if_sip.c revision 1.123 1 /* $NetBSD: if_sip.c,v 1.123 2007/12/15 23:04:57 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.123 2007/12/15 23:04:57 dyoung Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 /*
130 * Transmit descriptor list size. This is arbitrary, but allocate
131 * enough descriptors for 128 pending transmissions, and 8 segments
132 * per packet (64 for DP83820 for jumbo frames).
133 *
134 * This MUST work out to a power of 2.
135 */
136 #define GSIP_NTXSEGS_ALLOC 16
137 #define SIP_NTXSEGS_ALLOC 8
138
139 #define SIP_TXQUEUELEN 256
140 #define MAX_SIP_NTXDESC \
141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer per incoming
145 * packet, so this logic is a little simpler.
146 *
147 * Actually, on the DP83820, we allow the packet to consume more than
148 * one buffer, in order to support jumbo Ethernet frames. In that
149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
151 * so we'd better be quick about handling receive interrupts.
152 */
153 #define GSIP_NRXDESC 256
154 #define SIP_NRXDESC 128
155
156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
157
158 /*
159 * Control structures are DMA'd to the SiS900 chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct sip_control_data {
164 /*
165 * The transmit descriptors.
166 */
167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168
169 /*
170 * The receive descriptors.
171 */
172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174
175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct sip_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191
192 /*
193 * Software state for receive jobs.
194 */
195 struct sip_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 enum sip_attach_stage {
201 SIP_ATTACH_FIN = 0
202 , SIP_ATTACH_CREATE_RXMAP
203 , SIP_ATTACH_CREATE_TXMAP
204 , SIP_ATTACH_LOAD_MAP
205 , SIP_ATTACH_CREATE_MAP
206 , SIP_ATTACH_MAP_MEM
207 , SIP_ATTACH_ALLOC_MEM
208 , SIP_ATTACH_INTR
209 , SIP_ATTACH_MAP
210 };
211
212 /*
213 * Software state per device.
214 */
215 struct sip_softc {
216 struct device sc_dev; /* generic device information */
217 bus_space_tag_t sc_st; /* bus space tag */
218 bus_space_handle_t sc_sh; /* bus space handle */
219 bus_size_t sc_sz; /* bus space size */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 pci_chipset_tag_t sc_pc;
222 bus_dma_segment_t sc_seg;
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_gigabit; /* 1: 83820, 0: other */
228 int sc_rev; /* chip revision */
229
230 void *sc_ih; /* interrupt cookie */
231
232 struct mii_data sc_mii; /* MII/media information */
233
234 callout_t sc_tick_ch; /* tick callout */
235
236 bus_dmamap_t sc_cddmamap; /* control data DMA map */
237 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
238
239 /*
240 * Software state for transmit and receive descriptors.
241 */
242 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
243 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
244
245 /*
246 * Control data structures.
247 */
248 struct sip_control_data *sc_control_data;
249 #define sc_txdescs sc_control_data->scd_txdescs
250 #define sc_rxdescs sc_control_data->scd_rxdescs
251
252 #ifdef SIP_EVENT_COUNTERS
253 /*
254 * Event counters.
