Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.122
      1 /*	$NetBSD: if_sip.c,v 1.122 2007/12/15 21:51:45 he Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.122 2007/12/15 21:51:45 he Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <sys/bus.h>
    116 #include <sys/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 /*
    130  * Transmit descriptor list size.  This is arbitrary, but allocate
    131  * enough descriptors for 128 pending transmissions, and 8 segments
    132  * per packet (64 for DP83820 for jumbo frames).
    133  *
    134  * This MUST work out to a power of 2.
    135  */
    136 #define	GSIP_NTXSEGS_ALLOC 16
    137 #define	SIP_NTXSEGS_ALLOC 8
    138 
    139 #define	SIP_TXQUEUELEN		256
    140 #define	MAX_SIP_NTXDESC	\
    141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    142 
    143 /*
    144  * Receive descriptor list size.  We have one Rx buffer per incoming
    145  * packet, so this logic is a little simpler.
    146  *
    147  * Actually, on the DP83820, we allow the packet to consume more than
    148  * one buffer, in order to support jumbo Ethernet frames.  In that
    149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    151  * so we'd better be quick about handling receive interrupts.
    152  */
    153 #define	GSIP_NRXDESC		256
    154 #define	SIP_NRXDESC		128
    155 
    156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    157 
    158 /*
    159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    160  * a single clump that maps to a single DMA segment to make several things
    161  * easier.
    162  */
    163 struct sip_control_data {
    164 	/*
    165 	 * The transmit descriptors.
    166 	 */
    167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    168 
    169 	/*
    170 	 * The receive descriptors.
    171 	 */
    172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    173 };
    174 
    175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    178 
    179 /*
    180  * Software state for transmit jobs.
    181  */
    182 struct sip_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    188 };
    189 
    190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    191 
    192 /*
    193  * Software state for receive jobs.
    194  */
    195 struct sip_rxsoft {
    196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    198 };
    199 
    200 enum sip_attach_stage {
    201 	  SIP_ATTACH_FIN = 0
    202 	, SIP_ATTACH_CREATE_RXMAP
    203 	, SIP_ATTACH_CREATE_TXMAP
    204 	, SIP_ATTACH_LOAD_MAP
    205 	, SIP_ATTACH_CREATE_MAP
    206 	, SIP_ATTACH_MAP_MEM
    207 	, SIP_ATTACH_ALLOC_MEM
    208 	, SIP_ATTACH_INTR
    209 	, SIP_ATTACH_MAP
    210 };
    211 
    212 /*
    213  * Software state per device.
    214  */
    215 struct sip_softc {
    216 	struct device sc_dev;		/* generic device information */
    217 	bus_space_tag_t sc_st;		/* bus space tag */
    218 	bus_space_handle_t sc_sh;	/* bus space handle */
    219 	bus_size_t sc_sz;		/* bus space size */
    220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    221 	pci_chipset_tag_t sc_pc;
    222 	bus_dma_segment_t sc_seg;
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_gigabit;			/* 1: 83820, 0: other */
    228 	int sc_rev;			/* chip revision */
    229 
    230 	void *sc_ih;			/* interrupt cookie */
    231 
    232 	struct mii_data sc_mii;		/* MII/media information */
    233 
    234 	callout_t sc_tick_ch;		/* tick callout */
    235 
    236 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    237 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    238 
    239 	/*
    240 	 * Software state for transmit and receive descriptors.
    241 	 */
    242 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    243 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    244 
    245 	/*
    246 	 * Control data structures.
    247 	 */
    248 	struct sip_control_data *sc_control_data;
    249 #define	sc_txdescs	sc_control_data->scd_txdescs
    250 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    251 
    252 #ifdef SIP_EVENT_COUNTERS
    253 	/*
    254 	 * Event counters.
    255 	 */
    256 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    257 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    258 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    259 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    260 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    261 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    262 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    263 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    264 	/* DP83820 only */
    265 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* SIP_EVENT_COUNTERS */
    273 
    274 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    275 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    276 	u_int32_t sc_imr;		/* prototype IMR register */
    277 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    278 
    279 	u_int32_t sc_cfg;		/* prototype CFG register */
    280 
    281 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    282 
    283 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    284 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    285 
    286 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    287 
    288 	int	sc_flowflags;		/* 802.3x flow control flags */
    289 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    290 	int	sc_paused;		/* paused indication */
    291 
    292 	int	sc_txfree;		/* number of free Tx descriptors */
    293 	int	sc_txnext;		/* next ready Tx descriptor */
    294 	int	sc_txwin;		/* Tx descriptors since last intr */
    295 
    296 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    297 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    298 
    299 	/* values of interface state at last init */
    300 	struct {
    301 		/* if_capenable */
    302 		uint64_t	if_capenable;
    303 		/* ec_capenable */
    304 		int		ec_capenable;
    305 		/* VLAN_ATTACHED */
    306 		int		is_vlan;
    307 	}	sc_prev;
    308 
    309 	short	sc_if_flags;
    310 
    311 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    312 	int	sc_rxdiscard;
    313 	int	sc_rxlen;
    314 	struct mbuf *sc_rxhead;
    315 	struct mbuf *sc_rxtail;
    316 	struct mbuf **sc_rxtailp;
    317 
    318 	int sc_ntxdesc;
    319 	int sc_ntxdesc_mask;
    320 
    321 	int sc_nrxdesc_mask;
    322 
    323 	const struct sip_parm {
    324 		const struct sip_regs {
    325 			int r_rxcfg;
    326 			int r_txcfg;
    327 		} p_regs;
    328 
    329 		const struct sip_bits {
    330 			uint32_t b_txcfg_mxdma_8;
    331 			uint32_t b_txcfg_mxdma_16;
    332 			uint32_t b_txcfg_mxdma_32;
    333 			uint32_t b_txcfg_mxdma_64;
    334 			uint32_t b_txcfg_mxdma_128;
    335 			uint32_t b_txcfg_mxdma_256;
    336 			uint32_t b_txcfg_mxdma_512;
    337 			uint32_t b_txcfg_flth_mask;
    338 			uint32_t b_txcfg_drth_mask;
    339 
    340 			uint32_t b_rxcfg_mxdma_8;
    341 			uint32_t b_rxcfg_mxdma_16;
    342 			uint32_t b_rxcfg_mxdma_32;
    343 			uint32_t b_rxcfg_mxdma_64;
    344 			uint32_t b_rxcfg_mxdma_128;
    345 			uint32_t b_rxcfg_mxdma_256;
    346 			uint32_t b_rxcfg_mxdma_512;
    347 
    348 			uint32_t b_isr_txrcmp;
    349 			uint32_t b_isr_rxrcmp;
    350 			uint32_t b_isr_dperr;
    351 			uint32_t b_isr_sserr;
    352 			uint32_t b_isr_rmabt;
    353 			uint32_t b_isr_rtabt;
    354 
    355 			uint32_t b_cmdsts_size_mask;
    356 		} p_bits;
    357 		int		p_filtmem;
    358 		int		p_rxbuf_len;
    359 		bus_size_t	p_tx_dmamap_size;
    360 		int		p_ntxsegs;
    361 		int		p_ntxsegs_alloc;
    362 		int		p_nrxdesc;
    363 	} *sc_parm;
    364 
    365 	void (*sc_rxintr)(struct sip_softc *);
    366 
    367 #if NRND > 0
    368 	rndsource_element_t rnd_source;	/* random source */
    369 #endif
    370 };
    371 
    372 #define	sc_bits	sc_parm->p_bits
    373 #define	sc_regs	sc_parm->p_regs
    374 
    375 static const struct sip_parm sip_parm = {
    376 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    377 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    378 	, .p_tx_dmamap_size = MCLBYTES
    379 	, .p_ntxsegs = 16
    380 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    381 	, .p_nrxdesc = SIP_NRXDESC
    382 	, .p_bits = {
    383 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    384 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    385 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    386 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    387 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    388 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    389 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    390 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    391 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    392 
    393 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    394 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    395 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    396 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    397 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    398 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    399 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    400 
    401 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    402 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    403 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    404 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    405 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    406 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    407 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    408 	}
    409 	, .p_regs = {
    410 		.r_rxcfg = OTHER_SIP_RXCFG,
    411 		.r_txcfg = OTHER_SIP_TXCFG
    412 	}
    413 }, gsip_parm = {
    414 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    415 	, .p_rxbuf_len = MCLBYTES - 8
    416 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    417 	, .p_ntxsegs = 64
    418 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    419 	, .p_nrxdesc = GSIP_NRXDESC
    420 	, .p_bits = {
    421 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    422 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    423 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    424 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    425 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    426 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    427 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    428 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    429 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    430 
    431 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    432 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    433 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    434 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    435 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    436 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    437 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    438 
    439 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    440 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    441 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    442 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    443 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    444 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    445 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    446 	}
    447 	, .p_regs = {
    448 		.r_rxcfg = DP83820_SIP_RXCFG,
    449 		.r_txcfg = DP83820_SIP_TXCFG
    450 	}
    451 };
    452 
    453 static inline int
    454 sip_nexttx(const struct sip_softc *sc, int x)
    455 {
    456 	return (x + 1) & sc->sc_ntxdesc_mask;
    457 }
    458 
    459 static inline int
    460 sip_nextrx(const struct sip_softc *sc, int x)
    461 {
    462 	return (x + 1) & sc->sc_nrxdesc_mask;
    463 }
    464 
    465 /* 83820 only */
    466 #define	SIP_RXCHAIN_RESET(sc)						\
    467 do {									\
    468 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    469 	*(sc)->sc_rxtailp = NULL;					\
    470 	(sc)->sc_rxlen = 0;						\
    471 } while (/*CONSTCOND*/0)
    472 
    473 /* 83820 only */
    474 #define	SIP_RXCHAIN_LINK(sc, m)						\
    475 do {									\
    476 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    477 	(sc)->sc_rxtailp = &(m)->m_next;				\
    478 } while (/*CONSTCOND*/0)
    479 
    480 #ifdef SIP_EVENT_COUNTERS
    481 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    482 #else
    483 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    484 #endif
    485 
    486 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    487 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    488 
    489 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    490 do {									\
    491 	int __x, __n;							\
    492 									\
    493 	__x = (x);							\
    494 	__n = (n);							\
    495 									\
    496 	/* If it will wrap around, sync to the end of the ring. */	\
    497 	if ((__x + __n) > sc->sc_ntxdesc) {				\
    498 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    499 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    500 		    (sc->sc_ntxdesc - __x), (ops));			\
    501 		__n -= (sc->sc_ntxdesc - __x);				\
    502 		__x = 0;						\
    503 	}								\
    504 									\
    505 	/* Now sync whatever is left. */				\
    506 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    507 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    508 } while (0)
    509 
    510 #define	SIP_CDRXSYNC(sc, x, ops)					\
    511 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    512 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    513 
    514 #if 0
    515 #ifdef DP83820
    516 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    517 	u_int32_t	sipd_cmdsts;	/* command/status word */
    518 #else
    519 	u_int32_t	sipd_cmdsts;	/* command/status word */
    520 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    521 #endif /* DP83820 */
    522 #endif /* 0 */
    523 
    524 static inline volatile uint32_t *
    525 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    526 {
    527 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    528 }
    529 
    530 static inline volatile uint32_t *
    531 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    532 {
    533 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    534 }
    535 
    536 static inline void
    537 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
    538 {
    539 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    540 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    541 
    542 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    543 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    544 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    545 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    546 	sipd->sipd_extsts = 0;
    547 	SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    548 }
    549 
    550 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    551 	((sc)->sc_model->sip_vendor == (v) &&				\
    552 	 (sc)->sc_model->sip_product == (p) &&				\
    553 	 (sc)->sc_rev == (r))
    554 
    555 #define	SIP_CHIP_MODEL(sc, v, p)					\
    556 	((sc)->sc_model->sip_vendor == (v) &&				\
    557 	 (sc)->sc_model->sip_product == (p))
    558 
    559 #define	SIP_SIS900_REV(sc, rev)						\
    560 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    561 
    562 #define SIP_TIMEOUT 1000
    563 
    564 static void	sipcom_start(struct ifnet *);
    565 static void	sipcom_watchdog(struct ifnet *);
    566 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    567 static int	sipcom_init(struct ifnet *);
    568 static void	sipcom_stop(struct ifnet *, int);
    569 
    570 static void	sipcom_shutdown(void *);
    571 
    572 static bool	sipcom_reset(struct sip_softc *);
    573 static void	sipcom_rxdrain(struct sip_softc *);
    574 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    575 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    576 				      u_int16_t *);
    577 static void	sipcom_tick(void *);
    578 
    579 static void	sipcom_sis900_set_filter(struct sip_softc *);
    580 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    581 
    582 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    583 		    const struct pci_attach_args *, u_int8_t *);
    584 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    585 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    586 		    const struct pci_attach_args *, u_int8_t *);
    587 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    588 		    const struct pci_attach_args *, u_int8_t *);
    589 
    590 static int	sipcom_intr(void *);
    591 static void	sipcom_txintr(struct sip_softc *);
    592 static void	sip_rxintr(struct sip_softc *);
    593 static void	gsip_rxintr(struct sip_softc *);
    594 
    595 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
    596 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
    597 static void	sipcom_dp83820_mii_statchg(struct device *);
    598 
    599 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
    600 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
    601 static void	sipcom_sis900_mii_statchg(struct device *);
    602 
    603 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
    604 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
    605 static void	sipcom_dp83815_mii_statchg(struct device *);
    606 
    607 static int	sipcom_mediachange(struct ifnet *);
    608 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    609 
    610 static int	sipcom_match(struct device *, struct cfdata *, void *);
    611 static void	sipcom_attach(struct device *, struct device *, void *);
    612 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    613 static int	sipcom_detach(device_t, int);
    614 static bool	sipcom_resume(device_t);
    615 
    616 static int	gsip_copy_small = 0; /* XXX make non-static! */
    617 #ifdef __NO_STRICT_ALIGNMENT
    618 static int	sip_copy_small = 0; /* XXX make non-static! */
    619 #endif
    620 
    621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    622     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    624     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    625 
    626 /*
    627  * Descriptions of the variants of the SiS900.
