if_sip.c revision 1.116 1 /* $NetBSD: if_sip.c,v 1.116 2007/12/14 01:55:35 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.116 2007/12/14 01:55:35 dyoung Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 /*
136 * Transmit descriptor list size. This is arbitrary, but allocate
137 * enough descriptors for 128 pending transmissions, and 8 segments
138 * per packet (64 for DP83820 for jumbo frames).
139 *
140 * This MUST work out to a power of 2.
141 */
142 #define GSIP_NTXSEGS_ALLOC 16
143 #define SIP_NTXSEGS_ALLOC 8
144
145 #define SIP_TXQUEUELEN 256
146 #define MAX_SIP_NTXDESC \
147 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
148
149 /*
150 * Receive descriptor list size. We have one Rx buffer per incoming
151 * packet, so this logic is a little simpler.
152 *
153 * Actually, on the DP83820, we allow the packet to consume more than
154 * one buffer, in order to support jumbo Ethernet frames. In that
155 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
156 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
157 * so we'd better be quick about handling receive interrupts.
158 */
159 #define GSIP_NRXDESC 256
160 #define SIP_NRXDESC 128
161
162 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
163
164 /*
165 * Control structures are DMA'd to the SiS900 chip. We allocate them in
166 * a single clump that maps to a single DMA segment to make several things
167 * easier.
168 */
169 struct sip_control_data {
170 /*
171 * The transmit descriptors.
172 */
173 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
174
175 /*
176 * The receive descriptors.
177 */
178 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
179 };
180
181 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
182 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
183 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
184
185 /*
186 * Software state for transmit jobs.
187 */
188 struct sip_txsoft {
189 struct mbuf *txs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t txs_dmamap; /* our DMA map */
191 int txs_firstdesc; /* first descriptor in packet */
192 int txs_lastdesc; /* last descriptor in packet */
193 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
194 };
195
196 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
197
198 /*
199 * Software state for receive jobs.
200 */
201 struct sip_rxsoft {
202 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
203 bus_dmamap_t rxs_dmamap; /* our DMA map */
204 };
205
206 enum sip_attach_stage {
207 SIP_ATTACH_FIN = 0
208 , SIP_ATTACH_CREATE_RXMAP
209 , SIP_ATTACH_CREATE_TXMAP
210 , SIP_ATTACH_LOAD_MAP
211 , SIP_ATTACH_CREATE_MAP
212 , SIP_ATTACH_MAP_MEM
213 , SIP_ATTACH_ALLOC_MEM
214 , SIP_ATTACH_BEGIN
215 };
216
217 /*
218 * Software state per device.
219 */
220 struct sip_softc {
221 struct device sc_dev; /* generic device information */
222 bus_space_tag_t sc_st; /* bus space tag */
223 bus_space_handle_t sc_sh; /* bus space handle */
224 bus_dma_tag_t sc_dmat; /* bus DMA tag */
225 pci_chipset_tag_t sc_pc;
226 bus_dma_segment_t sc_seg;
227 struct ethercom sc_ethercom; /* ethernet common data */
228 void *sc_sdhook; /* shutdown hook */
229
230 const struct sip_product *sc_model; /* which model are we? */
231 int sc_gigabit; /* 1: 83820, 0: other */
232 int sc_rev; /* chip revision */
233
234 void *sc_ih; /* interrupt cookie */
235
236 struct mii_data sc_mii; /* MII/media information */
237
238 callout_t sc_tick_ch; /* tick callout */
239
240 bus_dmamap_t sc_cddmamap; /* control data DMA map */
241 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
242
243 /*
244 * Software state for transmit and receive descriptors.
245 */
246 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
247 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
248
249 /*
250 * Control data structures.
251 */
252 struct sip_control_data *sc_control_data;
253 #define sc_txdescs sc_control_data->scd_txdescs
254 #define sc_rxdescs sc_control_data->scd_rxdescs
255
256 #ifdef SIP_EVENT_COUNTERS
257 /*
258 * Event counters.
259 */
260 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
261 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
262 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
263 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
264 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
265 struct evcnt sc_ev_rxintr; /* Rx interrupts */
266 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
267 struct evcnt sc_ev_rxpause; /* PAUSE received */
268 /* DP83820 only */
269 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
270 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
271 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
272 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
273 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
274 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
275 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
276 #endif /* SIP_EVENT_COUNTERS */
277
278 u_int32_t sc_txcfg; /* prototype TXCFG register */
279 u_int32_t sc_rxcfg; /* prototype RXCFG register */
280 u_int32_t sc_imr; /* prototype IMR register */
281 u_int32_t sc_rfcr; /* prototype RFCR register */
282
283 u_int32_t sc_cfg; /* prototype CFG register */
284
285 u_int32_t sc_gpior; /* prototype GPIOR register */
286
287 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
288 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
289
290 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
291
292 int sc_flowflags; /* 802.3x flow control flags */
293 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
294 int sc_paused; /* paused indication */
295
296 int sc_txfree; /* number of free Tx descriptors */
297 int sc_txnext; /* next ready Tx descriptor */
298 int sc_txwin; /* Tx descriptors since last intr */
299
300 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
301 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
302
303 /* values of interface state at last init */
304 struct {
305 /* if_capenable */
306 uint64_t if_capenable;
307 /* ec_capenable */
308 int ec_capenable;
309 /* VLAN_ATTACHED */
310 int is_vlan;
311 } sc_prev;
312
313 short sc_if_flags;
314
315 int sc_rxptr; /* next ready Rx descriptor/descsoft */
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321
322 int sc_ntxdesc;
323 int sc_ntxdesc_mask;
324 int sc_ntxsegs;
325
326 int sc_nrxdesc;
327 int sc_nrxdesc_mask;
328 int sc_rxbuf_len;
329
330 int sc_suspended;
331
332 #if NRND > 0
333 rndsource_element_t rnd_source; /* random source */
334 #endif
335 };
336
337 static inline int
338 sip_nexttx(const struct sip_softc *sc, int x)
339 {
340 return (x + 1) & sc->sc_ntxdesc_mask;
341 }
342
343 static inline int
344 sip_nextrx(const struct sip_softc *sc, int x)
345 {
346 return (x + 1) & sc->sc_nrxdesc_mask;
347 }
348
349 /* 83820 only */
350 #define SIP_RXCHAIN_RESET(sc) \
351 do { \
352 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
353 *(sc)->sc_rxtailp = NULL; \
354 (sc)->sc_rxlen = 0; \
355 } while (/*CONSTCOND*/0)
356
357 /* 83820 only */
358 #define SIP_RXCHAIN_LINK(sc, m) \
359 do { \
360 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
361 (sc)->sc_rxtailp = &(m)->m_next; \
362 } while (/*CONSTCOND*/0)
363
364 #ifdef SIP_EVENT_COUNTERS
365 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
366 #else
367 #define SIP_EVCNT_INCR(ev) /* nothing */
368 #endif
369
370 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
371 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
372
373 #define SIP_CDTXSYNC(sc, x, n, ops) \
374 do { \
375 int __x, __n; \
376 \
377 __x = (x); \
378 __n = (n); \
379 \
380 /* If it will wrap around, sync to the end of the ring. */ \
381 if ((__x + __n) > sc->sc_ntxdesc) { \
382 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
383 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
384 (sc->sc_ntxdesc - __x), (ops)); \
385 __n -= (sc->sc_ntxdesc - __x); \
386 __x = 0; \
387 } \
388 \
389 /* Now sync whatever is left. */ \
390 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
391 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
392 } while (0)
393
394 #define SIP_CDRXSYNC(sc, x, ops) \
395 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
396 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
397
398 static inline void
399 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
400 {
401 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
402 struct sip_desc *sipd = &sc->sc_rxdescs[x];
403
404 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
405 sipd->sipd_bufptr = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
406 sipd->sipd_cmdsts = htole32(CMDSTS_INTR |
407 (sc->sc_rxbuf_len & CMDSTS_SIZE_MASK));
408 sipd->sipd_extsts = 0;
409 SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
410 }
411
412 #define SIP_CHIP_VERS(sc, v, p, r) \
413 ((sc)->sc_model->sip_vendor == (v) && \
414 (sc)->sc_model->sip_product == (p) && \
415 (sc)->sc_rev == (r))
416
417 #define SIP_CHIP_MODEL(sc, v, p) \
418 ((sc)->sc_model->sip_vendor == (v) && \
419 (sc)->sc_model->sip_product == (p))
420
421 #define SIP_SIS900_REV(sc, rev) \
422 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
423
424 #define SIP_TIMEOUT 1000
425
426 static void sipcom_start(struct ifnet *);
427 static void sipcom_watchdog(struct ifnet *);
428 static int sipcom_ioctl(struct ifnet *, u_long, void *);
429 static int sipcom_init(struct ifnet *);
430 static void sipcom_stop(struct ifnet *, int);
431
432 static void sipcom_shutdown(void *);
433
434 static bool sipcom_reset(struct sip_softc *);
435 static void sipcom_rxdrain(struct sip_softc *);
436 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
437 static void sipcom_read_eeprom(struct sip_softc *, int, int,
438 u_int16_t *);
439 static void sipcom_tick(void *);
440
441 static void sipcom_sis900_set_filter(struct sip_softc *);
442 static void sipcom_dp83815_set_filter(struct sip_softc *);
443
444 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
445 const struct pci_attach_args *, u_int8_t *);
446 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
447 static void sipcom_sis900_read_macaddr(struct sip_softc *,
448 const struct pci_attach_args *, u_int8_t *);
449 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
450 const struct pci_attach_args *, u_int8_t *);
451
452 static int sipcom_intr(void *);
453 static void sipcom_txintr(struct sip_softc *);
454 static void SIP_DECL(rxintr)(struct sip_softc *);
455
456 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
457 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
458 static void sipcom_dp83820_mii_statchg(struct device *);
459
460 static int sipcom_sis900_mii_readreg(struct device *, int, int);
461 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
462 static void sipcom_sis900_mii_statchg(struct device *);
463
464 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
465 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
466 static void sipcom_dp83815_mii_statchg(struct device *);
467
468 static int sipcom_mediachange(struct ifnet *);
469 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
470
471 static int sipcom_match(struct device *, struct cfdata *, void *);
472 static void sipcom_attach(struct device *, struct device *, void *);
473 static void sipcom_do_detach(device_t, enum sip_attach_stage);
474 static int sipcom_detach(device_t, int);
475 static bool sipcom_resume(device_t);
476 static bool sipcom_suspend(device_t);
477
478 int SIP_DECL(copy_small) = 0;
479
480 #ifdef DP83820
481 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
482 sipcom_match, sipcom_attach, sipcom_detach, NULL);
483 #else
484 CFATTACH_DECL(sip, sizeof(struct sip_softc),
485 sipcom_match, sipcom_attach, sipcom_detach, NULL);
486 #endif
487
488 /*
489 * Descriptions of the variants of the SiS900.
490 */
491 struct sip_variant {
492 int (*sipv_mii_readreg)(struct device *, int, int);
493 void (*sipv_mii_writereg)(struct device *, int, int, int);
494 void (*sipv_mii_statchg)(struct device *);
495 void (*sipv_set_filter)(struct sip_softc *);
496 void (*sipv_read_macaddr)(struct sip_softc *,
497 const struct pci_attach_args *, u_int8_t *);
498 };
499
500 static u_int32_t sipcom_mii_bitbang_read(struct device *);
501 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
502
503 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
504 sipcom_mii_bitbang_read,
505 sipcom_mii_bitbang_write,
506 {
507 EROMAR_MDIO, /* MII_BIT_MDO */
508 EROMAR_MDIO, /* MII_BIT_MDI */
509 EROMAR_MDC, /* MII_BIT_MDC */
510 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
511 0, /* MII_BIT_DIR_PHY_HOST */
512 }
513 };
514
515 static const struct sip_variant sipcom_variant_dp83820 = {
516 sipcom_dp83820_mii_readreg,
517 sipcom_dp83820_mii_writereg,
518 sipcom_dp83820_mii_statchg,
519 sipcom_dp83815_set_filter,
520 sipcom_dp83820_read_macaddr,
521 };
522
523 static const struct sip_variant sipcom_variant_sis900 = {
524 sipcom_sis900_mii_readreg,
525 sipcom_sis900_mii_writereg,
526 sipcom_sis900_mii_statchg,
527 sipcom_sis900_set_filter,
528 sipcom_sis900_read_macaddr,
529 };
530
531 static const struct sip_variant sipcom_variant_dp83815 = {
532 sipcom_dp83815_mii_readreg,
533 sipcom_dp83815_mii_writereg,
534 sipcom_dp83815_mii_statchg,
535 sipcom_dp83815_set_filter,
536 sipcom_dp83815_read_macaddr,
537 };
538
539
540 /*
541 * Devices supported by this driver.
