Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.115.2.1
      1 /*	$NetBSD: if_sip.c,v 1.115.2.1 2008/02/18 21:05:57 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.115.2.1 2008/02/18 21:05:57 mjf Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <sys/bus.h>
    116 #include <sys/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    131 #else			/* SiS900 and DP83815 */
    132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    133 #endif
    134 
    135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    136 
    137 /*
    138  * Transmit descriptor list size.  This is arbitrary, but allocate
    139  * enough descriptors for 128 pending transmissions, and 8 segments
    140  * per packet (64 for DP83820 for jumbo frames).
    141  *
    142  * This MUST work out to a power of 2.
    143  */
    144 #ifdef DP83820
    145 #define	SIP_NTXSEGS		64
    146 #define	SIP_NTXSEGS_ALLOC	16
    147 #else
    148 #define	SIP_NTXSEGS		16
    149 #define	SIP_NTXSEGS_ALLOC	8
    150 #endif
    151 
    152 #define	SIP_TXQUEUELEN		256
    153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    156 
    157 #if defined(DP83820)
    158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    159 #else
    160 #define	TX_DMAMAP_SIZE		MCLBYTES
    161 #endif
    162 
    163 /*
    164  * Receive descriptor list size.  We have one Rx buffer per incoming
    165  * packet, so this logic is a little simpler.
    166  *
    167  * Actually, on the DP83820, we allow the packet to consume more than
    168  * one buffer, in order to support jumbo Ethernet frames.  In that
    169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    171  * so we'd better be quick about handling receive interrupts.
    172  */
    173 #if defined(DP83820)
    174 #define	SIP_NRXDESC		256
    175 #else
    176 #define	SIP_NRXDESC		128
    177 #endif /* DP83820 */
    178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    180 
    181 /*
    182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    183  * a single clump that maps to a single DMA segment to make several things
    184  * easier.
    185  */
    186 struct sip_control_data {
    187 	/*
    188 	 * The transmit descriptors.
    189 	 */
    190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    191 
    192 	/*
    193 	 * The receive descriptors.
    194 	 */
    195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    196 };
    197 
    198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    201 
    202 /*
    203  * Software state for transmit jobs.
    204  */
    205 struct sip_txsoft {
    206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    208 	int txs_firstdesc;		/* first descriptor in packet */
    209 	int txs_lastdesc;		/* last descriptor in packet */
    210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    211 };
    212 
    213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    214 
    215 /*
    216  * Software state for receive jobs.
    217  */
    218 struct sip_rxsoft {
    219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    221 };
    222 
    223 /*
    224  * Software state per device.
    225  */
    226 struct sip_softc {
    227 	struct device sc_dev;		/* generic device information */
    228 	bus_space_tag_t sc_st;		/* bus space tag */
    229 	bus_space_handle_t sc_sh;	/* bus space handle */
    230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    231 	struct ethercom sc_ethercom;	/* ethernet common data */
    232 
    233 	const struct sip_product *sc_model; /* which model are we? */
    234 	int sc_rev;			/* chip revision */
    235 
    236 	void *sc_ih;			/* interrupt cookie */
    237 
    238 	struct mii_data sc_mii;		/* MII/media information */
    239 
    240 	callout_t sc_tick_ch;		/* tick callout */
    241 
    242 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    243 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    244 
    245 	/*
    246 	 * Software state for transmit and receive descriptors.
    247 	 */
    248 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    249 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    250 
    251 	/*
    252 	 * Control data structures.
    253 	 */
    254 	struct sip_control_data *sc_control_data;
    255 #define	sc_txdescs	sc_control_data->scd_txdescs
    256 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    257 
    258 #ifdef SIP_EVENT_COUNTERS
    259 	/*
    260 	 * Event counters.
    261 	 */
    262 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    263 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    264 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    265 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    266 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    267 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    268 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    269 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    270 #ifdef DP83820
    271 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    272 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    273 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    274 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    275 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    276 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    277 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    278 #endif /* DP83820 */
    279 #endif /* SIP_EVENT_COUNTERS */
    280 
    281 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    282 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    283 	u_int32_t sc_imr;		/* prototype IMR register */
    284 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    285 
    286 	u_int32_t sc_cfg;		/* prototype CFG register */
    287 
    288 #ifdef DP83820
    289 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    290 #endif /* DP83820 */
    291 
    292 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    293 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    294 
    295 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    296 
    297 	int	sc_flowflags;		/* 802.3x flow control flags */
    298 #ifdef DP83820
    299 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    300 #else
    301 	int	sc_paused;		/* paused indication */
    302 #endif
    303 
    304 	int	sc_txfree;		/* number of free Tx descriptors */
    305 	int	sc_txnext;		/* next ready Tx descriptor */
    306 	int	sc_txwin;		/* Tx descriptors since last intr */
    307 
    308 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    309 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    310 
    311 	/* values of interface state at last init */
    312 	struct {
    313 		/* if_capenable */
    314 		uint64_t	if_capenable;
    315 		/* ec_capenable */
    316 		int		ec_capenable;
    317 		/* VLAN_ATTACHED */
    318 		int		is_vlan;
    319 	}	sc_prev;
    320 
    321 	short	sc_if_flags;
    322 
    323 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    324 #if defined(DP83820)
    325 	int	sc_rxdiscard;
    326 	int	sc_rxlen;
    327 	struct mbuf *sc_rxhead;
    328 	struct mbuf *sc_rxtail;
    329 	struct mbuf **sc_rxtailp;
    330 #endif /* DP83820 */
    331 
    332 #if NRND > 0
    333 	rndsource_element_t rnd_source;	/* random source */
    334 #endif
    335 };
    336 
    337 #ifdef DP83820
    338 #define	SIP_RXCHAIN_RESET(sc)						\
    339 do {									\
    340 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    341 	*(sc)->sc_rxtailp = NULL;					\
    342 	(sc)->sc_rxlen = 0;						\
    343 } while (/*CONSTCOND*/0)
    344 
    345 #define	SIP_RXCHAIN_LINK(sc, m)						\
    346 do {									\
    347 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    348 	(sc)->sc_rxtailp = &(m)->m_next;				\
    349 } while (/*CONSTCOND*/0)
    350 #endif /* DP83820 */
    351 
    352 #ifdef SIP_EVENT_COUNTERS
    353 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    354 #else
    355 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    356 #endif
    357 
    358 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    359 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    360 
    361 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    362 do {									\
    363 	int __x, __n;							\
    364 									\
    365 	__x = (x);							\
    366 	__n = (n);							\
    367 									\
    368 	/* If it will wrap around, sync to the end of the ring. */	\
    369 	if ((__x + __n) > SIP_NTXDESC) {				\
    370 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    371 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    372 		    (SIP_NTXDESC - __x), (ops));			\
    373 		__n -= (SIP_NTXDESC - __x);				\
    374 		__x = 0;						\
    375 	}								\
    376 									\
    377 	/* Now sync whatever is left. */				\
    378 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    379 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    380 } while (0)
    381 
    382 #define	SIP_CDRXSYNC(sc, x, ops)					\
    383 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    384 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    385 
    386 #ifdef DP83820
    387 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    388 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
    389 #else
    390 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    391 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    392 #endif
    393 #define	SIP_INIT_RXDESC(sc, x)						\
    394 do {									\
    395 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    396 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    397 									\
    398 	__sipd->sipd_link =						\
    399 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    400 	__sipd->sipd_bufptr =						\
    401 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    402 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    403 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    404 	SIP_INIT_RXDESC_EXTSTS						\
    405 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    406 } while (0)
    407 
    408 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    409 	((sc)->sc_model->sip_vendor == (v) &&				\
    410 	 (sc)->sc_model->sip_product == (p) &&				\
    411 	 (sc)->sc_rev == (r))
    412 
    413 #define	SIP_CHIP_MODEL(sc, v, p)					\
    414 	((sc)->sc_model->sip_vendor == (v) &&				\
    415 	 (sc)->sc_model->sip_product == (p))
    416 
    417 #if !defined(DP83820)
    418 #define	SIP_SIS900_REV(sc, rev)						\
    419 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    420 #endif
    421 
    422 #define SIP_TIMEOUT 1000
    423 
    424 static void	sipcom_start(struct ifnet *);
    425 static void	sipcom_watchdog(struct ifnet *);
    426 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    427 static int	sipcom_init(struct ifnet *);
    428 static void	sipcom_stop(struct ifnet *, int);
    429 
    430 static bool	sipcom_reset(struct sip_softc *);
    431 static void	sipcom_rxdrain(struct sip_softc *);
    432 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    433 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    434 				      u_int16_t *);
    435 static void	SIP_DECL(tick)(void *);
    436 
    437 #if !defined(DP83820)
    438 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    439 #endif /* ! DP83820 */
    440 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    441 
    442 #if defined(DP83820)
    443 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    444 		    const struct pci_attach_args *, u_int8_t *);
    445 #else
    446 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    447 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    448 		    const struct pci_attach_args *, u_int8_t *);
    449 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    450 		    const struct pci_attach_args *, u_int8_t *);
    451 #endif /* DP83820 */
    452 
    453 static int	sipcom_intr(void *);
    454 static void	sipcom_txintr(struct sip_softc *);
    455 static void	sip_rxintr(struct sip_softc *);
    456 static void	gsip_rxintr(struct sip_softc *);
    457 
    458 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
    459 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
    460 static void	sipcom_dp83820_mii_statchg(struct device *);
    461 
    462 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
    463 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
    464 static void	sipcom_sis900_mii_statchg(struct device *);
    465 
    466 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
    467 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
    468 static void	sipcom_dp83815_mii_statchg(struct device *);
    469 
    470 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    471 
    472 static int	sipcom_match(struct device *, struct cfdata *, void *);
    473 static void	sipcom_attach(struct device *, struct device *, void *);
    474 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    475 static int	sipcom_detach(device_t, int);
    476 static bool	sipcom_resume(device_t);
    477 
    478 int	SIP_DECL(copy_small) = 0;
    479 
    480 #ifdef DP83820
    481 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    482     gsip_match, gsip_attach, NULL, NULL);
    483 #else
    484 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    485     sip_match, sip_attach, NULL, NULL);
    486 #endif
    487 
    488 /*
    489  * Descriptions of the variants of the SiS900.
    490  */
    491 struct sip_variant {
    492 	int	(*sipv_mii_readreg)(struct device *, int, int);
    493 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    494 	void	(*sipv_mii_statchg)(struct device *);
    495 	void	(*sipv_set_filter)(struct sip_softc *);
    496 	void	(*sipv_read_macaddr)(struct sip_softc *,
    497 		    const struct pci_attach_args *, u_int8_t *);
    498 };
    499 
    500 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
    501 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
    502 
    503 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
    504 	SIP_DECL(mii_bitbang_read),
    505 	SIP_DECL(mii_bitbang_write),
    506 	{
    507 		EROMAR_MDIO,		/* MII_BIT_MDO */
    508 		EROMAR_MDIO,		/* MII_BIT_MDI */
    509 		EROMAR_MDC,		/* MII_BIT_MDC */
    510 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    511 		0,			/* MII_BIT_DIR_PHY_HOST */
    512 	}
    513 };
    514 
    515 #if defined(DP83820)
    516 static const struct sip_variant SIP_DECL(variant_dp83820) = {
    517 	SIP_DECL(dp83820_mii_readreg),
    518 	SIP_DECL(dp83820_mii_writereg),
    519 	SIP_DECL(dp83820_mii_statchg),
    520 	SIP_DECL(dp83815_set_filter),
    521 	SIP_DECL(dp83820_read_macaddr),
    522 };
    523 #else
    524 static const struct sip_variant SIP_DECL(variant_sis900) = {
    525 	SIP_DECL(sis900_mii_readreg),
    526 	SIP_DECL(sis900_mii_writereg),
    527 	SIP_DECL(sis900_mii_statchg),
    528 	SIP_DECL(sis900_set_filter),
    529 	SIP_DECL(sis900_read_macaddr),
    530 };
    531 
    532 static const struct sip_variant SIP_DECL(variant_dp83815) = {
    533 	SIP_DECL(dp83815_mii_readreg),
    534 	SIP_DECL(dp83815_mii_writereg),
    535 	SIP_DECL(dp83815_mii_statchg),
    536 	SIP_DECL(dp83815_set_filter),
    537 	SIP_DECL(dp83815_read_macaddr),
    538 };
    539 #endif /* DP83820 */
    540 
    541 /*
    542  * Devices supported by this driver.
    543  */
    544 static const struct sip_product {
    545 	pci_vendor_id_t		sip_vendor;
    546 	pci_product_id_t	sip_product;
    547 	const char		*sip_name;
    548 	const struct sip_variant *sip_variant;
    549 } SIP_DECL(products)[] = {
    550 #if defined(DP83820)
    551 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    552 	  "NatSemi DP83820 Gigabit Ethernet",
    553 	  &SIP_DECL(variant_dp83820) },
    554 #else
    555 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    556 	  "SiS 900 10/100 Ethernet",
    557 	  &SIP_DECL(variant_sis900) },
    558 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    559 	  "SiS 7016 10/100 Ethernet",
    560 	  &SIP_DECL(variant_sis900) },
    561 
    562 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    563 	  "NatSemi DP83815 10/100 Ethernet",
    564 	  &SIP_DECL(variant_dp83815) },
    565 #endif /* DP83820 */
    566 
    567 	{ 0,			0,
    568 	  NULL,
    569 	  NULL },
    570 };
    571 
    572 static const struct sip_product *
    573 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    574 {
    575 	const struct sip_product *sip;
    576 
    577 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    578 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    579 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    580 			return (sip);
    581 	}
    582 	return (NULL);
    583 }
    584 
    585 #ifdef DP83820
    586 /*
    587  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    588  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    589  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    590  * which means we try to use 64-bit data transfers on those cards if we
    591  * happen to be plugged into a 32-bit slot.
    592  *
    593  * What we do is use this table of cards known to be 64-bit cards.  If
    594  * you have a 64-bit card who's subsystem ID is not listed in this table,
    595  * send the output of "pcictl dump ..." of the device to me so that your
    596  * card will use the 64-bit data path when plugged into a 64-bit slot.
