Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.120
      1 /*	$NetBSD: if_sip.c,v 1.120 2007/12/15 05:46:21 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.120 2007/12/15 05:46:21 dyoung Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <sys/bus.h>
    116 #include <sys/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 /*
    130  * Transmit descriptor list size.  This is arbitrary, but allocate
    131  * enough descriptors for 128 pending transmissions, and 8 segments
    132  * per packet (64 for DP83820 for jumbo frames).
    133  *
    134  * This MUST work out to a power of 2.
    135  */
    136 #define	GSIP_NTXSEGS_ALLOC 16
    137 #define	SIP_NTXSEGS_ALLOC 8
    138 
    139 #define	SIP_TXQUEUELEN		256
    140 #define	MAX_SIP_NTXDESC	\
    141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    142 
    143 /*
    144  * Receive descriptor list size.  We have one Rx buffer per incoming
    145  * packet, so this logic is a little simpler.
    146  *
    147  * Actually, on the DP83820, we allow the packet to consume more than
    148  * one buffer, in order to support jumbo Ethernet frames.  In that
    149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    151  * so we'd better be quick about handling receive interrupts.
    152  */
    153 #define	GSIP_NRXDESC		256
    154 #define	SIP_NRXDESC		128
    155 
    156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    157 
    158 /*
    159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    160  * a single clump that maps to a single DMA segment to make several things
    161  * easier.
    162  */
    163 struct sip_control_data {
    164 	/*
    165 	 * The transmit descriptors.
    166 	 */
    167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    168 
    169 	/*
    170 	 * The receive descriptors.
    171 	 */
    172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    173 };
    174 
    175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    178 
    179 /*
    180  * Software state for transmit jobs.
    181  */
    182 struct sip_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    188 };
    189 
    190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    191 
    192 /*
    193  * Software state for receive jobs.
    194  */
    195 struct sip_rxsoft {
    196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    198 };
    199 
    200 enum sip_attach_stage {
    201 	  SIP_ATTACH_FIN = 0
    202 	, SIP_ATTACH_CREATE_RXMAP
    203 	, SIP_ATTACH_CREATE_TXMAP
    204 	, SIP_ATTACH_LOAD_MAP
    205 	, SIP_ATTACH_CREATE_MAP
    206 	, SIP_ATTACH_MAP_MEM
    207 	, SIP_ATTACH_ALLOC_MEM
    208 	, SIP_ATTACH_BEGIN
    209 };
    210 
    211 /*
    212  * Software state per device.
    213  */
    214 struct sip_softc {
    215 	struct device sc_dev;		/* generic device information */
    216 	bus_space_tag_t sc_st;		/* bus space tag */
    217 	bus_space_handle_t sc_sh;	/* bus space handle */
    218 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    219 	pci_chipset_tag_t sc_pc;
    220 	bus_dma_segment_t sc_seg;
    221 	struct ethercom sc_ethercom;	/* ethernet common data */
    222 	void *sc_sdhook;		/* shutdown hook */
    223 
    224 	const struct sip_product *sc_model; /* which model are we? */
    225 	int sc_gigabit;			/* 1: 83820, 0: other */
    226 	int sc_rev;			/* chip revision */
    227 
    228 	void *sc_ih;			/* interrupt cookie */
    229 
    230 	struct mii_data sc_mii;		/* MII/media information */
    231 
    232 	callout_t sc_tick_ch;		/* tick callout */
    233 
    234 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    235 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    236 
    237 	/*
    238 	 * Software state for transmit and receive descriptors.
    239 	 */
    240 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    241 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    242 
    243 	/*
    244 	 * Control data structures.
    245 	 */
    246 	struct sip_control_data *sc_control_data;
    247 #define	sc_txdescs	sc_control_data->scd_txdescs
    248 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    249 
    250 #ifdef SIP_EVENT_COUNTERS
    251 	/*
    252 	 * Event counters.
    253 	 */
    254 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    255 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    256 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    257 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    258 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    259 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    260 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    261 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    262 	/* DP83820 only */
    263 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    264 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    265 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    266 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    267 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    268 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    269 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    270 #endif /* SIP_EVENT_COUNTERS */
    271 
    272 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    273 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    274 	u_int32_t sc_imr;		/* prototype IMR register */
    275 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    276 
    277 	u_int32_t sc_cfg;		/* prototype CFG register */
    278 
    279 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    280 
    281 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    282 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    283 
    284 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    285 
    286 	int	sc_flowflags;		/* 802.3x flow control flags */
    287 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    288 	int	sc_paused;		/* paused indication */
    289 
    290 	int	sc_txfree;		/* number of free Tx descriptors */
    291 	int	sc_txnext;		/* next ready Tx descriptor */
    292 	int	sc_txwin;		/* Tx descriptors since last intr */
    293 
    294 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    295 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    296 
    297 	/* values of interface state at last init */
    298 	struct {
    299 		/* if_capenable */
    300 		uint64_t	if_capenable;
    301 		/* ec_capenable */
    302 		int		ec_capenable;
    303 		/* VLAN_ATTACHED */
    304 		int		is_vlan;
    305 	}	sc_prev;
    306 
    307 	short	sc_if_flags;
    308 
    309 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    310 	int	sc_rxdiscard;
    311 	int	sc_rxlen;
    312 	struct mbuf *sc_rxhead;
    313 	struct mbuf *sc_rxtail;
    314 	struct mbuf **sc_rxtailp;
    315 
    316 	int sc_ntxdesc;
    317 	int sc_ntxdesc_mask;
    318 
    319 	int sc_nrxdesc_mask;
    320 
    321 	const struct sip_parm {
    322 		const struct sip_regs {
    323 			int r_rxcfg;
    324 			int r_txcfg;
    325 		} p_regs;
    326 
    327 		const struct sip_bits {
    328 			uint32_t b_txcfg_mxdma_8;
    329 			uint32_t b_txcfg_mxdma_16;
    330 			uint32_t b_txcfg_mxdma_32;
    331 			uint32_t b_txcfg_mxdma_64;
    332 			uint32_t b_txcfg_mxdma_128;
    333 			uint32_t b_txcfg_mxdma_256;
    334 			uint32_t b_txcfg_mxdma_512;
    335 			uint32_t b_txcfg_flth_mask;
    336 			uint32_t b_txcfg_drth_mask;
    337 
    338 			uint32_t b_rxcfg_mxdma_8;
    339 			uint32_t b_rxcfg_mxdma_16;
    340 			uint32_t b_rxcfg_mxdma_32;
    341 			uint32_t b_rxcfg_mxdma_64;
    342 			uint32_t b_rxcfg_mxdma_128;
    343 			uint32_t b_rxcfg_mxdma_256;
    344 			uint32_t b_rxcfg_mxdma_512;
    345 
    346 			uint32_t b_isr_txrcmp;
    347 			uint32_t b_isr_rxrcmp;
    348 			uint32_t b_isr_dperr;
    349 			uint32_t b_isr_sserr;
    350 			uint32_t b_isr_rmabt;
    351 			uint32_t b_isr_rtabt;
    352 
    353 			uint32_t b_cmdsts_size_mask;
    354 		} p_bits;
    355 		int		p_filtmem;
    356 		int		p_rxbuf_len;
    357 		bus_size_t	p_tx_dmamap_size;
    358 		int		p_ntxsegs;
    359 		int		p_ntxsegs_alloc;
    360 		int		p_nrxdesc;
    361 	} *sc_parm;
    362 
    363 	void (*sc_rxintr)(struct sip_softc *);
    364 
    365 #if NRND > 0
    366 	rndsource_element_t rnd_source;	/* random source */
    367 #endif
    368 };
    369 
    370 #define	sc_bits	sc_parm->p_bits
    371 #define	sc_regs	sc_parm->p_regs
    372 
    373 static const struct sip_parm sip_parm = {
    374 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    375 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    376 	, .p_tx_dmamap_size = MCLBYTES
    377 	, .p_ntxsegs = 16
    378 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    379 	, .p_nrxdesc = SIP_NRXDESC
    380 	, .p_bits = {
    381 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    382 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    383 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    384 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    385 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    386 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    387 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    388 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    389 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    390 
    391 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    392 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    393 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    394 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    395 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    396 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    397 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    398 
    399 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    400 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    401 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    402 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    403 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    404 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    405 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    406 	}
    407 	, .p_regs = {
    408 		.r_rxcfg = OTHER_SIP_RXCFG,
    409 		.r_txcfg = OTHER_SIP_TXCFG
    410 	}
    411 }, gsip_parm = {
    412 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    413 	, .p_rxbuf_len = MCLBYTES - 8
    414 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    415 	, .p_ntxsegs = 64
    416 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    417 	, .p_nrxdesc = GSIP_NRXDESC
    418 	, .p_bits = {
    419 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    420 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    421 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    422 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    423 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    424 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    425 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    426 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    427 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    428 
    429 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    430 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    431 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    432 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    433 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    434 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    435 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    436 
    437 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    438 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    439 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    440 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    441 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    442 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    443 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    444 	}
    445 	, .p_regs = {
    446 		.r_rxcfg = DP83820_SIP_RXCFG,
    447 		.r_txcfg = DP83820_SIP_TXCFG
    448 	}
    449 };
    450 
    451 static inline int
    452 sip_nexttx(const struct sip_softc *sc, int x)
    453 {
    454 	return (x + 1) & sc->sc_ntxdesc_mask;
    455 }
    456 
    457 static inline int
    458 sip_nextrx(const struct sip_softc *sc, int x)
    459 {
    460 	return (x + 1) & sc->sc_nrxdesc_mask;
    461 }
    462 
    463 /* 83820 only */
    464 #define	SIP_RXCHAIN_RESET(sc)						\
    465 do {									\
    466 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    467 	*(sc)->sc_rxtailp = NULL;					\
    468 	(sc)->sc_rxlen = 0;						\
    469 } while (/*CONSTCOND*/0)
    470 
    471 /* 83820 only */
    472 #define	SIP_RXCHAIN_LINK(sc, m)						\
    473 do {									\
    474 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    475 	(sc)->sc_rxtailp = &(m)->m_next;				\
    476 } while (/*CONSTCOND*/0)
    477 
    478 #ifdef SIP_EVENT_COUNTERS
    479 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    480 #else
    481 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    482 #endif
    483 
    484 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    485 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    486 
    487 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    488 do {									\
    489 	int __x, __n;							\
    490 									\
    491 	__x = (x);							\
    492 	__n = (n);							\
    493 									\
    494 	/* If it will wrap around, sync to the end of the ring. */	\
    495 	if ((__x + __n) > sc->sc_ntxdesc) {				\
    496 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    497 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    498 		    (sc->sc_ntxdesc - __x), (ops));			\
    499 		__n -= (sc->sc_ntxdesc - __x);				\
    500 		__x = 0;						\
    501 	}								\
    502 									\
    503 	/* Now sync whatever is left. */				\
    504 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    505 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    506 } while (0)
    507 
    508 #define	SIP_CDRXSYNC(sc, x, ops)					\
    509 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    510 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    511 
    512 #if 0
    513 #ifdef DP83820
    514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    515 	u_int32_t	sipd_cmdsts;	/* command/status word */
    516 #else
    517 	u_int32_t	sipd_cmdsts;	/* command/status word */
    518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    519 #endif /* DP83820 */
    520 #endif /* 0 */
    521 
    522 static inline volatile uint32_t *
    523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    524 {
    525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    526 }
    527 
    528 static inline volatile uint32_t *
    529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    530 {
    531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    532 }
    533 
    534 static inline void
    535 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
    536 {
    537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    539 
    540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    544 	sipd->sipd_extsts = 0;
    545 	SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    546 }
    547 
    548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    549 	((sc)->sc_model->sip_vendor == (v) &&				\
    550 	 (sc)->sc_model->sip_product == (p) &&				\
    551 	 (sc)->sc_rev == (r))
    552 
    553 #define	SIP_CHIP_MODEL(sc, v, p)					\
    554 	((sc)->sc_model->sip_vendor == (v) &&				\
    555 	 (sc)->sc_model->sip_product == (p))
    556 
    557 #define	SIP_SIS900_REV(sc, rev)						\
    558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    559 
    560 #define SIP_TIMEOUT 1000
    561 
    562 static void	sipcom_start(struct ifnet *);
    563 static void	sipcom_watchdog(struct ifnet *);
    564 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    565 static int	sipcom_init(struct ifnet *);
    566 static void	sipcom_stop(struct ifnet *, int);
    567 
    568 static void	sipcom_shutdown(void *);
    569 
    570 static bool	sipcom_reset(struct sip_softc *);
    571 static void	sipcom_rxdrain(struct sip_softc *);
    572 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    573 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    574 				      u_int16_t *);
    575 static void	sipcom_tick(void *);
    576 
    577 static void	sipcom_sis900_set_filter(struct sip_softc *);
    578 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    579 
    580 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    581 		    const struct pci_attach_args *, u_int8_t *);
    582 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    583 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    584 		    const struct pci_attach_args *, u_int8_t *);
    585 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    586 		    const struct pci_attach_args *, u_int8_t *);
    587 
    588 static int	sipcom_intr(void *);
    589 static void	sipcom_txintr(struct sip_softc *);
    590 static void	sip_rxintr(struct sip_softc *);
    591 static void	gsip_rxintr(struct sip_softc *);
    592 
    593 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
    594 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
    595 static void	sipcom_dp83820_mii_statchg(struct device *);
    596 
    597 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
    598 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
    599 static void	sipcom_sis900_mii_statchg(struct device *);
    600 
    601 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
    602 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
    603 static void	sipcom_dp83815_mii_statchg(struct device *);
    604 
    605 static int	sipcom_mediachange(struct ifnet *);
    606 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    607 
    608 static int	sipcom_match(struct device *, struct cfdata *, void *);
    609 static void	sipcom_attach(struct device *, struct device *, void *);
    610 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    611 static int	sipcom_detach(device_t, int);
    612 static bool	sipcom_resume(device_t);
    613 
    614 static int	gsip_copy_small = 0; /* XXX make non-static! */
    615 static int	sip_copy_small = 0; /* XXX make non-static! */
    616 
    617 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    618     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    619 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    620     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    621 
    622 /*
    623  * Descriptions of the variants of the SiS900.