542 */
543 static const struct sip_product {
544 pci_vendor_id_t sip_vendor;
545 pci_product_id_t sip_product;
546 const char *sip_name;
547 const struct sip_variant *sip_variant;
548 const int sip_gigabit;
549 } sipcom_products[] = {
550 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
551 "NatSemi DP83820 Gigabit Ethernet",
552 &sipcom_variant_dp83820, 1 },
553 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
554 "SiS 900 10/100 Ethernet",
555 &sipcom_variant_sis900, 0 },
556 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
557 "SiS 7016 10/100 Ethernet",
558 &sipcom_variant_sis900, 0 },
559
560 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
561 "NatSemi DP83815 10/100 Ethernet",
562 &sipcom_variant_dp83815, 0 },
563
564 { 0, 0,
565 NULL,
566 NULL, 0 },
567 };
568
569 static const struct sip_product *
570 sipcom_lookup(const struct pci_attach_args *pa)
571 {
572 const struct sip_product *sip;
573
574 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
575 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
576 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
577 return (sip);
578 }
579 return (NULL);
580 }
581
582 /*
583 * I really hate stupid hardware vendors. There's a bit in the EEPROM
584 * which indicates if the card can do 64-bit data transfers. Unfortunately,
585 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
586 * which means we try to use 64-bit data transfers on those cards if we
587 * happen to be plugged into a 32-bit slot.
588 *
589 * What we do is use this table of cards known to be 64-bit cards. If
590 * you have a 64-bit card who's subsystem ID is not listed in this table,
591 * send the output of "pcictl dump ..." of the device to me so that your
592 * card will use the 64-bit data path when plugged into a 64-bit slot.
593 *
594 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
595 * June 30, 2002
596 */
597 static int
598 sipcom_check_64bit(const struct pci_attach_args *pa)
599 {
600 static const struct {
601 pci_vendor_id_t c64_vendor;
602 pci_product_id_t c64_product;
603 } card64[] = {
604 /* Asante GigaNIX */
605 { 0x128a, 0x0002 },
606
607 /* Accton EN1407-T, Planex GN-1000TE */
608 { 0x1113, 0x1407 },
609
610 /* Netgear GA-621 */
611 { 0x1385, 0x621a },
612
613 /* SMC EZ Card */
614 { 0x10b8, 0x9462 },
615
616 { 0, 0}
617 };
618 pcireg_t subsys;
619 int i;
620
621 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
622
623 for (i = 0; card64[i].c64_vendor != 0; i++) {
624 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
625 PCI_PRODUCT(subsys) == card64[i].c64_product)
626 return (1);
627 }
628
629 return (0);
630 }
631
632 static int
633 sipcom_match(struct device *parent, struct cfdata *cf,
634 void *aux)
635 {
636 struct pci_attach_args *pa = aux;
637
638 if (sipcom_lookup(pa) != NULL)
639 return (1);
640
641 return (0);
642 }
643
644 static void
645 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
646 {
647 u_int32_t reg;
648 int i;
649
650 /*
651 * Cause the chip to load configuration data from the EEPROM.
652 */
653 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
654 for (i = 0; i < 10000; i++) {
655 delay(10);
656 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
657 PTSCR_EELOAD_EN) == 0)
658 break;
659 }
660 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
661 PTSCR_EELOAD_EN) {
662 printf("%s: timeout loading configuration from EEPROM\n",
663 sc->sc_dev.dv_xname);
664 return;
665 }
666
667 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
668
669 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
670 if (reg & CFG_PCI64_DET) {
671 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
672 /*
673 * Check to see if this card is 64-bit. If so, enable 64-bit
674 * data transfers.
675 *
676 * We can't use the DATA64_EN bit in the EEPROM, because
677 * vendors of 32-bit cards fail to clear that bit in many
678 * cases (yet the card still detects that it's in a 64-bit
679 * slot; go figure).
680 */
681 if (sipcom_check_64bit(pa)) {
682 sc->sc_cfg |= CFG_DATA64_EN;
683 printf(", using 64-bit data transfers");
684 }
685 printf("\n");
686 }
687
688 /*
689 * XXX Need some PCI flags indicating support for
690 * XXX 64-bit addressing.
691 */
692 #if 0
693 if (reg & CFG_M64ADDR)
694 sc->sc_cfg |= CFG_M64ADDR;
695 if (reg & CFG_T64ADDR)
696 sc->sc_cfg |= CFG_T64ADDR;
697 #endif
698
699 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
700 const char *sep = "";
701 printf("%s: using ", sc->sc_dev.dv_xname);
702 if (reg & CFG_EXT_125) {
703 sc->sc_cfg |= CFG_EXT_125;
704 printf("%s125MHz clock", sep);
705 sep = ", ";
706 }
707 if (reg & CFG_TBI_EN) {
708 sc->sc_cfg |= CFG_TBI_EN;
709 printf("%sten-bit interface", sep);
710 sep = ", ";
711 }
712 printf("\n");
713 }
714 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
715 (reg & CFG_MRM_DIS) != 0)
716 sc->sc_cfg |= CFG_MRM_DIS;
717 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
718 (reg & CFG_MWI_DIS) != 0)
719 sc->sc_cfg |= CFG_MWI_DIS;
720
721 /*
722 * Use the extended descriptor format on the DP83820. This
723 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
724 * checksumming.
725 */
726 sc->sc_cfg |= CFG_EXTSTS_EN;
727 }
728
729 static int
730 sipcom_detach(device_t self, int flags)
731 {
732 sipcom_do_detach(self, SIP_ATTACH_FIN);
733 return 0;
734 }
735
736 static void
737 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
738 {
739 int i;
740 struct sip_softc *sc = device_private(self);
741 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
742
743 /*
744 * Free any resources we've allocated during attach.
745 * Do this in reverse order and fall through.
746 */
747 switch (stage) {
748 case SIP_ATTACH_FIN:
749 sipcom_stop(ifp, 1);
750 pmf_device_deregister(self);
751 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
752 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
753
754 if (sc->sc_sdhook != NULL)
755 shutdownhook_disestablish(sc->sc_sdhook);
756
757 /*FALLTHROUGH*/
758 case SIP_ATTACH_CREATE_RXMAP:
759 for (i = 0; i < sc->sc_nrxdesc; i++) {
760 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
761 bus_dmamap_destroy(sc->sc_dmat,
762 sc->sc_rxsoft[i].rxs_dmamap);
763 }
764 /*FALLTHROUGH*/
765 case SIP_ATTACH_CREATE_TXMAP:
766 for (i = 0; i < SIP_TXQUEUELEN; i++) {
767 if (sc->sc_txsoft[i].txs_dmamap != NULL)
768 bus_dmamap_destroy(sc->sc_dmat,
769 sc->sc_txsoft[i].txs_dmamap);
770 }
771 /*FALLTHROUGH*/
772 case SIP_ATTACH_LOAD_MAP:
773 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
774 /*FALLTHROUGH*/
775 case SIP_ATTACH_CREATE_MAP:
776 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
777 /*FALLTHROUGH*/
778 case SIP_ATTACH_MAP_MEM:
779 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
780 sizeof(struct sip_control_data));
781 /*FALLTHROUGH*/
782 case SIP_ATTACH_ALLOC_MEM:
783 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
784 break;
785 default:
786 break;
787 }
788 return;
789 }
790
791 static bool
792 sipcom_suspend(device_t self)
793 {
794 struct sip_softc *sc = device_private(self);
795
796 sc->sc_suspended = 1;
797 return true;
798 }
799
800 static bool
801 sipcom_resume(device_t self)
802 {
803 struct sip_softc *sc = device_private(self);
804
805 if (!sipcom_reset(sc))
806 return false;
807
808 sc->sc_suspended = 0;
809 return true;
810 }
811
812 static void
813 sipcom_attach(struct device *parent, struct device *self, void *aux)
814 {
815 struct sip_softc *sc = (struct sip_softc *) self;
816 struct pci_attach_args *pa = aux;
817 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
818 pci_chipset_tag_t pc = pa->pa_pc;
819 pci_intr_handle_t ih;
820 const char *intrstr = NULL;
821 bus_space_tag_t iot, memt;
822 bus_space_handle_t ioh, memh;
823 int ioh_valid, memh_valid;
824 int i, rseg, error;
825 const struct sip_product *sip;
826 u_int8_t enaddr[ETHER_ADDR_LEN];
827 pcireg_t pmreg;
828 pcireg_t memtype;
829 bus_size_t tx_dmamap_size;
830 int ntxsegs_alloc;
831
832 callout_init(&sc->sc_tick_ch, 0);
833
834 sip = sipcom_lookup(pa);
835 if (sip == NULL) {
836 printf("\n");
837 panic("%s: impossible", __func__);
838 }
839 sc->sc_gigabit = sip->sip_gigabit;
840
841 sc->sc_pc = pc;
842
843 if (sc->sc_gigabit) {
844 sc->sc_rxbuf_len = MCLBYTES - 8;
845 tx_dmamap_size = ETHER_MAX_LEN_JUMBO;
846 sc->sc_ntxsegs = 64;
847 ntxsegs_alloc = GSIP_NTXSEGS_ALLOC;
848 sc->sc_nrxdesc = GSIP_NRXDESC;
849 } else {
850 sc->sc_rxbuf_len = MCLBYTES - 1; /* field width */
851 tx_dmamap_size = MCLBYTES;
852 sc->sc_ntxsegs = 16;
853 ntxsegs_alloc = SIP_NTXSEGS_ALLOC;
854 sc->sc_nrxdesc = SIP_NRXDESC;
855 }
856 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
857 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
858 sc->sc_nrxdesc_mask = sc->sc_nrxdesc - 1;
859
860 sc->sc_rev = PCI_REVISION(pa->pa_class);
861
862 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
863
864 sc->sc_model = sip;
865
866 /*
867 * XXX Work-around broken PXE firmware on some boards.
868 *
869 * The DP83815 shares an address decoder with the MEM BAR
870 * and the ROM BAR. Make sure the ROM BAR is disabled,
871 * so that memory mapped access works.
872 */
873 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
874 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
875 ~PCI_MAPREG_ROM_ENABLE);
876
877 /*
878 * Map the device.
879 */
880 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
881 PCI_MAPREG_TYPE_IO, 0,
882 &iot, &ioh, NULL, NULL) == 0);
883 if (sc->sc_gigabit) {
884 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
885 switch (memtype) {
886 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
887 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
888 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
889 memtype, 0, &memt, &memh, NULL, NULL) == 0);
890 break;
891 default:
892 memh_valid = 0;
893 }
894 } else {
895 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
896 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
897 &memt, &memh, NULL, NULL) == 0);
898 }
899
900 if (memh_valid) {
901 sc->sc_st = memt;
902 sc->sc_sh = memh;
903 } else if (ioh_valid) {
904 sc->sc_st = iot;
905 sc->sc_sh = ioh;
906 } else {
907 printf("%s: unable to map device registers\n",
908 sc->sc_dev.dv_xname);
909 return;
910 }
911
912 sc->sc_dmat = pa->pa_dmat;
913
914 /*
915 * Make sure bus mastering is enabled. Also make sure
916 * Write/Invalidate is enabled if we're allowed to use it.
917 */
918 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
919 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
920 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
921 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
922 pmreg | PCI_COMMAND_MASTER_ENABLE);
923
924 /* power up chip */
925 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
926 NULL)) && error != EOPNOTSUPP) {
927 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
928 error);
929 return;
930 }
931
932 /*
933 * Map and establish our interrupt.
934 */
935 if (pci_intr_map(pa, &ih)) {
936 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
937 return;
938 }
939 intrstr = pci_intr_string(pc, ih);
940 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
941 if (sc->sc_ih == NULL) {
942 printf("%s: unable to establish interrupt",
943 sc->sc_dev.dv_xname);
944 if (intrstr != NULL)
945 printf(" at %s", intrstr);
946 printf("\n");
947 return;
948 }
949 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
950
951 SIMPLEQ_INIT(&sc->sc_txfreeq);
952 SIMPLEQ_INIT(&sc->sc_txdirtyq);
953
954 /*
955 * Allocate the control data structures, and create and load the
956 * DMA map for it.
957 */
958 if ((error = bus_dmamem_alloc(sc->sc_dmat,
959 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
960 &rseg, 0)) != 0) {
961 printf("%s: unable to allocate control data, error = %d\n",
962 sc->sc_dev.dv_xname, error);
963 return sipcom_do_detach(self, -1);
964 }
965
966 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
967 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
968 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
969 printf("%s: unable to map control data, error = %d\n",
970 sc->sc_dev.dv_xname, error);
971 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
972 }
973
974 if ((error = bus_dmamap_create(sc->sc_dmat,
975 sizeof(struct sip_control_data), 1,
976 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
977 printf("%s: unable to create control data DMA map, "
978 "error = %d\n", sc->sc_dev.dv_xname, error);
979 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
980 }
981
982 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
983 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
984 0)) != 0) {
985 printf("%s: unable to load control data DMA map, error = %d\n",
986 sc->sc_dev.dv_xname, error);
987 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
988 }
989
990 /*
991 * Create the transmit buffer DMA maps.
992 */
993 for (i = 0; i < SIP_TXQUEUELEN; i++) {
994 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
995 sc->sc_ntxsegs, MCLBYTES, 0, 0,
996 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
997 printf("%s: unable to create tx DMA map %d, "
998 "error = %d\n", sc->sc_dev.dv_xname, i, error);
999 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1000 }
1001 }
1002
1003 /*
1004 * Create the receive buffer DMA maps.
1005 */
1006 for (i = 0; i < sc->sc_nrxdesc; i++) {
1007 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1008 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1009 printf("%s: unable to create rx DMA map %d, "
1010 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1011 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1012 }
1013 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1014 }
1015
1016 /*
1017 * Reset the chip to a known state.