255 */
256 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
257 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
258 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
259 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
260 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
261 struct evcnt sc_ev_rxintr; /* Rx interrupts */
262 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
263 struct evcnt sc_ev_rxpause; /* PAUSE received */
264 /* DP83820 only */
265 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* SIP_EVENT_COUNTERS */
273
274 u_int32_t sc_txcfg; /* prototype TXCFG register */
275 u_int32_t sc_rxcfg; /* prototype RXCFG register */
276 u_int32_t sc_imr; /* prototype IMR register */
277 u_int32_t sc_rfcr; /* prototype RFCR register */
278
279 u_int32_t sc_cfg; /* prototype CFG register */
280
281 u_int32_t sc_gpior; /* prototype GPIOR register */
282
283 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
284 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
285
286 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
287
288 int sc_flowflags; /* 802.3x flow control flags */
289 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
290 int sc_paused; /* paused indication */
291
292 int sc_txfree; /* number of free Tx descriptors */
293 int sc_txnext; /* next ready Tx descriptor */
294 int sc_txwin; /* Tx descriptors since last intr */
295
296 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
297 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
298
299 /* values of interface state at last init */
300 struct {
301 /* if_capenable */
302 uint64_t if_capenable;
303 /* ec_capenable */
304 int ec_capenable;
305 /* VLAN_ATTACHED */
306 int is_vlan;
307 } sc_prev;
308
309 short sc_if_flags;
310
311 int sc_rxptr; /* next ready Rx descriptor/descsoft */
312 int sc_rxdiscard;
313 int sc_rxlen;
314 struct mbuf *sc_rxhead;
315 struct mbuf *sc_rxtail;
316 struct mbuf **sc_rxtailp;
317
318 int sc_ntxdesc;
319 int sc_ntxdesc_mask;
320
321 int sc_nrxdesc_mask;
322
323 const struct sip_parm {
324 const struct sip_regs {
325 int r_rxcfg;
326 int r_txcfg;
327 } p_regs;
328
329 const struct sip_bits {
330 uint32_t b_txcfg_mxdma_8;
331 uint32_t b_txcfg_mxdma_16;
332 uint32_t b_txcfg_mxdma_32;
333 uint32_t b_txcfg_mxdma_64;
334 uint32_t b_txcfg_mxdma_128;
335 uint32_t b_txcfg_mxdma_256;
336 uint32_t b_txcfg_mxdma_512;
337 uint32_t b_txcfg_flth_mask;
338 uint32_t b_txcfg_drth_mask;
339
340 uint32_t b_rxcfg_mxdma_8;
341 uint32_t b_rxcfg_mxdma_16;
342 uint32_t b_rxcfg_mxdma_32;
343 uint32_t b_rxcfg_mxdma_64;
344 uint32_t b_rxcfg_mxdma_128;
345 uint32_t b_rxcfg_mxdma_256;
346 uint32_t b_rxcfg_mxdma_512;
347
348 uint32_t b_isr_txrcmp;
349 uint32_t b_isr_rxrcmp;
350 uint32_t b_isr_dperr;
351 uint32_t b_isr_sserr;
352 uint32_t b_isr_rmabt;
353 uint32_t b_isr_rtabt;
354
355 uint32_t b_cmdsts_size_mask;
356 } p_bits;
357 int p_filtmem;
358 int p_rxbuf_len;
359 bus_size_t p_tx_dmamap_size;
360 int p_ntxsegs;
361 int p_ntxsegs_alloc;
362 int p_nrxdesc;
363 } *sc_parm;
364
365 void (*sc_rxintr)(struct sip_softc *);
366
367 #if NRND > 0
368 rndsource_element_t rnd_source; /* random source */
369 #endif
370 };
371
372 #define sc_bits sc_parm->p_bits
373 #define sc_regs sc_parm->p_regs
374
375 static const struct sip_parm sip_parm = {
376 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
377 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
378 , .p_tx_dmamap_size = MCLBYTES
379 , .p_ntxsegs = 16
380 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
381 , .p_nrxdesc = SIP_NRXDESC
382 , .p_bits = {
383 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
384 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
385 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
386 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
387 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
388 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
389 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
390 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
391 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
392
393 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
394 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
395 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
396 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
397 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
398 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
399 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
400
401 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
402 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
403 , .b_isr_dperr = 0x00800000 /* detected parity error */
404 , .b_isr_sserr = 0x00400000 /* signalled system error */
