 */
   1229 	sc->sc_mii.mii_ifp = ifp;
   1230 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1231 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1232 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1233 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
   1234 	    sipcom_mediastatus);
   1235 
   1236 	/*
   1237 	 * XXX We cannot handle flow control on the DP83815.
   1238 	 */
   1239 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1240 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1241 			   MII_OFFSET_ANY, 0);
   1242 	else
   1243 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1244 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1245 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1246 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1247 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1248 	} else
   1249 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1250 
   1251 	ifp = &sc->sc_ethercom.ec_if;
   1252 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1253 	ifp->if_softc = sc;
   1254 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1255 	sc->sc_if_flags = ifp->if_flags;
   1256 	ifp->if_ioctl = sipcom_ioctl;
   1257 	ifp->if_start = sipcom_start;
   1258 	ifp->if_watchdog = sipcom_watchdog;
   1259 	ifp->if_init = sipcom_init;
   1260 	ifp->if_stop = sipcom_stop;
   1261 	IFQ_SET_READY(&ifp->if_snd);
   1262 
   1263 	/*
   1264 	 * We can support 802.1Q VLAN-sized frames.
   1265 	 */
   1266 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1267 
   1268 	if (sc->sc_gigabit) {
   1269 		/*
   1270 		 * And the DP83820 can do VLAN tagging in hardware, and
   1271 		 * support the jumbo Ethernet MTU.
   1272 		 */
   1273 		sc->sc_ethercom.ec_capabilities |=
   1274 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1275 
   1276 		/*
   1277 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1278 		 * in hardware.
   1279 		 */
   1280 		ifp->if_capabilities |=
   1281 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1282 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1283 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1284 	}
   1285 
   1286 	/*
   1287 	 * Attach the interface.
   1288 	 */
   1289 	if_attach(ifp);
   1290 	ether_ifattach(ifp, enaddr);
   1291 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1292 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1293 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1294 #if NRND > 0
   1295 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1296 	    RND_TYPE_NET, 0);
   1297 #endif
   1298 
   1299 	/*
   1300 	 * The number of bytes that must be available in
   1301 	 * the Tx FIFO before the bus master can DMA more
   1302 	 * data into the FIFO.
   1303 	 */
   1304 	sc->sc_tx_fill_thresh = 64 / 32;
   1305 
   1306 	/*
   1307 	 * Start at a drain threshold of 512 bytes.  We will
   1308 	 * increase it if a DMA underrun occurs.
   1309 	 *
   1310 	 * XXX The minimum value of this variable should be
   1311 	 * tuned.  We may be able to improve performance
   1312 	 * by starting with a lower value.  That, however,
   1313 	 * may trash the first few outgoing packets if the
   1314 	 * PCI bus is saturated.
   1315 	 */
   1316 	if (sc->sc_gigabit)
   1317 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1318 	else
   1319 		sc->sc_tx_drain_thresh = 1504 / 32;
   1320 
   1321 	/*
   1322 	 * Initialize the Rx FIFO drain threshold.
   1323 	 *
   1324 	 * This is in units of 8 bytes.
   1325 	 *
   1326 	 * We should never set this value lower than 2; 14 bytes are
   1327 	 * required to filter the packet.
   1328 	 */
   1329 	sc->sc_rx_drain_thresh = 128 / 8;
   1330 
   1331 #ifdef SIP_EVENT_COUNTERS
   1332 	/*
   1333 	 * Attach event counters.
   1334 	 */
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1336 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1338 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1340 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1342 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1343 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1344 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1345 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1346 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1347 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1348 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1349 	if (!sc->sc_gigabit) {
   1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1351 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1352 	} else {
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1354 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1356 		    NULL, sc->sc_dev.dv_xname, "txpause");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1358 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1360 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1362 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1363 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1364 		    NULL, sc->sc_dev.dv_xname, "txipsum");
   1365 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1366 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1367 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1368 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1369 	}
   1370 #endif /* SIP_EVENT_COUNTERS */
   1371 
   1372 	if (!pmf_device_register(self, NULL, sipcom_resume))
   1373 		aprint_error_dev(self, "couldn't establish power handler\n");
   1374 	else
   1375 		pmf_class_network_register(self, ifp);
   1376 
   1377 	/*
   1378 	 * Make sure the interface is shutdown during reboot.
   1379 	 */
   1380 	sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
   1381 	if (sc->sc_sdhook == NULL)
   1382 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1383 		    sc->sc_dev.dv_xname);
   1384 }
   1385 
   1386 /*
   1387  * sip_shutdown:
   1388  *
   1389  *	Make sure the interface is stopped at reboot time.
   1390  */
   1391 static void
   1392 sipcom_shutdown(void *arg)
   1393 {
   1394 	struct sip_softc *sc = arg;
   1395 
   1396 	sipcom_stop(&sc->sc_ethercom.ec_if, 1);
   1397 }
   1398 
   1399 static inline void
   1400 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1401     uint64_t capenable)
   1402 {
   1403 	struct m_tag *mtag;
   1404 	u_int32_t extsts;
   1405 #ifdef DEBUG
   1406 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1407 #endif
   1408 	/*
   1409 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1410 	 * up the descriptor to encapsulate the packet for us.
   1411 	 *
   1412 	 * This apparently has to be on the last descriptor of
   1413 	 * the packet.
   1414 	 */
   1415 
   1416 	/*
   1417 	 * Byte swapping is tricky. We need to provide the tag
   1418 	 * in a network byte order. On a big-endian machine,
   1419 	 * the byteorder is correct, but we need to swap it
   1420 	 * anyway, because this will be undone by the outside
   1421 	 * htole32(). That's why there must be an
   1422 	 * unconditional swap instead of htons() inside.
   1423 	 */
   1424 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1425 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1426 		    htole32(EXTSTS_VPKT |
   1427 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1428 				 EXTSTS_VTCI));
   1429 	}
   1430 
   1431 	/*
   1432 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1433 	 * checksumming, set up the descriptor to do this work
   1434 	 * for us.
   1435 	 *
   1436 	 * This apparently has to be on the first descriptor of
   1437 	 * the packet.
   1438 	 *
   1439 	 * Byte-swap constants so the compiler can optimize.
   1440 	 */
   1441 	extsts = 0;
   1442 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1443 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1444 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1445 		extsts |= htole32(EXTSTS_IPPKT);
   1446 	}
   1447 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1448 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1449 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1450 		extsts |= htole32(EXTSTS_TCPPKT);
   1451 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1452 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1453 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1454 		extsts |= htole32(EXTSTS_UDPPKT);
   1455 	}
   1456 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1457 }
   1458 
   1459 /*
   1460  * sip_start:		[ifnet interface function]
   1461  *
   1462  *	Start packet transmission on the interface.
   1463  */
   1464 static void
   1465 sipcom_start(struct ifnet *ifp)
   1466 {
   1467 	struct sip_softc *sc = ifp->if_softc;
   1468 	struct mbuf *m0;
   1469 	struct mbuf *m;
   1470 	struct sip_txsoft *txs;
   1471 	bus_dmamap_t dmamap;
   1472 	int error, nexttx, lasttx, seg;
   1473 	int ofree = sc->sc_txfree;
   1474 #if 0
   1475 	int firsttx = sc->sc_txnext;
   1476 #endif
   1477 
   1478 	/*
   1479 	 * If we've been told to pause, don't transmit any more packets.
   1480 	 */
   1481 	if (!sc->sc_gigabit && sc->sc_paused)
   1482 		ifp->if_flags |= IFF_OACTIVE;
   1483 
   1484 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1485 		return;
   1486 
   1487 	/*
   1488 	 * Loop through the send queue, setting up transmit descriptors
   1489 	 * until we drain the queue, or use up all available transmit
   1490 	 * descriptors.
   1491 	 */
   1492 	for (;;) {
   1493 		/* Get a work queue entry. */
   1494 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1495 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1496 			break;
   1497 		}
   1498 
   1499 		/*
   1500 		 * Grab a packet off the queue.
   1501 		 */
   1502 		IFQ_POLL(&ifp->if_snd, m0);
   1503 		if (m0 == NULL)
   1504 			break;
   1505 		m = NULL;
   1506 
   1507 		dmamap = txs->txs_dmamap;
   1508 
   1509 		/*
   1510 		 * Load the DMA map.  If this fails, the packet either
   1511 		 * didn't fit in the alloted number of segments, or we
   1512 		 * were short on resources.
   1513 		 */
   1514 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1515 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1516 		/* In the non-gigabit case, we'll copy and try again. */
   1517 		if (error != 0 && !sc->sc_gigabit) {
   1518 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1519 			if (m == NULL) {
   1520 				printf("%s: unable to allocate Tx mbuf\n",
   1521 				    sc->sc_dev.dv_xname);
   1522 				break;
   1523 			}
   1524 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1525 			if (m0->m_pkthdr.len > MHLEN) {
   1526 				MCLGET(m, M_DONTWAIT);
   1527 				if ((m->m_flags & M_EXT) == 0) {
   1528 					printf("%s: unable to allocate Tx "
   1529 					    "cluster\n", sc->sc_dev.dv_xname);
   1530 					m_freem(m);
   1531 					break;
   1532 				}
   1533 			}
   1534 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1535 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1536 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1537 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1538 			if (error) {
   1539 				printf("%s: unable to load Tx buffer, "
   1540 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1541 				break;
   1542 			}
   1543 		} else if (error == EFBIG) {
   1544 			/*
   1545 			 * For the too-many-segments case, we simply
   1546 			 * report an error and drop the packet,
   1547 			 * since we can't sanely copy a jumbo packet
   1548 			 * to a single buffer.
   1549 			 */
   1550 			printf("%s: Tx packet consumes too many "
   1551 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
   1552 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1553 			m_freem(m0);
   1554 			continue;
   1555 		} else if (error != 0) {
   1556 			/*
   1557 			 * Short on resources, just stop for now.
   1558 			 */
   1559 			break;
   1560 		}
   1561 
   1562 		/*
   1563 		 * Ensure we have enough descriptors free to describe
   1564 		 * the packet.  Note, we always reserve one descriptor
   1565 		 * at the end of the ring as a termination point, to
   1566 		 * prevent wrap-around.
   1567 		 */
   1568 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1569 			/*
   1570 			 * Not enough free descriptors to transmit this
   1571 			 * packet.  We haven't committed anything yet,
   1572 			 * so just unload the DMA map, put the packet
   1573 			 * back on the queue, and punt.  Notify the upper
   1574 			 * layer that there are not more slots left.