1018 */
1019 sipcom_reset(sc);
1020
1021 /*
1022 * Read the Ethernet address from the EEPROM. This might
1023 * also fetch other stuff from the EEPROM and stash it
1024 * in the softc.
1025 */
1026 sc->sc_cfg = 0;
1027 if (!sc->sc_gigabit) {
1028 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1029 SIP_SIS900_REV(sc,SIS_REV_900B))
1030 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1031
1032 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1033 SIP_SIS900_REV(sc,SIS_REV_960) ||
1034 SIP_SIS900_REV(sc,SIS_REV_900B))
1035 sc->sc_cfg |=
1036 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1037 CFG_EDBMASTEN);
1038 }
1039
1040 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1041
1042 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1043 ether_sprintf(enaddr));
1044
1045 /*
1046 * Initialize the configuration register: aggressive PCI
1047 * bus request algorithm, default backoff, default OW timer,
1048 * default parity error detection.
1049 *
1050 * NOTE: "Big endian mode" is useless on the SiS900 and
1051 * friends -- it affects packet data, not descriptors.
1052 */
1053 if (sc->sc_gigabit)
1054 sipcom_dp83820_attach(sc, pa);
1055
1056 /*
1057 * Initialize our media structures and probe the MII.
1058 */
1059 sc->sc_mii.mii_ifp = ifp;
1060 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1061 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1062 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1063 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
1064 sipcom_mediastatus);
1065
1066 /*
1067 * XXX We cannot handle flow control on the DP83815.
1068 */
1069 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1070 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1071 MII_OFFSET_ANY, 0);
1072 else
1073 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1074 MII_OFFSET_ANY, MIIF_DOPAUSE);
1075 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1076 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1077 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1078 } else
1079 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1080
1081 ifp = &sc->sc_ethercom.ec_if;
1082 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1083 ifp->if_softc = sc;
1084 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1085 sc->sc_if_flags = ifp->if_flags;
1086 ifp->if_ioctl = sipcom_ioctl;
1087 ifp->if_start = sipcom_start;
1088 ifp->if_watchdog = sipcom_watchdog;
1089 ifp->if_init = sipcom_init;
1090 ifp->if_stop = sipcom_stop;
1091 IFQ_SET_READY(&ifp->if_snd);
1092
1093 /*
1094 * We can support 802.1Q VLAN-sized frames.
1095 */
1096 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1097
1098 if (sc->sc_gigabit) {
1099 /*
1100 * And the DP83820 can do VLAN tagging in hardware, and
1101 * support the jumbo Ethernet MTU.
1102 */
1103 sc->sc_ethercom.ec_capabilities |=
1104 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1105
1106 /*
1107 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1108 * in hardware.
1109 */
1110 ifp->if_capabilities |=
1111 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1112 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1113 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1114 }
1115
1116 /*
1117 * Attach the interface.
1118 */
1119 if_attach(ifp);
1120 ether_ifattach(ifp, enaddr);
1121 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1122 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1123 sc->sc_prev.if_capenable = ifp->if_capenable;
1124 #if NRND > 0
1125 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1126 RND_TYPE_NET, 0);
1127 #endif
1128
1129 /*
1130 * The number of bytes that must be available in
1131 * the Tx FIFO before the bus master can DMA more
1132 * data into the FIFO.
1133 */
1134 sc->sc_tx_fill_thresh = 64 / 32;
1135
1136 /*
1137 * Start at a drain threshold of 512 bytes. We will
1138 * increase it if a DMA underrun occurs.
1139 *
1140 * XXX The minimum value of this variable should be
1141 * tuned. We may be able to improve performance
1142 * by starting with a lower value. That, however,
1143 * may trash the first few outgoing packets if the
1144 * PCI bus is saturated.
1145 */
1146 if (sc->sc_gigabit)
1147 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1148 else
1149 sc->sc_tx_drain_thresh = 1504 / 32;
1150
1151 /*
1152 * Initialize the Rx FIFO drain threshold.
1153 *
1154 * This is in units of 8 bytes.
1155 *
1156 * We should never set this value lower than 2; 14 bytes are
1157 * required to filter the packet.
1158 */
1159 sc->sc_rx_drain_thresh = 128 / 8;
1160
1161 #ifdef SIP_EVENT_COUNTERS
1162 /*
1163 * Attach event counters.
1164 */
1165 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1166 NULL, sc->sc_dev.dv_xname, "txsstall");
1167 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1168 NULL, sc->sc_dev.dv_xname, "txdstall");
1169 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1170 NULL, sc->sc_dev.dv_xname, "txforceintr");
1171 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1172 NULL, sc->sc_dev.dv_xname, "txdintr");
1173 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1174 NULL, sc->sc_dev.dv_xname, "txiintr");
1175 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1176 NULL, sc->sc_dev.dv_xname, "rxintr");
1177 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1178 NULL, sc->sc_dev.dv_xname, "hiberr");
1179 if (!sc->sc_gigabit) {
1180 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1181 NULL, sc->sc_dev.dv_xname, "rxpause");
1182 } else {
1183 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1184 NULL, sc->sc_dev.dv_xname, "rxpause");
1185 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1186 NULL, sc->sc_dev.dv_xname, "txpause");
1187 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1188 NULL, sc->sc_dev.dv_xname, "rxipsum");
1189 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1190 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1191 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1192 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1193 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1194 NULL, sc->sc_dev.dv_xname, "txipsum");
1195 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1196 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1197 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1198 NULL, sc->sc_dev.dv_xname, "txudpsum");
1199 }
1200 #endif /* SIP_EVENT_COUNTERS */
1201
1202 if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1203 aprint_error_dev(self, "couldn't establish power handler\n");
1204 else
1205 pmf_class_network_register(self, ifp);
1206
1207 /*
1208 * Make sure the interface is shutdown during reboot.
1209 */
1210 sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
1211 if (sc->sc_sdhook == NULL)
1212 printf("%s: WARNING: unable to establish shutdown hook\n",
1213 sc->sc_dev.dv_xname);
1214 }
1215
1216 /*
1217 * sip_shutdown:
1218 *
1219 * Make sure the interface is stopped at reboot time.
1220 */
1221 static void
1222 sipcom_shutdown(void *arg)
1223 {
1224 struct sip_softc *sc = arg;
1225
1226 sipcom_stop(&sc->sc_ethercom.ec_if, 1);
1227 }
1228
1229 static inline void
1230 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1231 uint64_t capenable)
1232 {
1233 struct m_tag *mtag;
1234 u_int32_t extsts;
1235 /*
1236 * If VLANs are enabled and the packet has a VLAN tag, set
1237 * up the descriptor to encapsulate the packet for us.
1238 *
1239 * This apparently has to be on the last descriptor of
1240 * the packet.
1241 */
1242
1243 /*
1244 * Byte swapping is tricky. We need to provide the tag
1245 * in a network byte order. On a big-endian machine,
1246 * the byteorder is correct, but we need to swap it
1247 * anyway, because this will be undone by the outside
1248 * htole32(). That's why there must be an
1249 * unconditional swap instead of htons() inside.
1250 */
1251 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1252 sc->sc_txdescs[lasttx].sipd_extsts |=
1253 htole32(EXTSTS_VPKT |
1254 (bswap16(VLAN_TAG_VALUE(mtag)) &
1255 EXTSTS_VTCI));
1256 }
1257
1258 /*
1259 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1260 * checksumming, set up the descriptor to do this work
1261 * for us.
1262 *
1263 * This apparently has to be on the first descriptor of
1264 * the packet.
1265 *
1266 * Byte-swap constants so the compiler can optimize.
1267 */
1268 extsts = 0;
1269 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1270 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1271 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1272 extsts |= htole32(EXTSTS_IPPKT);
1273 }
1274 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1275 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1276 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1277 extsts |= htole32(EXTSTS_TCPPKT);
1278 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1279 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1280 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1281 extsts |= htole32(EXTSTS_UDPPKT);
1282 }
1283 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1284 }
1285
1286 /*
1287 * sip_start: [ifnet interface function]
1288 *
1289 * Start packet transmission on the interface.
1290 */
1291 static void
1292 sipcom_start(struct ifnet *ifp)
1293 {
1294 struct sip_softc *sc = ifp->if_softc;
1295 struct mbuf *m0;
1296 struct mbuf *m;
1297 struct sip_txsoft *txs;
1298 bus_dmamap_t dmamap;
1299 int error, nexttx, lasttx, seg;
1300 int ofree = sc->sc_txfree;
1301 #if 0
1302 int firsttx = sc->sc_txnext;
1303 #endif
1304
1305 /*
1306 * If we've been told to pause, don't transmit any more packets.
1307 */
1308 if (!sc->sc_gigabit && sc->sc_paused)
1309 ifp->if_flags |= IFF_OACTIVE;
1310
1311 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1312 return;
1313
1314 /*
1315 * Loop through the send queue, setting up transmit descriptors
1316 * until we drain the queue, or use up all available transmit
1317 * descriptors.
1318 */
1319 for (;;) {
1320 /* Get a work queue entry. */
1321 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1322 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1323 break;
1324 }
1325
1326 /*
1327 * Grab a packet off the queue.
1328 */
1329 IFQ_POLL(&ifp->if_snd, m0);
1330 if (m0 == NULL)
1331 break;
1332 m = NULL;
1333
1334 dmamap = txs->txs_dmamap;
1335
1336 /*
1337 * Load the DMA map. If this fails, the packet either
1338 * didn't fit in the alloted number of segments, or we
1339 * were short on resources.
1340 */
1341 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1342 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1343 /* In the non-gigabit case, we'll copy and try again. */
1344 if (error != 0 && !sc->sc_gigabit) {
1345 MGETHDR(m, M_DONTWAIT, MT_DATA);
1346 if (m == NULL) {
1347 printf("%s: unable to allocate Tx mbuf\n",
1348 sc->sc_dev.dv_xname);
1349 break;
1350 }
1351 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1352 if (m0->m_pkthdr.len > MHLEN) {
1353 MCLGET(m, M_DONTWAIT);
1354 if ((m->m_flags & M_EXT) == 0) {
1355 printf("%s: unable to allocate Tx "
1356 "cluster\n", sc->sc_dev.dv_xname);
1357 m_freem(m);
1358 break;
1359 }
1360 }
1361 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1362 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1363 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1364 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1365 if (error) {
1366 printf("%s: unable to load Tx buffer, "
1367 "error = %d\n", sc->sc_dev.dv_xname, error);
1368 break;
1369 }
1370 } else if (error == EFBIG) {
1371 /*
1372 * For the too-many-segments case, we simply
1373 * report an error and drop the packet,
1374 * since we can't sanely copy a jumbo packet
1375 * to a single buffer.
1376 */
1377 printf("%s: Tx packet consumes too many "
1378 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1379 IFQ_DEQUEUE(&ifp->if_snd, m0);
1380 m_freem(m0);
1381 continue;
1382 } else if (error != 0) {
1383 /*
1384 * Short on resources, just stop for now.
1385 */
1386 break;
1387 }
1388
1389 /*
1390 * Ensure we have enough descriptors free to describe
1391 * the packet. Note, we always reserve one descriptor
1392 * at the end of the ring as a termination point, to
1393 * prevent wrap-around.
1394 */
1395 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1396 /*
1397 * Not enough free descriptors to transmit this
1398 * packet. We haven't committed anything yet,
1399 * so just unload the DMA map, put the packet
1400 * back on the queue, and punt. Notify the upper
1401 * layer that there are not more slots left.
1402 *
1403 * XXX We could allocate an mbuf and copy, but
1404 * XXX is it worth it?
1405 */
1406 ifp->if_flags |= IFF_OACTIVE;
1407 bus_dmamap_unload(sc->sc_dmat, dmamap);
1408 if (m != NULL)
1409 m_freem(m);
1410 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1411 break;
1412 }
1413
1414 IFQ_DEQUEUE(&ifp->if_snd, m0);
1415 if (m != NULL) {
1416 m_freem(m0);
1417 m0 = m;
1418 }
1419
1420 /*
1421 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1422 */
1423
1424 /* Sync the DMA map. */
1425 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1426 BUS_DMASYNC_PREWRITE);
1427
1428 /*
1429 * Initialize the transmit descriptors.
1430 */
1431 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1432 seg < dmamap->dm_nsegs;
1433 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1434 /*
1435 * If this is the first descriptor we're
1436 * enqueueing, don't set the OWN bit just
1437 * yet. That could cause a race condition.
1438 * We'll do it below.
1439 */
1440 sc->sc_txdescs[nexttx].sipd_bufptr =
1441 htole32(dmamap->dm_segs[seg].ds_addr);
1442 sc->sc_txdescs[nexttx].sipd_cmdsts =
1443 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1444 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1445 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1446 lasttx = nexttx;
1447 }
1448
1449 /* Clear the MORE bit on the last segment. */
1450 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1451
1452 /*
1453 * If we're in the interrupt delay window, delay the
1454 * interrupt.
1455 */
1456 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1457 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1458 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1459 htole32(CMDSTS_INTR);
1460 sc->sc_txwin = 0;
1461 }
1462
1463 if (sc->sc_gigabit)
1464 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1465
1466 /* Sync the descriptors we're using. */
1467 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1468 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1469
1470 /*
1471 * The entire packet is set up. Give the first descrptor
1472 * to the chip now.