405 , .b_isr_rmabt = 0x00200000 /* received master abort */
406 , .b_isr_rtabt = 0x00100000 /* received target abort */
407 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
408 }
409 , .p_regs = {
410 .r_rxcfg = OTHER_SIP_RXCFG,
411 .r_txcfg = OTHER_SIP_TXCFG
412 }
413 }, gsip_parm = {
414 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
415 , .p_rxbuf_len = MCLBYTES - 8
416 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
417 , .p_ntxsegs = 64
418 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
419 , .p_nrxdesc = GSIP_NRXDESC
420 , .p_bits = {
421 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
422 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
423 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
424 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
425 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
426 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
427 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
428 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
429 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
430
431 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
432 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
433 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
434 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
435 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
436 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
437 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
438
439 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
440 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
441 , .b_isr_dperr = 0x00100000 /* detected parity error */
442 , .b_isr_sserr = 0x00080000 /* signalled system error */
443 , .b_isr_rmabt = 0x00040000 /* received master abort */
444 , .b_isr_rtabt = 0x00020000 /* received target abort */
445 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
446 }
447 , .p_regs = {
448 .r_rxcfg = DP83820_SIP_RXCFG,
449 .r_txcfg = DP83820_SIP_TXCFG
450 }
451 };
452
453 static inline int
454 sip_nexttx(const struct sip_softc *sc, int x)
455 {
456 return (x + 1) & sc->sc_ntxdesc_mask;
457 }
458
459 static inline int
460 sip_nextrx(const struct sip_softc *sc, int x)
461 {
462 return (x + 1) & sc->sc_nrxdesc_mask;
463 }
464
465 /* 83820 only */
466 #define SIP_RXCHAIN_RESET(sc) \
467 do { \
468 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
469 *(sc)->sc_rxtailp = NULL; \
470 (sc)->sc_rxlen = 0; \
471 } while (/*CONSTCOND*/0)
472
473 /* 83820 only */
474 #define SIP_RXCHAIN_LINK(sc, m) \
475 do { \
476 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
477 (sc)->sc_rxtailp = &(m)->m_next; \
478 } while (/*CONSTCOND*/0)
479
480 #ifdef SIP_EVENT_COUNTERS
481 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
482 #else
483 #define SIP_EVCNT_INCR(ev) /* nothing */
484 #endif
485
486 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
487 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
488
489 #define SIP_CDTXSYNC(sc, x, n, ops) \
490 do { \
491 int __x, __n; \
492 \
493 __x = (x); \
494 __n = (n); \
495 \
496 /* If it will wrap around, sync to the end of the ring. */ \
497 if ((__x + __n) > sc->sc_ntxdesc) { \
498 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
499 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
500 (sc->sc_ntxdesc - __x), (ops)); \
501 __n -= (sc->sc_ntxdesc - __x); \
502 __x = 0; \
503 } \
504 \
505 /* Now sync whatever is left. */ \
506 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
507 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
508 } while (0)
509
510 #define SIP_CDRXSYNC(sc, x, ops) \
511 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
512 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
513
514 #if 0
515 #ifdef DP83820
516 u_int32_t sipd_bufptr; /* pointer to DMA segment */
517 u_int32_t sipd_cmdsts; /* command/status word */
518 #else
519 u_int32_t sipd_cmdsts; /* command/status word */
520 u_int32_t sipd_bufptr; /* pointer to DMA segment */
521 #endif /* DP83820 */
522 #endif /* 0 */
523
524 static inline volatile uint32_t *
525 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
526 {
527 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
528 }
529
530 static inline volatile uint32_t *
531 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
532 {
533 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
534 }
535
536 static inline void
537 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
538 {
539 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
540 struct sip_desc *sipd = &sc->sc_rxdescs[x];
541
542 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
543 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
544 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
