if_sip.c revision 1.122 1 /* $NetBSD: if_sip.c,v 1.122 2007/12/15 21:51:45 he Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.122 2007/12/15 21:51:45 he Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 /*
130 * Transmit descriptor list size. This is arbitrary, but allocate
131 * enough descriptors for 128 pending transmissions, and 8 segments
132 * per packet (64 for DP83820 for jumbo frames).
133 *
134 * This MUST work out to a power of 2.
135 */
136 #define GSIP_NTXSEGS_ALLOC 16
137 #define SIP_NTXSEGS_ALLOC 8
138
139 #define SIP_TXQUEUELEN 256
140 #define MAX_SIP_NTXDESC \
141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer per incoming
145 * packet, so this logic is a little simpler.
146 *
147 * Actually, on the DP83820, we allow the packet to consume more than
148 * one buffer, in order to support jumbo Ethernet frames. In that
149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
151 * so we'd better be quick about handling receive interrupts.
152 */
153 #define GSIP_NRXDESC 256
154 #define SIP_NRXDESC 128
155
156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
157
158 /*
159 * Control structures are DMA'd to the SiS900 chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct sip_control_data {
164 /*
165 * The transmit descriptors.
166 */
167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168
169 /*
170 * The receive descriptors.
171 */
172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174
175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct sip_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191
192 /*
193 * Software state for receive jobs.
194 */
195 struct sip_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 enum sip_attach_stage {
201 SIP_ATTACH_FIN = 0
202 , SIP_ATTACH_CREATE_RXMAP
203 , SIP_ATTACH_CREATE_TXMAP
204 , SIP_ATTACH_LOAD_MAP
205 , SIP_ATTACH_CREATE_MAP
206 , SIP_ATTACH_MAP_MEM
207 , SIP_ATTACH_ALLOC_MEM
208 , SIP_ATTACH_INTR
209 , SIP_ATTACH_MAP
210 };
211
212 /*
213 * Software state per device.
214 */
215 struct sip_softc {
216 struct device sc_dev; /* generic device information */
217 bus_space_tag_t sc_st; /* bus space tag */
218 bus_space_handle_t sc_sh; /* bus space handle */
219 bus_size_t sc_sz; /* bus space size */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 pci_chipset_tag_t sc_pc;
222 bus_dma_segment_t sc_seg;
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_gigabit; /* 1: 83820, 0: other */
228 int sc_rev; /* chip revision */
229
230 void *sc_ih; /* interrupt cookie */
231
232 struct mii_data sc_mii; /* MII/media information */
233
234 callout_t sc_tick_ch; /* tick callout */
235
236 bus_dmamap_t sc_cddmamap; /* control data DMA map */
237 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
238
239 /*
240 * Software state for transmit and receive descriptors.
241 */
242 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
243 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
244
245 /*
246 * Control data structures.
247 */
248 struct sip_control_data *sc_control_data;
249 #define sc_txdescs sc_control_data->scd_txdescs
250 #define sc_rxdescs sc_control_data->scd_rxdescs
251
252 #ifdef SIP_EVENT_COUNTERS
253 /*
254 * Event counters.
255 */
256 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
257 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
258 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
259 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
260 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
261 struct evcnt sc_ev_rxintr; /* Rx interrupts */
262 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
263 struct evcnt sc_ev_rxpause; /* PAUSE received */
264 /* DP83820 only */
265 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* SIP_EVENT_COUNTERS */
273
274 u_int32_t sc_txcfg; /* prototype TXCFG register */
275 u_int32_t sc_rxcfg; /* prototype RXCFG register */
276 u_int32_t sc_imr; /* prototype IMR register */
277 u_int32_t sc_rfcr; /* prototype RFCR register */
278
279 u_int32_t sc_cfg; /* prototype CFG register */
280
281 u_int32_t sc_gpior; /* prototype GPIOR register */
282
283 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
284 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
285
286 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
287
288 int sc_flowflags; /* 802.3x flow control flags */
289 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
290 int sc_paused; /* paused indication */
291
292 int sc_txfree; /* number of free Tx descriptors */
293 int sc_txnext; /* next ready Tx descriptor */
294 int sc_txwin; /* Tx descriptors since last intr */
295
296 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
297 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
298
299 /* values of interface state at last init */
300 struct {
301 /* if_capenable */
302 uint64_t if_capenable;
303 /* ec_capenable */
304 int ec_capenable;
305 /* VLAN_ATTACHED */
306 int is_vlan;
307 } sc_prev;
308
309 short sc_if_flags;
310
311 int sc_rxptr; /* next ready Rx descriptor/descsoft */
312 int sc_rxdiscard;
313 int sc_rxlen;
314 struct mbuf *sc_rxhead;
315 struct mbuf *sc_rxtail;
316 struct mbuf **sc_rxtailp;
317
318 int sc_ntxdesc;
319 int sc_ntxdesc_mask;
320
321 int sc_nrxdesc_mask;
322
323 const struct sip_parm {
324 const struct sip_regs {
325 int r_rxcfg;
326 int r_txcfg;
327 } p_regs;
328
329 const struct sip_bits {
330 uint32_t b_txcfg_mxdma_8;
331 uint32_t b_txcfg_mxdma_16;
332 uint32_t b_txcfg_mxdma_32;
333 uint32_t b_txcfg_mxdma_64;
334 uint32_t b_txcfg_mxdma_128;
335 uint32_t b_txcfg_mxdma_256;
336 uint32_t b_txcfg_mxdma_512;
337 uint32_t b_txcfg_flth_mask;
338 uint32_t b_txcfg_drth_mask;
339
340 uint32_t b_rxcfg_mxdma_8;
341 uint32_t b_rxcfg_mxdma_16;
342 uint32_t b_rxcfg_mxdma_32;
343 uint32_t b_rxcfg_mxdma_64;
344 uint32_t b_rxcfg_mxdma_128;
345 uint32_t b_rxcfg_mxdma_256;
346 uint32_t b_rxcfg_mxdma_512;
347
348 uint32_t b_isr_txrcmp;
349 uint32_t b_isr_rxrcmp;
350 uint32_t b_isr_dperr;
351 uint32_t b_isr_sserr;
352 uint32_t b_isr_rmabt;
353 uint32_t b_isr_rtabt;
354
355 uint32_t b_cmdsts_size_mask;
356 } p_bits;
357 int p_filtmem;
358 int p_rxbuf_len;
359 bus_size_t p_tx_dmamap_size;
360 int p_ntxsegs;
361 int p_ntxsegs_alloc;
362 int p_nrxdesc;
363 } *sc_parm;
364
365 void (*sc_rxintr)(struct sip_softc *);
366
367 #if NRND > 0
368 rndsource_element_t rnd_source; /* random source */
369 #endif
370 };
371
372 #define sc_bits sc_parm->p_bits
373 #define sc_regs sc_parm->p_regs
374
375 static const struct sip_parm sip_parm = {
376 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
377 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
378 , .p_tx_dmamap_size = MCLBYTES
379 , .p_ntxsegs = 16
380 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
381 , .p_nrxdesc = SIP_NRXDESC
382 , .p_bits = {
383 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
384 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
385 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
386 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
387 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
388 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
389 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
390 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
391 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
392
393 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
394 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
395 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
396 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
397 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
398 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
399 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
400
401 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
402 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
403 , .b_isr_dperr = 0x00800000 /* detected parity error */
404 , .b_isr_sserr = 0x00400000 /* signalled system error */
405 , .b_isr_rmabt = 0x00200000 /* received master abort */
406 , .b_isr_rtabt = 0x00100000 /* received target abort */
407 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
408 }
409 , .p_regs = {
410 .r_rxcfg = OTHER_SIP_RXCFG,
411 .r_txcfg = OTHER_SIP_TXCFG
412 }
413 }, gsip_parm = {
414 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
415 , .p_rxbuf_len = MCLBYTES - 8
416 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
417 , .p_ntxsegs = 64
418 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
419 , .p_nrxdesc = GSIP_NRXDESC
420 , .p_bits = {
421 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
422 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
423 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
424 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
425 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
426 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
427 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
428 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
429 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
430
431 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
432 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
433 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
434 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
435 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
436 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
437 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
438
439 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
440 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
441 , .b_isr_dperr = 0x00100000 /* detected parity error */
442 , .b_isr_sserr = 0x00080000 /* signalled system error */
443 , .b_isr_rmabt = 0x00040000 /* received master abort */
444 , .b_isr_rtabt = 0x00020000 /* received target abort */
445 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
446 }
447 , .p_regs = {
448 .r_rxcfg = DP83820_SIP_RXCFG,
449 .r_txcfg = DP83820_SIP_TXCFG
450 }
451 };
452
453 static inline int
454 sip_nexttx(const struct sip_softc *sc, int x)
455 {
456 return (x + 1) & sc->sc_ntxdesc_mask;
457 }
458
459 static inline int
460 sip_nextrx(const struct sip_softc *sc, int x)
461 {
462 return (x + 1) & sc->sc_nrxdesc_mask;
463 }
464
465 /* 83820 only */
466 #define SIP_RXCHAIN_RESET(sc) \
467 do { \
468 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
469 *(sc)->sc_rxtailp = NULL; \
470 (sc)->sc_rxlen = 0; \
471 } while (/*CONSTCOND*/0)
472
473 /* 83820 only */
474 #define SIP_RXCHAIN_LINK(sc, m) \
475 do { \
476 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
477 (sc)->sc_rxtailp = &(m)->m_next; \
478 } while (/*CONSTCOND*/0)
479
480 #ifdef SIP_EVENT_COUNTERS
481 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
482 #else
483 #define SIP_EVCNT_INCR(ev) /* nothing */
484 #endif
485
486 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
487 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
488
489 #define SIP_CDTXSYNC(sc, x, n, ops) \
490 do { \
491 int __x, __n; \
492 \
493 __x = (x); \
494 __n = (n); \
495 \
496 /* If it will wrap around, sync to the end of the ring. */ \
497 if ((__x + __n) > sc->sc_ntxdesc) { \
498 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
499 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
500 (sc->sc_ntxdesc - __x), (ops)); \
501 __n -= (sc->sc_ntxdesc - __x); \
502 __x = 0; \
503 } \
504 \
505 /* Now sync whatever is left. */ \
506 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
507 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
508 } while (0)
509
510 #define SIP_CDRXSYNC(sc, x, ops) \
511 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
512 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
513
514 #if 0
515 #ifdef DP83820
516 u_int32_t sipd_bufptr; /* pointer to DMA segment */
517 u_int32_t sipd_cmdsts; /* command/status word */
518 #else
519 u_int32_t sipd_cmdsts; /* command/status word */
520 u_int32_t sipd_bufptr; /* pointer to DMA segment */
521 #endif /* DP83820 */
522 #endif /* 0 */
523
524 static inline volatile uint32_t *
525 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
526 {
527 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
528 }
529
530 static inline volatile uint32_t *
531 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
532 {
533 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
534 }
535
536 static inline void
537 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
538 {
539 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
540 struct sip_desc *sipd = &sc->sc_rxdescs[x];
541
542 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
543 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
544 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
545 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
546 sipd->sipd_extsts = 0;
547 SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
548 }
549
550 #define SIP_CHIP_VERS(sc, v, p, r) \
551 ((sc)->sc_model->sip_vendor == (v) && \
552 (sc)->sc_model->sip_product == (p) && \
553 (sc)->sc_rev == (r))
554
555 #define SIP_CHIP_MODEL(sc, v, p) \
556 ((sc)->sc_model->sip_vendor == (v) && \
557 (sc)->sc_model->sip_product == (p))
558
559 #define SIP_SIS900_REV(sc, rev) \
560 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
561
562 #define SIP_TIMEOUT 1000
563
564 static void sipcom_start(struct ifnet *);
565 static void sipcom_watchdog(struct ifnet *);
566 static int sipcom_ioctl(struct ifnet *, u_long, void *);
567 static int sipcom_init(struct ifnet *);
568 static void sipcom_stop(struct ifnet *, int);
569
570 static void sipcom_shutdown(void *);
571
572 static bool sipcom_reset(struct sip_softc *);
573 static void sipcom_rxdrain(struct sip_softc *);
574 static int sipcom_add_rxbuf(struct sip_softc *, int);
575 static void sipcom_read_eeprom(struct sip_softc *, int, int,
576 u_int16_t *);
577 static void sipcom_tick(void *);
578
579 static void sipcom_sis900_set_filter(struct sip_softc *);
580 static void sipcom_dp83815_set_filter(struct sip_softc *);
581
582 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
583 const struct pci_attach_args *, u_int8_t *);
584 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
585 static void sipcom_sis900_read_macaddr(struct sip_softc *,
586 const struct pci_attach_args *, u_int8_t *);
587 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
588 const struct pci_attach_args *, u_int8_t *);
589
590 static int sipcom_intr(void *);
591 static void sipcom_txintr(struct sip_softc *);
592 static void sip_rxintr(struct sip_softc *);
593 static void gsip_rxintr(struct sip_softc *);
594
595 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
596 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
597 static void sipcom_dp83820_mii_statchg(struct device *);
598
599 static int sipcom_sis900_mii_readreg(struct device *, int, int);
600 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
601 static void sipcom_sis900_mii_statchg(struct device *);
602
603 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
604 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
605 static void sipcom_dp83815_mii_statchg(struct device *);
606
607 static int sipcom_mediachange(struct ifnet *);
608 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
609
610 static int sipcom_match(struct device *, struct cfdata *, void *);
611 static void sipcom_attach(struct device *, struct device *, void *);
612 static void sipcom_do_detach(device_t, enum sip_attach_stage);
613 static int sipcom_detach(device_t, int);
614 static bool sipcom_resume(device_t);
615
616 static int gsip_copy_small = 0; /* XXX make non-static! */
617 #ifdef __NO_STRICT_ALIGNMENT
618 static int sip_copy_small = 0; /* XXX make non-static! */
619 #endif
620
621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
622 sipcom_match, sipcom_attach, sipcom_detach, NULL);
623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
624 sipcom_match, sipcom_attach, sipcom_detach, NULL);
625
626 /*
627 * Descriptions of the variants of the SiS900.