1473 */
1474 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1475 htole32(CMDSTS_OWN);
1476 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1477 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1478
1479 /*
1480 * Store a pointer to the packet so we can free it later,
1481 * and remember what txdirty will be once the packet is
1482 * done.
1483 */
1484 txs->txs_mbuf = m0;
1485 txs->txs_firstdesc = sc->sc_txnext;
1486 txs->txs_lastdesc = lasttx;
1487
1488 /* Advance the tx pointer. */
1489 sc->sc_txfree -= dmamap->dm_nsegs;
1490 sc->sc_txnext = nexttx;
1491
1492 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1493 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1494
1495 #if NBPFILTER > 0
1496 /*
1497 * Pass the packet to any BPF listeners.
1498 */
1499 if (ifp->if_bpf)
1500 bpf_mtap(ifp->if_bpf, m0);
1501 #endif /* NBPFILTER > 0 */
1502 }
1503
1504 if (txs == NULL || sc->sc_txfree == 0) {
1505 /* No more slots left; notify upper layer. */
1506 ifp->if_flags |= IFF_OACTIVE;
1507 }
1508
1509 if (sc->sc_txfree != ofree) {
1510 /*
1511 * Start the transmit process. Note, the manual says
1512 * that if there are no pending transmissions in the
1513 * chip's internal queue (indicated by TXE being clear),
1514 * then the driver software must set the TXDP to the
1515 * first descriptor to be transmitted. However, if we
1516 * do this, it causes serious performance degredation on
1517 * the DP83820 under load, not setting TXDP doesn't seem
1518 * to adversely affect the SiS 900 or DP83815.
1519 *
1520 * Well, I guess it wouldn't be the first time a manual
1521 * has lied -- and they could be speaking of the NULL-
1522 * terminated descriptor list case, rather than OWN-
1523 * terminated rings.
1524 */
1525 #if 0
1526 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1527 CR_TXE) == 0) {
1528 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1529 SIP_CDTXADDR(sc, firsttx));
1530 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1531 }
1532 #else
1533 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1534 #endif
1535
1536 /* Set a watchdog timer in case the chip flakes out. */
1537 /* Gigabit autonegotiation takes 5 seconds. */
1538 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1539 }
1540 }
1541
1542 /*
1543 * sip_watchdog: [ifnet interface function]
1544 *
1545 * Watchdog timer handler.
1546 */
1547 static void
1548 sipcom_watchdog(struct ifnet *ifp)
1549 {
1550 struct sip_softc *sc = ifp->if_softc;
1551
1552 /*
1553 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1554 * If we get a timeout, try and sweep up transmit descriptors.
1555 * If we manage to sweep them all up, ignore the lack of
1556 * interrupt.
1557 */
1558 sipcom_txintr(sc);
1559
1560 if (sc->sc_txfree != sc->sc_ntxdesc) {
1561 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1562 ifp->if_oerrors++;
1563
1564 /* Reset the interface. */
1565 (void) sipcom_init(ifp);
1566 } else if (ifp->if_flags & IFF_DEBUG)
1567 printf("%s: recovered from device timeout\n",
1568 sc->sc_dev.dv_xname);
1569
1570 /* Try to get more packets going. */
1571 sipcom_start(ifp);
1572 }
1573
1574 /*
1575 * sip_ioctl: [ifnet interface function]
1576 *
1577 * Handle control requests from the operator.
1578 */
1579 static int
1580 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1581 {
1582 struct sip_softc *sc = ifp->if_softc;
1583 struct ifreq *ifr = (struct ifreq *)data;
1584 int s, error;
1585
1586 s = splnet();
1587
1588 switch (cmd) {
1589 case SIOCSIFMEDIA:
1590 /* Flow control requires full-duplex mode. */
1591 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1592 (ifr->ifr_media & IFM_FDX) == 0)
1593 ifr->ifr_media &= ~IFM_ETH_FMASK;
1594
1595 /* XXX */
1596 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1597 ifr->ifr_media &= ~IFM_ETH_FMASK;
1598 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1599 if (sc->sc_gigabit &&
1600 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1601 /* We can do both TXPAUSE and RXPAUSE. */
1602 ifr->ifr_media |=
1603 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1604 } else if (ifr->ifr_media & IFM_FLOW) {
1605 /*
1606 * Both TXPAUSE and RXPAUSE must be set.
1607 * (SiS900 and DP83815 don't have PAUSE_ASYM
1608 * feature.)
1609 *
1610 * XXX Can SiS900 and DP83815 send PAUSE?
1611 */
1612 ifr->ifr_media |=
1613 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1614 }
1615 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1616 }
1617 /* FALLTHROUGH */
1618 case SIOCGIFMEDIA:
1619 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1620 break;
1621 case SIOCSIFFLAGS:
1622 /* If the interface is up and running, only modify the receive
1623 * filter when setting promiscuous or debug mode. Otherwise
1624 * fall through to ether_ioctl, which will reset the chip.
1625 */
1626
1627 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1628 == (sc)->sc_ethercom.ec_capenable) \
1629 && ((sc)->sc_prev.is_vlan == \
1630 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1631
1632 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1633
1634 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1635 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1636 == (IFF_UP|IFF_RUNNING))
1637 && ((ifp->if_flags & (~RESETIGN))
1638 == (sc->sc_if_flags & (~RESETIGN)))
1639 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1640 /* Set up the receive filter. */
1641 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1642 error = 0;
1643 break;
1644 #undef RESETIGN
1645 }
1646 /* FALLTHROUGH */
1647 default:
1648 error = ether_ioctl(ifp, cmd, data);
1649 if (error == ENETRESET) {
1650 /*
1651 * Multicast list has changed; set the hardware filter
1652 * accordingly.
1653 */
1654 if (ifp->if_flags & IFF_RUNNING)
1655 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1656 error = 0;
1657 }
1658 break;
1659 }
1660
1661 /* Try to get more packets going. */
1662 sipcom_start(ifp);
1663
1664 sc->sc_if_flags = ifp->if_flags;
1665 splx(s);
1666 return (error);
1667 }
1668
1669 /*
1670 * sip_intr:
1671 *
1672 * Interrupt service routine.
1673 */
1674 static int
1675 sipcom_intr(void *arg)
1676 {
1677 struct sip_softc *sc = arg;
1678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 u_int32_t isr;
1680 int handled = 0;
1681
1682 /* Disable interrupts. */
1683 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1684
1685 for (;;) {
1686 /* Reading clears interrupt. */
1687 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1688 if ((isr & sc->sc_imr) == 0)
1689 break;
1690
1691 #if NRND > 0
1692 if (RND_ENABLED(&sc->rnd_source))
1693 rnd_add_uint32(&sc->rnd_source, isr);
1694 #endif
1695
1696 handled = 1;
1697
1698 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1699 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1700
1701 /* Grab any new packets. */
1702 SIP_DECL(rxintr)(sc);
1703
1704 if (isr & ISR_RXORN) {
1705 printf("%s: receive FIFO overrun\n",
1706 sc->sc_dev.dv_xname);
1707
1708 /* XXX adjust rx_drain_thresh? */
1709 }
1710
1711 if (isr & ISR_RXIDLE) {
1712 printf("%s: receive ring overrun\n",
1713 sc->sc_dev.dv_xname);
1714
1715 /* Get the receive process going again. */
1716 bus_space_write_4(sc->sc_st, sc->sc_sh,
1717 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1718 bus_space_write_4(sc->sc_st, sc->sc_sh,
1719 SIP_CR, CR_RXE);
1720 }
1721 }
1722
1723 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1724 #ifdef SIP_EVENT_COUNTERS
1725 if (isr & ISR_TXDESC)
1726 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1727 else if (isr & ISR_TXIDLE)
1728 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1729 #endif
1730
1731 /* Sweep up transmit descriptors. */
1732 sipcom_txintr(sc);
1733
1734 if (isr & ISR_TXURN) {
1735 u_int32_t thresh;
1736
1737 printf("%s: transmit FIFO underrun",
1738 sc->sc_dev.dv_xname);
1739
1740 thresh = sc->sc_tx_drain_thresh + 1;
1741 if (thresh <= TXCFG_DRTH &&
1742 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1743 (sc->sc_tx_fill_thresh * 32))) {
1744 printf("; increasing Tx drain "
1745 "threshold to %u bytes\n",
1746 thresh * 32);
1747 sc->sc_tx_drain_thresh = thresh;
1748 (void) sipcom_init(ifp);
1749 } else {
1750 (void) sipcom_init(ifp);
1751 printf("\n");
1752 }
1753 }
1754 }
1755
1756 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1757 if (isr & ISR_PAUSE_ST) {
1758 sc->sc_paused = 1;
1759 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1760 ifp->if_flags |= IFF_OACTIVE;
1761 }
1762 if (isr & ISR_PAUSE_END) {
1763 sc->sc_paused = 0;
1764 ifp->if_flags &= ~IFF_OACTIVE;
1765 }
1766 }
1767
1768 if (isr & ISR_HIBERR) {
1769 int want_init = 0;
1770
1771 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1772
1773 #define PRINTERR(bit, str) \
1774 do { \
1775 if ((isr & (bit)) != 0) { \
1776 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1777 printf("%s: %s\n", \
1778 sc->sc_dev.dv_xname, str); \
1779 want_init = 1; \
1780 } \
1781 } while (/*CONSTCOND*/0)
1782
1783 PRINTERR(ISR_DPERR, "parity error");
1784 PRINTERR(ISR_SSERR, "system error");
1785 PRINTERR(ISR_RMABT, "master abort");
1786 PRINTERR(ISR_RTABT, "target abort");
1787 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1788 /*
1789 * Ignore:
1790 * Tx reset complete
1791 * Rx reset complete
1792 */
1793 if (want_init)
1794 (void) sipcom_init(ifp);
1795 #undef PRINTERR
1796 }
1797 }
1798
1799 /* Re-enable interrupts. */
1800 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1801
1802 /* Try to get more packets going. */
1803 sipcom_start(ifp);
1804
1805 return (handled);
1806 }
1807
1808 /*
1809 * sip_txintr:
1810 *
1811 * Helper; handle transmit interrupts.
1812 */
1813 static void
1814 sipcom_txintr(struct sip_softc *sc)
1815 {
1816 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1817 struct sip_txsoft *txs;
1818 u_int32_t cmdsts;
1819
1820 if (sc->sc_paused == 0)
1821 ifp->if_flags &= ~IFF_OACTIVE;
1822
1823 /*
1824 * Go through our Tx list and free mbufs for those
1825 * frames which have been transmitted.
1826 */
1827 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1828 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1829 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1830
1831 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1832 if (cmdsts & CMDSTS_OWN)
1833 break;
1834
1835 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1836
1837 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1838
1839 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1840 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1841 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1842 m_freem(txs->txs_mbuf);
1843 txs->txs_mbuf = NULL;
1844
1845 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1846
1847 /*
1848 * Check for errors and collisions.
1849 */
1850 if (cmdsts &
1851 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1852 ifp->if_oerrors++;
1853 if (cmdsts & CMDSTS_Tx_EC)
1854 ifp->if_collisions += 16;
1855 if (ifp->if_flags & IFF_DEBUG) {
1856 if (cmdsts & CMDSTS_Tx_ED)
1857 printf("%s: excessive deferral\n",
1858 sc->sc_dev.dv_xname);
1859 if (cmdsts & CMDSTS_Tx_EC)
1860 printf("%s: excessive collisions\n",
1861 sc->sc_dev.dv_xname);
1862 }
1863 } else {
1864 /* Packet was transmitted successfully. */
1865 ifp->if_opackets++;
1866 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1867 }
1868 }
1869
1870 /*
1871 * If there are no more pending transmissions, cancel the watchdog
1872 * timer.
1873 */
1874 if (txs == NULL) {
1875 ifp->if_timer = 0;
1876 sc->sc_txwin = 0;
1877 }
1878 }
1879
1880 #if defined(DP83820)
1881 /*
1882 * sip_rxintr:
1883 *
1884 * Helper; handle receive interrupts.
1885 */
1886 static void
1887 SIP_DECL(rxintr)(struct sip_softc *sc)
1888 {
1889 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1890 struct sip_rxsoft *rxs;
1891 struct mbuf *m;
1892 u_int32_t cmdsts, extsts;
1893 int i, len;
1894
1895 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
1896 rxs = &sc->sc_rxsoft[i];
1897
1898 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1899
1900 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1901 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1902 len = CMDSTS_SIZE(cmdsts);
1903
1904 /*
1905 * NOTE: OWN is set if owned by _consumer_. We're the
1906 * consumer of the receive ring, so if the bit is clear,
1907 * we have processed all of the packets.
1908 */
1909 if ((cmdsts & CMDSTS_OWN) == 0) {
1910 /*
1911 * We have processed all of the receive buffers.
1912 */
1913 break;
1914 }
1915
1916 if (__predict_false(sc->sc_rxdiscard)) {
1917 SIP_INIT_RXDESC(sc, i);
1918 if ((cmdsts & CMDSTS_MORE) == 0) {
1919 /* Reset our state. */
1920 sc->sc_rxdiscard = 0;
1921 }
1922 continue;
1923 }
1924
1925 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1926 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1927
1928 m = rxs->rxs_mbuf;
1929
1930 /*
1931 * Add a new receive buffer to the ring.