    624  */
    625 struct sip_variant {
    626 	int	(*sipv_mii_readreg)(struct device *, int, int);
    627 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    628 	void	(*sipv_mii_statchg)(struct device *);
    629 	void	(*sipv_set_filter)(struct sip_softc *);
    630 	void	(*sipv_read_macaddr)(struct sip_softc *,
    631 		    const struct pci_attach_args *, u_int8_t *);
    632 };
    633 
    634 static u_int32_t sipcom_mii_bitbang_read(struct device *);
    635 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
    636 
    637 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    638 	sipcom_mii_bitbang_read,
    639 	sipcom_mii_bitbang_write,
    640 	{
    641 		EROMAR_MDIO,		/* MII_BIT_MDO */
    642 		EROMAR_MDIO,		/* MII_BIT_MDI */
    643 		EROMAR_MDC,		/* MII_BIT_MDC */
    644 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    645 		0,			/* MII_BIT_DIR_PHY_HOST */
    646 	}
    647 };
    648 
    649 static const struct sip_variant sipcom_variant_dp83820 = {
    650 	sipcom_dp83820_mii_readreg,
    651 	sipcom_dp83820_mii_writereg,
    652 	sipcom_dp83820_mii_statchg,
    653 	sipcom_dp83815_set_filter,
    654 	sipcom_dp83820_read_macaddr,
    655 };
    656 
    657 static const struct sip_variant sipcom_variant_sis900 = {
    658 	sipcom_sis900_mii_readreg,
    659 	sipcom_sis900_mii_writereg,
    660 	sipcom_sis900_mii_statchg,
    661 	sipcom_sis900_set_filter,
    662 	sipcom_sis900_read_macaddr,
    663 };
    664 
    665 static const struct sip_variant sipcom_variant_dp83815 = {
    666 	sipcom_dp83815_mii_readreg,
    667 	sipcom_dp83815_mii_writereg,
    668 	sipcom_dp83815_mii_statchg,
    669 	sipcom_dp83815_set_filter,
    670 	sipcom_dp83815_read_macaddr,
    671 };
    672 
    673 
    674 /*
    675  * Devices supported by this driver.
    676  */
    677 static const struct sip_product {
    678 	pci_vendor_id_t		sip_vendor;
    679 	pci_product_id_t	sip_product;
    680 	const char		*sip_name;
    681 	const struct sip_variant *sip_variant;
    682 	int			sip_gigabit;
    683 } sipcom_products[] = {
    684 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    685 	  "NatSemi DP83820 Gigabit Ethernet",
    686 	  &sipcom_variant_dp83820, 1 },
    687 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    688 	  "SiS 900 10/100 Ethernet",
    689 	  &sipcom_variant_sis900, 0 },
    690 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    691 	  "SiS 7016 10/100 Ethernet",
    692 	  &sipcom_variant_sis900, 0 },
    693 
    694 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    695 	  "NatSemi DP83815 10/100 Ethernet",
    696 	  &sipcom_variant_dp83815, 0 },
    697 
    698 	{ 0,			0,
    699 	  NULL,
    700 	  NULL, 0 },
    701 };
    702 
    703 static const struct sip_product *
    704 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    705 {
    706 	const struct sip_product *sip;
    707 
    708 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    709 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    710 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    711 		    sip->sip_gigabit == gigabit)
    712 			return sip;
    713 	}
    714 	return NULL;
    715 }
    716 
    717 /*
    718  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    719  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    720  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    721  * which means we try to use 64-bit data transfers on those cards if we
    722  * happen to be plugged into a 32-bit slot.
    723  *
    724  * What we do is use this table of cards known to be 64-bit cards.  If
    725  * you have a 64-bit card who's subsystem ID is not listed in this table,
    726  * send the output of "pcictl dump ..." of the device to me so that your
    727  * card will use the 64-bit data path when plugged into a 64-bit slot.
    728  *
    729  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    730  *	   June 30, 2002
    731  */
    732 static int
    733 sipcom_check_64bit(const struct pci_attach_args *pa)
    734 {
    735 	static const struct {
    736 		pci_vendor_id_t c64_vendor;
    737 		pci_product_id_t c64_product;
    738 	} card64[] = {
    739 		/* Asante GigaNIX */
    740 		{ 0x128a,	0x0002 },
    741 
    742 		/* Accton EN1407-T, Planex GN-1000TE */
    743 		{ 0x1113,	0x1407 },
    744 
    745 		/* Netgear GA-621 */
    746 		{ 0x1385,	0x621a },
    747 
    748 		/* SMC EZ Card */
    749 		{ 0x10b8,	0x9462 },
    750 
    751 		{ 0, 0}
    752 	};
    753 	pcireg_t subsys;
    754 	int i;
    755 
    756 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    757 
    758 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    759 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    760 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    761 			return (1);
    762 	}
    763 
    764 	return (0);
    765 }
    766 
    767 static int
    768 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
    769 {
    770 	struct pci_attach_args *pa = aux;
    771 
    772 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    773 		return 1;
    774 
    775 	return 0;
    776 }
    777 
    778 static void
    779 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    780 {
    781 	u_int32_t reg;
    782 	int i;
    783 
    784 	/*
    785 	 * Cause the chip to load configuration data from the EEPROM.
    786 	 */
    787 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    788 	for (i = 0; i < 10000; i++) {
    789 		delay(10);
    790 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    791 		    PTSCR_EELOAD_EN) == 0)
    792 			break;
    793 	}
    794 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    795 	    PTSCR_EELOAD_EN) {
    796 		printf("%s: timeout loading configuration from EEPROM\n",
    797 		    sc->sc_dev.dv_xname);
    798 		return;
    799 	}
    800 
    801 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    802 
    803 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    804 	if (reg & CFG_PCI64_DET) {
    805 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    806 		/*
    807 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    808 		 * data transfers.
    809 		 *
    810 		 * We can't use the DATA64_EN bit in the EEPROM, because
    811 		 * vendors of 32-bit cards fail to clear that bit in many
    812 		 * cases (yet the card still detects that it's in a 64-bit
    813 		 * slot; go figure).
    814 		 */
    815 		if (sipcom_check_64bit(pa)) {
    816 			sc->sc_cfg |= CFG_DATA64_EN;
    817 			printf(", using 64-bit data transfers");
    818 		}
    819 		printf("\n");
    820 	}
    821 
    822 	/*
    823 	 * XXX Need some PCI flags indicating support for
    824 	 * XXX 64-bit addressing.
    825 	 */
    826 #if 0
    827 	if (reg & CFG_M64ADDR)
    828 		sc->sc_cfg |= CFG_M64ADDR;
    829 	if (reg & CFG_T64ADDR)
    830 		sc->sc_cfg |= CFG_T64ADDR;
    831 #endif
    832 
    833 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    834 		const char *sep = "";
    835 		printf("%s: using ", sc->sc_dev.dv_xname);
    836 		if (reg & CFG_EXT_125) {
    837 			sc->sc_cfg |= CFG_EXT_125;
    838 			printf("%s125MHz clock", sep);
    839 			sep = ", ";
    840 		}
    841 		if (reg & CFG_TBI_EN) {
    842 			sc->sc_cfg |= CFG_TBI_EN;
    843 			printf("%sten-bit interface", sep);
    844 			sep = ", ";
    845 		}
    846 		printf("\n");
    847 	}
    848 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    849 	    (reg & CFG_MRM_DIS) != 0)
    850 		sc->sc_cfg |= CFG_MRM_DIS;
    851 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    852 	    (reg & CFG_MWI_DIS) != 0)
    853 		sc->sc_cfg |= CFG_MWI_DIS;
    854 
    855 	/*
    856 	 * Use the extended descriptor format on the DP83820.  This
    857 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    858 	 * checksumming.
    859 	 */
    860 	sc->sc_cfg |= CFG_EXTSTS_EN;
    861 }
    862 
    863 static int
    864 sipcom_detach(device_t self, int flags)
    865 {
    866 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    867 	return 0;
    868 }
    869 
    870 static void
    871 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    872 {
    873 	int i;
    874 	struct sip_softc *sc = device_private(self);
    875 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    876 
    877 	/*
    878 	 * Free any resources we've allocated during attach.
    879 	 * Do this in reverse order and fall through.
    880 	 */
    881 	switch (stage) {
    882 	case SIP_ATTACH_FIN:
    883 		sipcom_stop(ifp, 1);
    884 		pmf_device_deregister(self);
    885 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    886 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    887 
    888 		if (sc->sc_sdhook != NULL)
    889 			shutdownhook_disestablish(sc->sc_sdhook);
    890 
    891 		/*FALLTHROUGH*/
    892 	case SIP_ATTACH_CREATE_RXMAP:
    893 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    894 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    895 				bus_dmamap_destroy(sc->sc_dmat,
    896 				    sc->sc_rxsoft[i].rxs_dmamap);
    897 		}
    898 		/*FALLTHROUGH*/
    899 	case SIP_ATTACH_CREATE_TXMAP:
    900 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    901 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    902 				bus_dmamap_destroy(sc->sc_dmat,
    903 				    sc->sc_txsoft[i].txs_dmamap);
    904 		}
    905 		/*FALLTHROUGH*/
    906 	case SIP_ATTACH_LOAD_MAP:
    907 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    908 		/*FALLTHROUGH*/
    909 	case SIP_ATTACH_CREATE_MAP:
    910 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    911 		/*FALLTHROUGH*/
    912 	case SIP_ATTACH_MAP_MEM:
    913 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    914 		    sizeof(struct sip_control_data));
    915 		/*FALLTHROUGH*/
    916 	case SIP_ATTACH_ALLOC_MEM:
    917 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    918 		break;
    919 	default:
    920 		break;
    921 	}
    922 	return;
    923 }
    924 
    925 static bool
    926 sipcom_resume(device_t self)
    927 {
    928 	struct sip_softc *sc = device_private(self);
    929 
    930 	return sipcom_reset(sc);
    931 }
    932 
    933 static void
    934 sipcom_attach(device_t parent, device_t self, void *aux)
    935 {
    936 	struct sip_softc *sc = (struct sip_softc *) self;
    937 	struct pci_attach_args *pa = aux;
    938 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    939 	pci_chipset_tag_t pc = pa->pa_pc;
    940 	pci_intr_handle_t ih;
    941 	const char *intrstr = NULL;
    942 	bus_space_tag_t iot, memt;
    943 	bus_space_handle_t ioh, memh;
    944 	int ioh_valid, memh_valid;
    945 	int i, rseg, error;
    946 	const struct sip_product *sip;
    947 	u_int8_t enaddr[ETHER_ADDR_LEN];
    948 	pcireg_t pmreg;
    949 	pcireg_t memtype;
    950 	bus_size_t tx_dmamap_size;
    951 	int ntxsegs_alloc;
    952 	cfdata_t cf = device_cfdata(self);
    953 
    954 	callout_init(&sc->sc_tick_ch, 0);
    955 
    956 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
    957 	if (sip == NULL) {
    958 		printf("\n");
    959 		panic("%s: impossible", __func__);
    960 	}
    961 	sc->sc_gigabit = sip->sip_gigabit;
    962 
    963 	sc->sc_pc = pc;
    964 
    965 	if (sc->sc_gigabit) {
    966 		sc->sc_rxintr = gsip_rxintr;
    967 		sc->sc_parm = &gsip_parm;
    968 	} else {
    969 		sc->sc_rxintr = sip_rxintr;
    970 		sc->sc_parm = &sip_parm;
    971 	}
    972 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
    973 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
    974 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
    975 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
    976 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
    977 
    978 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    979 
    980 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    981 
    982 	sc->sc_model = sip;
    983 
    984 	/*
    985 	 * XXX Work-around broken PXE firmware on some boards.
    986 	 *
    987 	 * The DP83815 shares an address decoder with the MEM BAR
    988 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    989 	 * so that memory mapped access works.
    990 	 */
    991 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    992 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    993 	    ~PCI_MAPREG_ROM_ENABLE);
    994 
    995 	/*
    996 	 * Map the device.
    997 	 */
    998 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    999 	    PCI_MAPREG_TYPE_IO, 0,
   1000 	    &iot, &ioh, NULL, NULL) == 0);
   1001 	if (sc->sc_gigabit) {
   1002 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1003 		switch (memtype) {
   1004 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1005 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1006 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1007 			    memtype, 0, &memt, &memh, NULL, NULL) == 0);
   1008 			break;
   1009 		default:
   1010 			memh_valid = 0;
   1011 		}
   1012 	} else {
   1013 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1014 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1015 		    &memt, &memh, NULL, NULL) == 0);
   1016 	}
   1017 
   1018 	if (memh_valid) {
   1019 		sc->sc_st = memt;
   1020 		sc->sc_sh = memh;
   1021 	} else if (ioh_valid) {
   1022 		sc->sc_st = iot;
   1023 		sc->sc_sh = ioh;
   1024 	} else {
   1025 		printf("%s: unable to map device registers\n",
   1026 		    sc->sc_dev.dv_xname);
   1027 		return;
   1028 	}
   1029 
   1030 	sc->sc_dmat = pa->pa_dmat;
   1031 
   1032 	/*
   1033 	 * Make sure bus mastering is enabled.  Also make sure
   1034 	 * Write/Invalidate is enabled if we're allowed to use it.
   1035 	 */
   1036 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1037 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1038 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
   1039 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1040 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
   1041 
   1042 	/* power up chip */
   1043 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1044 	    NULL)) && error != EOPNOTSUPP) {
   1045 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1046 		    error);
   1047 		return;
   1048 	}
   1049 
   1050 	/*
   1051 	 * Map and establish our interrupt.
   1052 	 */
   1053 	if (pci_intr_map(pa, &ih)) {
   1054 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
   1055 		return;
   1056 	}
   1057 	intrstr = pci_intr_string(pc, ih);
   1058 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1059 	if (sc->sc_ih == NULL) {
   1060 		printf("%s: unable to establish interrupt",
   1061 		    sc->sc_dev.dv_xname);
   1062 		if (intrstr != NULL)
   1063 			printf(" at %s", intrstr);
   1064 		printf("\n");
   1065 		return;
   1066 	}
   1067 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1068 
   1069 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1070 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1071 
   1072 	/*
   1073 	 * Allocate the control data structures, and create and load the
   1074 	 * DMA map for it.