    628  */
    629 struct sip_variant {
    630 	int	(*sipv_mii_readreg)(struct device *, int, int);
    631 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    632 	void	(*sipv_mii_statchg)(struct device *);
    633 	void	(*sipv_set_filter)(struct sip_softc *);
    634 	void	(*sipv_read_macaddr)(struct sip_softc *,
    635 		    const struct pci_attach_args *, u_int8_t *);
    636 };
    637 
    638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
    639 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
    640 
    641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    642 	sipcom_mii_bitbang_read,
    643 	sipcom_mii_bitbang_write,
    644 	{
    645 		EROMAR_MDIO,		/* MII_BIT_MDO */
    646 		EROMAR_MDIO,		/* MII_BIT_MDI */
    647 		EROMAR_MDC,		/* MII_BIT_MDC */
    648 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    649 		0,			/* MII_BIT_DIR_PHY_HOST */
    650 	}
    651 };
    652 
    653 static const struct sip_variant sipcom_variant_dp83820 = {
    654 	sipcom_dp83820_mii_readreg,
    655 	sipcom_dp83820_mii_writereg,
    656 	sipcom_dp83820_mii_statchg,
    657 	sipcom_dp83815_set_filter,
    658 	sipcom_dp83820_read_macaddr,
    659 };
    660 
    661 static const struct sip_variant sipcom_variant_sis900 = {
    662 	sipcom_sis900_mii_readreg,
    663 	sipcom_sis900_mii_writereg,
    664 	sipcom_sis900_mii_statchg,
    665 	sipcom_sis900_set_filter,
    666 	sipcom_sis900_read_macaddr,
    667 };
    668 
    669 static const struct sip_variant sipcom_variant_dp83815 = {
    670 	sipcom_dp83815_mii_readreg,
    671 	sipcom_dp83815_mii_writereg,
    672 	sipcom_dp83815_mii_statchg,
    673 	sipcom_dp83815_set_filter,
    674 	sipcom_dp83815_read_macaddr,
    675 };
    676 
    677 
    678 /*
    679  * Devices supported by this driver.
    680  */
    681 static const struct sip_product {
    682 	pci_vendor_id_t		sip_vendor;
    683 	pci_product_id_t	sip_product;
    684 	const char		*sip_name;
    685 	const struct sip_variant *sip_variant;
    686 	int			sip_gigabit;
    687 } sipcom_products[] = {
    688 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    689 	  "NatSemi DP83820 Gigabit Ethernet",
    690 	  &sipcom_variant_dp83820, 1 },
    691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    692 	  "SiS 900 10/100 Ethernet",
    693 	  &sipcom_variant_sis900, 0 },
    694 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    695 	  "SiS 7016 10/100 Ethernet",
    696 	  &sipcom_variant_sis900, 0 },
    697 
    698 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    699 	  "NatSemi DP83815 10/100 Ethernet",
    700 	  &sipcom_variant_dp83815, 0 },
    701 
    702 	{ 0,			0,
    703 	  NULL,
    704 	  NULL, 0 },
    705 };
    706 
    707 static const struct sip_product *
    708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    709 {
    710 	const struct sip_product *sip;
    711 
    712 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    713 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    714 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    715 		    sip->sip_gigabit == gigabit)
    716 			return sip;
    717 	}
    718 	return NULL;
    719 }
    720 
    721 /*
    722  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    723  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    724  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    725  * which means we try to use 64-bit data transfers on those cards if we
    726  * happen to be plugged into a 32-bit slot.
    727  *
    728  * What we do is use this table of cards known to be 64-bit cards.  If
    729  * you have a 64-bit card who's subsystem ID is not listed in this table,
    730  * send the output of "pcictl dump ..." of the device to me so that your
    731  * card will use the 64-bit data path when plugged into a 64-bit slot.
    732  *
    733  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    734  *	   June 30, 2002
    735  */
    736 static int
    737 sipcom_check_64bit(const struct pci_attach_args *pa)
    738 {
    739 	static const struct {
    740 		pci_vendor_id_t c64_vendor;
    741 		pci_product_id_t c64_product;
    742 	} card64[] = {
    743 		/* Asante GigaNIX */
    744 		{ 0x128a,	0x0002 },
    745 
    746 		/* Accton EN1407-T, Planex GN-1000TE */
    747 		{ 0x1113,	0x1407 },
    748 
    749 		/* Netgear GA-621 */
    750 		{ 0x1385,	0x621a },
    751 
    752 		/* SMC EZ Card */
    753 		{ 0x10b8,	0x9462 },
    754 
    755 		{ 0, 0}
    756 	};
    757 	pcireg_t subsys;
    758 	int i;
    759 
    760 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    761 
    762 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    763 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    764 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    765 			return (1);
    766 	}
    767 
    768 	return (0);
    769 }
    770 
    771 static int
    772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
    773 {
    774 	struct pci_attach_args *pa = aux;
    775 
    776 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    777 		return 1;
    778 
    779 	return 0;
    780 }
    781 
    782 static void
    783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    784 {
    785 	u_int32_t reg;
    786 	int i;
    787 
    788 	/*
    789 	 * Cause the chip to load configuration data from the EEPROM.
    790 	 */
    791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    792 	for (i = 0; i < 10000; i++) {
    793 		delay(10);
    794 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    795 		    PTSCR_EELOAD_EN) == 0)
    796 			break;
    797 	}
    798 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    799 	    PTSCR_EELOAD_EN) {
    800 		printf("%s: timeout loading configuration from EEPROM\n",
    801 		    sc->sc_dev.dv_xname);
    802 		return;
    803 	}
    804 
    805 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    806 
    807 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    808 	if (reg & CFG_PCI64_DET) {
    809 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    810 		/*
    811 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    812 		 * data transfers.
    813 		 *
    814 		 * We can't use the DATA64_EN bit in the EEPROM, because
    815 		 * vendors of 32-bit cards fail to clear that bit in many
    816 		 * cases (yet the card still detects that it's in a 64-bit
    817 		 * slot; go figure).
    818 		 */
    819 		if (sipcom_check_64bit(pa)) {
    820 			sc->sc_cfg |= CFG_DATA64_EN;
    821 			printf(", using 64-bit data transfers");
    822 		}
    823 		printf("\n");
    824 	}
    825 
    826 	/*
    827 	 * XXX Need some PCI flags indicating support for
    828 	 * XXX 64-bit addressing.
    829 	 */
    830 #if 0
    831 	if (reg & CFG_M64ADDR)
    832 		sc->sc_cfg |= CFG_M64ADDR;
    833 	if (reg & CFG_T64ADDR)
    834 		sc->sc_cfg |= CFG_T64ADDR;
    835 #endif
    836 
    837 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    838 		const char *sep = "";
    839 		printf("%s: using ", sc->sc_dev.dv_xname);
    840 		if (reg & CFG_EXT_125) {
    841 			sc->sc_cfg |= CFG_EXT_125;
    842 			printf("%s125MHz clock", sep);
    843 			sep = ", ";
    844 		}
    845 		if (reg & CFG_TBI_EN) {
    846 			sc->sc_cfg |= CFG_TBI_EN;
    847 			printf("%sten-bit interface", sep);
    848 			sep = ", ";
    849 		}
    850 		printf("\n");
    851 	}
    852 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    853 	    (reg & CFG_MRM_DIS) != 0)
    854 		sc->sc_cfg |= CFG_MRM_DIS;
    855 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    856 	    (reg & CFG_MWI_DIS) != 0)
    857 		sc->sc_cfg |= CFG_MWI_DIS;
    858 
    859 	/*
    860 	 * Use the extended descriptor format on the DP83820.  This
    861 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    862 	 * checksumming.
    863 	 */
    864 	sc->sc_cfg |= CFG_EXTSTS_EN;
    865 }
    866 
    867 static int
    868 sipcom_detach(device_t self, int flags)
    869 {
    870 	int s;
    871 
    872 	s = splnet();
    873 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    874 	splx(s);
    875 
    876 	return 0;
    877 }
    878 
    879 static void
    880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    881 {
    882 	int i;
    883 	struct sip_softc *sc = device_private(self);
    884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    885 
    886 	/*
    887 	 * Free any resources we've allocated during attach.
    888 	 * Do this in reverse order and fall through.
    889 	 */
    890 	switch (stage) {
    891 	case SIP_ATTACH_FIN:
    892 		sipcom_stop(ifp, 1);
    893 		pmf_device_deregister(self);
    894 #ifdef SIP_EVENT_COUNTERS
    895 		/*
    896 		 * Attach event counters.
    897 		 */
    898 		evcnt_detach(&sc->sc_ev_txforceintr);
    899 		evcnt_detach(&sc->sc_ev_txdstall);
    900 		evcnt_detach(&sc->sc_ev_txsstall);
    901 		evcnt_detach(&sc->sc_ev_hiberr);
    902 		evcnt_detach(&sc->sc_ev_rxintr);
    903 		evcnt_detach(&sc->sc_ev_txiintr);
    904 		evcnt_detach(&sc->sc_ev_txdintr);
    905 		if (!sc->sc_gigabit) {
    906 			evcnt_detach(&sc->sc_ev_rxpause);
    907 		} else {
    908 			evcnt_detach(&sc->sc_ev_txudpsum);
    909 			evcnt_detach(&sc->sc_ev_txtcpsum);
    910 			evcnt_detach(&sc->sc_ev_txipsum);
    911 			evcnt_detach(&sc->sc_ev_rxudpsum);
    912 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    913 			evcnt_detach(&sc->sc_ev_rxipsum);
    914 			evcnt_detach(&sc->sc_ev_txpause);
    915 			evcnt_detach(&sc->sc_ev_rxpause);
    916 		}
    917 #endif /* SIP_EVENT_COUNTERS */
    918 
    919 #if NRND > 0
    920 		rnd_detach_source(&sc->rnd_source);
    921 #endif
    922 
    923 		ether_ifdetach(ifp);
    924 		if_detach(ifp);
    925 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    926 
    927 		if (sc->sc_sdhook != NULL)
    928 			shutdownhook_disestablish(sc->sc_sdhook);
    929 
    930 		/*FALLTHROUGH*/
    931 	case SIP_ATTACH_CREATE_RXMAP:
    932 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    933 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    934 				bus_dmamap_destroy(sc->sc_dmat,
    935 				    sc->sc_rxsoft[i].rxs_dmamap);
    936 		}
    937 		/*FALLTHROUGH*/
    938 	case SIP_ATTACH_CREATE_TXMAP:
    939 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    940 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    941 				bus_dmamap_destroy(sc->sc_dmat,
    942 				    sc->sc_txsoft[i].txs_dmamap);
    943 		}
    944 		/*FALLTHROUGH*/
    945 	case SIP_ATTACH_LOAD_MAP:
    946 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    947 		/*FALLTHROUGH*/
    948 	case SIP_ATTACH_CREATE_MAP:
    949 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    950 		/*FALLTHROUGH*/
    951 	case SIP_ATTACH_MAP_MEM:
    952 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    953 		    sizeof(struct sip_control_data));
    954 		/*FALLTHROUGH*/
    955 	case SIP_ATTACH_ALLOC_MEM:
    956 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    957 		/* FALLTHROUGH*/
    958 	case SIP_ATTACH_INTR:
    959 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    960 		/* FALLTHROUGH*/
    961 	case SIP_ATTACH_MAP:
    962 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    963 		break;
    964 	default:
    965 		break;
    966 	}
    967 	return;
    968 }
    969 
    970 static bool
    971 sipcom_resume(device_t self)
    972 {
    973 	struct sip_softc *sc = device_private(self);
    974 
    975 	return sipcom_reset(sc);
    976 }
    977 
    978 static void
    979 sipcom_attach(device_t parent, device_t self, void *aux)
    980 {
    981 	struct sip_softc *sc = (struct sip_softc *) self;
    982 	struct pci_attach_args *pa = aux;
    983 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    984 	pci_chipset_tag_t pc = pa->pa_pc;
    985 	pci_intr_handle_t ih;
    986 	const char *intrstr = NULL;
    987 	bus_space_tag_t iot, memt;
    988 	bus_space_handle_t ioh, memh;
    989 	bus_size_t iosz, memsz;
    990 	int ioh_valid, memh_valid;
    991 	int i, rseg, error;
    992 	const struct sip_product *sip;
    993 	u_int8_t enaddr[ETHER_ADDR_LEN];
    994 	pcireg_t pmreg;
    995 	pcireg_t memtype;
    996 	bus_size_t tx_dmamap_size;
    997 	int ntxsegs_alloc;
    998 	cfdata_t cf = device_cfdata(self);
    999 
   1000 	callout_init(&sc->sc_tick_ch, 0);
   1001 
   1002 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1003 	if (sip == NULL) {
   1004 		printf("\n");
   1005 		panic("%s: impossible", __func__);
   1006 	}
   1007 	sc->sc_gigabit = sip->sip_gigabit;
   1008 
   1009 	sc->sc_pc = pc;
   1010 
   1011 	if (sc->sc_gigabit) {
   1012 		sc->sc_rxintr = gsip_rxintr;
   1013 		sc->sc_parm = &gsip_parm;
   1014 	} else {
   1015 		sc->sc_rxintr = sip_rxintr;
   1016 		sc->sc_parm = &sip_parm;
   1017 	}
   1018 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1019 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1020 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1021 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1022 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1023 
   1024 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1025 
   1026 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1027 
   1028 	sc->sc_model = sip;
   1029 
   1030 	/*
   1031 	 * XXX Work-around broken PXE firmware on some boards.
   1032 	 *
   1033 	 * The DP83815 shares an address decoder with the MEM BAR
   1034 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1035 	 * so that memory mapped access works.
   1036 	 */
   1037 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1038 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1039 	    ~PCI_MAPREG_ROM_ENABLE);
   1040 
   1041 	/*
   1042 	 * Map the device.
   1043 	 */
   1044 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1045 	    PCI_MAPREG_TYPE_IO, 0,
   1046 	    &iot, &ioh, NULL, &iosz) == 0);
   1047 	if (sc->sc_gigabit) {
   1048 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1049 		switch (memtype) {
   1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1052 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1053 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1054 			break;
   1055 		default:
   1056 			memh_valid = 0;
   1057 		}
   1058 	} else {
   1059 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1060 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1061 		    &memt, &memh, NULL, &memsz) == 0);
   1062 	}
   1063 
   1064 	if (memh_valid) {
   1065 		sc->sc_st = memt;
   1066 		sc->sc_sh = memh;
   1067 		sc->sc_sz = memsz;
   1068 	} else if (ioh_valid) {
   1069 		sc->sc_st = iot;
   1070 		sc->sc_sh = ioh;
   1071 		sc->sc_sz = iosz;
   1072 	} else {
   1073 		printf("%s: unable to map device registers\n",
   1074 		    sc->sc_dev.dv_xname);
   1075 		return;
   1076 	}
   1077 
   1078 	sc->sc_dmat = pa->pa_dmat;
   1079 
   1080 	/*
   1081 	 * Make sure bus mastering is enabled.  Also make sure
   1082 	 * Write/Invalidate is enabled if we're allowed to use it.