   1575 			 *
   1576 			 * XXX We could allocate an mbuf and copy, but
   1577 			 * XXX is it worth it?
   1578 			 */
   1579 			ifp->if_flags |= IFF_OACTIVE;
   1580 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1581 			if (m != NULL)
   1582 				m_freem(m);
   1583 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1584 			break;
   1585 		}
   1586 
   1587 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1588 		if (m != NULL) {
   1589 			m_freem(m0);
   1590 			m0 = m;
   1591 		}
   1592 
   1593 		/*
   1594 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1595 		 */
   1596 
   1597 		/* Sync the DMA map. */
   1598 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1599 		    BUS_DMASYNC_PREWRITE);
   1600 
   1601 		/*
   1602 		 * Initialize the transmit descriptors.
   1603 		 */
   1604 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1605 		     seg < dmamap->dm_nsegs;
   1606 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1607 			/*
   1608 			 * If this is the first descriptor we're
   1609 			 * enqueueing, don't set the OWN bit just
   1610 			 * yet.  That could cause a race condition.
   1611 			 * We'll do it below.
   1612 			 */
   1613 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1614 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1615 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1616 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1617 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1618 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1619 			lasttx = nexttx;
   1620 		}
   1621 
   1622 		/* Clear the MORE bit on the last segment. */
   1623 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1624 		    htole32(~CMDSTS_MORE);
   1625 
   1626 		/*
   1627 		 * If we're in the interrupt delay window, delay the
   1628 		 * interrupt.
   1629 		 */
   1630 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1631 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1632 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1633 			    htole32(CMDSTS_INTR);
   1634 			sc->sc_txwin = 0;
   1635 		}
   1636 
   1637 		if (sc->sc_gigabit)
   1638 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1639 
   1640 		/* Sync the descriptors we're using. */
   1641 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1642 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1643 
   1644 		/*
   1645 		 * The entire packet is set up.  Give the first descrptor
   1646 		 * to the chip now.
   1647 		 */
   1648 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1649 		    htole32(CMDSTS_OWN);
   1650 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1651 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1652 
   1653 		/*
   1654 		 * Store a pointer to the packet so we can free it later,
   1655 		 * and remember what txdirty will be once the packet is
   1656 		 * done.
   1657 		 */
   1658 		txs->txs_mbuf = m0;
   1659 		txs->txs_firstdesc = sc->sc_txnext;
   1660 		txs->txs_lastdesc = lasttx;
   1661 
   1662 		/* Advance the tx pointer. */
   1663 		sc->sc_txfree -= dmamap->dm_nsegs;
   1664 		sc->sc_txnext = nexttx;
   1665 
   1666 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1667 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1668 
   1669 #if NBPFILTER > 0
   1670 		/*
   1671 		 * Pass the packet to any BPF listeners.
   1672 		 */
   1673 		if (ifp->if_bpf)
   1674 			bpf_mtap(ifp->if_bpf, m0);
   1675 #endif /* NBPFILTER > 0 */
   1676 	}
   1677 
   1678 	if (txs == NULL || sc->sc_txfree == 0) {
   1679 		/* No more slots left; notify upper layer. */
   1680 		ifp->if_flags |= IFF_OACTIVE;
   1681 	}
   1682 
   1683 	if (sc->sc_txfree != ofree) {
   1684 		/*
   1685 		 * Start the transmit process.  Note, the manual says
   1686 		 * that if there are no pending transmissions in the
   1687 		 * chip's internal queue (indicated by TXE being clear),
   1688 		 * then the driver software must set the TXDP to the
   1689 		 * first descriptor to be transmitted.  However, if we
   1690 		 * do this, it causes serious performance degredation on
   1691 		 * the DP83820 under load, not setting TXDP doesn't seem
   1692 		 * to adversely affect the SiS 900 or DP83815.
   1693 		 *
   1694 		 * Well, I guess it wouldn't be the first time a manual
   1695 		 * has lied -- and they could be speaking of the NULL-
   1696 		 * terminated descriptor list case, rather than OWN-
   1697 		 * terminated rings.
   1698 		 */
   1699 #if 0
   1700 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1701 		     CR_TXE) == 0) {
   1702 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1703 			    SIP_CDTXADDR(sc, firsttx));
   1704 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1705 		}
   1706 #else
   1707 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1708 #endif
   1709 
   1710 		/* Set a watchdog timer in case the chip flakes out. */
   1711 		/* Gigabit autonegotiation takes 5 seconds. */
   1712 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1713 	}
   1714 }
   1715 
   1716 /*
   1717  * sip_watchdog:	[ifnet interface function]
   1718  *
   1719  *	Watchdog timer handler.
   1720  */
   1721 static void
   1722 sipcom_watchdog(struct ifnet *ifp)
   1723 {
   1724 	struct sip_softc *sc = ifp->if_softc;
   1725 
   1726 	/*
   1727 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1728 	 * If we get a timeout, try and sweep up transmit descriptors.
   1729 	 * If we manage to sweep them all up, ignore the lack of
   1730 	 * interrupt.
   1731 	 */
   1732 	sipcom_txintr(sc);
   1733 
   1734 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1735 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1736 		ifp->if_oerrors++;
   1737 
   1738 		/* Reset the interface. */
   1739 		(void) sipcom_init(ifp);
   1740 	} else if (ifp->if_flags & IFF_DEBUG)
   1741 		printf("%s: recovered from device timeout\n",
   1742 		    sc->sc_dev.dv_xname);
   1743 
   1744 	/* Try to get more packets going. */
   1745 	sipcom_start(ifp);
   1746 }
   1747 
   1748 /*
   1749  * sip_ioctl:		[ifnet interface function]
   1750  *
   1751  *	Handle control requests from the operator.
   1752  */
   1753 static int
   1754 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1755 {
   1756 	struct sip_softc *sc = ifp->if_softc;
   1757 	struct ifreq *ifr = (struct ifreq *)data;
   1758 	int s, error;
   1759 
   1760 	s = splnet();
   1761 
   1762 	switch (cmd) {
   1763 	case SIOCSIFMEDIA:
   1764 		/* Flow control requires full-duplex mode. */
   1765 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1766 		    (ifr->ifr_media & IFM_FDX) == 0)
   1767 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1768 
   1769 		/* XXX */
   1770 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1771 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1772 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1773 			if (sc->sc_gigabit &&
   1774 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1775 				/* We can do both TXPAUSE and RXPAUSE. */
   1776 				ifr->ifr_media |=
   1777 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1778 			} else if (ifr->ifr_media & IFM_FLOW) {
   1779 				/*
   1780 				 * Both TXPAUSE and RXPAUSE must be set.
   1781 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1782 				 * feature.)
   1783 				 *
   1784 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1785 				 */
   1786 				ifr->ifr_media |=
   1787 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1788 			}
   1789 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1790 		}
   1791 		/* FALLTHROUGH */
   1792 	case SIOCGIFMEDIA:
   1793 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1794 		break;
   1795 	case SIOCSIFFLAGS:
   1796 		/* If the interface is up and running, only modify the receive
   1797 		 * filter when setting promiscuous or debug mode.  Otherwise
   1798 		 * fall through to ether_ioctl, which will reset the chip.
   1799 		 */
   1800 
   1801 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1802 			 == (sc)->sc_ethercom.ec_capenable)		\
   1803 			&& ((sc)->sc_prev.is_vlan ==			\
   1804 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1805 
   1806 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1807 
   1808 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1809 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1810 		    == (IFF_UP|IFF_RUNNING))
   1811 		    && ((ifp->if_flags & (~RESETIGN))
   1812 		    == (sc->sc_if_flags & (~RESETIGN)))
   1813 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1814 			/* Set up the receive filter. */
   1815 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1816 			error = 0;
   1817 			break;
   1818 #undef RESETIGN
   1819 		}
   1820 		/* FALLTHROUGH */
   1821 	default:
   1822 		error = ether_ioctl(ifp, cmd, data);
   1823 		if (error == ENETRESET) {
   1824 			/*
   1825 			 * Multicast list has changed; set the hardware filter
   1826 			 * accordingly.
   1827 			 */
   1828 			if (ifp->if_flags & IFF_RUNNING)
   1829 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1830 			error = 0;
   1831 		}
   1832 		break;
   1833 	}
   1834 
   1835 	/* Try to get more packets going. */
   1836 	sipcom_start(ifp);
   1837 
   1838 	sc->sc_if_flags = ifp->if_flags;
   1839 	splx(s);
   1840 	return (error);
   1841 }
   1842 
   1843 /*
   1844  * sip_intr:
   1845  *
   1846  *	Interrupt service routine.