1932 */
1933 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1934 /*
1935 * Failed, throw away what we've done so
1936 * far, and discard the rest of the packet.
1937 */
1938 ifp->if_ierrors++;
1939 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1940 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1941 SIP_INIT_RXDESC(sc, i);
1942 if (cmdsts & CMDSTS_MORE)
1943 sc->sc_rxdiscard = 1;
1944 if (sc->sc_rxhead != NULL)
1945 m_freem(sc->sc_rxhead);
1946 SIP_RXCHAIN_RESET(sc);
1947 continue;
1948 }
1949
1950 SIP_RXCHAIN_LINK(sc, m);
1951
1952 m->m_len = len;
1953
1954 /*
1955 * If this is not the end of the packet, keep
1956 * looking.
1957 */
1958 if (cmdsts & CMDSTS_MORE) {
1959 sc->sc_rxlen += len;
1960 continue;
1961 }
1962
1963 /*
1964 * Okay, we have the entire packet now. The chip includes
1965 * the FCS, so we need to trim it.
1966 */
1967 m->m_len -= ETHER_CRC_LEN;
1968
1969 *sc->sc_rxtailp = NULL;
1970 len = m->m_len + sc->sc_rxlen;
1971 m = sc->sc_rxhead;
1972
1973 SIP_RXCHAIN_RESET(sc);
1974
1975 /*
1976 * If an error occurred, update stats and drop the packet.
1977 */
1978 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1979 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1980 ifp->if_ierrors++;
1981 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1982 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1983 /* Receive overrun handled elsewhere. */
1984 printf("%s: receive descriptor error\n",
1985 sc->sc_dev.dv_xname);
1986 }
1987 #define PRINTERR(bit, str) \
1988 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1989 (cmdsts & (bit)) != 0) \
1990 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1991 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1992 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1993 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1994 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1995 #undef PRINTERR
1996 m_freem(m);
1997 continue;
1998 }
1999
2000 /*
2001 * If the packet is small enough to fit in a
2002 * single header mbuf, allocate one and copy
2003 * the data into it. This greatly reduces
2004 * memory consumption when we receive lots
2005 * of small packets.
2006 */
2007 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
2008 struct mbuf *nm;
2009 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2010 if (nm == NULL) {
2011 ifp->if_ierrors++;
2012 m_freem(m);
2013 continue;
2014 }
2015 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2016 nm->m_data += 2;
2017 nm->m_pkthdr.len = nm->m_len = len;
2018 m_copydata(m, 0, len, mtod(nm, void *));
2019 m_freem(m);
2020 m = nm;
2021 }
2022 #ifndef __NO_STRICT_ALIGNMENT
2023 else {
2024 /*
2025 * The DP83820's receive buffers must be 4-byte
2026 * aligned. But this means that the data after
2027 * the Ethernet header is misaligned. To compensate,
2028 * we have artificially shortened the buffer size
2029 * in the descriptor, and we do an overlapping copy
2030 * of the data two bytes further in (in the first
2031 * buffer of the chain only).
2032 */
2033 memmove(mtod(m, char *) + 2, mtod(m, void *),
2034 m->m_len);
2035 m->m_data += 2;
2036 }
2037 #endif /* ! __NO_STRICT_ALIGNMENT */
2038
2039 /*
2040 * If VLANs are enabled, VLAN packets have been unwrapped
2041 * for us. Associate the tag with the packet.
2042 */
2043
2044 /*
2045 * Again, byte swapping is tricky. Hardware provided
2046 * the tag in the network byte order, but extsts was
2047 * passed through le32toh() in the meantime. On a
2048 * big-endian machine, we need to swap it again. On a
2049 * little-endian machine, we need to convert from the
2050 * network to host byte order. This means that we must
2051 * swap it in any case, so unconditional swap instead
2052 * of htons() is used.
2053 */
2054 if ((extsts & EXTSTS_VPKT) != 0) {
2055 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2056 continue);
2057 }
2058
2059 /*
2060 * Set the incoming checksum information for the
2061 * packet.
2062 */
2063 if ((extsts & EXTSTS_IPPKT) != 0) {
2064 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2065 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2066 if (extsts & EXTSTS_Rx_IPERR)
2067 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2068 if (extsts & EXTSTS_TCPPKT) {
2069 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2070 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2071 if (extsts & EXTSTS_Rx_TCPERR)
2072 m->m_pkthdr.csum_flags |=
2073 M_CSUM_TCP_UDP_BAD;
2074 } else if (extsts & EXTSTS_UDPPKT) {
2075 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2076 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2077 if (extsts & EXTSTS_Rx_UDPERR)
2078 m->m_pkthdr.csum_flags |=
2079 M_CSUM_TCP_UDP_BAD;
2080 }
2081 }
2082
2083 ifp->if_ipackets++;
2084 m->m_pkthdr.rcvif = ifp;
2085 m->m_pkthdr.len = len;
2086
2087 #if NBPFILTER > 0
2088 /*
2089 * Pass this up to any BPF listeners, but only
2090 * pass if up the stack if it's for us.
2091 */
2092 if (ifp->if_bpf)
2093 bpf_mtap(ifp->if_bpf, m);
2094 #endif /* NBPFILTER > 0 */
2095
2096 /* Pass it on. */
2097 (*ifp->if_input)(ifp, m);
2098 }
2099
2100 /* Update the receive pointer. */
2101 sc->sc_rxptr = i;
2102 }
2103 #else /* ! DP83820 */
2104 /*
2105 * sip_rxintr:
2106 *
2107 * Helper; handle receive interrupts.
2108 */
2109 static void
2110 SIP_DECL(rxintr)(struct sip_softc *sc)
2111 {
2112 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2113 struct sip_rxsoft *rxs;
2114 struct mbuf *m;
2115 u_int32_t cmdsts;
2116 int i, len;
2117
2118 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2119 rxs = &sc->sc_rxsoft[i];
2120
2121 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2122
2123 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2124
2125 /*
2126 * NOTE: OWN is set if owned by _consumer_. We're the
2127 * consumer of the receive ring, so if the bit is clear,
2128 * we have processed all of the packets.
2129 */
2130 if ((cmdsts & CMDSTS_OWN) == 0) {
2131 /*
2132 * We have processed all of the receive buffers.
2133 */
2134 break;
2135 }
2136
2137 /*
2138 * If any collisions were seen on the wire, count one.
2139 */
2140 if (cmdsts & CMDSTS_Rx_COL)
2141 ifp->if_collisions++;
2142
2143 /*
2144 * If an error occurred, update stats, clear the status
2145 * word, and leave the packet buffer in place. It will
2146 * simply be reused the next time the ring comes around.
2147 */
2148 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2149 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2150 ifp->if_ierrors++;
2151 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2152 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2153 /* Receive overrun handled elsewhere. */
2154 printf("%s: receive descriptor error\n",
2155 sc->sc_dev.dv_xname);
2156 }
2157 #define PRINTERR(bit, str) \
2158 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2159 (cmdsts & (bit)) != 0) \
2160 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2161 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2162 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2163 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2164 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2165 #undef PRINTERR
2166 SIP_INIT_RXDESC(sc, i);
2167 continue;
2168 }
2169
2170 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2171 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2172
2173 /*
2174 * No errors; receive the packet. Note, the SiS 900
2175 * includes the CRC with every packet.
2176 */
2177 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2178
2179 #ifdef __NO_STRICT_ALIGNMENT
2180 /*
2181 * If the packet is small enough to fit in a
2182 * single header mbuf, allocate one and copy
2183 * the data into it. This greatly reduces
2184 * memory consumption when we receive lots
2185 * of small packets.
2186 *
2187 * Otherwise, we add a new buffer to the receive
2188 * chain. If this fails, we drop the packet and
2189 * recycle the old buffer.
2190 */
2191 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2192 MGETHDR(m, M_DONTWAIT, MT_DATA);
2193 if (m == NULL)
2194 goto dropit;
2195 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2196 memcpy(mtod(m, void *),
2197 mtod(rxs->rxs_mbuf, void *), len);
2198 SIP_INIT_RXDESC(sc, i);
2199 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2200 rxs->rxs_dmamap->dm_mapsize,
2201 BUS_DMASYNC_PREREAD);
2202 } else {
2203 m = rxs->rxs_mbuf;
2204 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2205 dropit:
2206 ifp->if_ierrors++;
2207 SIP_INIT_RXDESC(sc, i);
2208 bus_dmamap_sync(sc->sc_dmat,
2209 rxs->rxs_dmamap, 0,
2210 rxs->rxs_dmamap->dm_mapsize,
2211 BUS_DMASYNC_PREREAD);
2212 continue;
2213 }
2214 }
2215 #else
2216 /*
2217 * The SiS 900's receive buffers must be 4-byte aligned.
2218 * But this means that the data after the Ethernet header
2219 * is misaligned. We must allocate a new buffer and
2220 * copy the data, shifted forward 2 bytes.
2221 */
2222 MGETHDR(m, M_DONTWAIT, MT_DATA);
2223 if (m == NULL) {
2224 dropit:
2225 ifp->if_ierrors++;
2226 SIP_INIT_RXDESC(sc, i);
2227 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2228 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2229 continue;
2230 }
2231 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2232 if (len > (MHLEN - 2)) {
2233 MCLGET(m, M_DONTWAIT);
2234 if ((m->m_flags & M_EXT) == 0) {
2235 m_freem(m);
2236 goto dropit;
2237 }
2238 }
2239 m->m_data += 2;
2240
2241 /*
2242 * Note that we use clusters for incoming frames, so the
2243 * buffer is virtually contiguous.
2244 */
2245 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2246
2247 /* Allow the receive descriptor to continue using its mbuf. */
2248 SIP_INIT_RXDESC(sc, i);
2249 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2250 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2251 #endif /* __NO_STRICT_ALIGNMENT */
2252
2253 ifp->if_ipackets++;
2254 m->m_pkthdr.rcvif = ifp;
2255 m->m_pkthdr.len = m->m_len = len;
2256
2257 #if NBPFILTER > 0
2258 /*
2259 * Pass this up to any BPF listeners, but only
2260 * pass if up the stack if it's for us.
2261 */
2262 if (ifp->if_bpf)
2263 bpf_mtap(ifp->if_bpf, m);
2264 #endif /* NBPFILTER > 0 */
2265
2266 /* Pass it on. */
2267 (*ifp->if_input)(ifp, m);
2268 }
2269
2270 /* Update the receive pointer. */
2271 sc->sc_rxptr = i;
2272 }
2273 #endif /* DP83820 */
2274
2275 /*
2276 * sip_tick:
2277 *
2278 * One second timer, used to tick the MII.
2279 */
2280 static void
2281 sipcom_tick(void *arg)
2282 {
2283 struct sip_softc *sc = arg;
2284 int s;
2285
2286 s = splnet();
2287 #ifdef SIP_EVENT_COUNTERS
2288 if (sc->sc_gigabit) {
2289 /* Read PAUSE related counts from MIB registers. */
2290 sc->sc_ev_rxpause.ev_count +=
2291 bus_space_read_4(sc->sc_st, sc->sc_sh,
2292 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2293 sc->sc_ev_txpause.ev_count +=
2294 bus_space_read_4(sc->sc_st, sc->sc_sh,
2295 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2296 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2297 }
2298 #endif /* SIP_EVENT_COUNTERS */
2299 mii_tick(&sc->sc_mii);
2300 splx(s);
2301
2302 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2303 }
2304
2305 /*
2306 * sip_reset:
2307 *
2308 * Perform a soft reset on the SiS 900.
2309 */
2310 static bool
2311 sipcom_reset(struct sip_softc *sc)
2312 {
2313 bus_space_tag_t st = sc->sc_st;
2314 bus_space_handle_t sh = sc->sc_sh;
2315 int i;
2316
2317 bus_space_write_4(st, sh, SIP_IER, 0);
2318 bus_space_write_4(st, sh, SIP_IMR, 0);
2319 bus_space_write_4(st, sh, SIP_RFCR, 0);
2320 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2321
2322 for (i = 0; i < SIP_TIMEOUT; i++) {
2323 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2324 break;
2325 delay(2);
2326 }
2327
2328 if (i == SIP_TIMEOUT) {
2329 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2330 return false;
2331 }
2332
2333 delay(1000);
2334
2335 if (sc->sc_gigabit) {
2336 /*
2337 * Set the general purpose I/O bits. Do it here in case we
2338 * need to have GPIO set up to talk to the media interface.
2339 */
2340 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2341 delay(1000);
2342 }
2343 return true;
2344 }
2345
2346 static void
2347 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2348 {
2349 u_int32_t reg;
2350 bus_space_tag_t st = sc->sc_st;
2351 bus_space_handle_t sh = sc->sc_sh;
2352 /*
2353 * Initialize the VLAN/IP receive control register.
2354 * We enable checksum computation on all incoming
2355 * packets, and do not reject packets w/ bad checksums.
2356 */
2357 reg = 0;
2358 if (capenable &
2359 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2360 reg |= VRCR_IPEN;
2361 if (VLAN_ATTACHED(&sc->sc_ethercom))
2362 reg |= VRCR_VTDEN|VRCR_VTREN;
2363 bus_space_write_4(st, sh, SIP_VRCR, reg);
2364
2365 /*
2366 * Initialize the VLAN/IP transmit control register.