    597  *
    598  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    599  *	   June 30, 2002
    600  */
    601 static int
    602 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    603 {
    604 	static const struct {
    605 		pci_vendor_id_t c64_vendor;
    606 		pci_product_id_t c64_product;
    607 	} card64[] = {
    608 		/* Asante GigaNIX */
    609 		{ 0x128a,	0x0002 },
    610 
    611 		/* Accton EN1407-T, Planex GN-1000TE */
    612 		{ 0x1113,	0x1407 },
    613 
    614 		/* Netgear GA-621 */
    615 		{ 0x1385,	0x621a },
    616 
    617 		/* SMC EZ Card */
    618 		{ 0x10b8,	0x9462 },
    619 
    620 		{ 0, 0}
    621 	};
    622 	pcireg_t subsys;
    623 	int i;
    624 
    625 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    626 
    627 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    628 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    629 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    630 			return (1);
    631 	}
    632 
    633 	return (0);
    634 }
    635 #endif /* DP83820 */
    636 
    637 static int
    638 SIP_DECL(match)(struct device *parent, struct cfdata *cf,
    639     void *aux)
    640 {
    641 	struct pci_attach_args *pa = aux;
    642 
    643 	if (SIP_DECL(lookup)(pa) != NULL)
    644 		return (1);
    645 
    646 	return 0;
    647 }
    648 
    649 static void
    650 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    651 {
    652 	u_int32_t reg;
    653 	int i;
    654 
    655 	/*
    656 	 * Cause the chip to load configuration data from the EEPROM.
    657 	 */
    658 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    659 	for (i = 0; i < 10000; i++) {
    660 		delay(10);
    661 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    662 		    PTSCR_EELOAD_EN) == 0)
    663 			break;
    664 	}
    665 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    666 	    PTSCR_EELOAD_EN) {
    667 		printf("%s: timeout loading configuration from EEPROM\n",
    668 		    sc->sc_dev.dv_xname);
    669 		return;
    670 	}
    671 
    672 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    673 
    674 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    675 	if (reg & CFG_PCI64_DET) {
    676 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    677 		/*
    678 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    679 		 * data transfers.
    680 		 *
    681 		 * We can't use the DATA64_EN bit in the EEPROM, because
    682 		 * vendors of 32-bit cards fail to clear that bit in many
    683 		 * cases (yet the card still detects that it's in a 64-bit
    684 		 * slot; go figure).
    685 		 */
    686 		if (sipcom_check_64bit(pa)) {
    687 			sc->sc_cfg |= CFG_DATA64_EN;
    688 			printf(", using 64-bit data transfers");
    689 		}
    690 		printf("\n");
    691 	}
    692 
    693 	/*
    694 	 * XXX Need some PCI flags indicating support for
    695 	 * XXX 64-bit addressing.
    696 	 */
    697 #if 0
    698 	if (reg & CFG_M64ADDR)
    699 		sc->sc_cfg |= CFG_M64ADDR;
    700 	if (reg & CFG_T64ADDR)
    701 		sc->sc_cfg |= CFG_T64ADDR;
    702 #endif
    703 
    704 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    705 		const char *sep = "";
    706 		printf("%s: using ", sc->sc_dev.dv_xname);
    707 		if (reg & CFG_EXT_125) {
    708 			sc->sc_cfg |= CFG_EXT_125;
    709 			printf("%s125MHz clock", sep);
    710 			sep = ", ";
    711 		}
    712 		if (reg & CFG_TBI_EN) {
    713 			sc->sc_cfg |= CFG_TBI_EN;
    714 			printf("%sten-bit interface", sep);
    715 			sep = ", ";
    716 		}
    717 		printf("\n");
    718 	}
    719 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    720 	    (reg & CFG_MRM_DIS) != 0)
    721 		sc->sc_cfg |= CFG_MRM_DIS;
    722 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    723 	    (reg & CFG_MWI_DIS) != 0)
    724 		sc->sc_cfg |= CFG_MWI_DIS;
    725 
    726 	/*
    727 	 * Use the extended descriptor format on the DP83820.  This
    728 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    729 	 * checksumming.
    730 	 */
    731 	sc->sc_cfg |= CFG_EXTSTS_EN;
    732 }
    733 
    734 static int
    735 sipcom_detach(device_t self, int flags)
    736 {
    737 	int s;
    738 
    739 	s = splnet();
    740 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    741 	splx(s);
    742 
    743 	return 0;
    744 }
    745 
    746 static void
    747 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    748 {
    749 	int i;
    750 	struct sip_softc *sc = device_private(self);
    751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    752 
    753 	/*
    754 	 * Free any resources we've allocated during attach.
    755 	 * Do this in reverse order and fall through.
    756 	 */
    757 	switch (stage) {
    758 	case SIP_ATTACH_FIN:
    759 		sipcom_stop(ifp, 1);
    760 		pmf_device_deregister(self);
    761 #ifdef SIP_EVENT_COUNTERS
    762 		/*
    763 		 * Attach event counters.
    764 		 */
    765 		evcnt_detach(&sc->sc_ev_txforceintr);
    766 		evcnt_detach(&sc->sc_ev_txdstall);
    767 		evcnt_detach(&sc->sc_ev_txsstall);
    768 		evcnt_detach(&sc->sc_ev_hiberr);
    769 		evcnt_detach(&sc->sc_ev_rxintr);
    770 		evcnt_detach(&sc->sc_ev_txiintr);
    771 		evcnt_detach(&sc->sc_ev_txdintr);
    772 		if (!sc->sc_gigabit) {
    773 			evcnt_detach(&sc->sc_ev_rxpause);
    774 		} else {
    775 			evcnt_detach(&sc->sc_ev_txudpsum);
    776 			evcnt_detach(&sc->sc_ev_txtcpsum);
    777 			evcnt_detach(&sc->sc_ev_txipsum);
    778 			evcnt_detach(&sc->sc_ev_rxudpsum);
    779 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    780 			evcnt_detach(&sc->sc_ev_rxipsum);
    781 			evcnt_detach(&sc->sc_ev_txpause);
    782 			evcnt_detach(&sc->sc_ev_rxpause);
    783 		}
    784 #endif /* SIP_EVENT_COUNTERS */
    785 
    786 #if NRND > 0
    787 		rnd_detach_source(&sc->rnd_source);
    788 #endif
    789 
    790 		ether_ifdetach(ifp);
    791 		if_detach(ifp);
    792 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    793 
    794 		/*FALLTHROUGH*/
    795 	case SIP_ATTACH_CREATE_RXMAP:
    796 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    797 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    798 				bus_dmamap_destroy(sc->sc_dmat,
    799 				    sc->sc_rxsoft[i].rxs_dmamap);
    800 		}
    801 		/*FALLTHROUGH*/
    802 	case SIP_ATTACH_CREATE_TXMAP:
    803 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    804 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    805 				bus_dmamap_destroy(sc->sc_dmat,
    806 				    sc->sc_txsoft[i].txs_dmamap);
    807 		}
    808 		/*FALLTHROUGH*/
    809 	case SIP_ATTACH_LOAD_MAP:
    810 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    811 		/*FALLTHROUGH*/
    812 	case SIP_ATTACH_CREATE_MAP:
    813 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    814 		/*FALLTHROUGH*/
    815 	case SIP_ATTACH_MAP_MEM:
    816 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    817 		    sizeof(struct sip_control_data));
    818 		/*FALLTHROUGH*/
    819 	case SIP_ATTACH_ALLOC_MEM:
    820 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    821 		/* FALLTHROUGH*/
    822 	case SIP_ATTACH_INTR:
    823 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    824 		/* FALLTHROUGH*/
    825 	case SIP_ATTACH_MAP:
    826 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    827 		break;
    828 	default:
    829 		break;
    830 	}
    831 	return;
    832 }
    833 
    834 static bool
    835 sipcom_resume(device_t self)
    836 {
    837 	struct sip_softc *sc = device_private(self);
    838 
    839 	return sipcom_reset(sc);
    840 }
    841 
    842 static void
    843 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    844 {
    845 	struct sip_softc *sc = (struct sip_softc *) self;
    846 	struct pci_attach_args *pa = aux;
    847 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    848 	pci_chipset_tag_t pc = pa->pa_pc;
    849 	pci_intr_handle_t ih;
    850 	const char *intrstr = NULL;
    851 	bus_space_tag_t iot, memt;
    852 	bus_space_handle_t ioh, memh;
    853 	bus_dma_segment_t seg;
    854 	int ioh_valid, memh_valid;
    855 	int i, rseg, error;
    856 	const struct sip_product *sip;
    857 	u_int8_t enaddr[ETHER_ADDR_LEN];
    858 	pcireg_t pmreg;
    859 #ifdef DP83820
    860 	pcireg_t memtype;
    861 	u_int32_t reg;
    862 #endif /* DP83820 */
    863 
    864 	callout_init(&sc->sc_tick_ch, 0);
    865 
    866 	sip = SIP_DECL(lookup)(pa);
    867 	if (sip == NULL) {
    868 		printf("\n");
    869 		panic(SIP_STR(attach) ": impossible");
    870 	}
    871 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    872 
    873 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    874 
    875 	sc->sc_model = sip;
    876 
    877 	/*
    878 	 * XXX Work-around broken PXE firmware on some boards.
    879 	 *
    880 	 * The DP83815 shares an address decoder with the MEM BAR
    881 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    882 	 * so that memory mapped access works.
    883 	 */
    884 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    885 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    886 	    ~PCI_MAPREG_ROM_ENABLE);
    887 
    888 	/*
    889 	 * Map the device.
    890 	 */
    891 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    892 	    PCI_MAPREG_TYPE_IO, 0,
    893 	    &iot, &ioh, NULL, NULL) == 0);
    894 #ifdef DP83820
    895 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    896 	switch (memtype) {
    897 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    898 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    899 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    900 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    901 		break;
    902 	default:
    903 		memh_valid = 0;
    904 	}
    905 #else
    906 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    907 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    908 	    &memt, &memh, NULL, NULL) == 0);
    909 #endif /* DP83820 */
    910 
    911 	if (memh_valid) {
    912 		sc->sc_st = memt;
    913 		sc->sc_sh = memh;
    914 	} else if (ioh_valid) {
    915 		sc->sc_st = iot;
    916 		sc->sc_sh = ioh;
    917 	} else {
    918 		printf("%s: unable to map device registers\n",
    919 		    sc->sc_dev.dv_xname);
    920 		return;
    921 	}
    922 
    923 	sc->sc_dmat = pa->pa_dmat;
    924 
    925 	/*
    926 	 * Make sure bus mastering is enabled.  Also make sure
    927 	 * Write/Invalidate is enabled if we're allowed to use it.
    928 	 */
    929 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    930 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    931 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    932 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    933 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    934 
    935 	/* power up chip */
    936 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
    937 	    NULL)) && error != EOPNOTSUPP) {
    938 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
    939 		    error);
    940 		return;
    941 	}
    942 
    943 	/*
    944 	 * Map and establish our interrupt.
    945 	 */
    946 	if (pci_intr_map(pa, &ih)) {
    947 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    948 		return;
    949 	}
    950 	intrstr = pci_intr_string(pc, ih);
    951 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    952 	if (sc->sc_ih == NULL) {
    953 		printf("%s: unable to establish interrupt",
    954 		    sc->sc_dev.dv_xname);
    955 		if (intrstr != NULL)
    956 			printf(" at %s", intrstr);
    957 		printf("\n");
    958 		return;
    959 	}
    960 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    961 
    962 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    963 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    964 
    965 	/*
    966 	 * Allocate the control data structures, and create and load the
    967 	 * DMA map for it.
    968 	 */
    969 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    970 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    971 	    0)) != 0) {
    972 		printf("%s: unable to allocate control data, error = %d\n",
    973 		    sc->sc_dev.dv_xname, error);
    974 		goto fail_0;
    975 	}
    976 
    977 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    978 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
    979 	    BUS_DMA_COHERENT)) != 0) {
    980 		printf("%s: unable to map control data, error = %d\n",
    981 		    sc->sc_dev.dv_xname, error);
    982 		goto fail_1;
    983 	}
    984 
    985 	if ((error = bus_dmamap_create(sc->sc_dmat,
    986 	    sizeof(struct sip_control_data), 1,
    987 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    988 		printf("%s: unable to create control data DMA map, "
    989 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    990 		goto fail_2;
    991 	}
    992 
    993 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    994 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    995 	    0)) != 0) {
    996 		printf("%s: unable to load control data DMA map, error = %d\n",
    997 		    sc->sc_dev.dv_xname, error);
    998 		goto fail_3;
    999 	}
   1000 
   1001 	/*
   1002 	 * Create the transmit buffer DMA maps.
   1003 	 */
   1004 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1005 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
   1006 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
   1007 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1008 			printf("%s: unable to create tx DMA map %d, "
   1009 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1010 			goto fail_4;
   1011 		}
   1012 	}
   1013 
   1014 	/*
   1015 	 * Create the receive buffer DMA maps.
   1016 	 */
   1017 	for (i = 0; i < SIP_NRXDESC; i++) {
   1018 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1019 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1020 			printf("%s: unable to create rx DMA map %d, "
   1021 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1022 			goto fail_5;
   1023 		}
   1024 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1025 	}
   1026 
   1027 	/*
   1028 	 * Reset the chip to a known state.
   1029 	 */
   1030 	SIP_DECL(reset)(sc);
   1031 
   1032 	/*
   1033 	 * Read the Ethernet address from the EEPROM.  This might
   1034 	 * also fetch other stuff from the EEPROM and stash it
   1035 	 * in the softc.
   1036 	 */
   1037 	sc->sc_cfg = 0;
   1038 #if !defined(DP83820)
   1039 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1040 	    SIP_SIS900_REV(sc,SIS_REV_900B))
   1041 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1042 
   1043 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1044 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1045 	    SIP_SIS900_REV(sc,SIS_REV_900B))
   1046 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
   1047 						SIP_CFG) & CFG_EDBMASTEN);
   1048 #endif
   1049 
   1050 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1051 
   1052 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1053 	    ether_sprintf(enaddr));
   1054 
   1055 	/*
   1056 	 * Initialize the configuration register: aggressive PCI
   1057 	 * bus request algorithm, default backoff, default OW timer,
   1058 	 * default parity error detection.
   1059 	 *
   1060 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1061 	 * friends -- it affects packet data, not descriptors.
   1062 	 */
   1063 #ifdef DP83820
   1064 	/*
   1065 	 * Cause the chip to load configuration data from the EEPROM.
   1066 	 */
   1067 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
   1068 	for (i = 0; i < 10000; i++) {
   1069 		delay(10);
   1070 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
   1071 		    PTSCR_EELOAD_EN) == 0)
   1072 			break;
   1073 	}
   1074 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
   1075 	    PTSCR_EELOAD_EN) {
   1076 		printf("%s: timeout loading configuration from EEPROM\n",
   1077 		    sc->sc_dev.dv_xname);
   1078 		return;
   1079 	}
   1080 
   1081 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
   1082 
   1083 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
   1084 	if (reg & CFG_PCI64_DET) {
   1085 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
   1086 		/*
   1087 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
   1088 		 * data transfers.