   1075 	 */
   1076 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1077 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1078 	    &rseg, 0)) != 0) {
   1079 		printf("%s: unable to allocate control data, error = %d\n",
   1080 		    sc->sc_dev.dv_xname, error);
   1081 		return sipcom_do_detach(self, -1);
   1082 	}
   1083 
   1084 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1085 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1086 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1087 		printf("%s: unable to map control data, error = %d\n",
   1088 		    sc->sc_dev.dv_xname, error);
   1089 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1090 	}
   1091 
   1092 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1093 	    sizeof(struct sip_control_data), 1,
   1094 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1095 		printf("%s: unable to create control data DMA map, "
   1096 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1097 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1098 	}
   1099 
   1100 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1101 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1102 	    0)) != 0) {
   1103 		printf("%s: unable to load control data DMA map, error = %d\n",
   1104 		    sc->sc_dev.dv_xname, error);
   1105 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1106 	}
   1107 
   1108 	/*
   1109 	 * Create the transmit buffer DMA maps.
   1110 	 */
   1111 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1112 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1113 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1114 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1115 			printf("%s: unable to create tx DMA map %d, "
   1116 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1117 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1118 		}
   1119 	}
   1120 
   1121 	/*
   1122 	 * Create the receive buffer DMA maps.
   1123 	 */
   1124 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1125 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1126 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1127 			printf("%s: unable to create rx DMA map %d, "
   1128 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1129 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1130 		}
   1131 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1132 	}
   1133 
   1134 	/*
   1135 	 * Reset the chip to a known state.
   1136 	 */
   1137 	sipcom_reset(sc);
   1138 
   1139 	/*
   1140 	 * Read the Ethernet address from the EEPROM.  This might
   1141 	 * also fetch other stuff from the EEPROM and stash it
   1142 	 * in the softc.
   1143 	 */
   1144 	sc->sc_cfg = 0;
   1145 	if (!sc->sc_gigabit) {
   1146 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1147 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1148 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1149 
   1150 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1151 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1152 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1153 			sc->sc_cfg |=
   1154 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1155 			     CFG_EDBMASTEN);
   1156 	}
   1157 
   1158 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1159 
   1160 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1161 	    ether_sprintf(enaddr));
   1162 
   1163 	/*
   1164 	 * Initialize the configuration register: aggressive PCI
   1165 	 * bus request algorithm, default backoff, default OW timer,
   1166 	 * default parity error detection.
   1167 	 *
   1168 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1169 	 * friends -- it affects packet data, not descriptors.
   1170 	 */
   1171 	if (sc->sc_gigabit)
   1172 		sipcom_dp83820_attach(sc, pa);
   1173 
   1174 	/*
   1175 	 * Initialize our media structures and probe the MII.
   1176 	 */
   1177 	sc->sc_mii.mii_ifp = ifp;
   1178 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1179 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1180 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1181 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
   1182 	    sipcom_mediastatus);
   1183 
   1184 	/*
   1185 	 * XXX We cannot handle flow control on the DP83815.
   1186 	 */
   1187 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1188 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1189 			   MII_OFFSET_ANY, 0);
   1190 	else
   1191 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1192 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1193 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1194 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1195 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1196 	} else
   1197 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1198 
   1199 	ifp = &sc->sc_ethercom.ec_if;
   1200 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1201 	ifp->if_softc = sc;
   1202 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1203 	sc->sc_if_flags = ifp->if_flags;
   1204 	ifp->if_ioctl = sipcom_ioctl;
   1205 	ifp->if_start = sipcom_start;
   1206 	ifp->if_watchdog = sipcom_watchdog;
   1207 	ifp->if_init = sipcom_init;
   1208 	ifp->if_stop = sipcom_stop;
   1209 	IFQ_SET_READY(&ifp->if_snd);
   1210 
   1211 	/*
   1212 	 * We can support 802.1Q VLAN-sized frames.
   1213 	 */
   1214 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1215 
   1216 	if (sc->sc_gigabit) {
   1217 		/*
   1218 		 * And the DP83820 can do VLAN tagging in hardware, and
   1219 		 * support the jumbo Ethernet MTU.
   1220 		 */
   1221 		sc->sc_ethercom.ec_capabilities |=
   1222 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1223 
   1224 		/*
   1225 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1226 		 * in hardware.
   1227 		 */
   1228 		ifp->if_capabilities |=
   1229 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1230 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1231 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1232 	}
   1233 
   1234 	/*
   1235 	 * Attach the interface.
   1236 	 */
   1237 	if_attach(ifp);
   1238 	ether_ifattach(ifp, enaddr);
   1239 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1240 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1241 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1242 #if NRND > 0
   1243 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1244 	    RND_TYPE_NET, 0);
   1245 #endif
   1246 
   1247 	/*
   1248 	 * The number of bytes that must be available in
   1249 	 * the Tx FIFO before the bus master can DMA more
   1250 	 * data into the FIFO.
   1251 	 */
   1252 	sc->sc_tx_fill_thresh = 64 / 32;
   1253 
   1254 	/*
   1255 	 * Start at a drain threshold of 512 bytes.  We will
   1256 	 * increase it if a DMA underrun occurs.
   1257 	 *
   1258 	 * XXX The minimum value of this variable should be
   1259 	 * tuned.  We may be able to improve performance
   1260 	 * by starting with a lower value.  That, however,
   1261 	 * may trash the first few outgoing packets if the
   1262 	 * PCI bus is saturated.
   1263 	 */
   1264 	if (sc->sc_gigabit)
   1265 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1266 	else
   1267 		sc->sc_tx_drain_thresh = 1504 / 32;
   1268 
   1269 	/*
   1270 	 * Initialize the Rx FIFO drain threshold.
   1271 	 *
   1272 	 * This is in units of 8 bytes.
   1273 	 *
   1274 	 * We should never set this value lower than 2; 14 bytes are
   1275 	 * required to filter the packet.
   1276 	 */
   1277 	sc->sc_rx_drain_thresh = 128 / 8;
   1278 
   1279 #ifdef SIP_EVENT_COUNTERS
   1280 	/*
   1281 	 * Attach event counters.
   1282 	 */
   1283 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1284 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1285 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1286 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1287 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1288 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1289 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1290 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1291 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1292 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1293 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1294 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1295 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1296 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1297 	if (!sc->sc_gigabit) {
   1298 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1299 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1300 	} else {
   1301 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1302 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1303 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1304 		    NULL, sc->sc_dev.dv_xname, "txpause");
   1305 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1306 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1307 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1308 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1309 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1310 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1311 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1312 		    NULL, sc->sc_dev.dv_xname, "txipsum");
   1313 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1314 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1315 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1316 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1317 	}
   1318 #endif /* SIP_EVENT_COUNTERS */
   1319 
   1320 	if (!pmf_device_register(self, NULL, sipcom_resume))
   1321 		aprint_error_dev(self, "couldn't establish power handler\n");
   1322 	else
   1323 		pmf_class_network_register(self, ifp);
   1324 
   1325 	/*
   1326 	 * Make sure the interface is shutdown during reboot.
   1327 	 */
   1328 	sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
   1329 	if (sc->sc_sdhook == NULL)
   1330 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1331 		    sc->sc_dev.dv_xname);
   1332 }
   1333 
   1334 /*
   1335  * sip_shutdown:
   1336  *
   1337  *	Make sure the interface is stopped at reboot time.
   1338  */
   1339 static void
   1340 sipcom_shutdown(void *arg)
   1341 {
   1342 	struct sip_softc *sc = arg;
   1343 
   1344 	sipcom_stop(&sc->sc_ethercom.ec_if, 1);
   1345 }
   1346 
   1347 static inline void
   1348 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1349     uint64_t capenable)
   1350 {
   1351 	struct m_tag *mtag;
   1352 	u_int32_t extsts;
   1353 #ifdef DEBUG
   1354 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1355 #endif
   1356 	/*
   1357 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1358 	 * up the descriptor to encapsulate the packet for us.
   1359 	 *
   1360 	 * This apparently has to be on the last descriptor of
   1361 	 * the packet.
   1362 	 */
   1363 
   1364 	/*
   1365 	 * Byte swapping is tricky. We need to provide the tag
   1366 	 * in a network byte order. On a big-endian machine,
   1367 	 * the byteorder is correct, but we need to swap it
   1368 	 * anyway, because this will be undone by the outside
   1369 	 * htole32(). That's why there must be an
   1370 	 * unconditional swap instead of htons() inside.
   1371 	 */
   1372 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1373 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1374 		    htole32(EXTSTS_VPKT |
   1375 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1376 				 EXTSTS_VTCI));
   1377 	}
   1378 
   1379 	/*
   1380 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1381 	 * checksumming, set up the descriptor to do this work
   1382 	 * for us.
   1383 	 *
   1384 	 * This apparently has to be on the first descriptor of
   1385 	 * the packet.
   1386 	 *
   1387 	 * Byte-swap constants so the compiler can optimize.
   1388 	 */
   1389 	extsts = 0;
   1390 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1391 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1392 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1393 		extsts |= htole32(EXTSTS_IPPKT);
   1394 	}
   1395 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1396 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1397 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1398 		extsts |= htole32(EXTSTS_TCPPKT);
   1399 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1400 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1401 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1402 		extsts |= htole32(EXTSTS_UDPPKT);
   1403 	}
   1404 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1405 }
   1406 
   1407 /*
   1408  * sip_start:		[ifnet interface function]
   1409  *
   1410  *	Start packet transmission on the interface.
   1411  */
   1412 static void
   1413 sipcom_start(struct ifnet *ifp)
   1414 {
   1415 	struct sip_softc *sc = ifp->if_softc;
   1416 	struct mbuf *m0;
   1417 	struct mbuf *m;
   1418 	struct sip_txsoft *txs;
   1419 	bus_dmamap_t dmamap;
   1420 	int error, nexttx, lasttx, seg;
   1421 	int ofree = sc->sc_txfree;
   1422 #if 0
   1423 	int firsttx = sc->sc_txnext;
   1424 #endif
   1425 
   1426 	/*
   1427 	 * If we've been told to pause, don't transmit any more packets.
   1428 	 */
   1429 	if (!sc->sc_gigabit && sc->sc_paused)
   1430 		ifp->if_flags |= IFF_OACTIVE;
   1431 
   1432 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1433 		return;
   1434 
   1435 	/*
   1436 	 * Loop through the send queue, setting up transmit descriptors
   1437 	 * until we drain the queue, or use up all available transmit
   1438 	 * descriptors.
   1439 	 */
   1440 	for (;;) {
   1441 		/* Get a work queue entry. */
   1442 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1443 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1444 			break;
   1445 		}
   1446 
   1447 		/*
   1448 		 * Grab a packet off the queue.
   1449 		 */
   1450 		IFQ_POLL(&ifp->if_snd, m0);
   1451 		if (m0 == NULL)
   1452 			break;
   1453 		m = NULL;
   1454 
   1455 		dmamap = txs->txs_dmamap;
   1456 
   1457 		/*
   1458 		 * Load the DMA map.  If this fails, the packet either
   1459 		 * didn't fit in the alloted number of segments, or we
   1460 		 * were short on resources.
   1461 		 */
   1462 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1463 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1464 		/* In the non-gigabit case, we'll copy and try again. */
   1465 		if (error != 0 && !sc->sc_gigabit) {
   1466 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1467 			if (m == NULL) {
   1468 				printf("%s: unable to allocate Tx mbuf\n",
   1469 				    sc->sc_dev.dv_xname);
   1470 				break;
   1471 			}
   1472 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1473 			if (m0->m_pkthdr.len > MHLEN) {
   1474 				MCLGET(m, M_DONTWAIT);
   1475 				if ((m->m_flags & M_EXT) == 0) {
   1476 					printf("%s: unable to allocate Tx "
   1477 					    "cluster\n", sc->sc_dev.dv_xname);
   1478 					m_freem(m);
   1479 					break;
   1480 				}
   1481 			}
   1482 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1483 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1484 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1485 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1486 			if (error) {
   1487 				printf("%s: unable to load Tx buffer, "
   1488 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1489 				break;
   1490 			}
   1491 		} else if (error == EFBIG) {
   1492 			/*
   1493 			 * For the too-many-segments case, we simply
   1494 			 * report an error and drop the packet,
   1495 			 * since we can't sanely copy a jumbo packet
   1496 			 * to a single buffer.
   1497 			 */
   1498 			printf("%s: Tx packet consumes too many "
   1499 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
   1500 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1501 			m_freem(m0);
   1502 			continue;
   1503 		} else if (error != 0) {
   1504 			/*
   1505 			 * Short on resources, just stop for now.
   1506 			 */
   1507 			break;
   1508 		}
   1509 
   1510 		/*
   1511 		 * Ensure we have enough descriptors free to describe
   1512 		 * the packet.  Note, we always reserve one descriptor
   1513 		 * at the end of the ring as a termination point, to
   1514 		 * prevent wrap-around.
   1515 		 */
   1516 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1517 			/*
   1518 			 * Not enough free descriptors to transmit this
   1519 			 * packet.  We haven't committed anything yet,
   1520 			 * so just unload the DMA map, put the packet
   1521 			 * back on the queue, and punt.  Notify the upper
   1522 			 * layer that there are not more slots left.
   1523 			 *
   1524 			 * XXX We could allocate an mbuf and copy, but
   1525 			 * XXX is it worth it?
   1526 			 */
   1527 			ifp->if_flags |= IFF_OACTIVE;
   1528 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1529 			if (m != NULL)
   1530 				m_freem(m);
   1531 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1532 			break;
   1533 		}
   1534 
   1535 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1536 		if (m != NULL) {
   1537 			m_freem(m0);
   1538 			m0 = m;
   1539 		}
   1540 
   1541 		/*
   1542 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1543 		 */
   1544 
   1545 		/* Sync the DMA map. */
   1546 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1547 		    BUS_DMASYNC_PREWRITE);
   1548 
   1549 		/*
   1550 		 * Initialize the transmit descriptors.
   1551 		 */
   1552 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1553 		     seg < dmamap->dm_nsegs;
   1554 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1555 			/*
   1556 			 * If this is the first descriptor we're
   1557 			 * enqueueing, don't set the OWN bit just
   1558 			 * yet.  That could cause a race condition.