545 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
546 sipd->sipd_extsts = 0;
547 SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
548 }
549
550 #define SIP_CHIP_VERS(sc, v, p, r) \
551 ((sc)->sc_model->sip_vendor == (v) && \
552 (sc)->sc_model->sip_product == (p) && \
553 (sc)->sc_rev == (r))
554
555 #define SIP_CHIP_MODEL(sc, v, p) \
556 ((sc)->sc_model->sip_vendor == (v) && \
557 (sc)->sc_model->sip_product == (p))
558
559 #define SIP_SIS900_REV(sc, rev) \
560 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
561
562 #define SIP_TIMEOUT 1000
563
564 static void sipcom_start(struct ifnet *);
565 static void sipcom_watchdog(struct ifnet *);
566 static int sipcom_ioctl(struct ifnet *, u_long, void *);
567 static int sipcom_init(struct ifnet *);
568 static void sipcom_stop(struct ifnet *, int);
569
570 static void sipcom_shutdown(void *);
571
572 static bool sipcom_reset(struct sip_softc *);
573 static void sipcom_rxdrain(struct sip_softc *);
574 static int sipcom_add_rxbuf(struct sip_softc *, int);
575 static void sipcom_read_eeprom(struct sip_softc *, int, int,
576 u_int16_t *);
577 static void sipcom_tick(void *);
578
579 static void sipcom_sis900_set_filter(struct sip_softc *);
580 static void sipcom_dp83815_set_filter(struct sip_softc *);
581
582 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
583 const struct pci_attach_args *, u_int8_t *);
584 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
585 static void sipcom_sis900_read_macaddr(struct sip_softc *,
586 const struct pci_attach_args *, u_int8_t *);
587 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
588 const struct pci_attach_args *, u_int8_t *);
589
590 static int sipcom_intr(void *);
591 static void sipcom_txintr(struct sip_softc *);
592 static void sip_rxintr(struct sip_softc *);
593 static void gsip_rxintr(struct sip_softc *);
594
595 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
596 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
597 static void sipcom_dp83820_mii_statchg(struct device *);
598
599 static int sipcom_sis900_mii_readreg(struct device *, int, int);
600 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
601 static void sipcom_sis900_mii_statchg(struct device *);
602
603 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
604 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
605 static void sipcom_dp83815_mii_statchg(struct device *);
606
607 static int sipcom_mediachange(struct ifnet *);
608 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
609
610 static int sipcom_match(struct device *, struct cfdata *, void *);
611 static void sipcom_attach(struct device *, struct device *, void *);
612 static void sipcom_do_detach(device_t, enum sip_attach_stage);
613 static int sipcom_detach(device_t, int);
614 static bool sipcom_resume(device_t);
615
616 int gsip_copy_small = 0;
617 int sip_copy_small = 0;
618
619 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
620 sipcom_match, sipcom_attach, sipcom_detach, NULL);
621 CFATTACH_DECL(sip, sizeof(struct sip_softc),
622 sipcom_match, sipcom_attach, sipcom_detach, NULL);
623
624 /*
625 * Descriptions of the variants of the SiS900.
626 */
627 struct sip_variant {
628 int (*sipv_mii_readreg)(struct device *, int, int);
629 void (*sipv_mii_writereg)(struct device *, int, int, int);
630 void (*sipv_mii_statchg)(struct device *);
631 void (*sipv_set_filter)(struct sip_softc *);
632 void (*sipv_read_macaddr)(struct sip_softc *,
633 const struct pci_attach_args *, u_int8_t *);
634 };
635
636 static u_int32_t sipcom_mii_bitbang_read(struct device *);
637 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
638
639 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
640 sipcom_mii_bitbang_read,
641 sipcom_mii_bitbang_write,
642 {
643 EROMAR_MDIO, /* MII_BIT_MDO */
644 EROMAR_MDIO, /* MII_BIT_MDI */
645 EROMAR_MDC, /* MII_BIT_MDC */
646 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
647 0, /* MII_BIT_DIR_PHY_HOST */
648 }
649 };
650
651 static const struct sip_variant sipcom_variant_dp83820 = {
652 sipcom_dp83820_mii_readreg,
653 sipcom_dp83820_mii_writereg,
654 sipcom_dp83820_mii_statchg,
655 sipcom_dp83815_set_filter,
656 sipcom_dp83820_read_macaddr,
657 };
658
659 static const struct sip_variant sipcom_variant_sis900 = {
660 sipcom_sis900_mii_readreg,
661 sipcom_sis900_mii_writereg,
662 sipcom_sis900_mii_statchg,
663 sipcom_sis900_set_filter,
664 sipcom_sis900_read_macaddr,
665 };
666
667 static const struct sip_variant sipcom_variant_dp83815 = {
668 sipcom_dp83815_mii_readreg,
669 sipcom_dp83815_mii_writereg,
670 sipcom_dp83815_mii_statchg,
671 sipcom_dp83815_set_filter,
672 sipcom_dp83815_read_macaddr,
673 };
674
675
676 /*
677 * Devices supported by this driver.