2367 * We enable outgoing checksum computation on a
2368 * per-packet basis.
2369 */
2370 reg = 0;
2371 if (capenable &
2372 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2373 reg |= VTCR_PPCHK;
2374 if (VLAN_ATTACHED(&sc->sc_ethercom))
2375 reg |= VTCR_VPPTI;
2376 bus_space_write_4(st, sh, SIP_VTCR, reg);
2377
2378 /*
2379 * If we're using VLANs, initialize the VLAN data register.
2380 * To understand why we bswap the VLAN Ethertype, see section
2381 * 4.2.36 of the DP83820 manual.
2382 */
2383 if (VLAN_ATTACHED(&sc->sc_ethercom))
2384 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2385 }
2386
2387 /*
2388 * sip_init: [ ifnet interface function ]
2389 *
2390 * Initialize the interface. Must be called at splnet().
2391 */
2392 static int
2393 sipcom_init(struct ifnet *ifp)
2394 {
2395 struct sip_softc *sc = ifp->if_softc;
2396 bus_space_tag_t st = sc->sc_st;
2397 bus_space_handle_t sh = sc->sc_sh;
2398 struct sip_txsoft *txs;
2399 struct sip_rxsoft *rxs;
2400 struct sip_desc *sipd;
2401 int i, error = 0;
2402
2403 if (sc->sc_suspended)
2404 return EBUSY;
2405
2406 /*
2407 * Cancel any pending I/O.
2408 */
2409 sipcom_stop(ifp, 0);
2410
2411 /*
2412 * Reset the chip to a known state.
2413 */
2414 if (!sipcom_reset(sc))
2415 return EBUSY;
2416
2417 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2418 /*
2419 * DP83815 manual, page 78:
2420 * 4.4 Recommended Registers Configuration
2421 * For optimum performance of the DP83815, version noted
2422 * as DP83815CVNG (SRR = 203h), the listed register
2423 * modifications must be followed in sequence...
2424 *
2425 * It's not clear if this should be 302h or 203h because that
2426 * chip name is listed as SRR 302h in the description of the
2427 * SRR register. However, my revision 302h DP83815 on the
2428 * Netgear FA311 purchased in 02/2001 needs these settings
2429 * to avoid tons of errors in AcceptPerfectMatch (non-
2430 * IFF_PROMISC) mode. I do not know if other revisions need
2431 * this set or not. [briggs -- 09 March 2001]
2432 *
2433 * Note that only the low-order 12 bits of 0xe4 are documented
2434 * and that this sets reserved bits in that register.
2435 */
2436 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2437
2438 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2439 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2440 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2441 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2442
2443 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2444 }
2445
2446 /*
2447 * Initialize the transmit descriptor ring.
2448 */
2449 for (i = 0; i < sc->sc_ntxdesc; i++) {
2450 sipd = &sc->sc_txdescs[i];
2451 memset(sipd, 0, sizeof(struct sip_desc));
2452 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2453 }
2454 SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
2455 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2456 sc->sc_txfree = sc->sc_ntxdesc;
2457 sc->sc_txnext = 0;
2458 sc->sc_txwin = 0;
2459
2460 /*
2461 * Initialize the transmit job descriptors.
2462 */
2463 SIMPLEQ_INIT(&sc->sc_txfreeq);
2464 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2465 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2466 txs = &sc->sc_txsoft[i];
2467 txs->txs_mbuf = NULL;
2468 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2469 }
2470
2471 /*
2472 * Initialize the receive descriptor and receive job
2473 * descriptor rings.
2474 */
2475 for (i = 0; i < sc->sc_nrxdesc; i++) {
2476 rxs = &sc->sc_rxsoft[i];
2477 if (rxs->rxs_mbuf == NULL) {
2478 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2479 printf("%s: unable to allocate or map rx "
2480 "buffer %d, error = %d\n",
2481 sc->sc_dev.dv_xname, i, error);
2482 /*
2483 * XXX Should attempt to run with fewer receive
2484 * XXX buffers instead of just failing.
2485 */
2486 sipcom_rxdrain(sc);
2487 goto out;
2488 }
2489 } else
2490 SIP_INIT_RXDESC(sc, i);
2491 }
2492 sc->sc_rxptr = 0;
2493 sc->sc_rxdiscard = 0;
2494 SIP_RXCHAIN_RESET(sc);
2495
2496 /*
2497 * Set the configuration register; it's already initialized
2498 * in sip_attach().
2499 */
2500 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2501
2502 /*
2503 * Initialize the prototype TXCFG register.
2504 */
2505 if (sc->sc_gigabit) {
2506 sc->sc_txcfg = TXCFG_MXDMA_512;
2507 sc->sc_rxcfg = RXCFG_MXDMA_512;
2508 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2509 SIP_SIS900_REV(sc, SIS_REV_960) ||
2510 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2511 (sc->sc_cfg & CFG_EDBMASTEN)) {
2512 sc->sc_txcfg = TXCFG_MXDMA_64;
2513 sc->sc_rxcfg = RXCFG_MXDMA_64;
2514 } else {
2515 sc->sc_txcfg = TXCFG_MXDMA_512;
2516 sc->sc_rxcfg = RXCFG_MXDMA_512;
2517 }
2518
2519 sc->sc_txcfg |= TXCFG_ATP |
2520 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2521 sc->sc_tx_drain_thresh;
2522 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2523
2524 /*
2525 * Initialize the receive drain threshold if we have never
2526 * done so.
2527 */
2528 if (sc->sc_rx_drain_thresh == 0) {
2529 /*
2530 * XXX This value should be tuned. This is set to the
2531 * maximum of 248 bytes, and we may be able to improve
2532 * performance by decreasing it (although we should never
2533 * set this value lower than 2; 14 bytes are required to
2534 * filter the packet).
2535 */
2536 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2537 }
2538
2539 /*
2540 * Initialize the prototype RXCFG register.
2541 */
2542 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2543 /*
2544 * Accept long packets (including FCS) so we can handle
2545 * 802.1q-tagged frames and jumbo frames properly.
2546 */
2547 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2548 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2549 sc->sc_rxcfg |= RXCFG_ALP;
2550
2551 /*
2552 * Checksum offloading is disabled if the user selects an MTU
2553 * larger than 8109. (FreeBSD says 8152, but there is emperical
2554 * evidence that >8109 does not work on some boards, such as the
2555 * Planex GN-1000TE).
2556 */
2557 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2558 (ifp->if_capenable &
2559 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2560 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2561 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2562 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2563 "disabled.\n", sc->sc_dev.dv_xname);
2564 ifp->if_capenable &=
2565 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2566 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2567 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2568 ifp->if_csum_flags_tx = 0;
2569 ifp->if_csum_flags_rx = 0;
2570 }
2571
2572 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2573
2574 if (sc->sc_gigabit)
2575 sipcom_dp83820_init(sc, ifp->if_capenable);
2576
2577 /*
2578 * Give the transmit and receive rings to the chip.
2579 */
2580 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2581 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2582
2583 /*
2584 * Initialize the interrupt mask.
2585 */
2586 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2587 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2588 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2589
2590 /* Set up the receive filter. */
2591 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2592
2593 /*
2594 * Tune sc_rx_flow_thresh.
2595 * XXX "More than 8KB" is too short for jumbo frames.
2596 * XXX TODO: Threshold value should be user-settable.
2597 */
2598 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2599 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2600 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2601
2602 /*
2603 * Set the current media. Do this after initializing the prototype
2604 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2605 * control.
2606 */
2607 mii_mediachg(&sc->sc_mii);
2608
2609 /*
2610 * Set the interrupt hold-off timer to 100us.
2611 */
2612 if (sc->sc_gigabit)
2613 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2614
2615 /*
2616 * Enable interrupts.
2617 */
2618 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2619
2620 /*
2621 * Start the transmit and receive processes.
2622 */
2623 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2624
2625 /*
2626 * Start the one second MII clock.
2627 */
2628 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2629
2630 /*
2631 * ...all done!
2632 */
2633 ifp->if_flags |= IFF_RUNNING;
2634 ifp->if_flags &= ~IFF_OACTIVE;
2635 sc->sc_if_flags = ifp->if_flags;
2636 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2637 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2638 sc->sc_prev.if_capenable = ifp->if_capenable;
2639
2640 out:
2641 if (error)
2642 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2643 return (error);
2644 }
2645
2646 /*
2647 * sip_drain:
2648 *
2649 * Drain the receive queue.
2650 */
2651 static void
2652 sipcom_rxdrain(struct sip_softc *sc)
2653 {
2654 struct sip_rxsoft *rxs;
2655 int i;
2656
2657 for (i = 0; i < sc->sc_nrxdesc; i++) {
2658 rxs = &sc->sc_rxsoft[i];
2659 if (rxs->rxs_mbuf != NULL) {
2660 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2661 m_freem(rxs->rxs_mbuf);
2662 rxs->rxs_mbuf = NULL;
2663 }
2664 }
2665 }
2666
2667 /*
2668 * sip_stop: [ ifnet interface function ]
2669 *
2670 * Stop transmission on the interface.
2671 */
2672 static void
2673 sipcom_stop(struct ifnet *ifp, int disable)
2674 {
2675 struct sip_softc *sc = ifp->if_softc;
2676 bus_space_tag_t st = sc->sc_st;
2677 bus_space_handle_t sh = sc->sc_sh;
2678 struct sip_txsoft *txs;
2679 u_int32_t cmdsts = 0; /* DEBUG */
2680
2681 /*
2682 * Stop the one second clock.
2683 */
2684 callout_stop(&sc->sc_tick_ch);
2685
2686 /* Down the MII. */
2687 mii_down(&sc->sc_mii);
2688
2689 /*
2690 * Disable interrupts.
2691 */
2692 bus_space_write_4(st, sh, SIP_IER, 0);
2693
2694 /*
2695 * Stop receiver and transmitter.
2696 */
2697 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2698
2699 /*
2700 * Release any queued transmit buffers.
2701 */
2702 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2703 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2704 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2705 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2706 CMDSTS_INTR) == 0)
2707 printf("%s: sip_stop: last descriptor does not "
2708 "have INTR bit set\n", sc->sc_dev.dv_xname);
2709 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2710 #ifdef DIAGNOSTIC
2711 if (txs->txs_mbuf == NULL) {
2712 printf("%s: dirty txsoft with no mbuf chain\n",
2713 sc->sc_dev.dv_xname);
2714 panic("sip_stop");
2715 }
2716 #endif
2717 cmdsts |= /* DEBUG */
2718 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2719 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2720 m_freem(txs->txs_mbuf);
2721 txs->txs_mbuf = NULL;
2722 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2723 }
2724
2725 if (disable)
2726 sipcom_rxdrain(sc);
2727
2728 /*
2729 * Mark the interface down and cancel the watchdog timer.
2730 */
2731 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2732 ifp->if_timer = 0;
2733
2734 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2735 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2736 printf("%s: sip_stop: no INTR bits set in dirty tx "
2737 "descriptors\n", sc->sc_dev.dv_xname);
2738 }
2739
2740 /*
2741 * sip_read_eeprom:
2742 *
2743 * Read data from the serial EEPROM.
2744 */
2745 static void
2746 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2747 u_int16_t *data)
2748 {
2749 bus_space_tag_t st = sc->sc_st;
2750 bus_space_handle_t sh = sc->sc_sh;
2751 u_int16_t reg;
2752 int i, x;
2753
2754 for (i = 0; i < wordcnt; i++) {
2755 /* Send CHIP SELECT. */
2756 reg = EROMAR_EECS;
2757 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2758
2759 /* Shift in the READ opcode. */
2760 for (x = 3; x > 0; x--) {
2761 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2762 reg |= EROMAR_EEDI;
2763 else
2764 reg &= ~EROMAR_EEDI;
2765 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2766 bus_space_write_4(st, sh, SIP_EROMAR,
2767 reg | EROMAR_EESK);
2768 delay(4);
2769 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2770 delay(4);
2771 }
2772
2773 /* Shift in address. */
2774 for (x = 6; x > 0; x--) {
2775 if ((word + i) & (1 << (x - 1)))
2776 reg |= EROMAR_EEDI;
2777 else
2778 reg &= ~EROMAR_EEDI;
2779 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2780 bus_space_write_4(st, sh, SIP_EROMAR,
2781 reg | EROMAR_EESK);
2782 delay(4);
2783 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2784 delay(4);
2785 }
2786
2787 /* Shift out data. */
2788 reg = EROMAR_EECS;
2789 data[i] = 0;
2790 for (x = 16; x > 0; x--) {
2791 bus_space_write_4(st, sh, SIP_EROMAR,
2792 reg | EROMAR_EESK);
2793 delay(4);
2794 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2795 data[i] |= (1 << (x - 1));
2796 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2797 delay(4);
2798 }
2799
2800 /* Clear CHIP SELECT. */
2801 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2802 delay(4);
2803 }
2804 }
2805
2806 /*
2807 * sip_add_rxbuf:
2808 *
2809 * Add a receive buffer to the indicated descriptor.