   1089 		 *
   1090 		 * We can't use the DATA64_EN bit in the EEPROM, because
   1091 		 * vendors of 32-bit cards fail to clear that bit in many
   1092 		 * cases (yet the card still detects that it's in a 64-bit
   1093 		 * slot; go figure).
   1094 		 */
   1095 		if (SIP_DECL(check_64bit)(pa)) {
   1096 			sc->sc_cfg |= CFG_DATA64_EN;
   1097 			printf(", using 64-bit data transfers");
   1098 		}
   1099 		printf("\n");
   1100 	}
   1101 
   1102 	/*
   1103 	 * XXX Need some PCI flags indicating support for
   1104 	 * XXX 64-bit addressing.
   1105 	 */
   1106 #if 0
   1107 	if (reg & CFG_M64ADDR)
   1108 		sc->sc_cfg |= CFG_M64ADDR;
   1109 	if (reg & CFG_T64ADDR)
   1110 		sc->sc_cfg |= CFG_T64ADDR;
   1111 #endif
   1112 
   1113 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
   1114 		const char *sep = "";
   1115 		printf("%s: using ", sc->sc_dev.dv_xname);
   1116 		if (reg & CFG_EXT_125) {
   1117 			sc->sc_cfg |= CFG_EXT_125;
   1118 			printf("%s125MHz clock", sep);
   1119 			sep = ", ";
   1120 		}
   1121 		if (reg & CFG_TBI_EN) {
   1122 			sc->sc_cfg |= CFG_TBI_EN;
   1123 			printf("%sten-bit interface", sep);
   1124 			sep = ", ";
   1125 		}
   1126 		printf("\n");
   1127 	}
   1128 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
   1129 	    (reg & CFG_MRM_DIS) != 0)
   1130 		sc->sc_cfg |= CFG_MRM_DIS;
   1131 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
   1132 	    (reg & CFG_MWI_DIS) != 0)
   1133 		sc->sc_cfg |= CFG_MWI_DIS;
   1134 
   1135 	/*
   1136 	 * Use the extended descriptor format on the DP83820.  This
   1137 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
   1138 	 * checksumming.
   1139 	 */
   1140 	sc->sc_cfg |= CFG_EXTSTS_EN;
   1141 #endif /* DP83820 */
   1142 
   1143 	/*
   1144 	 * Initialize our media structures and probe the MII.
   1145 	 */
   1146 	sc->sc_mii.mii_ifp = ifp;
   1147 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1148 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1149 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1150 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1151 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1152 	    sipcom_mediastatus);
   1153 
   1154 	/*
   1155 	 * XXX We cannot handle flow control on the DP83815.
   1156 	 */
   1157 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1158 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1159 			   MII_OFFSET_ANY, 0);
   1160 	else
   1161 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1162 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1163 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1164 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1165 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1166 	} else
   1167 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1168 
   1169 	ifp = &sc->sc_ethercom.ec_if;
   1170 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1171 	ifp->if_softc = sc;
   1172 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1173 	sc->sc_if_flags = ifp->if_flags;
   1174 	ifp->if_ioctl = SIP_DECL(ioctl);
   1175 	ifp->if_start = SIP_DECL(start);
   1176 	ifp->if_watchdog = SIP_DECL(watchdog);
   1177 	ifp->if_init = SIP_DECL(init);
   1178 	ifp->if_stop = SIP_DECL(stop);
   1179 	IFQ_SET_READY(&ifp->if_snd);
   1180 
   1181 	/*
   1182 	 * We can support 802.1Q VLAN-sized frames.
   1183 	 */
   1184 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1185 
   1186 #ifdef DP83820
   1187 	/*
   1188 	 * And the DP83820 can do VLAN tagging in hardware, and
   1189 	 * support the jumbo Ethernet MTU.
   1190 	 */
   1191 	sc->sc_ethercom.ec_capabilities |=
   1192 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1193 
   1194 	/*
   1195 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1196 	 * in hardware.
   1197 	 */
   1198 	ifp->if_capabilities |=
   1199 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1200 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1201 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1202 #endif /* DP83820 */
   1203 
   1204 	/*
   1205 	 * Attach the interface.
   1206 	 */
   1207 	if_attach(ifp);
   1208 	ether_ifattach(ifp, enaddr);
   1209 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1210 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1211 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1212 #if NRND > 0
   1213 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1214 	    RND_TYPE_NET, 0);
   1215 #endif
   1216 
   1217 	/*
   1218 	 * The number of bytes that must be available in
   1219 	 * the Tx FIFO before the bus master can DMA more
   1220 	 * data into the FIFO.
   1221 	 */
   1222 	sc->sc_tx_fill_thresh = 64 / 32;
   1223 
   1224 	/*
   1225 	 * Start at a drain threshold of 512 bytes.  We will
   1226 	 * increase it if a DMA underrun occurs.
   1227 	 *
   1228 	 * XXX The minimum value of this variable should be
   1229 	 * tuned.  We may be able to improve performance
   1230 	 * by starting with a lower value.  That, however,
   1231 	 * may trash the first few outgoing packets if the
   1232 	 * PCI bus is saturated.
   1233 	 */
   1234 #ifdef DP83820
   1235 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
   1236 #else
   1237 	sc->sc_tx_drain_thresh = 1504 / 32;
   1238 #endif
   1239 
   1240 	/*
   1241 	 * Initialize the Rx FIFO drain threshold.
   1242 	 *
   1243 	 * This is in units of 8 bytes.
   1244 	 *
   1245 	 * We should never set this value lower than 2; 14 bytes are
   1246 	 * required to filter the packet.
   1247 	 */
   1248 	sc->sc_rx_drain_thresh = 128 / 8;
   1249 
   1250 #ifdef SIP_EVENT_COUNTERS
   1251 	/*
   1252 	 * Attach event counters.
   1253 	 */
   1254 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1255 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1256 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1257 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1258 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1259 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1260 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1261 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1262 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1263 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1264 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1265 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1266 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1267 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1268 #ifndef DP83820
   1269 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1270 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1271 #endif /* !DP83820 */
   1272 #ifdef DP83820
   1273 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1274 	    NULL, sc->sc_dev.dv_xname, "rxpause");
   1275 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1276 	    NULL, sc->sc_dev.dv_xname, "txpause");
   1277 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1278 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1279 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1280 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1281 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1282 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1283 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1284 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1285 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1286 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1287 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1288 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1289 #endif /* DP83820 */
   1290 #endif /* SIP_EVENT_COUNTERS */
   1291 
   1292 	if (!pmf_device_register(self, NULL, sipcom_resume))
   1293 		aprint_error_dev(self, "couldn't establish power handler\n");
   1294 	else
   1295 		pmf_class_network_register(self, ifp);
   1296 }
   1297 
   1298 static inline void
   1299 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1300     uint64_t capenable)
   1301 {
   1302 	struct m_tag *mtag;
   1303 	u_int32_t extsts;
   1304 #ifdef DEBUG
   1305 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1306 #endif
   1307 	/*
   1308 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1309 	 * up the descriptor to encapsulate the packet for us.
   1310 	 *
   1311 	 * This apparently has to be on the last descriptor of
   1312 	 * the packet.
   1313 	 */
   1314 
   1315 	/*
   1316 	 * Byte swapping is tricky. We need to provide the tag
   1317 	 * in a network byte order. On a big-endian machine,
   1318 	 * the byteorder is correct, but we need to swap it
   1319 	 * anyway, because this will be undone by the outside
   1320 	 * htole32(). That's why there must be an
   1321 	 * unconditional swap instead of htons() inside.
   1322 	 */
   1323 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1324 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1325 		    htole32(EXTSTS_VPKT |
   1326 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1327 				 EXTSTS_VTCI));
   1328 	}
   1329 
   1330 	/*
   1331 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1332 	 * checksumming, set up the descriptor to do this work
   1333 	 * for us.
   1334 	 *
   1335 	 * This apparently has to be on the first descriptor of
   1336 	 * the packet.
   1337 	 *
   1338 	 * Byte-swap constants so the compiler can optimize.
   1339 	 */
   1340 	extsts = 0;
   1341 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1342 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1343 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1344 		extsts |= htole32(EXTSTS_IPPKT);
   1345 	}
   1346 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1347 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1348 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1349 		extsts |= htole32(EXTSTS_TCPPKT);
   1350 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1351 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1352 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1353 		extsts |= htole32(EXTSTS_UDPPKT);
   1354 	}
   1355 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1356 }
   1357 
   1358 /*
   1359  * sip_start:		[ifnet interface function]
   1360  *
   1361  *	Start packet transmission on the interface.
   1362  */
   1363 static void
   1364 SIP_DECL(start)(struct ifnet *ifp)
   1365 {
   1366 	struct sip_softc *sc = ifp->if_softc;
   1367 	struct mbuf *m0;
   1368 #ifndef DP83820
   1369 	struct mbuf *m;
   1370 #endif
   1371 	struct sip_txsoft *txs;
   1372 	bus_dmamap_t dmamap;
   1373 	int error, nexttx, lasttx, seg;
   1374 	int ofree = sc->sc_txfree;
   1375 #if 0
   1376 	int firsttx = sc->sc_txnext;
   1377 #endif
   1378 #ifdef DP83820
   1379 	struct m_tag *mtag;
   1380 	u_int32_t extsts;
   1381 #endif
   1382 
   1383 #ifndef DP83820
   1384 	/*
   1385 	 * If we've been told to pause, don't transmit any more packets.
   1386 	 */
   1387 	if (sc->sc_paused)
   1388 		ifp->if_flags |= IFF_OACTIVE;
   1389 #endif
   1390 
   1391 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1392 		return;
   1393 
   1394 	/*
   1395 	 * Loop through the send queue, setting up transmit descriptors
   1396 	 * until we drain the queue, or use up all available transmit
   1397 	 * descriptors.
   1398 	 */
   1399 	for (;;) {
   1400 		/* Get a work queue entry. */
   1401 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1402 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1403 			break;
   1404 		}
   1405 
   1406 		/*
   1407 		 * Grab a packet off the queue.
   1408 		 */
   1409 		IFQ_POLL(&ifp->if_snd, m0);
   1410 		if (m0 == NULL)
   1411 			break;
   1412 #ifndef DP83820
   1413 		m = NULL;
   1414 #endif
   1415 
   1416 		dmamap = txs->txs_dmamap;
   1417 
   1418 #ifdef DP83820
   1419 		/*
   1420 		 * Load the DMA map.  If this fails, the packet either
   1421 		 * didn't fit in the allotted number of segments, or we
   1422 		 * were short on resources.  For the too-many-segments
   1423 		 * case, we simply report an error and drop the packet,
   1424 		 * since we can't sanely copy a jumbo packet to a single
   1425 		 * buffer.
   1426 		 */
   1427 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1428 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1429 		if (error) {
   1430 			if (error == EFBIG) {
   1431 				printf("%s: Tx packet consumes too many "
   1432 				    "DMA segments, dropping...\n",
   1433 				    sc->sc_dev.dv_xname);
   1434 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1435 				m_freem(m0);
   1436 				continue;
   1437 			}
   1438 			/*
   1439 			 * Short on resources, just stop for now.
   1440 			 */
   1441 			break;
   1442 		}
   1443 #else /* DP83820 */
   1444 		/*
   1445 		 * Load the DMA map.  If this fails, the packet either
   1446 		 * didn't fit in the alloted number of segments, or we
   1447 		 * were short on resources.  In this case, we'll copy
   1448 		 * and try again.
   1449 		 */
   1450 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1451 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1452 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1453 			if (m == NULL) {
   1454 				printf("%s: unable to allocate Tx mbuf\n",
   1455 				    sc->sc_dev.dv_xname);
   1456 				break;
   1457 			}
   1458 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1459 			if (m0->m_pkthdr.len > MHLEN) {
   1460 				MCLGET(m, M_DONTWAIT);
   1461 				if ((m->m_flags & M_EXT) == 0) {
   1462 					printf("%s: unable to allocate Tx "
   1463 					    "cluster\n", sc->sc_dev.dv_xname);
   1464 					m_freem(m);
   1465 					break;
   1466 				}
   1467 			}
   1468 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1469 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1470 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1471 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1472 			if (error) {
   1473 				printf("%s: unable to load Tx buffer, "
   1474 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1475 				break;
   1476 			}
   1477 		}
   1478 #endif /* DP83820 */
   1479 
   1480 		/*
   1481 		 * Ensure we have enough descriptors free to describe
   1482 		 * the packet.  Note, we always reserve one descriptor
   1483 		 * at the end of the ring as a termination point, to
   1484 		 * prevent wrap-around.
   1485 		 */
   1486 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1487 			/*
   1488 			 * Not enough free descriptors to transmit this
   1489 			 * packet.  We haven't committed anything yet,
   1490 			 * so just unload the DMA map, put the packet
   1491 			 * back on the queue, and punt.  Notify the upper
   1492 			 * layer that there are not more slots left.
   1493 			 *
   1494 			 * XXX We could allocate an mbuf and copy, but
   1495 			 * XXX is it worth it?
   1496 			 */
   1497 			ifp->if_flags |= IFF_OACTIVE;
   1498 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1499 #ifndef DP83820
   1500 			if (m != NULL)
   1501 				m_freem(m);
   1502 #endif
   1503 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1504 			break;
   1505 		}
   1506 
   1507 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1508 #ifndef DP83820
   1509 		if (m != NULL) {
   1510 			m_freem(m0);
   1511 			m0 = m;
   1512 		}
   1513 #endif
   1514 
   1515 		/*
   1516 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1517 		 */
   1518 
   1519 		/* Sync the DMA map. */
   1520 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1521 		    BUS_DMASYNC_PREWRITE);
   1522 
   1523 		/*
   1524 		 * Initialize the transmit descriptors.
   1525 		 */
   1526 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1527 		     seg < dmamap->dm_nsegs;
   1528 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1529 			/*
   1530 			 * If this is the first descriptor we're
   1531 			 * enqueueing, don't set the OWN bit just
   1532 			 * yet.  That could cause a race condition.
   1533 			 * We'll do it below.
   1534 			 */
   1535 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1536 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1537 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1538 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1539 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1540 #ifdef DP83820
   1541 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1542 #endif /* DP83820 */
   1543 			lasttx = nexttx;
   1544 		}
   1545 
   1546 		/* Clear the MORE bit on the last segment. */
   1547 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1548 
   1549 		/*
   1550 		 * If we're in the interrupt delay window, delay the
   1551 		 * interrupt.