678 */
679 static const struct sip_product {
680 pci_vendor_id_t sip_vendor;
681 pci_product_id_t sip_product;
682 const char *sip_name;
683 const struct sip_variant *sip_variant;
684 int sip_gigabit;
685 } sipcom_products[] = {
686 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
687 "NatSemi DP83820 Gigabit Ethernet",
688 &sipcom_variant_dp83820, 1 },
689 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
690 "SiS 900 10/100 Ethernet",
691 &sipcom_variant_sis900, 0 },
692 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
693 "SiS 7016 10/100 Ethernet",
694 &sipcom_variant_sis900, 0 },
695
696 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
697 "NatSemi DP83815 10/100 Ethernet",
698 &sipcom_variant_dp83815, 0 },
699
700 { 0, 0,
701 NULL,
702 NULL, 0 },
703 };
704
705 static const struct sip_product *
706 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
707 {
708 const struct sip_product *sip;
709
710 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
711 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
712 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
713 sip->sip_gigabit == gigabit)
714 return sip;
715 }
716 return NULL;
717 }
718
719 /*
720 * I really hate stupid hardware vendors. There's a bit in the EEPROM
721 * which indicates if the card can do 64-bit data transfers. Unfortunately,
722 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
723 * which means we try to use 64-bit data transfers on those cards if we
724 * happen to be plugged into a 32-bit slot.
725 *
726 * What we do is use this table of cards known to be 64-bit cards. If
727 * you have a 64-bit card who's subsystem ID is not listed in this table,
728 * send the output of "pcictl dump ..." of the device to me so that your
729 * card will use the 64-bit data path when plugged into a 64-bit slot.
730 *
731 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
732 * June 30, 2002
733 */
734 static int
735 sipcom_check_64bit(const struct pci_attach_args *pa)
736 {
737 static const struct {
738 pci_vendor_id_t c64_vendor;
739 pci_product_id_t c64_product;
740 } card64[] = {
741 /* Asante GigaNIX */
742 { 0x128a, 0x0002 },
743
744 /* Accton EN1407-T, Planex GN-1000TE */
745 { 0x1113, 0x1407 },
746
747 /* Netgear GA-621 */
748 { 0x1385, 0x621a },
749
750 /* SMC EZ Card */
751 { 0x10b8, 0x9462 },
752
753 { 0, 0}
754 };
755 pcireg_t subsys;
756 int i;
757
758 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
759
760 for (i = 0; card64[i].c64_vendor != 0; i++) {
761 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
762 PCI_PRODUCT(subsys) == card64[i].c64_product)
763 return (1);
764 }
765
766 return (0);
767 }
768
769 static int
770 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
771 {
772 struct pci_attach_args *pa = aux;
773
774 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
775 return 1;
776
777 return 0;
778 }
779
780 static void
781 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
782 {
783 u_int32_t reg;
784 int i;
785
786 /*
787 * Cause the chip to load configuration data from the EEPROM.
788 */
789 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
790 for (i = 0; i < 10000; i++) {
791 delay(10);
792 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) == 0)
794 break;
795 }
796 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
797 PTSCR_EELOAD_EN) {
798 printf("%s: timeout loading configuration from EEPROM\n",
799 sc->sc_dev.dv_xname);
800 return;
801 }
802
803 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
804
805 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
806 if (reg & CFG_PCI64_DET) {
807 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
808 /*
809 * Check to see if this card is 64-bit. If so, enable 64-bit
810 * data transfers.
811 *
812 * We can't use the DATA64_EN bit in the EEPROM, because
813 * vendors of 32-bit cards fail to clear that bit in many
814 * cases (yet the card still detects that it's in a 64-bit
815 * slot; go figure).
