if_sip.c revision 1.115.8.2 1 /* $NetBSD: if_sip.c,v 1.115.8.2 2008/01/10 23:44:24 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.115.8.2 2008/01/10 23:44:24 bouyer Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 /*
130 * Transmit descriptor list size. This is arbitrary, but allocate
131 * enough descriptors for 128 pending transmissions, and 8 segments
132 * per packet (64 for DP83820 for jumbo frames).
133 *
134 * This MUST work out to a power of 2.
135 */
136 #define GSIP_NTXSEGS_ALLOC 16
137 #define SIP_NTXSEGS_ALLOC 8
138
139 #define SIP_TXQUEUELEN 256
140 #define MAX_SIP_NTXDESC \
141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer per incoming
145 * packet, so this logic is a little simpler.
146 *
147 * Actually, on the DP83820, we allow the packet to consume more than
148 * one buffer, in order to support jumbo Ethernet frames. In that
149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
151 * so we'd better be quick about handling receive interrupts.
152 */
153 #define GSIP_NRXDESC 256
154 #define SIP_NRXDESC 128
155
156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
157
158 /*
159 * Control structures are DMA'd to the SiS900 chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct sip_control_data {
164 /*
165 * The transmit descriptors.
166 */
167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168
169 /*
170 * The receive descriptors.
171 */
172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174
175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct sip_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191
192 /*
193 * Software state for receive jobs.
194 */
195 struct sip_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 enum sip_attach_stage {
201 SIP_ATTACH_FIN = 0
202 , SIP_ATTACH_CREATE_RXMAP
203 , SIP_ATTACH_CREATE_TXMAP
204 , SIP_ATTACH_LOAD_MAP
205 , SIP_ATTACH_CREATE_MAP
206 , SIP_ATTACH_MAP_MEM
207 , SIP_ATTACH_ALLOC_MEM
208 , SIP_ATTACH_INTR
209 , SIP_ATTACH_MAP
210 };
211
212 /*
213 * Software state per device.
214 */
215 struct sip_softc {
216 struct device sc_dev; /* generic device information */
217 bus_space_tag_t sc_st; /* bus space tag */
218 bus_space_handle_t sc_sh; /* bus space handle */
219 bus_size_t sc_sz; /* bus space size */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 pci_chipset_tag_t sc_pc;
222 bus_dma_segment_t sc_seg;
223 struct ethercom sc_ethercom; /* ethernet common data */
224
225 const struct sip_product *sc_model; /* which model are we? */
226 int sc_gigabit; /* 1: 83820, 0: other */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 callout_t sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
262 struct evcnt sc_ev_rxpause; /* PAUSE received */
263 /* DP83820 only */
264 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
265 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
266 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
267 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
268 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
269 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
270 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
271 #endif /* SIP_EVENT_COUNTERS */
272
273 u_int32_t sc_txcfg; /* prototype TXCFG register */
274 u_int32_t sc_rxcfg; /* prototype RXCFG register */
275 u_int32_t sc_imr; /* prototype IMR register */
276 u_int32_t sc_rfcr; /* prototype RFCR register */
277
278 u_int32_t sc_cfg; /* prototype CFG register */
279
280 u_int32_t sc_gpior; /* prototype GPIOR register */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flowflags; /* 802.3x flow control flags */
288 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
289 int sc_paused; /* paused indication */
290
291 int sc_txfree; /* number of free Tx descriptors */
292 int sc_txnext; /* next ready Tx descriptor */
293 int sc_txwin; /* Tx descriptors since last intr */
294
295 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
296 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
297
298 /* values of interface state at last init */
299 struct {
300 /* if_capenable */
301 uint64_t if_capenable;
302 /* ec_capenable */
303 int ec_capenable;
304 /* VLAN_ATTACHED */
305 int is_vlan;
306 } sc_prev;
307
308 short sc_if_flags;
309
310 int sc_rxptr; /* next ready Rx descriptor/descsoft */
311 int sc_rxdiscard;
312 int sc_rxlen;
313 struct mbuf *sc_rxhead;
314 struct mbuf *sc_rxtail;
315 struct mbuf **sc_rxtailp;
316
317 int sc_ntxdesc;
318 int sc_ntxdesc_mask;
319
320 int sc_nrxdesc_mask;
321
322 const struct sip_parm {
323 const struct sip_regs {
324 int r_rxcfg;
325 int r_txcfg;
326 } p_regs;
327
328 const struct sip_bits {
329 uint32_t b_txcfg_mxdma_8;
330 uint32_t b_txcfg_mxdma_16;
331 uint32_t b_txcfg_mxdma_32;
332 uint32_t b_txcfg_mxdma_64;
333 uint32_t b_txcfg_mxdma_128;
334 uint32_t b_txcfg_mxdma_256;
335 uint32_t b_txcfg_mxdma_512;
336 uint32_t b_txcfg_flth_mask;
337 uint32_t b_txcfg_drth_mask;
338
339 uint32_t b_rxcfg_mxdma_8;
340 uint32_t b_rxcfg_mxdma_16;
341 uint32_t b_rxcfg_mxdma_32;
342 uint32_t b_rxcfg_mxdma_64;
343 uint32_t b_rxcfg_mxdma_128;
344 uint32_t b_rxcfg_mxdma_256;
345 uint32_t b_rxcfg_mxdma_512;
346
347 uint32_t b_isr_txrcmp;
348 uint32_t b_isr_rxrcmp;
349 uint32_t b_isr_dperr;
350 uint32_t b_isr_sserr;
351 uint32_t b_isr_rmabt;
352 uint32_t b_isr_rtabt;
353
354 uint32_t b_cmdsts_size_mask;
355 } p_bits;
356 int p_filtmem;
357 int p_rxbuf_len;
358 bus_size_t p_tx_dmamap_size;
359 int p_ntxsegs;
360 int p_ntxsegs_alloc;
361 int p_nrxdesc;
362 } *sc_parm;
363
364 void (*sc_rxintr)(struct sip_softc *);
365
366 #if NRND > 0
367 rndsource_element_t rnd_source; /* random source */
368 #endif
369 };
370
371 #define sc_bits sc_parm->p_bits
372 #define sc_regs sc_parm->p_regs
373
374 static const struct sip_parm sip_parm = {
375 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
376 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
377 , .p_tx_dmamap_size = MCLBYTES
378 , .p_ntxsegs = 16
379 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
380 , .p_nrxdesc = SIP_NRXDESC
381 , .p_bits = {
382 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
383 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
384 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
385 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
386 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
387 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
388 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
389 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
390 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
391
392 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
393 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
394 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
395 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
396 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
397 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
398 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
399
400 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
401 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
402 , .b_isr_dperr = 0x00800000 /* detected parity error */
403 , .b_isr_sserr = 0x00400000 /* signalled system error */
404 , .b_isr_rmabt = 0x00200000 /* received master abort */
405 , .b_isr_rtabt = 0x00100000 /* received target abort */
406 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
407 }
408 , .p_regs = {
409 .r_rxcfg = OTHER_SIP_RXCFG,
410 .r_txcfg = OTHER_SIP_TXCFG
411 }
412 }, gsip_parm = {
413 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
414 , .p_rxbuf_len = MCLBYTES - 8
415 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
416 , .p_ntxsegs = 64
417 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
418 , .p_nrxdesc = GSIP_NRXDESC
419 , .p_bits = {
420 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
421 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
422 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
423 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
424 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
425 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
426 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
427 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
428 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
429
430 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
431 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
432 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
433 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
434 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
435 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
436 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
437
438 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
439 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
440 , .b_isr_dperr = 0x00100000 /* detected parity error */
441 , .b_isr_sserr = 0x00080000 /* signalled system error */
442 , .b_isr_rmabt = 0x00040000 /* received master abort */
443 , .b_isr_rtabt = 0x00020000 /* received target abort */
444 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
445 }
446 , .p_regs = {
447 .r_rxcfg = DP83820_SIP_RXCFG,
448 .r_txcfg = DP83820_SIP_TXCFG
449 }
450 };
451
452 static inline int
453 sip_nexttx(const struct sip_softc *sc, int x)
454 {
455 return (x + 1) & sc->sc_ntxdesc_mask;
456 }
457
458 static inline int
459 sip_nextrx(const struct sip_softc *sc, int x)
460 {
461 return (x + 1) & sc->sc_nrxdesc_mask;
462 }
463
464 /* 83820 only */
465 static inline void
466 sip_rxchain_reset(struct sip_softc *sc)
467 {
468 sc->sc_rxtailp = &sc->sc_rxhead;
469 *sc->sc_rxtailp = NULL;
470 sc->sc_rxlen = 0;
471 }
472
473 /* 83820 only */
474 static inline void
475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
476 {
477 *sc->sc_rxtailp = sc->sc_rxtail = m;
478 sc->sc_rxtailp = &m->m_next;
479 }
480
481 #ifdef SIP_EVENT_COUNTERS
482 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
483 #else
484 #define SIP_EVCNT_INCR(ev) /* nothing */
485 #endif
486
487 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
488 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
489
490 static inline void
491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
492 {
493 int x, n;
494
495 x = x0;
496 n = n0;
497
498 /* If it will wrap around, sync to the end of the ring. */
499 if (x + n > sc->sc_ntxdesc) {
500 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
501 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
502 (sc->sc_ntxdesc - x), ops);
503 n -= (sc->sc_ntxdesc - x);
504 x = 0;
505 }
506
507 /* Now sync whatever is left. */
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
510 }
511
512 static inline void
513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
514 {
515 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
516 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
517 }
518
519 #if 0
520 #ifdef DP83820
521 u_int32_t sipd_bufptr; /* pointer to DMA segment */
522 u_int32_t sipd_cmdsts; /* command/status word */
523 #else
524 u_int32_t sipd_cmdsts; /* command/status word */
525 u_int32_t sipd_bufptr; /* pointer to DMA segment */
526 #endif /* DP83820 */
527 #endif /* 0 */
528
529 static inline volatile uint32_t *
530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
531 {
532 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
533 }
534
535 static inline volatile uint32_t *
536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
537 {
538 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
539 }
540
541 static inline void
542 sip_init_rxdesc(struct sip_softc *sc, int x)
543 {
544 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
545 struct sip_desc *sipd = &sc->sc_rxdescs[x];
546
547 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
548 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
549 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
550 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
551 sipd->sipd_extsts = 0;
552 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 }
554
555 #define SIP_CHIP_VERS(sc, v, p, r) \
556 ((sc)->sc_model->sip_vendor == (v) && \
557 (sc)->sc_model->sip_product == (p) && \
558 (sc)->sc_rev == (r))
559
560 #define SIP_CHIP_MODEL(sc, v, p) \
561 ((sc)->sc_model->sip_vendor == (v) && \
562 (sc)->sc_model->sip_product == (p))
563
564 #define SIP_SIS900_REV(sc, rev) \
565 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
566
567 #define SIP_TIMEOUT 1000
568
569 static void sipcom_start(struct ifnet *);
570 static void sipcom_watchdog(struct ifnet *);
571 static int sipcom_ioctl(struct ifnet *, u_long, void *);
572 static int sipcom_init(struct ifnet *);
573 static void sipcom_stop(struct ifnet *, int);
574
575 static bool sipcom_reset(struct sip_softc *);
576 static void sipcom_rxdrain(struct sip_softc *);
577 static int sipcom_add_rxbuf(struct sip_softc *, int);
578 static void sipcom_read_eeprom(struct sip_softc *, int, int,
579 u_int16_t *);
580 static void sipcom_tick(void *);
581
582 static void sipcom_sis900_set_filter(struct sip_softc *);
583 static void sipcom_dp83815_set_filter(struct sip_softc *);
584
585 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
586 const struct pci_attach_args *, u_int8_t *);
587 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
588 static void sipcom_sis900_read_macaddr(struct sip_softc *,
589 const struct pci_attach_args *, u_int8_t *);
590 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
591 const struct pci_attach_args *, u_int8_t *);
592
593 static int sipcom_intr(void *);
594 static void sipcom_txintr(struct sip_softc *);
595 static void sip_rxintr(struct sip_softc *);
596 static void gsip_rxintr(struct sip_softc *);
597
598 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
599 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
600 static void sipcom_dp83820_mii_statchg(struct device *);
601
602 static int sipcom_sis900_mii_readreg(struct device *, int, int);
603 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
604 static void sipcom_sis900_mii_statchg(struct device *);
605
606 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
607 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
608 static void sipcom_dp83815_mii_statchg(struct device *);
609
610 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
611
612 static int sipcom_match(struct device *, struct cfdata *, void *);
613 static void sipcom_attach(struct device *, struct device *, void *);
614 static void sipcom_do_detach(device_t, enum sip_attach_stage);
615 static int sipcom_detach(device_t, int);
616 static bool sipcom_resume(device_t);
617
618 int gsip_copy_small = 0;
619 int sip_copy_small = 0;
620
621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
622 sipcom_match, sipcom_attach, sipcom_detach, NULL);
623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
624 sipcom_match, sipcom_attach, sipcom_detach, NULL);
625
626 /*
627 * Descriptions of the variants of the SiS900.