   1559 			 * We'll do it below.
   1560 			 */
   1561 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1562 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1563 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1564 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1565 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1566 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1567 			lasttx = nexttx;
   1568 		}
   1569 
   1570 		/* Clear the MORE bit on the last segment. */
   1571 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1572 		    htole32(~CMDSTS_MORE);
   1573 
   1574 		/*
   1575 		 * If we're in the interrupt delay window, delay the
   1576 		 * interrupt.
   1577 		 */
   1578 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1579 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1580 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1581 			    htole32(CMDSTS_INTR);
   1582 			sc->sc_txwin = 0;
   1583 		}
   1584 
   1585 		if (sc->sc_gigabit)
   1586 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1587 
   1588 		/* Sync the descriptors we're using. */
   1589 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1590 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1591 
   1592 		/*
   1593 		 * The entire packet is set up.  Give the first descrptor
   1594 		 * to the chip now.
   1595 		 */
   1596 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1597 		    htole32(CMDSTS_OWN);
   1598 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1599 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1600 
   1601 		/*
   1602 		 * Store a pointer to the packet so we can free it later,
   1603 		 * and remember what txdirty will be once the packet is
   1604 		 * done.
   1605 		 */
   1606 		txs->txs_mbuf = m0;
   1607 		txs->txs_firstdesc = sc->sc_txnext;
   1608 		txs->txs_lastdesc = lasttx;
   1609 
   1610 		/* Advance the tx pointer. */
   1611 		sc->sc_txfree -= dmamap->dm_nsegs;
   1612 		sc->sc_txnext = nexttx;
   1613 
   1614 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1615 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1616 
   1617 #if NBPFILTER > 0
   1618 		/*
   1619 		 * Pass the packet to any BPF listeners.
   1620 		 */
   1621 		if (ifp->if_bpf)
   1622 			bpf_mtap(ifp->if_bpf, m0);
   1623 #endif /* NBPFILTER > 0 */
   1624 	}
   1625 
   1626 	if (txs == NULL || sc->sc_txfree == 0) {
   1627 		/* No more slots left; notify upper layer. */
   1628 		ifp->if_flags |= IFF_OACTIVE;
   1629 	}
   1630 
   1631 	if (sc->sc_txfree != ofree) {
   1632 		/*
   1633 		 * Start the transmit process.  Note, the manual says
   1634 		 * that if there are no pending transmissions in the
   1635 		 * chip's internal queue (indicated by TXE being clear),
   1636 		 * then the driver software must set the TXDP to the
   1637 		 * first descriptor to be transmitted.  However, if we
   1638 		 * do this, it causes serious performance degredation on
   1639 		 * the DP83820 under load, not setting TXDP doesn't seem
   1640 		 * to adversely affect the SiS 900 or DP83815.
   1641 		 *
   1642 		 * Well, I guess it wouldn't be the first time a manual
   1643 		 * has lied -- and they could be speaking of the NULL-
   1644 		 * terminated descriptor list case, rather than OWN-
   1645 		 * terminated rings.
   1646 		 */
   1647 #if 0
   1648 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1649 		     CR_TXE) == 0) {
   1650 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1651 			    SIP_CDTXADDR(sc, firsttx));
   1652 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1653 		}
   1654 #else
   1655 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1656 #endif
   1657 
   1658 		/* Set a watchdog timer in case the chip flakes out. */
   1659 		/* Gigabit autonegotiation takes 5 seconds. */
   1660 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1661 	}
   1662 }
   1663 
   1664 /*
   1665  * sip_watchdog:	[ifnet interface function]
   1666  *
   1667  *	Watchdog timer handler.
   1668  */
   1669 static void
   1670 sipcom_watchdog(struct ifnet *ifp)
   1671 {
   1672 	struct sip_softc *sc = ifp->if_softc;
   1673 
   1674 	/*
   1675 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1676 	 * If we get a timeout, try and sweep up transmit descriptors.
   1677 	 * If we manage to sweep them all up, ignore the lack of
   1678 	 * interrupt.
   1679 	 */
   1680 	sipcom_txintr(sc);
   1681 
   1682 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1683 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1684 		ifp->if_oerrors++;
   1685 
   1686 		/* Reset the interface. */
   1687 		(void) sipcom_init(ifp);
   1688 	} else if (ifp->if_flags & IFF_DEBUG)
   1689 		printf("%s: recovered from device timeout\n",
   1690 		    sc->sc_dev.dv_xname);
   1691 
   1692 	/* Try to get more packets going. */
   1693 	sipcom_start(ifp);
   1694 }
   1695 
   1696 /*
   1697  * sip_ioctl:		[ifnet interface function]
   1698  *
   1699  *	Handle control requests from the operator.
   1700  */
   1701 static int
   1702 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1703 {
   1704 	struct sip_softc *sc = ifp->if_softc;
   1705 	struct ifreq *ifr = (struct ifreq *)data;
   1706 	int s, error;
   1707 
   1708 	s = splnet();
   1709 
   1710 	switch (cmd) {
   1711 	case SIOCSIFMEDIA:
   1712 		/* Flow control requires full-duplex mode. */
   1713 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1714 		    (ifr->ifr_media & IFM_FDX) == 0)
   1715 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1716 
   1717 		/* XXX */
   1718 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1719 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1720 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1721 			if (sc->sc_gigabit &&
   1722 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1723 				/* We can do both TXPAUSE and RXPAUSE. */
   1724 				ifr->ifr_media |=
   1725 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1726 			} else if (ifr->ifr_media & IFM_FLOW) {
   1727 				/*
   1728 				 * Both TXPAUSE and RXPAUSE must be set.
   1729 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1730 				 * feature.)
   1731 				 *
   1732 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1733 				 */
   1734 				ifr->ifr_media |=
   1735 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1736 			}
   1737 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1738 		}
   1739 		/* FALLTHROUGH */
   1740 	case SIOCGIFMEDIA:
   1741 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1742 		break;
   1743 	case SIOCSIFFLAGS:
   1744 		/* If the interface is up and running, only modify the receive
   1745 		 * filter when setting promiscuous or debug mode.  Otherwise
   1746 		 * fall through to ether_ioctl, which will reset the chip.
   1747 		 */
   1748 
   1749 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1750 			 == (sc)->sc_ethercom.ec_capenable)		\
   1751 			&& ((sc)->sc_prev.is_vlan ==			\
   1752 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1753 
   1754 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1755 
   1756 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1757 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1758 		    == (IFF_UP|IFF_RUNNING))
   1759 		    && ((ifp->if_flags & (~RESETIGN))
   1760 		    == (sc->sc_if_flags & (~RESETIGN)))
   1761 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1762 			/* Set up the receive filter. */
   1763 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1764 			error = 0;
   1765 			break;
   1766 #undef RESETIGN
   1767 		}
   1768 		/* FALLTHROUGH */
   1769 	default:
   1770 		error = ether_ioctl(ifp, cmd, data);
   1771 		if (error == ENETRESET) {
   1772 			/*
   1773 			 * Multicast list has changed; set the hardware filter
   1774 			 * accordingly.
   1775 			 */
   1776 			if (ifp->if_flags & IFF_RUNNING)
   1777 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1778 			error = 0;
   1779 		}
   1780 		break;
   1781 	}
   1782 
   1783 	/* Try to get more packets going. */
   1784 	sipcom_start(ifp);
   1785 
   1786 	sc->sc_if_flags = ifp->if_flags;
   1787 	splx(s);
   1788 	return (error);
   1789 }
   1790 
   1791 /*
   1792  * sip_intr:
   1793  *
   1794  *	Interrupt service routine.
   1795  */
   1796 static int
   1797 sipcom_intr(void *arg)
   1798 {
   1799 	struct sip_softc *sc = arg;
   1800 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1801 	u_int32_t isr;
   1802 	int handled = 0;
   1803 
   1804 	/* Disable interrupts. */
   1805 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1806 
   1807 	for (;;) {
   1808 		/* Reading clears interrupt. */
   1809 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1810 		if ((isr & sc->sc_imr) == 0)
   1811 			break;
   1812 
   1813 #if NRND > 0
   1814 		if (RND_ENABLED(&sc->rnd_source))
   1815 			rnd_add_uint32(&sc->rnd_source, isr);
   1816 #endif
   1817 
   1818 		handled = 1;
   1819 
   1820 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1821 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1822 
   1823 			/* Grab any new packets. */
   1824 			(*sc->sc_rxintr)(sc);
   1825 
   1826 			if (isr & ISR_RXORN) {
   1827 				printf("%s: receive FIFO overrun\n",
   1828 				    sc->sc_dev.dv_xname);
   1829 
   1830 				/* XXX adjust rx_drain_thresh? */
   1831 			}
   1832 
   1833 			if (isr & ISR_RXIDLE) {
   1834 				printf("%s: receive ring overrun\n",
   1835 				    sc->sc_dev.dv_xname);
   1836 
   1837 				/* Get the receive process going again. */
   1838 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1839 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1840 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1841 				    SIP_CR, CR_RXE);
   1842 			}
   1843 		}
   1844 
   1845 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1846 #ifdef SIP_EVENT_COUNTERS
   1847 			if (isr & ISR_TXDESC)
   1848 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1849 			else if (isr & ISR_TXIDLE)
   1850 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1851 #endif
   1852 
   1853 			/* Sweep up transmit descriptors. */
   1854 			sipcom_txintr(sc);
   1855 
   1856 			if (isr & ISR_TXURN) {
   1857 				u_int32_t thresh;
   1858 				int txfifo_size = (sc->sc_gigabit)
   1859 				    ? DP83820_SIP_TXFIFO_SIZE
   1860 				    : OTHER_SIP_TXFIFO_SIZE;
   1861 
   1862 				printf("%s: transmit FIFO underrun",
   1863 				    sc->sc_dev.dv_xname);
   1864 				thresh = sc->sc_tx_drain_thresh + 1;
   1865 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1866 				&& (thresh * 32) <= (txfifo_size -
   1867 				     (sc->sc_tx_fill_thresh * 32))) {
   1868 					printf("; increasing Tx drain "
   1869 					    "threshold to %u bytes\n",
   1870 					    thresh * 32);
   1871 					sc->sc_tx_drain_thresh = thresh;
   1872 					(void) sipcom_init(ifp);
   1873 				} else {
   1874 					(void) sipcom_init(ifp);
   1875 					printf("\n");
   1876 				}
   1877 			}
   1878 		}
   1879 
   1880 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1881 			if (isr & ISR_PAUSE_ST) {
   1882 				sc->sc_paused = 1;
   1883 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1884 				ifp->if_flags |= IFF_OACTIVE;
   1885 			}
   1886 			if (isr & ISR_PAUSE_END) {
   1887 				sc->sc_paused = 0;
   1888 				ifp->if_flags &= ~IFF_OACTIVE;
   1889 			}
   1890 		}
   1891 
   1892 		if (isr & ISR_HIBERR) {
   1893 			int want_init = 0;
   1894 
   1895 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1896 
   1897 #define	PRINTERR(bit, str)						\
   1898 			do {						\
   1899 				if ((isr & (bit)) != 0) {		\
   1900 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1901 						printf("%s: %s\n",	\
   1902 						    sc->sc_dev.dv_xname, str); \
   1903 					want_init = 1;			\
   1904 				}					\
   1905 			} while (/*CONSTCOND*/0)
   1906 
   1907 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1908 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1909 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1910 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1911 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1912 			/*
   1913 			 * Ignore:
   1914 			 *	Tx reset complete
   1915 			 *	Rx reset complete
   1916 			 */
   1917 			if (want_init)
   1918 				(void) sipcom_init(ifp);
   1919 #undef PRINTERR
   1920 		}
   1921 	}
   1922 
   1923 	/* Re-enable interrupts. */
   1924 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1925 
   1926 	/* Try to get more packets going. */
   1927 	sipcom_start(ifp);
   1928 
   1929 	return (handled);
   1930 }
   1931 
   1932 /*
   1933  * sip_txintr:
   1934  *
   1935  *	Helper; handle transmit interrupts.
   1936  */
   1937 static void
   1938 sipcom_txintr(struct sip_softc *sc)
   1939 {
   1940 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1941 	struct sip_txsoft *txs;
   1942 	u_int32_t cmdsts;
   1943 
   1944 	if (sc->sc_paused == 0)
   1945 		ifp->if_flags &= ~IFF_OACTIVE;
   1946 
   1947 	/*
   1948 	 * Go through our Tx list and free mbufs for those
   1949 	 * frames which have been transmitted.
   1950 	 */
   1951 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1952 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1953 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1954 
   1955 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1956 		if (cmdsts & CMDSTS_OWN)
   1957 			break;
   1958 
   1959 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1960 
   1961 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1962 
   1963 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1964 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1965 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1966 		m_freem(txs->txs_mbuf);
   1967 		txs->txs_mbuf = NULL;
   1968 
   1969 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1970 
   1971 		/*
   1972 		 * Check for errors and collisions.
   1973 		 */
   1974 		if (cmdsts &
   1975 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1976 			ifp->if_oerrors++;
   1977 			if (cmdsts & CMDSTS_Tx_EC)
   1978 				ifp->if_collisions += 16;
   1979 			if (ifp->if_flags & IFF_DEBUG) {
   1980 				if (cmdsts & CMDSTS_Tx_ED)
   1981 					printf("%s: excessive deferral\n",
   1982 					    sc->sc_dev.dv_xname);
   1983 				if (cmdsts & CMDSTS_Tx_EC)
   1984 					printf("%s: excessive collisions\n",
   1985 					    sc->sc_dev.dv_xname);
   1986 			}
   1987 		} else {
   1988 			/* Packet was transmitted successfully. */
   1989 			ifp->if_opackets++;
   1990 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1991 		}
   1992 	}
   1993 
   1994 	/*
   1995 	 * If there are no more pending transmissions, cancel the watchdog
   1996 	 * timer.
   1997 	 */
   1998 	if (txs == NULL) {
   1999 		ifp->if_timer = 0;
   2000 		sc->sc_txwin = 0;
   2001 	}
   2002 }
   2003 
   2004 /*
   2005  * gsip_rxintr:
   2006  *
   2007  *	Helper; handle receive interrupts on gigabit parts.