628 */
629 struct sip_variant {
630 int (*sipv_mii_readreg)(struct device *, int, int);
631 void (*sipv_mii_writereg)(struct device *, int, int, int);
632 void (*sipv_mii_statchg)(struct device *);
633 void (*sipv_set_filter)(struct sip_softc *);
634 void (*sipv_read_macaddr)(struct sip_softc *,
635 const struct pci_attach_args *, u_int8_t *);
636 };
637
638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
639 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
640
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
642 sipcom_mii_bitbang_read,
643 sipcom_mii_bitbang_write,
644 {
645 EROMAR_MDIO, /* MII_BIT_MDO */
646 EROMAR_MDIO, /* MII_BIT_MDI */
647 EROMAR_MDC, /* MII_BIT_MDC */
648 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
649 0, /* MII_BIT_DIR_PHY_HOST */
650 }
651 };
652
653 static const struct sip_variant sipcom_variant_dp83820 = {
654 sipcom_dp83820_mii_readreg,
655 sipcom_dp83820_mii_writereg,
656 sipcom_dp83820_mii_statchg,
657 sipcom_dp83815_set_filter,
658 sipcom_dp83820_read_macaddr,
659 };
660
661 static const struct sip_variant sipcom_variant_sis900 = {
662 sipcom_sis900_mii_readreg,
663 sipcom_sis900_mii_writereg,
664 sipcom_sis900_mii_statchg,
665 sipcom_sis900_set_filter,
666 sipcom_sis900_read_macaddr,
667 };
668
669 static const struct sip_variant sipcom_variant_dp83815 = {
670 sipcom_dp83815_mii_readreg,
671 sipcom_dp83815_mii_writereg,
672 sipcom_dp83815_mii_statchg,
673 sipcom_dp83815_set_filter,
674 sipcom_dp83815_read_macaddr,
675 };
676
677
678 /*
679 * Devices supported by this driver.
680 */
681 static const struct sip_product {
682 pci_vendor_id_t sip_vendor;
683 pci_product_id_t sip_product;
684 const char *sip_name;
685 const struct sip_variant *sip_variant;
686 int sip_gigabit;
687 } sipcom_products[] = {
688 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
689 "NatSemi DP83820 Gigabit Ethernet",
690 &sipcom_variant_dp83820, 1 },
691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
692 "SiS 900 10/100 Ethernet",
693 &sipcom_variant_sis900, 0 },
694 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
695 "SiS 7016 10/100 Ethernet",
696 &sipcom_variant_sis900, 0 },
697
698 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
699 "NatSemi DP83815 10/100 Ethernet",
700 &sipcom_variant_dp83815, 0 },
701
702 { 0, 0,
703 NULL,
704 NULL, 0 },
705 };
706
707 static const struct sip_product *
708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
709 {
710 const struct sip_product *sip;
711
712 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
713 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
714 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
715 sip->sip_gigabit == gigabit)
716 return sip;
717 }
718 return NULL;
719 }
720
721 /*
722 * I really hate stupid hardware vendors. There's a bit in the EEPROM
723 * which indicates if the card can do 64-bit data transfers. Unfortunately,
724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725 * which means we try to use 64-bit data transfers on those cards if we
726 * happen to be plugged into a 32-bit slot.
727 *
728 * What we do is use this table of cards known to be 64-bit cards. If
729 * you have a 64-bit card who's subsystem ID is not listed in this table,
730 * send the output of "pcictl dump ..." of the device to me so that your
731 * card will use the 64-bit data path when plugged into a 64-bit slot.
732 *
733 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
734 * June 30, 2002
735 */
736 static int
737 sipcom_check_64bit(const struct pci_attach_args *pa)
738 {
739 static const struct {
740 pci_vendor_id_t c64_vendor;
741 pci_product_id_t c64_product;
742 } card64[] = {
743 /* Asante GigaNIX */
744 { 0x128a, 0x0002 },
745
746 /* Accton EN1407-T, Planex GN-1000TE */
747 { 0x1113, 0x1407 },
748
749 /* Netgear GA-621 */
750 { 0x1385, 0x621a },
751
752 /* SMC EZ Card */
753 { 0x10b8, 0x9462 },
754
755 { 0, 0}
756 };
757 pcireg_t subsys;
758 int i;
759
760 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
761
762 for (i = 0; card64[i].c64_vendor != 0; i++) {
763 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
764 PCI_PRODUCT(subsys) == card64[i].c64_product)
765 return (1);
766 }
767
768 return (0);
769 }
770
771 static int
772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
773 {
774 struct pci_attach_args *pa = aux;
775
776 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
777 return 1;
778
779 return 0;
780 }
781
782 static void
783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
784 {
785 u_int32_t reg;
786 int i;
787
788 /*
789 * Cause the chip to load configuration data from the EEPROM.
790 */
791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
792 for (i = 0; i < 10000; i++) {
793 delay(10);
794 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
795 PTSCR_EELOAD_EN) == 0)
796 break;
797 }
798 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
799 PTSCR_EELOAD_EN) {
800 printf("%s: timeout loading configuration from EEPROM\n",
801 sc->sc_dev.dv_xname);
802 return;
803 }
804
805 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
806
807 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
808 if (reg & CFG_PCI64_DET) {
809 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
810 /*
811 * Check to see if this card is 64-bit. If so, enable 64-bit
812 * data transfers.
813 *
814 * We can't use the DATA64_EN bit in the EEPROM, because
815 * vendors of 32-bit cards fail to clear that bit in many
816 * cases (yet the card still detects that it's in a 64-bit
817 * slot; go figure).
818 */
819 if (sipcom_check_64bit(pa)) {
820 sc->sc_cfg |= CFG_DATA64_EN;
821 printf(", using 64-bit data transfers");
822 }
823 printf("\n");
824 }
825
826 /*
827 * XXX Need some PCI flags indicating support for
828 * XXX 64-bit addressing.
829 */
830 #if 0
831 if (reg & CFG_M64ADDR)
832 sc->sc_cfg |= CFG_M64ADDR;
833 if (reg & CFG_T64ADDR)
834 sc->sc_cfg |= CFG_T64ADDR;
835 #endif
836
837 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
838 const char *sep = "";
839 printf("%s: using ", sc->sc_dev.dv_xname);
840 if (reg & CFG_EXT_125) {
841 sc->sc_cfg |= CFG_EXT_125;
842 printf("%s125MHz clock", sep);
843 sep = ", ";
844 }
845 if (reg & CFG_TBI_EN) {
846 sc->sc_cfg |= CFG_TBI_EN;
847 printf("%sten-bit interface", sep);
848 sep = ", ";
849 }
850 printf("\n");
851 }
852 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
853 (reg & CFG_MRM_DIS) != 0)
854 sc->sc_cfg |= CFG_MRM_DIS;
855 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
856 (reg & CFG_MWI_DIS) != 0)
857 sc->sc_cfg |= CFG_MWI_DIS;
858
859 /*
860 * Use the extended descriptor format on the DP83820. This
861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
862 * checksumming.
863 */
864 sc->sc_cfg |= CFG_EXTSTS_EN;
865 }
866
867 static int
868 sipcom_detach(device_t self, int flags)
869 {
870 int s;
871
872 s = splnet();
873 sipcom_do_detach(self, SIP_ATTACH_FIN);
874 splx(s);
875
876 return 0;
877 }
878
879 static void
880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
881 {
882 int i;
883 struct sip_softc *sc = device_private(self);
884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885
886 /*
887 * Free any resources we've allocated during attach.
888 * Do this in reverse order and fall through.
889 */
890 switch (stage) {
891 case SIP_ATTACH_FIN:
892 sipcom_stop(ifp, 1);
893 pmf_device_deregister(self);
894 #ifdef SIP_EVENT_COUNTERS
895 /*
896 * Attach event counters.
897 */
898 evcnt_detach(&sc->sc_ev_txforceintr);
899 evcnt_detach(&sc->sc_ev_txdstall);
900 evcnt_detach(&sc->sc_ev_txsstall);
901 evcnt_detach(&sc->sc_ev_hiberr);
902 evcnt_detach(&sc->sc_ev_rxintr);
903 evcnt_detach(&sc->sc_ev_txiintr);
904 evcnt_detach(&sc->sc_ev_txdintr);
905 if (!sc->sc_gigabit) {
906 evcnt_detach(&sc->sc_ev_rxpause);
907 } else {
908 evcnt_detach(&sc->sc_ev_txudpsum);
909 evcnt_detach(&sc->sc_ev_txtcpsum);
910 evcnt_detach(&sc->sc_ev_txipsum);
911 evcnt_detach(&sc->sc_ev_rxudpsum);
912 evcnt_detach(&sc->sc_ev_rxtcpsum);
913 evcnt_detach(&sc->sc_ev_rxipsum);
914 evcnt_detach(&sc->sc_ev_txpause);
915 evcnt_detach(&sc->sc_ev_rxpause);
916 }
917 #endif /* SIP_EVENT_COUNTERS */
918
919 #if NRND > 0
920 rnd_detach_source(&sc->rnd_source);
921 #endif
922
923 ether_ifdetach(ifp);
924 if_detach(ifp);
925 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
926
927 if (sc->sc_sdhook != NULL)
928 shutdownhook_disestablish(sc->sc_sdhook);
929
930 /*FALLTHROUGH*/
931 case SIP_ATTACH_CREATE_RXMAP:
932 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
933 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
934 bus_dmamap_destroy(sc->sc_dmat,
935 sc->sc_rxsoft[i].rxs_dmamap);
936 }
937 /*FALLTHROUGH*/
938 case SIP_ATTACH_CREATE_TXMAP:
939 for (i = 0; i < SIP_TXQUEUELEN; i++) {
940 if (sc->sc_txsoft[i].txs_dmamap != NULL)
941 bus_dmamap_destroy(sc->sc_dmat,
942 sc->sc_txsoft[i].txs_dmamap);
943 }
944 /*FALLTHROUGH*/
945 case SIP_ATTACH_LOAD_MAP:
946 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
947 /*FALLTHROUGH*/
948 case SIP_ATTACH_CREATE_MAP:
949 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
950 /*FALLTHROUGH*/
951 case SIP_ATTACH_MAP_MEM:
952 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
953 sizeof(struct sip_control_data));
954 /*FALLTHROUGH*/
955 case SIP_ATTACH_ALLOC_MEM:
956 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
957 /* FALLTHROUGH*/
958 case SIP_ATTACH_INTR:
959 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
960 /* FALLTHROUGH*/
961 case SIP_ATTACH_MAP:
962 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
963 break;
964 default:
965 break;
966 }
967 return;
968 }
969
970 static bool
971 sipcom_resume(device_t self)
972 {
973 struct sip_softc *sc = device_private(self);
974
975 return sipcom_reset(sc);
976 }
977
978 static void
979 sipcom_attach(device_t parent, device_t self, void *aux)
980 {
981 struct sip_softc *sc = (struct sip_softc *) self;
982 struct pci_attach_args *pa = aux;
983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 pci_chipset_tag_t pc = pa->pa_pc;
985 pci_intr_handle_t ih;
986 const char *intrstr = NULL;
987 bus_space_tag_t iot, memt;
988 bus_space_handle_t ioh, memh;
989 bus_size_t iosz, memsz;
990 int ioh_valid, memh_valid;
991 int i, rseg, error;
992 const struct sip_product *sip;
993 u_int8_t enaddr[ETHER_ADDR_LEN];
994 pcireg_t pmreg;
995 pcireg_t memtype;
996 bus_size_t tx_dmamap_size;
997 int ntxsegs_alloc;
998 cfdata_t cf = device_cfdata(self);
999
1000 callout_init(&sc->sc_tick_ch, 0);
1001
1002 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1003 if (sip == NULL) {
1004 printf("\n");
1005 panic("%s: impossible", __func__);
1006 }
1007 sc->sc_gigabit = sip->sip_gigabit;
1008
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 printf("%s: unable to map device registers\n",
1074 sc->sc_dev.dv_xname);
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 pmreg | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1092 NULL)) && error != EOPNOTSUPP) {
1093 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1094 error);
1095 return;
1096 }
1097
1098 /*
1099 * Map and establish our interrupt.