628 */
629 struct sip_variant {
630 int (*sipv_mii_readreg)(struct device *, int, int);
631 void (*sipv_mii_writereg)(struct device *, int, int, int);
632 void (*sipv_mii_statchg)(struct device *);
633 void (*sipv_set_filter)(struct sip_softc *);
634 void (*sipv_read_macaddr)(struct sip_softc *,
635 const struct pci_attach_args *, u_int8_t *);
636 };
637
638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
639 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
640
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
642 sipcom_mii_bitbang_read,
643 sipcom_mii_bitbang_write,
644 {
645 EROMAR_MDIO, /* MII_BIT_MDO */
646 EROMAR_MDIO, /* MII_BIT_MDI */
647 EROMAR_MDC, /* MII_BIT_MDC */
648 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
649 0, /* MII_BIT_DIR_PHY_HOST */
650 }
651 };
652
653 static const struct sip_variant sipcom_variant_dp83820 = {
654 sipcom_dp83820_mii_readreg,
655 sipcom_dp83820_mii_writereg,
656 sipcom_dp83820_mii_statchg,
657 sipcom_dp83815_set_filter,
658 sipcom_dp83820_read_macaddr,
659 };
660
661 static const struct sip_variant sipcom_variant_sis900 = {
662 sipcom_sis900_mii_readreg,
663 sipcom_sis900_mii_writereg,
664 sipcom_sis900_mii_statchg,
665 sipcom_sis900_set_filter,
666 sipcom_sis900_read_macaddr,
667 };
668
669 static const struct sip_variant sipcom_variant_dp83815 = {
670 sipcom_dp83815_mii_readreg,
671 sipcom_dp83815_mii_writereg,
672 sipcom_dp83815_mii_statchg,
673 sipcom_dp83815_set_filter,
674 sipcom_dp83815_read_macaddr,
675 };
676
677
678 /*
679 * Devices supported by this driver.
680 */
681 static const struct sip_product {
682 pci_vendor_id_t sip_vendor;
683 pci_product_id_t sip_product;
684 const char *sip_name;
685 const struct sip_variant *sip_variant;
686 int sip_gigabit;
687 } sipcom_products[] = {
688 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
689 "NatSemi DP83820 Gigabit Ethernet",
690 &sipcom_variant_dp83820, 1 },
691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
692 "SiS 900 10/100 Ethernet",
693 &sipcom_variant_sis900, 0 },
694 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
695 "SiS 7016 10/100 Ethernet",
696 &sipcom_variant_sis900, 0 },
697
698 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
699 "NatSemi DP83815 10/100 Ethernet",
700 &sipcom_variant_dp83815, 0 },
701
702 { 0, 0,
703 NULL,
704 NULL, 0 },
705 };
706
707 static const struct sip_product *
708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
709 {
710 const struct sip_product *sip;
711
712 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
713 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
714 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
715 sip->sip_gigabit == gigabit)
716 return sip;
717 }
718 return NULL;
719 }
720
721 /*
722 * I really hate stupid hardware vendors. There's a bit in the EEPROM
723 * which indicates if the card can do 64-bit data transfers. Unfortunately,
724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725 * which means we try to use 64-bit data transfers on those cards if we
726 * happen to be plugged into a 32-bit slot.
727 *
728 * What we do is use this table of cards known to be 64-bit cards. If
729 * you have a 64-bit card who's subsystem ID is not listed in this table,
730 * send the output of "pcictl dump ..." of the device to me so that your
731 * card will use the 64-bit data path when plugged into a 64-bit slot.
732 *
733 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
734 * June 30, 2002
735 */
736 static int
737 sipcom_check_64bit(const struct pci_attach_args *pa)
738 {
739 static const struct {
740 pci_vendor_id_t c64_vendor;
741 pci_product_id_t c64_product;
742 } card64[] = {
743 /* Asante GigaNIX */
744 { 0x128a, 0x0002 },
745
746 /* Accton EN1407-T, Planex GN-1000TE */
747 { 0x1113, 0x1407 },
748
749 /* Netgear GA-621 */
750 { 0x1385, 0x621a },
751
752 /* SMC EZ Card */
753 { 0x10b8, 0x9462 },
754
755 { 0, 0}
756 };
757 pcireg_t subsys;
758 int i;
759
760 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
761
762 for (i = 0; card64[i].c64_vendor != 0; i++) {
763 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
764 PCI_PRODUCT(subsys) == card64[i].c64_product)
765 return (1);
766 }
767
768 return (0);
769 }
770
771 static int
772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
773 {
774 struct pci_attach_args *pa = aux;
775
776 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
777 return 1;
778
779 return 0;
780 }
781
782 static void
783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
784 {
785 u_int32_t reg;
786 int i;
787
788 /*
789 * Cause the chip to load configuration data from the EEPROM.
790 */
791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
792 for (i = 0; i < 10000; i++) {
793 delay(10);
794 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
795 PTSCR_EELOAD_EN) == 0)
796 break;
797 }
798 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
799 PTSCR_EELOAD_EN) {
800 printf("%s: timeout loading configuration from EEPROM\n",
801 sc->sc_dev.dv_xname);
802 return;
803 }
804
805 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
806
807 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
808 if (reg & CFG_PCI64_DET) {
809 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
810 /*
811 * Check to see if this card is 64-bit. If so, enable 64-bit
812 * data transfers.
813 *
814 * We can't use the DATA64_EN bit in the EEPROM, because
815 * vendors of 32-bit cards fail to clear that bit in many
816 * cases (yet the card still detects that it's in a 64-bit
817 * slot; go figure).
818 */
819 if (sipcom_check_64bit(pa)) {
820 sc->sc_cfg |= CFG_DATA64_EN;
821 printf(", using 64-bit data transfers");
822 }
823 printf("\n");
824 }
825
826 /*
827 * XXX Need some PCI flags indicating support for
828 * XXX 64-bit addressing.
829 */
830 #if 0
831 if (reg & CFG_M64ADDR)
832 sc->sc_cfg |= CFG_M64ADDR;
833 if (reg & CFG_T64ADDR)
834 sc->sc_cfg |= CFG_T64ADDR;
835 #endif
836
837 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
838 const char *sep = "";
839 printf("%s: using ", sc->sc_dev.dv_xname);
840 if (reg & CFG_EXT_125) {
841 sc->sc_cfg |= CFG_EXT_125;
842 printf("%s125MHz clock", sep);
843 sep = ", ";
844 }
845 if (reg & CFG_TBI_EN) {
846 sc->sc_cfg |= CFG_TBI_EN;
847 printf("%sten-bit interface", sep);
848 sep = ", ";
849 }
850 printf("\n");
851 }
852 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
853 (reg & CFG_MRM_DIS) != 0)
854 sc->sc_cfg |= CFG_MRM_DIS;
855 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
856 (reg & CFG_MWI_DIS) != 0)
857 sc->sc_cfg |= CFG_MWI_DIS;
858
859 /*
860 * Use the extended descriptor format on the DP83820. This
861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
862 * checksumming.
863 */
864 sc->sc_cfg |= CFG_EXTSTS_EN;
865 }
866
867 static int
868 sipcom_detach(device_t self, int flags)
869 {
870 int s;
871
872 s = splnet();
873 sipcom_do_detach(self, SIP_ATTACH_FIN);
874 splx(s);
875
876 return 0;
877 }
878
879 static void
880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
881 {
882 int i;
883 struct sip_softc *sc = device_private(self);
884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885
886 /*
887 * Free any resources we've allocated during attach.
888 * Do this in reverse order and fall through.
889 */
890 switch (stage) {
891 case SIP_ATTACH_FIN:
892 sipcom_stop(ifp, 1);
893 pmf_device_deregister(self);
894 #ifdef SIP_EVENT_COUNTERS
895 /*
896 * Attach event counters.
897 */
898 evcnt_detach(&sc->sc_ev_txforceintr);
899 evcnt_detach(&sc->sc_ev_txdstall);
900 evcnt_detach(&sc->sc_ev_txsstall);
901 evcnt_detach(&sc->sc_ev_hiberr);
902 evcnt_detach(&sc->sc_ev_rxintr);
903 evcnt_detach(&sc->sc_ev_txiintr);
904 evcnt_detach(&sc->sc_ev_txdintr);
905 if (!sc->sc_gigabit) {
906 evcnt_detach(&sc->sc_ev_rxpause);
907 } else {
908 evcnt_detach(&sc->sc_ev_txudpsum);
909 evcnt_detach(&sc->sc_ev_txtcpsum);
910 evcnt_detach(&sc->sc_ev_txipsum);
911 evcnt_detach(&sc->sc_ev_rxudpsum);
912 evcnt_detach(&sc->sc_ev_rxtcpsum);
913 evcnt_detach(&sc->sc_ev_rxipsum);
914 evcnt_detach(&sc->sc_ev_txpause);
915 evcnt_detach(&sc->sc_ev_rxpause);
916 }
917 #endif /* SIP_EVENT_COUNTERS */
918
919 #if NRND > 0
920 rnd_detach_source(&sc->rnd_source);
921 #endif
922
923 ether_ifdetach(ifp);
924 if_detach(ifp);
925 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
926
927 /*FALLTHROUGH*/
928 case SIP_ATTACH_CREATE_RXMAP:
929 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
930 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->sc_rxsoft[i].rxs_dmamap);
933 }
934 /*FALLTHROUGH*/
935 case SIP_ATTACH_CREATE_TXMAP:
936 for (i = 0; i < SIP_TXQUEUELEN; i++) {
937 if (sc->sc_txsoft[i].txs_dmamap != NULL)
938 bus_dmamap_destroy(sc->sc_dmat,
939 sc->sc_txsoft[i].txs_dmamap);
940 }
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_LOAD_MAP:
943 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
944 /*FALLTHROUGH*/
945 case SIP_ATTACH_CREATE_MAP:
946 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
947 /*FALLTHROUGH*/
948 case SIP_ATTACH_MAP_MEM:
949 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
950 sizeof(struct sip_control_data));
951 /*FALLTHROUGH*/
952 case SIP_ATTACH_ALLOC_MEM:
953 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
954 /* FALLTHROUGH*/
955 case SIP_ATTACH_INTR:
956 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
957 /* FALLTHROUGH*/
958 case SIP_ATTACH_MAP:
959 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
960 break;
961 default:
962 break;
963 }
964 return;
965 }
966
967 static bool
968 sipcom_resume(device_t self)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 return sipcom_reset(sc);
973 }
974
975 static void
976 sipcom_attach(device_t parent, device_t self, void *aux)
977 {
978 struct sip_softc *sc = (struct sip_softc *) self;
979 struct pci_attach_args *pa = aux;
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 pci_chipset_tag_t pc = pa->pa_pc;
982 pci_intr_handle_t ih;
983 const char *intrstr = NULL;
984 bus_space_tag_t iot, memt;
985 bus_space_handle_t ioh, memh;
986 bus_size_t iosz, memsz;
987 int ioh_valid, memh_valid;
988 int i, rseg, error;
989 const struct sip_product *sip;
990 u_int8_t enaddr[ETHER_ADDR_LEN];
991 pcireg_t pmreg;
992 pcireg_t memtype;
993 bus_size_t tx_dmamap_size;
994 int ntxsegs_alloc;
995 cfdata_t cf = device_cfdata(self);
996
997 callout_init(&sc->sc_tick_ch, 0);
998
999 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1000 if (sip == NULL) {
1001 printf("\n");
1002 panic("%s: impossible", __func__);
1003 }
1004 sc->sc_gigabit = sip->sip_gigabit;
1005
1006 sc->sc_pc = pc;
1007
1008 if (sc->sc_gigabit) {
1009 sc->sc_rxintr = gsip_rxintr;
1010 sc->sc_parm = &gsip_parm;
1011 } else {
1012 sc->sc_rxintr = sip_rxintr;
1013 sc->sc_parm = &sip_parm;
1014 }
1015 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020
1021 sc->sc_rev = PCI_REVISION(pa->pa_class);
1022
1023 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1024
1025 sc->sc_model = sip;
1026
1027 /*
1028 * XXX Work-around broken PXE firmware on some boards.
1029 *
1030 * The DP83815 shares an address decoder with the MEM BAR
1031 * and the ROM BAR. Make sure the ROM BAR is disabled,
1032 * so that memory mapped access works.
1033 */
1034 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1035 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1036 ~PCI_MAPREG_ROM_ENABLE);
1037
1038 /*
1039 * Map the device.
1040 */
1041 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1042 PCI_MAPREG_TYPE_IO, 0,
1043 &iot, &ioh, NULL, &iosz) == 0);
1044 if (sc->sc_gigabit) {
1045 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1046 switch (memtype) {
1047 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1049 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1050 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1051 break;
1052 default:
1053 memh_valid = 0;
1054 }
1055 } else {
1056 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1058 &memt, &memh, NULL, &memsz) == 0);
1059 }
1060
1061 if (memh_valid) {
1062 sc->sc_st = memt;
1063 sc->sc_sh = memh;
1064 sc->sc_sz = memsz;
1065 } else if (ioh_valid) {
1066 sc->sc_st = iot;
1067 sc->sc_sh = ioh;
1068 sc->sc_sz = iosz;
1069 } else {
1070 printf("%s: unable to map device registers\n",
1071 sc->sc_dev.dv_xname);
1072 return;
1073 }
1074
1075 sc->sc_dmat = pa->pa_dmat;
1076
1077 /*
1078 * Make sure bus mastering is enabled. Also make sure
1079 * Write/Invalidate is enabled if we're allowed to use it.