   1847  */
   1848 static int
   1849 sipcom_intr(void *arg)
   1850 {
   1851 	struct sip_softc *sc = arg;
   1852 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1853 	u_int32_t isr;
   1854 	int handled = 0;
   1855 
   1856 	/* Disable interrupts. */
   1857 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1858 
   1859 	for (;;) {
   1860 		/* Reading clears interrupt. */
   1861 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1862 		if ((isr & sc->sc_imr) == 0)
   1863 			break;
   1864 
   1865 #if NRND > 0
   1866 		if (RND_ENABLED(&sc->rnd_source))
   1867 			rnd_add_uint32(&sc->rnd_source, isr);
   1868 #endif
   1869 
   1870 		handled = 1;
   1871 
   1872 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1873 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1874 
   1875 			/* Grab any new packets. */
   1876 			(*sc->sc_rxintr)(sc);
   1877 
   1878 			if (isr & ISR_RXORN) {
   1879 				printf("%s: receive FIFO overrun\n",
   1880 				    sc->sc_dev.dv_xname);
   1881 
   1882 				/* XXX adjust rx_drain_thresh? */
   1883 			}
   1884 
   1885 			if (isr & ISR_RXIDLE) {
   1886 				printf("%s: receive ring overrun\n",
   1887 				    sc->sc_dev.dv_xname);
   1888 
   1889 				/* Get the receive process going again. */
   1890 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1891 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1892 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1893 				    SIP_CR, CR_RXE);
   1894 			}
   1895 		}
   1896 
   1897 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1898 #ifdef SIP_EVENT_COUNTERS
   1899 			if (isr & ISR_TXDESC)
   1900 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1901 			else if (isr & ISR_TXIDLE)
   1902 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1903 #endif
   1904 
   1905 			/* Sweep up transmit descriptors. */
   1906 			sipcom_txintr(sc);
   1907 
   1908 			if (isr & ISR_TXURN) {
   1909 				u_int32_t thresh;
   1910 				int txfifo_size = (sc->sc_gigabit)
   1911 				    ? DP83820_SIP_TXFIFO_SIZE
   1912 				    : OTHER_SIP_TXFIFO_SIZE;
   1913 
   1914 				printf("%s: transmit FIFO underrun",
   1915 				    sc->sc_dev.dv_xname);
   1916 				thresh = sc->sc_tx_drain_thresh + 1;
   1917 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1918 				&& (thresh * 32) <= (txfifo_size -
   1919 				     (sc->sc_tx_fill_thresh * 32))) {
   1920 					printf("; increasing Tx drain "
   1921 					    "threshold to %u bytes\n",
   1922 					    thresh * 32);
   1923 					sc->sc_tx_drain_thresh = thresh;
   1924 					(void) sipcom_init(ifp);
   1925 				} else {
   1926 					(void) sipcom_init(ifp);
   1927 					printf("\n");
   1928 				}
   1929 			}
   1930 		}
   1931 
   1932 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1933 			if (isr & ISR_PAUSE_ST) {
   1934 				sc->sc_paused = 1;
   1935 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1936 				ifp->if_flags |= IFF_OACTIVE;
   1937 			}
   1938 			if (isr & ISR_PAUSE_END) {
   1939 				sc->sc_paused = 0;
   1940 				ifp->if_flags &= ~IFF_OACTIVE;
   1941 			}
   1942 		}
   1943 
   1944 		if (isr & ISR_HIBERR) {
   1945 			int want_init = 0;
   1946 
   1947 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1948 
   1949 #define	PRINTERR(bit, str)						\
   1950 			do {						\
   1951 				if ((isr & (bit)) != 0) {		\
   1952 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1953 						printf("%s: %s\n",	\
   1954 						    sc->sc_dev.dv_xname, str); \
   1955 					want_init = 1;			\
   1956 				}					\
   1957 			} while (/*CONSTCOND*/0)
   1958 
   1959 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1960 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1961 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1962 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1963 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1964 			/*
   1965 			 * Ignore:
   1966 			 *	Tx reset complete
   1967 			 *	Rx reset complete
   1968 			 */
   1969 			if (want_init)
   1970 				(void) sipcom_init(ifp);
   1971 #undef PRINTERR
   1972 		}
   1973 	}
   1974 
   1975 	/* Re-enable interrupts. */
   1976 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1977 
   1978 	/* Try to get more packets going. */
   1979 	sipcom_start(ifp);
   1980 
   1981 	return (handled);
   1982 }
   1983 
   1984 /*
   1985  * sip_txintr:
   1986  *
   1987  *	Helper; handle transmit interrupts.
   1988  */
   1989 static void
   1990 sipcom_txintr(struct sip_softc *sc)
   1991 {
   1992 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1993 	struct sip_txsoft *txs;
   1994 	u_int32_t cmdsts;
   1995 
   1996 	if (sc->sc_paused == 0)
   1997 		ifp->if_flags &= ~IFF_OACTIVE;
   1998 
   1999 	/*
   2000 	 * Go through our Tx list and free mbufs for those
   2001 	 * frames which have been transmitted.
   2002 	 */
   2003 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2004 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   2005 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2006 
   2007 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2008 		if (cmdsts & CMDSTS_OWN)
   2009 			break;
   2010 
   2011 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2012 
   2013 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   2014 
   2015 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2016 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2017 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2018 		m_freem(txs->txs_mbuf);
   2019 		txs->txs_mbuf = NULL;
   2020 
   2021 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2022 
   2023 		/*
   2024 		 * Check for errors and collisions.
   2025 		 */
   2026 		if (cmdsts &
   2027 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2028 			ifp->if_oerrors++;
   2029 			if (cmdsts & CMDSTS_Tx_EC)
   2030 				ifp->if_collisions += 16;
   2031 			if (ifp->if_flags & IFF_DEBUG) {
   2032 				if (cmdsts & CMDSTS_Tx_ED)
   2033 					printf("%s: excessive deferral\n",
   2034 					    sc->sc_dev.dv_xname);
   2035 				if (cmdsts & CMDSTS_Tx_EC)
   2036 					printf("%s: excessive collisions\n",
   2037 					    sc->sc_dev.dv_xname);
   2038 			}
   2039 		} else {
   2040 			/* Packet was transmitted successfully. */
   2041 			ifp->if_opackets++;
   2042 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2043 		}
   2044 	}
   2045 
   2046 	/*
   2047 	 * If there are no more pending transmissions, cancel the watchdog
   2048 	 * timer.
   2049 	 */
   2050 	if (txs == NULL) {
   2051 		ifp->if_timer = 0;
   2052 		sc->sc_txwin = 0;
   2053 	}
   2054 }
   2055 
   2056 /*
   2057  * gsip_rxintr:
   2058  *
   2059  *	Helper; handle receive interrupts on gigabit parts.
   2060  */
   2061 static void
   2062 gsip_rxintr(struct sip_softc *sc)
   2063 {
   2064 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2065 	struct sip_rxsoft *rxs;
   2066 	struct mbuf *m;
   2067 	u_int32_t cmdsts, extsts;
   2068 	int i, len;
   2069 
   2070 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2071 		rxs = &sc->sc_rxsoft[i];
   2072 
   2073 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2074 
   2075 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2076 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2077 		len = CMDSTS_SIZE(sc, cmdsts);
   2078 
   2079 		/*
   2080 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2081 		 * consumer of the receive ring, so if the bit is clear,
   2082 		 * we have processed all of the packets.
   2083 		 */
   2084 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2085 			/*
   2086 			 * We have processed all of the receive buffers.
   2087 			 */
   2088 			break;
   2089 		}
   2090 
   2091 		if (__predict_false(sc->sc_rxdiscard)) {
   2092 			sip_init_rxdesc(sc, i);
   2093 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2094 				/* Reset our state. */
   2095 				sc->sc_rxdiscard = 0;
   2096 			}
   2097 			continue;
   2098 		}
   2099 
   2100 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2101 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2102 
   2103 		m = rxs->rxs_mbuf;
   2104 
   2105 		/*
   2106 		 * Add a new receive buffer to the ring.
   2107 		 */
   2108 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2109 			/*
   2110 			 * Failed, throw away what we've done so
   2111 			 * far, and discard the rest of the packet.
   2112 			 */
   2113 			ifp->if_ierrors++;
   2114 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2115 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2116 			sip_init_rxdesc(sc, i);
   2117 			if (cmdsts & CMDSTS_MORE)
   2118 				sc->sc_rxdiscard = 1;
   2119 			if (sc->sc_rxhead != NULL)
   2120 				m_freem(sc->sc_rxhead);
   2121 			sip_rxchain_reset(sc);
   2122 			continue;
   2123 		}
   2124 
   2125 		sip_rxchain_link(sc, m);
   2126 
   2127 		m->m_len = len;
   2128 
   2129 		/*
   2130 		 * If this is not the end of the packet, keep
   2131 		 * looking.
   2132 		 */
   2133 		if (cmdsts & CMDSTS_MORE) {
   2134 			sc->sc_rxlen += len;
   2135 			continue;
   2136 		}
   2137 
   2138 		/*
   2139 		 * Okay, we have the entire packet now.  The chip includes
   2140 		 * the FCS, so we need to trim it.
   2141 		 */
   2142 		m->m_len -= ETHER_CRC_LEN;
   2143 
   2144 		*sc->sc_rxtailp = NULL;
   2145 		len = m->m_len + sc->sc_rxlen;
   2146 		m = sc->sc_rxhead;
   2147 
   2148 		sip_rxchain_reset(sc);
   2149 
   2150 		/*
   2151 		 * If an error occurred, update stats and drop the packet.
   2152 		 */
   2153 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2154 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2155 			ifp->if_ierrors++;
   2156 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2157 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2158 				/* Receive overrun handled elsewhere. */
   2159 				printf("%s: receive descriptor error\n",
   2160 				    sc->sc_dev.dv_xname);
   2161 			}
   2162 #define	PRINTERR(bit, str)						\
   2163 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2164 			    (cmdsts & (bit)) != 0)			\
   2165 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2166 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2167 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2168 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2169 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2170 #undef PRINTERR
   2171 			m_freem(m);
   2172 			continue;
   2173 		}
   2174 
   2175 		/*
   2176 		 * If the packet is small enough to fit in a
   2177 		 * single header mbuf, allocate one and copy
   2178 		 * the data into it.  This greatly reduces
   2179 		 * memory consumption when we receive lots
   2180 		 * of small packets.
   2181 		 */
   2182 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2183 			struct mbuf *nm;
   2184 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2185 			if (nm == NULL) {
   2186 				ifp->if_ierrors++;
   2187 				m_freem(m);
   2188 				continue;
   2189 			}
   2190 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2191 			nm->m_data += 2;
   2192 			nm->m_pkthdr.len = nm->m_len = len;
   2193 			m_copydata(m, 0, len, mtod(nm, void *));
   2194 			m_freem(m);
   2195 			m = nm;
   2196 		}
   2197 #ifndef __NO_STRICT_ALIGNMENT
   2198 		else {
   2199 			/*
   2200 			 * The DP83820's receive buffers must be 4-byte
   2201 			 * aligned.  But this means that the data after
   2202 			 * the Ethernet header is misaligned.  To compensate,
   2203 			 * we have artificially shortened the buffer size
   2204 			 * in the descriptor, and we do an overlapping copy
   2205 			 * of the data two bytes further in (in the first
   2206 			 * buffer of the chain only).
   2207 			 */
   2208 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2209 			    m->m_len);
   2210 			m->m_data += 2;
   2211 		}
   2212 #endif /* ! __NO_STRICT_ALIGNMENT */
   2213 
   2214 		/*
   2215 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2216 		 * for us.  Associate the tag with the packet.
   2217 		 */
   2218 
   2219 		/*
   2220 		 * Again, byte swapping is tricky. Hardware provided
   2221 		 * the tag in the network byte order, but extsts was
   2222 		 * passed through le32toh() in the meantime. On a
   2223 		 * big-endian machine, we need to swap it again. On a
   2224 		 * little-endian machine, we need to convert from the
   2225 		 * network to host byte order. This means that we must
   2226 		 * swap it in any case, so unconditional swap instead
   2227 		 * of htons() is used.