   2008  */
   2009 static void
   2010 gsip_rxintr(struct sip_softc *sc)
   2011 {
   2012 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2013 	struct sip_rxsoft *rxs;
   2014 	struct mbuf *m;
   2015 	u_int32_t cmdsts, extsts;
   2016 	int i, len;
   2017 
   2018 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2019 		rxs = &sc->sc_rxsoft[i];
   2020 
   2021 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2022 
   2023 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2024 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2025 		len = CMDSTS_SIZE(sc, cmdsts);
   2026 
   2027 		/*
   2028 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2029 		 * consumer of the receive ring, so if the bit is clear,
   2030 		 * we have processed all of the packets.
   2031 		 */
   2032 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2033 			/*
   2034 			 * We have processed all of the receive buffers.
   2035 			 */
   2036 			break;
   2037 		}
   2038 
   2039 		if (__predict_false(sc->sc_rxdiscard)) {
   2040 			SIP_INIT_RXDESC(sc, i);
   2041 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2042 				/* Reset our state. */
   2043 				sc->sc_rxdiscard = 0;
   2044 			}
   2045 			continue;
   2046 		}
   2047 
   2048 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2049 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2050 
   2051 		m = rxs->rxs_mbuf;
   2052 
   2053 		/*
   2054 		 * Add a new receive buffer to the ring.
   2055 		 */
   2056 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2057 			/*
   2058 			 * Failed, throw away what we've done so
   2059 			 * far, and discard the rest of the packet.
   2060 			 */
   2061 			ifp->if_ierrors++;
   2062 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2063 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2064 			SIP_INIT_RXDESC(sc, i);
   2065 			if (cmdsts & CMDSTS_MORE)
   2066 				sc->sc_rxdiscard = 1;
   2067 			if (sc->sc_rxhead != NULL)
   2068 				m_freem(sc->sc_rxhead);
   2069 			SIP_RXCHAIN_RESET(sc);
   2070 			continue;
   2071 		}
   2072 
   2073 		SIP_RXCHAIN_LINK(sc, m);
   2074 
   2075 		m->m_len = len;
   2076 
   2077 		/*
   2078 		 * If this is not the end of the packet, keep
   2079 		 * looking.
   2080 		 */
   2081 		if (cmdsts & CMDSTS_MORE) {
   2082 			sc->sc_rxlen += len;
   2083 			continue;
   2084 		}
   2085 
   2086 		/*
   2087 		 * Okay, we have the entire packet now.  The chip includes
   2088 		 * the FCS, so we need to trim it.
   2089 		 */
   2090 		m->m_len -= ETHER_CRC_LEN;
   2091 
   2092 		*sc->sc_rxtailp = NULL;
   2093 		len = m->m_len + sc->sc_rxlen;
   2094 		m = sc->sc_rxhead;
   2095 
   2096 		SIP_RXCHAIN_RESET(sc);
   2097 
   2098 		/*
   2099 		 * If an error occurred, update stats and drop the packet.
   2100 		 */
   2101 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2102 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2103 			ifp->if_ierrors++;
   2104 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2105 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2106 				/* Receive overrun handled elsewhere. */
   2107 				printf("%s: receive descriptor error\n",
   2108 				    sc->sc_dev.dv_xname);
   2109 			}
   2110 #define	PRINTERR(bit, str)						\
   2111 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2112 			    (cmdsts & (bit)) != 0)			\
   2113 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2114 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2115 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2116 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2117 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2118 #undef PRINTERR
   2119 			m_freem(m);
   2120 			continue;
   2121 		}
   2122 
   2123 		/*
   2124 		 * If the packet is small enough to fit in a
   2125 		 * single header mbuf, allocate one and copy
   2126 		 * the data into it.  This greatly reduces
   2127 		 * memory consumption when we receive lots
   2128 		 * of small packets.
   2129 		 */
   2130 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2131 			struct mbuf *nm;
   2132 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2133 			if (nm == NULL) {
   2134 				ifp->if_ierrors++;
   2135 				m_freem(m);
   2136 				continue;
   2137 			}
   2138 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2139 			nm->m_data += 2;
   2140 			nm->m_pkthdr.len = nm->m_len = len;
   2141 			m_copydata(m, 0, len, mtod(nm, void *));
   2142 			m_freem(m);
   2143 			m = nm;
   2144 		}
   2145 #ifndef __NO_STRICT_ALIGNMENT
   2146 		else {
   2147 			/*
   2148 			 * The DP83820's receive buffers must be 4-byte
   2149 			 * aligned.  But this means that the data after
   2150 			 * the Ethernet header is misaligned.  To compensate,
   2151 			 * we have artificially shortened the buffer size
   2152 			 * in the descriptor, and we do an overlapping copy
   2153 			 * of the data two bytes further in (in the first
   2154 			 * buffer of the chain only).
   2155 			 */
   2156 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2157 			    m->m_len);
   2158 			m->m_data += 2;
   2159 		}
   2160 #endif /* ! __NO_STRICT_ALIGNMENT */
   2161 
   2162 		/*
   2163 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2164 		 * for us.  Associate the tag with the packet.
   2165 		 */
   2166 
   2167 		/*
   2168 		 * Again, byte swapping is tricky. Hardware provided
   2169 		 * the tag in the network byte order, but extsts was
   2170 		 * passed through le32toh() in the meantime. On a
   2171 		 * big-endian machine, we need to swap it again. On a
   2172 		 * little-endian machine, we need to convert from the
   2173 		 * network to host byte order. This means that we must
   2174 		 * swap it in any case, so unconditional swap instead
   2175 		 * of htons() is used.
   2176 		 */
   2177 		if ((extsts & EXTSTS_VPKT) != 0) {
   2178 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2179 			    continue);
   2180 		}
   2181 
   2182 		/*
   2183 		 * Set the incoming checksum information for the
   2184 		 * packet.
   2185 		 */
   2186 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2187 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2188 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2189 			if (extsts & EXTSTS_Rx_IPERR)
   2190 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2191 			if (extsts & EXTSTS_TCPPKT) {
   2192 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2193 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2194 				if (extsts & EXTSTS_Rx_TCPERR)
   2195 					m->m_pkthdr.csum_flags |=
   2196 					    M_CSUM_TCP_UDP_BAD;
   2197 			} else if (extsts & EXTSTS_UDPPKT) {
   2198 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2199 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2200 				if (extsts & EXTSTS_Rx_UDPERR)
   2201 					m->m_pkthdr.csum_flags |=
   2202 					    M_CSUM_TCP_UDP_BAD;
   2203 			}
   2204 		}
   2205 
   2206 		ifp->if_ipackets++;
   2207 		m->m_pkthdr.rcvif = ifp;
   2208 		m->m_pkthdr.len = len;
   2209 
   2210 #if NBPFILTER > 0
   2211 		/*
   2212 		 * Pass this up to any BPF listeners, but only
   2213 		 * pass if up the stack if it's for us.
   2214 		 */
   2215 		if (ifp->if_bpf)
   2216 			bpf_mtap(ifp->if_bpf, m);
   2217 #endif /* NBPFILTER > 0 */
   2218 
   2219 		/* Pass it on. */
   2220 		(*ifp->if_input)(ifp, m);
   2221 	}
   2222 
   2223 	/* Update the receive pointer. */
   2224 	sc->sc_rxptr = i;
   2225 }
   2226 
   2227 /*
   2228  * sip_rxintr:
   2229  *
   2230  *	Helper; handle receive interrupts on 10/100 parts.
   2231  */
   2232 static void
   2233 sip_rxintr(struct sip_softc *sc)
   2234 {
   2235 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2236 	struct sip_rxsoft *rxs;
   2237 	struct mbuf *m;
   2238 	u_int32_t cmdsts;
   2239 	int i, len;
   2240 
   2241 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2242 		rxs = &sc->sc_rxsoft[i];
   2243 
   2244 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2245 
   2246 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2247 
   2248 		/*
   2249 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2250 		 * consumer of the receive ring, so if the bit is clear,
   2251 		 * we have processed all of the packets.
   2252 		 */
   2253 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2254 			/*
   2255 			 * We have processed all of the receive buffers.
   2256 			 */
   2257 			break;
   2258 		}
   2259 
   2260 		/*
   2261 		 * If any collisions were seen on the wire, count one.
   2262 		 */
   2263 		if (cmdsts & CMDSTS_Rx_COL)
   2264 			ifp->if_collisions++;
   2265 
   2266 		/*
   2267 		 * If an error occurred, update stats, clear the status
   2268 		 * word, and leave the packet buffer in place.  It will
   2269 		 * simply be reused the next time the ring comes around.
   2270 		 */
   2271 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2272 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2273 			ifp->if_ierrors++;
   2274 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2275 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2276 				/* Receive overrun handled elsewhere. */
   2277 				printf("%s: receive descriptor error\n",
   2278 				    sc->sc_dev.dv_xname);
   2279 			}
   2280 #define	PRINTERR(bit, str)						\
   2281 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2282 			    (cmdsts & (bit)) != 0)			\
   2283 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2284 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2285 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2286 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2287 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2288 #undef PRINTERR
   2289 			SIP_INIT_RXDESC(sc, i);
   2290 			continue;
   2291 		}
   2292 
   2293 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2294 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2295 
   2296 		/*
   2297 		 * No errors; receive the packet.  Note, the SiS 900
   2298 		 * includes the CRC with every packet.
   2299 		 */
   2300 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2301 
   2302 #ifdef __NO_STRICT_ALIGNMENT
   2303 		/*
   2304 		 * If the packet is small enough to fit in a
   2305 		 * single header mbuf, allocate one and copy
   2306 		 * the data into it.  This greatly reduces
   2307 		 * memory consumption when we receive lots
   2308 		 * of small packets.
   2309 		 *
   2310 		 * Otherwise, we add a new buffer to the receive
   2311 		 * chain.  If this fails, we drop the packet and
   2312 		 * recycle the old buffer.
   2313 		 */
   2314 		if (sip_copy_small != 0 && len <= MHLEN) {
   2315 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2316 			if (m == NULL)
   2317 				goto dropit;
   2318 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2319 			memcpy(mtod(m, void *),
   2320 			    mtod(rxs->rxs_mbuf, void *), len);
   2321 			SIP_INIT_RXDESC(sc, i);
   2322 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2323 			    rxs->rxs_dmamap->dm_mapsize,
   2324 			    BUS_DMASYNC_PREREAD);
   2325 		} else {
   2326 			m = rxs->rxs_mbuf;
   2327 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2328  dropit:
   2329 				ifp->if_ierrors++;
   2330 				SIP_INIT_RXDESC(sc, i);
   2331 				bus_dmamap_sync(sc->sc_dmat,
   2332 				    rxs->rxs_dmamap, 0,
   2333 				    rxs->rxs_dmamap->dm_mapsize,
   2334 				    BUS_DMASYNC_PREREAD);
   2335 				continue;
   2336 			}
   2337 		}
   2338 #else
   2339 		/*
   2340 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2341 		 * But this means that the data after the Ethernet header
   2342 		 * is misaligned.  We must allocate a new buffer and
   2343 		 * copy the data, shifted forward 2 bytes.
   2344 		 */
   2345 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2346 		if (m == NULL) {
   2347  dropit:
   2348 			ifp->if_ierrors++;
   2349 			SIP_INIT_RXDESC(sc, i);
   2350 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2351 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2352 			continue;
   2353 		}
   2354 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2355 		if (len > (MHLEN - 2)) {
   2356 			MCLGET(m, M_DONTWAIT);
   2357 			if ((m->m_flags & M_EXT) == 0) {
   2358 				m_freem(m);
   2359 				goto dropit;
   2360 			}
   2361 		}
   2362 		m->m_data += 2;
   2363 
   2364 		/*
   2365 		 * Note that we use clusters for incoming frames, so the
   2366 		 * buffer is virtually contiguous.
   2367 		 */
   2368 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2369 
   2370 		/* Allow the receive descriptor to continue using its mbuf. */
   2371 		SIP_INIT_RXDESC(sc, i);
   2372 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2373 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2374 #endif /* __NO_STRICT_ALIGNMENT */
   2375 
   2376 		ifp->if_ipackets++;
   2377 		m->m_pkthdr.rcvif = ifp;
   2378 		m->m_pkthdr.len = m->m_len = len;
   2379 
   2380 #if NBPFILTER > 0
   2381 		/*
   2382 		 * Pass this up to any BPF listeners, but only
   2383 		 * pass if up the stack if it's for us.
   2384 		 */
   2385 		if (ifp->if_bpf)
   2386 			bpf_mtap(ifp->if_bpf, m);
   2387 #endif /* NBPFILTER > 0 */
   2388 
   2389 		/* Pass it on. */
   2390 		(*ifp->if_input)(ifp, m);
   2391 	}
   2392 
   2393 	/* Update the receive pointer. */
   2394 	sc->sc_rxptr = i;
   2395 }
   2396 
   2397 /*
   2398  * sip_tick:
   2399  *
   2400  *	One second timer, used to tick the MII.
   2401  */
   2402 static void
   2403 sipcom_tick(void *arg)
   2404 {
   2405 	struct sip_softc *sc = arg;
   2406 	int s;
   2407 
   2408 	s = splnet();
   2409 #ifdef SIP_EVENT_COUNTERS
   2410 	if (sc->sc_gigabit) {
   2411 		/* Read PAUSE related counts from MIB registers. */
   2412 		sc->sc_ev_rxpause.ev_count +=
   2413 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2414 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2415 		sc->sc_ev_txpause.ev_count +=
   2416 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2417 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2418 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2419 	}
   2420 #endif /* SIP_EVENT_COUNTERS */
   2421 	mii_tick(&sc->sc_mii);
   2422 	splx(s);
   2423 
   2424 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2425 }
   2426 
   2427 /*
   2428  * sip_reset:
   2429  *
   2430  *	Perform a soft reset on the SiS 900.