   1083 	 */
   1084 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1085 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1086 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
   1087 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1088 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
   1089 
   1090 	/* power up chip */
   1091 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1092 	    NULL)) && error != EOPNOTSUPP) {
   1093 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1094 		    error);
   1095 		return;
   1096 	}
   1097 
   1098 	/*
   1099 	 * Map and establish our interrupt.
   1100 	 */
   1101 	if (pci_intr_map(pa, &ih)) {
   1102 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
   1103 		return;
   1104 	}
   1105 	intrstr = pci_intr_string(pc, ih);
   1106 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1107 	if (sc->sc_ih == NULL) {
   1108 		printf("%s: unable to establish interrupt",
   1109 		    sc->sc_dev.dv_xname);
   1110 		if (intrstr != NULL)
   1111 			printf(" at %s", intrstr);
   1112 		printf("\n");
   1113 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1114 	}
   1115 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1116 
   1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1119 
   1120 	/*
   1121 	 * Allocate the control data structures, and create and load the
   1122 	 * DMA map for it.
   1123 	 */
   1124 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1125 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1126 	    &rseg, 0)) != 0) {
   1127 		printf("%s: unable to allocate control data, error = %d\n",
   1128 		    sc->sc_dev.dv_xname, error);
   1129 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1130 	}
   1131 
   1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1134 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1135 		printf("%s: unable to map control data, error = %d\n",
   1136 		    sc->sc_dev.dv_xname, error);
   1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1138 	}
   1139 
   1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1141 	    sizeof(struct sip_control_data), 1,
   1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1143 		printf("%s: unable to create control data DMA map, "
   1144 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1146 	}
   1147 
   1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1150 	    0)) != 0) {
   1151 		printf("%s: unable to load control data DMA map, error = %d\n",
   1152 		    sc->sc_dev.dv_xname, error);
   1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1154 	}
   1155 
   1156 	/*
   1157 	 * Create the transmit buffer DMA maps.
   1158 	 */
   1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1163 			printf("%s: unable to create tx DMA map %d, "
   1164 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1166 		}
   1167 	}
   1168 
   1169 	/*
   1170 	 * Create the receive buffer DMA maps.
   1171 	 */
   1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1175 			printf("%s: unable to create rx DMA map %d, "
   1176 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1178 		}
   1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1180 	}
   1181 
   1182 	/*
   1183 	 * Reset the chip to a known state.
   1184 	 */
   1185 	sipcom_reset(sc);
   1186 
   1187 	/*
   1188 	 * Read the Ethernet address from the EEPROM.  This might
   1189 	 * also fetch other stuff from the EEPROM and stash it
   1190 	 * in the softc.
   1191 	 */
   1192 	sc->sc_cfg = 0;
   1193 	if (!sc->sc_gigabit) {
   1194 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1195 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1197 
   1198 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1199 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1201 			sc->sc_cfg |=
   1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1203 			     CFG_EDBMASTEN);
   1204 	}
   1205 
   1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1207 
   1208 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1209 	    ether_sprintf(enaddr));
   1210 
   1211 	/*
   1212 	 * Initialize the configuration register: aggressive PCI
   1213 	 * bus request algorithm, default backoff, default OW timer,
   1214 	 * default parity error detection.
   1215 	 *
   1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1217 	 * friends -- it affects packet data, not descriptors.
   1218 	 */
   1219 	if (sc->sc_gigabit)
   1220 		sipcom_dp83820_attach(sc, pa);
   1221 
   1222 	/*
   1223 	 * Initialize our media structures and probe the MII.
   1224 	 */
   1225 	sc->sc_mii.mii_ifp = ifp;
   1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1229 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
   1230 	    sipcom_mediastatus);
   1231 
   1232 	/*
   1233 	 * XXX We cannot handle flow control on the DP83815.
   1234 	 */
   1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1236 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1237 			   MII_OFFSET_ANY, 0);
   1238 	else
   1239 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1241 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1242 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1244 	} else
   1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1246 
   1247 	ifp = &sc->sc_ethercom.ec_if;
   1248 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1249 	ifp->if_softc = sc;
   1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1251 	sc->sc_if_flags = ifp->if_flags;
   1252 	ifp->if_ioctl = sipcom_ioctl;
   1253 	ifp->if_start = sipcom_start;
   1254 	ifp->if_watchdog = sipcom_watchdog;
   1255 	ifp->if_init = sipcom_init;
   1256 	ifp->if_stop = sipcom_stop;
   1257 	IFQ_SET_READY(&ifp->if_snd);
   1258 
   1259 	/*
   1260 	 * We can support 802.1Q VLAN-sized frames.
   1261 	 */
   1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1263 
   1264 	if (sc->sc_gigabit) {
   1265 		/*
   1266 		 * And the DP83820 can do VLAN tagging in hardware, and
   1267 		 * support the jumbo Ethernet MTU.
   1268 		 */
   1269 		sc->sc_ethercom.ec_capabilities |=
   1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1271 
   1272 		/*
   1273 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1274 		 * in hardware.
   1275 		 */
   1276 		ifp->if_capabilities |=
   1277 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1278 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1279 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1280 	}
   1281 
   1282 	/*
   1283 	 * Attach the interface.
   1284 	 */
   1285 	if_attach(ifp);
   1286 	ether_ifattach(ifp, enaddr);
   1287 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1288 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1289 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1290 #if NRND > 0
   1291 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1292 	    RND_TYPE_NET, 0);
   1293 #endif
   1294 
   1295 	/*
   1296 	 * The number of bytes that must be available in
   1297 	 * the Tx FIFO before the bus master can DMA more
   1298 	 * data into the FIFO.
   1299 	 */
   1300 	sc->sc_tx_fill_thresh = 64 / 32;
   1301 
   1302 	/*
   1303 	 * Start at a drain threshold of 512 bytes.  We will
   1304 	 * increase it if a DMA underrun occurs.
   1305 	 *
   1306 	 * XXX The minimum value of this variable should be
   1307 	 * tuned.  We may be able to improve performance
   1308 	 * by starting with a lower value.  That, however,
   1309 	 * may trash the first few outgoing packets if the
   1310 	 * PCI bus is saturated.
   1311 	 */
   1312 	if (sc->sc_gigabit)
   1313 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1314 	else
   1315 		sc->sc_tx_drain_thresh = 1504 / 32;
   1316 
   1317 	/*
   1318 	 * Initialize the Rx FIFO drain threshold.
   1319 	 *
   1320 	 * This is in units of 8 bytes.
   1321 	 *
   1322 	 * We should never set this value lower than 2; 14 bytes are
   1323 	 * required to filter the packet.
   1324 	 */
   1325 	sc->sc_rx_drain_thresh = 128 / 8;
   1326 
   1327 #ifdef SIP_EVENT_COUNTERS
   1328 	/*
   1329 	 * Attach event counters.
   1330 	 */
   1331 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1332 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1333 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1334 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1336 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1338 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1340 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1342 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1343 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1344 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1345 	if (!sc->sc_gigabit) {
   1346 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1347 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1348 	} else {
   1349 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1350 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1351 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1352 		    NULL, sc->sc_dev.dv_xname, "txpause");
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1354 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1356 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1358 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1360 		    NULL, sc->sc_dev.dv_xname, "txipsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1362 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1363 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1364 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1365 	}
   1366 #endif /* SIP_EVENT_COUNTERS */
   1367 
   1368 	if (!pmf_device_register(self, NULL, sipcom_resume))
   1369 		aprint_error_dev(self, "couldn't establish power handler\n");
   1370 	else
   1371 		pmf_class_network_register(self, ifp);
   1372 
   1373 	/*
   1374 	 * Make sure the interface is shutdown during reboot.
   1375 	 */
   1376 	sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
   1377 	if (sc->sc_sdhook == NULL)
   1378 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1379 		    sc->sc_dev.dv_xname);
   1380 }
   1381 
   1382 /*
   1383  * sip_shutdown:
   1384  *
   1385  *	Make sure the interface is stopped at reboot time.
   1386  */
   1387 static void
   1388 sipcom_shutdown(void *arg)
   1389 {
   1390 	struct sip_softc *sc = arg;
   1391 
   1392 	sipcom_stop(&sc->sc_ethercom.ec_if, 1);
   1393 }
   1394 
   1395 static inline void
   1396 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1397     uint64_t capenable)
   1398 {
   1399 	struct m_tag *mtag;
   1400 	u_int32_t extsts;
   1401 #ifdef DEBUG
   1402 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1403 #endif
   1404 	/*
   1405 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1406 	 * up the descriptor to encapsulate the packet for us.
   1407 	 *
   1408 	 * This apparently has to be on the last descriptor of
   1409 	 * the packet.
   1410 	 */
   1411 
   1412 	/*
   1413 	 * Byte swapping is tricky. We need to provide the tag
   1414 	 * in a network byte order. On a big-endian machine,
   1415 	 * the byteorder is correct, but we need to swap it
   1416 	 * anyway, because this will be undone by the outside
   1417 	 * htole32(). That's why there must be an
   1418 	 * unconditional swap instead of htons() inside.
   1419 	 */
   1420 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1421 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1422 		    htole32(EXTSTS_VPKT |
   1423 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1424 				 EXTSTS_VTCI));
   1425 	}
   1426 
   1427 	/*
   1428 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1429 	 * checksumming, set up the descriptor to do this work
   1430 	 * for us.
   1431 	 *
   1432 	 * This apparently has to be on the first descriptor of
   1433 	 * the packet.
   1434 	 *
   1435 	 * Byte-swap constants so the compiler can optimize.
   1436 	 */
   1437 	extsts = 0;
   1438 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1439 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1440 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1441 		extsts |= htole32(EXTSTS_IPPKT);
   1442 	}
   1443 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1444 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1445 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1446 		extsts |= htole32(EXTSTS_TCPPKT);
   1447 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1448 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1449 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1450 		extsts |= htole32(EXTSTS_UDPPKT);
   1451 	}
   1452 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1453 }
   1454 
   1455 /*
   1456  * sip_start:		[ifnet interface function]
   1457  *
   1458  *	Start packet transmission on the interface.
   1459  */
   1460 static void
   1461 sipcom_start(struct ifnet *ifp)
   1462 {
   1463 	struct sip_softc *sc = ifp->if_softc;
   1464 	struct mbuf *m0;
   1465 	struct mbuf *m;
   1466 	struct sip_txsoft *txs;
   1467 	bus_dmamap_t dmamap;
   1468 	int error, nexttx, lasttx, seg;
   1469 	int ofree = sc->sc_txfree;
   1470 #if 0
   1471 	int firsttx = sc->sc_txnext;
   1472 #endif
   1473 
   1474 	/*
   1475 	 * If we've been told to pause, don't transmit any more packets.
   1476 	 */
   1477 	if (!sc->sc_gigabit && sc->sc_paused)
   1478 		ifp->if_flags |= IFF_OACTIVE;
   1479 
   1480 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1481 		return;
   1482 
   1483 	/*
   1484 	 * Loop through the send queue, setting up transmit descriptors
   1485 	 * until we drain the queue, or use up all available transmit
   1486 	 * descriptors.
   1487 	 */
   1488 	for (;;) {
   1489 		/* Get a work queue entry. */
   1490 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1491 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1492 			break;
   1493 		}
   1494 
   1495 		/*
   1496 		 * Grab a packet off the queue.
   1497 		 */
   1498 		IFQ_POLL(&ifp->if_snd, m0);
   1499 		if (m0 == NULL)
   1500 			break;
   1501 		m = NULL;
   1502 
   1503 		dmamap = txs->txs_dmamap;
   1504 
   1505 		/*
   1506 		 * Load the DMA map.  If this fails, the packet either
   1507 		 * didn't fit in the alloted number of segments, or we
   1508 		 * were short on resources.
   1509 		 */
   1510 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1511 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1512 		/* In the non-gigabit case, we'll copy and try again. */
   1513 		if (error != 0 && !sc->sc_gigabit) {
   1514 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1515 			if (m == NULL) {
   1516 				printf("%s: unable to allocate Tx mbuf\n",
   1517 				    sc->sc_dev.dv_xname);
   1518 				break;
   1519 			}
   1520 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1521 			if (m0->m_pkthdr.len > MHLEN) {
   1522 				MCLGET(m, M_DONTWAIT);
   1523 				if ((m->m_flags & M_EXT) == 0) {
   1524 					printf("%s: unable to allocate Tx "
   1525 					    "cluster\n", sc->sc_dev.dv_xname);
   1526 					m_freem(m);
   1527 					break;
   1528 				}
   1529 			}
   1530 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1531 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1532 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1533 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1534 			if (error) {
   1535 				printf("%s: unable to load Tx buffer, "
   1536 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1537 				break;
   1538 			}
   1539 		} else if (error == EFBIG) {
   1540 			/*
   1541 			 * For the too-many-segments case, we simply
   1542 			 * report an error and drop the packet,
   1543 			 * since we can't sanely copy a jumbo packet
   1544 			 * to a single buffer.
   1545 			 */
   1546 			printf("%s: Tx packet consumes too many "
   1547 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
   1548 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1549 			m_freem(m0);
   1550 			continue;
   1551 		} else if (error != 0) {
   1552 			/*
   1553 			 * Short on resources, just stop for now.
   1554 			 */
   1555 			break;
   1556 		}
   1557 
   1558 		/*
   1559 		 * Ensure we have enough descriptors free to describe
   1560 		 * the packet.  Note, we always reserve one descriptor
   1561 		 * at the end of the ring as a termination point, to
   1562 		 * prevent wrap-around.
   1563 		 */
   1564 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1565 			/*
   1566 			 * Not enough free descriptors to transmit this
   1567 			 * packet.  We haven't committed anything yet,
   1568 			 * so just unload the DMA map, put the packet
   1569 			 * back on the queue, and punt.  Notify the upper
   1570 			 * layer that there are not more slots left.
   1571 			 *
   1572 			 * XXX We could allocate an mbuf and copy, but
   1573 			 * XXX is it worth it?