1080 */
1081 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 pmreg | PCI_COMMAND_MASTER_ENABLE);
1086
1087 /* power up chip */
1088 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1089 NULL)) && error != EOPNOTSUPP) {
1090 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1091 error);
1092 return;
1093 }
1094
1095 /*
1096 * Map and establish our interrupt.
1097 */
1098 if (pci_intr_map(pa, &ih)) {
1099 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1100 return;
1101 }
1102 intrstr = pci_intr_string(pc, ih);
1103 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1104 if (sc->sc_ih == NULL) {
1105 printf("%s: unable to establish interrupt",
1106 sc->sc_dev.dv_xname);
1107 if (intrstr != NULL)
1108 printf(" at %s", intrstr);
1109 printf("\n");
1110 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 }
1112 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1113
1114 SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116
1117 /*
1118 * Allocate the control data structures, and create and load the
1119 * DMA map for it.
1120 */
1121 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 &rseg, 0)) != 0) {
1124 printf("%s: unable to allocate control data, error = %d\n",
1125 sc->sc_dev.dv_xname, error);
1126 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 }
1128
1129 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1130 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1131 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1132 printf("%s: unable to map control data, error = %d\n",
1133 sc->sc_dev.dv_xname, error);
1134 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1135 }
1136
1137 if ((error = bus_dmamap_create(sc->sc_dmat,
1138 sizeof(struct sip_control_data), 1,
1139 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1140 printf("%s: unable to create control data DMA map, "
1141 "error = %d\n", sc->sc_dev.dv_xname, error);
1142 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1143 }
1144
1145 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1146 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1147 0)) != 0) {
1148 printf("%s: unable to load control data DMA map, error = %d\n",
1149 sc->sc_dev.dv_xname, error);
1150 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1151 }
1152
1153 /*
1154 * Create the transmit buffer DMA maps.
1155 */
1156 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1157 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1158 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1159 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1160 printf("%s: unable to create tx DMA map %d, "
1161 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1162 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1163 }
1164 }
1165
1166 /*
1167 * Create the receive buffer DMA maps.
1168 */
1169 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1170 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1171 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1172 printf("%s: unable to create rx DMA map %d, "
1173 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1174 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1175 }
1176 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1177 }
1178
1179 /*
1180 * Reset the chip to a known state.
1181 */
1182 sipcom_reset(sc);
1183
1184 /*
1185 * Read the Ethernet address from the EEPROM. This might
1186 * also fetch other stuff from the EEPROM and stash it
1187 * in the softc.
1188 */
1189 sc->sc_cfg = 0;
1190 if (!sc->sc_gigabit) {
1191 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1192 SIP_SIS900_REV(sc,SIS_REV_900B))
1193 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1194
1195 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 SIP_SIS900_REV(sc,SIS_REV_960) ||
1197 SIP_SIS900_REV(sc,SIS_REV_900B))
1198 sc->sc_cfg |=
1199 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1200 CFG_EDBMASTEN);
1201 }
1202
1203 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1204
1205 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1206 ether_sprintf(enaddr));
1207
1208 /*
1209 * Initialize the configuration register: aggressive PCI
1210 * bus request algorithm, default backoff, default OW timer,
1211 * default parity error detection.
1212 *
1213 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 * friends -- it affects packet data, not descriptors.
1215 */
1216 if (sc->sc_gigabit)
1217 sipcom_dp83820_attach(sc, pa);
1218
1219 /*
1220 * Initialize our media structures and probe the MII.
1221 */
1222 sc->sc_mii.mii_ifp = ifp;
1223 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1227 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1228 sipcom_mediastatus);
1229
1230 /*
1231 * XXX We cannot handle flow control on the DP83815.
1232 */
1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1235 MII_OFFSET_ANY, 0);
1236 else
1237 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1240 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1241 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1242 } else
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1244
1245 ifp = &sc->sc_ethercom.ec_if;
1246 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1247 ifp->if_softc = sc;
1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 sc->sc_if_flags = ifp->if_flags;
1250 ifp->if_ioctl = sipcom_ioctl;
1251 ifp->if_start = sipcom_start;
1252 ifp->if_watchdog = sipcom_watchdog;
1253 ifp->if_init = sipcom_init;
1254 ifp->if_stop = sipcom_stop;
1255 IFQ_SET_READY(&ifp->if_snd);
1256
1257 /*
1258 * We can support 802.1Q VLAN-sized frames.
1259 */
1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261
1262 if (sc->sc_gigabit) {
1263 /*
1264 * And the DP83820 can do VLAN tagging in hardware, and
1265 * support the jumbo Ethernet MTU.
1266 */
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269
1270 /*
1271 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 * in hardware.
1273 */
1274 ifp->if_capabilities |=
1275 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 }
1279
1280 /*
1281 * Attach the interface.
1282 */
1283 if_attach(ifp);
1284 ether_ifattach(ifp, enaddr);
1285 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 sc->sc_prev.if_capenable = ifp->if_capenable;
1288 #if NRND > 0
1289 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1290 RND_TYPE_NET, 0);
1291 #endif
1292
1293 /*
1294 * The number of bytes that must be available in
1295 * the Tx FIFO before the bus master can DMA more
1296 * data into the FIFO.
1297 */
1298 sc->sc_tx_fill_thresh = 64 / 32;
1299
1300 /*
1301 * Start at a drain threshold of 512 bytes. We will
1302 * increase it if a DMA underrun occurs.
1303 *
1304 * XXX The minimum value of this variable should be
1305 * tuned. We may be able to improve performance
1306 * by starting with a lower value. That, however,
1307 * may trash the first few outgoing packets if the
1308 * PCI bus is saturated.
1309 */
1310 if (sc->sc_gigabit)
1311 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 else
1313 sc->sc_tx_drain_thresh = 1504 / 32;
1314
1315 /*
1316 * Initialize the Rx FIFO drain threshold.
1317 *
1318 * This is in units of 8 bytes.
1319 *
1320 * We should never set this value lower than 2; 14 bytes are
1321 * required to filter the packet.
1322 */
1323 sc->sc_rx_drain_thresh = 128 / 8;
1324
1325 #ifdef SIP_EVENT_COUNTERS
1326 /*
1327 * Attach event counters.
1328 */
1329 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 NULL, sc->sc_dev.dv_xname, "txsstall");
1331 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 NULL, sc->sc_dev.dv_xname, "txdstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 NULL, sc->sc_dev.dv_xname, "txforceintr");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 NULL, sc->sc_dev.dv_xname, "txdintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 NULL, sc->sc_dev.dv_xname, "txiintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 NULL, sc->sc_dev.dv_xname, "rxintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 NULL, sc->sc_dev.dv_xname, "hiberr");
1343 if (!sc->sc_gigabit) {
1344 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 NULL, sc->sc_dev.dv_xname, "rxpause");
1346 } else {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 NULL, sc->sc_dev.dv_xname, "rxpause");
1349 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 NULL, sc->sc_dev.dv_xname, "txpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 NULL, sc->sc_dev.dv_xname, "rxipsum");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 NULL, sc->sc_dev.dv_xname, "txipsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 NULL, sc->sc_dev.dv_xname, "txudpsum");
1363 }
1364 #endif /* SIP_EVENT_COUNTERS */
1365
1366 if (!pmf_device_register(self, NULL, sipcom_resume))
1367 aprint_error_dev(self, "couldn't establish power handler\n");
1368 else
1369 pmf_class_network_register(self, ifp);
1370 }
1371
1372 static inline void
1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1374 uint64_t capenable)
1375 {
1376 struct m_tag *mtag;
1377 u_int32_t extsts;
1378 #ifdef DEBUG
1379 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1380 #endif
1381 /*
1382 * If VLANs are enabled and the packet has a VLAN tag, set
1383 * up the descriptor to encapsulate the packet for us.
1384 *
1385 * This apparently has to be on the last descriptor of
1386 * the packet.
1387 */
1388
1389 /*
1390 * Byte swapping is tricky. We need to provide the tag
1391 * in a network byte order. On a big-endian machine,
1392 * the byteorder is correct, but we need to swap it
1393 * anyway, because this will be undone by the outside
1394 * htole32(). That's why there must be an
1395 * unconditional swap instead of htons() inside.
1396 */
1397 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1398 sc->sc_txdescs[lasttx].sipd_extsts |=
1399 htole32(EXTSTS_VPKT |
1400 (bswap16(VLAN_TAG_VALUE(mtag)) &
1401 EXTSTS_VTCI));
1402 }
1403
1404 /*
1405 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1406 * checksumming, set up the descriptor to do this work
1407 * for us.
1408 *
1409 * This apparently has to be on the first descriptor of
1410 * the packet.
1411 *
1412 * Byte-swap constants so the compiler can optimize.
1413 */
1414 extsts = 0;
1415 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1416 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1417 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1418 extsts |= htole32(EXTSTS_IPPKT);
1419 }
1420 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1421 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1422 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1423 extsts |= htole32(EXTSTS_TCPPKT);
1424 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1427 extsts |= htole32(EXTSTS_UDPPKT);
1428 }
1429 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1430 }
1431
1432 /*
1433 * sip_start: [ifnet interface function]
1434 *
1435 * Start packet transmission on the interface.
1436 */
1437 static void
1438 sipcom_start(struct ifnet *ifp)
1439 {
1440 struct sip_softc *sc = ifp->if_softc;
1441 struct mbuf *m0;
1442 struct mbuf *m;
1443 struct sip_txsoft *txs;
1444 bus_dmamap_t dmamap;
1445 int error, nexttx, lasttx, seg;
1446 int ofree = sc->sc_txfree;
1447 #if 0
1448 int firsttx = sc->sc_txnext;
1449 #endif
1450
1451 /*
1452 * If we've been told to pause, don't transmit any more packets.
1453 */
1454 if (!sc->sc_gigabit && sc->sc_paused)
1455 ifp->if_flags |= IFF_OACTIVE;
1456
1457 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1458 return;
1459
1460 /*
1461 * Loop through the send queue, setting up transmit descriptors
1462 * until we drain the queue, or use up all available transmit
1463 * descriptors.
1464 */
1465 for (;;) {
1466 /* Get a work queue entry. */
1467 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1468 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1469 break;
1470 }
1471
1472 /*
1473 * Grab a packet off the queue.
1474 */
1475 IFQ_POLL(&ifp->if_snd, m0);
1476 if (m0 == NULL)
1477 break;
1478 m = NULL;
1479
1480 dmamap = txs->txs_dmamap;
1481
1482 /*
1483 * Load the DMA map. If this fails, the packet either
1484 * didn't fit in the alloted number of segments, or we
1485 * were short on resources.
1486 */
1487 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1488 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1489 /* In the non-gigabit case, we'll copy and try again. */
1490 if (error != 0 && !sc->sc_gigabit) {
1491 MGETHDR(m, M_DONTWAIT, MT_DATA);
1492 if (m == NULL) {
1493 printf("%s: unable to allocate Tx mbuf\n",
1494 sc->sc_dev.dv_xname);
1495 break;
1496 }
1497 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1498 if (m0->m_pkthdr.len > MHLEN) {
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 printf("%s: unable to allocate Tx "
1502 "cluster\n", sc->sc_dev.dv_xname);
1503 m_freem(m);
1504 break;
1505 }
1506 }
1507 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1508 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1509 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1510 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1511 if (error) {
1512 printf("%s: unable to load Tx buffer, "
1513 "error = %d\n", sc->sc_dev.dv_xname, error);
1514 break;
1515 }
1516 } else if (error == EFBIG) {
1517 /*
1518 * For the too-many-segments case, we simply
1519 * report an error and drop the packet,
1520 * since we can't sanely copy a jumbo packet
1521 * to a single buffer.
1522 */
1523 printf("%s: Tx packet consumes too many "
1524 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1525 IFQ_DEQUEUE(&ifp->if_snd, m0);
1526 m_freem(m0);
1527 continue;
1528 } else if (error != 0) {
1529 /*
1530 * Short on resources, just stop for now.
1531 */
1532 break;
1533 }
1534
1535 /*
1536 * Ensure we have enough descriptors free to describe
1537 * the packet. Note, we always reserve one descriptor
1538 * at the end of the ring as a termination point, to
1539 * prevent wrap-around.
1540 */
1541 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1542 /*
1543 * Not enough free descriptors to transmit this
1544 * packet. We haven't committed anything yet,
1545 * so just unload the DMA map, put the packet
1546 * back on the queue, and punt. Notify the upper
1547 * layer that there are not more slots left.
1548 *
1549 * XXX We could allocate an mbuf and copy, but
1550 * XXX is it worth it?
1551 */
1552 ifp->if_flags |= IFF_OACTIVE;
1553 bus_dmamap_unload(sc->sc_dmat, dmamap);
1554 if (m != NULL)
1555 m_freem(m);
1556 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1557 break;
1558 }
1559
1560 IFQ_DEQUEUE(&ifp->if_snd, m0);
1561 if (m != NULL) {
1562 m_freem(m0);
1563 m0 = m;
1564 }
1565
1566 /*
1567 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1568 */
1569
1570 /* Sync the DMA map. */
1571 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1572 BUS_DMASYNC_PREWRITE);
1573
1574 /*
1575 * Initialize the transmit descriptors.