1100 */
1101 if (pci_intr_map(pa, &ih)) {
1102 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1103 return;
1104 }
1105 intrstr = pci_intr_string(pc, ih);
1106 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1107 if (sc->sc_ih == NULL) {
1108 printf("%s: unable to establish interrupt",
1109 sc->sc_dev.dv_xname);
1110 if (intrstr != NULL)
1111 printf(" at %s", intrstr);
1112 printf("\n");
1113 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1114 }
1115 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1116
1117 SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119
1120 /*
1121 * Allocate the control data structures, and create and load the
1122 * DMA map for it.
1123 */
1124 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1125 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1126 &rseg, 0)) != 0) {
1127 printf("%s: unable to allocate control data, error = %d\n",
1128 sc->sc_dev.dv_xname, error);
1129 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1135 printf("%s: unable to map control data, error = %d\n",
1136 sc->sc_dev.dv_xname, error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 printf("%s: unable to create control data DMA map, "
1144 "error = %d\n", sc->sc_dev.dv_xname, error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 printf("%s: unable to load control data DMA map, error = %d\n",
1152 sc->sc_dev.dv_xname, error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 printf("%s: unable to create tx DMA map %d, "
1164 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 printf("%s: unable to create rx DMA map %d, "
1176 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 SIP_SIS900_REV(sc,SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1209 ether_sprintf(enaddr));
1210
1211 /*
1212 * Initialize the configuration register: aggressive PCI
1213 * bus request algorithm, default backoff, default OW timer,
1214 * default parity error detection.
1215 *
1216 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 * friends -- it affects packet data, not descriptors.
1218 */
1219 if (sc->sc_gigabit)
1220 sipcom_dp83820_attach(sc, pa);
1221
1222 /*
1223 * Initialize our media structures and probe the MII.
1224 */
1225 sc->sc_mii.mii_ifp = ifp;
1226 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 } else
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 ether_ifattach(ifp, enaddr);
1287 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1288 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1289 sc->sc_prev.if_capenable = ifp->if_capenable;
1290 #if NRND > 0
1291 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1292 RND_TYPE_NET, 0);
1293 #endif
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, sc->sc_dev.dv_xname, "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, sc->sc_dev.dv_xname, "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, sc->sc_dev.dv_xname, "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, sc->sc_dev.dv_xname, "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, sc->sc_dev.dv_xname, "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, sc->sc_dev.dv_xname, "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, sc->sc_dev.dv_xname, "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, sc->sc_dev.dv_xname, "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, sc->sc_dev.dv_xname, "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, sc->sc_dev.dv_xname, "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, sc->sc_dev.dv_xname, "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, sc->sc_dev.dv_xname, "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, sc->sc_dev.dv_xname, "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (!pmf_device_register(self, NULL, sipcom_resume))
1369 aprint_error_dev(self, "couldn't establish power handler\n");
1370 else
1371 pmf_class_network_register(self, ifp);
1372
1373 /*
1374 * Make sure the interface is shutdown during reboot.
1375 */
1376 sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
1377 if (sc->sc_sdhook == NULL)
1378 printf("%s: WARNING: unable to establish shutdown hook\n",
1379 sc->sc_dev.dv_xname);
1380 }
1381
1382 /*
1383 * sip_shutdown:
1384 *
1385 * Make sure the interface is stopped at reboot time.
1386 */
1387 static void
1388 sipcom_shutdown(void *arg)
1389 {
1390 struct sip_softc *sc = arg;
1391
1392 sipcom_stop(&sc->sc_ethercom.ec_if, 1);
1393 }
1394
1395 static inline void
1396 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1397 uint64_t capenable)
1398 {
1399 struct m_tag *mtag;
1400 u_int32_t extsts;
1401 #ifdef DEBUG
1402 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1403 #endif
1404 /*
1405 * If VLANs are enabled and the packet has a VLAN tag, set
1406 * up the descriptor to encapsulate the packet for us.
1407 *
1408 * This apparently has to be on the last descriptor of
1409 * the packet.
1410 */
1411
1412 /*
1413 * Byte swapping is tricky. We need to provide the tag
1414 * in a network byte order. On a big-endian machine,
1415 * the byteorder is correct, but we need to swap it
1416 * anyway, because this will be undone by the outside
1417 * htole32(). That's why there must be an
1418 * unconditional swap instead of htons() inside.
1419 */
1420 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1421 sc->sc_txdescs[lasttx].sipd_extsts |=
1422 htole32(EXTSTS_VPKT |
1423 (bswap16(VLAN_TAG_VALUE(mtag)) &
1424 EXTSTS_VTCI));
1425 }
1426
1427 /*
1428 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1429 * checksumming, set up the descriptor to do this work
1430 * for us.
1431 *
1432 * This apparently has to be on the first descriptor of
1433 * the packet.
1434 *
1435 * Byte-swap constants so the compiler can optimize.
1436 */
1437 extsts = 0;
1438 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1439 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1440 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1441 extsts |= htole32(EXTSTS_IPPKT);
1442 }
1443 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1444 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1445 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1446 extsts |= htole32(EXTSTS_TCPPKT);
1447 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1448 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1449 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1450 extsts |= htole32(EXTSTS_UDPPKT);
1451 }
1452 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1453 }
1454
1455 /*
1456 * sip_start: [ifnet interface function]
1457 *
1458 * Start packet transmission on the interface.
1459 */
1460 static void
1461 sipcom_start(struct ifnet *ifp)
1462 {
1463 struct sip_softc *sc = ifp->if_softc;
1464 struct mbuf *m0;
1465 struct mbuf *m;
1466 struct sip_txsoft *txs;
1467 bus_dmamap_t dmamap;
1468 int error, nexttx, lasttx, seg;
1469 int ofree = sc->sc_txfree;
1470 #if 0
1471 int firsttx = sc->sc_txnext;
1472 #endif
1473
1474 /*
1475 * If we've been told to pause, don't transmit any more packets.
1476 */
1477 if (!sc->sc_gigabit && sc->sc_paused)
1478 ifp->if_flags |= IFF_OACTIVE;
1479
1480 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1481 return;
1482
1483 /*
1484 * Loop through the send queue, setting up transmit descriptors
1485 * until we drain the queue, or use up all available transmit
1486 * descriptors.
1487 */
1488 for (;;) {
1489 /* Get a work queue entry. */
1490 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1491 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1492 break;
1493 }
1494
1495 /*
1496 * Grab a packet off the queue.
1497 */
1498 IFQ_POLL(&ifp->if_snd, m0);
1499 if (m0 == NULL)
1500 break;
1501 m = NULL;
1502
1503 dmamap = txs->txs_dmamap;
1504
1505 /*
1506 * Load the DMA map. If this fails, the packet either
1507 * didn't fit in the alloted number of segments, or we
1508 * were short on resources.
1509 */
1510 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1511 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1512 /* In the non-gigabit case, we'll copy and try again. */
1513 if (error != 0 && !sc->sc_gigabit) {
1514 MGETHDR(m, M_DONTWAIT, MT_DATA);
1515 if (m == NULL) {
1516 printf("%s: unable to allocate Tx mbuf\n",
1517 sc->sc_dev.dv_xname);
1518 break;
1519 }
1520 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1521 if (m0->m_pkthdr.len > MHLEN) {
1522 MCLGET(m, M_DONTWAIT);
1523 if ((m->m_flags & M_EXT) == 0) {
1524 printf("%s: unable to allocate Tx "
1525 "cluster\n", sc->sc_dev.dv_xname);
1526 m_freem(m);
1527 break;
1528 }
1529 }
1530 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1531 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1532 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1533 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1534 if (error) {
1535 printf("%s: unable to load Tx buffer, "
1536 "error = %d\n", sc->sc_dev.dv_xname, error);
1537 break;
1538 }
1539 } else if (error == EFBIG) {
1540 /*
1541 * For the too-many-segments case, we simply
1542 * report an error and drop the packet,
1543 * since we can't sanely copy a jumbo packet
1544 * to a single buffer.
1545 */
1546 printf("%s: Tx packet consumes too many "
1547 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1548 IFQ_DEQUEUE(&ifp->if_snd, m0);
1549 m_freem(m0);
1550 continue;
1551 } else if (error != 0) {
1552 /*
1553 * Short on resources, just stop for now.
1554 */
1555 break;
1556 }
1557
1558 /*
1559 * Ensure we have enough descriptors free to describe
1560 * the packet. Note, we always reserve one descriptor
1561 * at the end of the ring as a termination point, to
1562 * prevent wrap-around.
1563 */
1564 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1565 /*
1566 * Not enough free descriptors to transmit this
1567 * packet. We haven't committed anything yet,
1568 * so just unload the DMA map, put the packet
1569 * back on the queue, and punt. Notify the upper
1570 * layer that there are not more slots left.
1571 *
1572 * XXX We could allocate an mbuf and copy, but
1573 * XXX is it worth it?
1574 */
1575 ifp->if_flags |= IFF_OACTIVE;
1576 bus_dmamap_unload(sc->sc_dmat, dmamap);
1577 if (m != NULL)
1578 m_freem(m);
1579 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1580 break;
1581 }
1582
1583 IFQ_DEQUEUE(&ifp->if_snd, m0);
1584 if (m != NULL) {
1585 m_freem(m0);
1586 m0 = m;
1587 }
1588
1589 /*
1590 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1591 */
1592
1593 /* Sync the DMA map. */
1594 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1595 BUS_DMASYNC_PREWRITE);
1596
1597 /*
1598 * Initialize the transmit descriptors.
1599 */
1600 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1601 seg < dmamap->dm_nsegs;
1602 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1603 /*
1604 * If this is the first descriptor we're
1605 * enqueueing, don't set the OWN bit just
1606 * yet. That could cause a race condition.
1607 * We'll do it below.
1608 */
1609 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1610 htole32(dmamap->dm_segs[seg].ds_addr);
1611 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1612 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1613 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1614 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1615 lasttx = nexttx;
1616 }
1617
1618 /* Clear the MORE bit on the last segment. */
1619 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1620 htole32(~CMDSTS_MORE);
1621
1622 /*
1623 * If we're in the interrupt delay window, delay the
1624 * interrupt.
1625 */
1626 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1627 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1628 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1629 htole32(CMDSTS_INTR);
1630 sc->sc_txwin = 0;
1631 }
1632
1633 if (sc->sc_gigabit)
1634 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1635
1636 /* Sync the descriptors we're using. */
1637 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1638 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1639
1640 /*
1641 * The entire packet is set up. Give the first descrptor
1642 * to the chip now.
1643 */
1644 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1645 htole32(CMDSTS_OWN);
1646 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1647 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1648
1649 /*
1650 * Store a pointer to the packet so we can free it later,
1651 * and remember what txdirty will be once the packet is
1652 * done.
1653 */
1654 txs->txs_mbuf = m0;
1655 txs->txs_firstdesc = sc->sc_txnext;
1656 txs->txs_lastdesc = lasttx;
1657
1658 /* Advance the tx pointer. */
1659 sc->sc_txfree -= dmamap->dm_nsegs;
1660 sc->sc_txnext = nexttx;
1661
1662 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1663 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1664
1665 #if NBPFILTER > 0
1666 /*
1667 * Pass the packet to any BPF listeners.
1668 */
1669 if (ifp->if_bpf)
1670 bpf_mtap(ifp->if_bpf, m0);
1671 #endif /* NBPFILTER > 0 */
1672 }
1673
1674 if (txs == NULL || sc->sc_txfree == 0) {
1675 /* No more slots left; notify upper layer. */
1676 ifp->if_flags |= IFF_OACTIVE;
1677 }
1678
1679 if (sc->sc_txfree != ofree) {
1680 /*
1681 * Start the transmit process. Note, the manual says
1682 * that if there are no pending transmissions in the
1683 * chip's internal queue (indicated by TXE being clear),
1684 * then the driver software must set the TXDP to the
1685 * first descriptor to be transmitted. However, if we
1686 * do this, it causes serious performance degredation on
1687 * the DP83820 under load, not setting TXDP doesn't seem
1688 * to adversely affect the SiS 900 or DP83815.
1689 *
1690 * Well, I guess it wouldn't be the first time a manual
1691 * has lied -- and they could be speaking of the NULL-
1692 * terminated descriptor list case, rather than OWN-
1693 * terminated rings.