   1574 			 */
   1575 			ifp->if_flags |= IFF_OACTIVE;
   1576 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1577 			if (m != NULL)
   1578 				m_freem(m);
   1579 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1580 			break;
   1581 		}
   1582 
   1583 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1584 		if (m != NULL) {
   1585 			m_freem(m0);
   1586 			m0 = m;
   1587 		}
   1588 
   1589 		/*
   1590 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1591 		 */
   1592 
   1593 		/* Sync the DMA map. */
   1594 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1595 		    BUS_DMASYNC_PREWRITE);
   1596 
   1597 		/*
   1598 		 * Initialize the transmit descriptors.
   1599 		 */
   1600 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1601 		     seg < dmamap->dm_nsegs;
   1602 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1603 			/*
   1604 			 * If this is the first descriptor we're
   1605 			 * enqueueing, don't set the OWN bit just
   1606 			 * yet.  That could cause a race condition.
   1607 			 * We'll do it below.
   1608 			 */
   1609 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1610 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1611 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1612 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1613 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1614 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1615 			lasttx = nexttx;
   1616 		}
   1617 
   1618 		/* Clear the MORE bit on the last segment. */
   1619 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1620 		    htole32(~CMDSTS_MORE);
   1621 
   1622 		/*
   1623 		 * If we're in the interrupt delay window, delay the
   1624 		 * interrupt.
   1625 		 */
   1626 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1627 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1628 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1629 			    htole32(CMDSTS_INTR);
   1630 			sc->sc_txwin = 0;
   1631 		}
   1632 
   1633 		if (sc->sc_gigabit)
   1634 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1635 
   1636 		/* Sync the descriptors we're using. */
   1637 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1638 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1639 
   1640 		/*
   1641 		 * The entire packet is set up.  Give the first descrptor
   1642 		 * to the chip now.
   1643 		 */
   1644 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1645 		    htole32(CMDSTS_OWN);
   1646 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1647 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1648 
   1649 		/*
   1650 		 * Store a pointer to the packet so we can free it later,
   1651 		 * and remember what txdirty will be once the packet is
   1652 		 * done.
   1653 		 */
   1654 		txs->txs_mbuf = m0;
   1655 		txs->txs_firstdesc = sc->sc_txnext;
   1656 		txs->txs_lastdesc = lasttx;
   1657 
   1658 		/* Advance the tx pointer. */
   1659 		sc->sc_txfree -= dmamap->dm_nsegs;
   1660 		sc->sc_txnext = nexttx;
   1661 
   1662 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1663 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1664 
   1665 #if NBPFILTER > 0
   1666 		/*
   1667 		 * Pass the packet to any BPF listeners.
   1668 		 */
   1669 		if (ifp->if_bpf)
   1670 			bpf_mtap(ifp->if_bpf, m0);
   1671 #endif /* NBPFILTER > 0 */
   1672 	}
   1673 
   1674 	if (txs == NULL || sc->sc_txfree == 0) {
   1675 		/* No more slots left; notify upper layer. */
   1676 		ifp->if_flags |= IFF_OACTIVE;
   1677 	}
   1678 
   1679 	if (sc->sc_txfree != ofree) {
   1680 		/*
   1681 		 * Start the transmit process.  Note, the manual says
   1682 		 * that if there are no pending transmissions in the
   1683 		 * chip's internal queue (indicated by TXE being clear),
   1684 		 * then the driver software must set the TXDP to the
   1685 		 * first descriptor to be transmitted.  However, if we
   1686 		 * do this, it causes serious performance degredation on
   1687 		 * the DP83820 under load, not setting TXDP doesn't seem
   1688 		 * to adversely affect the SiS 900 or DP83815.
   1689 		 *
   1690 		 * Well, I guess it wouldn't be the first time a manual
   1691 		 * has lied -- and they could be speaking of the NULL-
   1692 		 * terminated descriptor list case, rather than OWN-
   1693 		 * terminated rings.
   1694 		 */
   1695 #if 0
   1696 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1697 		     CR_TXE) == 0) {
   1698 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1699 			    SIP_CDTXADDR(sc, firsttx));
   1700 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1701 		}
   1702 #else
   1703 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1704 #endif
   1705 
   1706 		/* Set a watchdog timer in case the chip flakes out. */
   1707 		/* Gigabit autonegotiation takes 5 seconds. */
   1708 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1709 	}
   1710 }
   1711 
   1712 /*
   1713  * sip_watchdog:	[ifnet interface function]
   1714  *
   1715  *	Watchdog timer handler.
   1716  */
   1717 static void
   1718 sipcom_watchdog(struct ifnet *ifp)
   1719 {
   1720 	struct sip_softc *sc = ifp->if_softc;
   1721 
   1722 	/*
   1723 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1724 	 * If we get a timeout, try and sweep up transmit descriptors.
   1725 	 * If we manage to sweep them all up, ignore the lack of
   1726 	 * interrupt.
   1727 	 */
   1728 	sipcom_txintr(sc);
   1729 
   1730 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1731 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1732 		ifp->if_oerrors++;
   1733 
   1734 		/* Reset the interface. */
   1735 		(void) sipcom_init(ifp);
   1736 	} else if (ifp->if_flags & IFF_DEBUG)
   1737 		printf("%s: recovered from device timeout\n",
   1738 		    sc->sc_dev.dv_xname);
   1739 
   1740 	/* Try to get more packets going. */
   1741 	sipcom_start(ifp);
   1742 }
   1743 
   1744 /*
   1745  * sip_ioctl:		[ifnet interface function]
   1746  *
   1747  *	Handle control requests from the operator.
   1748  */
   1749 static int
   1750 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1751 {
   1752 	struct sip_softc *sc = ifp->if_softc;
   1753 	struct ifreq *ifr = (struct ifreq *)data;
   1754 	int s, error;
   1755 
   1756 	s = splnet();
   1757 
   1758 	switch (cmd) {
   1759 	case SIOCSIFMEDIA:
   1760 		/* Flow control requires full-duplex mode. */
   1761 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1762 		    (ifr->ifr_media & IFM_FDX) == 0)
   1763 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1764 
   1765 		/* XXX */
   1766 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1767 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1768 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1769 			if (sc->sc_gigabit &&
   1770 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1771 				/* We can do both TXPAUSE and RXPAUSE. */
   1772 				ifr->ifr_media |=
   1773 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1774 			} else if (ifr->ifr_media & IFM_FLOW) {
   1775 				/*
   1776 				 * Both TXPAUSE and RXPAUSE must be set.
   1777 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1778 				 * feature.)
   1779 				 *
   1780 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1781 				 */
   1782 				ifr->ifr_media |=
   1783 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1784 			}
   1785 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1786 		}
   1787 		/* FALLTHROUGH */
   1788 	case SIOCGIFMEDIA:
   1789 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1790 		break;
   1791 	case SIOCSIFFLAGS:
   1792 		/* If the interface is up and running, only modify the receive
   1793 		 * filter when setting promiscuous or debug mode.  Otherwise
   1794 		 * fall through to ether_ioctl, which will reset the chip.
   1795 		 */
   1796 
   1797 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1798 			 == (sc)->sc_ethercom.ec_capenable)		\
   1799 			&& ((sc)->sc_prev.is_vlan ==			\
   1800 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1801 
   1802 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1803 
   1804 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1805 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1806 		    == (IFF_UP|IFF_RUNNING))
   1807 		    && ((ifp->if_flags & (~RESETIGN))
   1808 		    == (sc->sc_if_flags & (~RESETIGN)))
   1809 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1810 			/* Set up the receive filter. */
   1811 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1812 			error = 0;
   1813 			break;
   1814 #undef RESETIGN
   1815 		}
   1816 		/* FALLTHROUGH */
   1817 	default:
   1818 		error = ether_ioctl(ifp, cmd, data);
   1819 		if (error == ENETRESET) {
   1820 			/*
   1821 			 * Multicast list has changed; set the hardware filter
   1822 			 * accordingly.
   1823 			 */
   1824 			if (ifp->if_flags & IFF_RUNNING)
   1825 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1826 			error = 0;
   1827 		}
   1828 		break;
   1829 	}
   1830 
   1831 	/* Try to get more packets going. */
   1832 	sipcom_start(ifp);
   1833 
   1834 	sc->sc_if_flags = ifp->if_flags;
   1835 	splx(s);
   1836 	return (error);
   1837 }
   1838 
   1839 /*
   1840  * sip_intr:
   1841  *
   1842  *	Interrupt service routine.
   1843  */
   1844 static int
   1845 sipcom_intr(void *arg)
   1846 {
   1847 	struct sip_softc *sc = arg;
   1848 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1849 	u_int32_t isr;
   1850 	int handled = 0;
   1851 
   1852 	/* Disable interrupts. */
   1853 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1854 
   1855 	for (;;) {
   1856 		/* Reading clears interrupt. */
   1857 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1858 		if ((isr & sc->sc_imr) == 0)
   1859 			break;
   1860 
   1861 #if NRND > 0
   1862 		if (RND_ENABLED(&sc->rnd_source))
   1863 			rnd_add_uint32(&sc->rnd_source, isr);
   1864 #endif
   1865 
   1866 		handled = 1;
   1867 
   1868 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1869 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1870 
   1871 			/* Grab any new packets. */
   1872 			(*sc->sc_rxintr)(sc);
   1873 
   1874 			if (isr & ISR_RXORN) {
   1875 				printf("%s: receive FIFO overrun\n",
   1876 				    sc->sc_dev.dv_xname);
   1877 
   1878 				/* XXX adjust rx_drain_thresh? */
   1879 			}
   1880 
   1881 			if (isr & ISR_RXIDLE) {
   1882 				printf("%s: receive ring overrun\n",
   1883 				    sc->sc_dev.dv_xname);
   1884 
   1885 				/* Get the receive process going again. */
   1886 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1887 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1888 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1889 				    SIP_CR, CR_RXE);
   1890 			}
   1891 		}
   1892 
   1893 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1894 #ifdef SIP_EVENT_COUNTERS
   1895 			if (isr & ISR_TXDESC)
   1896 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1897 			else if (isr & ISR_TXIDLE)
   1898 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1899 #endif
   1900 
   1901 			/* Sweep up transmit descriptors. */
   1902 			sipcom_txintr(sc);
   1903 
   1904 			if (isr & ISR_TXURN) {
   1905 				u_int32_t thresh;
   1906 				int txfifo_size = (sc->sc_gigabit)
   1907 				    ? DP83820_SIP_TXFIFO_SIZE
   1908 				    : OTHER_SIP_TXFIFO_SIZE;
   1909 
   1910 				printf("%s: transmit FIFO underrun",
   1911 				    sc->sc_dev.dv_xname);
   1912 				thresh = sc->sc_tx_drain_thresh + 1;
   1913 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1914 				&& (thresh * 32) <= (txfifo_size -
   1915 				     (sc->sc_tx_fill_thresh * 32))) {
   1916 					printf("; increasing Tx drain "
   1917 					    "threshold to %u bytes\n",
   1918 					    thresh * 32);
   1919 					sc->sc_tx_drain_thresh = thresh;
   1920 					(void) sipcom_init(ifp);
   1921 				} else {
   1922 					(void) sipcom_init(ifp);
   1923 					printf("\n");
   1924 				}
   1925 			}
   1926 		}
   1927 
   1928 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1929 			if (isr & ISR_PAUSE_ST) {
   1930 				sc->sc_paused = 1;
   1931 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1932 				ifp->if_flags |= IFF_OACTIVE;
   1933 			}
   1934 			if (isr & ISR_PAUSE_END) {
   1935 				sc->sc_paused = 0;
   1936 				ifp->if_flags &= ~IFF_OACTIVE;
   1937 			}
   1938 		}
   1939 
   1940 		if (isr & ISR_HIBERR) {
   1941 			int want_init = 0;
   1942 
   1943 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1944 
   1945 #define	PRINTERR(bit, str)						\
   1946 			do {						\
   1947 				if ((isr & (bit)) != 0) {		\
   1948 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1949 						printf("%s: %s\n",	\
   1950 						    sc->sc_dev.dv_xname, str); \
   1951 					want_init = 1;			\
   1952 				}					\
   1953 			} while (/*CONSTCOND*/0)
   1954 
   1955 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1956 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1957 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1958 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1959 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1960 			/*
   1961 			 * Ignore:
   1962 			 *	Tx reset complete
   1963 			 *	Rx reset complete
   1964 			 */
   1965 			if (want_init)
   1966 				(void) sipcom_init(ifp);
   1967 #undef PRINTERR
   1968 		}
   1969 	}
   1970 
   1971 	/* Re-enable interrupts. */
   1972 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1973 
   1974 	/* Try to get more packets going. */
   1975 	sipcom_start(ifp);
   1976 
   1977 	return (handled);
   1978 }
   1979 
   1980 /*
   1981  * sip_txintr:
   1982  *
   1983  *	Helper; handle transmit interrupts.
   1984  */
   1985 static void
   1986 sipcom_txintr(struct sip_softc *sc)
   1987 {
   1988 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1989 	struct sip_txsoft *txs;
   1990 	u_int32_t cmdsts;
   1991 
   1992 	if (sc->sc_paused == 0)
   1993 		ifp->if_flags &= ~IFF_OACTIVE;
   1994 
   1995 	/*
   1996 	 * Go through our Tx list and free mbufs for those
   1997 	 * frames which have been transmitted.
   1998 	 */
   1999 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2000 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   2001 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2002 
   2003 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2004 		if (cmdsts & CMDSTS_OWN)
   2005 			break;
   2006 
   2007 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2008 
   2009 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   2010 
   2011 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2012 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2013 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2014 		m_freem(txs->txs_mbuf);
   2015 		txs->txs_mbuf = NULL;
   2016 
   2017 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2018 
   2019 		/*
   2020 		 * Check for errors and collisions.
   2021 		 */
   2022 		if (cmdsts &
   2023 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2024 			ifp->if_oerrors++;
   2025 			if (cmdsts & CMDSTS_Tx_EC)
   2026 				ifp->if_collisions += 16;
   2027 			if (ifp->if_flags & IFF_DEBUG) {
   2028 				if (cmdsts & CMDSTS_Tx_ED)
   2029 					printf("%s: excessive deferral\n",
   2030 					    sc->sc_dev.dv_xname);
   2031 				if (cmdsts & CMDSTS_Tx_EC)
   2032 					printf("%s: excessive collisions\n",
   2033 					    sc->sc_dev.dv_xname);
   2034 			}
   2035 		} else {
   2036 			/* Packet was transmitted successfully. */
   2037 			ifp->if_opackets++;
   2038 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2039 		}
   2040 	}
   2041 
   2042 	/*
   2043 	 * If there are no more pending transmissions, cancel the watchdog
   2044 	 * timer.
