if_sip.c revision 1.118 1 /* $NetBSD: if_sip.c,v 1.118 2007/12/14 08:14:27 dogcow Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.118 2007/12/14 08:14:27 dogcow Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 /*
136 * Transmit descriptor list size. This is arbitrary, but allocate
137 * enough descriptors for 128 pending transmissions, and 8 segments
138 * per packet (64 for DP83820 for jumbo frames).
139 *
140 * This MUST work out to a power of 2.
141 */
142 #define GSIP_NTXSEGS_ALLOC 16
143 #define SIP_NTXSEGS_ALLOC 8
144
145 #define SIP_TXQUEUELEN 256
146 #define MAX_SIP_NTXDESC \
147 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
148
149 /*
150 * Receive descriptor list size. We have one Rx buffer per incoming
151 * packet, so this logic is a little simpler.
152 *
153 * Actually, on the DP83820, we allow the packet to consume more than
154 * one buffer, in order to support jumbo Ethernet frames. In that
155 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
156 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
157 * so we'd better be quick about handling receive interrupts.
158 */
159 #define GSIP_NRXDESC 256
160 #define SIP_NRXDESC 128
161
162 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
163
164 /*
165 * Control structures are DMA'd to the SiS900 chip. We allocate them in
166 * a single clump that maps to a single DMA segment to make several things
167 * easier.
168 */
169 struct sip_control_data {
170 /*
171 * The transmit descriptors.
172 */
173 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
174
175 /*
176 * The receive descriptors.
177 */
178 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
179 };
180
181 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
182 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
183 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
184
185 /*
186 * Software state for transmit jobs.
187 */
188 struct sip_txsoft {
189 struct mbuf *txs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t txs_dmamap; /* our DMA map */
191 int txs_firstdesc; /* first descriptor in packet */
192 int txs_lastdesc; /* last descriptor in packet */
193 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
194 };
195
196 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
197
198 /*
199 * Software state for receive jobs.
200 */
201 struct sip_rxsoft {
202 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
203 bus_dmamap_t rxs_dmamap; /* our DMA map */
204 };
205
206 enum sip_attach_stage {
207 SIP_ATTACH_FIN = 0
208 , SIP_ATTACH_CREATE_RXMAP
209 , SIP_ATTACH_CREATE_TXMAP
210 , SIP_ATTACH_LOAD_MAP
211 , SIP_ATTACH_CREATE_MAP
212 , SIP_ATTACH_MAP_MEM
213 , SIP_ATTACH_ALLOC_MEM
214 , SIP_ATTACH_BEGIN
215 };
216
217 /*
218 * Software state per device.
219 */
220 struct sip_softc {
221 struct device sc_dev; /* generic device information */
222 bus_space_tag_t sc_st; /* bus space tag */
223 bus_space_handle_t sc_sh; /* bus space handle */
224 bus_dma_tag_t sc_dmat; /* bus DMA tag */
225 pci_chipset_tag_t sc_pc;
226 bus_dma_segment_t sc_seg;
227 struct ethercom sc_ethercom; /* ethernet common data */
228 void *sc_sdhook; /* shutdown hook */
229
230 const struct sip_product *sc_model; /* which model are we? */
231 int sc_gigabit; /* 1: 83820, 0: other */
232 int sc_rev; /* chip revision */
233
234 void *sc_ih; /* interrupt cookie */
235
236 struct mii_data sc_mii; /* MII/media information */
237
238 callout_t sc_tick_ch; /* tick callout */
239
240 bus_dmamap_t sc_cddmamap; /* control data DMA map */
241 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
242
243 /*
244 * Software state for transmit and receive descriptors.
245 */
246 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
247 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
248
249 /*
250 * Control data structures.
251 */
252 struct sip_control_data *sc_control_data;
253 #define sc_txdescs sc_control_data->scd_txdescs
254 #define sc_rxdescs sc_control_data->scd_rxdescs
255
256 #ifdef SIP_EVENT_COUNTERS
257 /*
258 * Event counters.
259 */
260 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
261 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
262 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
263 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
264 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
265 struct evcnt sc_ev_rxintr; /* Rx interrupts */
266 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
267 struct evcnt sc_ev_rxpause; /* PAUSE received */
268 /* DP83820 only */
269 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
270 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
271 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
272 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
273 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
274 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
275 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
276 #endif /* SIP_EVENT_COUNTERS */
277
278 u_int32_t sc_txcfg; /* prototype TXCFG register */
279 u_int32_t sc_rxcfg; /* prototype RXCFG register */
280 u_int32_t sc_imr; /* prototype IMR register */
281 u_int32_t sc_rfcr; /* prototype RFCR register */
282
283 u_int32_t sc_cfg; /* prototype CFG register */
284
285 u_int32_t sc_gpior; /* prototype GPIOR register */
286
287 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
288 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
289
290 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
291
292 int sc_flowflags; /* 802.3x flow control flags */
293 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
294 int sc_paused; /* paused indication */
295
296 int sc_txfree; /* number of free Tx descriptors */
297 int sc_txnext; /* next ready Tx descriptor */
298 int sc_txwin; /* Tx descriptors since last intr */
299
300 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
301 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
302
303 /* values of interface state at last init */
304 struct {
305 /* if_capenable */
306 uint64_t if_capenable;
307 /* ec_capenable */
308 int ec_capenable;
309 /* VLAN_ATTACHED */
310 int is_vlan;
311 } sc_prev;
312
313 short sc_if_flags;
314
315 int sc_rxptr; /* next ready Rx descriptor/descsoft */
316 int sc_rxdiscard;
317 int sc_rxlen;
318 struct mbuf *sc_rxhead;
319 struct mbuf *sc_rxtail;
320 struct mbuf **sc_rxtailp;
321
322 int sc_ntxdesc;
323 int sc_ntxdesc_mask;
324 int sc_ntxsegs;
325
326 int sc_nrxdesc;
327 int sc_nrxdesc_mask;
328 int sc_rxbuf_len;
329
330 #if NRND > 0
331 rndsource_element_t rnd_source; /* random source */
332 #endif
333 };
334
335 static inline int
336 sip_nexttx(const struct sip_softc *sc, int x)
337 {
338 return (x + 1) & sc->sc_ntxdesc_mask;
339 }
340
341 static inline int
342 sip_nextrx(const struct sip_softc *sc, int x)
343 {
344 return (x + 1) & sc->sc_nrxdesc_mask;
345 }
346
347 /* 83820 only */
348 #define SIP_RXCHAIN_RESET(sc) \
349 do { \
350 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
351 *(sc)->sc_rxtailp = NULL; \
352 (sc)->sc_rxlen = 0; \
353 } while (/*CONSTCOND*/0)
354
355 /* 83820 only */
356 #define SIP_RXCHAIN_LINK(sc, m) \
357 do { \
358 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
359 (sc)->sc_rxtailp = &(m)->m_next; \
360 } while (/*CONSTCOND*/0)
361
362 #ifdef SIP_EVENT_COUNTERS
363 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
364 #else
365 #define SIP_EVCNT_INCR(ev) /* nothing */
366 #endif
367
368 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
369 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
370
371 #define SIP_CDTXSYNC(sc, x, n, ops) \
372 do { \
373 int __x, __n; \
374 \
375 __x = (x); \
376 __n = (n); \
377 \
378 /* If it will wrap around, sync to the end of the ring. */ \
379 if ((__x + __n) > sc->sc_ntxdesc) { \
380 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
381 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
382 (sc->sc_ntxdesc - __x), (ops)); \
383 __n -= (sc->sc_ntxdesc - __x); \
384 __x = 0; \
385 } \
386 \
387 /* Now sync whatever is left. */ \
388 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
389 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
390 } while (0)
391
392 #define SIP_CDRXSYNC(sc, x, ops) \
393 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
394 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
395
396 static inline void
397 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
398 {
399 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
400 struct sip_desc *sipd = &sc->sc_rxdescs[x];
401
402 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
403 sipd->sipd_bufptr = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
404 sipd->sipd_cmdsts = htole32(CMDSTS_INTR |
405 (sc->sc_rxbuf_len & CMDSTS_SIZE_MASK));
406 sipd->sipd_extsts = 0;
407 SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
408 }
409
410 #define SIP_CHIP_VERS(sc, v, p, r) \
411 ((sc)->sc_model->sip_vendor == (v) && \
412 (sc)->sc_model->sip_product == (p) && \
413 (sc)->sc_rev == (r))
414
415 #define SIP_CHIP_MODEL(sc, v, p) \
416 ((sc)->sc_model->sip_vendor == (v) && \
417 (sc)->sc_model->sip_product == (p))
418
419 #define SIP_SIS900_REV(sc, rev) \
420 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421
422 #define SIP_TIMEOUT 1000
423
424 static void sipcom_start(struct ifnet *);
425 static void sipcom_watchdog(struct ifnet *);
426 static int sipcom_ioctl(struct ifnet *, u_long, void *);
427 static int sipcom_init(struct ifnet *);
428 static void sipcom_stop(struct ifnet *, int);
429
430 static void sipcom_shutdown(void *);
431
432 static bool sipcom_reset(struct sip_softc *);
433 static void sipcom_rxdrain(struct sip_softc *);
434 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
435 static void sipcom_read_eeprom(struct sip_softc *, int, int,
436 u_int16_t *);
437 static void sipcom_tick(void *);
438
439 static void sipcom_sis900_set_filter(struct sip_softc *);
440 static void sipcom_dp83815_set_filter(struct sip_softc *);
441
442 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
443 const struct pci_attach_args *, u_int8_t *);
444 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
445 static void sipcom_sis900_read_macaddr(struct sip_softc *,
446 const struct pci_attach_args *, u_int8_t *);
447 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
448 const struct pci_attach_args *, u_int8_t *);
449
450 static int sipcom_intr(void *);
451 static void sipcom_txintr(struct sip_softc *);
452 static void SIP_DECL(rxintr)(struct sip_softc *);
453
454 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
455 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
456 static void sipcom_dp83820_mii_statchg(struct device *);
457
458 static int sipcom_sis900_mii_readreg(struct device *, int, int);
459 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
460 static void sipcom_sis900_mii_statchg(struct device *);
461
462 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
463 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
464 static void sipcom_dp83815_mii_statchg(struct device *);
465
466 static int sipcom_mediachange(struct ifnet *);
467 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
468
469 static int sipcom_match(struct device *, struct cfdata *, void *);
470 static void sipcom_attach(struct device *, struct device *, void *);
471 static void sipcom_do_detach(device_t, enum sip_attach_stage);
472 static int sipcom_detach(device_t, int);
473 static bool sipcom_resume(device_t);
474
475 int SIP_DECL(copy_small) = 0;
476
477 #ifdef DP83820
478 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
479 sipcom_match, sipcom_attach, sipcom_detach, NULL);
480 #else
481 CFATTACH_DECL(sip, sizeof(struct sip_softc),
482 sipcom_match, sipcom_attach, sipcom_detach, NULL);
483 #endif
484
485 /*
486 * Descriptions of the variants of the SiS900.
487 */
488 struct sip_variant {
489 int (*sipv_mii_readreg)(struct device *, int, int);
490 void (*sipv_mii_writereg)(struct device *, int, int, int);
491 void (*sipv_mii_statchg)(struct device *);
492 void (*sipv_set_filter)(struct sip_softc *);
493 void (*sipv_read_macaddr)(struct sip_softc *,
494 const struct pci_attach_args *, u_int8_t *);
495 };
496
497 static u_int32_t sipcom_mii_bitbang_read(struct device *);
498 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
499
500 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
501 sipcom_mii_bitbang_read,
502 sipcom_mii_bitbang_write,
503 {
504 EROMAR_MDIO, /* MII_BIT_MDO */
505 EROMAR_MDIO, /* MII_BIT_MDI */
506 EROMAR_MDC, /* MII_BIT_MDC */
507 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
508 0, /* MII_BIT_DIR_PHY_HOST */
509 }
510 };
511
512 static const struct sip_variant sipcom_variant_dp83820 = {
513 sipcom_dp83820_mii_readreg,
514 sipcom_dp83820_mii_writereg,
515 sipcom_dp83820_mii_statchg,
516 sipcom_dp83815_set_filter,
517 sipcom_dp83820_read_macaddr,
518 };
519
520 static const struct sip_variant sipcom_variant_sis900 = {
521 sipcom_sis900_mii_readreg,
522 sipcom_sis900_mii_writereg,
523 sipcom_sis900_mii_statchg,
524 sipcom_sis900_set_filter,
525 sipcom_sis900_read_macaddr,
526 };
527
528 static const struct sip_variant sipcom_variant_dp83815 = {
529 sipcom_dp83815_mii_readreg,
530 sipcom_dp83815_mii_writereg,
531 sipcom_dp83815_mii_statchg,
532 sipcom_dp83815_set_filter,
533 sipcom_dp83815_read_macaddr,
534 };
535
536
537 /*
538 * Devices supported by this driver.