1694 */
1695 #if 0
1696 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1697 CR_TXE) == 0) {
1698 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1699 SIP_CDTXADDR(sc, firsttx));
1700 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1701 }
1702 #else
1703 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1704 #endif
1705
1706 /* Set a watchdog timer in case the chip flakes out. */
1707 /* Gigabit autonegotiation takes 5 seconds. */
1708 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1709 }
1710 }
1711
1712 /*
1713 * sip_watchdog: [ifnet interface function]
1714 *
1715 * Watchdog timer handler.
1716 */
1717 static void
1718 sipcom_watchdog(struct ifnet *ifp)
1719 {
1720 struct sip_softc *sc = ifp->if_softc;
1721
1722 /*
1723 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1724 * If we get a timeout, try and sweep up transmit descriptors.
1725 * If we manage to sweep them all up, ignore the lack of
1726 * interrupt.
1727 */
1728 sipcom_txintr(sc);
1729
1730 if (sc->sc_txfree != sc->sc_ntxdesc) {
1731 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1732 ifp->if_oerrors++;
1733
1734 /* Reset the interface. */
1735 (void) sipcom_init(ifp);
1736 } else if (ifp->if_flags & IFF_DEBUG)
1737 printf("%s: recovered from device timeout\n",
1738 sc->sc_dev.dv_xname);
1739
1740 /* Try to get more packets going. */
1741 sipcom_start(ifp);
1742 }
1743
1744 /*
1745 * sip_ioctl: [ifnet interface function]
1746 *
1747 * Handle control requests from the operator.
1748 */
1749 static int
1750 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1751 {
1752 struct sip_softc *sc = ifp->if_softc;
1753 struct ifreq *ifr = (struct ifreq *)data;
1754 int s, error;
1755
1756 s = splnet();
1757
1758 switch (cmd) {
1759 case SIOCSIFMEDIA:
1760 /* Flow control requires full-duplex mode. */
1761 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1762 (ifr->ifr_media & IFM_FDX) == 0)
1763 ifr->ifr_media &= ~IFM_ETH_FMASK;
1764
1765 /* XXX */
1766 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1767 ifr->ifr_media &= ~IFM_ETH_FMASK;
1768 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1769 if (sc->sc_gigabit &&
1770 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1771 /* We can do both TXPAUSE and RXPAUSE. */
1772 ifr->ifr_media |=
1773 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1774 } else if (ifr->ifr_media & IFM_FLOW) {
1775 /*
1776 * Both TXPAUSE and RXPAUSE must be set.
1777 * (SiS900 and DP83815 don't have PAUSE_ASYM
1778 * feature.)
1779 *
1780 * XXX Can SiS900 and DP83815 send PAUSE?
1781 */
1782 ifr->ifr_media |=
1783 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1784 }
1785 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1786 }
1787 /* FALLTHROUGH */
1788 case SIOCGIFMEDIA:
1789 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1790 break;
1791 case SIOCSIFFLAGS:
1792 /* If the interface is up and running, only modify the receive
1793 * filter when setting promiscuous or debug mode. Otherwise
1794 * fall through to ether_ioctl, which will reset the chip.
1795 */
1796
1797 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1798 == (sc)->sc_ethercom.ec_capenable) \
1799 && ((sc)->sc_prev.is_vlan == \
1800 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1801
1802 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1803
1804 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1805 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1806 == (IFF_UP|IFF_RUNNING))
1807 && ((ifp->if_flags & (~RESETIGN))
1808 == (sc->sc_if_flags & (~RESETIGN)))
1809 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1810 /* Set up the receive filter. */
1811 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1812 error = 0;
1813 break;
1814 #undef RESETIGN
1815 }
1816 /* FALLTHROUGH */
1817 default:
1818 error = ether_ioctl(ifp, cmd, data);
1819 if (error == ENETRESET) {
1820 /*
1821 * Multicast list has changed; set the hardware filter
1822 * accordingly.
1823 */
1824 if (ifp->if_flags & IFF_RUNNING)
1825 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1826 error = 0;
1827 }
1828 break;
1829 }
1830
1831 /* Try to get more packets going. */
1832 sipcom_start(ifp);
1833
1834 sc->sc_if_flags = ifp->if_flags;
1835 splx(s);
1836 return (error);
1837 }
1838
1839 /*
1840 * sip_intr:
1841 *
1842 * Interrupt service routine.
1843 */
1844 static int
1845 sipcom_intr(void *arg)
1846 {
1847 struct sip_softc *sc = arg;
1848 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1849 u_int32_t isr;
1850 int handled = 0;
1851
1852 /* Disable interrupts. */
1853 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1854
1855 for (;;) {
1856 /* Reading clears interrupt. */
1857 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1858 if ((isr & sc->sc_imr) == 0)
1859 break;
1860
1861 #if NRND > 0
1862 if (RND_ENABLED(&sc->rnd_source))
1863 rnd_add_uint32(&sc->rnd_source, isr);
1864 #endif
1865
1866 handled = 1;
1867
1868 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1869 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1870
1871 /* Grab any new packets. */
1872 (*sc->sc_rxintr)(sc);
1873
1874 if (isr & ISR_RXORN) {
1875 printf("%s: receive FIFO overrun\n",
1876 sc->sc_dev.dv_xname);
1877
1878 /* XXX adjust rx_drain_thresh? */
1879 }
1880
1881 if (isr & ISR_RXIDLE) {
1882 printf("%s: receive ring overrun\n",
1883 sc->sc_dev.dv_xname);
1884
1885 /* Get the receive process going again. */
1886 bus_space_write_4(sc->sc_st, sc->sc_sh,
1887 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1888 bus_space_write_4(sc->sc_st, sc->sc_sh,
1889 SIP_CR, CR_RXE);
1890 }
1891 }
1892
1893 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1894 #ifdef SIP_EVENT_COUNTERS
1895 if (isr & ISR_TXDESC)
1896 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1897 else if (isr & ISR_TXIDLE)
1898 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1899 #endif
1900
1901 /* Sweep up transmit descriptors. */
1902 sipcom_txintr(sc);
1903
1904 if (isr & ISR_TXURN) {
1905 u_int32_t thresh;
1906 int txfifo_size = (sc->sc_gigabit)
1907 ? DP83820_SIP_TXFIFO_SIZE
1908 : OTHER_SIP_TXFIFO_SIZE;
1909
1910 printf("%s: transmit FIFO underrun",
1911 sc->sc_dev.dv_xname);
1912 thresh = sc->sc_tx_drain_thresh + 1;
1913 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1914 && (thresh * 32) <= (txfifo_size -
1915 (sc->sc_tx_fill_thresh * 32))) {
1916 printf("; increasing Tx drain "
1917 "threshold to %u bytes\n",
1918 thresh * 32);
1919 sc->sc_tx_drain_thresh = thresh;
1920 (void) sipcom_init(ifp);
1921 } else {
1922 (void) sipcom_init(ifp);
1923 printf("\n");
1924 }
1925 }
1926 }
1927
1928 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1929 if (isr & ISR_PAUSE_ST) {
1930 sc->sc_paused = 1;
1931 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1932 ifp->if_flags |= IFF_OACTIVE;
1933 }
1934 if (isr & ISR_PAUSE_END) {
1935 sc->sc_paused = 0;
1936 ifp->if_flags &= ~IFF_OACTIVE;
1937 }
1938 }
1939
1940 if (isr & ISR_HIBERR) {
1941 int want_init = 0;
1942
1943 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1944
1945 #define PRINTERR(bit, str) \
1946 do { \
1947 if ((isr & (bit)) != 0) { \
1948 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1949 printf("%s: %s\n", \
1950 sc->sc_dev.dv_xname, str); \
1951 want_init = 1; \
1952 } \
1953 } while (/*CONSTCOND*/0)
1954
1955 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1956 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1957 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1958 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1959 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1960 /*
1961 * Ignore:
1962 * Tx reset complete
1963 * Rx reset complete
1964 */
1965 if (want_init)
1966 (void) sipcom_init(ifp);
1967 #undef PRINTERR
1968 }
1969 }
1970
1971 /* Re-enable interrupts. */
1972 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1973
1974 /* Try to get more packets going. */
1975 sipcom_start(ifp);
1976
1977 return (handled);
1978 }
1979
1980 /*
1981 * sip_txintr:
1982 *
1983 * Helper; handle transmit interrupts.
1984 */
1985 static void
1986 sipcom_txintr(struct sip_softc *sc)
1987 {
1988 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1989 struct sip_txsoft *txs;
1990 u_int32_t cmdsts;
1991
1992 if (sc->sc_paused == 0)
1993 ifp->if_flags &= ~IFF_OACTIVE;
1994
1995 /*
1996 * Go through our Tx list and free mbufs for those
1997 * frames which have been transmitted.
1998 */
1999 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2000 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2001 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2002
2003 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2004 if (cmdsts & CMDSTS_OWN)
2005 break;
2006
2007 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2008
2009 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2010
2011 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2012 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2013 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2014 m_freem(txs->txs_mbuf);
2015 txs->txs_mbuf = NULL;
2016
2017 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2018
2019 /*
2020 * Check for errors and collisions.
2021 */
2022 if (cmdsts &
2023 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2024 ifp->if_oerrors++;
2025 if (cmdsts & CMDSTS_Tx_EC)
2026 ifp->if_collisions += 16;
2027 if (ifp->if_flags & IFF_DEBUG) {
2028 if (cmdsts & CMDSTS_Tx_ED)
2029 printf("%s: excessive deferral\n",
2030 sc->sc_dev.dv_xname);
2031 if (cmdsts & CMDSTS_Tx_EC)
2032 printf("%s: excessive collisions\n",
2033 sc->sc_dev.dv_xname);
2034 }
2035 } else {
2036 /* Packet was transmitted successfully. */
2037 ifp->if_opackets++;
2038 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2039 }
2040 }
2041
2042 /*
2043 * If there are no more pending transmissions, cancel the watchdog
2044 * timer.
2045 */
2046 if (txs == NULL) {
2047 ifp->if_timer = 0;
2048 sc->sc_txwin = 0;
2049 }
2050 }
2051
2052 /*
2053 * gsip_rxintr:
2054 *
2055 * Helper; handle receive interrupts on gigabit parts.
2056 */
2057 static void
2058 gsip_rxintr(struct sip_softc *sc)
2059 {
2060 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2061 struct sip_rxsoft *rxs;
2062 struct mbuf *m;
2063 u_int32_t cmdsts, extsts;
2064 int i, len;
2065
2066 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2067 rxs = &sc->sc_rxsoft[i];
2068
2069 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2070
2071 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2072 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2073 len = CMDSTS_SIZE(sc, cmdsts);
2074
2075 /*
2076 * NOTE: OWN is set if owned by _consumer_. We're the
2077 * consumer of the receive ring, so if the bit is clear,
2078 * we have processed all of the packets.
2079 */
2080 if ((cmdsts & CMDSTS_OWN) == 0) {
2081 /*
2082 * We have processed all of the receive buffers.
2083 */
2084 break;
2085 }
2086
2087 if (__predict_false(sc->sc_rxdiscard)) {
2088 SIP_INIT_RXDESC(sc, i);
2089 if ((cmdsts & CMDSTS_MORE) == 0) {
2090 /* Reset our state. */
2091 sc->sc_rxdiscard = 0;
2092 }
2093 continue;
2094 }
2095
2096 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2097 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2098
2099 m = rxs->rxs_mbuf;
2100
2101 /*
2102 * Add a new receive buffer to the ring.
2103 */
2104 if (sipcom_add_rxbuf(sc, i) != 0) {
2105 /*
2106 * Failed, throw away what we've done so
2107 * far, and discard the rest of the packet.
2108 */
2109 ifp->if_ierrors++;
2110 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2111 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2112 SIP_INIT_RXDESC(sc, i);
2113 if (cmdsts & CMDSTS_MORE)
2114 sc->sc_rxdiscard = 1;
2115 if (sc->sc_rxhead != NULL)
2116 m_freem(sc->sc_rxhead);
2117 SIP_RXCHAIN_RESET(sc);
2118 continue;
2119 }
2120
2121 SIP_RXCHAIN_LINK(sc, m);
2122
2123 m->m_len = len;
2124
2125 /*
2126 * If this is not the end of the packet, keep
2127 * looking.
2128 */
2129 if (cmdsts & CMDSTS_MORE) {
2130 sc->sc_rxlen += len;
2131 continue;
2132 }
2133
2134 /*
2135 * Okay, we have the entire packet now. The chip includes
2136 * the FCS, so we need to trim it.
2137 */
2138 m->m_len -= ETHER_CRC_LEN;
2139
2140 *sc->sc_rxtailp = NULL;
2141 len = m->m_len + sc->sc_rxlen;
2142 m = sc->sc_rxhead;
2143
2144 SIP_RXCHAIN_RESET(sc);
2145
2146 /*
2147 * If an error occurred, update stats and drop the packet.