   2045 	 */
   2046 	if (txs == NULL) {
   2047 		ifp->if_timer = 0;
   2048 		sc->sc_txwin = 0;
   2049 	}
   2050 }
   2051 
   2052 /*
   2053  * gsip_rxintr:
   2054  *
   2055  *	Helper; handle receive interrupts on gigabit parts.
   2056  */
   2057 static void
   2058 gsip_rxintr(struct sip_softc *sc)
   2059 {
   2060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2061 	struct sip_rxsoft *rxs;
   2062 	struct mbuf *m;
   2063 	u_int32_t cmdsts, extsts;
   2064 	int i, len;
   2065 
   2066 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2067 		rxs = &sc->sc_rxsoft[i];
   2068 
   2069 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2070 
   2071 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2072 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2073 		len = CMDSTS_SIZE(sc, cmdsts);
   2074 
   2075 		/*
   2076 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2077 		 * consumer of the receive ring, so if the bit is clear,
   2078 		 * we have processed all of the packets.
   2079 		 */
   2080 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2081 			/*
   2082 			 * We have processed all of the receive buffers.
   2083 			 */
   2084 			break;
   2085 		}
   2086 
   2087 		if (__predict_false(sc->sc_rxdiscard)) {
   2088 			SIP_INIT_RXDESC(sc, i);
   2089 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2090 				/* Reset our state. */
   2091 				sc->sc_rxdiscard = 0;
   2092 			}
   2093 			continue;
   2094 		}
   2095 
   2096 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2097 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2098 
   2099 		m = rxs->rxs_mbuf;
   2100 
   2101 		/*
   2102 		 * Add a new receive buffer to the ring.
   2103 		 */
   2104 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2105 			/*
   2106 			 * Failed, throw away what we've done so
   2107 			 * far, and discard the rest of the packet.
   2108 			 */
   2109 			ifp->if_ierrors++;
   2110 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2111 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2112 			SIP_INIT_RXDESC(sc, i);
   2113 			if (cmdsts & CMDSTS_MORE)
   2114 				sc->sc_rxdiscard = 1;
   2115 			if (sc->sc_rxhead != NULL)
   2116 				m_freem(sc->sc_rxhead);
   2117 			SIP_RXCHAIN_RESET(sc);
   2118 			continue;
   2119 		}
   2120 
   2121 		SIP_RXCHAIN_LINK(sc, m);
   2122 
   2123 		m->m_len = len;
   2124 
   2125 		/*
   2126 		 * If this is not the end of the packet, keep
   2127 		 * looking.
   2128 		 */
   2129 		if (cmdsts & CMDSTS_MORE) {
   2130 			sc->sc_rxlen += len;
   2131 			continue;
   2132 		}
   2133 
   2134 		/*
   2135 		 * Okay, we have the entire packet now.  The chip includes
   2136 		 * the FCS, so we need to trim it.
   2137 		 */
   2138 		m->m_len -= ETHER_CRC_LEN;
   2139 
   2140 		*sc->sc_rxtailp = NULL;
   2141 		len = m->m_len + sc->sc_rxlen;
   2142 		m = sc->sc_rxhead;
   2143 
   2144 		SIP_RXCHAIN_RESET(sc);
   2145 
   2146 		/*
   2147 		 * If an error occurred, update stats and drop the packet.
   2148 		 */
   2149 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2150 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2151 			ifp->if_ierrors++;
   2152 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2153 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2154 				/* Receive overrun handled elsewhere. */
   2155 				printf("%s: receive descriptor error\n",
   2156 				    sc->sc_dev.dv_xname);
   2157 			}
   2158 #define	PRINTERR(bit, str)						\
   2159 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2160 			    (cmdsts & (bit)) != 0)			\
   2161 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2162 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2163 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2164 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2165 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2166 #undef PRINTERR
   2167 			m_freem(m);
   2168 			continue;
   2169 		}
   2170 
   2171 		/*
   2172 		 * If the packet is small enough to fit in a
   2173 		 * single header mbuf, allocate one and copy
   2174 		 * the data into it.  This greatly reduces
   2175 		 * memory consumption when we receive lots
   2176 		 * of small packets.
   2177 		 */
   2178 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2179 			struct mbuf *nm;
   2180 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2181 			if (nm == NULL) {
   2182 				ifp->if_ierrors++;
   2183 				m_freem(m);
   2184 				continue;
   2185 			}
   2186 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2187 			nm->m_data += 2;
   2188 			nm->m_pkthdr.len = nm->m_len = len;
   2189 			m_copydata(m, 0, len, mtod(nm, void *));
   2190 			m_freem(m);
   2191 			m = nm;
   2192 		}
   2193 #ifndef __NO_STRICT_ALIGNMENT
   2194 		else {
   2195 			/*
   2196 			 * The DP83820's receive buffers must be 4-byte
   2197 			 * aligned.  But this means that the data after
   2198 			 * the Ethernet header is misaligned.  To compensate,
   2199 			 * we have artificially shortened the buffer size
   2200 			 * in the descriptor, and we do an overlapping copy
   2201 			 * of the data two bytes further in (in the first
   2202 			 * buffer of the chain only).
   2203 			 */
   2204 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2205 			    m->m_len);
   2206 			m->m_data += 2;
   2207 		}
   2208 #endif /* ! __NO_STRICT_ALIGNMENT */
   2209 
   2210 		/*
   2211 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2212 		 * for us.  Associate the tag with the packet.
   2213 		 */
   2214 
   2215 		/*
   2216 		 * Again, byte swapping is tricky. Hardware provided
   2217 		 * the tag in the network byte order, but extsts was
   2218 		 * passed through le32toh() in the meantime. On a
   2219 		 * big-endian machine, we need to swap it again. On a
   2220 		 * little-endian machine, we need to convert from the
   2221 		 * network to host byte order. This means that we must
   2222 		 * swap it in any case, so unconditional swap instead
   2223 		 * of htons() is used.
   2224 		 */
   2225 		if ((extsts & EXTSTS_VPKT) != 0) {
   2226 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2227 			    continue);
   2228 		}
   2229 
   2230 		/*
   2231 		 * Set the incoming checksum information for the
   2232 		 * packet.
   2233 		 */
   2234 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2235 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2236 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2237 			if (extsts & EXTSTS_Rx_IPERR)
   2238 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2239 			if (extsts & EXTSTS_TCPPKT) {
   2240 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2241 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2242 				if (extsts & EXTSTS_Rx_TCPERR)
   2243 					m->m_pkthdr.csum_flags |=
   2244 					    M_CSUM_TCP_UDP_BAD;
   2245 			} else if (extsts & EXTSTS_UDPPKT) {
   2246 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2247 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2248 				if (extsts & EXTSTS_Rx_UDPERR)
   2249 					m->m_pkthdr.csum_flags |=
   2250 					    M_CSUM_TCP_UDP_BAD;
   2251 			}
   2252 		}
   2253 
   2254 		ifp->if_ipackets++;
   2255 		m->m_pkthdr.rcvif = ifp;
   2256 		m->m_pkthdr.len = len;
   2257 
   2258 #if NBPFILTER > 0
   2259 		/*
   2260 		 * Pass this up to any BPF listeners, but only
   2261 		 * pass if up the stack if it's for us.
   2262 		 */
   2263 		if (ifp->if_bpf)
   2264 			bpf_mtap(ifp->if_bpf, m);
   2265 #endif /* NBPFILTER > 0 */
   2266 
   2267 		/* Pass it on. */
   2268 		(*ifp->if_input)(ifp, m);
   2269 	}
   2270 
   2271 	/* Update the receive pointer. */
   2272 	sc->sc_rxptr = i;
   2273 }
   2274 
   2275 /*
   2276  * sip_rxintr:
   2277  *
   2278  *	Helper; handle receive interrupts on 10/100 parts.
   2279  */
   2280 static void
   2281 sip_rxintr(struct sip_softc *sc)
   2282 {
   2283 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2284 	struct sip_rxsoft *rxs;
   2285 	struct mbuf *m;
   2286 	u_int32_t cmdsts;
   2287 	int i, len;
   2288 
   2289 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2290 		rxs = &sc->sc_rxsoft[i];
   2291 
   2292 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2293 
   2294 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2295 
   2296 		/*
   2297 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2298 		 * consumer of the receive ring, so if the bit is clear,
   2299 		 * we have processed all of the packets.
   2300 		 */
   2301 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2302 			/*
   2303 			 * We have processed all of the receive buffers.
   2304 			 */
   2305 			break;
   2306 		}
   2307 
   2308 		/*
   2309 		 * If any collisions were seen on the wire, count one.
   2310 		 */
   2311 		if (cmdsts & CMDSTS_Rx_COL)
   2312 			ifp->if_collisions++;
   2313 
   2314 		/*
   2315 		 * If an error occurred, update stats, clear the status
   2316 		 * word, and leave the packet buffer in place.  It will
   2317 		 * simply be reused the next time the ring comes around.
   2318 		 */
   2319 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2320 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2321 			ifp->if_ierrors++;
   2322 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2323 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2324 				/* Receive overrun handled elsewhere. */
   2325 				printf("%s: receive descriptor error\n",
   2326 				    sc->sc_dev.dv_xname);
   2327 			}
   2328 #define	PRINTERR(bit, str)						\
   2329 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2330 			    (cmdsts & (bit)) != 0)			\
   2331 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2332 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2333 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2334 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2335 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2336 #undef PRINTERR
   2337 			SIP_INIT_RXDESC(sc, i);
   2338 			continue;
   2339 		}
   2340 
   2341 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2342 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2343 
   2344 		/*
   2345 		 * No errors; receive the packet.  Note, the SiS 900
   2346 		 * includes the CRC with every packet.
   2347 		 */
   2348 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2349 
   2350 #ifdef __NO_STRICT_ALIGNMENT
   2351 		/*
   2352 		 * If the packet is small enough to fit in a
   2353 		 * single header mbuf, allocate one and copy
   2354 		 * the data into it.  This greatly reduces
   2355 		 * memory consumption when we receive lots
   2356 		 * of small packets.
   2357 		 *
   2358 		 * Otherwise, we add a new buffer to the receive
   2359 		 * chain.  If this fails, we drop the packet and
   2360 		 * recycle the old buffer.
   2361 		 */
   2362 		if (sip_copy_small != 0 && len <= MHLEN) {
   2363 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2364 			if (m == NULL)
   2365 				goto dropit;
   2366 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2367 			memcpy(mtod(m, void *),
   2368 			    mtod(rxs->rxs_mbuf, void *), len);
   2369 			SIP_INIT_RXDESC(sc, i);
   2370 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2371 			    rxs->rxs_dmamap->dm_mapsize,
   2372 			    BUS_DMASYNC_PREREAD);
   2373 		} else {
   2374 			m = rxs->rxs_mbuf;
   2375 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2376  dropit:
   2377 				ifp->if_ierrors++;
   2378 				SIP_INIT_RXDESC(sc, i);
   2379 				bus_dmamap_sync(sc->sc_dmat,
   2380 				    rxs->rxs_dmamap, 0,
   2381 				    rxs->rxs_dmamap->dm_mapsize,
   2382 				    BUS_DMASYNC_PREREAD);
   2383 				continue;
   2384 			}
   2385 		}
   2386 #else
   2387 		/*
   2388 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2389 		 * But this means that the data after the Ethernet header
   2390 		 * is misaligned.  We must allocate a new buffer and
   2391 		 * copy the data, shifted forward 2 bytes.
   2392 		 */
   2393 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2394 		if (m == NULL) {
   2395  dropit:
   2396 			ifp->if_ierrors++;
   2397 			SIP_INIT_RXDESC(sc, i);
   2398 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2399 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2400 			continue;
   2401 		}
   2402 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2403 		if (len > (MHLEN - 2)) {
   2404 			MCLGET(m, M_DONTWAIT);
   2405 			if ((m->m_flags & M_EXT) == 0) {
   2406 				m_freem(m);
   2407 				goto dropit;
   2408 			}
   2409 		}
   2410 		m->m_data += 2;
   2411 
   2412 		/*
   2413 		 * Note that we use clusters for incoming frames, so the
   2414 		 * buffer is virtually contiguous.
   2415 		 */
   2416 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2417 
   2418 		/* Allow the receive descriptor to continue using its mbuf. */
   2419 		SIP_INIT_RXDESC(sc, i);
   2420 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2421 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2422 #endif /* __NO_STRICT_ALIGNMENT */
   2423 
   2424 		ifp->if_ipackets++;
   2425 		m->m_pkthdr.rcvif = ifp;
   2426 		m->m_pkthdr.len = m->m_len = len;
   2427 
   2428 #if NBPFILTER > 0
   2429 		/*
   2430 		 * Pass this up to any BPF listeners, but only
   2431 		 * pass if up the stack if it's for us.
   2432 		 */
   2433 		if (ifp->if_bpf)
   2434 			bpf_mtap(ifp->if_bpf, m);
   2435 #endif /* NBPFILTER > 0 */
   2436 
   2437 		/* Pass it on. */
   2438 		(*ifp->if_input)(ifp, m);
   2439 	}
   2440 
   2441 	/* Update the receive pointer. */
   2442 	sc->sc_rxptr = i;
   2443 }
   2444 
   2445 /*
   2446  * sip_tick:
   2447  *
   2448  *	One second timer, used to tick the MII.
   2449  */
   2450 static void
   2451 sipcom_tick(void *arg)
   2452 {
   2453 	struct sip_softc *sc = arg;
   2454 	int s;
   2455 
   2456 	s = splnet();
   2457 #ifdef SIP_EVENT_COUNTERS
   2458 	if (sc->sc_gigabit) {
   2459 		/* Read PAUSE related counts from MIB registers. */
   2460 		sc->sc_ev_rxpause.ev_count +=
   2461 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2462 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2463 		sc->sc_ev_txpause.ev_count +=
   2464 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2465 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2466 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2467 	}
   2468 #endif /* SIP_EVENT_COUNTERS */
   2469 	mii_tick(&sc->sc_mii);
   2470 	splx(s);
   2471 
   2472 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2473 }
   2474 
   2475 /*
   2476  * sip_reset:
   2477  *
   2478  *	Perform a soft reset on the SiS 900.