   1552 		 */
   1553 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1554 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1555 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1556 			    htole32(CMDSTS_INTR);
   1557 			sc->sc_txwin = 0;
   1558 		}
   1559 
   1560 #ifdef DP83820
   1561 		/*
   1562 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1563 		 * up the descriptor to encapsulate the packet for us.
   1564 		 *
   1565 		 * This apparently has to be on the last descriptor of
   1566 		 * the packet.
   1567 		 */
   1568 
   1569 		/*
   1570 		 * Byte swapping is tricky. We need to provide the tag
   1571 		 * in a network byte order. On a big-endian machine,
   1572 		 * the byteorder is correct, but we need to swap it
   1573 		 * anyway, because this will be undone by the outside
   1574 		 * htole32(). That's why there must be an
   1575 		 * unconditional swap instead of htons() inside.
   1576 		 */
   1577 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1578 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1579 			    htole32(EXTSTS_VPKT |
   1580 					(bswap16(VLAN_TAG_VALUE(mtag)) &
   1581 					 EXTSTS_VTCI));
   1582 		}
   1583 
   1584 		/*
   1585 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1586 		 * checksumming, set up the descriptor to do this work
   1587 		 * for us.
   1588 		 *
   1589 		 * This apparently has to be on the first descriptor of
   1590 		 * the packet.
   1591 		 *
   1592 		 * Byte-swap constants so the compiler can optimize.
   1593 		 */
   1594 		extsts = 0;
   1595 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1596 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1597 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1598 			extsts |= htole32(EXTSTS_IPPKT);
   1599 		}
   1600 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1601 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1602 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1603 			extsts |= htole32(EXTSTS_TCPPKT);
   1604 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1605 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1606 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1607 			extsts |= htole32(EXTSTS_UDPPKT);
   1608 		}
   1609 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1610 #endif /* DP83820 */
   1611 
   1612 		/* Sync the descriptors we're using. */
   1613 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1614 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1615 
   1616 		/*
   1617 		 * The entire packet is set up.  Give the first descrptor
   1618 		 * to the chip now.
   1619 		 */
   1620 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1621 		    htole32(CMDSTS_OWN);
   1622 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1623 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1624 
   1625 		/*
   1626 		 * Store a pointer to the packet so we can free it later,
   1627 		 * and remember what txdirty will be once the packet is
   1628 		 * done.
   1629 		 */
   1630 		txs->txs_mbuf = m0;
   1631 		txs->txs_firstdesc = sc->sc_txnext;
   1632 		txs->txs_lastdesc = lasttx;
   1633 
   1634 		/* Advance the tx pointer. */
   1635 		sc->sc_txfree -= dmamap->dm_nsegs;
   1636 		sc->sc_txnext = nexttx;
   1637 
   1638 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1639 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1640 
   1641 #if NBPFILTER > 0
   1642 		/*
   1643 		 * Pass the packet to any BPF listeners.
   1644 		 */
   1645 		if (ifp->if_bpf)
   1646 			bpf_mtap(ifp->if_bpf, m0);
   1647 #endif /* NBPFILTER > 0 */
   1648 	}
   1649 
   1650 	if (txs == NULL || sc->sc_txfree == 0) {
   1651 		/* No more slots left; notify upper layer. */
   1652 		ifp->if_flags |= IFF_OACTIVE;
   1653 	}
   1654 
   1655 	if (sc->sc_txfree != ofree) {
   1656 		/*
   1657 		 * Start the transmit process.  Note, the manual says
   1658 		 * that if there are no pending transmissions in the
   1659 		 * chip's internal queue (indicated by TXE being clear),
   1660 		 * then the driver software must set the TXDP to the
   1661 		 * first descriptor to be transmitted.  However, if we
   1662 		 * do this, it causes serious performance degredation on
   1663 		 * the DP83820 under load, not setting TXDP doesn't seem
   1664 		 * to adversely affect the SiS 900 or DP83815.
   1665 		 *
   1666 		 * Well, I guess it wouldn't be the first time a manual
   1667 		 * has lied -- and they could be speaking of the NULL-
   1668 		 * terminated descriptor list case, rather than OWN-
   1669 		 * terminated rings.
   1670 		 */
   1671 #if 0
   1672 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1673 		     CR_TXE) == 0) {
   1674 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1675 			    SIP_CDTXADDR(sc, firsttx));
   1676 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1677 		}
   1678 #else
   1679 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1680 #endif
   1681 
   1682 		/* Set a watchdog timer in case the chip flakes out. */
   1683 #ifdef DP83820
   1684 		/* Gigabit autonegotiation takes 5 seconds. */
   1685 		ifp->if_timer = 10;
   1686 #else
   1687 		ifp->if_timer = 5;
   1688 #endif
   1689 	}
   1690 }
   1691 
   1692 /*
   1693  * sip_watchdog:	[ifnet interface function]
   1694  *
   1695  *	Watchdog timer handler.
   1696  */
   1697 static void
   1698 SIP_DECL(watchdog)(struct ifnet *ifp)
   1699 {
   1700 	struct sip_softc *sc = ifp->if_softc;
   1701 
   1702 	/*
   1703 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1704 	 * If we get a timeout, try and sweep up transmit descriptors.
   1705 	 * If we manage to sweep them all up, ignore the lack of
   1706 	 * interrupt.
   1707 	 */
   1708 	SIP_DECL(txintr)(sc);
   1709 
   1710 	if (sc->sc_txfree != SIP_NTXDESC) {
   1711 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1712 		ifp->if_oerrors++;
   1713 
   1714 		/* Reset the interface. */
   1715 		(void) SIP_DECL(init)(ifp);
   1716 	} else if (ifp->if_flags & IFF_DEBUG)
   1717 		printf("%s: recovered from device timeout\n",
   1718 		    sc->sc_dev.dv_xname);
   1719 
   1720 	/* Try to get more packets going. */
   1721 	SIP_DECL(start)(ifp);
   1722 }
   1723 
   1724 /*
   1725  * sip_ioctl:		[ifnet interface function]
   1726  *
   1727  *	Handle control requests from the operator.
   1728  */
   1729 static int
   1730 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, void *data)
   1731 {
   1732 	struct sip_softc *sc = ifp->if_softc;
   1733 	struct ifreq *ifr = (struct ifreq *)data;
   1734 	int s, error;
   1735 
   1736 	s = splnet();
   1737 
   1738 	switch (cmd) {
   1739 	case SIOCSIFMEDIA:
   1740 		/* Flow control requires full-duplex mode. */
   1741 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1742 		    (ifr->ifr_media & IFM_FDX) == 0)
   1743 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1744 #ifdef DP83820
   1745 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1746 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1747 				/* We can do both TXPAUSE and RXPAUSE. */
   1748 				ifr->ifr_media |=
   1749 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1750 			}
   1751 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1752 		}
   1753 #else
   1754 		/* XXX */
   1755 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1756 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1757 
   1758 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1759 			if (ifr->ifr_media & IFM_FLOW) {
   1760 				/*
   1761 				 * Both TXPAUSE and RXPAUSE must be set.
   1762 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1763 				 * feature.)
   1764 				 *
   1765 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1766 				 */
   1767 				ifr->ifr_media |=
   1768 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1769 			}
   1770 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1771 		}
   1772 		goto ethioctl;
   1773 	case SIOCSIFFLAGS:
   1774 		/* If the interface is up and running, only modify the receive
   1775 		 * filter when setting promiscuous or debug mode.  Otherwise
   1776 		 * fall through to ether_ioctl, which will reset the chip.
   1777 		 */
   1778 
   1779 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1780 			 == (sc)->sc_ethercom.ec_capenable)		\
   1781 			&& ((sc)->sc_prev.is_vlan ==			\
   1782 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1783 
   1784 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1785 
   1786 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1787 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1788 		    == (IFF_UP|IFF_RUNNING))
   1789 		    && ((ifp->if_flags & (~RESETIGN))
   1790 		    == (sc->sc_if_flags & (~RESETIGN)))
   1791 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1792 			/* Set up the receive filter. */
   1793 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1794 			error = 0;
   1795 			break;
   1796 #undef RESETIGN
   1797 		}
   1798 		/* FALLTHROUGH */
   1799 	ethioctl:
   1800 	default:
   1801 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1802 			break;
   1803 
   1804 		error = 0;
   1805 
   1806 		if (cmd == SIOCSIFCAP)
   1807 			error = (*ifp->if_init)(ifp);
   1808 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1809 			;
   1810 		else if (ifp->if_flags & IFF_RUNNING) {
   1811 			/*
   1812 			 * Multicast list has changed; set the hardware filter
   1813 			 * accordingly.
   1814 			 */
   1815 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1816 		}
   1817 		break;
   1818 	}
   1819 
   1820 	/* Try to get more packets going. */
   1821 	SIP_DECL(start)(ifp);
   1822 
   1823 	sc->sc_if_flags = ifp->if_flags;
   1824 	splx(s);
   1825 	return (error);
   1826 }
   1827 
   1828 /*
   1829  * sip_intr:
   1830  *
   1831  *	Interrupt service routine.
   1832  */
   1833 static int
   1834 SIP_DECL(intr)(void *arg)
   1835 {
   1836 	struct sip_softc *sc = arg;
   1837 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1838 	u_int32_t isr;
   1839 	int handled = 0;
   1840 
   1841 	/* Disable interrupts. */
   1842 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1843 
   1844 	for (;;) {
   1845 		/* Reading clears interrupt. */
   1846 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1847 		if ((isr & sc->sc_imr) == 0)
   1848 			break;
   1849 
   1850 #if NRND > 0
   1851 		if (RND_ENABLED(&sc->rnd_source))
   1852 			rnd_add_uint32(&sc->rnd_source, isr);
   1853 #endif
   1854 
   1855 		handled = 1;
   1856 
   1857 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1858 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1859 
   1860 			/* Grab any new packets. */
   1861 			SIP_DECL(rxintr)(sc);
   1862 
   1863 			if (isr & ISR_RXORN) {
   1864 				printf("%s: receive FIFO overrun\n",
   1865 				    sc->sc_dev.dv_xname);
   1866 
   1867 				/* XXX adjust rx_drain_thresh? */
   1868 			}
   1869 
   1870 			if (isr & ISR_RXIDLE) {
   1871 				printf("%s: receive ring overrun\n",
   1872 				    sc->sc_dev.dv_xname);
   1873 
   1874 				/* Get the receive process going again. */
   1875 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1876 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1877 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1878 				    SIP_CR, CR_RXE);
   1879 			}
   1880 		}
   1881 
   1882 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1883 #ifdef SIP_EVENT_COUNTERS
   1884 			if (isr & ISR_TXDESC)
   1885 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1886 			else if (isr & ISR_TXIDLE)
   1887 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1888 #endif
   1889 
   1890 			/* Sweep up transmit descriptors. */
   1891 			SIP_DECL(txintr)(sc);
   1892 
   1893 			if (isr & ISR_TXURN) {
   1894 				u_int32_t thresh;
   1895 
   1896 				printf("%s: transmit FIFO underrun",
   1897 				    sc->sc_dev.dv_xname);
   1898 
   1899 				thresh = sc->sc_tx_drain_thresh + 1;
   1900 				if (thresh <= TXCFG_DRTH &&
   1901 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1902 				     (sc->sc_tx_fill_thresh * 32))) {
   1903 					printf("; increasing Tx drain "
   1904 					    "threshold to %u bytes\n",
   1905 					    thresh * 32);
   1906 					sc->sc_tx_drain_thresh = thresh;
   1907 					(void) SIP_DECL(init)(ifp);
   1908 				} else {
   1909 					(void) SIP_DECL(init)(ifp);
   1910 					printf("\n");
   1911 				}
   1912 			}
   1913 		}
   1914 
   1915 #if !defined(DP83820)
   1916 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1917 			if (isr & ISR_PAUSE_ST) {
   1918 				sc->sc_paused = 1;
   1919 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1920 				ifp->if_flags |= IFF_OACTIVE;
   1921 			}
   1922 			if (isr & ISR_PAUSE_END) {
   1923 				sc->sc_paused = 0;
   1924 				ifp->if_flags &= ~IFF_OACTIVE;
   1925 			}
   1926 		}
   1927 #endif /* ! DP83820 */
   1928 
   1929 		if (isr & ISR_HIBERR) {
   1930 			int want_init = 0;
   1931 
   1932 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1933 
   1934 #define	PRINTERR(bit, str)						\
   1935 			do {						\
   1936 				if ((isr & (bit)) != 0) {		\
   1937 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1938 						printf("%s: %s\n",	\
   1939 						    sc->sc_dev.dv_xname, str); \
   1940 					want_init = 1;			\
   1941 				}					\
   1942 			} while (/*CONSTCOND*/0)
   1943 
   1944 			PRINTERR(ISR_DPERR, "parity error");
   1945 			PRINTERR(ISR_SSERR, "system error");
   1946 			PRINTERR(ISR_RMABT, "master abort");
   1947 			PRINTERR(ISR_RTABT, "target abort");
   1948 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1949 			/*
   1950 			 * Ignore:
   1951 			 *	Tx reset complete
   1952 			 *	Rx reset complete
   1953 			 */
   1954 			if (want_init)
   1955 				(void) SIP_DECL(init)(ifp);
   1956 #undef PRINTERR
   1957 		}
   1958 	}
   1959 
   1960 	/* Re-enable interrupts. */
   1961 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1962 
   1963 	/* Try to get more packets going. */
   1964 	SIP_DECL(start)(ifp);
   1965 
   1966 	return (handled);
   1967 }
   1968 
   1969 /*
   1970  * sip_txintr:
   1971  *
   1972  *	Helper; handle transmit interrupts.
   1973  */
   1974 static void
   1975 SIP_DECL(txintr)(struct sip_softc *sc)
   1976 {
   1977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1978 	struct sip_txsoft *txs;
   1979 	u_int32_t cmdsts;
   1980 
   1981 #ifndef DP83820
   1982 	if (sc->sc_paused == 0)
   1983 #endif
   1984 		ifp->if_flags &= ~IFF_OACTIVE;
   1985 
   1986 	/*
   1987 	 * Go through our Tx list and free mbufs for those
   1988 	 * frames which have been transmitted.
   1989 	 */
   1990 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1991 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1992 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1993 
   1994 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1995 		if (cmdsts & CMDSTS_OWN)
   1996 			break;
   1997 
   1998 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1999 
   2000 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   2001 
   2002 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2003 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2004 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2005 		m_freem(txs->txs_mbuf);
   2006 		txs->txs_mbuf = NULL;
   2007 
   2008 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2009 
   2010 		/*
   2011 		 * Check for errors and collisions.