539 */
540 static const struct sip_product {
541 pci_vendor_id_t sip_vendor;
542 pci_product_id_t sip_product;
543 const char *sip_name;
544 const struct sip_variant *sip_variant;
545 const int sip_gigabit;
546 } sipcom_products[] = {
547 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
548 "NatSemi DP83820 Gigabit Ethernet",
549 &sipcom_variant_dp83820, 1 },
550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
551 "SiS 900 10/100 Ethernet",
552 &sipcom_variant_sis900, 0 },
553 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
554 "SiS 7016 10/100 Ethernet",
555 &sipcom_variant_sis900, 0 },
556
557 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
558 "NatSemi DP83815 10/100 Ethernet",
559 &sipcom_variant_dp83815, 0 },
560
561 { 0, 0,
562 NULL,
563 NULL, 0 },
564 };
565
566 static const struct sip_product *
567 sipcom_lookup(const struct pci_attach_args *pa)
568 {
569 const struct sip_product *sip;
570
571 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
572 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
573 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
574 return (sip);
575 }
576 return (NULL);
577 }
578
579 /*
580 * I really hate stupid hardware vendors. There's a bit in the EEPROM
581 * which indicates if the card can do 64-bit data transfers. Unfortunately,
582 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
583 * which means we try to use 64-bit data transfers on those cards if we
584 * happen to be plugged into a 32-bit slot.
585 *
586 * What we do is use this table of cards known to be 64-bit cards. If
587 * you have a 64-bit card who's subsystem ID is not listed in this table,
588 * send the output of "pcictl dump ..." of the device to me so that your
589 * card will use the 64-bit data path when plugged into a 64-bit slot.
590 *
591 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
592 * June 30, 2002
593 */
594 static int
595 sipcom_check_64bit(const struct pci_attach_args *pa)
596 {
597 static const struct {
598 pci_vendor_id_t c64_vendor;
599 pci_product_id_t c64_product;
600 } card64[] = {
601 /* Asante GigaNIX */
602 { 0x128a, 0x0002 },
603
604 /* Accton EN1407-T, Planex GN-1000TE */
605 { 0x1113, 0x1407 },
606
607 /* Netgear GA-621 */
608 { 0x1385, 0x621a },
609
610 /* SMC EZ Card */
611 { 0x10b8, 0x9462 },
612
613 { 0, 0}
614 };
615 pcireg_t subsys;
616 int i;
617
618 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
619
620 for (i = 0; card64[i].c64_vendor != 0; i++) {
621 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
622 PCI_PRODUCT(subsys) == card64[i].c64_product)
623 return (1);
624 }
625
626 return (0);
627 }
628
629 static int
630 sipcom_match(struct device *parent, struct cfdata *cf,
631 void *aux)
632 {
633 struct pci_attach_args *pa = aux;
634
635 if (sipcom_lookup(pa) != NULL)
636 return (1);
637
638 return (0);
639 }
640
641 static void
642 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
643 {
644 u_int32_t reg;
645 int i;
646
647 /*
648 * Cause the chip to load configuration data from the EEPROM.
649 */
650 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
651 for (i = 0; i < 10000; i++) {
652 delay(10);
653 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
654 PTSCR_EELOAD_EN) == 0)
655 break;
656 }
657 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
658 PTSCR_EELOAD_EN) {
659 printf("%s: timeout loading configuration from EEPROM\n",
660 sc->sc_dev.dv_xname);
661 return;
662 }
663
664 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
665
666 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
667 if (reg & CFG_PCI64_DET) {
668 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
669 /*
670 * Check to see if this card is 64-bit. If so, enable 64-bit
671 * data transfers.
672 *
673 * We can't use the DATA64_EN bit in the EEPROM, because
674 * vendors of 32-bit cards fail to clear that bit in many
675 * cases (yet the card still detects that it's in a 64-bit
676 * slot; go figure).
677 */
678 if (sipcom_check_64bit(pa)) {
679 sc->sc_cfg |= CFG_DATA64_EN;
680 printf(", using 64-bit data transfers");
681 }
682 printf("\n");
683 }
684
685 /*
686 * XXX Need some PCI flags indicating support for
687 * XXX 64-bit addressing.
688 */
689 #if 0
690 if (reg & CFG_M64ADDR)
691 sc->sc_cfg |= CFG_M64ADDR;
692 if (reg & CFG_T64ADDR)
693 sc->sc_cfg |= CFG_T64ADDR;
694 #endif
695
696 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
697 const char *sep = "";
698 printf("%s: using ", sc->sc_dev.dv_xname);
699 if (reg & CFG_EXT_125) {
700 sc->sc_cfg |= CFG_EXT_125;
701 printf("%s125MHz clock", sep);
702 sep = ", ";
703 }
704 if (reg & CFG_TBI_EN) {
705 sc->sc_cfg |= CFG_TBI_EN;
706 printf("%sten-bit interface", sep);
707 sep = ", ";
708 }
709 printf("\n");
710 }
711 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
712 (reg & CFG_MRM_DIS) != 0)
713 sc->sc_cfg |= CFG_MRM_DIS;
714 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
715 (reg & CFG_MWI_DIS) != 0)
716 sc->sc_cfg |= CFG_MWI_DIS;
717
718 /*
719 * Use the extended descriptor format on the DP83820. This
720 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
721 * checksumming.
722 */
723 sc->sc_cfg |= CFG_EXTSTS_EN;
724 }
725
726 static int
727 sipcom_detach(device_t self, int flags)
728 {
729 sipcom_do_detach(self, SIP_ATTACH_FIN);
730 return 0;
731 }
732
733 static void
734 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
735 {
736 int i;
737 struct sip_softc *sc = device_private(self);
738 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
739
740 /*
741 * Free any resources we've allocated during attach.
742 * Do this in reverse order and fall through.
743 */
744 switch (stage) {
745 case SIP_ATTACH_FIN:
746 sipcom_stop(ifp, 1);
747 pmf_device_deregister(self);
748 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
749 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
750
751 if (sc->sc_sdhook != NULL)
752 shutdownhook_disestablish(sc->sc_sdhook);
753
754 /*FALLTHROUGH*/
755 case SIP_ATTACH_CREATE_RXMAP:
756 for (i = 0; i < sc->sc_nrxdesc; i++) {
757 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
758 bus_dmamap_destroy(sc->sc_dmat,
759 sc->sc_rxsoft[i].rxs_dmamap);
760 }
761 /*FALLTHROUGH*/
762 case SIP_ATTACH_CREATE_TXMAP:
763 for (i = 0; i < SIP_TXQUEUELEN; i++) {
764 if (sc->sc_txsoft[i].txs_dmamap != NULL)
765 bus_dmamap_destroy(sc->sc_dmat,
766 sc->sc_txsoft[i].txs_dmamap);
767 }
768 /*FALLTHROUGH*/
769 case SIP_ATTACH_LOAD_MAP:
770 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
771 /*FALLTHROUGH*/
772 case SIP_ATTACH_CREATE_MAP:
773 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
774 /*FALLTHROUGH*/
775 case SIP_ATTACH_MAP_MEM:
776 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
777 sizeof(struct sip_control_data));
778 /*FALLTHROUGH*/
779 case SIP_ATTACH_ALLOC_MEM:
780 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
781 break;
782 default:
783 break;
784 }
785 return;
786 }
787
788 static bool
789 sipcom_resume(device_t self)
790 {
791 struct sip_softc *sc = device_private(self);
792
793 return sipcom_reset(sc);
794 }
795
796 static void
797 sipcom_attach(struct device *parent, struct device *self, void *aux)
798 {
799 struct sip_softc *sc = (struct sip_softc *) self;
800 struct pci_attach_args *pa = aux;
801 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802 pci_chipset_tag_t pc = pa->pa_pc;
803 pci_intr_handle_t ih;
804 const char *intrstr = NULL;
805 bus_space_tag_t iot, memt;
806 bus_space_handle_t ioh, memh;
807 int ioh_valid, memh_valid;
808 int i, rseg, error;
809 const struct sip_product *sip;
810 u_int8_t enaddr[ETHER_ADDR_LEN];
811 pcireg_t pmreg;
812 pcireg_t memtype;
813 bus_size_t tx_dmamap_size;
814 int ntxsegs_alloc;
815
816 callout_init(&sc->sc_tick_ch, 0);
817
818 sip = sipcom_lookup(pa);
819 if (sip == NULL) {
820 printf("\n");
821 panic("%s: impossible", __func__);
822 }
823 sc->sc_gigabit = sip->sip_gigabit;
824
825 sc->sc_pc = pc;
826
827 if (sc->sc_gigabit) {
828 sc->sc_rxbuf_len = MCLBYTES - 8;
829 tx_dmamap_size = ETHER_MAX_LEN_JUMBO;
830 sc->sc_ntxsegs = 64;
831 ntxsegs_alloc = GSIP_NTXSEGS_ALLOC;
832 sc->sc_nrxdesc = GSIP_NRXDESC;
833 } else {
834 sc->sc_rxbuf_len = MCLBYTES - 1; /* field width */
835 tx_dmamap_size = MCLBYTES;
836 sc->sc_ntxsegs = 16;
837 ntxsegs_alloc = SIP_NTXSEGS_ALLOC;
838 sc->sc_nrxdesc = SIP_NRXDESC;
839 }
840 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
841 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
842 sc->sc_nrxdesc_mask = sc->sc_nrxdesc - 1;
843
844 sc->sc_rev = PCI_REVISION(pa->pa_class);
845
846 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
847
848 sc->sc_model = sip;
849
850 /*
851 * XXX Work-around broken PXE firmware on some boards.
852 *
853 * The DP83815 shares an address decoder with the MEM BAR
854 * and the ROM BAR. Make sure the ROM BAR is disabled,
855 * so that memory mapped access works.
856 */
857 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
858 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
859 ~PCI_MAPREG_ROM_ENABLE);
860
861 /*
862 * Map the device.
863 */
864 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
865 PCI_MAPREG_TYPE_IO, 0,
866 &iot, &ioh, NULL, NULL) == 0);
867 if (sc->sc_gigabit) {
868 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
869 switch (memtype) {
870 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
871 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
872 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
873 memtype, 0, &memt, &memh, NULL, NULL) == 0);
874 break;
875 default:
876 memh_valid = 0;
877 }
878 } else {
879 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
880 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
881 &memt, &memh, NULL, NULL) == 0);
882 }
883
884 if (memh_valid) {
885 sc->sc_st = memt;
886 sc->sc_sh = memh;
887 } else if (ioh_valid) {
888 sc->sc_st = iot;
889 sc->sc_sh = ioh;
890 } else {
891 printf("%s: unable to map device registers\n",
892 sc->sc_dev.dv_xname);
893 return;
894 }
895
896 sc->sc_dmat = pa->pa_dmat;
897
898 /*
899 * Make sure bus mastering is enabled. Also make sure
900 * Write/Invalidate is enabled if we're allowed to use it.
901 */
902 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
903 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
904 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
905 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
906 pmreg | PCI_COMMAND_MASTER_ENABLE);
907
908 /* power up chip */
909 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
910 NULL)) && error != EOPNOTSUPP) {
911 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
912 error);
913 return;
914 }
915
916 /*
917 * Map and establish our interrupt.
918 */
919 if (pci_intr_map(pa, &ih)) {
920 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
921 return;
922 }
923 intrstr = pci_intr_string(pc, ih);
924 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
925 if (sc->sc_ih == NULL) {
926 printf("%s: unable to establish interrupt",
927 sc->sc_dev.dv_xname);
928 if (intrstr != NULL)
929 printf(" at %s", intrstr);
930 printf("\n");
931 return;
932 }
933 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
934
935 SIMPLEQ_INIT(&sc->sc_txfreeq);
936 SIMPLEQ_INIT(&sc->sc_txdirtyq);
937
938 /*
939 * Allocate the control data structures, and create and load the
940 * DMA map for it.
941 */
942 if ((error = bus_dmamem_alloc(sc->sc_dmat,
943 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
944 &rseg, 0)) != 0) {
945 printf("%s: unable to allocate control data, error = %d\n",
946 sc->sc_dev.dv_xname, error);
947 return sipcom_do_detach(self, -1);
948 }
949
950 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
951 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
952 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
953 printf("%s: unable to map control data, error = %d\n",
954 sc->sc_dev.dv_xname, error);
955 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
956 }
957
958 if ((error = bus_dmamap_create(sc->sc_dmat,
959 sizeof(struct sip_control_data), 1,
960 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
961 printf("%s: unable to create control data DMA map, "
962 "error = %d\n", sc->sc_dev.dv_xname, error);
963 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
964 }
965
966 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
967 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
968 0)) != 0) {
969 printf("%s: unable to load control data DMA map, error = %d\n",
970 sc->sc_dev.dv_xname, error);
971 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
972 }
973
974 /*
975 * Create the transmit buffer DMA maps.
976 */
977 for (i = 0; i < SIP_TXQUEUELEN; i++) {
978 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
979 sc->sc_ntxsegs, MCLBYTES, 0, 0,
980 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
981 printf("%s: unable to create tx DMA map %d, "
982 "error = %d\n", sc->sc_dev.dv_xname, i, error);
983 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
984 }
985 }
986
987 /*
988 * Create the receive buffer DMA maps.
989 */
990 for (i = 0; i < sc->sc_nrxdesc; i++) {
991 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
992 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
993 printf("%s: unable to create rx DMA map %d, "
994 "error = %d\n", sc->sc_dev.dv_xname, i, error);
995 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
996 }
997 sc->sc_rxsoft[i].rxs_mbuf = NULL;
998 }
999
1000 /*
1001 * Reset the chip to a known state.