   2479  */
   2480 static bool
   2481 sipcom_reset(struct sip_softc *sc)
   2482 {
   2483 	bus_space_tag_t st = sc->sc_st;
   2484 	bus_space_handle_t sh = sc->sc_sh;
   2485 	int i;
   2486 
   2487 	bus_space_write_4(st, sh, SIP_IER, 0);
   2488 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2489 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2490 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2491 
   2492 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2493 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2494 			break;
   2495 		delay(2);
   2496 	}
   2497 
   2498 	if (i == SIP_TIMEOUT) {
   2499 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2500 		return false;
   2501 	}
   2502 
   2503 	delay(1000);
   2504 
   2505 	if (sc->sc_gigabit) {
   2506 		/*
   2507 		 * Set the general purpose I/O bits.  Do it here in case we
   2508 		 * need to have GPIO set up to talk to the media interface.
   2509 		 */
   2510 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2511 		delay(1000);
   2512 	}
   2513 	return true;
   2514 }
   2515 
   2516 static void
   2517 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2518 {
   2519 	u_int32_t reg;
   2520 	bus_space_tag_t st = sc->sc_st;
   2521 	bus_space_handle_t sh = sc->sc_sh;
   2522 	/*
   2523 	 * Initialize the VLAN/IP receive control register.
   2524 	 * We enable checksum computation on all incoming
   2525 	 * packets, and do not reject packets w/ bad checksums.
   2526 	 */
   2527 	reg = 0;
   2528 	if (capenable &
   2529 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2530 		reg |= VRCR_IPEN;
   2531 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2532 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2533 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2534 
   2535 	/*
   2536 	 * Initialize the VLAN/IP transmit control register.
   2537 	 * We enable outgoing checksum computation on a
   2538 	 * per-packet basis.
   2539 	 */
   2540 	reg = 0;
   2541 	if (capenable &
   2542 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2543 		reg |= VTCR_PPCHK;
   2544 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2545 		reg |= VTCR_VPPTI;
   2546 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2547 
   2548 	/*
   2549 	 * If we're using VLANs, initialize the VLAN data register.
   2550 	 * To understand why we bswap the VLAN Ethertype, see section
   2551 	 * 4.2.36 of the DP83820 manual.
   2552 	 */
   2553 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2554 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2555 }
   2556 
   2557 /*
   2558  * sip_init:		[ ifnet interface function ]
   2559  *
   2560  *	Initialize the interface.  Must be called at splnet().
   2561  */
   2562 static int
   2563 sipcom_init(struct ifnet *ifp)
   2564 {
   2565 	struct sip_softc *sc = ifp->if_softc;
   2566 	bus_space_tag_t st = sc->sc_st;
   2567 	bus_space_handle_t sh = sc->sc_sh;
   2568 	struct sip_txsoft *txs;
   2569 	struct sip_rxsoft *rxs;
   2570 	struct sip_desc *sipd;
   2571 	int i, error = 0;
   2572 
   2573 	if (!device_has_power(&sc->sc_dev))
   2574 		return EBUSY;
   2575 
   2576 	/*
   2577 	 * Cancel any pending I/O.
   2578 	 */
   2579 	sipcom_stop(ifp, 0);
   2580 
   2581 	/*
   2582 	 * Reset the chip to a known state.
   2583 	 */
   2584 	if (!sipcom_reset(sc))
   2585 		return EBUSY;
   2586 
   2587 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2588 		/*
   2589 		 * DP83815 manual, page 78:
   2590 		 *    4.4 Recommended Registers Configuration
   2591 		 *    For optimum performance of the DP83815, version noted
   2592 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2593 		 *    modifications must be followed in sequence...
   2594 		 *
   2595 		 * It's not clear if this should be 302h or 203h because that
   2596 		 * chip name is listed as SRR 302h in the description of the
   2597 		 * SRR register.  However, my revision 302h DP83815 on the
   2598 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2599 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2600 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2601 		 * this set or not.  [briggs -- 09 March 2001]
   2602 		 *
   2603 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2604 		 * and that this sets reserved bits in that register.
   2605 		 */
   2606 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2607 
   2608 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2609 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2610 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2611 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2612 
   2613 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2614 	}
   2615 
   2616 	/*
   2617 	 * Initialize the transmit descriptor ring.
   2618 	 */
   2619 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2620 		sipd = &sc->sc_txdescs[i];
   2621 		memset(sipd, 0, sizeof(struct sip_desc));
   2622 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2623 	}
   2624 	SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
   2625 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2626 	sc->sc_txfree = sc->sc_ntxdesc;
   2627 	sc->sc_txnext = 0;
   2628 	sc->sc_txwin = 0;
   2629 
   2630 	/*
   2631 	 * Initialize the transmit job descriptors.
   2632 	 */
   2633 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2634 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2635 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2636 		txs = &sc->sc_txsoft[i];
   2637 		txs->txs_mbuf = NULL;
   2638 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2639 	}
   2640 
   2641 	/*
   2642 	 * Initialize the receive descriptor and receive job
   2643 	 * descriptor rings.
   2644 	 */
   2645 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2646 		rxs = &sc->sc_rxsoft[i];
   2647 		if (rxs->rxs_mbuf == NULL) {
   2648 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2649 				printf("%s: unable to allocate or map rx "
   2650 				    "buffer %d, error = %d\n",
   2651 				    sc->sc_dev.dv_xname, i, error);
   2652 				/*
   2653 				 * XXX Should attempt to run with fewer receive
   2654 				 * XXX buffers instead of just failing.
   2655 				 */
   2656 				sipcom_rxdrain(sc);
   2657 				goto out;
   2658 			}
   2659 		} else
   2660 			SIP_INIT_RXDESC(sc, i);
   2661 	}
   2662 	sc->sc_rxptr = 0;
   2663 	sc->sc_rxdiscard = 0;
   2664 	SIP_RXCHAIN_RESET(sc);
   2665 
   2666 	/*
   2667 	 * Set the configuration register; it's already initialized
   2668 	 * in sip_attach().
   2669 	 */
   2670 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2671 
   2672 	/*
   2673 	 * Initialize the prototype TXCFG register.
   2674 	 */
   2675 	if (sc->sc_gigabit) {
   2676 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2677 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2678 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2679 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2680 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2681 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2682 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2683 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2684 	} else {
   2685 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2686 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2687 	}
   2688 
   2689 	sc->sc_txcfg |= TXCFG_ATP |
   2690 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2691 	    sc->sc_tx_drain_thresh;
   2692 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2693 
   2694 	/*
   2695 	 * Initialize the receive drain threshold if we have never
   2696 	 * done so.
   2697 	 */
   2698 	if (sc->sc_rx_drain_thresh == 0) {
   2699 		/*
   2700 		 * XXX This value should be tuned.  This is set to the
   2701 		 * maximum of 248 bytes, and we may be able to improve
   2702 		 * performance by decreasing it (although we should never
   2703 		 * set this value lower than 2; 14 bytes are required to
   2704 		 * filter the packet).
   2705 		 */
   2706 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2707 	}
   2708 
   2709 	/*
   2710 	 * Initialize the prototype RXCFG register.
   2711 	 */
   2712 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2713 	/*
   2714 	 * Accept long packets (including FCS) so we can handle
   2715 	 * 802.1q-tagged frames and jumbo frames properly.
   2716 	 */
   2717 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2718 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2719 		sc->sc_rxcfg |= RXCFG_ALP;
   2720 
   2721 	/*
   2722 	 * Checksum offloading is disabled if the user selects an MTU
   2723 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2724 	 * evidence that >8109 does not work on some boards, such as the
   2725 	 * Planex GN-1000TE).
   2726 	 */
   2727 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2728 	    (ifp->if_capenable &
   2729 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2730 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2731 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2732 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2733 		       "disabled.\n", sc->sc_dev.dv_xname);
   2734 		ifp->if_capenable &=
   2735 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2736 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2737 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2738 		ifp->if_csum_flags_tx = 0;
   2739 		ifp->if_csum_flags_rx = 0;
   2740 	}
   2741 
   2742 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2743 
   2744 	if (sc->sc_gigabit)
   2745 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2746 
   2747 	/*
   2748 	 * Give the transmit and receive rings to the chip.
   2749 	 */
   2750 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2751 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2752 
   2753 	/*
   2754 	 * Initialize the interrupt mask.
   2755 	 */
   2756 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2757 	             sc->sc_bits.b_isr_sserr |
   2758 		     sc->sc_bits.b_isr_rmabt |
   2759 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2760 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2761 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2762 
   2763 	/* Set up the receive filter. */
   2764 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2765 
   2766 	/*
   2767 	 * Tune sc_rx_flow_thresh.
   2768 	 * XXX "More than 8KB" is too short for jumbo frames.
   2769 	 * XXX TODO: Threshold value should be user-settable.
   2770 	 */
   2771 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2772 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2773 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2774 
   2775 	/*
   2776 	 * Set the current media.  Do this after initializing the prototype
   2777 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2778 	 * control.
   2779 	 */
   2780 	mii_mediachg(&sc->sc_mii);
   2781 
   2782 	/*
   2783 	 * Set the interrupt hold-off timer to 100us.
   2784 	 */
   2785 	if (sc->sc_gigabit)
   2786 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2787 
   2788 	/*
   2789 	 * Enable interrupts.
   2790 	 */
   2791 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2792 
   2793 	/*
   2794 	 * Start the transmit and receive processes.
   2795 	 */
   2796 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2797 
   2798 	/*
   2799 	 * Start the one second MII clock.
   2800 	 */
   2801 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2802 
   2803 	/*
   2804 	 * ...all done!
   2805 	 */
   2806 	ifp->if_flags |= IFF_RUNNING;
   2807 	ifp->if_flags &= ~IFF_OACTIVE;
   2808 	sc->sc_if_flags = ifp->if_flags;
   2809 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2810 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2811 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2812 
   2813  out:
   2814 	if (error)
   2815 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2816 	return (error);
   2817 }
   2818 
   2819 /*
   2820  * sip_drain:
   2821  *
   2822  *	Drain the receive queue.
   2823  */
   2824 static void
   2825 sipcom_rxdrain(struct sip_softc *sc)
   2826 {
   2827 	struct sip_rxsoft *rxs;
   2828 	int i;
   2829 
   2830 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2831 		rxs = &sc->sc_rxsoft[i];
   2832 		if (rxs->rxs_mbuf != NULL) {
   2833 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2834 			m_freem(rxs->rxs_mbuf);
   2835 			rxs->rxs_mbuf = NULL;
   2836 		}
   2837 	}
   2838 }
   2839 
   2840 /*
   2841  * sip_stop:		[ ifnet interface function ]
   2842  *
   2843  *	Stop transmission on the interface.
   2844  */
   2845 static void
   2846 sipcom_stop(struct ifnet *ifp, int disable)
   2847 {
   2848 	struct sip_softc *sc = ifp->if_softc;
   2849 	bus_space_tag_t st = sc->sc_st;
   2850 	bus_space_handle_t sh = sc->sc_sh;
   2851 	struct sip_txsoft *txs;
   2852 	u_int32_t cmdsts = 0;		/* DEBUG */
   2853 
   2854 	/*
   2855 	 * Stop the one second clock.
   2856 	 */
   2857 	callout_stop(&sc->sc_tick_ch);
   2858 
   2859 	/* Down the MII. */
   2860 	mii_down(&sc->sc_mii);
   2861 
   2862 	/*
   2863 	 * Disable interrupts.
   2864 	 */
   2865 	bus_space_write_4(st, sh, SIP_IER, 0);
   2866 
   2867 	/*
   2868 	 * Stop receiver and transmitter.
   2869 	 */
   2870 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2871 
   2872 	/*
   2873 	 * Release any queued transmit buffers.
   2874 	 */
   2875 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2876 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2877 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2878 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2879 		     CMDSTS_INTR) == 0)
   2880 			printf("%s: sip_stop: last descriptor does not "
   2881 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2882 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2883 #ifdef DIAGNOSTIC
   2884 		if (txs->txs_mbuf == NULL) {
   2885 			printf("%s: dirty txsoft with no mbuf chain\n",
   2886 			    sc->sc_dev.dv_xname);
   2887 			panic("sip_stop");
   2888 		}
   2889 #endif
   2890 		cmdsts |=		/* DEBUG */
   2891 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2892 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2893 		m_freem(txs->txs_mbuf);
   2894 		txs->txs_mbuf = NULL;
   2895 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2896 	}
   2897 
   2898 	if (disable)
   2899 		sipcom_rxdrain(sc);
   2900 
   2901 	/*
   2902 	 * Mark the interface down and cancel the watchdog timer.
   2903 	 */
   2904 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2905 	ifp->if_timer = 0;
   2906 
   2907 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2908 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2909 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2910 		    "descriptors\n", sc->sc_dev.dv_xname);
   2911 }
   2912 
   2913 /*
   2914  * sip_read_eeprom:
   2915  *
   2916  *	Read data from the serial EEPROM.
   2917  */
   2918 static void
   2919 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2920     u_int16_t *data)
   2921 {
   2922 	bus_space_tag_t st = sc->sc_st;
   2923 	bus_space_handle_t sh = sc->sc_sh;
   2924 	u_int16_t reg;
   2925 	int i, x;
   2926 
   2927 	for (i = 0; i < wordcnt; i++) {
   2928 		/* Send CHIP SELECT. */
   2929 		reg = EROMAR_EECS;
   2930 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2931 
   2932 		/* Shift in the READ opcode. */
   2933 		for (x = 3; x > 0; x--) {
   2934 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2935 				reg |= EROMAR_EEDI;
   2936 			else
   2937 				reg &= ~EROMAR_EEDI;
   2938 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2939 			bus_space_write_4(st, sh, SIP_EROMAR,
   2940 			    reg | EROMAR_EESK);
   2941 			delay(4);
   2942 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2943 			delay(4);
   2944 		}
   2945 
   2946 		/* Shift in address. */
   2947 		for (x = 6; x > 0; x--) {
   2948 			if ((word + i) & (1 << (x - 1)))
   2949 				reg |= EROMAR_EEDI;
   2950 			else
   2951 				reg &= ~EROMAR_EEDI;
   2952 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2953 			bus_space_write_4(st, sh, SIP_EROMAR,
   2954 			    reg | EROMAR_EESK);
   2955 			delay(4);
   2956 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2957 			delay(4);
   2958 		}
   2959 
   2960 		/* Shift out data. */
   2961 		reg = EROMAR_EECS;
   2962 		data[i] = 0;
   2963 		for (x = 16; x > 0; x--) {
   2964 			bus_space_write_4(st, sh, SIP_EROMAR,
   2965 			    reg | EROMAR_EESK);
   2966 			delay(4);
   2967 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2968 				data[i] |= (1 << (x - 1));
   2969 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2970 			delay(4);
   2971 		}
   2972 
   2973 		/* Clear CHIP SELECT. */
   2974 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2975 		delay(4);
   2976 	}
   2977 }
   2978 
   2979 /*
   2980  * sipcom_add_rxbuf:
   2981  *
   2982  *	Add a receive buffer to the indicated descriptor.