2148 */
2149 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2150 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2151 ifp->if_ierrors++;
2152 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2153 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2154 /* Receive overrun handled elsewhere. */
2155 printf("%s: receive descriptor error\n",
2156 sc->sc_dev.dv_xname);
2157 }
2158 #define PRINTERR(bit, str) \
2159 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2160 (cmdsts & (bit)) != 0) \
2161 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2162 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2163 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2164 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2165 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2166 #undef PRINTERR
2167 m_freem(m);
2168 continue;
2169 }
2170
2171 /*
2172 * If the packet is small enough to fit in a
2173 * single header mbuf, allocate one and copy
2174 * the data into it. This greatly reduces
2175 * memory consumption when we receive lots
2176 * of small packets.
2177 */
2178 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2179 struct mbuf *nm;
2180 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2181 if (nm == NULL) {
2182 ifp->if_ierrors++;
2183 m_freem(m);
2184 continue;
2185 }
2186 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2187 nm->m_data += 2;
2188 nm->m_pkthdr.len = nm->m_len = len;
2189 m_copydata(m, 0, len, mtod(nm, void *));
2190 m_freem(m);
2191 m = nm;
2192 }
2193 #ifndef __NO_STRICT_ALIGNMENT
2194 else {
2195 /*
2196 * The DP83820's receive buffers must be 4-byte
2197 * aligned. But this means that the data after
2198 * the Ethernet header is misaligned. To compensate,
2199 * we have artificially shortened the buffer size
2200 * in the descriptor, and we do an overlapping copy
2201 * of the data two bytes further in (in the first
2202 * buffer of the chain only).
2203 */
2204 memmove(mtod(m, char *) + 2, mtod(m, void *),
2205 m->m_len);
2206 m->m_data += 2;
2207 }
2208 #endif /* ! __NO_STRICT_ALIGNMENT */
2209
2210 /*
2211 * If VLANs are enabled, VLAN packets have been unwrapped
2212 * for us. Associate the tag with the packet.
2213 */
2214
2215 /*
2216 * Again, byte swapping is tricky. Hardware provided
2217 * the tag in the network byte order, but extsts was
2218 * passed through le32toh() in the meantime. On a
2219 * big-endian machine, we need to swap it again. On a
2220 * little-endian machine, we need to convert from the
2221 * network to host byte order. This means that we must
2222 * swap it in any case, so unconditional swap instead
2223 * of htons() is used.
2224 */
2225 if ((extsts & EXTSTS_VPKT) != 0) {
2226 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2227 continue);
2228 }
2229
2230 /*
2231 * Set the incoming checksum information for the
2232 * packet.
2233 */
2234 if ((extsts & EXTSTS_IPPKT) != 0) {
2235 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2236 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2237 if (extsts & EXTSTS_Rx_IPERR)
2238 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2239 if (extsts & EXTSTS_TCPPKT) {
2240 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2241 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2242 if (extsts & EXTSTS_Rx_TCPERR)
2243 m->m_pkthdr.csum_flags |=
2244 M_CSUM_TCP_UDP_BAD;
2245 } else if (extsts & EXTSTS_UDPPKT) {
2246 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2247 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2248 if (extsts & EXTSTS_Rx_UDPERR)
2249 m->m_pkthdr.csum_flags |=
2250 M_CSUM_TCP_UDP_BAD;
2251 }
2252 }
2253
2254 ifp->if_ipackets++;
2255 m->m_pkthdr.rcvif = ifp;
2256 m->m_pkthdr.len = len;
2257
2258 #if NBPFILTER > 0
2259 /*
2260 * Pass this up to any BPF listeners, but only
2261 * pass if up the stack if it's for us.
2262 */
2263 if (ifp->if_bpf)
2264 bpf_mtap(ifp->if_bpf, m);
2265 #endif /* NBPFILTER > 0 */
2266
2267 /* Pass it on. */
2268 (*ifp->if_input)(ifp, m);
2269 }
2270
2271 /* Update the receive pointer. */
2272 sc->sc_rxptr = i;
2273 }
2274
2275 /*
2276 * sip_rxintr:
2277 *
2278 * Helper; handle receive interrupts on 10/100 parts.
2279 */
2280 static void
2281 sip_rxintr(struct sip_softc *sc)
2282 {
2283 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2284 struct sip_rxsoft *rxs;
2285 struct mbuf *m;
2286 u_int32_t cmdsts;
2287 int i, len;
2288
2289 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2290 rxs = &sc->sc_rxsoft[i];
2291
2292 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2293
2294 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2295
2296 /*
2297 * NOTE: OWN is set if owned by _consumer_. We're the
2298 * consumer of the receive ring, so if the bit is clear,
2299 * we have processed all of the packets.
2300 */
2301 if ((cmdsts & CMDSTS_OWN) == 0) {
2302 /*
2303 * We have processed all of the receive buffers.
2304 */
2305 break;
2306 }
2307
2308 /*
2309 * If any collisions were seen on the wire, count one.
2310 */
2311 if (cmdsts & CMDSTS_Rx_COL)
2312 ifp->if_collisions++;
2313
2314 /*
2315 * If an error occurred, update stats, clear the status
2316 * word, and leave the packet buffer in place. It will
2317 * simply be reused the next time the ring comes around.
2318 */
2319 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2320 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2321 ifp->if_ierrors++;
2322 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2323 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2324 /* Receive overrun handled elsewhere. */
2325 printf("%s: receive descriptor error\n",
2326 sc->sc_dev.dv_xname);
2327 }
2328 #define PRINTERR(bit, str) \
2329 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2330 (cmdsts & (bit)) != 0) \
2331 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2332 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2333 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2334 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2335 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2336 #undef PRINTERR
2337 SIP_INIT_RXDESC(sc, i);
2338 continue;
2339 }
2340
2341 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2342 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2343
2344 /*
2345 * No errors; receive the packet. Note, the SiS 900
2346 * includes the CRC with every packet.
2347 */
2348 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2349
2350 #ifdef __NO_STRICT_ALIGNMENT
2351 /*
2352 * If the packet is small enough to fit in a
2353 * single header mbuf, allocate one and copy
2354 * the data into it. This greatly reduces
2355 * memory consumption when we receive lots
2356 * of small packets.
2357 *
2358 * Otherwise, we add a new buffer to the receive
2359 * chain. If this fails, we drop the packet and
2360 * recycle the old buffer.
2361 */
2362 if (sip_copy_small != 0 && len <= MHLEN) {
2363 MGETHDR(m, M_DONTWAIT, MT_DATA);
2364 if (m == NULL)
2365 goto dropit;
2366 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2367 memcpy(mtod(m, void *),
2368 mtod(rxs->rxs_mbuf, void *), len);
2369 SIP_INIT_RXDESC(sc, i);
2370 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2371 rxs->rxs_dmamap->dm_mapsize,
2372 BUS_DMASYNC_PREREAD);
2373 } else {
2374 m = rxs->rxs_mbuf;
2375 if (sipcom_add_rxbuf(sc, i) != 0) {
2376 dropit:
2377 ifp->if_ierrors++;
2378 SIP_INIT_RXDESC(sc, i);
2379 bus_dmamap_sync(sc->sc_dmat,
2380 rxs->rxs_dmamap, 0,
2381 rxs->rxs_dmamap->dm_mapsize,
2382 BUS_DMASYNC_PREREAD);
2383 continue;
2384 }
2385 }
2386 #else
2387 /*
2388 * The SiS 900's receive buffers must be 4-byte aligned.
2389 * But this means that the data after the Ethernet header
2390 * is misaligned. We must allocate a new buffer and
2391 * copy the data, shifted forward 2 bytes.
2392 */
2393 MGETHDR(m, M_DONTWAIT, MT_DATA);
2394 if (m == NULL) {
2395 dropit:
2396 ifp->if_ierrors++;
2397 SIP_INIT_RXDESC(sc, i);
2398 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2399 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2400 continue;
2401 }
2402 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2403 if (len > (MHLEN - 2)) {
2404 MCLGET(m, M_DONTWAIT);
2405 if ((m->m_flags & M_EXT) == 0) {
2406 m_freem(m);
2407 goto dropit;
2408 }
2409 }
2410 m->m_data += 2;
2411
2412 /*
2413 * Note that we use clusters for incoming frames, so the
2414 * buffer is virtually contiguous.
2415 */
2416 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2417
2418 /* Allow the receive descriptor to continue using its mbuf. */
2419 SIP_INIT_RXDESC(sc, i);
2420 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2421 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2422 #endif /* __NO_STRICT_ALIGNMENT */
2423
2424 ifp->if_ipackets++;
2425 m->m_pkthdr.rcvif = ifp;
2426 m->m_pkthdr.len = m->m_len = len;
2427
2428 #if NBPFILTER > 0
2429 /*
2430 * Pass this up to any BPF listeners, but only
2431 * pass if up the stack if it's for us.
2432 */
2433 if (ifp->if_bpf)
2434 bpf_mtap(ifp->if_bpf, m);
2435 #endif /* NBPFILTER > 0 */
2436
2437 /* Pass it on. */
2438 (*ifp->if_input)(ifp, m);
2439 }
2440
2441 /* Update the receive pointer. */
2442 sc->sc_rxptr = i;
2443 }
2444
2445 /*
2446 * sip_tick:
2447 *
2448 * One second timer, used to tick the MII.
2449 */
2450 static void
2451 sipcom_tick(void *arg)
2452 {
2453 struct sip_softc *sc = arg;
2454 int s;
2455
2456 s = splnet();
2457 #ifdef SIP_EVENT_COUNTERS
2458 if (sc->sc_gigabit) {
2459 /* Read PAUSE related counts from MIB registers. */
2460 sc->sc_ev_rxpause.ev_count +=
2461 bus_space_read_4(sc->sc_st, sc->sc_sh,
2462 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2463 sc->sc_ev_txpause.ev_count +=
2464 bus_space_read_4(sc->sc_st, sc->sc_sh,
2465 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2466 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2467 }
2468 #endif /* SIP_EVENT_COUNTERS */
2469 mii_tick(&sc->sc_mii);
2470 splx(s);
2471
2472 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2473 }
2474
2475 /*
2476 * sip_reset:
2477 *
2478 * Perform a soft reset on the SiS 900.
2479 */
2480 static bool
2481 sipcom_reset(struct sip_softc *sc)
2482 {
2483 bus_space_tag_t st = sc->sc_st;
2484 bus_space_handle_t sh = sc->sc_sh;
2485 int i;
2486
2487 bus_space_write_4(st, sh, SIP_IER, 0);
2488 bus_space_write_4(st, sh, SIP_IMR, 0);
2489 bus_space_write_4(st, sh, SIP_RFCR, 0);
2490 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2491
2492 for (i = 0; i < SIP_TIMEOUT; i++) {
2493 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2494 break;
2495 delay(2);
2496 }
2497
2498 if (i == SIP_TIMEOUT) {
2499 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2500 return false;
2501 }
2502
2503 delay(1000);
2504
2505 if (sc->sc_gigabit) {
2506 /*
2507 * Set the general purpose I/O bits. Do it here in case we
2508 * need to have GPIO set up to talk to the media interface.
2509 */
2510 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2511 delay(1000);
2512 }
2513 return true;
2514 }
2515
2516 static void
2517 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2518 {
2519 u_int32_t reg;
2520 bus_space_tag_t st = sc->sc_st;
2521 bus_space_handle_t sh = sc->sc_sh;
2522 /*
2523 * Initialize the VLAN/IP receive control register.
2524 * We enable checksum computation on all incoming
2525 * packets, and do not reject packets w/ bad checksums.
2526 */
2527 reg = 0;
2528 if (capenable &
2529 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2530 reg |= VRCR_IPEN;
2531 if (VLAN_ATTACHED(&sc->sc_ethercom))
2532 reg |= VRCR_VTDEN|VRCR_VTREN;
2533 bus_space_write_4(st, sh, SIP_VRCR, reg);
2534
2535 /*
2536 * Initialize the VLAN/IP transmit control register.
2537 * We enable outgoing checksum computation on a
2538 * per-packet basis.
2539 */
2540 reg = 0;
2541 if (capenable &
2542 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2543 reg |= VTCR_PPCHK;
2544 if (VLAN_ATTACHED(&sc->sc_ethercom))
2545 reg |= VTCR_VPPTI;
2546 bus_space_write_4(st, sh, SIP_VTCR, reg);
2547
2548 /*
2549 * If we're using VLANs, initialize the VLAN data register.
2550 * To understand why we bswap the VLAN Ethertype, see section
2551 * 4.2.36 of the DP83820 manual.
2552 */
2553 if (VLAN_ATTACHED(&sc->sc_ethercom))
2554 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2555 }
2556
2557 /*
2558 * sip_init: [ ifnet interface function ]
2559 *
2560 * Initialize the interface. Must be called at splnet().