1576 */
1577 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1578 seg < dmamap->dm_nsegs;
1579 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1580 /*
1581 * If this is the first descriptor we're
1582 * enqueueing, don't set the OWN bit just
1583 * yet. That could cause a race condition.
1584 * We'll do it below.
1585 */
1586 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1587 htole32(dmamap->dm_segs[seg].ds_addr);
1588 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1590 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1591 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1592 lasttx = nexttx;
1593 }
1594
1595 /* Clear the MORE bit on the last segment. */
1596 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1597 htole32(~CMDSTS_MORE);
1598
1599 /*
1600 * If we're in the interrupt delay window, delay the
1601 * interrupt.
1602 */
1603 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1604 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1606 htole32(CMDSTS_INTR);
1607 sc->sc_txwin = 0;
1608 }
1609
1610 if (sc->sc_gigabit)
1611 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1612
1613 /* Sync the descriptors we're using. */
1614 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616
1617 /*
1618 * The entire packet is set up. Give the first descrptor
1619 * to the chip now.
1620 */
1621 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1622 htole32(CMDSTS_OWN);
1623 sip_cdtxsync(sc, sc->sc_txnext, 1,
1624 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625
1626 /*
1627 * Store a pointer to the packet so we can free it later,
1628 * and remember what txdirty will be once the packet is
1629 * done.
1630 */
1631 txs->txs_mbuf = m0;
1632 txs->txs_firstdesc = sc->sc_txnext;
1633 txs->txs_lastdesc = lasttx;
1634
1635 /* Advance the tx pointer. */
1636 sc->sc_txfree -= dmamap->dm_nsegs;
1637 sc->sc_txnext = nexttx;
1638
1639 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1640 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1641
1642 #if NBPFILTER > 0
1643 /*
1644 * Pass the packet to any BPF listeners.
1645 */
1646 if (ifp->if_bpf)
1647 bpf_mtap(ifp->if_bpf, m0);
1648 #endif /* NBPFILTER > 0 */
1649 }
1650
1651 if (txs == NULL || sc->sc_txfree == 0) {
1652 /* No more slots left; notify upper layer. */
1653 ifp->if_flags |= IFF_OACTIVE;
1654 }
1655
1656 if (sc->sc_txfree != ofree) {
1657 /*
1658 * Start the transmit process. Note, the manual says
1659 * that if there are no pending transmissions in the
1660 * chip's internal queue (indicated by TXE being clear),
1661 * then the driver software must set the TXDP to the
1662 * first descriptor to be transmitted. However, if we
1663 * do this, it causes serious performance degredation on
1664 * the DP83820 under load, not setting TXDP doesn't seem
1665 * to adversely affect the SiS 900 or DP83815.
1666 *
1667 * Well, I guess it wouldn't be the first time a manual
1668 * has lied -- and they could be speaking of the NULL-
1669 * terminated descriptor list case, rather than OWN-
1670 * terminated rings.
1671 */
1672 #if 0
1673 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 CR_TXE) == 0) {
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 SIP_CDTXADDR(sc, firsttx));
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 }
1679 #else
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682
1683 /* Set a watchdog timer in case the chip flakes out. */
1684 /* Gigabit autonegotiation takes 5 seconds. */
1685 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 }
1687 }
1688
1689 /*
1690 * sip_watchdog: [ifnet interface function]
1691 *
1692 * Watchdog timer handler.
1693 */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 struct sip_softc *sc = ifp->if_softc;
1698
1699 /*
1700 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 * If we get a timeout, try and sweep up transmit descriptors.
1702 * If we manage to sweep them all up, ignore the lack of
1703 * interrupt.
1704 */
1705 sipcom_txintr(sc);
1706
1707 if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1709 ifp->if_oerrors++;
1710
1711 /* Reset the interface. */
1712 (void) sipcom_init(ifp);
1713 } else if (ifp->if_flags & IFF_DEBUG)
1714 printf("%s: recovered from device timeout\n",
1715 sc->sc_dev.dv_xname);
1716
1717 /* Try to get more packets going. */
1718 sipcom_start(ifp);
1719 }
1720
1721 /*
1722 * sip_ioctl: [ifnet interface function]
1723 *
1724 * Handle control requests from the operator.
1725 */
1726 static int
1727 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1728 {
1729 struct sip_softc *sc = ifp->if_softc;
1730 struct ifreq *ifr = (struct ifreq *)data;
1731 int s, error;
1732
1733 s = splnet();
1734
1735 switch (cmd) {
1736 case SIOCSIFMEDIA:
1737 /* Flow control requires full-duplex mode. */
1738 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1739 (ifr->ifr_media & IFM_FDX) == 0)
1740 ifr->ifr_media &= ~IFM_ETH_FMASK;
1741
1742 /* XXX */
1743 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1744 ifr->ifr_media &= ~IFM_ETH_FMASK;
1745 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1746 if (sc->sc_gigabit &&
1747 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1748 /* We can do both TXPAUSE and RXPAUSE. */
1749 ifr->ifr_media |=
1750 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1751 } else if (ifr->ifr_media & IFM_FLOW) {
1752 /*
1753 * Both TXPAUSE and RXPAUSE must be set.
1754 * (SiS900 and DP83815 don't have PAUSE_ASYM
1755 * feature.)
1756 *
1757 * XXX Can SiS900 and DP83815 send PAUSE?
1758 */
1759 ifr->ifr_media |=
1760 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1761 }
1762 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1763 }
1764 /* FALLTHROUGH */
1765 case SIOCGIFMEDIA:
1766 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1767 break;
1768 case SIOCSIFFLAGS:
1769 /* If the interface is up and running, only modify the receive
1770 * filter when setting promiscuous or debug mode. Otherwise
1771 * fall through to ether_ioctl, which will reset the chip.
1772 */
1773
1774 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1775 == (sc)->sc_ethercom.ec_capenable) \
1776 && ((sc)->sc_prev.is_vlan == \
1777 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1778
1779 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1780
1781 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1782 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1783 == (IFF_UP|IFF_RUNNING))
1784 && ((ifp->if_flags & (~RESETIGN))
1785 == (sc->sc_if_flags & (~RESETIGN)))
1786 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1787 /* Set up the receive filter. */
1788 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1789 error = 0;
1790 break;
1791 #undef RESETIGN
1792 }
1793 /* FALLTHROUGH */
1794 default:
1795 error = ether_ioctl(ifp, cmd, data);
1796 if (error == ENETRESET) {
1797 /*
1798 * Multicast list has changed; set the hardware filter
1799 * accordingly.
1800 */
1801 if (ifp->if_flags & IFF_RUNNING)
1802 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1803 error = 0;
1804 }
1805 break;
1806 }
1807
1808 /* Try to get more packets going. */
1809 sipcom_start(ifp);
1810
1811 sc->sc_if_flags = ifp->if_flags;
1812 splx(s);
1813 return (error);
1814 }
1815
1816 /*
1817 * sip_intr:
1818 *
1819 * Interrupt service routine.
1820 */
1821 static int
1822 sipcom_intr(void *arg)
1823 {
1824 struct sip_softc *sc = arg;
1825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1826 u_int32_t isr;
1827 int handled = 0;
1828
1829 /* Disable interrupts. */
1830 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1831
1832 for (;;) {
1833 /* Reading clears interrupt. */
1834 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1835 if ((isr & sc->sc_imr) == 0)
1836 break;
1837
1838 #if NRND > 0
1839 if (RND_ENABLED(&sc->rnd_source))
1840 rnd_add_uint32(&sc->rnd_source, isr);
1841 #endif
1842
1843 handled = 1;
1844
1845 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1846 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1847
1848 /* Grab any new packets. */
1849 (*sc->sc_rxintr)(sc);
1850
1851 if (isr & ISR_RXORN) {
1852 printf("%s: receive FIFO overrun\n",
1853 sc->sc_dev.dv_xname);
1854
1855 /* XXX adjust rx_drain_thresh? */
1856 }
1857
1858 if (isr & ISR_RXIDLE) {
1859 printf("%s: receive ring overrun\n",
1860 sc->sc_dev.dv_xname);
1861
1862 /* Get the receive process going again. */
1863 bus_space_write_4(sc->sc_st, sc->sc_sh,
1864 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1865 bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 SIP_CR, CR_RXE);
1867 }
1868 }
1869
1870 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1871 #ifdef SIP_EVENT_COUNTERS
1872 if (isr & ISR_TXDESC)
1873 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1874 else if (isr & ISR_TXIDLE)
1875 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1876 #endif
1877
1878 /* Sweep up transmit descriptors. */
1879 sipcom_txintr(sc);
1880
1881 if (isr & ISR_TXURN) {
1882 u_int32_t thresh;
1883 int txfifo_size = (sc->sc_gigabit)
1884 ? DP83820_SIP_TXFIFO_SIZE
1885 : OTHER_SIP_TXFIFO_SIZE;
1886
1887 printf("%s: transmit FIFO underrun",
1888 sc->sc_dev.dv_xname);
1889 thresh = sc->sc_tx_drain_thresh + 1;
1890 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1891 && (thresh * 32) <= (txfifo_size -
1892 (sc->sc_tx_fill_thresh * 32))) {
1893 printf("; increasing Tx drain "
1894 "threshold to %u bytes\n",
1895 thresh * 32);
1896 sc->sc_tx_drain_thresh = thresh;
1897 (void) sipcom_init(ifp);
1898 } else {
1899 (void) sipcom_init(ifp);
1900 printf("\n");
1901 }
1902 }
1903 }
1904
1905 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1906 if (isr & ISR_PAUSE_ST) {
1907 sc->sc_paused = 1;
1908 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1909 ifp->if_flags |= IFF_OACTIVE;
1910 }
1911 if (isr & ISR_PAUSE_END) {
1912 sc->sc_paused = 0;
1913 ifp->if_flags &= ~IFF_OACTIVE;
1914 }
1915 }
1916
1917 if (isr & ISR_HIBERR) {
1918 int want_init = 0;
1919
1920 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1921
1922 #define PRINTERR(bit, str) \
1923 do { \
1924 if ((isr & (bit)) != 0) { \
1925 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1926 printf("%s: %s\n", \
1927 sc->sc_dev.dv_xname, str); \
1928 want_init = 1; \
1929 } \
1930 } while (/*CONSTCOND*/0)
1931
1932 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1933 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1934 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1935 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1936 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1937 /*
1938 * Ignore:
1939 * Tx reset complete
1940 * Rx reset complete
1941 */
1942 if (want_init)
1943 (void) sipcom_init(ifp);
1944 #undef PRINTERR
1945 }
1946 }
1947
1948 /* Re-enable interrupts. */
1949 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1950
1951 /* Try to get more packets going. */
1952 sipcom_start(ifp);
1953
1954 return (handled);
1955 }
1956
1957 /*
1958 * sip_txintr:
1959 *
1960 * Helper; handle transmit interrupts.
1961 */
1962 static void
1963 sipcom_txintr(struct sip_softc *sc)
1964 {
1965 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1966 struct sip_txsoft *txs;
1967 u_int32_t cmdsts;
1968
1969 if (sc->sc_paused == 0)
1970 ifp->if_flags &= ~IFF_OACTIVE;
1971
1972 /*
1973 * Go through our Tx list and free mbufs for those
1974 * frames which have been transmitted.
1975 */
1976 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1977 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1978 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1979
1980 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1981 if (cmdsts & CMDSTS_OWN)
1982 break;
1983
1984 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1985
1986 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1987
1988 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1989 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1990 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1991 m_freem(txs->txs_mbuf);
1992 txs->txs_mbuf = NULL;
1993
1994 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1995
1996 /*
1997 * Check for errors and collisions.
1998 */
1999 if (cmdsts &
2000 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2001 ifp->if_oerrors++;
2002 if (cmdsts & CMDSTS_Tx_EC)
2003 ifp->if_collisions += 16;
2004 if (ifp->if_flags & IFF_DEBUG) {
2005 if (cmdsts & CMDSTS_Tx_ED)
2006 printf("%s: excessive deferral\n",
2007 sc->sc_dev.dv_xname);
2008 if (cmdsts & CMDSTS_Tx_EC)
2009 printf("%s: excessive collisions\n",
2010 sc->sc_dev.dv_xname);
2011 }
2012 } else {
2013 /* Packet was transmitted successfully. */
2014 ifp->if_opackets++;
2015 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2016 }
2017 }
2018
2019 /*
2020 * If there are no more pending transmissions, cancel the watchdog
2021 * timer.
2022 */
2023 if (txs == NULL) {
2024 ifp->if_timer = 0;
2025 sc->sc_txwin = 0;
2026 }
2027 }
2028
2029 /*
2030 * gsip_rxintr:
2031 *
2032 * Helper; handle receive interrupts on gigabit parts.
2033 */
2034 static void
2035 gsip_rxintr(struct sip_softc *sc)
2036 {
2037 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2038 struct sip_rxsoft *rxs;
2039 struct mbuf *m;
2040 u_int32_t cmdsts, extsts;
2041 int i, len;
2042
2043 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2044 rxs = &sc->sc_rxsoft[i];
2045
2046 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2047
2048 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2049 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2050 len = CMDSTS_SIZE(sc, cmdsts);
2051
2052 /*
2053 * NOTE: OWN is set if owned by _consumer_. We're the
2054 * consumer of the receive ring, so if the bit is clear,
2055 * we have processed all of the packets.