   2983  */
   2984 static int
   2985 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2986 {
   2987 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2988 	struct mbuf *m;
   2989 	int error;
   2990 
   2991 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2992 	if (m == NULL)
   2993 		return (ENOBUFS);
   2994 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2995 
   2996 	MCLGET(m, M_DONTWAIT);
   2997 	if ((m->m_flags & M_EXT) == 0) {
   2998 		m_freem(m);
   2999 		return (ENOBUFS);
   3000 	}
   3001 
   3002 	/* XXX I don't believe this is necessary. --dyoung */
   3003 	if (sc->sc_gigabit)
   3004 		m->m_len = sc->sc_parm->p_rxbuf_len;
   3005 
   3006 	if (rxs->rxs_mbuf != NULL)
   3007 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3008 
   3009 	rxs->rxs_mbuf = m;
   3010 
   3011 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3012 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3013 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3014 	if (error) {
   3015 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3016 		    sc->sc_dev.dv_xname, idx, error);
   3017 		panic("%s", __func__);		/* XXX */
   3018 	}
   3019 
   3020 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3021 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3022 
   3023 	SIP_INIT_RXDESC(sc, idx);
   3024 
   3025 	return (0);
   3026 }
   3027 
   3028 /*
   3029  * sip_sis900_set_filter:
   3030  *
   3031  *	Set up the receive filter.
   3032  */
   3033 static void
   3034 sipcom_sis900_set_filter(struct sip_softc *sc)
   3035 {
   3036 	bus_space_tag_t st = sc->sc_st;
   3037 	bus_space_handle_t sh = sc->sc_sh;
   3038 	struct ethercom *ec = &sc->sc_ethercom;
   3039 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3040 	struct ether_multi *enm;
   3041 	const u_int8_t *cp;
   3042 	struct ether_multistep step;
   3043 	u_int32_t crc, mchash[16];
   3044 
   3045 	/*
   3046 	 * Initialize the prototype RFCR.
   3047 	 */
   3048 	sc->sc_rfcr = RFCR_RFEN;
   3049 	if (ifp->if_flags & IFF_BROADCAST)
   3050 		sc->sc_rfcr |= RFCR_AAB;
   3051 	if (ifp->if_flags & IFF_PROMISC) {
   3052 		sc->sc_rfcr |= RFCR_AAP;
   3053 		goto allmulti;
   3054 	}
   3055 
   3056 	/*
   3057 	 * Set up the multicast address filter by passing all multicast
   3058 	 * addresses through a CRC generator, and then using the high-order
   3059 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3060 	 * the lower 16 bits of each 32 bit multicast hash register are
   3061 	 * valid).  The high order bits select the register, while the
   3062 	 * rest of the bits select the bit within the register.
   3063 	 */
   3064 
   3065 	memset(mchash, 0, sizeof(mchash));
   3066 
   3067 	/*
   3068 	 * SiS900 (at least SiS963) requires us to register the address of
   3069 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3070 	 */
   3071 	crc = 0x0ed423f9;
   3072 
   3073 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3074 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3075 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3076 		/* Just want the 8 most significant bits. */
   3077 		crc >>= 24;
   3078 	} else {
   3079 		/* Just want the 7 most significant bits. */
   3080 		crc >>= 25;
   3081 	}
   3082 
   3083 	/* Set the corresponding bit in the hash table. */
   3084 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3085 
   3086 	ETHER_FIRST_MULTI(step, ec, enm);
   3087 	while (enm != NULL) {
   3088 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3089 			/*
   3090 			 * We must listen to a range of multicast addresses.
   3091 			 * For now, just accept all multicasts, rather than
   3092 			 * trying to set only those filter bits needed to match
   3093 			 * the range.  (At this time, the only use of address
   3094 			 * ranges is for IP multicast routing, for which the
   3095 			 * range is big enough to require all bits set.)
   3096 			 */
   3097 			goto allmulti;
   3098 		}
   3099 
   3100 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3101 
   3102 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3103 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3104 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3105 			/* Just want the 8 most significant bits. */
   3106 			crc >>= 24;
   3107 		} else {
   3108 			/* Just want the 7 most significant bits. */
   3109 			crc >>= 25;
   3110 		}
   3111 
   3112 		/* Set the corresponding bit in the hash table. */
   3113 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3114 
   3115 		ETHER_NEXT_MULTI(step, enm);
   3116 	}
   3117 
   3118 	ifp->if_flags &= ~IFF_ALLMULTI;
   3119 	goto setit;
   3120 
   3121  allmulti:
   3122 	ifp->if_flags |= IFF_ALLMULTI;
   3123 	sc->sc_rfcr |= RFCR_AAM;
   3124 
   3125  setit:
   3126 #define	FILTER_EMIT(addr, data)						\
   3127 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3128 	delay(1);							\
   3129 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3130 	delay(1)
   3131 
   3132 	/*
   3133 	 * Disable receive filter, and program the node address.
   3134 	 */
   3135 	cp = CLLADDR(ifp->if_sadl);
   3136 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3137 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3138 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3139 
   3140 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3141 		/*
   3142 		 * Program the multicast hash table.
   3143 		 */
   3144 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3145 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3146 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3147 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3148 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3149 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3150 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3151 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3152 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3153 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3154 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3155 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3156 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3157 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3158 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3159 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3160 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3161 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3162 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3163 		}
   3164 	}
   3165 #undef FILTER_EMIT
   3166 
   3167 	/*
   3168 	 * Re-enable the receiver filter.
   3169 	 */
   3170 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3171 }
   3172 
   3173 /*
   3174  * sip_dp83815_set_filter:
   3175  *
   3176  *	Set up the receive filter.
   3177  */
   3178 static void
   3179 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3180 {
   3181 	bus_space_tag_t st = sc->sc_st;
   3182 	bus_space_handle_t sh = sc->sc_sh;
   3183 	struct ethercom *ec = &sc->sc_ethercom;
   3184 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3185 	struct ether_multi *enm;
   3186 	const u_int8_t *cp;
   3187 	struct ether_multistep step;
   3188 	u_int32_t crc, hash, slot, bit;
   3189 #define	MCHASH_NWORDS_83820	128
   3190 #define	MCHASH_NWORDS_83815	32
   3191 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3192 	u_int16_t mchash[MCHASH_NWORDS];
   3193 	int i;
   3194 
   3195 	/*
   3196 	 * Initialize the prototype RFCR.
   3197 	 * Enable the receive filter, and accept on
   3198 	 *    Perfect (destination address) Match
   3199 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3200 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3201 	 *    IFF_ALLMULTI and accept all multicast, too).
   3202 	 */
   3203 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3204 	if (ifp->if_flags & IFF_BROADCAST)
   3205 		sc->sc_rfcr |= RFCR_AAB;
   3206 	if (ifp->if_flags & IFF_PROMISC) {
   3207 		sc->sc_rfcr |= RFCR_AAP;
   3208 		goto allmulti;
   3209 	}
   3210 
   3211 	/*
   3212          * Set up the DP83820/DP83815 multicast address filter by
   3213          * passing all multicast addresses through a CRC generator,
   3214          * and then using the high-order 11/9 bits as an index into
   3215          * the 2048/512 bit multicast hash table.  The high-order
   3216          * 7/5 bits select the slot, while the low-order 4 bits
   3217          * select the bit within the slot.  Note that only the low
   3218          * 16-bits of each filter word are used, and there are
   3219          * 128/32 filter words.
   3220 	 */
   3221 
   3222 	memset(mchash, 0, sizeof(mchash));
   3223 
   3224 	ifp->if_flags &= ~IFF_ALLMULTI;
   3225 	ETHER_FIRST_MULTI(step, ec, enm);
   3226 	if (enm == NULL)
   3227 		goto setit;
   3228 	while (enm != NULL) {
   3229 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3230 			/*
   3231 			 * We must listen to a range of multicast addresses.
   3232 			 * For now, just accept all multicasts, rather than
   3233 			 * trying to set only those filter bits needed to match
   3234 			 * the range.  (At this time, the only use of address
   3235 			 * ranges is for IP multicast routing, for which the
   3236 			 * range is big enough to require all bits set.)
   3237 			 */
   3238 			goto allmulti;
   3239 		}
   3240 
   3241 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3242 
   3243 		if (sc->sc_gigabit) {
   3244 			/* Just want the 11 most significant bits. */
   3245 			hash = crc >> 21;
   3246 		} else {
   3247 			/* Just want the 9 most significant bits. */
   3248 			hash = crc >> 23;
   3249 		}
   3250 
   3251 		slot = hash >> 4;
   3252 		bit = hash & 0xf;
   3253 
   3254 		/* Set the corresponding bit in the hash table. */
   3255 		mchash[slot] |= 1 << bit;
   3256 
   3257 		ETHER_NEXT_MULTI(step, enm);
   3258 	}
   3259 	sc->sc_rfcr |= RFCR_MHEN;
   3260 	goto setit;
   3261 
   3262  allmulti:
   3263 	ifp->if_flags |= IFF_ALLMULTI;
   3264 	sc->sc_rfcr |= RFCR_AAM;
   3265 
   3266  setit:
   3267 #define	FILTER_EMIT(addr, data)						\
   3268 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3269 	delay(1);							\
   3270 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3271 	delay(1)
   3272 
   3273 	/*
   3274 	 * Disable receive filter, and program the node address.
   3275 	 */
   3276 	cp = CLLADDR(ifp->if_sadl);
   3277 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3278 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3279 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3280 
   3281 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3282 		int nwords =
   3283 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3284 		/*
   3285 		 * Program the multicast hash table.
   3286 		 */
   3287 		for (i = 0; i < nwords; i++) {
   3288 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3289 		}
   3290 	}
   3291 #undef FILTER_EMIT
   3292 #undef MCHASH_NWORDS
   3293 #undef MCHASH_NWORDS_83815
   3294 #undef MCHASH_NWORDS_83820
   3295 
   3296 	/*
   3297 	 * Re-enable the receiver filter.
   3298 	 */
   3299 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3300 }
   3301 
   3302 /*
   3303  * sip_dp83820_mii_readreg:	[mii interface function]
   3304  *
   3305  *	Read a PHY register on the MII of the DP83820.
   3306  */
   3307 static int
   3308 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
   3309 {
   3310 	struct sip_softc *sc = (void *) self;
   3311 
   3312 	if (sc->sc_cfg & CFG_TBI_EN) {
   3313 		bus_addr_t tbireg;
   3314 		int rv;
   3315 
   3316 		if (phy != 0)
   3317 			return (0);
   3318 
   3319 		switch (reg) {
   3320 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3321 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3322 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3323 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3324 		case MII_ANER:		tbireg = SIP_TANER; break;
   3325 		case MII_EXTSR:
   3326 			/*
   3327 			 * Don't even bother reading the TESR register.
   3328 			 * The manual documents that the device has
   3329 			 * 1000baseX full/half capability, but the
   3330 			 * register itself seems read back 0 on some
   3331 			 * boards.  Just hard-code the result.
   3332 			 */
   3333 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3334 
   3335 		default:
   3336 			return (0);
   3337 		}
   3338 
   3339 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3340 		if (tbireg == SIP_TBISR) {
   3341 			/* LINK and ACOMP are switched! */
   3342 			int val = rv;
   3343 
   3344 			rv = 0;
   3345 			if (val & TBISR_MR_LINK_STATUS)
   3346 				rv |= BMSR_LINK;
   3347 			if (val & TBISR_MR_AN_COMPLETE)
   3348 				rv |= BMSR_ACOMP;
   3349 
   3350 			/*
   3351 			 * The manual claims this register reads back 0
   3352 			 * on hard and soft reset.  But we want to let
   3353 			 * the gentbi driver know that we support auto-
   3354 			 * negotiation, so hard-code this bit in the
   3355 			 * result.
   3356 			 */
   3357 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3358 		}
   3359 
   3360 		return (rv);
   3361 	}
   3362 
   3363 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3364 }
   3365 
   3366 /*
   3367  * sip_dp83820_mii_writereg:	[mii interface function]
   3368  *
   3369  *	Write a PHY register on the MII of the DP83820.
   3370  */
   3371 static void
   3372 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
   3373 {
   3374 	struct sip_softc *sc = (void *) self;
   3375 
   3376 	if (sc->sc_cfg & CFG_TBI_EN) {
   3377 		bus_addr_t tbireg;
   3378 
   3379 		if (phy != 0)
   3380 			return;
   3381 
   3382 		switch (reg) {
   3383 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3384 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3385 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3386 		default:
   3387 			return;
   3388 		}
   3389 
   3390 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3391 		return;
   3392 	}
   3393 
   3394 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3395 }
   3396 
   3397 /*
   3398  * sip_dp83820_mii_statchg:	[mii interface function]
   3399  *
   3400  *	Callback from MII layer when media changes.
   3401  */
   3402 static void
   3403 sipcom_dp83820_mii_statchg(struct device *self)
   3404 {
   3405 	struct sip_softc *sc = (struct sip_softc *) self;
   3406 	struct mii_data *mii = &sc->sc_mii;
   3407 	u_int32_t cfg, pcr;
   3408 
   3409 	/*
   3410 	 * Get flow control negotiation result.
   3411 	 */
   3412 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3413 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3414 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3415 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3416 	}
   3417 
   3418 	/*
   3419 	 * Update TXCFG for full-duplex operation.
   3420 	 */
   3421 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3422 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3423 	else
   3424 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3425 
   3426 	/*
   3427 	 * Update RXCFG for full-duplex or loopback.