1002 */
1003 sipcom_reset(sc);
1004
1005 /*
1006 * Read the Ethernet address from the EEPROM. This might
1007 * also fetch other stuff from the EEPROM and stash it
1008 * in the softc.
1009 */
1010 sc->sc_cfg = 0;
1011 if (!sc->sc_gigabit) {
1012 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1013 SIP_SIS900_REV(sc,SIS_REV_900B))
1014 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1015
1016 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1017 SIP_SIS900_REV(sc,SIS_REV_960) ||
1018 SIP_SIS900_REV(sc,SIS_REV_900B))
1019 sc->sc_cfg |=
1020 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1021 CFG_EDBMASTEN);
1022 }
1023
1024 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1025
1026 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1027 ether_sprintf(enaddr));
1028
1029 /*
1030 * Initialize the configuration register: aggressive PCI
1031 * bus request algorithm, default backoff, default OW timer,
1032 * default parity error detection.
1033 *
1034 * NOTE: "Big endian mode" is useless on the SiS900 and
1035 * friends -- it affects packet data, not descriptors.
1036 */
1037 if (sc->sc_gigabit)
1038 sipcom_dp83820_attach(sc, pa);
1039
1040 /*
1041 * Initialize our media structures and probe the MII.
1042 */
1043 sc->sc_mii.mii_ifp = ifp;
1044 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1045 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1046 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1047 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
1048 sipcom_mediastatus);
1049
1050 /*
1051 * XXX We cannot handle flow control on the DP83815.
1052 */
1053 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1054 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1055 MII_OFFSET_ANY, 0);
1056 else
1057 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1058 MII_OFFSET_ANY, MIIF_DOPAUSE);
1059 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1060 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1061 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1062 } else
1063 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1064
1065 ifp = &sc->sc_ethercom.ec_if;
1066 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1067 ifp->if_softc = sc;
1068 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1069 sc->sc_if_flags = ifp->if_flags;
1070 ifp->if_ioctl = sipcom_ioctl;
1071 ifp->if_start = sipcom_start;
1072 ifp->if_watchdog = sipcom_watchdog;
1073 ifp->if_init = sipcom_init;
1074 ifp->if_stop = sipcom_stop;
1075 IFQ_SET_READY(&ifp->if_snd);
1076
1077 /*
1078 * We can support 802.1Q VLAN-sized frames.
1079 */
1080 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1081
1082 if (sc->sc_gigabit) {
1083 /*
1084 * And the DP83820 can do VLAN tagging in hardware, and
1085 * support the jumbo Ethernet MTU.
1086 */
1087 sc->sc_ethercom.ec_capabilities |=
1088 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1089
1090 /*
1091 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1092 * in hardware.
1093 */
1094 ifp->if_capabilities |=
1095 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1096 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1097 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1098 }
1099
1100 /*
1101 * Attach the interface.
1102 */
1103 if_attach(ifp);
1104 ether_ifattach(ifp, enaddr);
1105 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1106 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1107 sc->sc_prev.if_capenable = ifp->if_capenable;
1108 #if NRND > 0
1109 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1110 RND_TYPE_NET, 0);
1111 #endif
1112
1113 /*
1114 * The number of bytes that must be available in
1115 * the Tx FIFO before the bus master can DMA more
1116 * data into the FIFO.
1117 */
1118 sc->sc_tx_fill_thresh = 64 / 32;
1119
1120 /*
1121 * Start at a drain threshold of 512 bytes. We will
1122 * increase it if a DMA underrun occurs.
1123 *
1124 * XXX The minimum value of this variable should be
1125 * tuned. We may be able to improve performance
1126 * by starting with a lower value. That, however,
1127 * may trash the first few outgoing packets if the
1128 * PCI bus is saturated.
1129 */
1130 if (sc->sc_gigabit)
1131 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1132 else
1133 sc->sc_tx_drain_thresh = 1504 / 32;
1134
1135 /*
1136 * Initialize the Rx FIFO drain threshold.
1137 *
1138 * This is in units of 8 bytes.
1139 *
1140 * We should never set this value lower than 2; 14 bytes are
1141 * required to filter the packet.
1142 */
1143 sc->sc_rx_drain_thresh = 128 / 8;
1144
1145 #ifdef SIP_EVENT_COUNTERS
1146 /*
1147 * Attach event counters.
1148 */
1149 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1150 NULL, sc->sc_dev.dv_xname, "txsstall");
1151 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1152 NULL, sc->sc_dev.dv_xname, "txdstall");
1153 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1154 NULL, sc->sc_dev.dv_xname, "txforceintr");
1155 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1156 NULL, sc->sc_dev.dv_xname, "txdintr");
1157 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1158 NULL, sc->sc_dev.dv_xname, "txiintr");
1159 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1160 NULL, sc->sc_dev.dv_xname, "rxintr");
1161 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1162 NULL, sc->sc_dev.dv_xname, "hiberr");
1163 if (!sc->sc_gigabit) {
1164 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1165 NULL, sc->sc_dev.dv_xname, "rxpause");
1166 } else {
1167 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1168 NULL, sc->sc_dev.dv_xname, "rxpause");
1169 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1170 NULL, sc->sc_dev.dv_xname, "txpause");
1171 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1172 NULL, sc->sc_dev.dv_xname, "rxipsum");
1173 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1174 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1175 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1176 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1177 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1178 NULL, sc->sc_dev.dv_xname, "txipsum");
1179 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1180 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1181 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1182 NULL, sc->sc_dev.dv_xname, "txudpsum");
1183 }
1184 #endif /* SIP_EVENT_COUNTERS */
1185
1186 if (!pmf_device_register(self, NULL, sipcom_resume))
1187 aprint_error_dev(self, "couldn't establish power handler\n");
1188 else
1189 pmf_class_network_register(self, ifp);
1190
1191 /*
1192 * Make sure the interface is shutdown during reboot.
1193 */
1194 sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
1195 if (sc->sc_sdhook == NULL)
1196 printf("%s: WARNING: unable to establish shutdown hook\n",
1197 sc->sc_dev.dv_xname);
1198 }
1199
1200 /*
1201 * sip_shutdown:
1202 *
1203 * Make sure the interface is stopped at reboot time.
1204 */
1205 static void
1206 sipcom_shutdown(void *arg)
1207 {
1208 struct sip_softc *sc = arg;
1209
1210 sipcom_stop(&sc->sc_ethercom.ec_if, 1);
1211 }
1212
1213 static inline void
1214 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1215 uint64_t capenable)
1216 {
1217 struct m_tag *mtag;
1218 u_int32_t extsts;
1219 #ifdef DEBUG
1220 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1221 #endif
1222 /*
1223 * If VLANs are enabled and the packet has a VLAN tag, set
1224 * up the descriptor to encapsulate the packet for us.
1225 *
1226 * This apparently has to be on the last descriptor of
1227 * the packet.
1228 */
1229
1230 /*
1231 * Byte swapping is tricky. We need to provide the tag
1232 * in a network byte order. On a big-endian machine,
1233 * the byteorder is correct, but we need to swap it
1234 * anyway, because this will be undone by the outside
1235 * htole32(). That's why there must be an
1236 * unconditional swap instead of htons() inside.
1237 */
1238 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1239 sc->sc_txdescs[lasttx].sipd_extsts |=
1240 htole32(EXTSTS_VPKT |
1241 (bswap16(VLAN_TAG_VALUE(mtag)) &
1242 EXTSTS_VTCI));
1243 }
1244
1245 /*
1246 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1247 * checksumming, set up the descriptor to do this work
1248 * for us.
1249 *
1250 * This apparently has to be on the first descriptor of
1251 * the packet.
1252 *
1253 * Byte-swap constants so the compiler can optimize.
1254 */
1255 extsts = 0;
1256 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1257 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1258 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1259 extsts |= htole32(EXTSTS_IPPKT);
1260 }
1261 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1262 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1263 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1264 extsts |= htole32(EXTSTS_TCPPKT);
1265 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1266 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1267 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1268 extsts |= htole32(EXTSTS_UDPPKT);
1269 }
1270 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1271 }
1272
1273 /*
1274 * sip_start: [ifnet interface function]
1275 *
1276 * Start packet transmission on the interface.
1277 */
1278 static void
1279 sipcom_start(struct ifnet *ifp)
1280 {
1281 struct sip_softc *sc = ifp->if_softc;
1282 struct mbuf *m0;
1283 struct mbuf *m;
1284 struct sip_txsoft *txs;
1285 bus_dmamap_t dmamap;
1286 int error, nexttx, lasttx, seg;
1287 int ofree = sc->sc_txfree;
1288 #if 0
1289 int firsttx = sc->sc_txnext;
1290 #endif
1291
1292 /*
1293 * If we've been told to pause, don't transmit any more packets.
1294 */
1295 if (!sc->sc_gigabit && sc->sc_paused)
1296 ifp->if_flags |= IFF_OACTIVE;
1297
1298 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1299 return;
1300
1301 /*
1302 * Loop through the send queue, setting up transmit descriptors
1303 * until we drain the queue, or use up all available transmit
1304 * descriptors.
1305 */
1306 for (;;) {
1307 /* Get a work queue entry. */
1308 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1309 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1310 break;
1311 }
1312
1313 /*
1314 * Grab a packet off the queue.
1315 */
1316 IFQ_POLL(&ifp->if_snd, m0);
1317 if (m0 == NULL)
1318 break;
1319 m = NULL;
1320
1321 dmamap = txs->txs_dmamap;
1322
1323 /*
1324 * Load the DMA map. If this fails, the packet either
1325 * didn't fit in the alloted number of segments, or we
1326 * were short on resources.
1327 */
1328 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1329 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1330 /* In the non-gigabit case, we'll copy and try again. */
1331 if (error != 0 && !sc->sc_gigabit) {
1332 MGETHDR(m, M_DONTWAIT, MT_DATA);
1333 if (m == NULL) {
1334 printf("%s: unable to allocate Tx mbuf\n",
1335 sc->sc_dev.dv_xname);
1336 break;
1337 }
1338 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1339 if (m0->m_pkthdr.len > MHLEN) {
1340 MCLGET(m, M_DONTWAIT);
1341 if ((m->m_flags & M_EXT) == 0) {
1342 printf("%s: unable to allocate Tx "
1343 "cluster\n", sc->sc_dev.dv_xname);
1344 m_freem(m);
1345 break;
1346 }
1347 }
1348 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1349 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1350 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1351 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1352 if (error) {
1353 printf("%s: unable to load Tx buffer, "
1354 "error = %d\n", sc->sc_dev.dv_xname, error);
1355 break;
1356 }
1357 } else if (error == EFBIG) {
1358 /*
1359 * For the too-many-segments case, we simply
1360 * report an error and drop the packet,
1361 * since we can't sanely copy a jumbo packet
1362 * to a single buffer.
1363 */
1364 printf("%s: Tx packet consumes too many "
1365 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1366 IFQ_DEQUEUE(&ifp->if_snd, m0);
1367 m_freem(m0);
1368 continue;
1369 } else if (error != 0) {
1370 /*
1371 * Short on resources, just stop for now.
1372 */
1373 break;
1374 }
1375
1376 /*
1377 * Ensure we have enough descriptors free to describe
1378 * the packet. Note, we always reserve one descriptor
1379 * at the end of the ring as a termination point, to
1380 * prevent wrap-around.
1381 */
1382 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1383 /*
1384 * Not enough free descriptors to transmit this
1385 * packet. We haven't committed anything yet,
1386 * so just unload the DMA map, put the packet
1387 * back on the queue, and punt. Notify the upper
1388 * layer that there are not more slots left.
1389 *
1390 * XXX We could allocate an mbuf and copy, but
1391 * XXX is it worth it?
1392 */
1393 ifp->if_flags |= IFF_OACTIVE;
1394 bus_dmamap_unload(sc->sc_dmat, dmamap);
1395 if (m != NULL)
1396 m_freem(m);
1397 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1398 break;
1399 }
1400
1401 IFQ_DEQUEUE(&ifp->if_snd, m0);
1402 if (m != NULL) {
1403 m_freem(m0);
1404 m0 = m;
1405 }
1406
1407 /*
1408 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1409 */
1410
1411 /* Sync the DMA map. */
1412 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1413 BUS_DMASYNC_PREWRITE);
1414
1415 /*
1416 * Initialize the transmit descriptors.
1417 */
1418 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1419 seg < dmamap->dm_nsegs;
1420 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1421 /*
1422 * If this is the first descriptor we're
1423 * enqueueing, don't set the OWN bit just
1424 * yet. That could cause a race condition.
1425 * We'll do it below.
1426 */
1427 sc->sc_txdescs[nexttx].sipd_bufptr =
1428 htole32(dmamap->dm_segs[seg].ds_addr);
1429 sc->sc_txdescs[nexttx].sipd_cmdsts =
1430 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1431 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1432 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1433 lasttx = nexttx;
1434 }
1435
1436 /* Clear the MORE bit on the last segment. */
1437 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1438
1439 /*
1440 * If we're in the interrupt delay window, delay the
1441 * interrupt.
1442 */
1443 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1444 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1445 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1446 htole32(CMDSTS_INTR);
1447 sc->sc_txwin = 0;
1448 }
1449
1450 if (sc->sc_gigabit)
1451 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1452
1453 /* Sync the descriptors we're using. */
1454 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1455 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1456
1457 /*
1458 * The entire packet is set up. Give the first descrptor
1459 * to the chip now.