   2431  */
   2432 static bool
   2433 sipcom_reset(struct sip_softc *sc)
   2434 {
   2435 	bus_space_tag_t st = sc->sc_st;
   2436 	bus_space_handle_t sh = sc->sc_sh;
   2437 	int i;
   2438 
   2439 	bus_space_write_4(st, sh, SIP_IER, 0);
   2440 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2441 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2442 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2443 
   2444 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2445 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2446 			break;
   2447 		delay(2);
   2448 	}
   2449 
   2450 	if (i == SIP_TIMEOUT) {
   2451 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2452 		return false;
   2453 	}
   2454 
   2455 	delay(1000);
   2456 
   2457 	if (sc->sc_gigabit) {
   2458 		/*
   2459 		 * Set the general purpose I/O bits.  Do it here in case we
   2460 		 * need to have GPIO set up to talk to the media interface.
   2461 		 */
   2462 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2463 		delay(1000);
   2464 	}
   2465 	return true;
   2466 }
   2467 
   2468 static void
   2469 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2470 {
   2471 	u_int32_t reg;
   2472 	bus_space_tag_t st = sc->sc_st;
   2473 	bus_space_handle_t sh = sc->sc_sh;
   2474 	/*
   2475 	 * Initialize the VLAN/IP receive control register.
   2476 	 * We enable checksum computation on all incoming
   2477 	 * packets, and do not reject packets w/ bad checksums.
   2478 	 */
   2479 	reg = 0;
   2480 	if (capenable &
   2481 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2482 		reg |= VRCR_IPEN;
   2483 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2484 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2485 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2486 
   2487 	/*
   2488 	 * Initialize the VLAN/IP transmit control register.
   2489 	 * We enable outgoing checksum computation on a
   2490 	 * per-packet basis.
   2491 	 */
   2492 	reg = 0;
   2493 	if (capenable &
   2494 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2495 		reg |= VTCR_PPCHK;
   2496 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2497 		reg |= VTCR_VPPTI;
   2498 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2499 
   2500 	/*
   2501 	 * If we're using VLANs, initialize the VLAN data register.
   2502 	 * To understand why we bswap the VLAN Ethertype, see section
   2503 	 * 4.2.36 of the DP83820 manual.
   2504 	 */
   2505 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2506 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2507 }
   2508 
   2509 /*
   2510  * sip_init:		[ ifnet interface function ]
   2511  *
   2512  *	Initialize the interface.  Must be called at splnet().
   2513  */
   2514 static int
   2515 sipcom_init(struct ifnet *ifp)
   2516 {
   2517 	struct sip_softc *sc = ifp->if_softc;
   2518 	bus_space_tag_t st = sc->sc_st;
   2519 	bus_space_handle_t sh = sc->sc_sh;
   2520 	struct sip_txsoft *txs;
   2521 	struct sip_rxsoft *rxs;
   2522 	struct sip_desc *sipd;
   2523 	int i, error = 0;
   2524 
   2525 	if (!device_has_power(&sc->sc_dev))
   2526 		return EBUSY;
   2527 
   2528 	/*
   2529 	 * Cancel any pending I/O.
   2530 	 */
   2531 	sipcom_stop(ifp, 0);
   2532 
   2533 	/*
   2534 	 * Reset the chip to a known state.
   2535 	 */
   2536 	if (!sipcom_reset(sc))
   2537 		return EBUSY;
   2538 
   2539 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2540 		/*
   2541 		 * DP83815 manual, page 78:
   2542 		 *    4.4 Recommended Registers Configuration
   2543 		 *    For optimum performance of the DP83815, version noted
   2544 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2545 		 *    modifications must be followed in sequence...
   2546 		 *
   2547 		 * It's not clear if this should be 302h or 203h because that
   2548 		 * chip name is listed as SRR 302h in the description of the
   2549 		 * SRR register.  However, my revision 302h DP83815 on the
   2550 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2551 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2552 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2553 		 * this set or not.  [briggs -- 09 March 2001]
   2554 		 *
   2555 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2556 		 * and that this sets reserved bits in that register.
   2557 		 */
   2558 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2559 
   2560 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2561 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2562 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2563 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2564 
   2565 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2566 	}
   2567 
   2568 	/*
   2569 	 * Initialize the transmit descriptor ring.
   2570 	 */
   2571 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2572 		sipd = &sc->sc_txdescs[i];
   2573 		memset(sipd, 0, sizeof(struct sip_desc));
   2574 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2575 	}
   2576 	SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
   2577 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2578 	sc->sc_txfree = sc->sc_ntxdesc;
   2579 	sc->sc_txnext = 0;
   2580 	sc->sc_txwin = 0;
   2581 
   2582 	/*
   2583 	 * Initialize the transmit job descriptors.
   2584 	 */
   2585 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2586 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2587 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2588 		txs = &sc->sc_txsoft[i];
   2589 		txs->txs_mbuf = NULL;
   2590 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2591 	}
   2592 
   2593 	/*
   2594 	 * Initialize the receive descriptor and receive job
   2595 	 * descriptor rings.
   2596 	 */
   2597 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2598 		rxs = &sc->sc_rxsoft[i];
   2599 		if (rxs->rxs_mbuf == NULL) {
   2600 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2601 				printf("%s: unable to allocate or map rx "
   2602 				    "buffer %d, error = %d\n",
   2603 				    sc->sc_dev.dv_xname, i, error);
   2604 				/*
   2605 				 * XXX Should attempt to run with fewer receive
   2606 				 * XXX buffers instead of just failing.
   2607 				 */
   2608 				sipcom_rxdrain(sc);
   2609 				goto out;
   2610 			}
   2611 		} else
   2612 			SIP_INIT_RXDESC(sc, i);
   2613 	}
   2614 	sc->sc_rxptr = 0;
   2615 	sc->sc_rxdiscard = 0;
   2616 	SIP_RXCHAIN_RESET(sc);
   2617 
   2618 	/*
   2619 	 * Set the configuration register; it's already initialized
   2620 	 * in sip_attach().
   2621 	 */
   2622 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2623 
   2624 	/*
   2625 	 * Initialize the prototype TXCFG register.
   2626 	 */
   2627 	if (sc->sc_gigabit) {
   2628 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2629 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2630 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2631 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2632 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2633 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2634 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2635 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2636 	} else {
   2637 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2638 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2639 	}
   2640 
   2641 	sc->sc_txcfg |= TXCFG_ATP |
   2642 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2643 	    sc->sc_tx_drain_thresh;
   2644 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2645 
   2646 	/*
   2647 	 * Initialize the receive drain threshold if we have never
   2648 	 * done so.
   2649 	 */
   2650 	if (sc->sc_rx_drain_thresh == 0) {
   2651 		/*
   2652 		 * XXX This value should be tuned.  This is set to the
   2653 		 * maximum of 248 bytes, and we may be able to improve
   2654 		 * performance by decreasing it (although we should never
   2655 		 * set this value lower than 2; 14 bytes are required to
   2656 		 * filter the packet).
   2657 		 */
   2658 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2659 	}
   2660 
   2661 	/*
   2662 	 * Initialize the prototype RXCFG register.
   2663 	 */
   2664 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2665 	/*
   2666 	 * Accept long packets (including FCS) so we can handle
   2667 	 * 802.1q-tagged frames and jumbo frames properly.
   2668 	 */
   2669 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2670 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2671 		sc->sc_rxcfg |= RXCFG_ALP;
   2672 
   2673 	/*
   2674 	 * Checksum offloading is disabled if the user selects an MTU
   2675 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2676 	 * evidence that >8109 does not work on some boards, such as the
   2677 	 * Planex GN-1000TE).
   2678 	 */
   2679 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2680 	    (ifp->if_capenable &
   2681 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2682 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2683 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2684 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2685 		       "disabled.\n", sc->sc_dev.dv_xname);
   2686 		ifp->if_capenable &=
   2687 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2688 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2689 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2690 		ifp->if_csum_flags_tx = 0;
   2691 		ifp->if_csum_flags_rx = 0;
   2692 	}
   2693 
   2694 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2695 
   2696 	if (sc->sc_gigabit)
   2697 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2698 
   2699 	/*
   2700 	 * Give the transmit and receive rings to the chip.
   2701 	 */
   2702 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2703 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2704 
   2705 	/*
   2706 	 * Initialize the interrupt mask.
   2707 	 */
   2708 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2709 	             sc->sc_bits.b_isr_sserr |
   2710 		     sc->sc_bits.b_isr_rmabt |
   2711 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2712 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2713 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2714 
   2715 	/* Set up the receive filter. */
   2716 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2717 
   2718 	/*
   2719 	 * Tune sc_rx_flow_thresh.
   2720 	 * XXX "More than 8KB" is too short for jumbo frames.
   2721 	 * XXX TODO: Threshold value should be user-settable.
   2722 	 */
   2723 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2724 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2725 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2726 
   2727 	/*
   2728 	 * Set the current media.  Do this after initializing the prototype
   2729 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2730 	 * control.
   2731 	 */
   2732 	mii_mediachg(&sc->sc_mii);
   2733 
   2734 	/*
   2735 	 * Set the interrupt hold-off timer to 100us.
   2736 	 */
   2737 	if (sc->sc_gigabit)
   2738 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2739 
   2740 	/*
   2741 	 * Enable interrupts.
   2742 	 */
   2743 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2744 
   2745 	/*
   2746 	 * Start the transmit and receive processes.
   2747 	 */
   2748 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2749 
   2750 	/*
   2751 	 * Start the one second MII clock.
   2752 	 */
   2753 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2754 
   2755 	/*
   2756 	 * ...all done!
   2757 	 */
   2758 	ifp->if_flags |= IFF_RUNNING;
   2759 	ifp->if_flags &= ~IFF_OACTIVE;
   2760 	sc->sc_if_flags = ifp->if_flags;
   2761 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2762 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2763 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2764 
   2765  out:
   2766 	if (error)
   2767 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2768 	return (error);
   2769 }
   2770 
   2771 /*
   2772  * sip_drain:
   2773  *
   2774  *	Drain the receive queue.
   2775  */
   2776 static void
   2777 sipcom_rxdrain(struct sip_softc *sc)
   2778 {
   2779 	struct sip_rxsoft *rxs;
   2780 	int i;
   2781 
   2782 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2783 		rxs = &sc->sc_rxsoft[i];
   2784 		if (rxs->rxs_mbuf != NULL) {
   2785 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2786 			m_freem(rxs->rxs_mbuf);
   2787 			rxs->rxs_mbuf = NULL;
   2788 		}
   2789 	}
   2790 }
   2791 
   2792 /*
   2793  * sip_stop:		[ ifnet interface function ]
   2794  *
   2795  *	Stop transmission on the interface.
   2796  */
   2797 static void
   2798 sipcom_stop(struct ifnet *ifp, int disable)
   2799 {
   2800 	struct sip_softc *sc = ifp->if_softc;
   2801 	bus_space_tag_t st = sc->sc_st;
   2802 	bus_space_handle_t sh = sc->sc_sh;
   2803 	struct sip_txsoft *txs;
   2804 	u_int32_t cmdsts = 0;		/* DEBUG */
   2805 
   2806 	/*
   2807 	 * Stop the one second clock.
   2808 	 */
   2809 	callout_stop(&sc->sc_tick_ch);
   2810 
   2811 	/* Down the MII. */
   2812 	mii_down(&sc->sc_mii);
   2813 
   2814 	/*
   2815 	 * Disable interrupts.
   2816 	 */
   2817 	bus_space_write_4(st, sh, SIP_IER, 0);
   2818 
   2819 	/*
   2820 	 * Stop receiver and transmitter.
   2821 	 */
   2822 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2823 
   2824 	/*
   2825 	 * Release any queued transmit buffers.
   2826 	 */
   2827 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2828 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2829 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2830 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2831 		     CMDSTS_INTR) == 0)
   2832 			printf("%s: sip_stop: last descriptor does not "
   2833 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2834 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2835 #ifdef DIAGNOSTIC
   2836 		if (txs->txs_mbuf == NULL) {
   2837 			printf("%s: dirty txsoft with no mbuf chain\n",
   2838 			    sc->sc_dev.dv_xname);
   2839 			panic("sip_stop");
   2840 		}
   2841 #endif
   2842 		cmdsts |=		/* DEBUG */
   2843 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2844 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2845 		m_freem(txs->txs_mbuf);
   2846 		txs->txs_mbuf = NULL;
   2847 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2848 	}
   2849 
   2850 	if (disable)
   2851 		sipcom_rxdrain(sc);
   2852 
   2853 	/*
   2854 	 * Mark the interface down and cancel the watchdog timer.
   2855 	 */
   2856 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2857 	ifp->if_timer = 0;
   2858 
   2859 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2860 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2861 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2862 		    "descriptors\n", sc->sc_dev.dv_xname);
   2863 }
   2864 
   2865 /*
   2866  * sip_read_eeprom:
   2867  *
   2868  *	Read data from the serial EEPROM.
   2869  */
   2870 static void
   2871 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2872     u_int16_t *data)
   2873 {
   2874 	bus_space_tag_t st = sc->sc_st;
   2875 	bus_space_handle_t sh = sc->sc_sh;
   2876 	u_int16_t reg;
   2877 	int i, x;
   2878 
   2879 	for (i = 0; i < wordcnt; i++) {
   2880 		/* Send CHIP SELECT. */
   2881 		reg = EROMAR_EECS;
   2882 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2883 
   2884 		/* Shift in the READ opcode. */
   2885 		for (x = 3; x > 0; x--) {
   2886 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2887 				reg |= EROMAR_EEDI;
   2888 			else
   2889 				reg &= ~EROMAR_EEDI;
   2890 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2891 			bus_space_write_4(st, sh, SIP_EROMAR,
   2892 			    reg | EROMAR_EESK);
   2893 			delay(4);
   2894 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2895 			delay(4);
   2896 		}
   2897 
   2898 		/* Shift in address. */
   2899 		for (x = 6; x > 0; x--) {
   2900 			if ((word + i) & (1 << (x - 1)))
   2901 				reg |= EROMAR_EEDI;
   2902 			else
   2903 				reg &= ~EROMAR_EEDI;
   2904 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2905 			bus_space_write_4(st, sh, SIP_EROMAR,
   2906 			    reg | EROMAR_EESK);
   2907 			delay(4);
   2908 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2909 			delay(4);
   2910 		}
   2911 
   2912 		/* Shift out data. */
   2913 		reg = EROMAR_EECS;
   2914 		data[i] = 0;
   2915 		for (x = 16; x > 0; x--) {
   2916 			bus_space_write_4(st, sh, SIP_EROMAR,
   2917 			    reg | EROMAR_EESK);
   2918 			delay(4);
   2919 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2920 				data[i] |= (1 << (x - 1));
   2921 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2922 			delay(4);
   2923 		}
   2924 
   2925 		/* Clear CHIP SELECT. */
   2926 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2927 		delay(4);
   2928 	}
   2929 }
   2930 
   2931 /*
   2932  * sipcom_add_rxbuf:
   2933  *
   2934  *	Add a receive buffer to the indicated descriptor.