2810 */
2811 static int
2812 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2813 {
2814 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2815 struct mbuf *m;
2816 int error;
2817
2818 MGETHDR(m, M_DONTWAIT, MT_DATA);
2819 if (m == NULL)
2820 return (ENOBUFS);
2821 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2822
2823 MCLGET(m, M_DONTWAIT);
2824 if ((m->m_flags & M_EXT) == 0) {
2825 m_freem(m);
2826 return (ENOBUFS);
2827 }
2828
2829 /* XXX I don't believe this is necessary. --dyoung */
2830 #if 0 || defined(DP83820)
2831 m->m_len = sc->sc_rxbuf_len;
2832 #endif /* DP83820 */
2833
2834 if (rxs->rxs_mbuf != NULL)
2835 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2836
2837 rxs->rxs_mbuf = m;
2838
2839 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2840 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2841 BUS_DMA_READ|BUS_DMA_NOWAIT);
2842 if (error) {
2843 printf("%s: can't load rx DMA map %d, error = %d\n",
2844 sc->sc_dev.dv_xname, idx, error);
2845 panic("%s", __func__); /* XXX */
2846 }
2847
2848 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2849 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2850
2851 SIP_INIT_RXDESC(sc, idx);
2852
2853 return (0);
2854 }
2855
2856 /*
2857 * sip_sis900_set_filter:
2858 *
2859 * Set up the receive filter.
2860 */
2861 static void
2862 sipcom_sis900_set_filter(struct sip_softc *sc)
2863 {
2864 bus_space_tag_t st = sc->sc_st;
2865 bus_space_handle_t sh = sc->sc_sh;
2866 struct ethercom *ec = &sc->sc_ethercom;
2867 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2868 struct ether_multi *enm;
2869 const u_int8_t *cp;
2870 struct ether_multistep step;
2871 u_int32_t crc, mchash[16];
2872
2873 /*
2874 * Initialize the prototype RFCR.
2875 */
2876 sc->sc_rfcr = RFCR_RFEN;
2877 if (ifp->if_flags & IFF_BROADCAST)
2878 sc->sc_rfcr |= RFCR_AAB;
2879 if (ifp->if_flags & IFF_PROMISC) {
2880 sc->sc_rfcr |= RFCR_AAP;
2881 goto allmulti;
2882 }
2883
2884 /*
2885 * Set up the multicast address filter by passing all multicast
2886 * addresses through a CRC generator, and then using the high-order
2887 * 6 bits as an index into the 128 bit multicast hash table (only
2888 * the lower 16 bits of each 32 bit multicast hash register are
2889 * valid). The high order bits select the register, while the
2890 * rest of the bits select the bit within the register.
2891 */
2892
2893 memset(mchash, 0, sizeof(mchash));
2894
2895 /*
2896 * SiS900 (at least SiS963) requires us to register the address of
2897 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2898 */
2899 crc = 0x0ed423f9;
2900
2901 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2902 SIP_SIS900_REV(sc, SIS_REV_960) ||
2903 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2904 /* Just want the 8 most significant bits. */
2905 crc >>= 24;
2906 } else {
2907 /* Just want the 7 most significant bits. */
2908 crc >>= 25;
2909 }
2910
2911 /* Set the corresponding bit in the hash table. */
2912 mchash[crc >> 4] |= 1 << (crc & 0xf);
2913
2914 ETHER_FIRST_MULTI(step, ec, enm);
2915 while (enm != NULL) {
2916 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2917 /*
2918 * We must listen to a range of multicast addresses.
2919 * For now, just accept all multicasts, rather than
2920 * trying to set only those filter bits needed to match
2921 * the range. (At this time, the only use of address
2922 * ranges is for IP multicast routing, for which the
2923 * range is big enough to require all bits set.)
2924 */
2925 goto allmulti;
2926 }
2927
2928 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2929
2930 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2931 SIP_SIS900_REV(sc, SIS_REV_960) ||
2932 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2933 /* Just want the 8 most significant bits. */
2934 crc >>= 24;
2935 } else {
2936 /* Just want the 7 most significant bits. */
2937 crc >>= 25;
2938 }
2939
2940 /* Set the corresponding bit in the hash table. */
2941 mchash[crc >> 4] |= 1 << (crc & 0xf);
2942
2943 ETHER_NEXT_MULTI(step, enm);
2944 }
2945
2946 ifp->if_flags &= ~IFF_ALLMULTI;
2947 goto setit;
2948
2949 allmulti:
2950 ifp->if_flags |= IFF_ALLMULTI;
2951 sc->sc_rfcr |= RFCR_AAM;
2952
2953 setit:
2954 #define FILTER_EMIT(addr, data) \
2955 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2956 delay(1); \
2957 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2958 delay(1)
2959
2960 /*
2961 * Disable receive filter, and program the node address.
2962 */
2963 cp = CLLADDR(ifp->if_sadl);
2964 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2965 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2966 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2967
2968 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2969 /*
2970 * Program the multicast hash table.
2971 */
2972 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2973 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2974 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2975 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2976 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2977 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2978 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2979 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2980 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2981 SIP_SIS900_REV(sc, SIS_REV_960) ||
2982 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2983 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2984 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2985 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2986 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2987 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2988 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2989 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2990 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2991 }
2992 }
2993 #undef FILTER_EMIT
2994
2995 /*
2996 * Re-enable the receiver filter.
2997 */
2998 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2999 }
3000
3001 /*
3002 * sip_dp83815_set_filter:
3003 *
3004 * Set up the receive filter.
3005 */
3006 static void
3007 sipcom_dp83815_set_filter(struct sip_softc *sc)
3008 {
3009 bus_space_tag_t st = sc->sc_st;
3010 bus_space_handle_t sh = sc->sc_sh;
3011 struct ethercom *ec = &sc->sc_ethercom;
3012 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3013 struct ether_multi *enm;
3014 const u_int8_t *cp;
3015 struct ether_multistep step;
3016 u_int32_t crc, hash, slot, bit;
3017 #define MCHASH_NWORDS_83820 128
3018 #define MCHASH_NWORDS_83815 32
3019 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3020 u_int16_t mchash[MCHASH_NWORDS];
3021 int i;
3022
3023 /*
3024 * Initialize the prototype RFCR.
3025 * Enable the receive filter, and accept on
3026 * Perfect (destination address) Match
3027 * If IFF_BROADCAST, also accept all broadcast packets.
3028 * If IFF_PROMISC, accept all unicast packets (and later, set
3029 * IFF_ALLMULTI and accept all multicast, too).
3030 */
3031 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3032 if (ifp->if_flags & IFF_BROADCAST)
3033 sc->sc_rfcr |= RFCR_AAB;
3034 if (ifp->if_flags & IFF_PROMISC) {
3035 sc->sc_rfcr |= RFCR_AAP;
3036 goto allmulti;
3037 }
3038
3039 /*
3040 * Set up the DP83820/DP83815 multicast address filter by
3041 * passing all multicast addresses through a CRC generator,
3042 * and then using the high-order 11/9 bits as an index into
3043 * the 2048/512 bit multicast hash table. The high-order
3044 * 7/5 bits select the slot, while the low-order 4 bits
3045 * select the bit within the slot. Note that only the low
3046 * 16-bits of each filter word are used, and there are
3047 * 128/32 filter words.
3048 */
3049
3050 memset(mchash, 0, sizeof(mchash));
3051
3052 ifp->if_flags &= ~IFF_ALLMULTI;
3053 ETHER_FIRST_MULTI(step, ec, enm);
3054 if (enm == NULL)
3055 goto setit;
3056 while (enm != NULL) {
3057 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3058 /*
3059 * We must listen to a range of multicast addresses.
3060 * For now, just accept all multicasts, rather than
3061 * trying to set only those filter bits needed to match
3062 * the range. (At this time, the only use of address
3063 * ranges is for IP multicast routing, for which the
3064 * range is big enough to require all bits set.)
3065 */
3066 goto allmulti;
3067 }
3068
3069 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3070
3071 if (sc->sc_gigabit) {
3072 /* Just want the 11 most significant bits. */
3073 hash = crc >> 21;
3074 } else {
3075 /* Just want the 9 most significant bits. */
3076 hash = crc >> 23;
3077 }
3078
3079 slot = hash >> 4;
3080 bit = hash & 0xf;
3081
3082 /* Set the corresponding bit in the hash table. */
3083 mchash[slot] |= 1 << bit;
3084
3085 ETHER_NEXT_MULTI(step, enm);
3086 }
3087 sc->sc_rfcr |= RFCR_MHEN;
3088 goto setit;
3089
3090 allmulti:
3091 ifp->if_flags |= IFF_ALLMULTI;
3092 sc->sc_rfcr |= RFCR_AAM;
3093
3094 setit:
3095 #define FILTER_EMIT(addr, data) \
3096 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3097 delay(1); \
3098 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3099 delay(1)
3100
3101 /*
3102 * Disable receive filter, and program the node address.
3103 */
3104 cp = CLLADDR(ifp->if_sadl);
3105 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3106 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3107 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3108
3109 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3110 int nwords =
3111 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3112 /*
3113 * Program the multicast hash table.
3114 */
3115 for (i = 0; i < nwords; i++) {
3116 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3117 mchash[i]);
3118 }
3119 }
3120 #undef FILTER_EMIT
3121 #undef MCHASH_NWORDS
3122 #undef MCHASH_NWORDS_83815
3123 #undef MCHASH_NWORDS_83820
3124
3125 /*
3126 * Re-enable the receiver filter.
3127 */
3128 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3129 }
3130
3131 /*
3132 * sip_dp83820_mii_readreg: [mii interface function]
3133 *
3134 * Read a PHY register on the MII of the DP83820.
3135 */
3136 static int
3137 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3138 {
3139 struct sip_softc *sc = (void *) self;
3140
3141 if (sc->sc_cfg & CFG_TBI_EN) {
3142 bus_addr_t tbireg;
3143 int rv;
3144
3145 if (phy != 0)
3146 return (0);
3147
3148 switch (reg) {
3149 case MII_BMCR: tbireg = SIP_TBICR; break;
3150 case MII_BMSR: tbireg = SIP_TBISR; break;
3151 case MII_ANAR: tbireg = SIP_TANAR; break;
3152 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3153 case MII_ANER: tbireg = SIP_TANER; break;
3154 case MII_EXTSR:
3155 /*
3156 * Don't even bother reading the TESR register.
3157 * The manual documents that the device has
3158 * 1000baseX full/half capability, but the
3159 * register itself seems read back 0 on some
3160 * boards. Just hard-code the result.
3161 */
3162 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3163
3164 default:
3165 return (0);
3166 }
3167
3168 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3169 if (tbireg == SIP_TBISR) {
3170 /* LINK and ACOMP are switched! */
3171 int val = rv;
3172
3173 rv = 0;
3174 if (val & TBISR_MR_LINK_STATUS)
3175 rv |= BMSR_LINK;
3176 if (val & TBISR_MR_AN_COMPLETE)
3177 rv |= BMSR_ACOMP;
3178
3179 /*
3180 * The manual claims this register reads back 0
3181 * on hard and soft reset. But we want to let
3182 * the gentbi driver know that we support auto-
3183 * negotiation, so hard-code this bit in the
3184 * result.
3185 */
3186 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3187 }
3188
3189 return (rv);
3190 }
3191
3192 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3193 }
3194
3195 /*
3196 * sip_dp83820_mii_writereg: [mii interface function]
3197 *
3198 * Write a PHY register on the MII of the DP83820.
3199 */
3200 static void
3201 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3202 {
3203 struct sip_softc *sc = (void *) self;
3204
3205 if (sc->sc_cfg & CFG_TBI_EN) {
3206 bus_addr_t tbireg;
3207
3208 if (phy != 0)
3209 return;
3210
3211 switch (reg) {
3212 case MII_BMCR: tbireg = SIP_TBICR; break;
3213 case MII_ANAR: tbireg = SIP_TANAR; break;
3214 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3215 default:
3216 return;
3217 }
3218
3219 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3220 return;
3221 }
3222
3223 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3224 }
3225
3226 /*
3227 * sip_dp83820_mii_statchg: [mii interface function]
3228 *
3229 * Callback from MII layer when media changes.
3230 */
3231 static void
3232 sipcom_dp83820_mii_statchg(struct device *self)
3233 {
3234 struct sip_softc *sc = (struct sip_softc *) self;
3235 struct mii_data *mii = &sc->sc_mii;
3236 u_int32_t cfg, pcr;
3237
3238 /*
3239 * Get flow control negotiation result.
3240 */
3241 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3242 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3243 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3244 mii->mii_media_active &= ~IFM_ETH_FMASK;
3245 }
3246
3247 /*
3248 * Update TXCFG for full-duplex operation.
3249 */
3250 if ((mii->mii_media_active & IFM_FDX) != 0)
3251 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3252 else
3253 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3254
3255 /*
3256 * Update RXCFG for full-duplex or loopback.
3257 */
3258 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3259 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3260 sc->sc_rxcfg |= RXCFG_ATX;
3261 else
3262 sc->sc_rxcfg &= ~RXCFG_ATX;
3263
3264 /*
3265 * Update CFG for MII/GMII.
3266 */
3267 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3268 cfg = sc->sc_cfg | CFG_MODE_1000;
3269 else
3270 cfg = sc->sc_cfg;
3271
3272 /*
3273 * 802.3x flow control.