   2012 		 */
   2013 		if (cmdsts &
   2014 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2015 			ifp->if_oerrors++;
   2016 			if (cmdsts & CMDSTS_Tx_EC)
   2017 				ifp->if_collisions += 16;
   2018 			if (ifp->if_flags & IFF_DEBUG) {
   2019 				if (cmdsts & CMDSTS_Tx_ED)
   2020 					printf("%s: excessive deferral\n",
   2021 					    sc->sc_dev.dv_xname);
   2022 				if (cmdsts & CMDSTS_Tx_EC)
   2023 					printf("%s: excessive collisions\n",
   2024 					    sc->sc_dev.dv_xname);
   2025 			}
   2026 		} else {
   2027 			/* Packet was transmitted successfully. */
   2028 			ifp->if_opackets++;
   2029 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2030 		}
   2031 	}
   2032 
   2033 	/*
   2034 	 * If there are no more pending transmissions, cancel the watchdog
   2035 	 * timer.
   2036 	 */
   2037 	if (txs == NULL) {
   2038 		ifp->if_timer = 0;
   2039 		sc->sc_txwin = 0;
   2040 	}
   2041 }
   2042 
   2043 #if defined(DP83820)
   2044 /*
   2045  * sip_rxintr:
   2046  *
   2047  *	Helper; handle receive interrupts.
   2048  */
   2049 static void
   2050 SIP_DECL(rxintr)(struct sip_softc *sc)
   2051 {
   2052 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2053 	struct sip_rxsoft *rxs;
   2054 	struct mbuf *m;
   2055 	u_int32_t cmdsts, extsts;
   2056 	int i, len;
   2057 
   2058 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   2059 		rxs = &sc->sc_rxsoft[i];
   2060 
   2061 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2062 
   2063 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   2064 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2065 		len = CMDSTS_SIZE(cmdsts);
   2066 
   2067 		/*
   2068 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2069 		 * consumer of the receive ring, so if the bit is clear,
   2070 		 * we have processed all of the packets.
   2071 		 */
   2072 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2073 			/*
   2074 			 * We have processed all of the receive buffers.
   2075 			 */
   2076 			break;
   2077 		}
   2078 
   2079 		if (__predict_false(sc->sc_rxdiscard)) {
   2080 			SIP_INIT_RXDESC(sc, i);
   2081 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2082 				/* Reset our state. */
   2083 				sc->sc_rxdiscard = 0;
   2084 			}
   2085 			continue;
   2086 		}
   2087 
   2088 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2089 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2090 
   2091 		m = rxs->rxs_mbuf;
   2092 
   2093 		/*
   2094 		 * Add a new receive buffer to the ring.
   2095 		 */
   2096 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2097 			/*
   2098 			 * Failed, throw away what we've done so
   2099 			 * far, and discard the rest of the packet.
   2100 			 */
   2101 			ifp->if_ierrors++;
   2102 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2103 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2104 			SIP_INIT_RXDESC(sc, i);
   2105 			if (cmdsts & CMDSTS_MORE)
   2106 				sc->sc_rxdiscard = 1;
   2107 			if (sc->sc_rxhead != NULL)
   2108 				m_freem(sc->sc_rxhead);
   2109 			SIP_RXCHAIN_RESET(sc);
   2110 			continue;
   2111 		}
   2112 
   2113 		SIP_RXCHAIN_LINK(sc, m);
   2114 
   2115 		m->m_len = len;
   2116 
   2117 		/*
   2118 		 * If this is not the end of the packet, keep
   2119 		 * looking.
   2120 		 */
   2121 		if (cmdsts & CMDSTS_MORE) {
   2122 			sc->sc_rxlen += len;
   2123 			continue;
   2124 		}
   2125 
   2126 		/*
   2127 		 * Okay, we have the entire packet now.  The chip includes
   2128 		 * the FCS, so we need to trim it.
   2129 		 */
   2130 		m->m_len -= ETHER_CRC_LEN;
   2131 
   2132 		*sc->sc_rxtailp = NULL;
   2133 		len = m->m_len + sc->sc_rxlen;
   2134 		m = sc->sc_rxhead;
   2135 
   2136 		SIP_RXCHAIN_RESET(sc);
   2137 
   2138 		/*
   2139 		 * If an error occurred, update stats and drop the packet.
   2140 		 */
   2141 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2142 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2143 			ifp->if_ierrors++;
   2144 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2145 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2146 				/* Receive overrun handled elsewhere. */
   2147 				printf("%s: receive descriptor error\n",
   2148 				    sc->sc_dev.dv_xname);
   2149 			}
   2150 #define	PRINTERR(bit, str)						\
   2151 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2152 			    (cmdsts & (bit)) != 0)			\
   2153 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2154 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2155 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2156 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2157 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2158 #undef PRINTERR
   2159 			m_freem(m);
   2160 			continue;
   2161 		}
   2162 
   2163 		/*
   2164 		 * If the packet is small enough to fit in a
   2165 		 * single header mbuf, allocate one and copy
   2166 		 * the data into it.  This greatly reduces
   2167 		 * memory consumption when we receive lots
   2168 		 * of small packets.
   2169 		 */
   2170 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   2171 			struct mbuf *nm;
   2172 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2173 			if (nm == NULL) {
   2174 				ifp->if_ierrors++;
   2175 				m_freem(m);
   2176 				continue;
   2177 			}
   2178 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2179 			nm->m_data += 2;
   2180 			nm->m_pkthdr.len = nm->m_len = len;
   2181 			m_copydata(m, 0, len, mtod(nm, void *));
   2182 			m_freem(m);
   2183 			m = nm;
   2184 		}
   2185 #ifndef __NO_STRICT_ALIGNMENT
   2186 		else {
   2187 			/*
   2188 			 * The DP83820's receive buffers must be 4-byte
   2189 			 * aligned.  But this means that the data after
   2190 			 * the Ethernet header is misaligned.  To compensate,
   2191 			 * we have artificially shortened the buffer size
   2192 			 * in the descriptor, and we do an overlapping copy
   2193 			 * of the data two bytes further in (in the first
   2194 			 * buffer of the chain only).
   2195 			 */
   2196 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2197 			    m->m_len);
   2198 			m->m_data += 2;
   2199 		}
   2200 #endif /* ! __NO_STRICT_ALIGNMENT */
   2201 
   2202 		/*
   2203 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2204 		 * for us.  Associate the tag with the packet.
   2205 		 */
   2206 
   2207 		/*
   2208 		 * Again, byte swapping is tricky. Hardware provided
   2209 		 * the tag in the network byte order, but extsts was
   2210 		 * passed through le32toh() in the meantime. On a
   2211 		 * big-endian machine, we need to swap it again. On a
   2212 		 * little-endian machine, we need to convert from the
   2213 		 * network to host byte order. This means that we must
   2214 		 * swap it in any case, so unconditional swap instead
   2215 		 * of htons() is used.
   2216 		 */
   2217 		if ((extsts & EXTSTS_VPKT) != 0) {
   2218 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2219 			    continue);
   2220 		}
   2221 
   2222 		/*
   2223 		 * Set the incoming checksum information for the
   2224 		 * packet.
   2225 		 */
   2226 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2227 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2228 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2229 			if (extsts & EXTSTS_Rx_IPERR)
   2230 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2231 			if (extsts & EXTSTS_TCPPKT) {
   2232 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2233 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2234 				if (extsts & EXTSTS_Rx_TCPERR)
   2235 					m->m_pkthdr.csum_flags |=
   2236 					    M_CSUM_TCP_UDP_BAD;
   2237 			} else if (extsts & EXTSTS_UDPPKT) {
   2238 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2239 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2240 				if (extsts & EXTSTS_Rx_UDPERR)
   2241 					m->m_pkthdr.csum_flags |=
   2242 					    M_CSUM_TCP_UDP_BAD;
   2243 			}
   2244 		}
   2245 
   2246 		ifp->if_ipackets++;
   2247 		m->m_pkthdr.rcvif = ifp;
   2248 		m->m_pkthdr.len = len;
   2249 
   2250 #if NBPFILTER > 0
   2251 		/*
   2252 		 * Pass this up to any BPF listeners, but only
   2253 		 * pass if up the stack if it's for us.
   2254 		 */
   2255 		if (ifp->if_bpf)
   2256 			bpf_mtap(ifp->if_bpf, m);
   2257 #endif /* NBPFILTER > 0 */
   2258 
   2259 		/* Pass it on. */
   2260 		(*ifp->if_input)(ifp, m);
   2261 	}
   2262 
   2263 	/* Update the receive pointer. */
   2264 	sc->sc_rxptr = i;
   2265 }
   2266 #else /* ! DP83820 */
   2267 /*
   2268  * sip_rxintr:
   2269  *
   2270  *	Helper; handle receive interrupts.
   2271  */
   2272 static void
   2273 SIP_DECL(rxintr)(struct sip_softc *sc)
   2274 {
   2275 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2276 	struct sip_rxsoft *rxs;
   2277 	struct mbuf *m;
   2278 	u_int32_t cmdsts;
   2279 	int i, len;
   2280 
   2281 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   2282 		rxs = &sc->sc_rxsoft[i];
   2283 
   2284 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2285 
   2286 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   2287 
   2288 		/*
   2289 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2290 		 * consumer of the receive ring, so if the bit is clear,
   2291 		 * we have processed all of the packets.
   2292 		 */
   2293 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2294 			/*
   2295 			 * We have processed all of the receive buffers.
   2296 			 */
   2297 			break;
   2298 		}
   2299 
   2300 		/*
   2301 		 * If any collisions were seen on the wire, count one.
   2302 		 */
   2303 		if (cmdsts & CMDSTS_Rx_COL)
   2304 			ifp->if_collisions++;
   2305 
   2306 		/*
   2307 		 * If an error occurred, update stats, clear the status
   2308 		 * word, and leave the packet buffer in place.  It will
   2309 		 * simply be reused the next time the ring comes around.
   2310 		 */
   2311 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2312 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2313 			ifp->if_ierrors++;
   2314 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2315 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2316 				/* Receive overrun handled elsewhere. */
   2317 				printf("%s: receive descriptor error\n",
   2318 				    sc->sc_dev.dv_xname);
   2319 			}
   2320 #define	PRINTERR(bit, str)						\
   2321 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2322 			    (cmdsts & (bit)) != 0)			\
   2323 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2324 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2325 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2326 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2327 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2328 #undef PRINTERR
   2329 			SIP_INIT_RXDESC(sc, i);
   2330 			continue;
   2331 		}
   2332 
   2333 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2334 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2335 
   2336 		/*
   2337 		 * No errors; receive the packet.  Note, the SiS 900
   2338 		 * includes the CRC with every packet.
   2339 		 */
   2340 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   2341 
   2342 #ifdef __NO_STRICT_ALIGNMENT
   2343 		/*
   2344 		 * If the packet is small enough to fit in a
   2345 		 * single header mbuf, allocate one and copy
   2346 		 * the data into it.  This greatly reduces
   2347 		 * memory consumption when we receive lots
   2348 		 * of small packets.
   2349 		 *
   2350 		 * Otherwise, we add a new buffer to the receive
   2351 		 * chain.  If this fails, we drop the packet and
   2352 		 * recycle the old buffer.
   2353 		 */
   2354 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2355 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2356 			if (m == NULL)
   2357 				goto dropit;
   2358 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2359 			memcpy(mtod(m, void *),
   2360 			    mtod(rxs->rxs_mbuf, void *), len);
   2361 			SIP_INIT_RXDESC(sc, i);
   2362 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2363 			    rxs->rxs_dmamap->dm_mapsize,
   2364 			    BUS_DMASYNC_PREREAD);
   2365 		} else {
   2366 			m = rxs->rxs_mbuf;
   2367 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2368  dropit:
   2369 				ifp->if_ierrors++;
   2370 				SIP_INIT_RXDESC(sc, i);
   2371 				bus_dmamap_sync(sc->sc_dmat,
   2372 				    rxs->rxs_dmamap, 0,
   2373 				    rxs->rxs_dmamap->dm_mapsize,
   2374 				    BUS_DMASYNC_PREREAD);
   2375 				continue;
   2376 			}
   2377 		}
   2378 #else
   2379 		/*
   2380 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2381 		 * But this means that the data after the Ethernet header
   2382 		 * is misaligned.  We must allocate a new buffer and
   2383 		 * copy the data, shifted forward 2 bytes.
   2384 		 */
   2385 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2386 		if (m == NULL) {
   2387  dropit:
   2388 			ifp->if_ierrors++;
   2389 			SIP_INIT_RXDESC(sc, i);
   2390 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2391 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2392 			continue;
   2393 		}
   2394 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2395 		if (len > (MHLEN - 2)) {
   2396 			MCLGET(m, M_DONTWAIT);
   2397 			if ((m->m_flags & M_EXT) == 0) {
   2398 				m_freem(m);
   2399 				goto dropit;
   2400 			}
   2401 		}
   2402 		m->m_data += 2;
   2403 
   2404 		/*
   2405 		 * Note that we use clusters for incoming frames, so the
   2406 		 * buffer is virtually contiguous.
   2407 		 */
   2408 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2409 
   2410 		/* Allow the receive descriptor to continue using its mbuf. */
   2411 		SIP_INIT_RXDESC(sc, i);
   2412 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2413 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2414 #endif /* __NO_STRICT_ALIGNMENT */
   2415 
   2416 		ifp->if_ipackets++;
   2417 		m->m_pkthdr.rcvif = ifp;
   2418 		m->m_pkthdr.len = m->m_len = len;
   2419 
   2420 #if NBPFILTER > 0
   2421 		/*
   2422 		 * Pass this up to any BPF listeners, but only
   2423 		 * pass if up the stack if it's for us.
   2424 		 */
   2425 		if (ifp->if_bpf)
   2426 			bpf_mtap(ifp->if_bpf, m);
   2427 #endif /* NBPFILTER > 0 */
   2428 
   2429 		/* Pass it on. */
   2430 		(*ifp->if_input)(ifp, m);
   2431 	}
   2432 
   2433 	/* Update the receive pointer. */
   2434 	sc->sc_rxptr = i;
   2435 }
   2436 #endif /* DP83820 */
   2437 
   2438 /*
   2439  * sip_tick:
   2440  *
   2441  *	One second timer, used to tick the MII.