   2228 		 */
   2229 		if ((extsts & EXTSTS_VPKT) != 0) {
   2230 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2231 			    continue);
   2232 		}
   2233 
   2234 		/*
   2235 		 * Set the incoming checksum information for the
   2236 		 * packet.
   2237 		 */
   2238 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2239 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2240 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2241 			if (extsts & EXTSTS_Rx_IPERR)
   2242 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2243 			if (extsts & EXTSTS_TCPPKT) {
   2244 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2245 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2246 				if (extsts & EXTSTS_Rx_TCPERR)
   2247 					m->m_pkthdr.csum_flags |=
   2248 					    M_CSUM_TCP_UDP_BAD;
   2249 			} else if (extsts & EXTSTS_UDPPKT) {
   2250 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2251 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2252 				if (extsts & EXTSTS_Rx_UDPERR)
   2253 					m->m_pkthdr.csum_flags |=
   2254 					    M_CSUM_TCP_UDP_BAD;
   2255 			}
   2256 		}
   2257 
   2258 		ifp->if_ipackets++;
   2259 		m->m_pkthdr.rcvif = ifp;
   2260 		m->m_pkthdr.len = len;
   2261 
   2262 #if NBPFILTER > 0
   2263 		/*
   2264 		 * Pass this up to any BPF listeners, but only
   2265 		 * pass if up the stack if it's for us.
   2266 		 */
   2267 		if (ifp->if_bpf)
   2268 			bpf_mtap(ifp->if_bpf, m);
   2269 #endif /* NBPFILTER > 0 */
   2270 
   2271 		/* Pass it on. */
   2272 		(*ifp->if_input)(ifp, m);
   2273 	}
   2274 
   2275 	/* Update the receive pointer. */
   2276 	sc->sc_rxptr = i;
   2277 }
   2278 
   2279 /*
   2280  * sip_rxintr:
   2281  *
   2282  *	Helper; handle receive interrupts on 10/100 parts.
   2283  */
   2284 static void
   2285 sip_rxintr(struct sip_softc *sc)
   2286 {
   2287 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2288 	struct sip_rxsoft *rxs;
   2289 	struct mbuf *m;
   2290 	u_int32_t cmdsts;
   2291 	int i, len;
   2292 
   2293 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2294 		rxs = &sc->sc_rxsoft[i];
   2295 
   2296 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2297 
   2298 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2299 
   2300 		/*
   2301 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2302 		 * consumer of the receive ring, so if the bit is clear,
   2303 		 * we have processed all of the packets.
   2304 		 */
   2305 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2306 			/*
   2307 			 * We have processed all of the receive buffers.
   2308 			 */
   2309 			break;
   2310 		}
   2311 
   2312 		/*
   2313 		 * If any collisions were seen on the wire, count one.
   2314 		 */
   2315 		if (cmdsts & CMDSTS_Rx_COL)
   2316 			ifp->if_collisions++;
   2317 
   2318 		/*
   2319 		 * If an error occurred, update stats, clear the status
   2320 		 * word, and leave the packet buffer in place.  It will
   2321 		 * simply be reused the next time the ring comes around.
   2322 		 */
   2323 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2324 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2325 			ifp->if_ierrors++;
   2326 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2327 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2328 				/* Receive overrun handled elsewhere. */
   2329 				printf("%s: receive descriptor error\n",
   2330 				    sc->sc_dev.dv_xname);
   2331 			}
   2332 #define	PRINTERR(bit, str)						\
   2333 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2334 			    (cmdsts & (bit)) != 0)			\
   2335 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2336 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2337 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2338 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2339 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2340 #undef PRINTERR
   2341 			sip_init_rxdesc(sc, i);
   2342 			continue;
   2343 		}
   2344 
   2345 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2346 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2347 
   2348 		/*
   2349 		 * No errors; receive the packet.  Note, the SiS 900
   2350 		 * includes the CRC with every packet.
   2351 		 */
   2352 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2353 
   2354 #ifdef __NO_STRICT_ALIGNMENT
   2355 		/*
   2356 		 * If the packet is small enough to fit in a
   2357 		 * single header mbuf, allocate one and copy
   2358 		 * the data into it.  This greatly reduces
   2359 		 * memory consumption when we receive lots
   2360 		 * of small packets.
   2361 		 *
   2362 		 * Otherwise, we add a new buffer to the receive
   2363 		 * chain.  If this fails, we drop the packet and
   2364 		 * recycle the old buffer.
   2365 		 */
   2366 		if (sip_copy_small != 0 && len <= MHLEN) {
   2367 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2368 			if (m == NULL)
   2369 				goto dropit;
   2370 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2371 			memcpy(mtod(m, void *),
   2372 			    mtod(rxs->rxs_mbuf, void *), len);
   2373 			sip_init_rxdesc(sc, i);
   2374 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2375 			    rxs->rxs_dmamap->dm_mapsize,
   2376 			    BUS_DMASYNC_PREREAD);
   2377 		} else {
   2378 			m = rxs->rxs_mbuf;
   2379 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2380  dropit:
   2381 				ifp->if_ierrors++;
   2382 				sip_init_rxdesc(sc, i);
   2383 				bus_dmamap_sync(sc->sc_dmat,
   2384 				    rxs->rxs_dmamap, 0,
   2385 				    rxs->rxs_dmamap->dm_mapsize,
   2386 				    BUS_DMASYNC_PREREAD);
   2387 				continue;
   2388 			}
   2389 		}
   2390 #else
   2391 		/*
   2392 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2393 		 * But this means that the data after the Ethernet header
   2394 		 * is misaligned.  We must allocate a new buffer and
   2395 		 * copy the data, shifted forward 2 bytes.
   2396 		 */
   2397 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2398 		if (m == NULL) {
   2399  dropit:
   2400 			ifp->if_ierrors++;
   2401 			sip_init_rxdesc(sc, i);
   2402 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2403 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2404 			continue;
   2405 		}
   2406 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2407 		if (len > (MHLEN - 2)) {
   2408 			MCLGET(m, M_DONTWAIT);
   2409 			if ((m->m_flags & M_EXT) == 0) {
   2410 				m_freem(m);
   2411 				goto dropit;
   2412 			}
   2413 		}
   2414 		m->m_data += 2;
   2415 
   2416 		/*
   2417 		 * Note that we use clusters for incoming frames, so the
   2418 		 * buffer is virtually contiguous.
   2419 		 */
   2420 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2421 
   2422 		/* Allow the receive descriptor to continue using its mbuf. */
   2423 		sip_init_rxdesc(sc, i);
   2424 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2425 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2426 #endif /* __NO_STRICT_ALIGNMENT */
   2427 
   2428 		ifp->if_ipackets++;
   2429 		m->m_pkthdr.rcvif = ifp;
   2430 		m->m_pkthdr.len = m->m_len = len;
   2431 
   2432 #if NBPFILTER > 0
   2433 		/*
   2434 		 * Pass this up to any BPF listeners, but only
   2435 		 * pass if up the stack if it's for us.
   2436 		 */
   2437 		if (ifp->if_bpf)
   2438 			bpf_mtap(ifp->if_bpf, m);
   2439 #endif /* NBPFILTER > 0 */
   2440 
   2441 		/* Pass it on. */
   2442 		(*ifp->if_input)(ifp, m);
   2443 	}
   2444 
   2445 	/* Update the receive pointer. */
   2446 	sc->sc_rxptr = i;
   2447 }
   2448 
   2449 /*
   2450  * sip_tick:
   2451  *
   2452  *	One second timer, used to tick the MII.
   2453  */
   2454 static void
   2455 sipcom_tick(void *arg)
   2456 {
   2457 	struct sip_softc *sc = arg;
   2458 	int s;
   2459 
   2460 	s = splnet();
   2461 #ifdef SIP_EVENT_COUNTERS
   2462 	if (sc->sc_gigabit) {
   2463 		/* Read PAUSE related counts from MIB registers. */
   2464 		sc->sc_ev_rxpause.ev_count +=
   2465 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2466 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2467 		sc->sc_ev_txpause.ev_count +=
   2468 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2469 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2470 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2471 	}
   2472 #endif /* SIP_EVENT_COUNTERS */
   2473 	mii_tick(&sc->sc_mii);
   2474 	splx(s);
   2475 
   2476 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2477 }
   2478 
   2479 /*
   2480  * sip_reset:
   2481  *
   2482  *	Perform a soft reset on the SiS 900.
   2483  */
   2484 static bool
   2485 sipcom_reset(struct sip_softc *sc)
   2486 {
   2487 	bus_space_tag_t st = sc->sc_st;
   2488 	bus_space_handle_t sh = sc->sc_sh;
   2489 	int i;
   2490 
   2491 	bus_space_write_4(st, sh, SIP_IER, 0);
   2492 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2493 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2494 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2495 
   2496 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2497 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2498 			break;
   2499 		delay(2);
   2500 	}
   2501 
   2502 	if (i == SIP_TIMEOUT) {
   2503 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2504 		return false;
   2505 	}
   2506 
   2507 	delay(1000);
   2508 
   2509 	if (sc->sc_gigabit) {
   2510 		/*
   2511 		 * Set the general purpose I/O bits.  Do it here in case we
   2512 		 * need to have GPIO set up to talk to the media interface.
   2513 		 */
   2514 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2515 		delay(1000);
   2516 	}
   2517 	return true;
   2518 }
   2519 
   2520 static void
   2521 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2522 {
   2523 	u_int32_t reg;
   2524 	bus_space_tag_t st = sc->sc_st;
   2525 	bus_space_handle_t sh = sc->sc_sh;
   2526 	/*
   2527 	 * Initialize the VLAN/IP receive control register.
   2528 	 * We enable checksum computation on all incoming
   2529 	 * packets, and do not reject packets w/ bad checksums.
   2530 	 */
   2531 	reg = 0;
   2532 	if (capenable &
   2533 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2534 		reg |= VRCR_IPEN;
   2535 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2536 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2537 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2538 
   2539 	/*
   2540 	 * Initialize the VLAN/IP transmit control register.
   2541 	 * We enable outgoing checksum computation on a
   2542 	 * per-packet basis.