1460 */
1461 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1462 htole32(CMDSTS_OWN);
1463 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1464 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1465
1466 /*
1467 * Store a pointer to the packet so we can free it later,
1468 * and remember what txdirty will be once the packet is
1469 * done.
1470 */
1471 txs->txs_mbuf = m0;
1472 txs->txs_firstdesc = sc->sc_txnext;
1473 txs->txs_lastdesc = lasttx;
1474
1475 /* Advance the tx pointer. */
1476 sc->sc_txfree -= dmamap->dm_nsegs;
1477 sc->sc_txnext = nexttx;
1478
1479 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1480 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1481
1482 #if NBPFILTER > 0
1483 /*
1484 * Pass the packet to any BPF listeners.
1485 */
1486 if (ifp->if_bpf)
1487 bpf_mtap(ifp->if_bpf, m0);
1488 #endif /* NBPFILTER > 0 */
1489 }
1490
1491 if (txs == NULL || sc->sc_txfree == 0) {
1492 /* No more slots left; notify upper layer. */
1493 ifp->if_flags |= IFF_OACTIVE;
1494 }
1495
1496 if (sc->sc_txfree != ofree) {
1497 /*
1498 * Start the transmit process. Note, the manual says
1499 * that if there are no pending transmissions in the
1500 * chip's internal queue (indicated by TXE being clear),
1501 * then the driver software must set the TXDP to the
1502 * first descriptor to be transmitted. However, if we
1503 * do this, it causes serious performance degredation on
1504 * the DP83820 under load, not setting TXDP doesn't seem
1505 * to adversely affect the SiS 900 or DP83815.
1506 *
1507 * Well, I guess it wouldn't be the first time a manual
1508 * has lied -- and they could be speaking of the NULL-
1509 * terminated descriptor list case, rather than OWN-
1510 * terminated rings.
1511 */
1512 #if 0
1513 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1514 CR_TXE) == 0) {
1515 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1516 SIP_CDTXADDR(sc, firsttx));
1517 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1518 }
1519 #else
1520 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1521 #endif
1522
1523 /* Set a watchdog timer in case the chip flakes out. */
1524 /* Gigabit autonegotiation takes 5 seconds. */
1525 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1526 }
1527 }
1528
1529 /*
1530 * sip_watchdog: [ifnet interface function]
1531 *
1532 * Watchdog timer handler.
1533 */
1534 static void
1535 sipcom_watchdog(struct ifnet *ifp)
1536 {
1537 struct sip_softc *sc = ifp->if_softc;
1538
1539 /*
1540 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1541 * If we get a timeout, try and sweep up transmit descriptors.
1542 * If we manage to sweep them all up, ignore the lack of
1543 * interrupt.
1544 */
1545 sipcom_txintr(sc);
1546
1547 if (sc->sc_txfree != sc->sc_ntxdesc) {
1548 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1549 ifp->if_oerrors++;
1550
1551 /* Reset the interface. */
1552 (void) sipcom_init(ifp);
1553 } else if (ifp->if_flags & IFF_DEBUG)
1554 printf("%s: recovered from device timeout\n",
1555 sc->sc_dev.dv_xname);
1556
1557 /* Try to get more packets going. */
1558 sipcom_start(ifp);
1559 }
1560
1561 /*
1562 * sip_ioctl: [ifnet interface function]
1563 *
1564 * Handle control requests from the operator.
1565 */
1566 static int
1567 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1568 {
1569 struct sip_softc *sc = ifp->if_softc;
1570 struct ifreq *ifr = (struct ifreq *)data;
1571 int s, error;
1572
1573 s = splnet();
1574
1575 switch (cmd) {
1576 case SIOCSIFMEDIA:
1577 /* Flow control requires full-duplex mode. */
1578 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1579 (ifr->ifr_media & IFM_FDX) == 0)
1580 ifr->ifr_media &= ~IFM_ETH_FMASK;
1581
1582 /* XXX */
1583 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1584 ifr->ifr_media &= ~IFM_ETH_FMASK;
1585 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1586 if (sc->sc_gigabit &&
1587 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1588 /* We can do both TXPAUSE and RXPAUSE. */
1589 ifr->ifr_media |=
1590 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1591 } else if (ifr->ifr_media & IFM_FLOW) {
1592 /*
1593 * Both TXPAUSE and RXPAUSE must be set.
1594 * (SiS900 and DP83815 don't have PAUSE_ASYM
1595 * feature.)
1596 *
1597 * XXX Can SiS900 and DP83815 send PAUSE?
1598 */
1599 ifr->ifr_media |=
1600 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1601 }
1602 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1603 }
1604 /* FALLTHROUGH */
1605 case SIOCGIFMEDIA:
1606 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1607 break;
1608 case SIOCSIFFLAGS:
1609 /* If the interface is up and running, only modify the receive
1610 * filter when setting promiscuous or debug mode. Otherwise
1611 * fall through to ether_ioctl, which will reset the chip.
1612 */
1613
1614 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1615 == (sc)->sc_ethercom.ec_capenable) \
1616 && ((sc)->sc_prev.is_vlan == \
1617 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1618
1619 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1620
1621 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1622 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1623 == (IFF_UP|IFF_RUNNING))
1624 && ((ifp->if_flags & (~RESETIGN))
1625 == (sc->sc_if_flags & (~RESETIGN)))
1626 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1627 /* Set up the receive filter. */
1628 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1629 error = 0;
1630 break;
1631 #undef RESETIGN
1632 }
1633 /* FALLTHROUGH */
1634 default:
1635 error = ether_ioctl(ifp, cmd, data);
1636 if (error == ENETRESET) {
1637 /*
1638 * Multicast list has changed; set the hardware filter
1639 * accordingly.
1640 */
1641 if (ifp->if_flags & IFF_RUNNING)
1642 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1643 error = 0;
1644 }
1645 break;
1646 }
1647
1648 /* Try to get more packets going. */
1649 sipcom_start(ifp);
1650
1651 sc->sc_if_flags = ifp->if_flags;
1652 splx(s);
1653 return (error);
1654 }
1655
1656 /*
1657 * sip_intr:
1658 *
1659 * Interrupt service routine.
1660 */
1661 static int
1662 sipcom_intr(void *arg)
1663 {
1664 struct sip_softc *sc = arg;
1665 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1666 u_int32_t isr;
1667 int handled = 0;
1668
1669 /* Disable interrupts. */
1670 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1671
1672 for (;;) {
1673 /* Reading clears interrupt. */
1674 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1675 if ((isr & sc->sc_imr) == 0)
1676 break;
1677
1678 #if NRND > 0
1679 if (RND_ENABLED(&sc->rnd_source))
1680 rnd_add_uint32(&sc->rnd_source, isr);
1681 #endif
1682
1683 handled = 1;
1684
1685 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1686 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1687
1688 /* Grab any new packets. */
1689 SIP_DECL(rxintr)(sc);
1690
1691 if (isr & ISR_RXORN) {
1692 printf("%s: receive FIFO overrun\n",
1693 sc->sc_dev.dv_xname);
1694
1695 /* XXX adjust rx_drain_thresh? */
1696 }
1697
1698 if (isr & ISR_RXIDLE) {
1699 printf("%s: receive ring overrun\n",
1700 sc->sc_dev.dv_xname);
1701
1702 /* Get the receive process going again. */
1703 bus_space_write_4(sc->sc_st, sc->sc_sh,
1704 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1705 bus_space_write_4(sc->sc_st, sc->sc_sh,
1706 SIP_CR, CR_RXE);
1707 }
1708 }
1709
1710 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1711 #ifdef SIP_EVENT_COUNTERS
1712 if (isr & ISR_TXDESC)
1713 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1714 else if (isr & ISR_TXIDLE)
1715 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1716 #endif
1717
1718 /* Sweep up transmit descriptors. */
1719 sipcom_txintr(sc);
1720
1721 if (isr & ISR_TXURN) {
1722 u_int32_t thresh;
1723
1724 printf("%s: transmit FIFO underrun",
1725 sc->sc_dev.dv_xname);
1726
1727 thresh = sc->sc_tx_drain_thresh + 1;
1728 if (thresh <= TXCFG_DRTH &&
1729 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1730 (sc->sc_tx_fill_thresh * 32))) {
1731 printf("; increasing Tx drain "
1732 "threshold to %u bytes\n",
1733 thresh * 32);
1734 sc->sc_tx_drain_thresh = thresh;
1735 (void) sipcom_init(ifp);
1736 } else {
1737 (void) sipcom_init(ifp);
1738 printf("\n");
1739 }
1740 }
1741 }
1742
1743 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1744 if (isr & ISR_PAUSE_ST) {
1745 sc->sc_paused = 1;
1746 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1747 ifp->if_flags |= IFF_OACTIVE;
1748 }
1749 if (isr & ISR_PAUSE_END) {
1750 sc->sc_paused = 0;
1751 ifp->if_flags &= ~IFF_OACTIVE;
1752 }
1753 }
1754
1755 if (isr & ISR_HIBERR) {
1756 int want_init = 0;
1757
1758 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1759
1760 #define PRINTERR(bit, str) \
1761 do { \
1762 if ((isr & (bit)) != 0) { \
1763 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1764 printf("%s: %s\n", \
1765 sc->sc_dev.dv_xname, str); \
1766 want_init = 1; \
1767 } \
1768 } while (/*CONSTCOND*/0)
1769
1770 PRINTERR(ISR_DPERR, "parity error");
1771 PRINTERR(ISR_SSERR, "system error");
1772 PRINTERR(ISR_RMABT, "master abort");
1773 PRINTERR(ISR_RTABT, "target abort");
1774 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1775 /*
1776 * Ignore:
1777 * Tx reset complete
1778 * Rx reset complete
1779 */
1780 if (want_init)
1781 (void) sipcom_init(ifp);
1782 #undef PRINTERR
1783 }
1784 }
1785
1786 /* Re-enable interrupts. */
1787 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1788
1789 /* Try to get more packets going. */
1790 sipcom_start(ifp);
1791
1792 return (handled);
1793 }
1794
1795 /*
1796 * sip_txintr:
1797 *
1798 * Helper; handle transmit interrupts.
1799 */
1800 static void
1801 sipcom_txintr(struct sip_softc *sc)
1802 {
1803 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1804 struct sip_txsoft *txs;
1805 u_int32_t cmdsts;
1806
1807 if (sc->sc_paused == 0)
1808 ifp->if_flags &= ~IFF_OACTIVE;
1809
1810 /*
1811 * Go through our Tx list and free mbufs for those
1812 * frames which have been transmitted.
1813 */
1814 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1815 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1816 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1817
1818 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1819 if (cmdsts & CMDSTS_OWN)
1820 break;
1821
1822 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1823
1824 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1825
1826 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1827 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1828 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1829 m_freem(txs->txs_mbuf);
1830 txs->txs_mbuf = NULL;
1831
1832 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1833
1834 /*
1835 * Check for errors and collisions.
1836 */
1837 if (cmdsts &
1838 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1839 ifp->if_oerrors++;
1840 if (cmdsts & CMDSTS_Tx_EC)
1841 ifp->if_collisions += 16;
1842 if (ifp->if_flags & IFF_DEBUG) {
1843 if (cmdsts & CMDSTS_Tx_ED)
1844 printf("%s: excessive deferral\n",
1845 sc->sc_dev.dv_xname);
1846 if (cmdsts & CMDSTS_Tx_EC)
1847 printf("%s: excessive collisions\n",
1848 sc->sc_dev.dv_xname);
1849 }
1850 } else {
1851 /* Packet was transmitted successfully. */
1852 ifp->if_opackets++;
1853 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1854 }
1855 }
1856
1857 /*
1858 * If there are no more pending transmissions, cancel the watchdog
1859 * timer.
1860 */
1861 if (txs == NULL) {
1862 ifp->if_timer = 0;
1863 sc->sc_txwin = 0;
1864 }
1865 }
1866
1867 #if defined(DP83820)
1868 /*
1869 * sip_rxintr:
1870 *
1871 * Helper; handle receive interrupts.
1872 */
1873 static void
1874 SIP_DECL(rxintr)(struct sip_softc *sc)
1875 {
1876 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1877 struct sip_rxsoft *rxs;
1878 struct mbuf *m;
1879 u_int32_t cmdsts, extsts;
1880 int i, len;
1881
1882 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
1883 rxs = &sc->sc_rxsoft[i];
1884
1885 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1886
1887 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1888 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1889 len = CMDSTS_SIZE(cmdsts);
1890
1891 /*
1892 * NOTE: OWN is set if owned by _consumer_. We're the
1893 * consumer of the receive ring, so if the bit is clear,
1894 * we have processed all of the packets.
1895 */
1896 if ((cmdsts & CMDSTS_OWN) == 0) {
1897 /*
1898 * We have processed all of the receive buffers.
1899 */
1900 break;
1901 }
1902
1903 if (__predict_false(sc->sc_rxdiscard)) {
1904 SIP_INIT_RXDESC(sc, i);
1905 if ((cmdsts & CMDSTS_MORE) == 0) {
1906 /* Reset our state. */
1907 sc->sc_rxdiscard = 0;
1908 }
1909 continue;
1910 }
1911
1912 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1913 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1914
1915 m = rxs->rxs_mbuf;
1916
1917 /*
1918 * Add a new receive buffer to the ring.