   2935  */
   2936 static int
   2937 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2938 {
   2939 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2940 	struct mbuf *m;
   2941 	int error;
   2942 
   2943 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2944 	if (m == NULL)
   2945 		return (ENOBUFS);
   2946 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2947 
   2948 	MCLGET(m, M_DONTWAIT);
   2949 	if ((m->m_flags & M_EXT) == 0) {
   2950 		m_freem(m);
   2951 		return (ENOBUFS);
   2952 	}
   2953 
   2954 	/* XXX I don't believe this is necessary. --dyoung */
   2955 	if (sc->sc_gigabit)
   2956 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2957 
   2958 	if (rxs->rxs_mbuf != NULL)
   2959 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2960 
   2961 	rxs->rxs_mbuf = m;
   2962 
   2963 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2964 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2965 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2966 	if (error) {
   2967 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2968 		    sc->sc_dev.dv_xname, idx, error);
   2969 		panic("%s", __func__);		/* XXX */
   2970 	}
   2971 
   2972 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2973 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2974 
   2975 	SIP_INIT_RXDESC(sc, idx);
   2976 
   2977 	return (0);
   2978 }
   2979 
   2980 /*
   2981  * sip_sis900_set_filter:
   2982  *
   2983  *	Set up the receive filter.
   2984  */
   2985 static void
   2986 sipcom_sis900_set_filter(struct sip_softc *sc)
   2987 {
   2988 	bus_space_tag_t st = sc->sc_st;
   2989 	bus_space_handle_t sh = sc->sc_sh;
   2990 	struct ethercom *ec = &sc->sc_ethercom;
   2991 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2992 	struct ether_multi *enm;
   2993 	const u_int8_t *cp;
   2994 	struct ether_multistep step;
   2995 	u_int32_t crc, mchash[16];
   2996 
   2997 	/*
   2998 	 * Initialize the prototype RFCR.
   2999 	 */
   3000 	sc->sc_rfcr = RFCR_RFEN;
   3001 	if (ifp->if_flags & IFF_BROADCAST)
   3002 		sc->sc_rfcr |= RFCR_AAB;
   3003 	if (ifp->if_flags & IFF_PROMISC) {
   3004 		sc->sc_rfcr |= RFCR_AAP;
   3005 		goto allmulti;
   3006 	}
   3007 
   3008 	/*
   3009 	 * Set up the multicast address filter by passing all multicast
   3010 	 * addresses through a CRC generator, and then using the high-order
   3011 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3012 	 * the lower 16 bits of each 32 bit multicast hash register are
   3013 	 * valid).  The high order bits select the register, while the
   3014 	 * rest of the bits select the bit within the register.
   3015 	 */
   3016 
   3017 	memset(mchash, 0, sizeof(mchash));
   3018 
   3019 	/*
   3020 	 * SiS900 (at least SiS963) requires us to register the address of
   3021 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3022 	 */
   3023 	crc = 0x0ed423f9;
   3024 
   3025 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3026 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3027 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3028 		/* Just want the 8 most significant bits. */
   3029 		crc >>= 24;
   3030 	} else {
   3031 		/* Just want the 7 most significant bits. */
   3032 		crc >>= 25;
   3033 	}
   3034 
   3035 	/* Set the corresponding bit in the hash table. */
   3036 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3037 
   3038 	ETHER_FIRST_MULTI(step, ec, enm);
   3039 	while (enm != NULL) {
   3040 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3041 			/*
   3042 			 * We must listen to a range of multicast addresses.
   3043 			 * For now, just accept all multicasts, rather than
   3044 			 * trying to set only those filter bits needed to match
   3045 			 * the range.  (At this time, the only use of address
   3046 			 * ranges is for IP multicast routing, for which the
   3047 			 * range is big enough to require all bits set.)
   3048 			 */
   3049 			goto allmulti;
   3050 		}
   3051 
   3052 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3053 
   3054 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3055 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3056 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3057 			/* Just want the 8 most significant bits. */
   3058 			crc >>= 24;
   3059 		} else {
   3060 			/* Just want the 7 most significant bits. */
   3061 			crc >>= 25;
   3062 		}
   3063 
   3064 		/* Set the corresponding bit in the hash table. */
   3065 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3066 
   3067 		ETHER_NEXT_MULTI(step, enm);
   3068 	}
   3069 
   3070 	ifp->if_flags &= ~IFF_ALLMULTI;
   3071 	goto setit;
   3072 
   3073  allmulti:
   3074 	ifp->if_flags |= IFF_ALLMULTI;
   3075 	sc->sc_rfcr |= RFCR_AAM;
   3076 
   3077  setit:
   3078 #define	FILTER_EMIT(addr, data)						\
   3079 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3080 	delay(1);							\
   3081 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3082 	delay(1)
   3083 
   3084 	/*
   3085 	 * Disable receive filter, and program the node address.
   3086 	 */
   3087 	cp = CLLADDR(ifp->if_sadl);
   3088 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3089 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3090 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3091 
   3092 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3093 		/*
   3094 		 * Program the multicast hash table.
   3095 		 */
   3096 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3097 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3098 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3099 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3100 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3101 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3102 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3103 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3104 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3105 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3106 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3107 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3108 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3109 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3110 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3111 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3112 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3113 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3114 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3115 		}
   3116 	}
   3117 #undef FILTER_EMIT
   3118 
   3119 	/*
   3120 	 * Re-enable the receiver filter.
   3121 	 */
   3122 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3123 }
   3124 
   3125 /*
   3126  * sip_dp83815_set_filter:
   3127  *
   3128  *	Set up the receive filter.
   3129  */
   3130 static void
   3131 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3132 {
   3133 	bus_space_tag_t st = sc->sc_st;
   3134 	bus_space_handle_t sh = sc->sc_sh;
   3135 	struct ethercom *ec = &sc->sc_ethercom;
   3136 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3137 	struct ether_multi *enm;
   3138 	const u_int8_t *cp;
   3139 	struct ether_multistep step;
   3140 	u_int32_t crc, hash, slot, bit;
   3141 #define	MCHASH_NWORDS_83820	128
   3142 #define	MCHASH_NWORDS_83815	32
   3143 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3144 	u_int16_t mchash[MCHASH_NWORDS];
   3145 	int i;
   3146 
   3147 	/*
   3148 	 * Initialize the prototype RFCR.
   3149 	 * Enable the receive filter, and accept on
   3150 	 *    Perfect (destination address) Match
   3151 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3152 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3153 	 *    IFF_ALLMULTI and accept all multicast, too).
   3154 	 */
   3155 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3156 	if (ifp->if_flags & IFF_BROADCAST)
   3157 		sc->sc_rfcr |= RFCR_AAB;
   3158 	if (ifp->if_flags & IFF_PROMISC) {
   3159 		sc->sc_rfcr |= RFCR_AAP;
   3160 		goto allmulti;
   3161 	}
   3162 
   3163 	/*
   3164          * Set up the DP83820/DP83815 multicast address filter by
   3165          * passing all multicast addresses through a CRC generator,
   3166          * and then using the high-order 11/9 bits as an index into
   3167          * the 2048/512 bit multicast hash table.  The high-order
   3168          * 7/5 bits select the slot, while the low-order 4 bits
   3169          * select the bit within the slot.  Note that only the low
   3170          * 16-bits of each filter word are used, and there are
   3171          * 128/32 filter words.
   3172 	 */
   3173 
   3174 	memset(mchash, 0, sizeof(mchash));
   3175 
   3176 	ifp->if_flags &= ~IFF_ALLMULTI;
   3177 	ETHER_FIRST_MULTI(step, ec, enm);
   3178 	if (enm == NULL)
   3179 		goto setit;
   3180 	while (enm != NULL) {
   3181 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3182 			/*
   3183 			 * We must listen to a range of multicast addresses.
   3184 			 * For now, just accept all multicasts, rather than
   3185 			 * trying to set only those filter bits needed to match
   3186 			 * the range.  (At this time, the only use of address
   3187 			 * ranges is for IP multicast routing, for which the
   3188 			 * range is big enough to require all bits set.)
   3189 			 */
   3190 			goto allmulti;
   3191 		}
   3192 
   3193 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3194 
   3195 		if (sc->sc_gigabit) {
   3196 			/* Just want the 11 most significant bits. */
   3197 			hash = crc >> 21;
   3198 		} else {
   3199 			/* Just want the 9 most significant bits. */
   3200 			hash = crc >> 23;
   3201 		}
   3202 
   3203 		slot = hash >> 4;
   3204 		bit = hash & 0xf;
   3205 
   3206 		/* Set the corresponding bit in the hash table. */
   3207 		mchash[slot] |= 1 << bit;
   3208 
   3209 		ETHER_NEXT_MULTI(step, enm);
   3210 	}
   3211 	sc->sc_rfcr |= RFCR_MHEN;
   3212 	goto setit;
   3213 
   3214  allmulti:
   3215 	ifp->if_flags |= IFF_ALLMULTI;
   3216 	sc->sc_rfcr |= RFCR_AAM;
   3217 
   3218  setit:
   3219 #define	FILTER_EMIT(addr, data)						\
   3220 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3221 	delay(1);							\
   3222 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3223 	delay(1)
   3224 
   3225 	/*
   3226 	 * Disable receive filter, and program the node address.
   3227 	 */
   3228 	cp = CLLADDR(ifp->if_sadl);
   3229 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3230 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3231 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3232 
   3233 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3234 		int nwords =
   3235 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3236 		/*
   3237 		 * Program the multicast hash table.
   3238 		 */
   3239 		for (i = 0; i < nwords; i++) {
   3240 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3241 		}
   3242 	}
   3243 #undef FILTER_EMIT
   3244 #undef MCHASH_NWORDS
   3245 #undef MCHASH_NWORDS_83815
   3246 #undef MCHASH_NWORDS_83820
   3247 
   3248 	/*
   3249 	 * Re-enable the receiver filter.
   3250 	 */
   3251 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3252 }
   3253 
   3254 /*
   3255  * sip_dp83820_mii_readreg:	[mii interface function]
   3256  *
   3257  *	Read a PHY register on the MII of the DP83820.
   3258  */
   3259 static int
   3260 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
   3261 {
   3262 	struct sip_softc *sc = (void *) self;
   3263 
   3264 	if (sc->sc_cfg & CFG_TBI_EN) {
   3265 		bus_addr_t tbireg;
   3266 		int rv;
   3267 
   3268 		if (phy != 0)
   3269 			return (0);
   3270 
   3271 		switch (reg) {
   3272 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3273 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3274 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3275 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3276 		case MII_ANER:		tbireg = SIP_TANER; break;
   3277 		case MII_EXTSR:
   3278 			/*
   3279 			 * Don't even bother reading the TESR register.
   3280 			 * The manual documents that the device has
   3281 			 * 1000baseX full/half capability, but the
   3282 			 * register itself seems read back 0 on some
   3283 			 * boards.  Just hard-code the result.
   3284 			 */
   3285 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3286 
   3287 		default:
   3288 			return (0);
   3289 		}
   3290 
   3291 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3292 		if (tbireg == SIP_TBISR) {
   3293 			/* LINK and ACOMP are switched! */
   3294 			int val = rv;
   3295 
   3296 			rv = 0;
   3297 			if (val & TBISR_MR_LINK_STATUS)
   3298 				rv |= BMSR_LINK;
   3299 			if (val & TBISR_MR_AN_COMPLETE)
   3300 				rv |= BMSR_ACOMP;
   3301 
   3302 			/*
   3303 			 * The manual claims this register reads back 0
   3304 			 * on hard and soft reset.  But we want to let
   3305 			 * the gentbi driver know that we support auto-
   3306 			 * negotiation, so hard-code this bit in the
   3307 			 * result.
   3308 			 */
   3309 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3310 		}
   3311 
   3312 		return (rv);
   3313 	}
   3314 
   3315 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3316 }
   3317 
   3318 /*
   3319  * sip_dp83820_mii_writereg:	[mii interface function]
   3320  *
   3321  *	Write a PHY register on the MII of the DP83820.
   3322  */
   3323 static void
   3324 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
   3325 {
   3326 	struct sip_softc *sc = (void *) self;
   3327 
   3328 	if (sc->sc_cfg & CFG_TBI_EN) {
   3329 		bus_addr_t tbireg;
   3330 
   3331 		if (phy != 0)
   3332 			return;
   3333 
   3334 		switch (reg) {
   3335 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3336 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3337 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3338 		default:
   3339 			return;
   3340 		}
   3341 
   3342 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3343 		return;
   3344 	}
   3345 
   3346 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3347 }
   3348 
   3349 /*
   3350  * sip_dp83820_mii_statchg:	[mii interface function]
   3351  *
   3352  *	Callback from MII layer when media changes.
   3353  */
   3354 static void
   3355 sipcom_dp83820_mii_statchg(struct device *self)
   3356 {
   3357 	struct sip_softc *sc = (struct sip_softc *) self;
   3358 	struct mii_data *mii = &sc->sc_mii;
   3359 	u_int32_t cfg, pcr;
   3360 
   3361 	/*
   3362 	 * Get flow control negotiation result.
   3363 	 */
   3364 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3365 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3366 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3367 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3368 	}
   3369 
   3370 	/*
   3371 	 * Update TXCFG for full-duplex operation.
   3372 	 */
   3373 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3374 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3375 	else
   3376 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3377 
   3378 	/*
   3379 	 * Update RXCFG for full-duplex or loopback.
   3380 	 */
   3381 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3382 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3383 		sc->sc_rxcfg |= RXCFG_ATX;
   3384 	else
   3385 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3386 
   3387 	/*
   3388 	 * Update CFG for MII/GMII.