2561 */
2562 static int
2563 sipcom_init(struct ifnet *ifp)
2564 {
2565 struct sip_softc *sc = ifp->if_softc;
2566 bus_space_tag_t st = sc->sc_st;
2567 bus_space_handle_t sh = sc->sc_sh;
2568 struct sip_txsoft *txs;
2569 struct sip_rxsoft *rxs;
2570 struct sip_desc *sipd;
2571 int i, error = 0;
2572
2573 if (!device_has_power(&sc->sc_dev))
2574 return EBUSY;
2575
2576 /*
2577 * Cancel any pending I/O.
2578 */
2579 sipcom_stop(ifp, 0);
2580
2581 /*
2582 * Reset the chip to a known state.
2583 */
2584 if (!sipcom_reset(sc))
2585 return EBUSY;
2586
2587 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2588 /*
2589 * DP83815 manual, page 78:
2590 * 4.4 Recommended Registers Configuration
2591 * For optimum performance of the DP83815, version noted
2592 * as DP83815CVNG (SRR = 203h), the listed register
2593 * modifications must be followed in sequence...
2594 *
2595 * It's not clear if this should be 302h or 203h because that
2596 * chip name is listed as SRR 302h in the description of the
2597 * SRR register. However, my revision 302h DP83815 on the
2598 * Netgear FA311 purchased in 02/2001 needs these settings
2599 * to avoid tons of errors in AcceptPerfectMatch (non-
2600 * IFF_PROMISC) mode. I do not know if other revisions need
2601 * this set or not. [briggs -- 09 March 2001]
2602 *
2603 * Note that only the low-order 12 bits of 0xe4 are documented
2604 * and that this sets reserved bits in that register.
2605 */
2606 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2607
2608 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2609 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2610 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2611 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2612
2613 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2614 }
2615
2616 /*
2617 * Initialize the transmit descriptor ring.
2618 */
2619 for (i = 0; i < sc->sc_ntxdesc; i++) {
2620 sipd = &sc->sc_txdescs[i];
2621 memset(sipd, 0, sizeof(struct sip_desc));
2622 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2623 }
2624 SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
2625 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2626 sc->sc_txfree = sc->sc_ntxdesc;
2627 sc->sc_txnext = 0;
2628 sc->sc_txwin = 0;
2629
2630 /*
2631 * Initialize the transmit job descriptors.
2632 */
2633 SIMPLEQ_INIT(&sc->sc_txfreeq);
2634 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2635 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2636 txs = &sc->sc_txsoft[i];
2637 txs->txs_mbuf = NULL;
2638 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2639 }
2640
2641 /*
2642 * Initialize the receive descriptor and receive job
2643 * descriptor rings.
2644 */
2645 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2646 rxs = &sc->sc_rxsoft[i];
2647 if (rxs->rxs_mbuf == NULL) {
2648 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2649 printf("%s: unable to allocate or map rx "
2650 "buffer %d, error = %d\n",
2651 sc->sc_dev.dv_xname, i, error);
2652 /*
2653 * XXX Should attempt to run with fewer receive
2654 * XXX buffers instead of just failing.
2655 */
2656 sipcom_rxdrain(sc);
2657 goto out;
2658 }
2659 } else
2660 SIP_INIT_RXDESC(sc, i);
2661 }
2662 sc->sc_rxptr = 0;
2663 sc->sc_rxdiscard = 0;
2664 SIP_RXCHAIN_RESET(sc);
2665
2666 /*
2667 * Set the configuration register; it's already initialized
2668 * in sip_attach().
2669 */
2670 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2671
2672 /*
2673 * Initialize the prototype TXCFG register.
2674 */
2675 if (sc->sc_gigabit) {
2676 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2677 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2678 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2679 SIP_SIS900_REV(sc, SIS_REV_960) ||
2680 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2681 (sc->sc_cfg & CFG_EDBMASTEN)) {
2682 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2683 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2684 } else {
2685 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2686 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2687 }
2688
2689 sc->sc_txcfg |= TXCFG_ATP |
2690 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2691 sc->sc_tx_drain_thresh;
2692 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2693
2694 /*
2695 * Initialize the receive drain threshold if we have never
2696 * done so.
2697 */
2698 if (sc->sc_rx_drain_thresh == 0) {
2699 /*
2700 * XXX This value should be tuned. This is set to the
2701 * maximum of 248 bytes, and we may be able to improve
2702 * performance by decreasing it (although we should never
2703 * set this value lower than 2; 14 bytes are required to
2704 * filter the packet).
2705 */
2706 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2707 }
2708
2709 /*
2710 * Initialize the prototype RXCFG register.
2711 */
2712 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2713 /*
2714 * Accept long packets (including FCS) so we can handle
2715 * 802.1q-tagged frames and jumbo frames properly.
2716 */
2717 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2718 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2719 sc->sc_rxcfg |= RXCFG_ALP;
2720
2721 /*
2722 * Checksum offloading is disabled if the user selects an MTU
2723 * larger than 8109. (FreeBSD says 8152, but there is emperical
2724 * evidence that >8109 does not work on some boards, such as the
2725 * Planex GN-1000TE).
2726 */
2727 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2728 (ifp->if_capenable &
2729 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2730 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2731 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2732 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2733 "disabled.\n", sc->sc_dev.dv_xname);
2734 ifp->if_capenable &=
2735 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2736 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2737 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2738 ifp->if_csum_flags_tx = 0;
2739 ifp->if_csum_flags_rx = 0;
2740 }
2741
2742 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2743
2744 if (sc->sc_gigabit)
2745 sipcom_dp83820_init(sc, ifp->if_capenable);
2746
2747 /*
2748 * Give the transmit and receive rings to the chip.
2749 */
2750 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2751 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2752
2753 /*
2754 * Initialize the interrupt mask.
2755 */
2756 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2757 sc->sc_bits.b_isr_sserr |
2758 sc->sc_bits.b_isr_rmabt |
2759 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2760 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2761 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2762
2763 /* Set up the receive filter. */
2764 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2765
2766 /*
2767 * Tune sc_rx_flow_thresh.
2768 * XXX "More than 8KB" is too short for jumbo frames.
2769 * XXX TODO: Threshold value should be user-settable.
2770 */
2771 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2772 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2773 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2774
2775 /*
2776 * Set the current media. Do this after initializing the prototype
2777 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2778 * control.
2779 */
2780 mii_mediachg(&sc->sc_mii);
2781
2782 /*
2783 * Set the interrupt hold-off timer to 100us.
2784 */
2785 if (sc->sc_gigabit)
2786 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2787
2788 /*
2789 * Enable interrupts.
2790 */
2791 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2792
2793 /*
2794 * Start the transmit and receive processes.
2795 */
2796 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2797
2798 /*
2799 * Start the one second MII clock.
2800 */
2801 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2802
2803 /*
2804 * ...all done!
2805 */
2806 ifp->if_flags |= IFF_RUNNING;
2807 ifp->if_flags &= ~IFF_OACTIVE;
2808 sc->sc_if_flags = ifp->if_flags;
2809 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2810 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2811 sc->sc_prev.if_capenable = ifp->if_capenable;
2812
2813 out:
2814 if (error)
2815 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2816 return (error);
2817 }
2818
2819 /*
2820 * sip_drain:
2821 *
2822 * Drain the receive queue.
2823 */
2824 static void
2825 sipcom_rxdrain(struct sip_softc *sc)
2826 {
2827 struct sip_rxsoft *rxs;
2828 int i;
2829
2830 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2831 rxs = &sc->sc_rxsoft[i];
2832 if (rxs->rxs_mbuf != NULL) {
2833 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2834 m_freem(rxs->rxs_mbuf);
2835 rxs->rxs_mbuf = NULL;
2836 }
2837 }
2838 }
2839
2840 /*
2841 * sip_stop: [ ifnet interface function ]
2842 *
2843 * Stop transmission on the interface.
2844 */
2845 static void
2846 sipcom_stop(struct ifnet *ifp, int disable)
2847 {
2848 struct sip_softc *sc = ifp->if_softc;
2849 bus_space_tag_t st = sc->sc_st;
2850 bus_space_handle_t sh = sc->sc_sh;
2851 struct sip_txsoft *txs;
2852 u_int32_t cmdsts = 0; /* DEBUG */
2853
2854 /*
2855 * Stop the one second clock.
2856 */
2857 callout_stop(&sc->sc_tick_ch);
2858
2859 /* Down the MII. */
2860 mii_down(&sc->sc_mii);
2861
2862 /*
2863 * Disable interrupts.
2864 */
2865 bus_space_write_4(st, sh, SIP_IER, 0);
2866
2867 /*
2868 * Stop receiver and transmitter.
2869 */
2870 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2871
2872 /*
2873 * Release any queued transmit buffers.
2874 */
2875 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2876 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2877 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2878 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2879 CMDSTS_INTR) == 0)
2880 printf("%s: sip_stop: last descriptor does not "
2881 "have INTR bit set\n", sc->sc_dev.dv_xname);
2882 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2883 #ifdef DIAGNOSTIC
2884 if (txs->txs_mbuf == NULL) {
2885 printf("%s: dirty txsoft with no mbuf chain\n",
2886 sc->sc_dev.dv_xname);
2887 panic("sip_stop");
2888 }
2889 #endif
2890 cmdsts |= /* DEBUG */
2891 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2892 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2893 m_freem(txs->txs_mbuf);
2894 txs->txs_mbuf = NULL;
2895 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2896 }
2897
2898 if (disable)
2899 sipcom_rxdrain(sc);
2900
2901 /*
2902 * Mark the interface down and cancel the watchdog timer.
2903 */
2904 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2905 ifp->if_timer = 0;
2906
2907 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2908 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2909 printf("%s: sip_stop: no INTR bits set in dirty tx "
2910 "descriptors\n", sc->sc_dev.dv_xname);
2911 }
2912
2913 /*
2914 * sip_read_eeprom:
2915 *
2916 * Read data from the serial EEPROM.
2917 */
2918 static void
2919 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2920 u_int16_t *data)
2921 {
2922 bus_space_tag_t st = sc->sc_st;
2923 bus_space_handle_t sh = sc->sc_sh;
2924 u_int16_t reg;
2925 int i, x;
2926
2927 for (i = 0; i < wordcnt; i++) {
2928 /* Send CHIP SELECT. */
2929 reg = EROMAR_EECS;
2930 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931
2932 /* Shift in the READ opcode. */
2933 for (x = 3; x > 0; x--) {
2934 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2935 reg |= EROMAR_EEDI;
2936 else
2937 reg &= ~EROMAR_EEDI;
2938 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2939 bus_space_write_4(st, sh, SIP_EROMAR,
2940 reg | EROMAR_EESK);
2941 delay(4);
2942 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2943 delay(4);
2944 }
2945
2946 /* Shift in address. */
2947 for (x = 6; x > 0; x--) {
2948 if ((word + i) & (1 << (x - 1)))
2949 reg |= EROMAR_EEDI;
2950 else
2951 reg &= ~EROMAR_EEDI;
2952 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2953 bus_space_write_4(st, sh, SIP_EROMAR,
2954 reg | EROMAR_EESK);
2955 delay(4);
2956 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2957 delay(4);
2958 }
2959
2960 /* Shift out data. */
2961 reg = EROMAR_EECS;
2962 data[i] = 0;
2963 for (x = 16; x > 0; x--) {
2964 bus_space_write_4(st, sh, SIP_EROMAR,
2965 reg | EROMAR_EESK);
2966 delay(4);
2967 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2968 data[i] |= (1 << (x - 1));
2969 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2970 delay(4);
2971 }
2972
2973 /* Clear CHIP SELECT. */
2974 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2975 delay(4);
2976 }
2977 }
2978
2979 /*
2980 * sipcom_add_rxbuf:
2981 *
2982 * Add a receive buffer to the indicated descriptor.
2983 */
2984 static int
2985 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2986 {
2987 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2988 struct mbuf *m;
2989 int error;
2990
2991 MGETHDR(m, M_DONTWAIT, MT_DATA);
2992 if (m == NULL)
2993 return (ENOBUFS);
2994 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2995
2996 MCLGET(m, M_DONTWAIT);
2997 if ((m->m_flags & M_EXT) == 0) {
2998 m_freem(m);
2999 return (ENOBUFS);
3000 }
3001
3002 /* XXX I don't believe this is necessary. --dyoung */
3003 if (sc->sc_gigabit)
3004 m->m_len = sc->sc_parm->p_rxbuf_len;
3005
3006 if (rxs->rxs_mbuf != NULL)
3007 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3008
3009 rxs->rxs_mbuf = m;
3010
3011 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3012 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3013 BUS_DMA_READ|BUS_DMA_NOWAIT);
3014 if (error) {
3015 printf("%s: can't load rx DMA map %d, error = %d\n",
3016 sc->sc_dev.dv_xname, idx, error);
3017 panic("%s", __func__); /* XXX */
3018 }
3019
3020 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3021 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3022
3023 SIP_INIT_RXDESC(sc, idx);
3024
3025 return (0);
3026 }
3027
3028 /*
3029 * sip_sis900_set_filter:
3030 *
3031 * Set up the receive filter.