2056 */
2057 if ((cmdsts & CMDSTS_OWN) == 0) {
2058 /*
2059 * We have processed all of the receive buffers.
2060 */
2061 break;
2062 }
2063
2064 if (__predict_false(sc->sc_rxdiscard)) {
2065 sip_init_rxdesc(sc, i);
2066 if ((cmdsts & CMDSTS_MORE) == 0) {
2067 /* Reset our state. */
2068 sc->sc_rxdiscard = 0;
2069 }
2070 continue;
2071 }
2072
2073 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2074 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2075
2076 m = rxs->rxs_mbuf;
2077
2078 /*
2079 * Add a new receive buffer to the ring.
2080 */
2081 if (sipcom_add_rxbuf(sc, i) != 0) {
2082 /*
2083 * Failed, throw away what we've done so
2084 * far, and discard the rest of the packet.
2085 */
2086 ifp->if_ierrors++;
2087 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2088 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2089 sip_init_rxdesc(sc, i);
2090 if (cmdsts & CMDSTS_MORE)
2091 sc->sc_rxdiscard = 1;
2092 if (sc->sc_rxhead != NULL)
2093 m_freem(sc->sc_rxhead);
2094 sip_rxchain_reset(sc);
2095 continue;
2096 }
2097
2098 sip_rxchain_link(sc, m);
2099
2100 m->m_len = len;
2101
2102 /*
2103 * If this is not the end of the packet, keep
2104 * looking.
2105 */
2106 if (cmdsts & CMDSTS_MORE) {
2107 sc->sc_rxlen += len;
2108 continue;
2109 }
2110
2111 /*
2112 * Okay, we have the entire packet now. The chip includes
2113 * the FCS, so we need to trim it.
2114 */
2115 m->m_len -= ETHER_CRC_LEN;
2116
2117 *sc->sc_rxtailp = NULL;
2118 len = m->m_len + sc->sc_rxlen;
2119 m = sc->sc_rxhead;
2120
2121 sip_rxchain_reset(sc);
2122
2123 /*
2124 * If an error occurred, update stats and drop the packet.
2125 */
2126 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2127 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2128 ifp->if_ierrors++;
2129 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2130 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2131 /* Receive overrun handled elsewhere. */
2132 printf("%s: receive descriptor error\n",
2133 sc->sc_dev.dv_xname);
2134 }
2135 #define PRINTERR(bit, str) \
2136 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2137 (cmdsts & (bit)) != 0) \
2138 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2139 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2140 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2141 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2142 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2143 #undef PRINTERR
2144 m_freem(m);
2145 continue;
2146 }
2147
2148 /*
2149 * If the packet is small enough to fit in a
2150 * single header mbuf, allocate one and copy
2151 * the data into it. This greatly reduces
2152 * memory consumption when we receive lots
2153 * of small packets.
2154 */
2155 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2156 struct mbuf *nm;
2157 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2158 if (nm == NULL) {
2159 ifp->if_ierrors++;
2160 m_freem(m);
2161 continue;
2162 }
2163 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2164 nm->m_data += 2;
2165 nm->m_pkthdr.len = nm->m_len = len;
2166 m_copydata(m, 0, len, mtod(nm, void *));
2167 m_freem(m);
2168 m = nm;
2169 }
2170 #ifndef __NO_STRICT_ALIGNMENT
2171 else {
2172 /*
2173 * The DP83820's receive buffers must be 4-byte
2174 * aligned. But this means that the data after
2175 * the Ethernet header is misaligned. To compensate,
2176 * we have artificially shortened the buffer size
2177 * in the descriptor, and we do an overlapping copy
2178 * of the data two bytes further in (in the first
2179 * buffer of the chain only).
2180 */
2181 memmove(mtod(m, char *) + 2, mtod(m, void *),
2182 m->m_len);
2183 m->m_data += 2;
2184 }
2185 #endif /* ! __NO_STRICT_ALIGNMENT */
2186
2187 /*
2188 * If VLANs are enabled, VLAN packets have been unwrapped
2189 * for us. Associate the tag with the packet.
2190 */
2191
2192 /*
2193 * Again, byte swapping is tricky. Hardware provided
2194 * the tag in the network byte order, but extsts was
2195 * passed through le32toh() in the meantime. On a
2196 * big-endian machine, we need to swap it again. On a
2197 * little-endian machine, we need to convert from the
2198 * network to host byte order. This means that we must
2199 * swap it in any case, so unconditional swap instead
2200 * of htons() is used.
2201 */
2202 if ((extsts & EXTSTS_VPKT) != 0) {
2203 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2204 continue);
2205 }
2206
2207 /*
2208 * Set the incoming checksum information for the
2209 * packet.
2210 */
2211 if ((extsts & EXTSTS_IPPKT) != 0) {
2212 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2213 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2214 if (extsts & EXTSTS_Rx_IPERR)
2215 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2216 if (extsts & EXTSTS_TCPPKT) {
2217 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2218 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2219 if (extsts & EXTSTS_Rx_TCPERR)
2220 m->m_pkthdr.csum_flags |=
2221 M_CSUM_TCP_UDP_BAD;
2222 } else if (extsts & EXTSTS_UDPPKT) {
2223 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2224 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2225 if (extsts & EXTSTS_Rx_UDPERR)
2226 m->m_pkthdr.csum_flags |=
2227 M_CSUM_TCP_UDP_BAD;
2228 }
2229 }
2230
2231 ifp->if_ipackets++;
2232 m->m_pkthdr.rcvif = ifp;
2233 m->m_pkthdr.len = len;
2234
2235 #if NBPFILTER > 0
2236 /*
2237 * Pass this up to any BPF listeners, but only
2238 * pass if up the stack if it's for us.
2239 */
2240 if (ifp->if_bpf)
2241 bpf_mtap(ifp->if_bpf, m);
2242 #endif /* NBPFILTER > 0 */
2243
2244 /* Pass it on. */
2245 (*ifp->if_input)(ifp, m);
2246 }
2247
2248 /* Update the receive pointer. */
2249 sc->sc_rxptr = i;
2250 }
2251
2252 /*
2253 * sip_rxintr:
2254 *
2255 * Helper; handle receive interrupts on 10/100 parts.
2256 */
2257 static void
2258 sip_rxintr(struct sip_softc *sc)
2259 {
2260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261 struct sip_rxsoft *rxs;
2262 struct mbuf *m;
2263 u_int32_t cmdsts;
2264 int i, len;
2265
2266 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2267 rxs = &sc->sc_rxsoft[i];
2268
2269 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2270
2271 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2272
2273 /*
2274 * NOTE: OWN is set if owned by _consumer_. We're the
2275 * consumer of the receive ring, so if the bit is clear,
2276 * we have processed all of the packets.
2277 */
2278 if ((cmdsts & CMDSTS_OWN) == 0) {
2279 /*
2280 * We have processed all of the receive buffers.
2281 */
2282 break;
2283 }
2284
2285 /*
2286 * If any collisions were seen on the wire, count one.
2287 */
2288 if (cmdsts & CMDSTS_Rx_COL)
2289 ifp->if_collisions++;
2290
2291 /*
2292 * If an error occurred, update stats, clear the status
2293 * word, and leave the packet buffer in place. It will
2294 * simply be reused the next time the ring comes around.
2295 */
2296 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2297 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2298 ifp->if_ierrors++;
2299 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2300 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2301 /* Receive overrun handled elsewhere. */
2302 printf("%s: receive descriptor error\n",
2303 sc->sc_dev.dv_xname);
2304 }
2305 #define PRINTERR(bit, str) \
2306 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2307 (cmdsts & (bit)) != 0) \
2308 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2309 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2310 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2311 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2312 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2313 #undef PRINTERR
2314 sip_init_rxdesc(sc, i);
2315 continue;
2316 }
2317
2318 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2319 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320
2321 /*
2322 * No errors; receive the packet. Note, the SiS 900
2323 * includes the CRC with every packet.
2324 */
2325 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2326
2327 #ifdef __NO_STRICT_ALIGNMENT
2328 /*
2329 * If the packet is small enough to fit in a
2330 * single header mbuf, allocate one and copy
2331 * the data into it. This greatly reduces
2332 * memory consumption when we receive lots
2333 * of small packets.
2334 *
2335 * Otherwise, we add a new buffer to the receive
2336 * chain. If this fails, we drop the packet and
2337 * recycle the old buffer.
2338 */
2339 if (sip_copy_small != 0 && len <= MHLEN) {
2340 MGETHDR(m, M_DONTWAIT, MT_DATA);
2341 if (m == NULL)
2342 goto dropit;
2343 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2344 memcpy(mtod(m, void *),
2345 mtod(rxs->rxs_mbuf, void *), len);
2346 sip_init_rxdesc(sc, i);
2347 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2348 rxs->rxs_dmamap->dm_mapsize,
2349 BUS_DMASYNC_PREREAD);
2350 } else {
2351 m = rxs->rxs_mbuf;
2352 if (sipcom_add_rxbuf(sc, i) != 0) {
2353 dropit:
2354 ifp->if_ierrors++;
2355 sip_init_rxdesc(sc, i);
2356 bus_dmamap_sync(sc->sc_dmat,
2357 rxs->rxs_dmamap, 0,
2358 rxs->rxs_dmamap->dm_mapsize,
2359 BUS_DMASYNC_PREREAD);
2360 continue;
2361 }
2362 }
2363 #else
2364 /*
2365 * The SiS 900's receive buffers must be 4-byte aligned.
2366 * But this means that the data after the Ethernet header
2367 * is misaligned. We must allocate a new buffer and
2368 * copy the data, shifted forward 2 bytes.
2369 */
2370 MGETHDR(m, M_DONTWAIT, MT_DATA);
2371 if (m == NULL) {
2372 dropit:
2373 ifp->if_ierrors++;
2374 sip_init_rxdesc(sc, i);
2375 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2376 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2377 continue;
2378 }
2379 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2380 if (len > (MHLEN - 2)) {
2381 MCLGET(m, M_DONTWAIT);
2382 if ((m->m_flags & M_EXT) == 0) {
2383 m_freem(m);
2384 goto dropit;
2385 }
2386 }
2387 m->m_data += 2;
2388
2389 /*
2390 * Note that we use clusters for incoming frames, so the
2391 * buffer is virtually contiguous.
2392 */
2393 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2394
2395 /* Allow the receive descriptor to continue using its mbuf. */
2396 sip_init_rxdesc(sc, i);
2397 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2398 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2399 #endif /* __NO_STRICT_ALIGNMENT */
2400
2401 ifp->if_ipackets++;
2402 m->m_pkthdr.rcvif = ifp;
2403 m->m_pkthdr.len = m->m_len = len;
2404
2405 #if NBPFILTER > 0
2406 /*
2407 * Pass this up to any BPF listeners, but only
2408 * pass if up the stack if it's for us.
2409 */
2410 if (ifp->if_bpf)
2411 bpf_mtap(ifp->if_bpf, m);
2412 #endif /* NBPFILTER > 0 */
2413
2414 /* Pass it on. */
2415 (*ifp->if_input)(ifp, m);
2416 }
2417
2418 /* Update the receive pointer. */
2419 sc->sc_rxptr = i;
2420 }
2421
2422 /*
2423 * sip_tick:
2424 *
2425 * One second timer, used to tick the MII.
2426 */
2427 static void
2428 sipcom_tick(void *arg)
2429 {
2430 struct sip_softc *sc = arg;
2431 int s;
2432
2433 s = splnet();
2434 #ifdef SIP_EVENT_COUNTERS
2435 if (sc->sc_gigabit) {
2436 /* Read PAUSE related counts from MIB registers. */
2437 sc->sc_ev_rxpause.ev_count +=
2438 bus_space_read_4(sc->sc_st, sc->sc_sh,
2439 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2440 sc->sc_ev_txpause.ev_count +=
2441 bus_space_read_4(sc->sc_st, sc->sc_sh,
2442 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2443 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2444 }
2445 #endif /* SIP_EVENT_COUNTERS */
2446 mii_tick(&sc->sc_mii);
2447 splx(s);
2448
2449 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2450 }
2451
2452 /*
2453 * sip_reset:
2454 *
2455 * Perform a soft reset on the SiS 900.
2456 */
2457 static bool
2458 sipcom_reset(struct sip_softc *sc)
2459 {
2460 bus_space_tag_t st = sc->sc_st;
2461 bus_space_handle_t sh = sc->sc_sh;
2462 int i;
2463
2464 bus_space_write_4(st, sh, SIP_IER, 0);
2465 bus_space_write_4(st, sh, SIP_IMR, 0);
2466 bus_space_write_4(st, sh, SIP_RFCR, 0);
2467 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2468
2469 for (i = 0; i < SIP_TIMEOUT; i++) {
2470 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2471 break;
2472 delay(2);
2473 }
2474
2475 if (i == SIP_TIMEOUT) {
2476 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2477 return false;
2478 }
2479
2480 delay(1000);
2481
2482 if (sc->sc_gigabit) {
2483 /*
2484 * Set the general purpose I/O bits. Do it here in case we
2485 * need to have GPIO set up to talk to the media interface.