   2442  */
   2443 static void
   2444 SIP_DECL(tick)(void *arg)
   2445 {
   2446 	struct sip_softc *sc = arg;
   2447 	int s;
   2448 
   2449 	s = splnet();
   2450 #ifdef DP83820
   2451 #ifdef SIP_EVENT_COUNTERS
   2452 	/* Read PAUSE related counts from MIB registers. */
   2453 	sc->sc_ev_rxpause.ev_count +=
   2454 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2455 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2456 	sc->sc_ev_txpause.ev_count +=
   2457 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2458 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2459 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2460 #endif /* SIP_EVENT_COUNTERS */
   2461 #endif /* DP83820 */
   2462 	mii_tick(&sc->sc_mii);
   2463 	splx(s);
   2464 
   2465 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2466 }
   2467 
   2468 /*
   2469  * sip_reset:
   2470  *
   2471  *	Perform a soft reset on the SiS 900.
   2472  */
   2473 static void
   2474 SIP_DECL(reset)(struct sip_softc *sc)
   2475 {
   2476 	bus_space_tag_t st = sc->sc_st;
   2477 	bus_space_handle_t sh = sc->sc_sh;
   2478 	int i;
   2479 
   2480 	bus_space_write_4(st, sh, SIP_IER, 0);
   2481 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2482 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2483 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2484 
   2485 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2486 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2487 			break;
   2488 		delay(2);
   2489 	}
   2490 
   2491 	if (i == SIP_TIMEOUT)
   2492 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2493 
   2494 	delay(1000);
   2495 
   2496 #ifdef DP83820
   2497 	/*
   2498 	 * Set the general purpose I/O bits.  Do it here in case we
   2499 	 * need to have GPIO set up to talk to the media interface.
   2500 	 */
   2501 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2502 	delay(1000);
   2503 #endif /* DP83820 */
   2504 }
   2505 
   2506 /*
   2507  * sip_init:		[ ifnet interface function ]
   2508  *
   2509  *	Initialize the interface.  Must be called at splnet().
   2510  */
   2511 static int
   2512 SIP_DECL(init)(struct ifnet *ifp)
   2513 {
   2514 	struct sip_softc *sc = ifp->if_softc;
   2515 	bus_space_tag_t st = sc->sc_st;
   2516 	bus_space_handle_t sh = sc->sc_sh;
   2517 	struct sip_txsoft *txs;
   2518 	struct sip_rxsoft *rxs;
   2519 	struct sip_desc *sipd;
   2520 #if defined(DP83820)
   2521 	u_int32_t reg;
   2522 #endif
   2523 	int i, error = 0;
   2524 
   2525 	/*
   2526 	 * Cancel any pending I/O.
   2527 	 */
   2528 	SIP_DECL(stop)(ifp, 0);
   2529 
   2530 	/*
   2531 	 * Reset the chip to a known state.
   2532 	 */
   2533 	SIP_DECL(reset)(sc);
   2534 
   2535 #if !defined(DP83820)
   2536 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2537 		/*
   2538 		 * DP83815 manual, page 78:
   2539 		 *    4.4 Recommended Registers Configuration
   2540 		 *    For optimum performance of the DP83815, version noted
   2541 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2542 		 *    modifications must be followed in sequence...
   2543 		 *
   2544 		 * It's not clear if this should be 302h or 203h because that
   2545 		 * chip name is listed as SRR 302h in the description of the
   2546 		 * SRR register.  However, my revision 302h DP83815 on the
   2547 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2548 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2549 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2550 		 * this set or not.  [briggs -- 09 March 2001]
   2551 		 *
   2552 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2553 		 * and that this sets reserved bits in that register.
   2554 		 */
   2555 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2556 
   2557 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2558 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2559 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2560 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2561 
   2562 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2563 	}
   2564 #endif /* ! DP83820 */
   2565 
   2566 	/*
   2567 	 * Initialize the transmit descriptor ring.
   2568 	 */
   2569 	for (i = 0; i < SIP_NTXDESC; i++) {
   2570 		sipd = &sc->sc_txdescs[i];
   2571 		memset(sipd, 0, sizeof(struct sip_desc));
   2572 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2573 	}
   2574 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2575 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2576 	sc->sc_txfree = SIP_NTXDESC;
   2577 	sc->sc_txnext = 0;
   2578 	sc->sc_txwin = 0;
   2579 
   2580 	/*
   2581 	 * Initialize the transmit job descriptors.
   2582 	 */
   2583 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2584 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2585 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2586 		txs = &sc->sc_txsoft[i];
   2587 		txs->txs_mbuf = NULL;
   2588 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2589 	}
   2590 
   2591 	/*
   2592 	 * Initialize the receive descriptor and receive job
   2593 	 * descriptor rings.
   2594 	 */
   2595 	for (i = 0; i < SIP_NRXDESC; i++) {
   2596 		rxs = &sc->sc_rxsoft[i];
   2597 		if (rxs->rxs_mbuf == NULL) {
   2598 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2599 				printf("%s: unable to allocate or map rx "
   2600 				    "buffer %d, error = %d\n",
   2601 				    sc->sc_dev.dv_xname, i, error);
   2602 				/*
   2603 				 * XXX Should attempt to run with fewer receive
   2604 				 * XXX buffers instead of just failing.
   2605 				 */
   2606 				SIP_DECL(rxdrain)(sc);
   2607 				goto out;
   2608 			}
   2609 		} else
   2610 			SIP_INIT_RXDESC(sc, i);
   2611 	}
   2612 	sc->sc_rxptr = 0;
   2613 #ifdef DP83820
   2614 	sc->sc_rxdiscard = 0;
   2615 	SIP_RXCHAIN_RESET(sc);
   2616 #endif /* DP83820 */
   2617 
   2618 	/*
   2619 	 * Set the configuration register; it's already initialized
   2620 	 * in sip_attach().
   2621 	 */
   2622 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2623 
   2624 	/*
   2625 	 * Initialize the prototype TXCFG register.
   2626 	 */
   2627 #if defined(DP83820)
   2628 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2629 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2630 #else
   2631 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2632 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2633 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2634 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2635 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2636 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2637 	} else {
   2638 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2639 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2640 	}
   2641 #endif /* DP83820 */
   2642 
   2643 	sc->sc_txcfg |= TXCFG_ATP |
   2644 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2645 	    sc->sc_tx_drain_thresh;
   2646 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2647 
   2648 	/*
   2649 	 * Initialize the receive drain threshold if we have never
   2650 	 * done so.
   2651 	 */
   2652 	if (sc->sc_rx_drain_thresh == 0) {
   2653 		/*
   2654 		 * XXX This value should be tuned.  This is set to the
   2655 		 * maximum of 248 bytes, and we may be able to improve
   2656 		 * performance by decreasing it (although we should never
   2657 		 * set this value lower than 2; 14 bytes are required to
   2658 		 * filter the packet).
   2659 		 */
   2660 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2661 	}
   2662 
   2663 	/*
   2664 	 * Initialize the prototype RXCFG register.
   2665 	 */
   2666 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2667 #ifdef DP83820
   2668 	/*
   2669 	 * Accept long packets (including FCS) so we can handle
   2670 	 * 802.1q-tagged frames and jumbo frames properly.
   2671 	 */
   2672 	if (ifp->if_mtu > ETHERMTU ||
   2673 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2674 		sc->sc_rxcfg |= RXCFG_ALP;
   2675 
   2676 	/*
   2677 	 * Checksum offloading is disabled if the user selects an MTU
   2678 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2679 	 * evidence that >8109 does not work on some boards, such as the
   2680 	 * Planex GN-1000TE).
   2681 	 */
   2682 	if (ifp->if_mtu > 8109 &&
   2683 	    (ifp->if_capenable &
   2684 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2685 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2686 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2687 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2688 		       "disabled.\n", sc->sc_dev.dv_xname);
   2689 		ifp->if_capenable &=
   2690 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2691 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2692 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2693 		ifp->if_csum_flags_tx = 0;
   2694 		ifp->if_csum_flags_rx = 0;
   2695 	}
   2696 #else
   2697 	/*
   2698 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2699 	 * 802.1q-tagged frames properly.
   2700 	 */
   2701 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2702 		sc->sc_rxcfg |= RXCFG_ALP;
   2703 #endif
   2704 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2705 
   2706 #ifdef DP83820
   2707 	/*
   2708 	 * Initialize the VLAN/IP receive control register.
   2709 	 * We enable checksum computation on all incoming
   2710 	 * packets, and do not reject packets w/ bad checksums.
   2711 	 */
   2712 	reg = 0;
   2713 	if (ifp->if_capenable &
   2714 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2715 		reg |= VRCR_IPEN;
   2716 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2717 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2718 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2719 
   2720 	/*
   2721 	 * Initialize the VLAN/IP transmit control register.
   2722 	 * We enable outgoing checksum computation on a
   2723 	 * per-packet basis.
   2724 	 */
   2725 	reg = 0;
   2726 	if (ifp->if_capenable &
   2727 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2728 		reg |= VTCR_PPCHK;
   2729 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2730 		reg |= VTCR_VPPTI;
   2731 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2732 
   2733 	/*
   2734 	 * If we're using VLANs, initialize the VLAN data register.
   2735 	 * To understand why we bswap the VLAN Ethertype, see section
   2736 	 * 4.2.36 of the DP83820 manual.
   2737 	 */
   2738 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2739 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2740 #endif /* DP83820 */
   2741 
   2742 	/*
   2743 	 * Give the transmit and receive rings to the chip.
   2744 	 */
   2745 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2746 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2747 
   2748 	/*
   2749 	 * Initialize the interrupt mask.
   2750 	 */
   2751 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2752 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2753 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2754 
   2755 	/* Set up the receive filter. */
   2756 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2757 
   2758 #ifdef DP83820
   2759 	/*
   2760 	 * Tune sc_rx_flow_thresh.
   2761 	 * XXX "More than 8KB" is too short for jumbo frames.
   2762 	 * XXX TODO: Threshold value should be user-settable.
   2763 	 */
   2764 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2765 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2766 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2767 #endif
   2768 
   2769 	/*
   2770 	 * Set the current media.  Do this after initializing the prototype
   2771 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2772 	 * control.
   2773 	 */
   2774 	if ((error = ether_mediachange(ifp)) != 0)
   2775 		goto out;
   2776 
   2777 #ifdef DP83820
   2778 	/*
   2779 	 * Set the interrupt hold-off timer to 100us.
   2780 	 */
   2781 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2782 #endif
   2783 
   2784 	/*
   2785 	 * Enable interrupts.
   2786 	 */
   2787 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2788 
   2789 	/*
   2790 	 * Start the transmit and receive processes.
   2791 	 */
   2792 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2793 
   2794 	/*
   2795 	 * Start the one second MII clock.
   2796 	 */
   2797 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2798 
   2799 	/*
   2800 	 * ...all done!
   2801 	 */
   2802 	ifp->if_flags |= IFF_RUNNING;
   2803 	ifp->if_flags &= ~IFF_OACTIVE;
   2804 	sc->sc_if_flags = ifp->if_flags;
   2805 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2806 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2807 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2808 
   2809  out:
   2810 	if (error)
   2811 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2812 	return (error);
   2813 }
   2814 
   2815 /*
   2816  * sip_drain:
   2817  *
   2818  *	Drain the receive queue.
   2819  */
   2820 static void
   2821 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2822 {
   2823 	struct sip_rxsoft *rxs;
   2824 	int i;
   2825 
   2826 	for (i = 0; i < SIP_NRXDESC; i++) {
   2827 		rxs = &sc->sc_rxsoft[i];
   2828 		if (rxs->rxs_mbuf != NULL) {
   2829 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2830 			m_freem(rxs->rxs_mbuf);
   2831 			rxs->rxs_mbuf = NULL;
   2832 		}
   2833 	}
   2834 }
   2835 
   2836 /*
   2837  * sip_stop:		[ ifnet interface function ]
   2838  *
   2839  *	Stop transmission on the interface.
   2840  */
   2841 static void
   2842 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2843 {
   2844 	struct sip_softc *sc = ifp->if_softc;
   2845 	bus_space_tag_t st = sc->sc_st;
   2846 	bus_space_handle_t sh = sc->sc_sh;
   2847 	struct sip_txsoft *txs;
   2848 	u_int32_t cmdsts = 0;		/* DEBUG */
   2849 
   2850 	/*
   2851 	 * Stop the one second clock.
   2852 	 */
   2853 	callout_stop(&sc->sc_tick_ch);
   2854 
   2855 	/* Down the MII. */
   2856 	mii_down(&sc->sc_mii);
   2857 
   2858 	/*
   2859 	 * Disable interrupts.
   2860 	 */
   2861 	bus_space_write_4(st, sh, SIP_IER, 0);
   2862 
   2863 	/*
   2864 	 * Stop receiver and transmitter.
   2865 	 */
   2866 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2867 
   2868 	/*
   2869 	 * Release any queued transmit buffers.
   2870 	 */
   2871 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2872 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2873 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2874 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2875 		     CMDSTS_INTR) == 0)
   2876 			printf("%s: sip_stop: last descriptor does not "
   2877 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2878 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2879 #ifdef DIAGNOSTIC
   2880 		if (txs->txs_mbuf == NULL) {
   2881 			printf("%s: dirty txsoft with no mbuf chain\n",
   2882 			    sc->sc_dev.dv_xname);
   2883 			panic("sip_stop");
   2884 		}
   2885 #endif
   2886 		cmdsts |=		/* DEBUG */
   2887 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2888 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2889 		m_freem(txs->txs_mbuf);
   2890 		txs->txs_mbuf = NULL;
   2891 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2892 	}
   2893 
   2894 	if (disable)
   2895 		SIP_DECL(rxdrain)(sc);
   2896 
   2897 	/*
   2898 	 * Mark the interface down and cancel the watchdog timer.
   2899 	 */
   2900 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2901 	ifp->if_timer = 0;
   2902 
   2903 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2904 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2905 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2906 		    "descriptors\n", sc->sc_dev.dv_xname);
   2907 }
   2908 
   2909 /*
   2910  * sip_read_eeprom:
   2911  *
   2912  *	Read data from the serial EEPROM.