   2543 	 */
   2544 	reg = 0;
   2545 	if (capenable &
   2546 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2547 		reg |= VTCR_PPCHK;
   2548 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2549 		reg |= VTCR_VPPTI;
   2550 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2551 
   2552 	/*
   2553 	 * If we're using VLANs, initialize the VLAN data register.
   2554 	 * To understand why we bswap the VLAN Ethertype, see section
   2555 	 * 4.2.36 of the DP83820 manual.
   2556 	 */
   2557 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2558 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2559 }
   2560 
   2561 /*
   2562  * sip_init:		[ ifnet interface function ]
   2563  *
   2564  *	Initialize the interface.  Must be called at splnet().
   2565  */
   2566 static int
   2567 sipcom_init(struct ifnet *ifp)
   2568 {
   2569 	struct sip_softc *sc = ifp->if_softc;
   2570 	bus_space_tag_t st = sc->sc_st;
   2571 	bus_space_handle_t sh = sc->sc_sh;
   2572 	struct sip_txsoft *txs;
   2573 	struct sip_rxsoft *rxs;
   2574 	struct sip_desc *sipd;
   2575 	int i, error = 0;
   2576 
   2577 	if (!device_has_power(&sc->sc_dev))
   2578 		return EBUSY;
   2579 
   2580 	/*
   2581 	 * Cancel any pending I/O.
   2582 	 */
   2583 	sipcom_stop(ifp, 0);
   2584 
   2585 	/*
   2586 	 * Reset the chip to a known state.
   2587 	 */
   2588 	if (!sipcom_reset(sc))
   2589 		return EBUSY;
   2590 
   2591 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2592 		/*
   2593 		 * DP83815 manual, page 78:
   2594 		 *    4.4 Recommended Registers Configuration
   2595 		 *    For optimum performance of the DP83815, version noted
   2596 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2597 		 *    modifications must be followed in sequence...
   2598 		 *
   2599 		 * It's not clear if this should be 302h or 203h because that
   2600 		 * chip name is listed as SRR 302h in the description of the
   2601 		 * SRR register.  However, my revision 302h DP83815 on the
   2602 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2603 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2604 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2605 		 * this set or not.  [briggs -- 09 March 2001]
   2606 		 *
   2607 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2608 		 * and that this sets reserved bits in that register.
   2609 		 */
   2610 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2611 
   2612 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2613 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2614 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2615 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2616 
   2617 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2618 	}
   2619 
   2620 	/*
   2621 	 * Initialize the transmit descriptor ring.
   2622 	 */
   2623 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2624 		sipd = &sc->sc_txdescs[i];
   2625 		memset(sipd, 0, sizeof(struct sip_desc));
   2626 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2627 	}
   2628 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2629 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2630 	sc->sc_txfree = sc->sc_ntxdesc;
   2631 	sc->sc_txnext = 0;
   2632 	sc->sc_txwin = 0;
   2633 
   2634 	/*
   2635 	 * Initialize the transmit job descriptors.
   2636 	 */
   2637 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2638 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2639 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2640 		txs = &sc->sc_txsoft[i];
   2641 		txs->txs_mbuf = NULL;
   2642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2643 	}
   2644 
   2645 	/*
   2646 	 * Initialize the receive descriptor and receive job
   2647 	 * descriptor rings.
   2648 	 */
   2649 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2650 		rxs = &sc->sc_rxsoft[i];
   2651 		if (rxs->rxs_mbuf == NULL) {
   2652 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2653 				printf("%s: unable to allocate or map rx "
   2654 				    "buffer %d, error = %d\n",
   2655 				    sc->sc_dev.dv_xname, i, error);
   2656 				/*
   2657 				 * XXX Should attempt to run with fewer receive
   2658 				 * XXX buffers instead of just failing.
   2659 				 */
   2660 				sipcom_rxdrain(sc);
   2661 				goto out;
   2662 			}
   2663 		} else
   2664 			sip_init_rxdesc(sc, i);
   2665 	}
   2666 	sc->sc_rxptr = 0;
   2667 	sc->sc_rxdiscard = 0;
   2668 	sip_rxchain_reset(sc);
   2669 
   2670 	/*
   2671 	 * Set the configuration register; it's already initialized
   2672 	 * in sip_attach().
   2673 	 */
   2674 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2675 
   2676 	/*
   2677 	 * Initialize the prototype TXCFG register.
   2678 	 */
   2679 	if (sc->sc_gigabit) {
   2680 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2681 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2682 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2683 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2684 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2685 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2686 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2687 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2688 	} else {
   2689 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2690 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2691 	}
   2692 
   2693 	sc->sc_txcfg |= TXCFG_ATP |
   2694 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2695 	    sc->sc_tx_drain_thresh;
   2696 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2697 
   2698 	/*
   2699 	 * Initialize the receive drain threshold if we have never
   2700 	 * done so.
   2701 	 */
   2702 	if (sc->sc_rx_drain_thresh == 0) {
   2703 		/*
   2704 		 * XXX This value should be tuned.  This is set to the
   2705 		 * maximum of 248 bytes, and we may be able to improve
   2706 		 * performance by decreasing it (although we should never
   2707 		 * set this value lower than 2; 14 bytes are required to
   2708 		 * filter the packet).
   2709 		 */
   2710 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2711 	}
   2712 
   2713 	/*
   2714 	 * Initialize the prototype RXCFG register.
   2715 	 */
   2716 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2717 	/*
   2718 	 * Accept long packets (including FCS) so we can handle
   2719 	 * 802.1q-tagged frames and jumbo frames properly.
   2720 	 */
   2721 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2722 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2723 		sc->sc_rxcfg |= RXCFG_ALP;
   2724 
   2725 	/*
   2726 	 * Checksum offloading is disabled if the user selects an MTU
   2727 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2728 	 * evidence that >8109 does not work on some boards, such as the
   2729 	 * Planex GN-1000TE).
   2730 	 */
   2731 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2732 	    (ifp->if_capenable &
   2733 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2734 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2735 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2736 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2737 		       "disabled.\n", sc->sc_dev.dv_xname);
   2738 		ifp->if_capenable &=
   2739 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2740 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2741 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2742 		ifp->if_csum_flags_tx = 0;
   2743 		ifp->if_csum_flags_rx = 0;
   2744 	}
   2745 
   2746 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2747 
   2748 	if (sc->sc_gigabit)
   2749 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2750 
   2751 	/*
   2752 	 * Give the transmit and receive rings to the chip.
   2753 	 */
   2754 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2755 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2756 
   2757 	/*
   2758 	 * Initialize the interrupt mask.
   2759 	 */
   2760 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2761 	             sc->sc_bits.b_isr_sserr |
   2762 		     sc->sc_bits.b_isr_rmabt |
   2763 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2764 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2765 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2766 
   2767 	/* Set up the receive filter. */
   2768 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2769 
   2770 	/*
   2771 	 * Tune sc_rx_flow_thresh.
   2772 	 * XXX "More than 8KB" is too short for jumbo frames.
   2773 	 * XXX TODO: Threshold value should be user-settable.
   2774 	 */
   2775 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2776 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2777 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2778 
   2779 	/*
   2780 	 * Set the current media.  Do this after initializing the prototype
   2781 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2782 	 * control.
   2783 	 */
   2784 	mii_mediachg(&sc->sc_mii);
   2785 
   2786 	/*
   2787 	 * Set the interrupt hold-off timer to 100us.
   2788 	 */
   2789 	if (sc->sc_gigabit)
   2790 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2791 
   2792 	/*
   2793 	 * Enable interrupts.
   2794 	 */
   2795 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2796 
   2797 	/*
   2798 	 * Start the transmit and receive processes.
   2799 	 */
   2800 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2801 
   2802 	/*
   2803 	 * Start the one second MII clock.
   2804 	 */
   2805 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2806 
   2807 	/*
   2808 	 * ...all done!
   2809 	 */
   2810 	ifp->if_flags |= IFF_RUNNING;
   2811 	ifp->if_flags &= ~IFF_OACTIVE;
   2812 	sc->sc_if_flags = ifp->if_flags;
   2813 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2814 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2815 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2816 
   2817  out:
   2818 	if (error)
   2819 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2820 	return (error);
   2821 }
   2822 
   2823 /*
   2824  * sip_drain:
   2825  *
   2826  *	Drain the receive queue.
   2827  */
   2828 static void
   2829 sipcom_rxdrain(struct sip_softc *sc)
   2830 {
   2831 	struct sip_rxsoft *rxs;
   2832 	int i;
   2833 
   2834 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2835 		rxs = &sc->sc_rxsoft[i];
   2836 		if (rxs->rxs_mbuf != NULL) {
   2837 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2838 			m_freem(rxs->rxs_mbuf);
   2839 			rxs->rxs_mbuf = NULL;
   2840 		}
   2841 	}
   2842 }
   2843 
   2844 /*
   2845  * sip_stop:		[ ifnet interface function ]
   2846  *
   2847  *	Stop transmission on the interface.
   2848  */
   2849 static void
   2850 sipcom_stop(struct ifnet *ifp, int disable)
   2851 {
   2852 	struct sip_softc *sc = ifp->if_softc;
   2853 	bus_space_tag_t st = sc->sc_st;
   2854 	bus_space_handle_t sh = sc->sc_sh;
   2855 	struct sip_txsoft *txs;
   2856 	u_int32_t cmdsts = 0;		/* DEBUG */
   2857 
   2858 	/*
   2859 	 * Stop the one second clock.
   2860 	 */
   2861 	callout_stop(&sc->sc_tick_ch);
   2862 
   2863 	/* Down the MII. */
   2864 	mii_down(&sc->sc_mii);
   2865 
   2866 	/*
   2867 	 * Disable interrupts.
   2868 	 */
   2869 	bus_space_write_4(st, sh, SIP_IER, 0);
   2870 
   2871 	/*
   2872 	 * Stop receiver and transmitter.
   2873 	 */
   2874 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2875 
   2876 	/*
   2877 	 * Release any queued transmit buffers.