   3428 	 */
   3429 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3430 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3431 		sc->sc_rxcfg |= RXCFG_ATX;
   3432 	else
   3433 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3434 
   3435 	/*
   3436 	 * Update CFG for MII/GMII.
   3437 	 */
   3438 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3439 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3440 	else
   3441 		cfg = sc->sc_cfg;
   3442 
   3443 	/*
   3444 	 * 802.3x flow control.
   3445 	 */
   3446 	pcr = 0;
   3447 	if (sc->sc_flowflags & IFM_FLOW) {
   3448 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3449 			pcr |= sc->sc_rx_flow_thresh;
   3450 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3451 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3452 	}
   3453 
   3454 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3455 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3456 	    sc->sc_txcfg);
   3457 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3458 	    sc->sc_rxcfg);
   3459 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3460 }
   3461 
   3462 /*
   3463  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3464  *
   3465  *	Read the MII serial port for the MII bit-bang module.
   3466  */
   3467 static u_int32_t
   3468 sipcom_mii_bitbang_read(struct device *self)
   3469 {
   3470 	struct sip_softc *sc = (void *) self;
   3471 
   3472 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3473 }
   3474 
   3475 /*
   3476  * sip_mii_bitbang_write: [mii big-bang interface function]
   3477  *
   3478  *	Write the MII serial port for the MII bit-bang module.
   3479  */
   3480 static void
   3481 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
   3482 {
   3483 	struct sip_softc *sc = (void *) self;
   3484 
   3485 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3486 }
   3487 
   3488 /*
   3489  * sip_sis900_mii_readreg:	[mii interface function]
   3490  *
   3491  *	Read a PHY register on the MII.
   3492  */
   3493 static int
   3494 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
   3495 {
   3496 	struct sip_softc *sc = (struct sip_softc *) self;
   3497 	u_int32_t enphy;
   3498 
   3499 	/*
   3500 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3501 	 * operations.
   3502 	 */
   3503 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3504 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3505 		    phy, reg);
   3506 
   3507 #ifndef SIS900_MII_RESTRICT
   3508 	/*
   3509 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3510 	 * MII address 0.
   3511 	 */
   3512 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3513 		return (0);
   3514 #endif
   3515 
   3516 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3517 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3518 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3519 	do {
   3520 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3521 	} while (enphy & ENPHY_ACCESS);
   3522 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3523 }
   3524 
   3525 /*
   3526  * sip_sis900_mii_writereg:	[mii interface function]
   3527  *
   3528  *	Write a PHY register on the MII.
   3529  */
   3530 static void
   3531 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
   3532 {
   3533 	struct sip_softc *sc = (struct sip_softc *) self;
   3534 	u_int32_t enphy;
   3535 
   3536 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3537 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3538 		    phy, reg, val);
   3539 		return;
   3540 	}
   3541 
   3542 #ifndef SIS900_MII_RESTRICT
   3543 	/*
   3544 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3545 	 * MII address 0.
   3546 	 */
   3547 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3548 		return;
   3549 #endif
   3550 
   3551 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3552 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3553 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3554 	do {
   3555 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3556 	} while (enphy & ENPHY_ACCESS);
   3557 }
   3558 
   3559 /*
   3560  * sip_sis900_mii_statchg:	[mii interface function]
   3561  *
   3562  *	Callback from MII layer when media changes.
   3563  */
   3564 static void
   3565 sipcom_sis900_mii_statchg(struct device *self)
   3566 {
   3567 	struct sip_softc *sc = (struct sip_softc *) self;
   3568 	struct mii_data *mii = &sc->sc_mii;
   3569 	u_int32_t flowctl;
   3570 
   3571 	/*
   3572 	 * Get flow control negotiation result.
   3573 	 */
   3574 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3575 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3576 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3577 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3578 	}
   3579 
   3580 	/*
   3581 	 * Update TXCFG for full-duplex operation.
   3582 	 */
   3583 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3584 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3585 	else
   3586 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3587 
   3588 	/*
   3589 	 * Update RXCFG for full-duplex or loopback.
   3590 	 */
   3591 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3592 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3593 		sc->sc_rxcfg |= RXCFG_ATX;
   3594 	else
   3595 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3596 
   3597 	/*
   3598 	 * Update IMR for use of 802.3x flow control.
   3599 	 */
   3600 	if (sc->sc_flowflags & IFM_FLOW) {
   3601 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3602 		flowctl = FLOWCTL_FLOWEN;
   3603 	} else {
   3604 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3605 		flowctl = 0;
   3606 	}
   3607 
   3608 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3609 	    sc->sc_txcfg);
   3610 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3611 	    sc->sc_rxcfg);
   3612 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3613 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3614 }
   3615 
   3616 /*
   3617  * sip_dp83815_mii_readreg:	[mii interface function]
   3618  *
   3619  *	Read a PHY register on the MII.
   3620  */
   3621 static int
   3622 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
   3623 {
   3624 	struct sip_softc *sc = (struct sip_softc *) self;
   3625 	u_int32_t val;
   3626 
   3627 	/*
   3628 	 * The DP83815 only has an internal PHY.  Only allow
   3629 	 * MII address 0.
   3630 	 */
   3631 	if (phy != 0)
   3632 		return (0);
   3633 
   3634 	/*
   3635 	 * Apparently, after a reset, the DP83815 can take a while
   3636 	 * to respond.  During this recovery period, the BMSR returns
   3637 	 * a value of 0.  Catch this -- it's not supposed to happen
   3638 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3639 	 * PHY to come back to life.
   3640 	 *
   3641 	 * This works out because the BMSR is the first register
   3642 	 * read during the PHY probe process.
   3643 	 */
   3644 	do {
   3645 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3646 	} while (reg == MII_BMSR && val == 0);
   3647 
   3648 	return (val & 0xffff);
   3649 }
   3650 
   3651 /*
   3652  * sip_dp83815_mii_writereg:	[mii interface function]
   3653  *
   3654  *	Write a PHY register to the MII.
   3655  */
   3656 static void
   3657 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
   3658 {
   3659 	struct sip_softc *sc = (struct sip_softc *) self;
   3660 
   3661 	/*
   3662 	 * The DP83815 only has an internal PHY.  Only allow
   3663 	 * MII address 0.
   3664 	 */
   3665 	if (phy != 0)
   3666 		return;
   3667 
   3668 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3669 }
   3670 
   3671 /*
   3672  * sip_dp83815_mii_statchg:	[mii interface function]
   3673  *
   3674  *	Callback from MII layer when media changes.
   3675  */
   3676 static void
   3677 sipcom_dp83815_mii_statchg(struct device *self)
   3678 {
   3679 	struct sip_softc *sc = (struct sip_softc *) self;
   3680 
   3681 	/*
   3682 	 * Update TXCFG for full-duplex operation.
   3683 	 */
   3684 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3685 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3686 	else
   3687 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3688 
   3689 	/*
   3690 	 * Update RXCFG for full-duplex or loopback.
   3691 	 */
   3692 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3693 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3694 		sc->sc_rxcfg |= RXCFG_ATX;
   3695 	else
   3696 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3697 
   3698 	/*
   3699 	 * XXX 802.3x flow control.
   3700 	 */
   3701 
   3702 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3703 	    sc->sc_txcfg);
   3704 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3705 	    sc->sc_rxcfg);
   3706 
   3707 	/*
   3708 	 * Some DP83815s experience problems when used with short
   3709 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3710 	 * sequence adjusts the DSP's signal attenuation to fix the
   3711 	 * problem.
   3712 	 */
   3713 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3714 		uint32_t reg;
   3715 
   3716 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3717 
   3718 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3719 		reg &= 0x0fff;
   3720 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3721 		delay(100);
   3722 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3723 		reg &= 0x00ff;
   3724 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3725 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3726 			    0x00e8);
   3727 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3728 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3729 			    reg | 0x20);
   3730 		}
   3731 
   3732 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3733 	}
   3734 }
   3735 
   3736 static void
   3737 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3738     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3739 {
   3740 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3741 	u_int8_t cksum, *e, match;
   3742 	int i;
   3743 
   3744 	/*
   3745 	 * EEPROM data format for the DP83820 can be found in
   3746 	 * the DP83820 manual, section 4.2.4.
   3747 	 */
   3748 
   3749 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3750 
   3751 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3752 	match = ~(match - 1);
   3753 
   3754 	cksum = 0x55;
   3755 	e = (u_int8_t *) eeprom_data;
   3756 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3757 		cksum += *e++;
   3758 
   3759 	if (cksum != match)
   3760 		printf("%s: Checksum (%x) mismatch (%x)",
   3761 		    sc->sc_dev.dv_xname, cksum, match);
   3762 
   3763 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3764 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3765 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3766 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3767 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3768 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3769 }
   3770 
   3771 static void
   3772 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3773 {
   3774 	int i;
   3775 
   3776 	/*
   3777 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3778 	 * a reason, but I don't know it.
   3779 	 */
   3780 	for (i = 0; i < 10; i++)
   3781 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3782 }
   3783 
   3784 static void
   3785 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3786     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3787 {
   3788 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3789 
   3790 	switch (sc->sc_rev) {
   3791 	case SIS_REV_630S:
   3792 	case SIS_REV_630E:
   3793 	case SIS_REV_630EA1:
   3794 	case SIS_REV_630ET:
   3795 	case SIS_REV_635:
   3796 		/*
   3797 		 * The MAC address for the on-board Ethernet of
   3798 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3799 		 * the chip into re-loading it from NVRAM, and
   3800 		 * read the MAC address out of the filter registers.
   3801 		 */
   3802 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3803 
   3804 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3805 		    RFCR_RFADDR_NODE0);
   3806 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3807 		    0xffff;
   3808 
   3809 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3810 		    RFCR_RFADDR_NODE2);
   3811 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3812 		    0xffff;
   3813 
   3814 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3815 		    RFCR_RFADDR_NODE4);
   3816 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3817 		    0xffff;
   3818 		break;
   3819 
   3820 	case SIS_REV_960:
   3821 		{
   3822 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3823 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3824 
   3825 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3826 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3827 
   3828 			int waittime, i;
   3829 
   3830 			/* Allow to read EEPROM from LAN. It is shared
   3831 			 * between a 1394 controller and the NIC and each
   3832 			 * time we access it, we need to set SIS_EECMD_REQ.
   3833 			 */
   3834 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3835 
   3836 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3837 				/* Force EEPROM to idle state. */
   3838 
   3839 				/*
   3840 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3841 				 */
   3842 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3843 				sipcom_sis900_eeprom_delay(sc);
   3844 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3845 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3846 					sipcom_sis900_eeprom_delay(sc);
   3847 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3848 					sipcom_sis900_eeprom_delay(sc);
   3849 				}
   3850 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3851 				sipcom_sis900_eeprom_delay(sc);
   3852 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3853 
   3854 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3855 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3856 					    sizeof(myea) / sizeof(myea[0]), myea);
   3857 					break;
   3858 				}
   3859 				DELAY(1);
   3860 			}
   3861 
   3862 			/*
   3863 			 * Set SIS_EECTL_CLK to high, so a other master
   3864 			 * can operate on the i2c bus.
   3865 			 */
   3866 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3867 
   3868 			/* Refuse EEPROM access by LAN */
   3869 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3870 		} break;
   3871 
   3872 	default:
   3873 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3874 		    sizeof(myea) / sizeof(myea[0]), myea);
   3875 	}
   3876 
   3877 	enaddr[0] = myea[0] & 0xff;
   3878 	enaddr[1] = myea[0] >> 8;
   3879 	enaddr[2] = myea[1] & 0xff;
   3880 	enaddr[3] = myea[1] >> 8;
   3881 	enaddr[4] = myea[2] & 0xff;
   3882 	enaddr[5] = myea[2] >> 8;
   3883 }
   3884 
   3885 /* Table and macro to bit-reverse an octet. */
   3886 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3887 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3888 
   3889 static void
   3890 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3891     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3892 {
   3893 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3894 	u_int8_t cksum, *e, match;
   3895 	int i;
   3896 
   3897 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3898 	    sizeof(eeprom_data[0]), eeprom_data);
   3899 
   3900 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3901 	match = ~(match - 1);
   3902 
   3903 	cksum = 0x55;
   3904 	e = (u_int8_t *) eeprom_data;
   3905 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3906 		cksum += *e++;
   3907 	}
   3908 	if (cksum != match) {
   3909 		printf("%s: Checksum (%x) mismatch (%x)",
   3910 		    sc->sc_dev.dv_xname, cksum, match);
   3911 	}
   3912 
   3913 	/*
   3914 	 * Unrolled because it makes slightly more sense this way.
   3915 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3916 	 * through bit 15 of word 8.
   3917 	 */
   3918 	ea = &eeprom_data[6];
   3919 	enaddr[0] = ((*ea & 0x1) << 7);
   3920 	ea++;
   3921 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3922 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3923 	enaddr[2] = ((*ea & 0x1) << 7);
   3924 	ea++;
   3925 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3926 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3927 	enaddr[4] = ((*ea & 0x1) << 7);
   3928 	ea++;
   3929 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3930 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3931 
   3932 	/*
   3933 	 * In case that's not weird enough, we also need to reverse
   3934 	 * the bits in each byte.  This all actually makes more sense
   3935 	 * if you think about the EEPROM storage as an array of bits
   3936 	 * being shifted into bytes, but that's not how we're looking
   3937 	 * at it here...
   3938 	 */
   3939 	for (i = 0; i < 6 ;i++)
   3940 		enaddr[i] = bbr(enaddr[i]);
   3941 }
   3942 
   3943 /*
   3944  * sip_mediastatus:	[ifmedia interface function]
   3945  *
   3946  *	Get the current interface media status.
   3947  */
   3948 static void
   3949 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3950 {
   3951 	struct sip_softc *sc = ifp->if_softc;
   3952 
   3953 	mii_pollstat(&sc->sc_mii);
   3954 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3955 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
   3956 			   sc->sc_flowflags;
   3957 }
   3958 
   3959 /*
   3960  * sip_mediachange:	[ifmedia interface function]
   3961  *
   3962  *	Set hardware to newly-selected media.
   3963  */
   3964 static int
   3965 sipcom_mediachange(struct ifnet *ifp)
   3966 {
   3967 	struct sip_softc *sc = ifp->if_softc;
   3968 
   3969 	if (ifp->if_flags & IFF_UP)
   3970 		mii_mediachg(&sc->sc_mii);
   3971 	return (0);
   3972 }
   3973