2486 */
2487 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2488 delay(1000);
2489 }
2490 return true;
2491 }
2492
2493 static void
2494 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2495 {
2496 u_int32_t reg;
2497 bus_space_tag_t st = sc->sc_st;
2498 bus_space_handle_t sh = sc->sc_sh;
2499 /*
2500 * Initialize the VLAN/IP receive control register.
2501 * We enable checksum computation on all incoming
2502 * packets, and do not reject packets w/ bad checksums.
2503 */
2504 reg = 0;
2505 if (capenable &
2506 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2507 reg |= VRCR_IPEN;
2508 if (VLAN_ATTACHED(&sc->sc_ethercom))
2509 reg |= VRCR_VTDEN|VRCR_VTREN;
2510 bus_space_write_4(st, sh, SIP_VRCR, reg);
2511
2512 /*
2513 * Initialize the VLAN/IP transmit control register.
2514 * We enable outgoing checksum computation on a
2515 * per-packet basis.
2516 */
2517 reg = 0;
2518 if (capenable &
2519 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2520 reg |= VTCR_PPCHK;
2521 if (VLAN_ATTACHED(&sc->sc_ethercom))
2522 reg |= VTCR_VPPTI;
2523 bus_space_write_4(st, sh, SIP_VTCR, reg);
2524
2525 /*
2526 * If we're using VLANs, initialize the VLAN data register.
2527 * To understand why we bswap the VLAN Ethertype, see section
2528 * 4.2.36 of the DP83820 manual.
2529 */
2530 if (VLAN_ATTACHED(&sc->sc_ethercom))
2531 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2532 }
2533
2534 /*
2535 * sip_init: [ ifnet interface function ]
2536 *
2537 * Initialize the interface. Must be called at splnet().
2538 */
2539 static int
2540 sipcom_init(struct ifnet *ifp)
2541 {
2542 struct sip_softc *sc = ifp->if_softc;
2543 bus_space_tag_t st = sc->sc_st;
2544 bus_space_handle_t sh = sc->sc_sh;
2545 struct sip_txsoft *txs;
2546 struct sip_rxsoft *rxs;
2547 struct sip_desc *sipd;
2548 int i, error = 0;
2549
2550 if (!device_has_power(&sc->sc_dev))
2551 return EBUSY;
2552
2553 /*
2554 * Cancel any pending I/O.
2555 */
2556 sipcom_stop(ifp, 0);
2557
2558 /*
2559 * Reset the chip to a known state.
2560 */
2561 if (!sipcom_reset(sc))
2562 return EBUSY;
2563
2564 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2565 /*
2566 * DP83815 manual, page 78:
2567 * 4.4 Recommended Registers Configuration
2568 * For optimum performance of the DP83815, version noted
2569 * as DP83815CVNG (SRR = 203h), the listed register
2570 * modifications must be followed in sequence...
2571 *
2572 * It's not clear if this should be 302h or 203h because that
2573 * chip name is listed as SRR 302h in the description of the
2574 * SRR register. However, my revision 302h DP83815 on the
2575 * Netgear FA311 purchased in 02/2001 needs these settings
2576 * to avoid tons of errors in AcceptPerfectMatch (non-
2577 * IFF_PROMISC) mode. I do not know if other revisions need
2578 * this set or not. [briggs -- 09 March 2001]
2579 *
2580 * Note that only the low-order 12 bits of 0xe4 are documented
2581 * and that this sets reserved bits in that register.
2582 */
2583 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2584
2585 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2586 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2587 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2588 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2589
2590 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2591 }
2592
2593 /*
2594 * Initialize the transmit descriptor ring.
2595 */
2596 for (i = 0; i < sc->sc_ntxdesc; i++) {
2597 sipd = &sc->sc_txdescs[i];
2598 memset(sipd, 0, sizeof(struct sip_desc));
2599 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2600 }
2601 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2602 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2603 sc->sc_txfree = sc->sc_ntxdesc;
2604 sc->sc_txnext = 0;
2605 sc->sc_txwin = 0;
2606
2607 /*
2608 * Initialize the transmit job descriptors.
2609 */
2610 SIMPLEQ_INIT(&sc->sc_txfreeq);
2611 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2612 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2613 txs = &sc->sc_txsoft[i];
2614 txs->txs_mbuf = NULL;
2615 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2616 }
2617
2618 /*
2619 * Initialize the receive descriptor and receive job
2620 * descriptor rings.
2621 */
2622 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2623 rxs = &sc->sc_rxsoft[i];
2624 if (rxs->rxs_mbuf == NULL) {
2625 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2626 printf("%s: unable to allocate or map rx "
2627 "buffer %d, error = %d\n",
2628 sc->sc_dev.dv_xname, i, error);
2629 /*
2630 * XXX Should attempt to run with fewer receive
2631 * XXX buffers instead of just failing.
2632 */
2633 sipcom_rxdrain(sc);
2634 goto out;
2635 }
2636 } else
2637 sip_init_rxdesc(sc, i);
2638 }
2639 sc->sc_rxptr = 0;
2640 sc->sc_rxdiscard = 0;
2641 sip_rxchain_reset(sc);
2642
2643 /*
2644 * Set the configuration register; it's already initialized
2645 * in sip_attach().
2646 */
2647 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2648
2649 /*
2650 * Initialize the prototype TXCFG register.
2651 */
2652 if (sc->sc_gigabit) {
2653 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2654 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2655 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2656 SIP_SIS900_REV(sc, SIS_REV_960) ||
2657 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2658 (sc->sc_cfg & CFG_EDBMASTEN)) {
2659 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2660 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2661 } else {
2662 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2663 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2664 }
2665
2666 sc->sc_txcfg |= TXCFG_ATP |
2667 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2668 sc->sc_tx_drain_thresh;
2669 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2670
2671 /*
2672 * Initialize the receive drain threshold if we have never
2673 * done so.
2674 */
2675 if (sc->sc_rx_drain_thresh == 0) {
2676 /*
2677 * XXX This value should be tuned. This is set to the
2678 * maximum of 248 bytes, and we may be able to improve
2679 * performance by decreasing it (although we should never
2680 * set this value lower than 2; 14 bytes are required to
2681 * filter the packet).
2682 */
2683 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2684 }
2685
2686 /*
2687 * Initialize the prototype RXCFG register.
2688 */
2689 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2690 /*
2691 * Accept long packets (including FCS) so we can handle
2692 * 802.1q-tagged frames and jumbo frames properly.
2693 */
2694 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2695 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2696 sc->sc_rxcfg |= RXCFG_ALP;
2697
2698 /*
2699 * Checksum offloading is disabled if the user selects an MTU
2700 * larger than 8109. (FreeBSD says 8152, but there is emperical
2701 * evidence that >8109 does not work on some boards, such as the
2702 * Planex GN-1000TE).
2703 */
2704 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2705 (ifp->if_capenable &
2706 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2707 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2708 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2709 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2710 "disabled.\n", sc->sc_dev.dv_xname);
2711 ifp->if_capenable &=
2712 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2713 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2714 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2715 ifp->if_csum_flags_tx = 0;
2716 ifp->if_csum_flags_rx = 0;
2717 }
2718
2719 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2720
2721 if (sc->sc_gigabit)
2722 sipcom_dp83820_init(sc, ifp->if_capenable);
2723
2724 /*
2725 * Give the transmit and receive rings to the chip.
2726 */
2727 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2728 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2729
2730 /*
2731 * Initialize the interrupt mask.
2732 */
2733 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2734 sc->sc_bits.b_isr_sserr |
2735 sc->sc_bits.b_isr_rmabt |
2736 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2737 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2738 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2739
2740 /* Set up the receive filter. */
2741 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2742
2743 /*
2744 * Tune sc_rx_flow_thresh.
2745 * XXX "More than 8KB" is too short for jumbo frames.
2746 * XXX TODO: Threshold value should be user-settable.
2747 */
2748 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2749 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2750 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2751
2752 /*
2753 * Set the current media. Do this after initializing the prototype
2754 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2755 * control.
2756 */
2757 if ((error = ether_mediachange(ifp)) != 0)
2758 goto out;
2759
2760 /*
2761 * Set the interrupt hold-off timer to 100us.
2762 */
2763 if (sc->sc_gigabit)
2764 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2765
2766 /*
2767 * Enable interrupts.
2768 */
2769 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2770
2771 /*
2772 * Start the transmit and receive processes.
2773 */
2774 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2775
2776 /*
2777 * Start the one second MII clock.
2778 */
2779 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2780
2781 /*
2782 * ...all done!
2783 */
2784 ifp->if_flags |= IFF_RUNNING;
2785 ifp->if_flags &= ~IFF_OACTIVE;
2786 sc->sc_if_flags = ifp->if_flags;
2787 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2788 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2789 sc->sc_prev.if_capenable = ifp->if_capenable;
2790
2791 out:
2792 if (error)
2793 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2794 return (error);
2795 }
2796
2797 /*
2798 * sip_drain:
2799 *
2800 * Drain the receive queue.
2801 */
2802 static void
2803 sipcom_rxdrain(struct sip_softc *sc)
2804 {
2805 struct sip_rxsoft *rxs;
2806 int i;
2807
2808 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2809 rxs = &sc->sc_rxsoft[i];
2810 if (rxs->rxs_mbuf != NULL) {
2811 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2812 m_freem(rxs->rxs_mbuf);
2813 rxs->rxs_mbuf = NULL;
2814 }
2815 }
2816 }
2817
2818 /*
2819 * sip_stop: [ ifnet interface function ]
2820 *
2821 * Stop transmission on the interface.
2822 */
2823 static void
2824 sipcom_stop(struct ifnet *ifp, int disable)
2825 {
2826 struct sip_softc *sc = ifp->if_softc;
2827 bus_space_tag_t st = sc->sc_st;
2828 bus_space_handle_t sh = sc->sc_sh;
2829 struct sip_txsoft *txs;
2830 u_int32_t cmdsts = 0; /* DEBUG */
2831
2832 /*
2833 * Stop the one second clock.
2834 */
2835 callout_stop(&sc->sc_tick_ch);
2836
2837 /* Down the MII. */
2838 mii_down(&sc->sc_mii);
2839
2840 /*
2841 * Disable interrupts.
2842 */
2843 bus_space_write_4(st, sh, SIP_IER, 0);
2844
2845 /*
2846 * Stop receiver and transmitter.
2847 */
2848 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2849
2850 /*
2851 * Release any queued transmit buffers.
2852 */
2853 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2854 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2855 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2856 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2857 CMDSTS_INTR) == 0)
2858 printf("%s: sip_stop: last descriptor does not "
2859 "have INTR bit set\n", sc->sc_dev.dv_xname);
2860 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2861 #ifdef DIAGNOSTIC
2862 if (txs->txs_mbuf == NULL) {
2863 printf("%s: dirty txsoft with no mbuf chain\n",
2864 sc->sc_dev.dv_xname);
2865 panic("sip_stop");
2866 }
2867 #endif
2868 cmdsts |= /* DEBUG */
2869 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2870 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2871 m_freem(txs->txs_mbuf);
2872 txs->txs_mbuf = NULL;
2873 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2874 }
2875
2876 if (disable)
2877 sipcom_rxdrain(sc);
2878
2879 /*
2880 * Mark the interface down and cancel the watchdog timer.
2881 */
2882 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2883 ifp->if_timer = 0;
2884
2885 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2886 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2887 printf("%s: sip_stop: no INTR bits set in dirty tx "
2888 "descriptors\n", sc->sc_dev.dv_xname);
2889 }
2890
2891 /*
2892 * sip_read_eeprom:
2893 *
2894 * Read data from the serial EEPROM.
2895 */
2896 static void
2897 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2898 u_int16_t *data)
2899 {
2900 bus_space_tag_t st = sc->sc_st;
2901 bus_space_handle_t sh = sc->sc_sh;
2902 u_int16_t reg;
2903 int i, x;
2904
2905 for (i = 0; i < wordcnt; i++) {
2906 /* Send CHIP SELECT. */
2907 reg = EROMAR_EECS;
2908 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2909
2910 /* Shift in the READ opcode. */
2911 for (x = 3; x > 0; x--) {
2912 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2913 reg |= EROMAR_EEDI;
2914 else
2915 reg &= ~EROMAR_EEDI;
2916 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 bus_space_write_4(st, sh, SIP_EROMAR,
2918 reg | EROMAR_EESK);
2919 delay(4);
2920 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 delay(4);
2922 }
2923
2924 /* Shift in address. */
2925 for (x = 6; x > 0; x--) {
2926 if ((word + i) & (1 << (x - 1)))
2927 reg |= EROMAR_EEDI;
2928 else
2929 reg &= ~EROMAR_EEDI;
2930 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 bus_space_write_4(st, sh, SIP_EROMAR,
2932 reg | EROMAR_EESK);
2933 delay(4);
2934 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 delay(4);
2936 }
2937
2938 /* Shift out data. */
2939 reg = EROMAR_EECS;
2940 data[i] = 0;
2941 for (x = 16; x > 0; x--) {
2942 bus_space_write_4(st, sh, SIP_EROMAR,
2943 reg | EROMAR_EESK);
2944 delay(4);
2945 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2946 data[i] |= (1 << (x - 1));
2947 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2948 delay(4);
2949 }
2950
2951 /* Clear CHIP SELECT. */
2952 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2953 delay(4);
2954 }
2955 }
2956
2957 /*
2958 * sipcom_add_rxbuf:
2959 *
2960 * Add a receive buffer to the indicated descriptor.