   2878 	 */
   2879 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2880 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2881 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2882 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2883 		     CMDSTS_INTR) == 0)
   2884 			printf("%s: sip_stop: last descriptor does not "
   2885 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2886 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2887 #ifdef DIAGNOSTIC
   2888 		if (txs->txs_mbuf == NULL) {
   2889 			printf("%s: dirty txsoft with no mbuf chain\n",
   2890 			    sc->sc_dev.dv_xname);
   2891 			panic("sip_stop");
   2892 		}
   2893 #endif
   2894 		cmdsts |=		/* DEBUG */
   2895 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2896 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2897 		m_freem(txs->txs_mbuf);
   2898 		txs->txs_mbuf = NULL;
   2899 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2900 	}
   2901 
   2902 	if (disable)
   2903 		sipcom_rxdrain(sc);
   2904 
   2905 	/*
   2906 	 * Mark the interface down and cancel the watchdog timer.
   2907 	 */
   2908 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2909 	ifp->if_timer = 0;
   2910 
   2911 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2912 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2913 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2914 		    "descriptors\n", sc->sc_dev.dv_xname);
   2915 }
   2916 
   2917 /*
   2918  * sip_read_eeprom:
   2919  *
   2920  *	Read data from the serial EEPROM.
   2921  */
   2922 static void
   2923 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2924     u_int16_t *data)
   2925 {
   2926 	bus_space_tag_t st = sc->sc_st;
   2927 	bus_space_handle_t sh = sc->sc_sh;
   2928 	u_int16_t reg;
   2929 	int i, x;
   2930 
   2931 	for (i = 0; i < wordcnt; i++) {
   2932 		/* Send CHIP SELECT. */
   2933 		reg = EROMAR_EECS;
   2934 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2935 
   2936 		/* Shift in the READ opcode. */
   2937 		for (x = 3; x > 0; x--) {
   2938 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2939 				reg |= EROMAR_EEDI;
   2940 			else
   2941 				reg &= ~EROMAR_EEDI;
   2942 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2943 			bus_space_write_4(st, sh, SIP_EROMAR,
   2944 			    reg | EROMAR_EESK);
   2945 			delay(4);
   2946 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2947 			delay(4);
   2948 		}
   2949 
   2950 		/* Shift in address. */
   2951 		for (x = 6; x > 0; x--) {
   2952 			if ((word + i) & (1 << (x - 1)))
   2953 				reg |= EROMAR_EEDI;
   2954 			else
   2955 				reg &= ~EROMAR_EEDI;
   2956 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2957 			bus_space_write_4(st, sh, SIP_EROMAR,
   2958 			    reg | EROMAR_EESK);
   2959 			delay(4);
   2960 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2961 			delay(4);
   2962 		}
   2963 
   2964 		/* Shift out data. */
   2965 		reg = EROMAR_EECS;
   2966 		data[i] = 0;
   2967 		for (x = 16; x > 0; x--) {
   2968 			bus_space_write_4(st, sh, SIP_EROMAR,
   2969 			    reg | EROMAR_EESK);
   2970 			delay(4);
   2971 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2972 				data[i] |= (1 << (x - 1));
   2973 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2974 			delay(4);
   2975 		}
   2976 
   2977 		/* Clear CHIP SELECT. */
   2978 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2979 		delay(4);
   2980 	}
   2981 }
   2982 
   2983 /*
   2984  * sipcom_add_rxbuf:
   2985  *
   2986  *	Add a receive buffer to the indicated descriptor.
   2987  */
   2988 static int
   2989 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2990 {
   2991 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2992 	struct mbuf *m;
   2993 	int error;
   2994 
   2995 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2996 	if (m == NULL)
   2997 		return (ENOBUFS);
   2998 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2999 
   3000 	MCLGET(m, M_DONTWAIT);
   3001 	if ((m->m_flags & M_EXT) == 0) {
   3002 		m_freem(m);
   3003 		return (ENOBUFS);
   3004 	}
   3005 
   3006 	/* XXX I don't believe this is necessary. --dyoung */
   3007 	if (sc->sc_gigabit)
   3008 		m->m_len = sc->sc_parm->p_rxbuf_len;
   3009 
   3010 	if (rxs->rxs_mbuf != NULL)
   3011 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3012 
   3013 	rxs->rxs_mbuf = m;
   3014 
   3015 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3016 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3017 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3018 	if (error) {
   3019 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3020 		    sc->sc_dev.dv_xname, idx, error);
   3021 		panic("%s", __func__);		/* XXX */
   3022 	}
   3023 
   3024 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3025 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3026 
   3027 	sip_init_rxdesc(sc, idx);
   3028 
   3029 	return (0);
   3030 }
   3031 
   3032 /*
   3033  * sip_sis900_set_filter:
   3034  *
   3035  *	Set up the receive filter.
   3036  */
   3037 static void
   3038 sipcom_sis900_set_filter(struct sip_softc *sc)
   3039 {
   3040 	bus_space_tag_t st = sc->sc_st;
   3041 	bus_space_handle_t sh = sc->sc_sh;
   3042 	struct ethercom *ec = &sc->sc_ethercom;
   3043 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3044 	struct ether_multi *enm;
   3045 	const u_int8_t *cp;
   3046 	struct ether_multistep step;
   3047 	u_int32_t crc, mchash[16];
   3048 
   3049 	/*
   3050 	 * Initialize the prototype RFCR.
   3051 	 */
   3052 	sc->sc_rfcr = RFCR_RFEN;
   3053 	if (ifp->if_flags & IFF_BROADCAST)
   3054 		sc->sc_rfcr |= RFCR_AAB;
   3055 	if (ifp->if_flags & IFF_PROMISC) {
   3056 		sc->sc_rfcr |= RFCR_AAP;
   3057 		goto allmulti;
   3058 	}
   3059 
   3060 	/*
   3061 	 * Set up the multicast address filter by passing all multicast
   3062 	 * addresses through a CRC generator, and then using the high-order
   3063 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3064 	 * the lower 16 bits of each 32 bit multicast hash register are
   3065 	 * valid).  The high order bits select the register, while the
   3066 	 * rest of the bits select the bit within the register.
   3067 	 */
   3068 
   3069 	memset(mchash, 0, sizeof(mchash));
   3070 
   3071 	/*
   3072 	 * SiS900 (at least SiS963) requires us to register the address of
   3073 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3074 	 */
   3075 	crc = 0x0ed423f9;
   3076 
   3077 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3078 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3079 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3080 		/* Just want the 8 most significant bits. */
   3081 		crc >>= 24;
   3082 	} else {
   3083 		/* Just want the 7 most significant bits. */
   3084 		crc >>= 25;
   3085 	}
   3086 
   3087 	/* Set the corresponding bit in the hash table. */
   3088 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3089 
   3090 	ETHER_FIRST_MULTI(step, ec, enm);
   3091 	while (enm != NULL) {
   3092 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3093 			/*
   3094 			 * We must listen to a range of multicast addresses.
   3095 			 * For now, just accept all multicasts, rather than
   3096 			 * trying to set only those filter bits needed to match
   3097 			 * the range.  (At this time, the only use of address
   3098 			 * ranges is for IP multicast routing, for which the
   3099 			 * range is big enough to require all bits set.)
   3100 			 */
   3101 			goto allmulti;
   3102 		}
   3103 
   3104 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3105 
   3106 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3107 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3108 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3109 			/* Just want the 8 most significant bits. */
   3110 			crc >>= 24;
   3111 		} else {
   3112 			/* Just want the 7 most significant bits. */
   3113 			crc >>= 25;
   3114 		}
   3115 
   3116 		/* Set the corresponding bit in the hash table. */
   3117 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3118 
   3119 		ETHER_NEXT_MULTI(step, enm);
   3120 	}
   3121 
   3122 	ifp->if_flags &= ~IFF_ALLMULTI;
   3123 	goto setit;
   3124 
   3125  allmulti:
   3126 	ifp->if_flags |= IFF_ALLMULTI;
   3127 	sc->sc_rfcr |= RFCR_AAM;
   3128 
   3129  setit:
   3130 #define	FILTER_EMIT(addr, data)						\
   3131 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3132 	delay(1);							\
   3133 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3134 	delay(1)
   3135 
   3136 	/*
   3137 	 * Disable receive filter, and program the node address.
   3138 	 */
   3139 	cp = CLLADDR(ifp->if_sadl);
   3140 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3141 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3142 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3143 
   3144 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3145 		/*
   3146 		 * Program the multicast hash table.
   3147 		 */
   3148 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3149 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3150 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3151 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3152 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3153 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3154 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3155 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3156 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3157 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3158 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3159 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3160 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3161 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3162 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3163 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3164 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3165 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3166 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3167 		}
   3168 	}
   3169 #undef FILTER_EMIT
   3170 
   3171 	/*
   3172 	 * Re-enable the receiver filter.
   3173 	 */
   3174 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3175 }
   3176 
   3177 /*
   3178  * sip_dp83815_set_filter:
   3179  *
   3180  *	Set up the receive filter.
   3181  */
   3182 static void
   3183 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3184 {
   3185 	bus_space_tag_t st = sc->sc_st;
   3186 	bus_space_handle_t sh = sc->sc_sh;
   3187 	struct ethercom *ec = &sc->sc_ethercom;
   3188 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3189 	struct ether_multi *enm;
   3190 	const u_int8_t *cp;
   3191 	struct ether_multistep step;
   3192 	u_int32_t crc, hash, slot, bit;
   3193 #define	MCHASH_NWORDS_83820	128
   3194 #define	MCHASH_NWORDS_83815	32
   3195 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3196 	u_int16_t mchash[MCHASH_NWORDS];
   3197 	int i;
   3198 
   3199 	/*
   3200 	 * Initialize the prototype RFCR.
   3201 	 * Enable the receive filter, and accept on
   3202 	 *    Perfect (destination address) Match
   3203 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3204 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3205 	 *    IFF_ALLMULTI and accept all multicast, too).
   3206 	 */
   3207 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3208 	if (ifp->if_flags & IFF_BROADCAST)
   3209 		sc->sc_rfcr |= RFCR_AAB;
   3210 	if (ifp->if_flags & IFF_PROMISC) {
   3211 		sc->sc_rfcr |= RFCR_AAP;
   3212 		goto allmulti;
   3213 	}
   3214 
   3215 	/*
   3216          * Set up the DP83820/DP83815 multicast address filter by
   3217          * passing all multicast addresses through a CRC generator,
   3218          * and then using the high-order 11/9 bits as an index into
   3219          * the 2048/512 bit multicast hash table.  The high-order
   3220          * 7/5 bits select the slot, while the low-order 4 bits
   3221          * select the bit within the slot.  Note that only the low
   3222          * 16-bits of each filter word are used, and there are
   3223          * 128/32 filter words.