1919 */
1920 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1921 /*
1922 * Failed, throw away what we've done so
1923 * far, and discard the rest of the packet.
1924 */
1925 ifp->if_ierrors++;
1926 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1927 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1928 SIP_INIT_RXDESC(sc, i);
1929 if (cmdsts & CMDSTS_MORE)
1930 sc->sc_rxdiscard = 1;
1931 if (sc->sc_rxhead != NULL)
1932 m_freem(sc->sc_rxhead);
1933 SIP_RXCHAIN_RESET(sc);
1934 continue;
1935 }
1936
1937 SIP_RXCHAIN_LINK(sc, m);
1938
1939 m->m_len = len;
1940
1941 /*
1942 * If this is not the end of the packet, keep
1943 * looking.
1944 */
1945 if (cmdsts & CMDSTS_MORE) {
1946 sc->sc_rxlen += len;
1947 continue;
1948 }
1949
1950 /*
1951 * Okay, we have the entire packet now. The chip includes
1952 * the FCS, so we need to trim it.
1953 */
1954 m->m_len -= ETHER_CRC_LEN;
1955
1956 *sc->sc_rxtailp = NULL;
1957 len = m->m_len + sc->sc_rxlen;
1958 m = sc->sc_rxhead;
1959
1960 SIP_RXCHAIN_RESET(sc);
1961
1962 /*
1963 * If an error occurred, update stats and drop the packet.
1964 */
1965 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1966 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1967 ifp->if_ierrors++;
1968 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1969 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1970 /* Receive overrun handled elsewhere. */
1971 printf("%s: receive descriptor error\n",
1972 sc->sc_dev.dv_xname);
1973 }
1974 #define PRINTERR(bit, str) \
1975 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1976 (cmdsts & (bit)) != 0) \
1977 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1978 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1979 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1980 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1981 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1982 #undef PRINTERR
1983 m_freem(m);
1984 continue;
1985 }
1986
1987 /*
1988 * If the packet is small enough to fit in a
1989 * single header mbuf, allocate one and copy
1990 * the data into it. This greatly reduces
1991 * memory consumption when we receive lots
1992 * of small packets.
1993 */
1994 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1995 struct mbuf *nm;
1996 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1997 if (nm == NULL) {
1998 ifp->if_ierrors++;
1999 m_freem(m);
2000 continue;
2001 }
2002 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2003 nm->m_data += 2;
2004 nm->m_pkthdr.len = nm->m_len = len;
2005 m_copydata(m, 0, len, mtod(nm, void *));
2006 m_freem(m);
2007 m = nm;
2008 }
2009 #ifndef __NO_STRICT_ALIGNMENT
2010 else {
2011 /*
2012 * The DP83820's receive buffers must be 4-byte
2013 * aligned. But this means that the data after
2014 * the Ethernet header is misaligned. To compensate,
2015 * we have artificially shortened the buffer size
2016 * in the descriptor, and we do an overlapping copy
2017 * of the data two bytes further in (in the first
2018 * buffer of the chain only).
2019 */
2020 memmove(mtod(m, char *) + 2, mtod(m, void *),
2021 m->m_len);
2022 m->m_data += 2;
2023 }
2024 #endif /* ! __NO_STRICT_ALIGNMENT */
2025
2026 /*
2027 * If VLANs are enabled, VLAN packets have been unwrapped
2028 * for us. Associate the tag with the packet.
2029 */
2030
2031 /*
2032 * Again, byte swapping is tricky. Hardware provided
2033 * the tag in the network byte order, but extsts was
2034 * passed through le32toh() in the meantime. On a
2035 * big-endian machine, we need to swap it again. On a
2036 * little-endian machine, we need to convert from the
2037 * network to host byte order. This means that we must
2038 * swap it in any case, so unconditional swap instead
2039 * of htons() is used.
2040 */
2041 if ((extsts & EXTSTS_VPKT) != 0) {
2042 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2043 continue);
2044 }
2045
2046 /*
2047 * Set the incoming checksum information for the
2048 * packet.
2049 */
2050 if ((extsts & EXTSTS_IPPKT) != 0) {
2051 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2052 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2053 if (extsts & EXTSTS_Rx_IPERR)
2054 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2055 if (extsts & EXTSTS_TCPPKT) {
2056 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2057 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2058 if (extsts & EXTSTS_Rx_TCPERR)
2059 m->m_pkthdr.csum_flags |=
2060 M_CSUM_TCP_UDP_BAD;
2061 } else if (extsts & EXTSTS_UDPPKT) {
2062 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2063 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2064 if (extsts & EXTSTS_Rx_UDPERR)
2065 m->m_pkthdr.csum_flags |=
2066 M_CSUM_TCP_UDP_BAD;
2067 }
2068 }
2069
2070 ifp->if_ipackets++;
2071 m->m_pkthdr.rcvif = ifp;
2072 m->m_pkthdr.len = len;
2073
2074 #if NBPFILTER > 0
2075 /*
2076 * Pass this up to any BPF listeners, but only
2077 * pass if up the stack if it's for us.
2078 */
2079 if (ifp->if_bpf)
2080 bpf_mtap(ifp->if_bpf, m);
2081 #endif /* NBPFILTER > 0 */
2082
2083 /* Pass it on. */
2084 (*ifp->if_input)(ifp, m);
2085 }
2086
2087 /* Update the receive pointer. */
2088 sc->sc_rxptr = i;
2089 }
2090 #else /* ! DP83820 */
2091 /*
2092 * sip_rxintr:
2093 *
2094 * Helper; handle receive interrupts.
2095 */
2096 static void
2097 SIP_DECL(rxintr)(struct sip_softc *sc)
2098 {
2099 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2100 struct sip_rxsoft *rxs;
2101 struct mbuf *m;
2102 u_int32_t cmdsts;
2103 int i, len;
2104
2105 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2106 rxs = &sc->sc_rxsoft[i];
2107
2108 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2109
2110 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2111
2112 /*
2113 * NOTE: OWN is set if owned by _consumer_. We're the
2114 * consumer of the receive ring, so if the bit is clear,
2115 * we have processed all of the packets.
2116 */
2117 if ((cmdsts & CMDSTS_OWN) == 0) {
2118 /*
2119 * We have processed all of the receive buffers.
2120 */
2121 break;
2122 }
2123
2124 /*
2125 * If any collisions were seen on the wire, count one.
2126 */
2127 if (cmdsts & CMDSTS_Rx_COL)
2128 ifp->if_collisions++;
2129
2130 /*
2131 * If an error occurred, update stats, clear the status
2132 * word, and leave the packet buffer in place. It will
2133 * simply be reused the next time the ring comes around.
2134 */
2135 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2136 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2137 ifp->if_ierrors++;
2138 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2139 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2140 /* Receive overrun handled elsewhere. */
2141 printf("%s: receive descriptor error\n",
2142 sc->sc_dev.dv_xname);
2143 }
2144 #define PRINTERR(bit, str) \
2145 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2146 (cmdsts & (bit)) != 0) \
2147 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2148 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2149 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2150 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2151 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2152 #undef PRINTERR
2153 SIP_INIT_RXDESC(sc, i);
2154 continue;
2155 }
2156
2157 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2158 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2159
2160 /*
2161 * No errors; receive the packet. Note, the SiS 900
2162 * includes the CRC with every packet.
2163 */
2164 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2165
2166 #ifdef __NO_STRICT_ALIGNMENT
2167 /*
2168 * If the packet is small enough to fit in a
2169 * single header mbuf, allocate one and copy
2170 * the data into it. This greatly reduces
2171 * memory consumption when we receive lots
2172 * of small packets.
2173 *
2174 * Otherwise, we add a new buffer to the receive
2175 * chain. If this fails, we drop the packet and
2176 * recycle the old buffer.
2177 */
2178 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2179 MGETHDR(m, M_DONTWAIT, MT_DATA);
2180 if (m == NULL)
2181 goto dropit;
2182 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2183 memcpy(mtod(m, void *),
2184 mtod(rxs->rxs_mbuf, void *), len);
2185 SIP_INIT_RXDESC(sc, i);
2186 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2187 rxs->rxs_dmamap->dm_mapsize,
2188 BUS_DMASYNC_PREREAD);
2189 } else {
2190 m = rxs->rxs_mbuf;
2191 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2192 dropit:
2193 ifp->if_ierrors++;
2194 SIP_INIT_RXDESC(sc, i);
2195 bus_dmamap_sync(sc->sc_dmat,
2196 rxs->rxs_dmamap, 0,
2197 rxs->rxs_dmamap->dm_mapsize,
2198 BUS_DMASYNC_PREREAD);
2199 continue;
2200 }
2201 }
2202 #else
2203 /*
2204 * The SiS 900's receive buffers must be 4-byte aligned.
2205 * But this means that the data after the Ethernet header
2206 * is misaligned. We must allocate a new buffer and
2207 * copy the data, shifted forward 2 bytes.
2208 */
2209 MGETHDR(m, M_DONTWAIT, MT_DATA);
2210 if (m == NULL) {
2211 dropit:
2212 ifp->if_ierrors++;
2213 SIP_INIT_RXDESC(sc, i);
2214 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2215 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2216 continue;
2217 }
2218 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2219 if (len > (MHLEN - 2)) {
2220 MCLGET(m, M_DONTWAIT);
2221 if ((m->m_flags & M_EXT) == 0) {
2222 m_freem(m);
2223 goto dropit;
2224 }
2225 }
2226 m->m_data += 2;
2227
2228 /*
2229 * Note that we use clusters for incoming frames, so the
2230 * buffer is virtually contiguous.
2231 */
2232 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2233
2234 /* Allow the receive descriptor to continue using its mbuf. */
2235 SIP_INIT_RXDESC(sc, i);
2236 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2237 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2238 #endif /* __NO_STRICT_ALIGNMENT */
2239
2240 ifp->if_ipackets++;
2241 m->m_pkthdr.rcvif = ifp;
2242 m->m_pkthdr.len = m->m_len = len;
2243
2244 #if NBPFILTER > 0
2245 /*
2246 * Pass this up to any BPF listeners, but only
2247 * pass if up the stack if it's for us.
2248 */
2249 if (ifp->if_bpf)
2250 bpf_mtap(ifp->if_bpf, m);
2251 #endif /* NBPFILTER > 0 */
2252
2253 /* Pass it on. */
2254 (*ifp->if_input)(ifp, m);
2255 }
2256
2257 /* Update the receive pointer. */
2258 sc->sc_rxptr = i;
2259 }
2260 #endif /* DP83820 */
2261
2262 /*
2263 * sip_tick:
2264 *
2265 * One second timer, used to tick the MII.
2266 */
2267 static void
2268 sipcom_tick(void *arg)
2269 {
2270 struct sip_softc *sc = arg;
2271 int s;
2272
2273 s = splnet();
2274 #ifdef SIP_EVENT_COUNTERS
2275 if (sc->sc_gigabit) {
2276 /* Read PAUSE related counts from MIB registers. */
2277 sc->sc_ev_rxpause.ev_count +=
2278 bus_space_read_4(sc->sc_st, sc->sc_sh,
2279 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2280 sc->sc_ev_txpause.ev_count +=
2281 bus_space_read_4(sc->sc_st, sc->sc_sh,
2282 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2283 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2284 }
2285 #endif /* SIP_EVENT_COUNTERS */
2286 mii_tick(&sc->sc_mii);
2287 splx(s);
2288
2289 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2290 }
2291
2292 /*
2293 * sip_reset:
2294 *
2295 * Perform a soft reset on the SiS 900.
2296 */
2297 static bool
2298 sipcom_reset(struct sip_softc *sc)
2299 {
2300 bus_space_tag_t st = sc->sc_st;
2301 bus_space_handle_t sh = sc->sc_sh;
2302 int i;
2303
2304 bus_space_write_4(st, sh, SIP_IER, 0);
2305 bus_space_write_4(st, sh, SIP_IMR, 0);
2306 bus_space_write_4(st, sh, SIP_RFCR, 0);
2307 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2308
2309 for (i = 0; i < SIP_TIMEOUT; i++) {
2310 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2311 break;
2312 delay(2);
2313 }
2314
2315 if (i == SIP_TIMEOUT) {
2316 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2317 return false;
2318 }
2319
2320 delay(1000);
2321
2322 if (sc->sc_gigabit) {
2323 /*
2324 * Set the general purpose I/O bits. Do it here in case we
2325 * need to have GPIO set up to talk to the media interface.
2326 */
2327 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2328 delay(1000);
2329 }
2330 return true;
2331 }
2332
2333 static void
2334 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2335 {
2336 u_int32_t reg;
2337 bus_space_tag_t st = sc->sc_st;
2338 bus_space_handle_t sh = sc->sc_sh;
2339 /*
2340 * Initialize the VLAN/IP receive control register.
2341 * We enable checksum computation on all incoming
2342 * packets, and do not reject packets w/ bad checksums.
2343 */
2344 reg = 0;
2345 if (capenable &
2346 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2347 reg |= VRCR_IPEN;
2348 if (VLAN_ATTACHED(&sc->sc_ethercom))
2349 reg |= VRCR_VTDEN|VRCR_VTREN;
2350 bus_space_write_4(st, sh, SIP_VRCR, reg);
2351
2352 /*
2353 * Initialize the VLAN/IP transmit control register.