2961 */
2962 static int
2963 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2964 {
2965 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2966 struct mbuf *m;
2967 int error;
2968
2969 MGETHDR(m, M_DONTWAIT, MT_DATA);
2970 if (m == NULL)
2971 return (ENOBUFS);
2972 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2973
2974 MCLGET(m, M_DONTWAIT);
2975 if ((m->m_flags & M_EXT) == 0) {
2976 m_freem(m);
2977 return (ENOBUFS);
2978 }
2979
2980 /* XXX I don't believe this is necessary. --dyoung */
2981 if (sc->sc_gigabit)
2982 m->m_len = sc->sc_parm->p_rxbuf_len;
2983
2984 if (rxs->rxs_mbuf != NULL)
2985 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2986
2987 rxs->rxs_mbuf = m;
2988
2989 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2990 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2991 BUS_DMA_READ|BUS_DMA_NOWAIT);
2992 if (error) {
2993 printf("%s: can't load rx DMA map %d, error = %d\n",
2994 sc->sc_dev.dv_xname, idx, error);
2995 panic("%s", __func__); /* XXX */
2996 }
2997
2998 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2999 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3000
3001 sip_init_rxdesc(sc, idx);
3002
3003 return (0);
3004 }
3005
3006 /*
3007 * sip_sis900_set_filter:
3008 *
3009 * Set up the receive filter.
3010 */
3011 static void
3012 sipcom_sis900_set_filter(struct sip_softc *sc)
3013 {
3014 bus_space_tag_t st = sc->sc_st;
3015 bus_space_handle_t sh = sc->sc_sh;
3016 struct ethercom *ec = &sc->sc_ethercom;
3017 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3018 struct ether_multi *enm;
3019 const u_int8_t *cp;
3020 struct ether_multistep step;
3021 u_int32_t crc, mchash[16];
3022
3023 /*
3024 * Initialize the prototype RFCR.
3025 */
3026 sc->sc_rfcr = RFCR_RFEN;
3027 if (ifp->if_flags & IFF_BROADCAST)
3028 sc->sc_rfcr |= RFCR_AAB;
3029 if (ifp->if_flags & IFF_PROMISC) {
3030 sc->sc_rfcr |= RFCR_AAP;
3031 goto allmulti;
3032 }
3033
3034 /*
3035 * Set up the multicast address filter by passing all multicast
3036 * addresses through a CRC generator, and then using the high-order
3037 * 6 bits as an index into the 128 bit multicast hash table (only
3038 * the lower 16 bits of each 32 bit multicast hash register are
3039 * valid). The high order bits select the register, while the
3040 * rest of the bits select the bit within the register.
3041 */
3042
3043 memset(mchash, 0, sizeof(mchash));
3044
3045 /*
3046 * SiS900 (at least SiS963) requires us to register the address of
3047 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3048 */
3049 crc = 0x0ed423f9;
3050
3051 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3052 SIP_SIS900_REV(sc, SIS_REV_960) ||
3053 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3054 /* Just want the 8 most significant bits. */
3055 crc >>= 24;
3056 } else {
3057 /* Just want the 7 most significant bits. */
3058 crc >>= 25;
3059 }
3060
3061 /* Set the corresponding bit in the hash table. */
3062 mchash[crc >> 4] |= 1 << (crc & 0xf);
3063
3064 ETHER_FIRST_MULTI(step, ec, enm);
3065 while (enm != NULL) {
3066 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3067 /*
3068 * We must listen to a range of multicast addresses.
3069 * For now, just accept all multicasts, rather than
3070 * trying to set only those filter bits needed to match
3071 * the range. (At this time, the only use of address
3072 * ranges is for IP multicast routing, for which the
3073 * range is big enough to require all bits set.)
3074 */
3075 goto allmulti;
3076 }
3077
3078 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3079
3080 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3081 SIP_SIS900_REV(sc, SIS_REV_960) ||
3082 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3083 /* Just want the 8 most significant bits. */
3084 crc >>= 24;
3085 } else {
3086 /* Just want the 7 most significant bits. */
3087 crc >>= 25;
3088 }
3089
3090 /* Set the corresponding bit in the hash table. */
3091 mchash[crc >> 4] |= 1 << (crc & 0xf);
3092
3093 ETHER_NEXT_MULTI(step, enm);
3094 }
3095
3096 ifp->if_flags &= ~IFF_ALLMULTI;
3097 goto setit;
3098
3099 allmulti:
3100 ifp->if_flags |= IFF_ALLMULTI;
3101 sc->sc_rfcr |= RFCR_AAM;
3102
3103 setit:
3104 #define FILTER_EMIT(addr, data) \
3105 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3106 delay(1); \
3107 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3108 delay(1)
3109
3110 /*
3111 * Disable receive filter, and program the node address.
3112 */
3113 cp = CLLADDR(ifp->if_sadl);
3114 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3115 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3116 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3117
3118 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3119 /*
3120 * Program the multicast hash table.
3121 */
3122 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3123 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3124 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3125 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3126 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3127 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3128 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3129 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3130 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3131 SIP_SIS900_REV(sc, SIS_REV_960) ||
3132 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3133 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3134 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3135 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3136 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3137 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3138 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3139 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3140 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3141 }
3142 }
3143 #undef FILTER_EMIT
3144
3145 /*
3146 * Re-enable the receiver filter.
3147 */
3148 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3149 }
3150
3151 /*
3152 * sip_dp83815_set_filter:
3153 *
3154 * Set up the receive filter.
3155 */
3156 static void
3157 sipcom_dp83815_set_filter(struct sip_softc *sc)
3158 {
3159 bus_space_tag_t st = sc->sc_st;
3160 bus_space_handle_t sh = sc->sc_sh;
3161 struct ethercom *ec = &sc->sc_ethercom;
3162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3163 struct ether_multi *enm;
3164 const u_int8_t *cp;
3165 struct ether_multistep step;
3166 u_int32_t crc, hash, slot, bit;
3167 #define MCHASH_NWORDS_83820 128
3168 #define MCHASH_NWORDS_83815 32
3169 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3170 u_int16_t mchash[MCHASH_NWORDS];
3171 int i;
3172
3173 /*
3174 * Initialize the prototype RFCR.
3175 * Enable the receive filter, and accept on
3176 * Perfect (destination address) Match
3177 * If IFF_BROADCAST, also accept all broadcast packets.
3178 * If IFF_PROMISC, accept all unicast packets (and later, set
3179 * IFF_ALLMULTI and accept all multicast, too).
3180 */
3181 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3182 if (ifp->if_flags & IFF_BROADCAST)
3183 sc->sc_rfcr |= RFCR_AAB;
3184 if (ifp->if_flags & IFF_PROMISC) {
3185 sc->sc_rfcr |= RFCR_AAP;
3186 goto allmulti;
3187 }
3188
3189 /*
3190 * Set up the DP83820/DP83815 multicast address filter by
3191 * passing all multicast addresses through a CRC generator,
3192 * and then using the high-order 11/9 bits as an index into
3193 * the 2048/512 bit multicast hash table. The high-order
3194 * 7/5 bits select the slot, while the low-order 4 bits
3195 * select the bit within the slot. Note that only the low
3196 * 16-bits of each filter word are used, and there are
3197 * 128/32 filter words.
3198 */
3199
3200 memset(mchash, 0, sizeof(mchash));
3201
3202 ifp->if_flags &= ~IFF_ALLMULTI;
3203 ETHER_FIRST_MULTI(step, ec, enm);
3204 if (enm == NULL)
3205 goto setit;
3206 while (enm != NULL) {
3207 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3208 /*
3209 * We must listen to a range of multicast addresses.
3210 * For now, just accept all multicasts, rather than
3211 * trying to set only those filter bits needed to match
3212 * the range. (At this time, the only use of address
3213 * ranges is for IP multicast routing, for which the
3214 * range is big enough to require all bits set.)
3215 */
3216 goto allmulti;
3217 }
3218
3219 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3220
3221 if (sc->sc_gigabit) {
3222 /* Just want the 11 most significant bits. */
3223 hash = crc >> 21;
3224 } else {
3225 /* Just want the 9 most significant bits. */
3226 hash = crc >> 23;
3227 }
3228
3229 slot = hash >> 4;
3230 bit = hash & 0xf;
3231
3232 /* Set the corresponding bit in the hash table. */
3233 mchash[slot] |= 1 << bit;
3234
3235 ETHER_NEXT_MULTI(step, enm);
3236 }
3237 sc->sc_rfcr |= RFCR_MHEN;
3238 goto setit;
3239
3240 allmulti:
3241 ifp->if_flags |= IFF_ALLMULTI;
3242 sc->sc_rfcr |= RFCR_AAM;
3243
3244 setit:
3245 #define FILTER_EMIT(addr, data) \
3246 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3247 delay(1); \
3248 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3249 delay(1)
3250
3251 /*
3252 * Disable receive filter, and program the node address.
3253 */
3254 cp = CLLADDR(ifp->if_sadl);
3255 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3256 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3257 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3258
3259 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3260 int nwords =
3261 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3262 /*
3263 * Program the multicast hash table.
3264 */
3265 for (i = 0; i < nwords; i++) {
3266 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3267 }
3268 }
3269 #undef FILTER_EMIT
3270 #undef MCHASH_NWORDS
3271 #undef MCHASH_NWORDS_83815
3272 #undef MCHASH_NWORDS_83820
3273
3274 /*
3275 * Re-enable the receiver filter.
3276 */
3277 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3278 }
3279
3280 /*
3281 * sip_dp83820_mii_readreg: [mii interface function]
3282 *
3283 * Read a PHY register on the MII of the DP83820.
3284 */
3285 static int
3286 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3287 {
3288 struct sip_softc *sc = (void *) self;
3289
3290 if (sc->sc_cfg & CFG_TBI_EN) {
3291 bus_addr_t tbireg;
3292 int rv;
3293
3294 if (phy != 0)
3295 return (0);
3296
3297 switch (reg) {
3298 case MII_BMCR: tbireg = SIP_TBICR; break;
3299 case MII_BMSR: tbireg = SIP_TBISR; break;
3300 case MII_ANAR: tbireg = SIP_TANAR; break;
3301 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3302 case MII_ANER: tbireg = SIP_TANER; break;
3303 case MII_EXTSR:
3304 /*
3305 * Don't even bother reading the TESR register.
3306 * The manual documents that the device has
3307 * 1000baseX full/half capability, but the
3308 * register itself seems read back 0 on some
3309 * boards. Just hard-code the result.
3310 */
3311 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3312
3313 default:
3314 return (0);
3315 }
3316
3317 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3318 if (tbireg == SIP_TBISR) {
3319 /* LINK and ACOMP are switched! */
3320 int val = rv;
3321
3322 rv = 0;
3323 if (val & TBISR_MR_LINK_STATUS)
3324 rv |= BMSR_LINK;
3325 if (val & TBISR_MR_AN_COMPLETE)
3326 rv |= BMSR_ACOMP;
3327
3328 /*
3329 * The manual claims this register reads back 0
3330 * on hard and soft reset. But we want to let
3331 * the gentbi driver know that we support auto-
3332 * negotiation, so hard-code this bit in the
3333 * result.
3334 */
3335 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3336 }
3337
3338 return (rv);
3339 }
3340
3341 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3342 }
3343
3344 /*
3345 * sip_dp83820_mii_writereg: [mii interface function]
3346 *
3347 * Write a PHY register on the MII of the DP83820.
3348 */
3349 static void
3350 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3351 {
3352 struct sip_softc *sc = (void *) self;
3353
3354 if (sc->sc_cfg & CFG_TBI_EN) {
3355 bus_addr_t tbireg;
3356
3357 if (phy != 0)
3358 return;
3359
3360 switch (reg) {
3361 case MII_BMCR: tbireg = SIP_TBICR; break;
3362 case MII_ANAR: tbireg = SIP_TANAR; break;
3363 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3364 default:
3365 return;
3366 }
3367
3368 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3369 return;
3370 }
3371
3372 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3373 }
3374
3375 /*
3376 * sip_dp83820_mii_statchg: [mii interface function]
3377 *
3378 * Callback from MII layer when media changes.
3379 */
3380 static void
3381 sipcom_dp83820_mii_statchg(struct device *self)
3382 {
3383 struct sip_softc *sc = (struct sip_softc *) self;
3384 struct mii_data *mii = &sc->sc_mii;
3385 u_int32_t cfg, pcr;
3386
3387 /*
3388 * Get flow control negotiation result.
3389 */
3390 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3391 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3392 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3393 mii->mii_media_active &= ~IFM_ETH_FMASK;
3394 }
3395
3396 /*
3397 * Update TXCFG for full-duplex operation.
3398 */
3399 if ((mii->mii_media_active & IFM_FDX) != 0)
3400 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3401 else
3402 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3403
3404 /*
3405 * Update RXCFG for full-duplex or loopback.
3406 */
3407 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3408 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3409 sc->sc_rxcfg |= RXCFG_ATX;
3410 else
3411 sc->sc_rxcfg &= ~RXCFG_ATX;
3412
3413 /*
3414 * Update CFG for MII/GMII.