3274 */
3275 pcr = 0;
3276 if (sc->sc_flowflags & IFM_FLOW) {
3277 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3278 pcr |= sc->sc_rx_flow_thresh;
3279 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3280 pcr |= PCR_PSEN | PCR_PS_MCAST;
3281 }
3282
3283 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3284 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3285 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3286 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3287 }
3288
3289 /*
3290 * sip_mii_bitbang_read: [mii bit-bang interface function]
3291 *
3292 * Read the MII serial port for the MII bit-bang module.
3293 */
3294 static u_int32_t
3295 sipcom_mii_bitbang_read(struct device *self)
3296 {
3297 struct sip_softc *sc = (void *) self;
3298
3299 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3300 }
3301
3302 /*
3303 * sip_mii_bitbang_write: [mii big-bang interface function]
3304 *
3305 * Write the MII serial port for the MII bit-bang module.
3306 */
3307 static void
3308 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3309 {
3310 struct sip_softc *sc = (void *) self;
3311
3312 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3313 }
3314
3315 /*
3316 * sip_sis900_mii_readreg: [mii interface function]
3317 *
3318 * Read a PHY register on the MII.
3319 */
3320 static int
3321 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3322 {
3323 struct sip_softc *sc = (struct sip_softc *) self;
3324 u_int32_t enphy;
3325
3326 /*
3327 * The PHY of recent SiS chipsets is accessed through bitbang
3328 * operations.
3329 */
3330 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3331 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3332 phy, reg);
3333
3334 #ifndef SIS900_MII_RESTRICT
3335 /*
3336 * The SiS 900 has only an internal PHY on the MII. Only allow
3337 * MII address 0.
3338 */
3339 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3340 return (0);
3341 #endif
3342
3343 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3344 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3345 ENPHY_RWCMD | ENPHY_ACCESS);
3346 do {
3347 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3348 } while (enphy & ENPHY_ACCESS);
3349 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3350 }
3351
3352 /*
3353 * sip_sis900_mii_writereg: [mii interface function]
3354 *
3355 * Write a PHY register on the MII.
3356 */
3357 static void
3358 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3359 {
3360 struct sip_softc *sc = (struct sip_softc *) self;
3361 u_int32_t enphy;
3362
3363 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3364 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3365 phy, reg, val);
3366 return;
3367 }
3368
3369 #ifndef SIS900_MII_RESTRICT
3370 /*
3371 * The SiS 900 has only an internal PHY on the MII. Only allow
3372 * MII address 0.
3373 */
3374 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3375 return;
3376 #endif
3377
3378 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3379 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3380 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3381 do {
3382 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3383 } while (enphy & ENPHY_ACCESS);
3384 }
3385
3386 /*
3387 * sip_sis900_mii_statchg: [mii interface function]
3388 *
3389 * Callback from MII layer when media changes.
3390 */
3391 static void
3392 sipcom_sis900_mii_statchg(struct device *self)
3393 {
3394 struct sip_softc *sc = (struct sip_softc *) self;
3395 struct mii_data *mii = &sc->sc_mii;
3396 u_int32_t flowctl;
3397
3398 /*
3399 * Get flow control negotiation result.
3400 */
3401 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3402 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3403 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3404 mii->mii_media_active &= ~IFM_ETH_FMASK;
3405 }
3406
3407 /*
3408 * Update TXCFG for full-duplex operation.
3409 */
3410 if ((mii->mii_media_active & IFM_FDX) != 0)
3411 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3412 else
3413 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3414
3415 /*
3416 * Update RXCFG for full-duplex or loopback.
3417 */
3418 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3419 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3420 sc->sc_rxcfg |= RXCFG_ATX;
3421 else
3422 sc->sc_rxcfg &= ~RXCFG_ATX;
3423
3424 /*
3425 * Update IMR for use of 802.3x flow control.
3426 */
3427 if (sc->sc_flowflags & IFM_FLOW) {
3428 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3429 flowctl = FLOWCTL_FLOWEN;
3430 } else {
3431 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3432 flowctl = 0;
3433 }
3434
3435 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3436 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3438 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3439 }
3440
3441 /*
3442 * sip_dp83815_mii_readreg: [mii interface function]
3443 *
3444 * Read a PHY register on the MII.
3445 */
3446 static int
3447 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3448 {
3449 struct sip_softc *sc = (struct sip_softc *) self;
3450 u_int32_t val;
3451
3452 /*
3453 * The DP83815 only has an internal PHY. Only allow
3454 * MII address 0.
3455 */
3456 if (phy != 0)
3457 return (0);
3458
3459 /*
3460 * Apparently, after a reset, the DP83815 can take a while
3461 * to respond. During this recovery period, the BMSR returns
3462 * a value of 0. Catch this -- it's not supposed to happen
3463 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3464 * PHY to come back to life.
3465 *
3466 * This works out because the BMSR is the first register
3467 * read during the PHY probe process.
3468 */
3469 do {
3470 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3471 } while (reg == MII_BMSR && val == 0);
3472
3473 return (val & 0xffff);
3474 }
3475
3476 /*
3477 * sip_dp83815_mii_writereg: [mii interface function]
3478 *
3479 * Write a PHY register to the MII.
3480 */
3481 static void
3482 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3483 {
3484 struct sip_softc *sc = (struct sip_softc *) self;
3485
3486 /*
3487 * The DP83815 only has an internal PHY. Only allow
3488 * MII address 0.
3489 */
3490 if (phy != 0)
3491 return;
3492
3493 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3494 }
3495
3496 /*
3497 * sip_dp83815_mii_statchg: [mii interface function]
3498 *
3499 * Callback from MII layer when media changes.
3500 */
3501 static void
3502 sipcom_dp83815_mii_statchg(struct device *self)
3503 {
3504 struct sip_softc *sc = (struct sip_softc *) self;
3505
3506 /*
3507 * Update TXCFG for full-duplex operation.
3508 */
3509 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3510 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3511 else
3512 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3513
3514 /*
3515 * Update RXCFG for full-duplex or loopback.
3516 */
3517 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3518 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3519 sc->sc_rxcfg |= RXCFG_ATX;
3520 else
3521 sc->sc_rxcfg &= ~RXCFG_ATX;
3522
3523 /*
3524 * XXX 802.3x flow control.
3525 */
3526
3527 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3528 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3529
3530 /*
3531 * Some DP83815s experience problems when used with short
3532 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3533 * sequence adjusts the DSP's signal attenuation to fix the
3534 * problem.
3535 */
3536 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3537 uint32_t reg;
3538
3539 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3540
3541 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3542 reg &= 0x0fff;
3543 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3544 delay(100);
3545 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3546 reg &= 0x00ff;
3547 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3548 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3549 0x00e8);
3550 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3551 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3552 reg | 0x20);
3553 }
3554
3555 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3556 }
3557 }
3558
3559 static void
3560 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3561 const struct pci_attach_args *pa, u_int8_t *enaddr)
3562 {
3563 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3564 u_int8_t cksum, *e, match;
3565 int i;
3566
3567 /*
3568 * EEPROM data format for the DP83820 can be found in
3569 * the DP83820 manual, section 4.2.4.
3570 */
3571
3572 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3573
3574 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3575 match = ~(match - 1);
3576
3577 cksum = 0x55;
3578 e = (u_int8_t *) eeprom_data;
3579 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3580 cksum += *e++;
3581
3582 if (cksum != match)
3583 printf("%s: Checksum (%x) mismatch (%x)",
3584 sc->sc_dev.dv_xname, cksum, match);
3585
3586 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3587 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3588 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3589 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3590 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3591 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3592 }
3593
3594 static void
3595 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3596 {
3597 int i;
3598
3599 /*
3600 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3601 * a reason, but I don't know it.
3602 */
3603 for (i = 0; i < 10; i++)
3604 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3605 }
3606
3607 static void
3608 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3609 const struct pci_attach_args *pa, u_int8_t *enaddr)
3610 {
3611 u_int16_t myea[ETHER_ADDR_LEN / 2];
3612
3613 switch (sc->sc_rev) {
3614 case SIS_REV_630S:
3615 case SIS_REV_630E:
3616 case SIS_REV_630EA1:
3617 case SIS_REV_630ET:
3618 case SIS_REV_635:
3619 /*
3620 * The MAC address for the on-board Ethernet of
3621 * the SiS 630 chipset is in the NVRAM. Kick
3622 * the chip into re-loading it from NVRAM, and
3623 * read the MAC address out of the filter registers.
3624 */
3625 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3626
3627 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3628 RFCR_RFADDR_NODE0);
3629 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3630 0xffff;
3631
3632 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3633 RFCR_RFADDR_NODE2);
3634 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3635 0xffff;
3636
3637 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3638 RFCR_RFADDR_NODE4);
3639 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3640 0xffff;
3641 break;
3642
3643 case SIS_REV_960:
3644 {
3645 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3646 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3647
3648 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3649 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3650
3651 int waittime, i;
3652
3653 /* Allow to read EEPROM from LAN. It is shared
3654 * between a 1394 controller and the NIC and each
3655 * time we access it, we need to set SIS_EECMD_REQ.
3656 */
3657 SIS_SET_EROMAR(sc, EROMAR_REQ);
3658
3659 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3660 /* Force EEPROM to idle state. */
3661
3662 /*
3663 * XXX-cube This is ugly. I'll look for docs about it.
3664 */
3665 SIS_SET_EROMAR(sc, EROMAR_EECS);
3666 sipcom_sis900_eeprom_delay(sc);
3667 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3668 SIS_SET_EROMAR(sc, EROMAR_EESK);
3669 sipcom_sis900_eeprom_delay(sc);
3670 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3671 sipcom_sis900_eeprom_delay(sc);
3672 }
3673 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3674 sipcom_sis900_eeprom_delay(sc);
3675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3676
3677 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3678 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3679 sizeof(myea) / sizeof(myea[0]), myea);
3680 break;
3681 }
3682 DELAY(1);
3683 }
3684
3685 /*
3686 * Set SIS_EECTL_CLK to high, so a other master
3687 * can operate on the i2c bus.
3688 */
3689 SIS_SET_EROMAR(sc, EROMAR_EESK);
3690
3691 /* Refuse EEPROM access by LAN */
3692 SIS_SET_EROMAR(sc, EROMAR_DONE);
3693 } break;
3694
3695 default:
3696 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3697 sizeof(myea) / sizeof(myea[0]), myea);
3698 }
3699
3700 enaddr[0] = myea[0] & 0xff;
3701 enaddr[1] = myea[0] >> 8;
3702 enaddr[2] = myea[1] & 0xff;
3703 enaddr[3] = myea[1] >> 8;
3704 enaddr[4] = myea[2] & 0xff;
3705 enaddr[5] = myea[2] >> 8;
3706 }
3707
3708 /* Table and macro to bit-reverse an octet. */
3709 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3710 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3711
3712 static void
3713 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3714 const struct pci_attach_args *pa, u_int8_t *enaddr)
3715 {
3716 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3717 u_int8_t cksum, *e, match;
3718 int i;
3719
3720 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3721 sizeof(eeprom_data[0]), eeprom_data);
3722
3723 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3724 match = ~(match - 1);
3725
3726 cksum = 0x55;
3727 e = (u_int8_t *) eeprom_data;
3728 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3729 cksum += *e++;
3730 }
3731 if (cksum != match) {
3732 printf("%s: Checksum (%x) mismatch (%x)",
3733 sc->sc_dev.dv_xname, cksum, match);
3734 }
3735
3736 /*
3737 * Unrolled because it makes slightly more sense this way.
3738 * The DP83815 stores the MAC address in bit 0 of word 6
3739 * through bit 15 of word 8.
3740 */
3741 ea = &eeprom_data[6];
3742 enaddr[0] = ((*ea & 0x1) << 7);
3743 ea++;
3744 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3745 enaddr[1] = ((*ea & 0x1FE) >> 1);
3746 enaddr[2] = ((*ea & 0x1) << 7);
3747 ea++;
3748 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3749 enaddr[3] = ((*ea & 0x1FE) >> 1);
3750 enaddr[4] = ((*ea & 0x1) << 7);
3751 ea++;
3752 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3753 enaddr[5] = ((*ea & 0x1FE) >> 1);
3754
3755 /*
3756 * In case that's not weird enough, we also need to reverse
3757 * the bits in each byte. This all actually makes more sense
3758 * if you think about the EEPROM storage as an array of bits
3759 * being shifted into bytes, but that's not how we're looking
3760 * at it here...
3761 */
3762 for (i = 0; i < 6 ;i++)
3763 enaddr[i] = bbr(enaddr[i]);
3764 }
3765
3766 /*
3767 * sip_mediastatus: [ifmedia interface function]
3768 *
3769 * Get the current interface media status.
3770 */
3771 static void
3772 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3773 {
3774 struct sip_softc *sc = ifp->if_softc;
3775
3776 mii_pollstat(&sc->sc_mii);
3777 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3778 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3779 sc->sc_flowflags;
3780 }
3781
3782 /*
3783 * sip_mediachange: [ifmedia interface function]
3784 *
3785 * Set hardware to newly-selected media.
3786 */
3787 static int
3788 sipcom_mediachange(struct ifnet *ifp)
3789 {
3790 struct sip_softc *sc = ifp->if_softc;
3791
3792 if (ifp->if_flags & IFF_UP)
3793 mii_mediachg(&sc->sc_mii);
3794 return (0);
3795 }
3796