   2913  */
   2914 static void
   2915 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2916     u_int16_t *data)
   2917 {
   2918 	bus_space_tag_t st = sc->sc_st;
   2919 	bus_space_handle_t sh = sc->sc_sh;
   2920 	u_int16_t reg;
   2921 	int i, x;
   2922 
   2923 	for (i = 0; i < wordcnt; i++) {
   2924 		/* Send CHIP SELECT. */
   2925 		reg = EROMAR_EECS;
   2926 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2927 
   2928 		/* Shift in the READ opcode. */
   2929 		for (x = 3; x > 0; x--) {
   2930 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2931 				reg |= EROMAR_EEDI;
   2932 			else
   2933 				reg &= ~EROMAR_EEDI;
   2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2935 			bus_space_write_4(st, sh, SIP_EROMAR,
   2936 			    reg | EROMAR_EESK);
   2937 			delay(4);
   2938 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2939 			delay(4);
   2940 		}
   2941 
   2942 		/* Shift in address. */
   2943 		for (x = 6; x > 0; x--) {
   2944 			if ((word + i) & (1 << (x - 1)))
   2945 				reg |= EROMAR_EEDI;
   2946 			else
   2947 				reg &= ~EROMAR_EEDI;
   2948 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2949 			bus_space_write_4(st, sh, SIP_EROMAR,
   2950 			    reg | EROMAR_EESK);
   2951 			delay(4);
   2952 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2953 			delay(4);
   2954 		}
   2955 
   2956 		/* Shift out data. */
   2957 		reg = EROMAR_EECS;
   2958 		data[i] = 0;
   2959 		for (x = 16; x > 0; x--) {
   2960 			bus_space_write_4(st, sh, SIP_EROMAR,
   2961 			    reg | EROMAR_EESK);
   2962 			delay(4);
   2963 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2964 				data[i] |= (1 << (x - 1));
   2965 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2966 			delay(4);
   2967 		}
   2968 
   2969 		/* Clear CHIP SELECT. */
   2970 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2971 		delay(4);
   2972 	}
   2973 }
   2974 
   2975 /*
   2976  * sip_add_rxbuf:
   2977  *
   2978  *	Add a receive buffer to the indicated descriptor.
   2979  */
   2980 static int
   2981 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2982 {
   2983 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2984 	struct mbuf *m;
   2985 	int error;
   2986 
   2987 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2988 	if (m == NULL)
   2989 		return (ENOBUFS);
   2990 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2991 
   2992 	MCLGET(m, M_DONTWAIT);
   2993 	if ((m->m_flags & M_EXT) == 0) {
   2994 		m_freem(m);
   2995 		return (ENOBUFS);
   2996 	}
   2997 
   2998 #if defined(DP83820)
   2999 	m->m_len = SIP_RXBUF_LEN;
   3000 #endif /* DP83820 */
   3001 
   3002 	if (rxs->rxs_mbuf != NULL)
   3003 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3004 
   3005 	rxs->rxs_mbuf = m;
   3006 
   3007 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3008 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3009 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3010 	if (error) {
   3011 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3012 		    sc->sc_dev.dv_xname, idx, error);
   3013 		panic("sip_add_rxbuf");		/* XXX */
   3014 	}
   3015 
   3016 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3017 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3018 
   3019 	SIP_INIT_RXDESC(sc, idx);
   3020 
   3021 	return (0);
   3022 }
   3023 
   3024 #if !defined(DP83820)
   3025 /*
   3026  * sip_sis900_set_filter:
   3027  *
   3028  *	Set up the receive filter.
   3029  */
   3030 static void
   3031 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   3032 {
   3033 	bus_space_tag_t st = sc->sc_st;
   3034 	bus_space_handle_t sh = sc->sc_sh;
   3035 	struct ethercom *ec = &sc->sc_ethercom;
   3036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3037 	struct ether_multi *enm;
   3038 	const u_int8_t *cp;
   3039 	struct ether_multistep step;
   3040 	u_int32_t crc, mchash[16];
   3041 
   3042 	/*
   3043 	 * Initialize the prototype RFCR.
   3044 	 */
   3045 	sc->sc_rfcr = RFCR_RFEN;
   3046 	if (ifp->if_flags & IFF_BROADCAST)
   3047 		sc->sc_rfcr |= RFCR_AAB;
   3048 	if (ifp->if_flags & IFF_PROMISC) {
   3049 		sc->sc_rfcr |= RFCR_AAP;
   3050 		goto allmulti;
   3051 	}
   3052 
   3053 	/*
   3054 	 * Set up the multicast address filter by passing all multicast
   3055 	 * addresses through a CRC generator, and then using the high-order
   3056 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3057 	 * the lower 16 bits of each 32 bit multicast hash register are
   3058 	 * valid).  The high order bits select the register, while the
   3059 	 * rest of the bits select the bit within the register.
   3060 	 */
   3061 
   3062 	memset(mchash, 0, sizeof(mchash));
   3063 
   3064 	/*
   3065 	 * SiS900 (at least SiS963) requires us to register the address of
   3066 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3067 	 */
   3068 	crc = 0x0ed423f9;
   3069 
   3070 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3071 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3072 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3073 		/* Just want the 8 most significant bits. */
   3074 		crc >>= 24;
   3075 	} else {
   3076 		/* Just want the 7 most significant bits. */
   3077 		crc >>= 25;
   3078 	}
   3079 
   3080 	/* Set the corresponding bit in the hash table. */
   3081 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3082 
   3083 	ETHER_FIRST_MULTI(step, ec, enm);
   3084 	while (enm != NULL) {
   3085 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3086 			/*
   3087 			 * We must listen to a range of multicast addresses.
   3088 			 * For now, just accept all multicasts, rather than
   3089 			 * trying to set only those filter bits needed to match
   3090 			 * the range.  (At this time, the only use of address
   3091 			 * ranges is for IP multicast routing, for which the
   3092 			 * range is big enough to require all bits set.)
   3093 			 */
   3094 			goto allmulti;
   3095 		}
   3096 
   3097 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3098 
   3099 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3100 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3101 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3102 			/* Just want the 8 most significant bits. */
   3103 			crc >>= 24;
   3104 		} else {
   3105 			/* Just want the 7 most significant bits. */
   3106 			crc >>= 25;
   3107 		}
   3108 
   3109 		/* Set the corresponding bit in the hash table. */
   3110 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3111 
   3112 		ETHER_NEXT_MULTI(step, enm);
   3113 	}
   3114 
   3115 	ifp->if_flags &= ~IFF_ALLMULTI;
   3116 	goto setit;
   3117 
   3118  allmulti:
   3119 	ifp->if_flags |= IFF_ALLMULTI;
   3120 	sc->sc_rfcr |= RFCR_AAM;
   3121 
   3122  setit:
   3123 #define	FILTER_EMIT(addr, data)						\
   3124 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3125 	delay(1);							\
   3126 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3127 	delay(1)
   3128 
   3129 	/*
   3130 	 * Disable receive filter, and program the node address.
   3131 	 */
   3132 	cp = CLLADDR(ifp->if_sadl);
   3133 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3134 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3135 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3136 
   3137 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3138 		/*
   3139 		 * Program the multicast hash table.
   3140 		 */
   3141 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3142 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3143 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3144 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3145 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3146 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3147 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3148 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3149 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3150 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3151 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3152 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3153 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3154 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3155 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3156 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3157 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3158 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3159 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3160 		}
   3161 	}
   3162 #undef FILTER_EMIT
   3163 
   3164 	/*
   3165 	 * Re-enable the receiver filter.
   3166 	 */
   3167 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3168 }
   3169 #endif /* ! DP83820 */
   3170 
   3171 /*
   3172  * sip_dp83815_set_filter:
   3173  *
   3174  *	Set up the receive filter.
   3175  */
   3176 static void
   3177 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   3178 {
   3179 	bus_space_tag_t st = sc->sc_st;
   3180 	bus_space_handle_t sh = sc->sc_sh;
   3181 	struct ethercom *ec = &sc->sc_ethercom;
   3182 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3183 	struct ether_multi *enm;
   3184 	const u_int8_t *cp;
   3185 	struct ether_multistep step;
   3186 	u_int32_t crc, hash, slot, bit;
   3187 #ifdef DP83820
   3188 #define	MCHASH_NWORDS	128
   3189 #else
   3190 #define	MCHASH_NWORDS	32
   3191 #endif /* DP83820 */
   3192 	u_int16_t mchash[MCHASH_NWORDS];
   3193 	int i;
   3194 
   3195 	/*
   3196 	 * Initialize the prototype RFCR.
   3197 	 * Enable the receive filter, and accept on
   3198 	 *    Perfect (destination address) Match
   3199 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3200 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3201 	 *    IFF_ALLMULTI and accept all multicast, too).
   3202 	 */
   3203 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3204 	if (ifp->if_flags & IFF_BROADCAST)
   3205 		sc->sc_rfcr |= RFCR_AAB;
   3206 	if (ifp->if_flags & IFF_PROMISC) {
   3207 		sc->sc_rfcr |= RFCR_AAP;
   3208 		goto allmulti;
   3209 	}
   3210 
   3211 #ifdef DP83820
   3212 	/*
   3213 	 * Set up the DP83820 multicast address filter by passing all multicast
   3214 	 * addresses through a CRC generator, and then using the high-order
   3215 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   3216 	 * high-order 7 bits select the slot, while the low-order 4 bits
   3217 	 * select the bit within the slot.  Note that only the low 16-bits
   3218 	 * of each filter word are used, and there are 128 filter words.
   3219 	 */
   3220 #else
   3221 	/*
   3222 	 * Set up the DP83815 multicast address filter by passing all multicast
   3223 	 * addresses through a CRC generator, and then using the high-order
   3224 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   3225 	 * high-order 5 bits select the slot, while the low-order 4 bits
   3226 	 * select the bit within the slot.  Note that only the low 16-bits
   3227 	 * of each filter word are used, and there are 32 filter words.
   3228 	 */
   3229 #endif /* DP83820 */
   3230 
   3231 	memset(mchash, 0, sizeof(mchash));
   3232 
   3233 	ifp->if_flags &= ~IFF_ALLMULTI;
   3234 	ETHER_FIRST_MULTI(step, ec, enm);
   3235 	if (enm == NULL)
   3236 		goto setit;
   3237 	while (enm != NULL) {
   3238 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3239 			/*
   3240 			 * We must listen to a range of multicast addresses.
   3241 			 * For now, just accept all multicasts, rather than
   3242 			 * trying to set only those filter bits needed to match
   3243 			 * the range.  (At this time, the only use of address
   3244 			 * ranges is for IP multicast routing, for which the
   3245 			 * range is big enough to require all bits set.)
   3246 			 */
   3247 			goto allmulti;
   3248 		}
   3249 
   3250 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3251 
   3252 #ifdef DP83820
   3253 		/* Just want the 11 most significant bits. */
   3254 		hash = crc >> 21;
   3255 #else
   3256 		/* Just want the 9 most significant bits. */
   3257 		hash = crc >> 23;
   3258 #endif /* DP83820 */
   3259 
   3260 		slot = hash >> 4;
   3261 		bit = hash & 0xf;
   3262 
   3263 		/* Set the corresponding bit in the hash table. */
   3264 		mchash[slot] |= 1 << bit;
   3265 
   3266 		ETHER_NEXT_MULTI(step, enm);
   3267 	}
   3268 	sc->sc_rfcr |= RFCR_MHEN;
   3269 	goto setit;
   3270 
   3271  allmulti:
   3272 	ifp->if_flags |= IFF_ALLMULTI;
   3273 	sc->sc_rfcr |= RFCR_AAM;
   3274 
   3275  setit:
   3276 #define	FILTER_EMIT(addr, data)						\
   3277 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3278 	delay(1);							\
   3279 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3280 	delay(1)
   3281 
   3282 	/*
   3283 	 * Disable receive filter, and program the node address.
   3284 	 */
   3285 	cp = CLLADDR(ifp->if_sadl);
   3286 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3287 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3288 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3289 
   3290 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3291 		/*
   3292 		 * Program the multicast hash table.
   3293 		 */
   3294 		for (i = 0; i < MCHASH_NWORDS; i++) {
   3295 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   3296 			    mchash[i]);
   3297 		}
   3298 	}
   3299 #undef FILTER_EMIT
   3300 #undef MCHASH_NWORDS
   3301 
   3302 	/*
   3303 	 * Re-enable the receiver filter.
   3304 	 */
   3305 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3306 }
   3307 
   3308 #if defined(DP83820)
   3309 /*
   3310  * sip_dp83820_mii_readreg:	[mii interface function]
   3311  *
   3312  *	Read a PHY register on the MII of the DP83820.
   3313  */
   3314 static int
   3315 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   3316 {
   3317 	struct sip_softc *sc = (void *) self;
   3318 
   3319 	if (sc->sc_cfg & CFG_TBI_EN) {
   3320 		bus_addr_t tbireg;
   3321 		int rv;
   3322 
   3323 		if (phy != 0)
   3324 			return (0);
   3325 
   3326 		switch (reg) {
   3327 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3328 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3329 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3330 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3331 		case MII_ANER:		tbireg = SIP_TANER; break;
   3332 		case MII_EXTSR:
   3333 			/*
   3334 			 * Don't even bother reading the TESR register.
   3335 			 * The manual documents that the device has
   3336 			 * 1000baseX full/half capability, but the
   3337 			 * register itself seems read back 0 on some
   3338 			 * boards.  Just hard-code the result.
   3339 			 */
   3340 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3341 
   3342 		default:
   3343 			return (0);
   3344 		}
   3345 
   3346 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3347 		if (tbireg == SIP_TBISR) {
   3348 			/* LINK and ACOMP are switched! */
   3349 			int val = rv;
   3350 
   3351 			rv = 0;
   3352 			if (val & TBISR_MR_LINK_STATUS)
   3353 				rv |= BMSR_LINK;
   3354 			if (val & TBISR_MR_AN_COMPLETE)
   3355 				rv |= BMSR_ACOMP;
   3356 
   3357 			/*
   3358 			 * The manual claims this register reads back 0
   3359 			 * on hard and soft reset.  But we want to let
   3360 			 * the gentbi driver know that we support auto-
   3361 			 * negotiation, so hard-code this bit in the
   3362 			 * result.
   3363 			 */
   3364 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3365 		}
   3366 
   3367 		return (rv);
   3368 	}
   3369 
   3370 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3371 	    phy, reg));
   3372 }
   3373 
   3374 /*
   3375  * sip_dp83820_mii_writereg:	[mii interface function]
   3376  *
   3377  *	Write a PHY register on the MII of the DP83820.
   3378  */
   3379 static void
   3380 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   3381 {
   3382 	struct sip_softc *sc = (void *) self;
   3383 
   3384 	if (sc->sc_cfg & CFG_TBI_EN) {
   3385 		bus_addr_t tbireg;
   3386 
   3387 		if (phy != 0)
   3388 			return;
   3389 
   3390 		switch (reg) {
   3391 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3392 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3393 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3394 		default:
   3395 			return;
   3396 		}
   3397 
   3398 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3399 		return;
   3400 	}
   3401 
   3402 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3403 	    phy, reg, val);
   3404 }
   3405 
   3406 /*
   3407  * sip_dp83820_mii_statchg:	[mii interface function]
   3408  *
   3409  *	Callback from MII layer when media changes.