3415 */
3416 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3417 cfg = sc->sc_cfg | CFG_MODE_1000;
3418 else
3419 cfg = sc->sc_cfg;
3420
3421 /*
3422 * 802.3x flow control.
3423 */
3424 pcr = 0;
3425 if (sc->sc_flowflags & IFM_FLOW) {
3426 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3427 pcr |= sc->sc_rx_flow_thresh;
3428 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3429 pcr |= PCR_PSEN | PCR_PS_MCAST;
3430 }
3431
3432 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3433 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3434 sc->sc_txcfg);
3435 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3436 sc->sc_rxcfg);
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3438 }
3439
3440 /*
3441 * sip_mii_bitbang_read: [mii bit-bang interface function]
3442 *
3443 * Read the MII serial port for the MII bit-bang module.
3444 */
3445 static u_int32_t
3446 sipcom_mii_bitbang_read(struct device *self)
3447 {
3448 struct sip_softc *sc = (void *) self;
3449
3450 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3451 }
3452
3453 /*
3454 * sip_mii_bitbang_write: [mii big-bang interface function]
3455 *
3456 * Write the MII serial port for the MII bit-bang module.
3457 */
3458 static void
3459 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3460 {
3461 struct sip_softc *sc = (void *) self;
3462
3463 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3464 }
3465
3466 /*
3467 * sip_sis900_mii_readreg: [mii interface function]
3468 *
3469 * Read a PHY register on the MII.
3470 */
3471 static int
3472 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3473 {
3474 struct sip_softc *sc = (struct sip_softc *) self;
3475 u_int32_t enphy;
3476
3477 /*
3478 * The PHY of recent SiS chipsets is accessed through bitbang
3479 * operations.
3480 */
3481 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3482 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3483 phy, reg);
3484
3485 #ifndef SIS900_MII_RESTRICT
3486 /*
3487 * The SiS 900 has only an internal PHY on the MII. Only allow
3488 * MII address 0.
3489 */
3490 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3491 return (0);
3492 #endif
3493
3494 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3495 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3496 ENPHY_RWCMD | ENPHY_ACCESS);
3497 do {
3498 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3499 } while (enphy & ENPHY_ACCESS);
3500 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3501 }
3502
3503 /*
3504 * sip_sis900_mii_writereg: [mii interface function]
3505 *
3506 * Write a PHY register on the MII.
3507 */
3508 static void
3509 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3510 {
3511 struct sip_softc *sc = (struct sip_softc *) self;
3512 u_int32_t enphy;
3513
3514 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3515 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3516 phy, reg, val);
3517 return;
3518 }
3519
3520 #ifndef SIS900_MII_RESTRICT
3521 /*
3522 * The SiS 900 has only an internal PHY on the MII. Only allow
3523 * MII address 0.
3524 */
3525 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3526 return;
3527 #endif
3528
3529 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3530 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3531 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3532 do {
3533 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3534 } while (enphy & ENPHY_ACCESS);
3535 }
3536
3537 /*
3538 * sip_sis900_mii_statchg: [mii interface function]
3539 *
3540 * Callback from MII layer when media changes.
3541 */
3542 static void
3543 sipcom_sis900_mii_statchg(struct device *self)
3544 {
3545 struct sip_softc *sc = (struct sip_softc *) self;
3546 struct mii_data *mii = &sc->sc_mii;
3547 u_int32_t flowctl;
3548
3549 /*
3550 * Get flow control negotiation result.
3551 */
3552 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3553 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3554 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3555 mii->mii_media_active &= ~IFM_ETH_FMASK;
3556 }
3557
3558 /*
3559 * Update TXCFG for full-duplex operation.
3560 */
3561 if ((mii->mii_media_active & IFM_FDX) != 0)
3562 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3563 else
3564 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3565
3566 /*
3567 * Update RXCFG for full-duplex or loopback.
3568 */
3569 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3570 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3571 sc->sc_rxcfg |= RXCFG_ATX;
3572 else
3573 sc->sc_rxcfg &= ~RXCFG_ATX;
3574
3575 /*
3576 * Update IMR for use of 802.3x flow control.
3577 */
3578 if (sc->sc_flowflags & IFM_FLOW) {
3579 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3580 flowctl = FLOWCTL_FLOWEN;
3581 } else {
3582 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3583 flowctl = 0;
3584 }
3585
3586 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3587 sc->sc_txcfg);
3588 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3589 sc->sc_rxcfg);
3590 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3591 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3592 }
3593
3594 /*
3595 * sip_dp83815_mii_readreg: [mii interface function]
3596 *
3597 * Read a PHY register on the MII.
3598 */
3599 static int
3600 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3601 {
3602 struct sip_softc *sc = (struct sip_softc *) self;
3603 u_int32_t val;
3604
3605 /*
3606 * The DP83815 only has an internal PHY. Only allow
3607 * MII address 0.
3608 */
3609 if (phy != 0)
3610 return (0);
3611
3612 /*
3613 * Apparently, after a reset, the DP83815 can take a while
3614 * to respond. During this recovery period, the BMSR returns
3615 * a value of 0. Catch this -- it's not supposed to happen
3616 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3617 * PHY to come back to life.
3618 *
3619 * This works out because the BMSR is the first register
3620 * read during the PHY probe process.
3621 */
3622 do {
3623 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3624 } while (reg == MII_BMSR && val == 0);
3625
3626 return (val & 0xffff);
3627 }
3628
3629 /*
3630 * sip_dp83815_mii_writereg: [mii interface function]
3631 *
3632 * Write a PHY register to the MII.
3633 */
3634 static void
3635 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3636 {
3637 struct sip_softc *sc = (struct sip_softc *) self;
3638
3639 /*
3640 * The DP83815 only has an internal PHY. Only allow
3641 * MII address 0.
3642 */
3643 if (phy != 0)
3644 return;
3645
3646 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3647 }
3648
3649 /*
3650 * sip_dp83815_mii_statchg: [mii interface function]
3651 *
3652 * Callback from MII layer when media changes.
3653 */
3654 static void
3655 sipcom_dp83815_mii_statchg(struct device *self)
3656 {
3657 struct sip_softc *sc = (struct sip_softc *) self;
3658
3659 /*
3660 * Update TXCFG for full-duplex operation.
3661 */
3662 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3663 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3664 else
3665 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3666
3667 /*
3668 * Update RXCFG for full-duplex or loopback.
3669 */
3670 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3671 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3672 sc->sc_rxcfg |= RXCFG_ATX;
3673 else
3674 sc->sc_rxcfg &= ~RXCFG_ATX;
3675
3676 /*
3677 * XXX 802.3x flow control.
3678 */
3679
3680 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3681 sc->sc_txcfg);
3682 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3683 sc->sc_rxcfg);
3684
3685 /*
3686 * Some DP83815s experience problems when used with short
3687 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3688 * sequence adjusts the DSP's signal attenuation to fix the
3689 * problem.
3690 */
3691 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3692 uint32_t reg;
3693
3694 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3695
3696 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3697 reg &= 0x0fff;
3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3699 delay(100);
3700 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3701 reg &= 0x00ff;
3702 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3703 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3704 0x00e8);
3705 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3707 reg | 0x20);
3708 }
3709
3710 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3711 }
3712 }
3713
3714 static void
3715 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3716 const struct pci_attach_args *pa, u_int8_t *enaddr)
3717 {
3718 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3719 u_int8_t cksum, *e, match;
3720 int i;
3721
3722 /*
3723 * EEPROM data format for the DP83820 can be found in
3724 * the DP83820 manual, section 4.2.4.
3725 */
3726
3727 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3728
3729 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3730 match = ~(match - 1);
3731
3732 cksum = 0x55;
3733 e = (u_int8_t *) eeprom_data;
3734 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3735 cksum += *e++;
3736
3737 if (cksum != match)
3738 printf("%s: Checksum (%x) mismatch (%x)",
3739 sc->sc_dev.dv_xname, cksum, match);
3740
3741 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3742 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3743 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3744 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3745 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3746 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3747 }
3748
3749 static void
3750 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3751 {
3752 int i;
3753
3754 /*
3755 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3756 * a reason, but I don't know it.
3757 */
3758 for (i = 0; i < 10; i++)
3759 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3760 }
3761
3762 static void
3763 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3764 const struct pci_attach_args *pa, u_int8_t *enaddr)
3765 {
3766 u_int16_t myea[ETHER_ADDR_LEN / 2];
3767
3768 switch (sc->sc_rev) {
3769 case SIS_REV_630S:
3770 case SIS_REV_630E:
3771 case SIS_REV_630EA1:
3772 case SIS_REV_630ET:
3773 case SIS_REV_635:
3774 /*
3775 * The MAC address for the on-board Ethernet of
3776 * the SiS 630 chipset is in the NVRAM. Kick
3777 * the chip into re-loading it from NVRAM, and
3778 * read the MAC address out of the filter registers.
3779 */
3780 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3781
3782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3783 RFCR_RFADDR_NODE0);
3784 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3785 0xffff;
3786
3787 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3788 RFCR_RFADDR_NODE2);
3789 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3790 0xffff;
3791
3792 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 RFCR_RFADDR_NODE4);
3794 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 0xffff;
3796 break;
3797
3798 case SIS_REV_960:
3799 {
3800 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3801 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3802
3803 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3804 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3805
3806 int waittime, i;
3807
3808 /* Allow to read EEPROM from LAN. It is shared
3809 * between a 1394 controller and the NIC and each
3810 * time we access it, we need to set SIS_EECMD_REQ.
3811 */
3812 SIS_SET_EROMAR(sc, EROMAR_REQ);
3813
3814 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3815 /* Force EEPROM to idle state. */
3816
3817 /*
3818 * XXX-cube This is ugly. I'll look for docs about it.
3819 */
3820 SIS_SET_EROMAR(sc, EROMAR_EECS);
3821 sipcom_sis900_eeprom_delay(sc);
3822 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3823 SIS_SET_EROMAR(sc, EROMAR_EESK);
3824 sipcom_sis900_eeprom_delay(sc);
3825 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3826 sipcom_sis900_eeprom_delay(sc);
3827 }
3828 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3829 sipcom_sis900_eeprom_delay(sc);
3830 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3831
3832 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3833 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3834 sizeof(myea) / sizeof(myea[0]), myea);
3835 break;
3836 }
3837 DELAY(1);
3838 }
3839
3840 /*
3841 * Set SIS_EECTL_CLK to high, so a other master
3842 * can operate on the i2c bus.
3843 */
3844 SIS_SET_EROMAR(sc, EROMAR_EESK);
3845
3846 /* Refuse EEPROM access by LAN */
3847 SIS_SET_EROMAR(sc, EROMAR_DONE);
3848 } break;
3849
3850 default:
3851 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3852 sizeof(myea) / sizeof(myea[0]), myea);
3853 }
3854
3855 enaddr[0] = myea[0] & 0xff;
3856 enaddr[1] = myea[0] >> 8;
3857 enaddr[2] = myea[1] & 0xff;
3858 enaddr[3] = myea[1] >> 8;
3859 enaddr[4] = myea[2] & 0xff;
3860 enaddr[5] = myea[2] >> 8;
3861 }
3862
3863 /* Table and macro to bit-reverse an octet. */
3864 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3865 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3866
3867 static void
3868 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3869 const struct pci_attach_args *pa, u_int8_t *enaddr)
3870 {
3871 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3872 u_int8_t cksum, *e, match;
3873 int i;
3874
3875 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3876 sizeof(eeprom_data[0]), eeprom_data);
3877
3878 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3879 match = ~(match - 1);
3880
3881 cksum = 0x55;
3882 e = (u_int8_t *) eeprom_data;
3883 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3884 cksum += *e++;
3885 }
3886 if (cksum != match) {
3887 printf("%s: Checksum (%x) mismatch (%x)",
3888 sc->sc_dev.dv_xname, cksum, match);
3889 }
3890
3891 /*
3892 * Unrolled because it makes slightly more sense this way.
3893 * The DP83815 stores the MAC address in bit 0 of word 6
3894 * through bit 15 of word 8.
3895 */
3896 ea = &eeprom_data[6];
3897 enaddr[0] = ((*ea & 0x1) << 7);
3898 ea++;
3899 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3900 enaddr[1] = ((*ea & 0x1FE) >> 1);
3901 enaddr[2] = ((*ea & 0x1) << 7);
3902 ea++;
3903 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3904 enaddr[3] = ((*ea & 0x1FE) >> 1);
3905 enaddr[4] = ((*ea & 0x1) << 7);
3906 ea++;
3907 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3908 enaddr[5] = ((*ea & 0x1FE) >> 1);
3909
3910 /*
3911 * In case that's not weird enough, we also need to reverse
3912 * the bits in each byte. This all actually makes more sense
3913 * if you think about the EEPROM storage as an array of bits
3914 * being shifted into bytes, but that's not how we're looking
3915 * at it here...
3916 */
3917 for (i = 0; i < 6 ;i++)
3918 enaddr[i] = bbr(enaddr[i]);
3919 }
3920
3921 /*
3922 * sip_mediastatus: [ifmedia interface function]
3923 *
3924 * Get the current interface media status.
3925 */
3926 static void
3927 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3928 {
3929 struct sip_softc *sc = ifp->if_softc;
3930
3931 ether_mediastatus(ifp, ifmr);
3932 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3933 sc->sc_flowflags;
3934 }
3935