3032 */
3033 static void
3034 sipcom_sis900_set_filter(struct sip_softc *sc)
3035 {
3036 bus_space_tag_t st = sc->sc_st;
3037 bus_space_handle_t sh = sc->sc_sh;
3038 struct ethercom *ec = &sc->sc_ethercom;
3039 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3040 struct ether_multi *enm;
3041 const u_int8_t *cp;
3042 struct ether_multistep step;
3043 u_int32_t crc, mchash[16];
3044
3045 /*
3046 * Initialize the prototype RFCR.
3047 */
3048 sc->sc_rfcr = RFCR_RFEN;
3049 if (ifp->if_flags & IFF_BROADCAST)
3050 sc->sc_rfcr |= RFCR_AAB;
3051 if (ifp->if_flags & IFF_PROMISC) {
3052 sc->sc_rfcr |= RFCR_AAP;
3053 goto allmulti;
3054 }
3055
3056 /*
3057 * Set up the multicast address filter by passing all multicast
3058 * addresses through a CRC generator, and then using the high-order
3059 * 6 bits as an index into the 128 bit multicast hash table (only
3060 * the lower 16 bits of each 32 bit multicast hash register are
3061 * valid). The high order bits select the register, while the
3062 * rest of the bits select the bit within the register.
3063 */
3064
3065 memset(mchash, 0, sizeof(mchash));
3066
3067 /*
3068 * SiS900 (at least SiS963) requires us to register the address of
3069 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3070 */
3071 crc = 0x0ed423f9;
3072
3073 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3074 SIP_SIS900_REV(sc, SIS_REV_960) ||
3075 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3076 /* Just want the 8 most significant bits. */
3077 crc >>= 24;
3078 } else {
3079 /* Just want the 7 most significant bits. */
3080 crc >>= 25;
3081 }
3082
3083 /* Set the corresponding bit in the hash table. */
3084 mchash[crc >> 4] |= 1 << (crc & 0xf);
3085
3086 ETHER_FIRST_MULTI(step, ec, enm);
3087 while (enm != NULL) {
3088 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3089 /*
3090 * We must listen to a range of multicast addresses.
3091 * For now, just accept all multicasts, rather than
3092 * trying to set only those filter bits needed to match
3093 * the range. (At this time, the only use of address
3094 * ranges is for IP multicast routing, for which the
3095 * range is big enough to require all bits set.)
3096 */
3097 goto allmulti;
3098 }
3099
3100 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3101
3102 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3103 SIP_SIS900_REV(sc, SIS_REV_960) ||
3104 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3105 /* Just want the 8 most significant bits. */
3106 crc >>= 24;
3107 } else {
3108 /* Just want the 7 most significant bits. */
3109 crc >>= 25;
3110 }
3111
3112 /* Set the corresponding bit in the hash table. */
3113 mchash[crc >> 4] |= 1 << (crc & 0xf);
3114
3115 ETHER_NEXT_MULTI(step, enm);
3116 }
3117
3118 ifp->if_flags &= ~IFF_ALLMULTI;
3119 goto setit;
3120
3121 allmulti:
3122 ifp->if_flags |= IFF_ALLMULTI;
3123 sc->sc_rfcr |= RFCR_AAM;
3124
3125 setit:
3126 #define FILTER_EMIT(addr, data) \
3127 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3128 delay(1); \
3129 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3130 delay(1)
3131
3132 /*
3133 * Disable receive filter, and program the node address.
3134 */
3135 cp = CLLADDR(ifp->if_sadl);
3136 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3137 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3138 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3139
3140 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3141 /*
3142 * Program the multicast hash table.
3143 */
3144 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3145 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3146 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3147 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3148 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3149 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3150 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3151 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3152 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3153 SIP_SIS900_REV(sc, SIS_REV_960) ||
3154 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3155 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3156 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3157 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3158 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3159 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3160 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3161 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3162 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3163 }
3164 }
3165 #undef FILTER_EMIT
3166
3167 /*
3168 * Re-enable the receiver filter.
3169 */
3170 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3171 }
3172
3173 /*
3174 * sip_dp83815_set_filter:
3175 *
3176 * Set up the receive filter.
3177 */
3178 static void
3179 sipcom_dp83815_set_filter(struct sip_softc *sc)
3180 {
3181 bus_space_tag_t st = sc->sc_st;
3182 bus_space_handle_t sh = sc->sc_sh;
3183 struct ethercom *ec = &sc->sc_ethercom;
3184 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3185 struct ether_multi *enm;
3186 const u_int8_t *cp;
3187 struct ether_multistep step;
3188 u_int32_t crc, hash, slot, bit;
3189 #define MCHASH_NWORDS_83820 128
3190 #define MCHASH_NWORDS_83815 32
3191 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3192 u_int16_t mchash[MCHASH_NWORDS];
3193 int i;
3194
3195 /*
3196 * Initialize the prototype RFCR.
3197 * Enable the receive filter, and accept on
3198 * Perfect (destination address) Match
3199 * If IFF_BROADCAST, also accept all broadcast packets.
3200 * If IFF_PROMISC, accept all unicast packets (and later, set
3201 * IFF_ALLMULTI and accept all multicast, too).
3202 */
3203 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3204 if (ifp->if_flags & IFF_BROADCAST)
3205 sc->sc_rfcr |= RFCR_AAB;
3206 if (ifp->if_flags & IFF_PROMISC) {
3207 sc->sc_rfcr |= RFCR_AAP;
3208 goto allmulti;
3209 }
3210
3211 /*
3212 * Set up the DP83820/DP83815 multicast address filter by
3213 * passing all multicast addresses through a CRC generator,
3214 * and then using the high-order 11/9 bits as an index into
3215 * the 2048/512 bit multicast hash table. The high-order
3216 * 7/5 bits select the slot, while the low-order 4 bits
3217 * select the bit within the slot. Note that only the low
3218 * 16-bits of each filter word are used, and there are
3219 * 128/32 filter words.
3220 */
3221
3222 memset(mchash, 0, sizeof(mchash));
3223
3224 ifp->if_flags &= ~IFF_ALLMULTI;
3225 ETHER_FIRST_MULTI(step, ec, enm);
3226 if (enm == NULL)
3227 goto setit;
3228 while (enm != NULL) {
3229 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3230 /*
3231 * We must listen to a range of multicast addresses.
3232 * For now, just accept all multicasts, rather than
3233 * trying to set only those filter bits needed to match
3234 * the range. (At this time, the only use of address
3235 * ranges is for IP multicast routing, for which the
3236 * range is big enough to require all bits set.)
3237 */
3238 goto allmulti;
3239 }
3240
3241 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3242
3243 if (sc->sc_gigabit) {
3244 /* Just want the 11 most significant bits. */
3245 hash = crc >> 21;
3246 } else {
3247 /* Just want the 9 most significant bits. */
3248 hash = crc >> 23;
3249 }
3250
3251 slot = hash >> 4;
3252 bit = hash & 0xf;
3253
3254 /* Set the corresponding bit in the hash table. */
3255 mchash[slot] |= 1 << bit;
3256
3257 ETHER_NEXT_MULTI(step, enm);
3258 }
3259 sc->sc_rfcr |= RFCR_MHEN;
3260 goto setit;
3261
3262 allmulti:
3263 ifp->if_flags |= IFF_ALLMULTI;
3264 sc->sc_rfcr |= RFCR_AAM;
3265
3266 setit:
3267 #define FILTER_EMIT(addr, data) \
3268 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3269 delay(1); \
3270 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3271 delay(1)
3272
3273 /*
3274 * Disable receive filter, and program the node address.
3275 */
3276 cp = CLLADDR(ifp->if_sadl);
3277 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3278 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3279 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3280
3281 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3282 int nwords =
3283 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3284 /*
3285 * Program the multicast hash table.
3286 */
3287 for (i = 0; i < nwords; i++) {
3288 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3289 }
3290 }
3291 #undef FILTER_EMIT
3292 #undef MCHASH_NWORDS
3293 #undef MCHASH_NWORDS_83815
3294 #undef MCHASH_NWORDS_83820
3295
3296 /*
3297 * Re-enable the receiver filter.
3298 */
3299 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3300 }
3301
3302 /*
3303 * sip_dp83820_mii_readreg: [mii interface function]
3304 *
3305 * Read a PHY register on the MII of the DP83820.
3306 */
3307 static int
3308 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3309 {
3310 struct sip_softc *sc = (void *) self;
3311
3312 if (sc->sc_cfg & CFG_TBI_EN) {
3313 bus_addr_t tbireg;
3314 int rv;
3315
3316 if (phy != 0)
3317 return (0);
3318
3319 switch (reg) {
3320 case MII_BMCR: tbireg = SIP_TBICR; break;
3321 case MII_BMSR: tbireg = SIP_TBISR; break;
3322 case MII_ANAR: tbireg = SIP_TANAR; break;
3323 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3324 case MII_ANER: tbireg = SIP_TANER; break;
3325 case MII_EXTSR:
3326 /*
3327 * Don't even bother reading the TESR register.
3328 * The manual documents that the device has
3329 * 1000baseX full/half capability, but the
3330 * register itself seems read back 0 on some
3331 * boards. Just hard-code the result.
3332 */
3333 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3334
3335 default:
3336 return (0);
3337 }
3338
3339 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3340 if (tbireg == SIP_TBISR) {
3341 /* LINK and ACOMP are switched! */
3342 int val = rv;
3343
3344 rv = 0;
3345 if (val & TBISR_MR_LINK_STATUS)
3346 rv |= BMSR_LINK;
3347 if (val & TBISR_MR_AN_COMPLETE)
3348 rv |= BMSR_ACOMP;
3349
3350 /*
3351 * The manual claims this register reads back 0
3352 * on hard and soft reset. But we want to let
3353 * the gentbi driver know that we support auto-
3354 * negotiation, so hard-code this bit in the
3355 * result.
3356 */
3357 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3358 }
3359
3360 return (rv);
3361 }
3362
3363 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3364 }
3365
3366 /*
3367 * sip_dp83820_mii_writereg: [mii interface function]
3368 *
3369 * Write a PHY register on the MII of the DP83820.
3370 */
3371 static void
3372 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3373 {
3374 struct sip_softc *sc = (void *) self;
3375
3376 if (sc->sc_cfg & CFG_TBI_EN) {
3377 bus_addr_t tbireg;
3378
3379 if (phy != 0)
3380 return;
3381
3382 switch (reg) {
3383 case MII_BMCR: tbireg = SIP_TBICR; break;
3384 case MII_ANAR: tbireg = SIP_TANAR; break;
3385 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3386 default:
3387 return;
3388 }
3389
3390 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3391 return;
3392 }
3393
3394 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3395 }
3396
3397 /*
3398 * sip_dp83820_mii_statchg: [mii interface function]
3399 *
3400 * Callback from MII layer when media changes.
3401 */
3402 static void
3403 sipcom_dp83820_mii_statchg(struct device *self)
3404 {
3405 struct sip_softc *sc = (struct sip_softc *) self;
3406 struct mii_data *mii = &sc->sc_mii;
3407 u_int32_t cfg, pcr;
3408
3409 /*
3410 * Get flow control negotiation result.
3411 */
3412 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3413 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3414 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3415 mii->mii_media_active &= ~IFM_ETH_FMASK;
3416 }
3417
3418 /*
3419 * Update TXCFG for full-duplex operation.
3420 */
3421 if ((mii->mii_media_active & IFM_FDX) != 0)
3422 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3423 else
3424 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3425
3426 /*
3427 * Update RXCFG for full-duplex or loopback.
3428 */
3429 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3430 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3431 sc->sc_rxcfg |= RXCFG_ATX;
3432 else
3433 sc->sc_rxcfg &= ~RXCFG_ATX;
3434
3435 /*
3436 * Update CFG for MII/GMII.
3437 */
3438 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3439 cfg = sc->sc_cfg | CFG_MODE_1000;
3440 else
3441 cfg = sc->sc_cfg;
3442
3443 /*
3444 * 802.3x flow control.
3445 */
3446 pcr = 0;
3447 if (sc->sc_flowflags & IFM_FLOW) {
3448 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3449 pcr |= sc->sc_rx_flow_thresh;
3450 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3451 pcr |= PCR_PSEN | PCR_PS_MCAST;
3452 }
3453
3454 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3455 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3456 sc->sc_txcfg);
3457 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3458 sc->sc_rxcfg);
3459 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3460 }
3461
3462 /*
3463 * sip_mii_bitbang_read: [mii bit-bang interface function]
3464 *
3465 * Read the MII serial port for the MII bit-bang module.