2354 * We enable outgoing checksum computation on a
2355 * per-packet basis.
2356 */
2357 reg = 0;
2358 if (capenable &
2359 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2360 reg |= VTCR_PPCHK;
2361 if (VLAN_ATTACHED(&sc->sc_ethercom))
2362 reg |= VTCR_VPPTI;
2363 bus_space_write_4(st, sh, SIP_VTCR, reg);
2364
2365 /*
2366 * If we're using VLANs, initialize the VLAN data register.
2367 * To understand why we bswap the VLAN Ethertype, see section
2368 * 4.2.36 of the DP83820 manual.
2369 */
2370 if (VLAN_ATTACHED(&sc->sc_ethercom))
2371 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2372 }
2373
2374 /*
2375 * sip_init: [ ifnet interface function ]
2376 *
2377 * Initialize the interface. Must be called at splnet().
2378 */
2379 static int
2380 sipcom_init(struct ifnet *ifp)
2381 {
2382 struct sip_softc *sc = ifp->if_softc;
2383 bus_space_tag_t st = sc->sc_st;
2384 bus_space_handle_t sh = sc->sc_sh;
2385 struct sip_txsoft *txs;
2386 struct sip_rxsoft *rxs;
2387 struct sip_desc *sipd;
2388 int i, error = 0;
2389
2390 if (!device_has_power(&sc->sc_dev))
2391 return EBUSY;
2392
2393 /*
2394 * Cancel any pending I/O.
2395 */
2396 sipcom_stop(ifp, 0);
2397
2398 /*
2399 * Reset the chip to a known state.
2400 */
2401 if (!sipcom_reset(sc))
2402 return EBUSY;
2403
2404 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2405 /*
2406 * DP83815 manual, page 78:
2407 * 4.4 Recommended Registers Configuration
2408 * For optimum performance of the DP83815, version noted
2409 * as DP83815CVNG (SRR = 203h), the listed register
2410 * modifications must be followed in sequence...
2411 *
2412 * It's not clear if this should be 302h or 203h because that
2413 * chip name is listed as SRR 302h in the description of the
2414 * SRR register. However, my revision 302h DP83815 on the
2415 * Netgear FA311 purchased in 02/2001 needs these settings
2416 * to avoid tons of errors in AcceptPerfectMatch (non-
2417 * IFF_PROMISC) mode. I do not know if other revisions need
2418 * this set or not. [briggs -- 09 March 2001]
2419 *
2420 * Note that only the low-order 12 bits of 0xe4 are documented
2421 * and that this sets reserved bits in that register.
2422 */
2423 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2424
2425 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2426 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2427 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2428 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2429
2430 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2431 }
2432
2433 /*
2434 * Initialize the transmit descriptor ring.
2435 */
2436 for (i = 0; i < sc->sc_ntxdesc; i++) {
2437 sipd = &sc->sc_txdescs[i];
2438 memset(sipd, 0, sizeof(struct sip_desc));
2439 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2440 }
2441 SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
2442 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2443 sc->sc_txfree = sc->sc_ntxdesc;
2444 sc->sc_txnext = 0;
2445 sc->sc_txwin = 0;
2446
2447 /*
2448 * Initialize the transmit job descriptors.
2449 */
2450 SIMPLEQ_INIT(&sc->sc_txfreeq);
2451 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2452 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2453 txs = &sc->sc_txsoft[i];
2454 txs->txs_mbuf = NULL;
2455 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2456 }
2457
2458 /*
2459 * Initialize the receive descriptor and receive job
2460 * descriptor rings.
2461 */
2462 for (i = 0; i < sc->sc_nrxdesc; i++) {
2463 rxs = &sc->sc_rxsoft[i];
2464 if (rxs->rxs_mbuf == NULL) {
2465 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2466 printf("%s: unable to allocate or map rx "
2467 "buffer %d, error = %d\n",
2468 sc->sc_dev.dv_xname, i, error);
2469 /*
2470 * XXX Should attempt to run with fewer receive
2471 * XXX buffers instead of just failing.
2472 */
2473 sipcom_rxdrain(sc);
2474 goto out;
2475 }
2476 } else
2477 SIP_INIT_RXDESC(sc, i);
2478 }
2479 sc->sc_rxptr = 0;
2480 sc->sc_rxdiscard = 0;
2481 SIP_RXCHAIN_RESET(sc);
2482
2483 /*
2484 * Set the configuration register; it's already initialized
2485 * in sip_attach().
2486 */
2487 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2488
2489 /*
2490 * Initialize the prototype TXCFG register.
2491 */
2492 if (sc->sc_gigabit) {
2493 sc->sc_txcfg = TXCFG_MXDMA_512;
2494 sc->sc_rxcfg = RXCFG_MXDMA_512;
2495 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2496 SIP_SIS900_REV(sc, SIS_REV_960) ||
2497 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2498 (sc->sc_cfg & CFG_EDBMASTEN)) {
2499 sc->sc_txcfg = TXCFG_MXDMA_64;
2500 sc->sc_rxcfg = RXCFG_MXDMA_64;
2501 } else {
2502 sc->sc_txcfg = TXCFG_MXDMA_512;
2503 sc->sc_rxcfg = RXCFG_MXDMA_512;
2504 }
2505
2506 sc->sc_txcfg |= TXCFG_ATP |
2507 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2508 sc->sc_tx_drain_thresh;
2509 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2510
2511 /*
2512 * Initialize the receive drain threshold if we have never
2513 * done so.
2514 */
2515 if (sc->sc_rx_drain_thresh == 0) {
2516 /*
2517 * XXX This value should be tuned. This is set to the
2518 * maximum of 248 bytes, and we may be able to improve
2519 * performance by decreasing it (although we should never
2520 * set this value lower than 2; 14 bytes are required to
2521 * filter the packet).
2522 */
2523 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2524 }
2525
2526 /*
2527 * Initialize the prototype RXCFG register.
2528 */
2529 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2530 /*
2531 * Accept long packets (including FCS) so we can handle
2532 * 802.1q-tagged frames and jumbo frames properly.
2533 */
2534 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2535 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2536 sc->sc_rxcfg |= RXCFG_ALP;
2537
2538 /*
2539 * Checksum offloading is disabled if the user selects an MTU
2540 * larger than 8109. (FreeBSD says 8152, but there is emperical
2541 * evidence that >8109 does not work on some boards, such as the
2542 * Planex GN-1000TE).
2543 */
2544 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2545 (ifp->if_capenable &
2546 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2547 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2548 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2549 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2550 "disabled.\n", sc->sc_dev.dv_xname);
2551 ifp->if_capenable &=
2552 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2553 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2554 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2555 ifp->if_csum_flags_tx = 0;
2556 ifp->if_csum_flags_rx = 0;
2557 }
2558
2559 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2560
2561 if (sc->sc_gigabit)
2562 sipcom_dp83820_init(sc, ifp->if_capenable);
2563
2564 /*
2565 * Give the transmit and receive rings to the chip.
2566 */
2567 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2568 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2569
2570 /*
2571 * Initialize the interrupt mask.
2572 */
2573 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2574 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2575 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2576
2577 /* Set up the receive filter. */
2578 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2579
2580 /*
2581 * Tune sc_rx_flow_thresh.
2582 * XXX "More than 8KB" is too short for jumbo frames.
2583 * XXX TODO: Threshold value should be user-settable.
2584 */
2585 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2586 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2587 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2588
2589 /*
2590 * Set the current media. Do this after initializing the prototype
2591 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2592 * control.
2593 */
2594 mii_mediachg(&sc->sc_mii);
2595
2596 /*
2597 * Set the interrupt hold-off timer to 100us.
2598 */
2599 if (sc->sc_gigabit)
2600 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2601
2602 /*
2603 * Enable interrupts.
2604 */
2605 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2606
2607 /*
2608 * Start the transmit and receive processes.
2609 */
2610 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2611
2612 /*
2613 * Start the one second MII clock.
2614 */
2615 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2616
2617 /*
2618 * ...all done!
2619 */
2620 ifp->if_flags |= IFF_RUNNING;
2621 ifp->if_flags &= ~IFF_OACTIVE;
2622 sc->sc_if_flags = ifp->if_flags;
2623 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2624 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2625 sc->sc_prev.if_capenable = ifp->if_capenable;
2626
2627 out:
2628 if (error)
2629 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2630 return (error);
2631 }
2632
2633 /*
2634 * sip_drain:
2635 *
2636 * Drain the receive queue.
2637 */
2638 static void
2639 sipcom_rxdrain(struct sip_softc *sc)
2640 {
2641 struct sip_rxsoft *rxs;
2642 int i;
2643
2644 for (i = 0; i < sc->sc_nrxdesc; i++) {
2645 rxs = &sc->sc_rxsoft[i];
2646 if (rxs->rxs_mbuf != NULL) {
2647 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2648 m_freem(rxs->rxs_mbuf);
2649 rxs->rxs_mbuf = NULL;
2650 }
2651 }
2652 }
2653
2654 /*
2655 * sip_stop: [ ifnet interface function ]
2656 *
2657 * Stop transmission on the interface.
2658 */
2659 static void
2660 sipcom_stop(struct ifnet *ifp, int disable)
2661 {
2662 struct sip_softc *sc = ifp->if_softc;
2663 bus_space_tag_t st = sc->sc_st;
2664 bus_space_handle_t sh = sc->sc_sh;
2665 struct sip_txsoft *txs;
2666 u_int32_t cmdsts = 0; /* DEBUG */
2667
2668 /*
2669 * Stop the one second clock.
2670 */
2671 callout_stop(&sc->sc_tick_ch);
2672
2673 /* Down the MII. */
2674 mii_down(&sc->sc_mii);
2675
2676 /*
2677 * Disable interrupts.
2678 */
2679 bus_space_write_4(st, sh, SIP_IER, 0);
2680
2681 /*
2682 * Stop receiver and transmitter.
2683 */
2684 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2685
2686 /*
2687 * Release any queued transmit buffers.
2688 */
2689 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2690 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2691 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2692 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2693 CMDSTS_INTR) == 0)
2694 printf("%s: sip_stop: last descriptor does not "
2695 "have INTR bit set\n", sc->sc_dev.dv_xname);
2696 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2697 #ifdef DIAGNOSTIC
2698 if (txs->txs_mbuf == NULL) {
2699 printf("%s: dirty txsoft with no mbuf chain\n",
2700 sc->sc_dev.dv_xname);
2701 panic("sip_stop");
2702 }
2703 #endif
2704 cmdsts |= /* DEBUG */
2705 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2706 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2707 m_freem(txs->txs_mbuf);
2708 txs->txs_mbuf = NULL;
2709 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2710 }
2711
2712 if (disable)
2713 sipcom_rxdrain(sc);
2714
2715 /*
2716 * Mark the interface down and cancel the watchdog timer.
2717 */
2718 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2719 ifp->if_timer = 0;
2720
2721 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2722 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2723 printf("%s: sip_stop: no INTR bits set in dirty tx "
2724 "descriptors\n", sc->sc_dev.dv_xname);
2725 }
2726
2727 /*
2728 * sip_read_eeprom:
2729 *
2730 * Read data from the serial EEPROM.
2731 */
2732 static void
2733 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2734 u_int16_t *data)
2735 {
2736 bus_space_tag_t st = sc->sc_st;
2737 bus_space_handle_t sh = sc->sc_sh;
2738 u_int16_t reg;
2739 int i, x;
2740
2741 for (i = 0; i < wordcnt; i++) {
2742 /* Send CHIP SELECT. */
2743 reg = EROMAR_EECS;
2744 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2745
2746 /* Shift in the READ opcode. */
2747 for (x = 3; x > 0; x--) {
2748 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2749 reg |= EROMAR_EEDI;
2750 else
2751 reg &= ~EROMAR_EEDI;
2752 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2753 bus_space_write_4(st, sh, SIP_EROMAR,
2754 reg | EROMAR_EESK);
2755 delay(4);
2756 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2757 delay(4);
2758 }
2759
2760 /* Shift in address. */
2761 for (x = 6; x > 0; x--) {
2762 if ((word + i) & (1 << (x - 1)))
2763 reg |= EROMAR_EEDI;
2764 else
2765 reg &= ~EROMAR_EEDI;
2766 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2767 bus_space_write_4(st, sh, SIP_EROMAR,
2768 reg | EROMAR_EESK);
2769 delay(4);
2770 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2771 delay(4);
2772 }
2773
2774 /* Shift out data. */
2775 reg = EROMAR_EECS;
2776 data[i] = 0;
2777 for (x = 16; x > 0; x--) {
2778 bus_space_write_4(st, sh, SIP_EROMAR,
2779 reg | EROMAR_EESK);
2780 delay(4);
2781 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2782 data[i] |= (1 << (x - 1));
2783 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2784 delay(4);
2785 }
2786
2787 /* Clear CHIP SELECT. */
2788 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2789 delay(4);
2790 }
2791 }
2792
2793 /*
2794 * sip_add_rxbuf:
2795 *
2796 * Add a receive buffer to the indicated descriptor.