   3410  */
   3411 static void
   3412 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   3413 {
   3414 	struct sip_softc *sc = (struct sip_softc *) self;
   3415 	struct mii_data *mii = &sc->sc_mii;
   3416 	u_int32_t cfg, pcr;
   3417 
   3418 	/*
   3419 	 * Get flow control negotiation result.
   3420 	 */
   3421 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3422 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3423 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3424 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3425 	}
   3426 
   3427 	/*
   3428 	 * Update TXCFG for full-duplex operation.
   3429 	 */
   3430 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3431 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3432 	else
   3433 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3434 
   3435 	/*
   3436 	 * Update RXCFG for full-duplex or loopback.
   3437 	 */
   3438 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3439 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3440 		sc->sc_rxcfg |= RXCFG_ATX;
   3441 	else
   3442 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3443 
   3444 	/*
   3445 	 * Update CFG for MII/GMII.
   3446 	 */
   3447 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3448 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3449 	else
   3450 		cfg = sc->sc_cfg;
   3451 
   3452 	/*
   3453 	 * 802.3x flow control.
   3454 	 */
   3455 	pcr = 0;
   3456 	if (sc->sc_flowflags & IFM_FLOW) {
   3457 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3458 			pcr |= sc->sc_rx_flow_thresh;
   3459 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3460 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3461 	}
   3462 
   3463 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3464 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3465 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3466 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3467 }
   3468 #endif /* ! DP83820 */
   3469 
   3470 /*
   3471  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3472  *
   3473  *	Read the MII serial port for the MII bit-bang module.
   3474  */
   3475 static u_int32_t
   3476 SIP_DECL(mii_bitbang_read)(struct device *self)
   3477 {
   3478 	struct sip_softc *sc = (void *) self;
   3479 
   3480 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3481 }
   3482 
   3483 /*
   3484  * sip_mii_bitbang_write: [mii big-bang interface function]
   3485  *
   3486  *	Write the MII serial port for the MII bit-bang module.
   3487  */
   3488 static void
   3489 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
   3490 {
   3491 	struct sip_softc *sc = (void *) self;
   3492 
   3493 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3494 }
   3495 
   3496 #ifndef DP83820
   3497 /*
   3498  * sip_sis900_mii_readreg:	[mii interface function]
   3499  *
   3500  *	Read a PHY register on the MII.
   3501  */
   3502 static int
   3503 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3504 {
   3505 	struct sip_softc *sc = (struct sip_softc *) self;
   3506 	u_int32_t enphy;
   3507 
   3508 	/*
   3509 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3510 	 * operations.
   3511 	 */
   3512 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3513 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3514 		    phy, reg));
   3515 
   3516 #ifndef SIS900_MII_RESTRICT
   3517 	/*
   3518 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3519 	 * MII address 0.
   3520 	 */
   3521 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3522 		return (0);
   3523 #endif
   3524 
   3525 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3526 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3527 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3528 	do {
   3529 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3530 	} while (enphy & ENPHY_ACCESS);
   3531 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3532 }
   3533 
   3534 /*
   3535  * sip_sis900_mii_writereg:	[mii interface function]
   3536  *
   3537  *	Write a PHY register on the MII.
   3538  */
   3539 static void
   3540 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3541 {
   3542 	struct sip_softc *sc = (struct sip_softc *) self;
   3543 	u_int32_t enphy;
   3544 
   3545 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3546 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3547 		    phy, reg, val);
   3548 		return;
   3549 	}
   3550 
   3551 #ifndef SIS900_MII_RESTRICT
   3552 	/*
   3553 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3554 	 * MII address 0.
   3555 	 */
   3556 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3557 		return;
   3558 #endif
   3559 
   3560 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3561 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3562 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3563 	do {
   3564 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3565 	} while (enphy & ENPHY_ACCESS);
   3566 }
   3567 
   3568 /*
   3569  * sip_sis900_mii_statchg:	[mii interface function]
   3570  *
   3571  *	Callback from MII layer when media changes.
   3572  */
   3573 static void
   3574 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3575 {
   3576 	struct sip_softc *sc = (struct sip_softc *) self;
   3577 	struct mii_data *mii = &sc->sc_mii;
   3578 	u_int32_t flowctl;
   3579 
   3580 	/*
   3581 	 * Get flow control negotiation result.
   3582 	 */
   3583 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3584 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3585 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3586 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3587 	}
   3588 
   3589 	/*
   3590 	 * Update TXCFG for full-duplex operation.
   3591 	 */
   3592 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3593 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3594 	else
   3595 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3596 
   3597 	/*
   3598 	 * Update RXCFG for full-duplex or loopback.
   3599 	 */
   3600 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3601 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3602 		sc->sc_rxcfg |= RXCFG_ATX;
   3603 	else
   3604 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3605 
   3606 	/*
   3607 	 * Update IMR for use of 802.3x flow control.
   3608 	 */
   3609 	if (sc->sc_flowflags & IFM_FLOW) {
   3610 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3611 		flowctl = FLOWCTL_FLOWEN;
   3612 	} else {
   3613 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3614 		flowctl = 0;
   3615 	}
   3616 
   3617 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3618 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3619 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3620 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3621 }
   3622 
   3623 /*
   3624  * sip_dp83815_mii_readreg:	[mii interface function]
   3625  *
   3626  *	Read a PHY register on the MII.
   3627  */
   3628 static int
   3629 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3630 {
   3631 	struct sip_softc *sc = (struct sip_softc *) self;
   3632 	u_int32_t val;
   3633 
   3634 	/*
   3635 	 * The DP83815 only has an internal PHY.  Only allow
   3636 	 * MII address 0.
   3637 	 */
   3638 	if (phy != 0)
   3639 		return (0);
   3640 
   3641 	/*
   3642 	 * Apparently, after a reset, the DP83815 can take a while
   3643 	 * to respond.  During this recovery period, the BMSR returns
   3644 	 * a value of 0.  Catch this -- it's not supposed to happen
   3645 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3646 	 * PHY to come back to life.
   3647 	 *
   3648 	 * This works out because the BMSR is the first register
   3649 	 * read during the PHY probe process.
   3650 	 */
   3651 	do {
   3652 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3653 	} while (reg == MII_BMSR && val == 0);
   3654 
   3655 	return (val & 0xffff);
   3656 }
   3657 
   3658 /*
   3659  * sip_dp83815_mii_writereg:	[mii interface function]
   3660  *
   3661  *	Write a PHY register to the MII.
   3662  */
   3663 static void
   3664 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3665 {
   3666 	struct sip_softc *sc = (struct sip_softc *) self;
   3667 
   3668 	/*
   3669 	 * The DP83815 only has an internal PHY.  Only allow
   3670 	 * MII address 0.
   3671 	 */
   3672 	if (phy != 0)
   3673 		return;
   3674 
   3675 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3676 }
   3677 
   3678 /*
   3679  * sip_dp83815_mii_statchg:	[mii interface function]
   3680  *
   3681  *	Callback from MII layer when media changes.
   3682  */
   3683 static void
   3684 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3685 {
   3686 	struct sip_softc *sc = (struct sip_softc *) self;
   3687 
   3688 	/*
   3689 	 * Update TXCFG for full-duplex operation.
   3690 	 */
   3691 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3692 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3693 	else
   3694 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3695 
   3696 	/*
   3697 	 * Update RXCFG for full-duplex or loopback.
   3698 	 */
   3699 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3700 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3701 		sc->sc_rxcfg |= RXCFG_ATX;
   3702 	else
   3703 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3704 
   3705 	/*
   3706 	 * XXX 802.3x flow control.
   3707 	 */
   3708 
   3709 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3710 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3711 
   3712 	/*
   3713 	 * Some DP83815s experience problems when used with short
   3714 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3715 	 * sequence adjusts the DSP's signal attenuation to fix the
   3716 	 * problem.
   3717 	 */
   3718 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3719 		uint32_t reg;
   3720 
   3721 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3722 
   3723 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3724 		reg &= 0x0fff;
   3725 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3726 		delay(100);
   3727 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3728 		reg &= 0x00ff;
   3729 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3730 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3731 			    0x00e8);
   3732 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3733 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3734 			    reg | 0x20);
   3735 		}
   3736 
   3737 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3738 	}
   3739 }
   3740 #endif /* DP83820 */
   3741 
   3742 #if defined(DP83820)
   3743 static void
   3744 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3745     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3746 {
   3747 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3748 	u_int8_t cksum, *e, match;
   3749 	int i;
   3750 
   3751 	/*
   3752 	 * EEPROM data format for the DP83820 can be found in
   3753 	 * the DP83820 manual, section 4.2.4.
   3754 	 */
   3755 
   3756 	SIP_DECL(read_eeprom)(sc, 0,
   3757 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3758 
   3759 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3760 	match = ~(match - 1);
   3761 
   3762 	cksum = 0x55;
   3763 	e = (u_int8_t *) eeprom_data;
   3764 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3765 		cksum += *e++;
   3766 
   3767 	if (cksum != match)
   3768 		printf("%s: Checksum (%x) mismatch (%x)",
   3769 		    sc->sc_dev.dv_xname, cksum, match);
   3770 
   3771 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3772 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3773 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3774 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3775 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3776 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3777 }
   3778 #else /* ! DP83820 */
   3779 static void
   3780 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3781 {
   3782 	int i;
   3783 
   3784 	/*
   3785 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3786 	 * a reason, but I don't know it.
   3787 	 */
   3788 	for (i = 0; i < 10; i++)
   3789 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3790 }
   3791 
   3792 static void
   3793 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3794     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3795 {
   3796 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3797 
   3798 	switch (sc->sc_rev) {
   3799 	case SIS_REV_630S:
   3800 	case SIS_REV_630E:
   3801 	case SIS_REV_630EA1:
   3802 	case SIS_REV_630ET:
   3803 	case SIS_REV_635:
   3804 		/*
   3805 		 * The MAC address for the on-board Ethernet of
   3806 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3807 		 * the chip into re-loading it from NVRAM, and
   3808 		 * read the MAC address out of the filter registers.
   3809 		 */
   3810 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3811 
   3812 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3813 		    RFCR_RFADDR_NODE0);
   3814 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3815 		    0xffff;
   3816 
   3817 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3818 		    RFCR_RFADDR_NODE2);
   3819 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3820 		    0xffff;
   3821 
   3822 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3823 		    RFCR_RFADDR_NODE4);
   3824 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3825 		    0xffff;
   3826 		break;
   3827 
   3828 	case SIS_REV_960:
   3829 		{
   3830 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3831 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3832 
   3833 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3834 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3835 
   3836 			int waittime, i;
   3837 
   3838 			/* Allow to read EEPROM from LAN. It is shared
   3839 			 * between a 1394 controller and the NIC and each
   3840 			 * time we access it, we need to set SIS_EECMD_REQ.
   3841 			 */
   3842 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3843 
   3844 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3845 				/* Force EEPROM to idle state. */
   3846 
   3847 				/*
   3848 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3849 				 */
   3850 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3851 				SIP_DECL(sis900_eeprom_delay)(sc);
   3852 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3853 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3854 					SIP_DECL(sis900_eeprom_delay)(sc);
   3855 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3856 					SIP_DECL(sis900_eeprom_delay)(sc);
   3857 				}
   3858 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3859 				SIP_DECL(sis900_eeprom_delay)(sc);
   3860 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3861 
   3862 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3863 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3864 					    sizeof(myea) / sizeof(myea[0]), myea);
   3865 					break;
   3866 				}
   3867 				DELAY(1);
   3868 			}
   3869 
   3870 			/*
   3871 			 * Set SIS_EECTL_CLK to high, so a other master
   3872 			 * can operate on the i2c bus.
   3873 			 */
   3874 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3875 
   3876 			/* Refuse EEPROM access by LAN */
   3877 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3878 		} break;
   3879 
   3880 	default:
   3881 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3882 		    sizeof(myea) / sizeof(myea[0]), myea);
   3883 	}
   3884 
   3885 	enaddr[0] = myea[0] & 0xff;
   3886 	enaddr[1] = myea[0] >> 8;
   3887 	enaddr[2] = myea[1] & 0xff;
   3888 	enaddr[3] = myea[1] >> 8;
   3889 	enaddr[4] = myea[2] & 0xff;
   3890 	enaddr[5] = myea[2] >> 8;
   3891 }
   3892 
   3893 /* Table and macro to bit-reverse an octet. */
   3894 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3895 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3896 
   3897 static void
   3898 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3899     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3900 {
   3901 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3902 	u_int8_t cksum, *e, match;
   3903 	int i;
   3904 
   3905 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3906 	    sizeof(eeprom_data[0]), eeprom_data);
   3907 
   3908 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3909 	match = ~(match - 1);
   3910 
   3911 	cksum = 0x55;
   3912 	e = (u_int8_t *) eeprom_data;
   3913 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3914 		cksum += *e++;
   3915 	}
   3916 	if (cksum != match) {
   3917 		printf("%s: Checksum (%x) mismatch (%x)",
   3918 		    sc->sc_dev.dv_xname, cksum, match);
   3919 	}
   3920 
   3921 	/*
   3922 	 * Unrolled because it makes slightly more sense this way.
   3923 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3924 	 * through bit 15 of word 8.
   3925 	 */
   3926 	ea = &eeprom_data[6];
   3927 	enaddr[0] = ((*ea & 0x1) << 7);
   3928 	ea++;
   3929 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3930 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3931 	enaddr[2] = ((*ea & 0x1) << 7);
   3932 	ea++;
   3933 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3934 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3935 	enaddr[4] = ((*ea & 0x1) << 7);
   3936 	ea++;
   3937 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3938 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3939 
   3940 	/*
   3941 	 * In case that's not weird enough, we also need to reverse
   3942 	 * the bits in each byte.  This all actually makes more sense
   3943 	 * if you think about the EEPROM storage as an array of bits
   3944 	 * being shifted into bytes, but that's not how we're looking
   3945 	 * at it here...
   3946 	 */
   3947 	for (i = 0; i < 6 ;i++)
   3948 		enaddr[i] = bbr(enaddr[i]);
   3949 }
   3950 #endif /* DP83820 */
   3951 
   3952 /*
   3953  * sip_mediastatus:	[ifmedia interface function]
   3954  *
   3955  *	Get the current interface media status.
   3956  */
   3957 static void
   3958 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3959 {
   3960 	struct sip_softc *sc = ifp->if_softc;
   3961 
   3962 	ether_mediastatus(ifp, ifmr);
   3963 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3964 			   sc->sc_flowflags;
   3965 }
   3966