3466 */
3467 static u_int32_t
3468 sipcom_mii_bitbang_read(struct device *self)
3469 {
3470 struct sip_softc *sc = (void *) self;
3471
3472 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3473 }
3474
3475 /*
3476 * sip_mii_bitbang_write: [mii big-bang interface function]
3477 *
3478 * Write the MII serial port for the MII bit-bang module.
3479 */
3480 static void
3481 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3482 {
3483 struct sip_softc *sc = (void *) self;
3484
3485 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3486 }
3487
3488 /*
3489 * sip_sis900_mii_readreg: [mii interface function]
3490 *
3491 * Read a PHY register on the MII.
3492 */
3493 static int
3494 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3495 {
3496 struct sip_softc *sc = (struct sip_softc *) self;
3497 u_int32_t enphy;
3498
3499 /*
3500 * The PHY of recent SiS chipsets is accessed through bitbang
3501 * operations.
3502 */
3503 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3504 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3505 phy, reg);
3506
3507 #ifndef SIS900_MII_RESTRICT
3508 /*
3509 * The SiS 900 has only an internal PHY on the MII. Only allow
3510 * MII address 0.
3511 */
3512 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3513 return (0);
3514 #endif
3515
3516 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3517 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3518 ENPHY_RWCMD | ENPHY_ACCESS);
3519 do {
3520 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3521 } while (enphy & ENPHY_ACCESS);
3522 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3523 }
3524
3525 /*
3526 * sip_sis900_mii_writereg: [mii interface function]
3527 *
3528 * Write a PHY register on the MII.
3529 */
3530 static void
3531 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3532 {
3533 struct sip_softc *sc = (struct sip_softc *) self;
3534 u_int32_t enphy;
3535
3536 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3537 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3538 phy, reg, val);
3539 return;
3540 }
3541
3542 #ifndef SIS900_MII_RESTRICT
3543 /*
3544 * The SiS 900 has only an internal PHY on the MII. Only allow
3545 * MII address 0.
3546 */
3547 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3548 return;
3549 #endif
3550
3551 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3552 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3553 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3554 do {
3555 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3556 } while (enphy & ENPHY_ACCESS);
3557 }
3558
3559 /*
3560 * sip_sis900_mii_statchg: [mii interface function]
3561 *
3562 * Callback from MII layer when media changes.
3563 */
3564 static void
3565 sipcom_sis900_mii_statchg(struct device *self)
3566 {
3567 struct sip_softc *sc = (struct sip_softc *) self;
3568 struct mii_data *mii = &sc->sc_mii;
3569 u_int32_t flowctl;
3570
3571 /*
3572 * Get flow control negotiation result.
3573 */
3574 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3575 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3576 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3577 mii->mii_media_active &= ~IFM_ETH_FMASK;
3578 }
3579
3580 /*
3581 * Update TXCFG for full-duplex operation.
3582 */
3583 if ((mii->mii_media_active & IFM_FDX) != 0)
3584 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3585 else
3586 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3587
3588 /*
3589 * Update RXCFG for full-duplex or loopback.
3590 */
3591 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3592 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3593 sc->sc_rxcfg |= RXCFG_ATX;
3594 else
3595 sc->sc_rxcfg &= ~RXCFG_ATX;
3596
3597 /*
3598 * Update IMR for use of 802.3x flow control.
3599 */
3600 if (sc->sc_flowflags & IFM_FLOW) {
3601 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3602 flowctl = FLOWCTL_FLOWEN;
3603 } else {
3604 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3605 flowctl = 0;
3606 }
3607
3608 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3609 sc->sc_txcfg);
3610 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3611 sc->sc_rxcfg);
3612 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3613 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3614 }
3615
3616 /*
3617 * sip_dp83815_mii_readreg: [mii interface function]
3618 *
3619 * Read a PHY register on the MII.
3620 */
3621 static int
3622 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3623 {
3624 struct sip_softc *sc = (struct sip_softc *) self;
3625 u_int32_t val;
3626
3627 /*
3628 * The DP83815 only has an internal PHY. Only allow
3629 * MII address 0.
3630 */
3631 if (phy != 0)
3632 return (0);
3633
3634 /*
3635 * Apparently, after a reset, the DP83815 can take a while
3636 * to respond. During this recovery period, the BMSR returns
3637 * a value of 0. Catch this -- it's not supposed to happen
3638 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3639 * PHY to come back to life.
3640 *
3641 * This works out because the BMSR is the first register
3642 * read during the PHY probe process.
3643 */
3644 do {
3645 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3646 } while (reg == MII_BMSR && val == 0);
3647
3648 return (val & 0xffff);
3649 }
3650
3651 /*
3652 * sip_dp83815_mii_writereg: [mii interface function]
3653 *
3654 * Write a PHY register to the MII.
3655 */
3656 static void
3657 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3658 {
3659 struct sip_softc *sc = (struct sip_softc *) self;
3660
3661 /*
3662 * The DP83815 only has an internal PHY. Only allow
3663 * MII address 0.
3664 */
3665 if (phy != 0)
3666 return;
3667
3668 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3669 }
3670
3671 /*
3672 * sip_dp83815_mii_statchg: [mii interface function]
3673 *
3674 * Callback from MII layer when media changes.
3675 */
3676 static void
3677 sipcom_dp83815_mii_statchg(struct device *self)
3678 {
3679 struct sip_softc *sc = (struct sip_softc *) self;
3680
3681 /*
3682 * Update TXCFG for full-duplex operation.
3683 */
3684 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3685 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3686 else
3687 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3688
3689 /*
3690 * Update RXCFG for full-duplex or loopback.
3691 */
3692 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3693 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3694 sc->sc_rxcfg |= RXCFG_ATX;
3695 else
3696 sc->sc_rxcfg &= ~RXCFG_ATX;
3697
3698 /*
3699 * XXX 802.3x flow control.
3700 */
3701
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3703 sc->sc_txcfg);
3704 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3705 sc->sc_rxcfg);
3706
3707 /*
3708 * Some DP83815s experience problems when used with short
3709 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3710 * sequence adjusts the DSP's signal attenuation to fix the
3711 * problem.
3712 */
3713 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3714 uint32_t reg;
3715
3716 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3717
3718 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3719 reg &= 0x0fff;
3720 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3721 delay(100);
3722 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3723 reg &= 0x00ff;
3724 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3725 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3726 0x00e8);
3727 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3728 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3729 reg | 0x20);
3730 }
3731
3732 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3733 }
3734 }
3735
3736 static void
3737 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3738 const struct pci_attach_args *pa, u_int8_t *enaddr)
3739 {
3740 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3741 u_int8_t cksum, *e, match;
3742 int i;
3743
3744 /*
3745 * EEPROM data format for the DP83820 can be found in
3746 * the DP83820 manual, section 4.2.4.
3747 */
3748
3749 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3750
3751 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3752 match = ~(match - 1);
3753
3754 cksum = 0x55;
3755 e = (u_int8_t *) eeprom_data;
3756 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3757 cksum += *e++;
3758
3759 if (cksum != match)
3760 printf("%s: Checksum (%x) mismatch (%x)",
3761 sc->sc_dev.dv_xname, cksum, match);
3762
3763 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3764 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3765 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3766 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3767 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3768 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3769 }
3770
3771 static void
3772 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3773 {
3774 int i;
3775
3776 /*
3777 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3778 * a reason, but I don't know it.
3779 */
3780 for (i = 0; i < 10; i++)
3781 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3782 }
3783
3784 static void
3785 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3786 const struct pci_attach_args *pa, u_int8_t *enaddr)
3787 {
3788 u_int16_t myea[ETHER_ADDR_LEN / 2];
3789
3790 switch (sc->sc_rev) {
3791 case SIS_REV_630S:
3792 case SIS_REV_630E:
3793 case SIS_REV_630EA1:
3794 case SIS_REV_630ET:
3795 case SIS_REV_635:
3796 /*
3797 * The MAC address for the on-board Ethernet of
3798 * the SiS 630 chipset is in the NVRAM. Kick
3799 * the chip into re-loading it from NVRAM, and
3800 * read the MAC address out of the filter registers.
3801 */
3802 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3803
3804 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3805 RFCR_RFADDR_NODE0);
3806 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3807 0xffff;
3808
3809 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3810 RFCR_RFADDR_NODE2);
3811 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3812 0xffff;
3813
3814 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3815 RFCR_RFADDR_NODE4);
3816 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3817 0xffff;
3818 break;
3819
3820 case SIS_REV_960:
3821 {
3822 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3823 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3824
3825 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3826 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3827
3828 int waittime, i;
3829
3830 /* Allow to read EEPROM from LAN. It is shared
3831 * between a 1394 controller and the NIC and each
3832 * time we access it, we need to set SIS_EECMD_REQ.
3833 */
3834 SIS_SET_EROMAR(sc, EROMAR_REQ);
3835
3836 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3837 /* Force EEPROM to idle state. */
3838
3839 /*
3840 * XXX-cube This is ugly. I'll look for docs about it.
3841 */
3842 SIS_SET_EROMAR(sc, EROMAR_EECS);
3843 sipcom_sis900_eeprom_delay(sc);
3844 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3845 SIS_SET_EROMAR(sc, EROMAR_EESK);
3846 sipcom_sis900_eeprom_delay(sc);
3847 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3848 sipcom_sis900_eeprom_delay(sc);
3849 }
3850 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3851 sipcom_sis900_eeprom_delay(sc);
3852 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3853
3854 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3855 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3856 sizeof(myea) / sizeof(myea[0]), myea);
3857 break;
3858 }
3859 DELAY(1);
3860 }
3861
3862 /*
3863 * Set SIS_EECTL_CLK to high, so a other master
3864 * can operate on the i2c bus.
3865 */
3866 SIS_SET_EROMAR(sc, EROMAR_EESK);
3867
3868 /* Refuse EEPROM access by LAN */
3869 SIS_SET_EROMAR(sc, EROMAR_DONE);
3870 } break;
3871
3872 default:
3873 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3874 sizeof(myea) / sizeof(myea[0]), myea);
3875 }
3876
3877 enaddr[0] = myea[0] & 0xff;
3878 enaddr[1] = myea[0] >> 8;
3879 enaddr[2] = myea[1] & 0xff;
3880 enaddr[3] = myea[1] >> 8;
3881 enaddr[4] = myea[2] & 0xff;
3882 enaddr[5] = myea[2] >> 8;
3883 }
3884
3885 /* Table and macro to bit-reverse an octet. */
3886 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3887 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3888
3889 static void
3890 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3891 const struct pci_attach_args *pa, u_int8_t *enaddr)
3892 {
3893 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3894 u_int8_t cksum, *e, match;
3895 int i;
3896
3897 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3898 sizeof(eeprom_data[0]), eeprom_data);
3899
3900 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3901 match = ~(match - 1);
3902
3903 cksum = 0x55;
3904 e = (u_int8_t *) eeprom_data;
3905 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3906 cksum += *e++;
3907 }
3908 if (cksum != match) {
3909 printf("%s: Checksum (%x) mismatch (%x)",
3910 sc->sc_dev.dv_xname, cksum, match);
3911 }
3912
3913 /*
3914 * Unrolled because it makes slightly more sense this way.
3915 * The DP83815 stores the MAC address in bit 0 of word 6
3916 * through bit 15 of word 8.
3917 */
3918 ea = &eeprom_data[6];
3919 enaddr[0] = ((*ea & 0x1) << 7);
3920 ea++;
3921 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3922 enaddr[1] = ((*ea & 0x1FE) >> 1);
3923 enaddr[2] = ((*ea & 0x1) << 7);
3924 ea++;
3925 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3926 enaddr[3] = ((*ea & 0x1FE) >> 1);
3927 enaddr[4] = ((*ea & 0x1) << 7);
3928 ea++;
3929 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3930 enaddr[5] = ((*ea & 0x1FE) >> 1);
3931
3932 /*
3933 * In case that's not weird enough, we also need to reverse
3934 * the bits in each byte. This all actually makes more sense
3935 * if you think about the EEPROM storage as an array of bits
3936 * being shifted into bytes, but that's not how we're looking
3937 * at it here...
3938 */
3939 for (i = 0; i < 6 ;i++)
3940 enaddr[i] = bbr(enaddr[i]);
3941 }
3942
3943 /*
3944 * sip_mediastatus: [ifmedia interface function]
3945 *
3946 * Get the current interface media status.
3947 */
3948 static void
3949 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3950 {
3951 struct sip_softc *sc = ifp->if_softc;
3952
3953 mii_pollstat(&sc->sc_mii);
3954 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3955 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3956 sc->sc_flowflags;
3957 }
3958
3959 /*
3960 * sip_mediachange: [ifmedia interface function]
3961 *
3962 * Set hardware to newly-selected media.
3963 */
3964 static int
3965 sipcom_mediachange(struct ifnet *ifp)
3966 {
3967 struct sip_softc *sc = ifp->if_softc;
3968
3969 if (ifp->if_flags & IFF_UP)
3970 mii_mediachg(&sc->sc_mii);
3971 return (0);
3972 }
3973