2797 */
2798 static int
2799 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2800 {
2801 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2802 struct mbuf *m;
2803 int error;
2804
2805 MGETHDR(m, M_DONTWAIT, MT_DATA);
2806 if (m == NULL)
2807 return (ENOBUFS);
2808 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2809
2810 MCLGET(m, M_DONTWAIT);
2811 if ((m->m_flags & M_EXT) == 0) {
2812 m_freem(m);
2813 return (ENOBUFS);
2814 }
2815
2816 /* XXX I don't believe this is necessary. --dyoung */
2817 #if 0 || defined(DP83820)
2818 m->m_len = sc->sc_rxbuf_len;
2819 #endif /* DP83820 */
2820
2821 if (rxs->rxs_mbuf != NULL)
2822 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2823
2824 rxs->rxs_mbuf = m;
2825
2826 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2827 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2828 BUS_DMA_READ|BUS_DMA_NOWAIT);
2829 if (error) {
2830 printf("%s: can't load rx DMA map %d, error = %d\n",
2831 sc->sc_dev.dv_xname, idx, error);
2832 panic("%s", __func__); /* XXX */
2833 }
2834
2835 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2836 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2837
2838 SIP_INIT_RXDESC(sc, idx);
2839
2840 return (0);
2841 }
2842
2843 /*
2844 * sip_sis900_set_filter:
2845 *
2846 * Set up the receive filter.
2847 */
2848 static void
2849 sipcom_sis900_set_filter(struct sip_softc *sc)
2850 {
2851 bus_space_tag_t st = sc->sc_st;
2852 bus_space_handle_t sh = sc->sc_sh;
2853 struct ethercom *ec = &sc->sc_ethercom;
2854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2855 struct ether_multi *enm;
2856 const u_int8_t *cp;
2857 struct ether_multistep step;
2858 u_int32_t crc, mchash[16];
2859
2860 /*
2861 * Initialize the prototype RFCR.
2862 */
2863 sc->sc_rfcr = RFCR_RFEN;
2864 if (ifp->if_flags & IFF_BROADCAST)
2865 sc->sc_rfcr |= RFCR_AAB;
2866 if (ifp->if_flags & IFF_PROMISC) {
2867 sc->sc_rfcr |= RFCR_AAP;
2868 goto allmulti;
2869 }
2870
2871 /*
2872 * Set up the multicast address filter by passing all multicast
2873 * addresses through a CRC generator, and then using the high-order
2874 * 6 bits as an index into the 128 bit multicast hash table (only
2875 * the lower 16 bits of each 32 bit multicast hash register are
2876 * valid). The high order bits select the register, while the
2877 * rest of the bits select the bit within the register.
2878 */
2879
2880 memset(mchash, 0, sizeof(mchash));
2881
2882 /*
2883 * SiS900 (at least SiS963) requires us to register the address of
2884 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2885 */
2886 crc = 0x0ed423f9;
2887
2888 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2889 SIP_SIS900_REV(sc, SIS_REV_960) ||
2890 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2891 /* Just want the 8 most significant bits. */
2892 crc >>= 24;
2893 } else {
2894 /* Just want the 7 most significant bits. */
2895 crc >>= 25;
2896 }
2897
2898 /* Set the corresponding bit in the hash table. */
2899 mchash[crc >> 4] |= 1 << (crc & 0xf);
2900
2901 ETHER_FIRST_MULTI(step, ec, enm);
2902 while (enm != NULL) {
2903 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2904 /*
2905 * We must listen to a range of multicast addresses.
2906 * For now, just accept all multicasts, rather than
2907 * trying to set only those filter bits needed to match
2908 * the range. (At this time, the only use of address
2909 * ranges is for IP multicast routing, for which the
2910 * range is big enough to require all bits set.)
2911 */
2912 goto allmulti;
2913 }
2914
2915 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2916
2917 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2918 SIP_SIS900_REV(sc, SIS_REV_960) ||
2919 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2920 /* Just want the 8 most significant bits. */
2921 crc >>= 24;
2922 } else {
2923 /* Just want the 7 most significant bits. */
2924 crc >>= 25;
2925 }
2926
2927 /* Set the corresponding bit in the hash table. */
2928 mchash[crc >> 4] |= 1 << (crc & 0xf);
2929
2930 ETHER_NEXT_MULTI(step, enm);
2931 }
2932
2933 ifp->if_flags &= ~IFF_ALLMULTI;
2934 goto setit;
2935
2936 allmulti:
2937 ifp->if_flags |= IFF_ALLMULTI;
2938 sc->sc_rfcr |= RFCR_AAM;
2939
2940 setit:
2941 #define FILTER_EMIT(addr, data) \
2942 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2943 delay(1); \
2944 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2945 delay(1)
2946
2947 /*
2948 * Disable receive filter, and program the node address.
2949 */
2950 cp = CLLADDR(ifp->if_sadl);
2951 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2952 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2953 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2954
2955 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2956 /*
2957 * Program the multicast hash table.
2958 */
2959 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2960 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2961 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2962 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2963 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2964 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2965 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2966 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2967 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2968 SIP_SIS900_REV(sc, SIS_REV_960) ||
2969 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2970 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2971 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2972 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2973 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2974 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2975 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2976 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2977 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2978 }
2979 }
2980 #undef FILTER_EMIT
2981
2982 /*
2983 * Re-enable the receiver filter.
2984 */
2985 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2986 }
2987
2988 /*
2989 * sip_dp83815_set_filter:
2990 *
2991 * Set up the receive filter.
2992 */
2993 static void
2994 sipcom_dp83815_set_filter(struct sip_softc *sc)
2995 {
2996 bus_space_tag_t st = sc->sc_st;
2997 bus_space_handle_t sh = sc->sc_sh;
2998 struct ethercom *ec = &sc->sc_ethercom;
2999 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3000 struct ether_multi *enm;
3001 const u_int8_t *cp;
3002 struct ether_multistep step;
3003 u_int32_t crc, hash, slot, bit;
3004 #define MCHASH_NWORDS_83820 128
3005 #define MCHASH_NWORDS_83815 32
3006 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3007 u_int16_t mchash[MCHASH_NWORDS];
3008 int i;
3009
3010 /*
3011 * Initialize the prototype RFCR.
3012 * Enable the receive filter, and accept on
3013 * Perfect (destination address) Match
3014 * If IFF_BROADCAST, also accept all broadcast packets.
3015 * If IFF_PROMISC, accept all unicast packets (and later, set
3016 * IFF_ALLMULTI and accept all multicast, too).
3017 */
3018 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3019 if (ifp->if_flags & IFF_BROADCAST)
3020 sc->sc_rfcr |= RFCR_AAB;
3021 if (ifp->if_flags & IFF_PROMISC) {
3022 sc->sc_rfcr |= RFCR_AAP;
3023 goto allmulti;
3024 }
3025
3026 /*
3027 * Set up the DP83820/DP83815 multicast address filter by
3028 * passing all multicast addresses through a CRC generator,
3029 * and then using the high-order 11/9 bits as an index into
3030 * the 2048/512 bit multicast hash table. The high-order
3031 * 7/5 bits select the slot, while the low-order 4 bits
3032 * select the bit within the slot. Note that only the low
3033 * 16-bits of each filter word are used, and there are
3034 * 128/32 filter words.
3035 */
3036
3037 memset(mchash, 0, sizeof(mchash));
3038
3039 ifp->if_flags &= ~IFF_ALLMULTI;
3040 ETHER_FIRST_MULTI(step, ec, enm);
3041 if (enm == NULL)
3042 goto setit;
3043 while (enm != NULL) {
3044 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3045 /*
3046 * We must listen to a range of multicast addresses.
3047 * For now, just accept all multicasts, rather than
3048 * trying to set only those filter bits needed to match
3049 * the range. (At this time, the only use of address
3050 * ranges is for IP multicast routing, for which the
3051 * range is big enough to require all bits set.)
3052 */
3053 goto allmulti;
3054 }
3055
3056 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3057
3058 if (sc->sc_gigabit) {
3059 /* Just want the 11 most significant bits. */
3060 hash = crc >> 21;
3061 } else {
3062 /* Just want the 9 most significant bits. */
3063 hash = crc >> 23;
3064 }
3065
3066 slot = hash >> 4;
3067 bit = hash & 0xf;
3068
3069 /* Set the corresponding bit in the hash table. */
3070 mchash[slot] |= 1 << bit;
3071
3072 ETHER_NEXT_MULTI(step, enm);
3073 }
3074 sc->sc_rfcr |= RFCR_MHEN;
3075 goto setit;
3076
3077 allmulti:
3078 ifp->if_flags |= IFF_ALLMULTI;
3079 sc->sc_rfcr |= RFCR_AAM;
3080
3081 setit:
3082 #define FILTER_EMIT(addr, data) \
3083 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3084 delay(1); \
3085 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3086 delay(1)
3087
3088 /*
3089 * Disable receive filter, and program the node address.
3090 */
3091 cp = CLLADDR(ifp->if_sadl);
3092 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3093 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3094 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3095
3096 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3097 int nwords =
3098 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3099 /*
3100 * Program the multicast hash table.
3101 */
3102 for (i = 0; i < nwords; i++) {
3103 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3104 mchash[i]);
3105 }
3106 }
3107 #undef FILTER_EMIT
3108 #undef MCHASH_NWORDS
3109 #undef MCHASH_NWORDS_83815
3110 #undef MCHASH_NWORDS_83820
3111
3112 /*
3113 * Re-enable the receiver filter.
3114 */
3115 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3116 }
3117
3118 /*
3119 * sip_dp83820_mii_readreg: [mii interface function]
3120 *
3121 * Read a PHY register on the MII of the DP83820.
3122 */
3123 static int
3124 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3125 {
3126 struct sip_softc *sc = (void *) self;
3127
3128 if (sc->sc_cfg & CFG_TBI_EN) {
3129 bus_addr_t tbireg;
3130 int rv;
3131
3132 if (phy != 0)
3133 return (0);
3134
3135 switch (reg) {
3136 case MII_BMCR: tbireg = SIP_TBICR; break;
3137 case MII_BMSR: tbireg = SIP_TBISR; break;
3138 case MII_ANAR: tbireg = SIP_TANAR; break;
3139 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3140 case MII_ANER: tbireg = SIP_TANER; break;
3141 case MII_EXTSR:
3142 /*
3143 * Don't even bother reading the TESR register.
3144 * The manual documents that the device has
3145 * 1000baseX full/half capability, but the
3146 * register itself seems read back 0 on some
3147 * boards. Just hard-code the result.
3148 */
3149 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3150
3151 default:
3152 return (0);
3153 }
3154
3155 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3156 if (tbireg == SIP_TBISR) {
3157 /* LINK and ACOMP are switched! */
3158 int val = rv;
3159
3160 rv = 0;
3161 if (val & TBISR_MR_LINK_STATUS)
3162 rv |= BMSR_LINK;
3163 if (val & TBISR_MR_AN_COMPLETE)
3164 rv |= BMSR_ACOMP;
3165
3166 /*
3167 * The manual claims this register reads back 0
3168 * on hard and soft reset. But we want to let
3169 * the gentbi driver know that we support auto-
3170 * negotiation, so hard-code this bit in the
3171 * result.
3172 */
3173 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3174 }
3175
3176 return (rv);
3177 }
3178
3179 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3180 }
3181
3182 /*
3183 * sip_dp83820_mii_writereg: [mii interface function]
3184 *
3185 * Write a PHY register on the MII of the DP83820.
3186 */
3187 static void
3188 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3189 {
3190 struct sip_softc *sc = (void *) self;
3191
3192 if (sc->sc_cfg & CFG_TBI_EN) {
3193 bus_addr_t tbireg;
3194
3195 if (phy != 0)
3196 return;
3197
3198 switch (reg) {
3199 case MII_BMCR: tbireg = SIP_TBICR; break;
3200 case MII_ANAR: tbireg = SIP_TANAR; break;
3201 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3202 default:
3203 return;
3204 }
3205
3206 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3207 return;
3208 }
3209
3210 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3211 }
3212
3213 /*
3214 * sip_dp83820_mii_statchg: [mii interface function]
3215 *
3216 * Callback from MII layer when media changes.
3217 */
3218 static void
3219 sipcom_dp83820_mii_statchg(struct device *self)
3220 {
3221 struct sip_softc *sc = (struct sip_softc *) self;
3222 struct mii_data *mii = &sc->sc_mii;
3223 u_int32_t cfg, pcr;
3224
3225 /*
3226 * Get flow control negotiation result.
3227 */
3228 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3229 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3230 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3231 mii->mii_media_active &= ~IFM_ETH_FMASK;
3232 }
3233
3234 /*
3235 * Update TXCFG for full-duplex operation.
3236 */
3237 if ((mii->mii_media_active & IFM_FDX) != 0)
3238 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3239 else
3240 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3241
3242 /*
3243 * Update RXCFG for full-duplex or loopback.
3244 */
3245 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3246 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3247 sc->sc_rxcfg |= RXCFG_ATX;
3248 else
3249 sc->sc_rxcfg &= ~RXCFG_ATX;
3250
3251 /*
3252 * Update CFG for MII/GMII.
3253 */
3254 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3255 cfg = sc->sc_cfg | CFG_MODE_1000;
3256 else
3257 cfg = sc->sc_cfg;
3258
3259 /*
3260 * 802.3x flow control.