   3224 	 */
   3225 
   3226 	memset(mchash, 0, sizeof(mchash));
   3227 
   3228 	ifp->if_flags &= ~IFF_ALLMULTI;
   3229 	ETHER_FIRST_MULTI(step, ec, enm);
   3230 	if (enm == NULL)
   3231 		goto setit;
   3232 	while (enm != NULL) {
   3233 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3234 			/*
   3235 			 * We must listen to a range of multicast addresses.
   3236 			 * For now, just accept all multicasts, rather than
   3237 			 * trying to set only those filter bits needed to match
   3238 			 * the range.  (At this time, the only use of address
   3239 			 * ranges is for IP multicast routing, for which the
   3240 			 * range is big enough to require all bits set.)
   3241 			 */
   3242 			goto allmulti;
   3243 		}
   3244 
   3245 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3246 
   3247 		if (sc->sc_gigabit) {
   3248 			/* Just want the 11 most significant bits. */
   3249 			hash = crc >> 21;
   3250 		} else {
   3251 			/* Just want the 9 most significant bits. */
   3252 			hash = crc >> 23;
   3253 		}
   3254 
   3255 		slot = hash >> 4;
   3256 		bit = hash & 0xf;
   3257 
   3258 		/* Set the corresponding bit in the hash table. */
   3259 		mchash[slot] |= 1 << bit;
   3260 
   3261 		ETHER_NEXT_MULTI(step, enm);
   3262 	}
   3263 	sc->sc_rfcr |= RFCR_MHEN;
   3264 	goto setit;
   3265 
   3266  allmulti:
   3267 	ifp->if_flags |= IFF_ALLMULTI;
   3268 	sc->sc_rfcr |= RFCR_AAM;
   3269 
   3270  setit:
   3271 #define	FILTER_EMIT(addr, data)						\
   3272 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3273 	delay(1);							\
   3274 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3275 	delay(1)
   3276 
   3277 	/*
   3278 	 * Disable receive filter, and program the node address.
   3279 	 */
   3280 	cp = CLLADDR(ifp->if_sadl);
   3281 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3282 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3283 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3284 
   3285 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3286 		int nwords =
   3287 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3288 		/*
   3289 		 * Program the multicast hash table.
   3290 		 */
   3291 		for (i = 0; i < nwords; i++) {
   3292 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3293 		}
   3294 	}
   3295 #undef FILTER_EMIT
   3296 #undef MCHASH_NWORDS
   3297 #undef MCHASH_NWORDS_83815
   3298 #undef MCHASH_NWORDS_83820
   3299 
   3300 	/*
   3301 	 * Re-enable the receiver filter.
   3302 	 */
   3303 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3304 }
   3305 
   3306 /*
   3307  * sip_dp83820_mii_readreg:	[mii interface function]
   3308  *
   3309  *	Read a PHY register on the MII of the DP83820.
   3310  */
   3311 static int
   3312 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
   3313 {
   3314 	struct sip_softc *sc = (void *) self;
   3315 
   3316 	if (sc->sc_cfg & CFG_TBI_EN) {
   3317 		bus_addr_t tbireg;
   3318 		int rv;
   3319 
   3320 		if (phy != 0)
   3321 			return (0);
   3322 
   3323 		switch (reg) {
   3324 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3325 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3326 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3327 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3328 		case MII_ANER:		tbireg = SIP_TANER; break;
   3329 		case MII_EXTSR:
   3330 			/*
   3331 			 * Don't even bother reading the TESR register.
   3332 			 * The manual documents that the device has
   3333 			 * 1000baseX full/half capability, but the
   3334 			 * register itself seems read back 0 on some
   3335 			 * boards.  Just hard-code the result.
   3336 			 */
   3337 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3338 
   3339 		default:
   3340 			return (0);
   3341 		}
   3342 
   3343 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3344 		if (tbireg == SIP_TBISR) {
   3345 			/* LINK and ACOMP are switched! */
   3346 			int val = rv;
   3347 
   3348 			rv = 0;
   3349 			if (val & TBISR_MR_LINK_STATUS)
   3350 				rv |= BMSR_LINK;
   3351 			if (val & TBISR_MR_AN_COMPLETE)
   3352 				rv |= BMSR_ACOMP;
   3353 
   3354 			/*
   3355 			 * The manual claims this register reads back 0
   3356 			 * on hard and soft reset.  But we want to let
   3357 			 * the gentbi driver know that we support auto-
   3358 			 * negotiation, so hard-code this bit in the
   3359 			 * result.
   3360 			 */
   3361 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3362 		}
   3363 
   3364 		return (rv);
   3365 	}
   3366 
   3367 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3368 }
   3369 
   3370 /*
   3371  * sip_dp83820_mii_writereg:	[mii interface function]
   3372  *
   3373  *	Write a PHY register on the MII of the DP83820.
   3374  */
   3375 static void
   3376 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
   3377 {
   3378 	struct sip_softc *sc = (void *) self;
   3379 
   3380 	if (sc->sc_cfg & CFG_TBI_EN) {
   3381 		bus_addr_t tbireg;
   3382 
   3383 		if (phy != 0)
   3384 			return;
   3385 
   3386 		switch (reg) {
   3387 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3388 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3389 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3390 		default:
   3391 			return;
   3392 		}
   3393 
   3394 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3395 		return;
   3396 	}
   3397 
   3398 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3399 }
   3400 
   3401 /*
   3402  * sip_dp83820_mii_statchg:	[mii interface function]
   3403  *
   3404  *	Callback from MII layer when media changes.
   3405  */
   3406 static void
   3407 sipcom_dp83820_mii_statchg(struct device *self)
   3408 {
   3409 	struct sip_softc *sc = (struct sip_softc *) self;
   3410 	struct mii_data *mii = &sc->sc_mii;
   3411 	u_int32_t cfg, pcr;
   3412 
   3413 	/*
   3414 	 * Get flow control negotiation result.
   3415 	 */
   3416 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3417 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3418 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3419 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3420 	}
   3421 
   3422 	/*
   3423 	 * Update TXCFG for full-duplex operation.
   3424 	 */
   3425 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3426 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3427 	else
   3428 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3429 
   3430 	/*
   3431 	 * Update RXCFG for full-duplex or loopback.
   3432 	 */
   3433 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3434 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3435 		sc->sc_rxcfg |= RXCFG_ATX;
   3436 	else
   3437 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3438 
   3439 	/*
   3440 	 * Update CFG for MII/GMII.
   3441 	 */
   3442 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3443 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3444 	else
   3445 		cfg = sc->sc_cfg;
   3446 
   3447 	/*
   3448 	 * 802.3x flow control.
   3449 	 */
   3450 	pcr = 0;
   3451 	if (sc->sc_flowflags & IFM_FLOW) {
   3452 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3453 			pcr |= sc->sc_rx_flow_thresh;
   3454 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3455 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3456 	}
   3457 
   3458 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3459 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3460 	    sc->sc_txcfg);
   3461 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3462 	    sc->sc_rxcfg);
   3463 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3464 }
   3465 
   3466 /*
   3467  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3468  *
   3469  *	Read the MII serial port for the MII bit-bang module.
   3470  */
   3471 static u_int32_t
   3472 sipcom_mii_bitbang_read(struct device *self)
   3473 {
   3474 	struct sip_softc *sc = (void *) self;
   3475 
   3476 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3477 }
   3478 
   3479 /*
   3480  * sip_mii_bitbang_write: [mii big-bang interface function]
   3481  *
   3482  *	Write the MII serial port for the MII bit-bang module.
   3483  */
   3484 static void
   3485 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
   3486 {
   3487 	struct sip_softc *sc = (void *) self;
   3488 
   3489 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3490 }
   3491 
   3492 /*
   3493  * sip_sis900_mii_readreg:	[mii interface function]
   3494  *
   3495  *	Read a PHY register on the MII.
   3496  */
   3497 static int
   3498 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
   3499 {
   3500 	struct sip_softc *sc = (struct sip_softc *) self;
   3501 	u_int32_t enphy;
   3502 
   3503 	/*
   3504 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3505 	 * operations.
   3506 	 */
   3507 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3508 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3509 		    phy, reg);
   3510 
   3511 #ifndef SIS900_MII_RESTRICT
   3512 	/*
   3513 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3514 	 * MII address 0.
   3515 	 */
   3516 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3517 		return (0);
   3518 #endif
   3519 
   3520 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3521 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3522 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3523 	do {
   3524 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3525 	} while (enphy & ENPHY_ACCESS);
   3526 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3527 }
   3528 
   3529 /*
   3530  * sip_sis900_mii_writereg:	[mii interface function]
   3531  *
   3532  *	Write a PHY register on the MII.
   3533  */
   3534 static void
   3535 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
   3536 {
   3537 	struct sip_softc *sc = (struct sip_softc *) self;
   3538 	u_int32_t enphy;
   3539 
   3540 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3541 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3542 		    phy, reg, val);
   3543 		return;
   3544 	}
   3545 
   3546 #ifndef SIS900_MII_RESTRICT
   3547 	/*
   3548 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3549 	 * MII address 0.
   3550 	 */
   3551 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3552 		return;
   3553 #endif
   3554 
   3555 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3556 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3557 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3558 	do {
   3559 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3560 	} while (enphy & ENPHY_ACCESS);
   3561 }
   3562 
   3563 /*
   3564  * sip_sis900_mii_statchg:	[mii interface function]
   3565  *
   3566  *	Callback from MII layer when media changes.
   3567  */
   3568 static void
   3569 sipcom_sis900_mii_statchg(struct device *self)
   3570 {
   3571 	struct sip_softc *sc = (struct sip_softc *) self;
   3572 	struct mii_data *mii = &sc->sc_mii;
   3573 	u_int32_t flowctl;
   3574 
   3575 	/*
   3576 	 * Get flow control negotiation result.
   3577 	 */
   3578 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3579 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3580 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3581 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3582 	}
   3583 
   3584 	/*
   3585 	 * Update TXCFG for full-duplex operation.
   3586 	 */
   3587 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3588 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3589 	else
   3590 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3591 
   3592 	/*
   3593 	 * Update RXCFG for full-duplex or loopback.
   3594 	 */
   3595 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3596 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3597 		sc->sc_rxcfg |= RXCFG_ATX;
   3598 	else
   3599 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3600 
   3601 	/*
   3602 	 * Update IMR for use of 802.3x flow control.