   3389 	 */
   3390 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3391 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3392 	else
   3393 		cfg = sc->sc_cfg;
   3394 
   3395 	/*
   3396 	 * 802.3x flow control.
   3397 	 */
   3398 	pcr = 0;
   3399 	if (sc->sc_flowflags & IFM_FLOW) {
   3400 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3401 			pcr |= sc->sc_rx_flow_thresh;
   3402 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3403 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3404 	}
   3405 
   3406 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3407 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3408 	    sc->sc_txcfg);
   3409 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3410 	    sc->sc_rxcfg);
   3411 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3412 }
   3413 
   3414 /*
   3415  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3416  *
   3417  *	Read the MII serial port for the MII bit-bang module.
   3418  */
   3419 static u_int32_t
   3420 sipcom_mii_bitbang_read(struct device *self)
   3421 {
   3422 	struct sip_softc *sc = (void *) self;
   3423 
   3424 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3425 }
   3426 
   3427 /*
   3428  * sip_mii_bitbang_write: [mii big-bang interface function]
   3429  *
   3430  *	Write the MII serial port for the MII bit-bang module.
   3431  */
   3432 static void
   3433 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
   3434 {
   3435 	struct sip_softc *sc = (void *) self;
   3436 
   3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3438 }
   3439 
   3440 /*
   3441  * sip_sis900_mii_readreg:	[mii interface function]
   3442  *
   3443  *	Read a PHY register on the MII.
   3444  */
   3445 static int
   3446 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
   3447 {
   3448 	struct sip_softc *sc = (struct sip_softc *) self;
   3449 	u_int32_t enphy;
   3450 
   3451 	/*
   3452 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3453 	 * operations.
   3454 	 */
   3455 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3456 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3457 		    phy, reg);
   3458 
   3459 #ifndef SIS900_MII_RESTRICT
   3460 	/*
   3461 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3462 	 * MII address 0.
   3463 	 */
   3464 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3465 		return (0);
   3466 #endif
   3467 
   3468 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3469 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3470 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3471 	do {
   3472 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3473 	} while (enphy & ENPHY_ACCESS);
   3474 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3475 }
   3476 
   3477 /*
   3478  * sip_sis900_mii_writereg:	[mii interface function]
   3479  *
   3480  *	Write a PHY register on the MII.
   3481  */
   3482 static void
   3483 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
   3484 {
   3485 	struct sip_softc *sc = (struct sip_softc *) self;
   3486 	u_int32_t enphy;
   3487 
   3488 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3489 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3490 		    phy, reg, val);
   3491 		return;
   3492 	}
   3493 
   3494 #ifndef SIS900_MII_RESTRICT
   3495 	/*
   3496 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3497 	 * MII address 0.
   3498 	 */
   3499 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3500 		return;
   3501 #endif
   3502 
   3503 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3504 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3505 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3506 	do {
   3507 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3508 	} while (enphy & ENPHY_ACCESS);
   3509 }
   3510 
   3511 /*
   3512  * sip_sis900_mii_statchg:	[mii interface function]
   3513  *
   3514  *	Callback from MII layer when media changes.
   3515  */
   3516 static void
   3517 sipcom_sis900_mii_statchg(struct device *self)
   3518 {
   3519 	struct sip_softc *sc = (struct sip_softc *) self;
   3520 	struct mii_data *mii = &sc->sc_mii;
   3521 	u_int32_t flowctl;
   3522 
   3523 	/*
   3524 	 * Get flow control negotiation result.
   3525 	 */
   3526 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3527 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3528 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3529 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3530 	}
   3531 
   3532 	/*
   3533 	 * Update TXCFG for full-duplex operation.
   3534 	 */
   3535 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3536 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3537 	else
   3538 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3539 
   3540 	/*
   3541 	 * Update RXCFG for full-duplex or loopback.
   3542 	 */
   3543 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3544 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3545 		sc->sc_rxcfg |= RXCFG_ATX;
   3546 	else
   3547 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3548 
   3549 	/*
   3550 	 * Update IMR for use of 802.3x flow control.
   3551 	 */
   3552 	if (sc->sc_flowflags & IFM_FLOW) {
   3553 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3554 		flowctl = FLOWCTL_FLOWEN;
   3555 	} else {
   3556 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3557 		flowctl = 0;
   3558 	}
   3559 
   3560 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3561 	    sc->sc_txcfg);
   3562 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3563 	    sc->sc_rxcfg);
   3564 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3565 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3566 }
   3567 
   3568 /*
   3569  * sip_dp83815_mii_readreg:	[mii interface function]
   3570  *
   3571  *	Read a PHY register on the MII.
   3572  */
   3573 static int
   3574 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
   3575 {
   3576 	struct sip_softc *sc = (struct sip_softc *) self;
   3577 	u_int32_t val;
   3578 
   3579 	/*
   3580 	 * The DP83815 only has an internal PHY.  Only allow
   3581 	 * MII address 0.
   3582 	 */
   3583 	if (phy != 0)
   3584 		return (0);
   3585 
   3586 	/*
   3587 	 * Apparently, after a reset, the DP83815 can take a while
   3588 	 * to respond.  During this recovery period, the BMSR returns
   3589 	 * a value of 0.  Catch this -- it's not supposed to happen
   3590 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3591 	 * PHY to come back to life.
   3592 	 *
   3593 	 * This works out because the BMSR is the first register
   3594 	 * read during the PHY probe process.
   3595 	 */
   3596 	do {
   3597 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3598 	} while (reg == MII_BMSR && val == 0);
   3599 
   3600 	return (val & 0xffff);
   3601 }
   3602 
   3603 /*
   3604  * sip_dp83815_mii_writereg:	[mii interface function]
   3605  *
   3606  *	Write a PHY register to the MII.
   3607  */
   3608 static void
   3609 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
   3610 {
   3611 	struct sip_softc *sc = (struct sip_softc *) self;
   3612 
   3613 	/*
   3614 	 * The DP83815 only has an internal PHY.  Only allow
   3615 	 * MII address 0.
   3616 	 */
   3617 	if (phy != 0)
   3618 		return;
   3619 
   3620 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3621 }
   3622 
   3623 /*
   3624  * sip_dp83815_mii_statchg:	[mii interface function]
   3625  *
   3626  *	Callback from MII layer when media changes.
   3627  */
   3628 static void
   3629 sipcom_dp83815_mii_statchg(struct device *self)
   3630 {
   3631 	struct sip_softc *sc = (struct sip_softc *) self;
   3632 
   3633 	/*
   3634 	 * Update TXCFG for full-duplex operation.
   3635 	 */
   3636 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3637 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3638 	else
   3639 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3640 
   3641 	/*
   3642 	 * Update RXCFG for full-duplex or loopback.
   3643 	 */
   3644 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3645 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3646 		sc->sc_rxcfg |= RXCFG_ATX;
   3647 	else
   3648 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3649 
   3650 	/*
   3651 	 * XXX 802.3x flow control.
   3652 	 */
   3653 
   3654 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3655 	    sc->sc_txcfg);
   3656 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3657 	    sc->sc_rxcfg);
   3658 
   3659 	/*
   3660 	 * Some DP83815s experience problems when used with short
   3661 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3662 	 * sequence adjusts the DSP's signal attenuation to fix the
   3663 	 * problem.
   3664 	 */
   3665 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3666 		uint32_t reg;
   3667 
   3668 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3669 
   3670 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3671 		reg &= 0x0fff;
   3672 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3673 		delay(100);
   3674 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3675 		reg &= 0x00ff;
   3676 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3677 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3678 			    0x00e8);
   3679 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3680 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3681 			    reg | 0x20);
   3682 		}
   3683 
   3684 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3685 	}
   3686 }
   3687 
   3688 static void
   3689 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3690     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3691 {
   3692 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3693 	u_int8_t cksum, *e, match;
   3694 	int i;
   3695 
   3696 	/*
   3697 	 * EEPROM data format for the DP83820 can be found in
   3698 	 * the DP83820 manual, section 4.2.4.
   3699 	 */
   3700 
   3701 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3702 
   3703 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3704 	match = ~(match - 1);
   3705 
   3706 	cksum = 0x55;
   3707 	e = (u_int8_t *) eeprom_data;
   3708 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3709 		cksum += *e++;
   3710 
   3711 	if (cksum != match)
   3712 		printf("%s: Checksum (%x) mismatch (%x)",
   3713 		    sc->sc_dev.dv_xname, cksum, match);
   3714 
   3715 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3716 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3717 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3718 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3719 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3720 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3721 }
   3722 
   3723 static void
   3724 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3725 {
   3726 	int i;
   3727 
   3728 	/*
   3729 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3730 	 * a reason, but I don't know it.
   3731 	 */
   3732 	for (i = 0; i < 10; i++)
   3733 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3734 }
   3735 
   3736 static void
   3737 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3738     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3739 {
   3740 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3741 
   3742 	switch (sc->sc_rev) {
   3743 	case SIS_REV_630S:
   3744 	case SIS_REV_630E:
   3745 	case SIS_REV_630EA1:
   3746 	case SIS_REV_630ET:
   3747 	case SIS_REV_635:
   3748 		/*
   3749 		 * The MAC address for the on-board Ethernet of
   3750 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3751 		 * the chip into re-loading it from NVRAM, and
   3752 		 * read the MAC address out of the filter registers.
   3753 		 */
   3754 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3755 
   3756 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3757 		    RFCR_RFADDR_NODE0);
   3758 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3759 		    0xffff;
   3760 
   3761 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3762 		    RFCR_RFADDR_NODE2);
   3763 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3764 		    0xffff;
   3765 
   3766 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3767 		    RFCR_RFADDR_NODE4);
   3768 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3769 		    0xffff;
   3770 		break;
   3771 
   3772 	case SIS_REV_960:
   3773 		{
   3774 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3775 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3776 
   3777 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3778 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3779 
   3780 			int waittime, i;
   3781 
   3782 			/* Allow to read EEPROM from LAN. It is shared
   3783 			 * between a 1394 controller and the NIC and each
   3784 			 * time we access it, we need to set SIS_EECMD_REQ.
   3785 			 */
   3786 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3787 
   3788 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3789 				/* Force EEPROM to idle state. */
   3790 
   3791 				/*
   3792 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3793 				 */
   3794 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3795 				sipcom_sis900_eeprom_delay(sc);
   3796 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3797 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3798 					sipcom_sis900_eeprom_delay(sc);
   3799 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3800 					sipcom_sis900_eeprom_delay(sc);
   3801 				}
   3802 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3803 				sipcom_sis900_eeprom_delay(sc);
   3804 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3805 
   3806 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3807 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3808 					    sizeof(myea) / sizeof(myea[0]), myea);
   3809 					break;
   3810 				}
   3811 				DELAY(1);
   3812 			}
   3813 
   3814 			/*
   3815 			 * Set SIS_EECTL_CLK to high, so a other master
   3816 			 * can operate on the i2c bus.
   3817 			 */
   3818 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3819 
   3820 			/* Refuse EEPROM access by LAN */
   3821 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3822 		} break;
   3823 
   3824 	default:
   3825 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3826 		    sizeof(myea) / sizeof(myea[0]), myea);
   3827 	}
   3828 
   3829 	enaddr[0] = myea[0] & 0xff;
   3830 	enaddr[1] = myea[0] >> 8;
   3831 	enaddr[2] = myea[1] & 0xff;
   3832 	enaddr[3] = myea[1] >> 8;
   3833 	enaddr[4] = myea[2] & 0xff;
   3834 	enaddr[5] = myea[2] >> 8;
   3835 }
   3836 
   3837 /* Table and macro to bit-reverse an octet. */
   3838 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3839 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3840 
   3841 static void
   3842 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3843     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3844 {
   3845 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3846 	u_int8_t cksum, *e, match;
   3847 	int i;
   3848 
   3849 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3850 	    sizeof(eeprom_data[0]), eeprom_data);
   3851 
   3852 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3853 	match = ~(match - 1);
   3854 
   3855 	cksum = 0x55;
   3856 	e = (u_int8_t *) eeprom_data;
   3857 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3858 		cksum += *e++;
   3859 	}
   3860 	if (cksum != match) {
   3861 		printf("%s: Checksum (%x) mismatch (%x)",
   3862 		    sc->sc_dev.dv_xname, cksum, match);
   3863 	}
   3864 
   3865 	/*
   3866 	 * Unrolled because it makes slightly more sense this way.
   3867 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3868 	 * through bit 15 of word 8.
   3869 	 */
   3870 	ea = &eeprom_data[6];
   3871 	enaddr[0] = ((*ea & 0x1) << 7);
   3872 	ea++;
   3873 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3874 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3875 	enaddr[2] = ((*ea & 0x1) << 7);
   3876 	ea++;
   3877 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3878 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3879 	enaddr[4] = ((*ea & 0x1) << 7);
   3880 	ea++;
   3881 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3882 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3883 
   3884 	/*
   3885 	 * In case that's not weird enough, we also need to reverse
   3886 	 * the bits in each byte.  This all actually makes more sense
   3887 	 * if you think about the EEPROM storage as an array of bits
   3888 	 * being shifted into bytes, but that's not how we're looking
   3889 	 * at it here...
   3890 	 */
   3891 	for (i = 0; i < 6 ;i++)
   3892 		enaddr[i] = bbr(enaddr[i]);
   3893 }
   3894 
   3895 /*
   3896  * sip_mediastatus:	[ifmedia interface function]
   3897  *
   3898  *	Get the current interface media status.
   3899  */
   3900 static void
   3901 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3902 {
   3903 	struct sip_softc *sc = ifp->if_softc;
   3904 
   3905 	mii_pollstat(&sc->sc_mii);
   3906 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3907 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3908 			   sc->sc_flowflags;
   3909 }
   3910 
   3911 /*
   3912  * sip_mediachange:	[ifmedia interface function]
   3913  *
   3914  *	Set hardware to newly-selected media.
   3915  */
   3916 static int
   3917 sipcom_mediachange(struct ifnet *ifp)
   3918 {
   3919 	struct sip_softc *sc = ifp->if_softc;
   3920 
   3921 	if (ifp->if_flags & IFF_UP)
   3922 		mii_mediachg(&sc->sc_mii);
   3923 	return (0);
   3924 }
   3925