3261 */
3262 pcr = 0;
3263 if (sc->sc_flowflags & IFM_FLOW) {
3264 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3265 pcr |= sc->sc_rx_flow_thresh;
3266 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3267 pcr |= PCR_PSEN | PCR_PS_MCAST;
3268 }
3269
3270 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3271 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3272 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3273 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3274 }
3275
3276 /*
3277 * sip_mii_bitbang_read: [mii bit-bang interface function]
3278 *
3279 * Read the MII serial port for the MII bit-bang module.
3280 */
3281 static u_int32_t
3282 sipcom_mii_bitbang_read(struct device *self)
3283 {
3284 struct sip_softc *sc = (void *) self;
3285
3286 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3287 }
3288
3289 /*
3290 * sip_mii_bitbang_write: [mii big-bang interface function]
3291 *
3292 * Write the MII serial port for the MII bit-bang module.
3293 */
3294 static void
3295 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3296 {
3297 struct sip_softc *sc = (void *) self;
3298
3299 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3300 }
3301
3302 /*
3303 * sip_sis900_mii_readreg: [mii interface function]
3304 *
3305 * Read a PHY register on the MII.
3306 */
3307 static int
3308 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3309 {
3310 struct sip_softc *sc = (struct sip_softc *) self;
3311 u_int32_t enphy;
3312
3313 /*
3314 * The PHY of recent SiS chipsets is accessed through bitbang
3315 * operations.
3316 */
3317 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3318 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3319 phy, reg);
3320
3321 #ifndef SIS900_MII_RESTRICT
3322 /*
3323 * The SiS 900 has only an internal PHY on the MII. Only allow
3324 * MII address 0.
3325 */
3326 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3327 return (0);
3328 #endif
3329
3330 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3331 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3332 ENPHY_RWCMD | ENPHY_ACCESS);
3333 do {
3334 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3335 } while (enphy & ENPHY_ACCESS);
3336 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3337 }
3338
3339 /*
3340 * sip_sis900_mii_writereg: [mii interface function]
3341 *
3342 * Write a PHY register on the MII.
3343 */
3344 static void
3345 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3346 {
3347 struct sip_softc *sc = (struct sip_softc *) self;
3348 u_int32_t enphy;
3349
3350 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3351 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3352 phy, reg, val);
3353 return;
3354 }
3355
3356 #ifndef SIS900_MII_RESTRICT
3357 /*
3358 * The SiS 900 has only an internal PHY on the MII. Only allow
3359 * MII address 0.
3360 */
3361 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3362 return;
3363 #endif
3364
3365 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3366 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3367 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3368 do {
3369 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3370 } while (enphy & ENPHY_ACCESS);
3371 }
3372
3373 /*
3374 * sip_sis900_mii_statchg: [mii interface function]
3375 *
3376 * Callback from MII layer when media changes.
3377 */
3378 static void
3379 sipcom_sis900_mii_statchg(struct device *self)
3380 {
3381 struct sip_softc *sc = (struct sip_softc *) self;
3382 struct mii_data *mii = &sc->sc_mii;
3383 u_int32_t flowctl;
3384
3385 /*
3386 * Get flow control negotiation result.
3387 */
3388 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3389 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3390 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3391 mii->mii_media_active &= ~IFM_ETH_FMASK;
3392 }
3393
3394 /*
3395 * Update TXCFG for full-duplex operation.
3396 */
3397 if ((mii->mii_media_active & IFM_FDX) != 0)
3398 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3399 else
3400 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3401
3402 /*
3403 * Update RXCFG for full-duplex or loopback.
3404 */
3405 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3406 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3407 sc->sc_rxcfg |= RXCFG_ATX;
3408 else
3409 sc->sc_rxcfg &= ~RXCFG_ATX;
3410
3411 /*
3412 * Update IMR for use of 802.3x flow control.
3413 */
3414 if (sc->sc_flowflags & IFM_FLOW) {
3415 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3416 flowctl = FLOWCTL_FLOWEN;
3417 } else {
3418 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3419 flowctl = 0;
3420 }
3421
3422 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3423 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3424 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3425 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3426 }
3427
3428 /*
3429 * sip_dp83815_mii_readreg: [mii interface function]
3430 *
3431 * Read a PHY register on the MII.
3432 */
3433 static int
3434 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3435 {
3436 struct sip_softc *sc = (struct sip_softc *) self;
3437 u_int32_t val;
3438
3439 /*
3440 * The DP83815 only has an internal PHY. Only allow
3441 * MII address 0.
3442 */
3443 if (phy != 0)
3444 return (0);
3445
3446 /*
3447 * Apparently, after a reset, the DP83815 can take a while
3448 * to respond. During this recovery period, the BMSR returns
3449 * a value of 0. Catch this -- it's not supposed to happen
3450 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3451 * PHY to come back to life.
3452 *
3453 * This works out because the BMSR is the first register
3454 * read during the PHY probe process.
3455 */
3456 do {
3457 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3458 } while (reg == MII_BMSR && val == 0);
3459
3460 return (val & 0xffff);
3461 }
3462
3463 /*
3464 * sip_dp83815_mii_writereg: [mii interface function]
3465 *
3466 * Write a PHY register to the MII.
3467 */
3468 static void
3469 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3470 {
3471 struct sip_softc *sc = (struct sip_softc *) self;
3472
3473 /*
3474 * The DP83815 only has an internal PHY. Only allow
3475 * MII address 0.
3476 */
3477 if (phy != 0)
3478 return;
3479
3480 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3481 }
3482
3483 /*
3484 * sip_dp83815_mii_statchg: [mii interface function]
3485 *
3486 * Callback from MII layer when media changes.
3487 */
3488 static void
3489 sipcom_dp83815_mii_statchg(struct device *self)
3490 {
3491 struct sip_softc *sc = (struct sip_softc *) self;
3492
3493 /*
3494 * Update TXCFG for full-duplex operation.
3495 */
3496 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3497 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3498 else
3499 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3500
3501 /*
3502 * Update RXCFG for full-duplex or loopback.
3503 */
3504 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3505 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3506 sc->sc_rxcfg |= RXCFG_ATX;
3507 else
3508 sc->sc_rxcfg &= ~RXCFG_ATX;
3509
3510 /*
3511 * XXX 802.3x flow control.
3512 */
3513
3514 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3515 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3516
3517 /*
3518 * Some DP83815s experience problems when used with short
3519 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3520 * sequence adjusts the DSP's signal attenuation to fix the
3521 * problem.
3522 */
3523 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3524 uint32_t reg;
3525
3526 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3527
3528 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3529 reg &= 0x0fff;
3530 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3531 delay(100);
3532 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3533 reg &= 0x00ff;
3534 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3535 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3536 0x00e8);
3537 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3538 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3539 reg | 0x20);
3540 }
3541
3542 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3543 }
3544 }
3545
3546 static void
3547 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3548 const struct pci_attach_args *pa, u_int8_t *enaddr)
3549 {
3550 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3551 u_int8_t cksum, *e, match;
3552 int i;
3553
3554 /*
3555 * EEPROM data format for the DP83820 can be found in
3556 * the DP83820 manual, section 4.2.4.
3557 */
3558
3559 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3560
3561 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3562 match = ~(match - 1);
3563
3564 cksum = 0x55;
3565 e = (u_int8_t *) eeprom_data;
3566 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3567 cksum += *e++;
3568
3569 if (cksum != match)
3570 printf("%s: Checksum (%x) mismatch (%x)",
3571 sc->sc_dev.dv_xname, cksum, match);
3572
3573 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3574 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3575 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3576 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3577 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3578 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3579 }
3580
3581 static void
3582 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3583 {
3584 int i;
3585
3586 /*
3587 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3588 * a reason, but I don't know it.
3589 */
3590 for (i = 0; i < 10; i++)
3591 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3592 }
3593
3594 static void
3595 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3596 const struct pci_attach_args *pa, u_int8_t *enaddr)
3597 {
3598 u_int16_t myea[ETHER_ADDR_LEN / 2];
3599
3600 switch (sc->sc_rev) {
3601 case SIS_REV_630S:
3602 case SIS_REV_630E:
3603 case SIS_REV_630EA1:
3604 case SIS_REV_630ET:
3605 case SIS_REV_635:
3606 /*
3607 * The MAC address for the on-board Ethernet of
3608 * the SiS 630 chipset is in the NVRAM. Kick
3609 * the chip into re-loading it from NVRAM, and
3610 * read the MAC address out of the filter registers.
3611 */
3612 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3613
3614 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3615 RFCR_RFADDR_NODE0);
3616 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3617 0xffff;
3618
3619 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3620 RFCR_RFADDR_NODE2);
3621 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3622 0xffff;
3623
3624 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3625 RFCR_RFADDR_NODE4);
3626 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3627 0xffff;
3628 break;
3629
3630 case SIS_REV_960:
3631 {
3632 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3633 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3634
3635 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3636 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3637
3638 int waittime, i;
3639
3640 /* Allow to read EEPROM from LAN. It is shared
3641 * between a 1394 controller and the NIC and each
3642 * time we access it, we need to set SIS_EECMD_REQ.
3643 */
3644 SIS_SET_EROMAR(sc, EROMAR_REQ);
3645
3646 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3647 /* Force EEPROM to idle state. */
3648
3649 /*
3650 * XXX-cube This is ugly. I'll look for docs about it.
3651 */
3652 SIS_SET_EROMAR(sc, EROMAR_EECS);
3653 sipcom_sis900_eeprom_delay(sc);
3654 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3655 SIS_SET_EROMAR(sc, EROMAR_EESK);
3656 sipcom_sis900_eeprom_delay(sc);
3657 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3658 sipcom_sis900_eeprom_delay(sc);
3659 }
3660 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3661 sipcom_sis900_eeprom_delay(sc);
3662 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3663
3664 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3665 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3666 sizeof(myea) / sizeof(myea[0]), myea);
3667 break;
3668 }
3669 DELAY(1);
3670 }
3671
3672 /*
3673 * Set SIS_EECTL_CLK to high, so a other master
3674 * can operate on the i2c bus.
3675 */
3676 SIS_SET_EROMAR(sc, EROMAR_EESK);
3677
3678 /* Refuse EEPROM access by LAN */
3679 SIS_SET_EROMAR(sc, EROMAR_DONE);
3680 } break;
3681
3682 default:
3683 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3684 sizeof(myea) / sizeof(myea[0]), myea);
3685 }
3686
3687 enaddr[0] = myea[0] & 0xff;
3688 enaddr[1] = myea[0] >> 8;
3689 enaddr[2] = myea[1] & 0xff;
3690 enaddr[3] = myea[1] >> 8;
3691 enaddr[4] = myea[2] & 0xff;
3692 enaddr[5] = myea[2] >> 8;
3693 }
3694
3695 /* Table and macro to bit-reverse an octet. */
3696 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3697 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3698
3699 static void
3700 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3701 const struct pci_attach_args *pa, u_int8_t *enaddr)
3702 {
3703 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3704 u_int8_t cksum, *e, match;
3705 int i;
3706
3707 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3708 sizeof(eeprom_data[0]), eeprom_data);
3709
3710 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3711 match = ~(match - 1);
3712
3713 cksum = 0x55;
3714 e = (u_int8_t *) eeprom_data;
3715 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3716 cksum += *e++;
3717 }
3718 if (cksum != match) {
3719 printf("%s: Checksum (%x) mismatch (%x)",
3720 sc->sc_dev.dv_xname, cksum, match);
3721 }
3722
3723 /*
3724 * Unrolled because it makes slightly more sense this way.
3725 * The DP83815 stores the MAC address in bit 0 of word 6
3726 * through bit 15 of word 8.
3727 */
3728 ea = &eeprom_data[6];
3729 enaddr[0] = ((*ea & 0x1) << 7);
3730 ea++;
3731 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3732 enaddr[1] = ((*ea & 0x1FE) >> 1);
3733 enaddr[2] = ((*ea & 0x1) << 7);
3734 ea++;
3735 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3736 enaddr[3] = ((*ea & 0x1FE) >> 1);
3737 enaddr[4] = ((*ea & 0x1) << 7);
3738 ea++;
3739 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3740 enaddr[5] = ((*ea & 0x1FE) >> 1);
3741
3742 /*
3743 * In case that's not weird enough, we also need to reverse
3744 * the bits in each byte. This all actually makes more sense
3745 * if you think about the EEPROM storage as an array of bits
3746 * being shifted into bytes, but that's not how we're looking
3747 * at it here...
3748 */
3749 for (i = 0; i < 6 ;i++)
3750 enaddr[i] = bbr(enaddr[i]);
3751 }
3752
3753 /*
3754 * sip_mediastatus: [ifmedia interface function]
3755 *
3756 * Get the current interface media status.
3757 */
3758 static void
3759 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3760 {
3761 struct sip_softc *sc = ifp->if_softc;
3762
3763 mii_pollstat(&sc->sc_mii);
3764 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3765 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3766 sc->sc_flowflags;
3767 }
3768
3769 /*
3770 * sip_mediachange: [ifmedia interface function]
3771 *
3772 * Set hardware to newly-selected media.
3773 */
3774 static int
3775 sipcom_mediachange(struct ifnet *ifp)
3776 {
3777 struct sip_softc *sc = ifp->if_softc;
3778
3779 if (ifp->if_flags & IFF_UP)
3780 mii_mediachg(&sc->sc_mii);
3781 return (0);
3782 }
3783