   3603 	 */
   3604 	if (sc->sc_flowflags & IFM_FLOW) {
   3605 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3606 		flowctl = FLOWCTL_FLOWEN;
   3607 	} else {
   3608 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3609 		flowctl = 0;
   3610 	}
   3611 
   3612 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3613 	    sc->sc_txcfg);
   3614 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3615 	    sc->sc_rxcfg);
   3616 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3617 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3618 }
   3619 
   3620 /*
   3621  * sip_dp83815_mii_readreg:	[mii interface function]
   3622  *
   3623  *	Read a PHY register on the MII.
   3624  */
   3625 static int
   3626 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
   3627 {
   3628 	struct sip_softc *sc = (struct sip_softc *) self;
   3629 	u_int32_t val;
   3630 
   3631 	/*
   3632 	 * The DP83815 only has an internal PHY.  Only allow
   3633 	 * MII address 0.
   3634 	 */
   3635 	if (phy != 0)
   3636 		return (0);
   3637 
   3638 	/*
   3639 	 * Apparently, after a reset, the DP83815 can take a while
   3640 	 * to respond.  During this recovery period, the BMSR returns
   3641 	 * a value of 0.  Catch this -- it's not supposed to happen
   3642 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3643 	 * PHY to come back to life.
   3644 	 *
   3645 	 * This works out because the BMSR is the first register
   3646 	 * read during the PHY probe process.
   3647 	 */
   3648 	do {
   3649 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3650 	} while (reg == MII_BMSR && val == 0);
   3651 
   3652 	return (val & 0xffff);
   3653 }
   3654 
   3655 /*
   3656  * sip_dp83815_mii_writereg:	[mii interface function]
   3657  *
   3658  *	Write a PHY register to the MII.
   3659  */
   3660 static void
   3661 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
   3662 {
   3663 	struct sip_softc *sc = (struct sip_softc *) self;
   3664 
   3665 	/*
   3666 	 * The DP83815 only has an internal PHY.  Only allow
   3667 	 * MII address 0.
   3668 	 */
   3669 	if (phy != 0)
   3670 		return;
   3671 
   3672 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3673 }
   3674 
   3675 /*
   3676  * sip_dp83815_mii_statchg:	[mii interface function]
   3677  *
   3678  *	Callback from MII layer when media changes.
   3679  */
   3680 static void
   3681 sipcom_dp83815_mii_statchg(struct device *self)
   3682 {
   3683 	struct sip_softc *sc = (struct sip_softc *) self;
   3684 
   3685 	/*
   3686 	 * Update TXCFG for full-duplex operation.
   3687 	 */
   3688 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3689 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3690 	else
   3691 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3692 
   3693 	/*
   3694 	 * Update RXCFG for full-duplex or loopback.
   3695 	 */
   3696 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3697 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3698 		sc->sc_rxcfg |= RXCFG_ATX;
   3699 	else
   3700 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3701 
   3702 	/*
   3703 	 * XXX 802.3x flow control.
   3704 	 */
   3705 
   3706 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3707 	    sc->sc_txcfg);
   3708 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3709 	    sc->sc_rxcfg);
   3710 
   3711 	/*
   3712 	 * Some DP83815s experience problems when used with short
   3713 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3714 	 * sequence adjusts the DSP's signal attenuation to fix the
   3715 	 * problem.
   3716 	 */
   3717 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3718 		uint32_t reg;
   3719 
   3720 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3721 
   3722 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3723 		reg &= 0x0fff;
   3724 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3725 		delay(100);
   3726 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3727 		reg &= 0x00ff;
   3728 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3729 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3730 			    0x00e8);
   3731 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3732 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3733 			    reg | 0x20);
   3734 		}
   3735 
   3736 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3737 	}
   3738 }
   3739 
   3740 static void
   3741 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3742     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3743 {
   3744 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3745 	u_int8_t cksum, *e, match;
   3746 	int i;
   3747 
   3748 	/*
   3749 	 * EEPROM data format for the DP83820 can be found in
   3750 	 * the DP83820 manual, section 4.2.4.
   3751 	 */
   3752 
   3753 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3754 
   3755 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3756 	match = ~(match - 1);
   3757 
   3758 	cksum = 0x55;
   3759 	e = (u_int8_t *) eeprom_data;
   3760 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3761 		cksum += *e++;
   3762 
   3763 	if (cksum != match)
   3764 		printf("%s: Checksum (%x) mismatch (%x)",
   3765 		    sc->sc_dev.dv_xname, cksum, match);
   3766 
   3767 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3768 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3769 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3770 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3771 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3772 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3773 }
   3774 
   3775 static void
   3776 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3777 {
   3778 	int i;
   3779 
   3780 	/*
   3781 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3782 	 * a reason, but I don't know it.
   3783 	 */
   3784 	for (i = 0; i < 10; i++)
   3785 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3786 }
   3787 
   3788 static void
   3789 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3790     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3791 {
   3792 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3793 
   3794 	switch (sc->sc_rev) {
   3795 	case SIS_REV_630S:
   3796 	case SIS_REV_630E:
   3797 	case SIS_REV_630EA1:
   3798 	case SIS_REV_630ET:
   3799 	case SIS_REV_635:
   3800 		/*
   3801 		 * The MAC address for the on-board Ethernet of
   3802 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3803 		 * the chip into re-loading it from NVRAM, and
   3804 		 * read the MAC address out of the filter registers.
   3805 		 */
   3806 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3807 
   3808 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3809 		    RFCR_RFADDR_NODE0);
   3810 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3811 		    0xffff;
   3812 
   3813 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3814 		    RFCR_RFADDR_NODE2);
   3815 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3816 		    0xffff;
   3817 
   3818 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3819 		    RFCR_RFADDR_NODE4);
   3820 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3821 		    0xffff;
   3822 		break;
   3823 
   3824 	case SIS_REV_960:
   3825 		{
   3826 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3827 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3828 
   3829 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3830 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3831 
   3832 			int waittime, i;
   3833 
   3834 			/* Allow to read EEPROM from LAN. It is shared
   3835 			 * between a 1394 controller and the NIC and each
   3836 			 * time we access it, we need to set SIS_EECMD_REQ.
   3837 			 */
   3838 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3839 
   3840 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3841 				/* Force EEPROM to idle state. */
   3842 
   3843 				/*
   3844 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3845 				 */
   3846 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3847 				sipcom_sis900_eeprom_delay(sc);
   3848 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3849 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3850 					sipcom_sis900_eeprom_delay(sc);
   3851 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3852 					sipcom_sis900_eeprom_delay(sc);
   3853 				}
   3854 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3855 				sipcom_sis900_eeprom_delay(sc);
   3856 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3857 
   3858 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3859 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3860 					    sizeof(myea) / sizeof(myea[0]), myea);
   3861 					break;
   3862 				}
   3863 				DELAY(1);
   3864 			}
   3865 
   3866 			/*
   3867 			 * Set SIS_EECTL_CLK to high, so a other master
   3868 			 * can operate on the i2c bus.
   3869 			 */
   3870 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3871 
   3872 			/* Refuse EEPROM access by LAN */
   3873 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3874 		} break;
   3875 
   3876 	default:
   3877 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3878 		    sizeof(myea) / sizeof(myea[0]), myea);
   3879 	}
   3880 
   3881 	enaddr[0] = myea[0] & 0xff;
   3882 	enaddr[1] = myea[0] >> 8;
   3883 	enaddr[2] = myea[1] & 0xff;
   3884 	enaddr[3] = myea[1] >> 8;
   3885 	enaddr[4] = myea[2] & 0xff;
   3886 	enaddr[5] = myea[2] >> 8;
   3887 }
   3888 
   3889 /* Table and macro to bit-reverse an octet. */
   3890 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3891 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3892 
   3893 static void
   3894 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3895     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3896 {
   3897 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3898 	u_int8_t cksum, *e, match;
   3899 	int i;
   3900 
   3901 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3902 	    sizeof(eeprom_data[0]), eeprom_data);
   3903 
   3904 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3905 	match = ~(match - 1);
   3906 
   3907 	cksum = 0x55;
   3908 	e = (u_int8_t *) eeprom_data;
   3909 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3910 		cksum += *e++;
   3911 	}
   3912 	if (cksum != match) {
   3913 		printf("%s: Checksum (%x) mismatch (%x)",
   3914 		    sc->sc_dev.dv_xname, cksum, match);
   3915 	}
   3916 
   3917 	/*
   3918 	 * Unrolled because it makes slightly more sense this way.
   3919 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3920 	 * through bit 15 of word 8.
   3921 	 */
   3922 	ea = &eeprom_data[6];
   3923 	enaddr[0] = ((*ea & 0x1) << 7);
   3924 	ea++;
   3925 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3926 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3927 	enaddr[2] = ((*ea & 0x1) << 7);
   3928 	ea++;
   3929 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3930 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3931 	enaddr[4] = ((*ea & 0x1) << 7);
   3932 	ea++;
   3933 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3934 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3935 
   3936 	/*
   3937 	 * In case that's not weird enough, we also need to reverse
   3938 	 * the bits in each byte.  This all actually makes more sense
   3939 	 * if you think about the EEPROM storage as an array of bits
   3940 	 * being shifted into bytes, but that's not how we're looking
   3941 	 * at it here...
   3942 	 */
   3943 	for (i = 0; i < 6 ;i++)
   3944 		enaddr[i] = bbr(enaddr[i]);
   3945 }
   3946 
   3947 /*
   3948  * sip_mediastatus:	[ifmedia interface function]
   3949  *
   3950  *	Get the current interface media status.
   3951  */
   3952 static void
   3953 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3954 {
   3955 	struct sip_softc *sc = ifp->if_softc;
   3956 
   3957 	mii_pollstat(&sc->sc_mii);
   3958 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3959 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3960 			   sc->sc_flowflags;
   3961 }
   3962 
   3963 /*
   3964  * sip_mediachange:	[ifmedia interface function]
   3965  *
   3966  *	Set hardware to newly-selected media.
   3967  */
   3968 static int
   3969 sipcom_mediachange(struct ifnet *ifp)
   3970 {
   3971 	struct sip_softc *sc = ifp->if_softc;
   3972 
   3973 	if (ifp->if_flags & IFF_UP)
   3974 		mii_mediachg(&sc->sc_mii);
   3975 	return (0);
   3976 }
   3977