816 */
817 if (sipcom_check_64bit(pa)) {
818 sc->sc_cfg |= CFG_DATA64_EN;
819 printf(", using 64-bit data transfers");
820 }
821 printf("\n");
822 }
823
824 /*
825 * XXX Need some PCI flags indicating support for
826 * XXX 64-bit addressing.
827 */
828 #if 0
829 if (reg & CFG_M64ADDR)
830 sc->sc_cfg |= CFG_M64ADDR;
831 if (reg & CFG_T64ADDR)
832 sc->sc_cfg |= CFG_T64ADDR;
833 #endif
834
835 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
836 const char *sep = "";
837 printf("%s: using ", sc->sc_dev.dv_xname);
838 if (reg & CFG_EXT_125) {
839 sc->sc_cfg |= CFG_EXT_125;
840 printf("%s125MHz clock", sep);
841 sep = ", ";
842 }
843 if (reg & CFG_TBI_EN) {
844 sc->sc_cfg |= CFG_TBI_EN;
845 printf("%sten-bit interface", sep);
846 sep = ", ";
847 }
848 printf("\n");
849 }
850 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
851 (reg & CFG_MRM_DIS) != 0)
852 sc->sc_cfg |= CFG_MRM_DIS;
853 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
854 (reg & CFG_MWI_DIS) != 0)
855 sc->sc_cfg |= CFG_MWI_DIS;
856
857 /*
858 * Use the extended descriptor format on the DP83820. This
859 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
860 * checksumming.
861 */
862 sc->sc_cfg |= CFG_EXTSTS_EN;
863 }
864
865 static int
866 sipcom_detach(device_t self, int flags)
867 {
868 int s;
869
870 s = splnet();
871 sipcom_do_detach(self, SIP_ATTACH_FIN);
872 splx(s);
873
874 return 0;
875 }
876
877 static void
878 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
879 {
880 int i;
881 struct sip_softc *sc = device_private(self);
882 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
883
884 /*
885 * Free any resources we've allocated during attach.
886 * Do this in reverse order and fall through.
887 */
888 switch (stage) {
889 case SIP_ATTACH_FIN:
890 sipcom_stop(ifp, 1);
891 pmf_device_deregister(self);
892 #ifdef SIP_EVENT_COUNTERS
893 /*
894 * Attach event counters.
895 */
896 evcnt_detach(&sc->sc_ev_txforceintr);
897 evcnt_detach(&sc->sc_ev_txdstall);
898 evcnt_detach(&sc->sc_ev_txsstall);
899 evcnt_detach(&sc->sc_ev_hiberr);
900 evcnt_detach(&sc->sc_ev_rxintr);
901 evcnt_detach(&sc->sc_ev_txiintr);
902 evcnt_detach(&sc->sc_ev_txdintr);
903 if (!sc->sc_gigabit) {
904 evcnt_detach(&sc->sc_ev_rxpause);
905 } else {
906 evcnt_detach(&sc->sc_ev_txudpsum);
907 evcnt_detach(&sc->sc_ev_txtcpsum);
908 evcnt_detach(&sc->sc_ev_txipsum);
909 evcnt_detach(&sc->sc_ev_rxudpsum);
910 evcnt_detach(&sc->sc_ev_rxtcpsum);
911 evcnt_detach(&sc->sc_ev_rxipsum);
912 evcnt_detach(&sc->sc_ev_txpause);
913 evcnt_detach(&sc->sc_ev_rxpause);
914 }
915 #endif /* SIP_EVENT_COUNTERS */
916
917 #if NRND > 0
918 rnd_detach_source(&sc->rnd_source);
919 #endif
920
921 ether_ifdetach(ifp);
922 if_detach(ifp);
923 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
924
925 if (sc->sc_sdhook != NULL)
926 shutdownhook_disestablish(sc->sc_sdhook);
927
928 /*FALLTHROUGH*/
929 case SIP_ATTACH_CREATE_RXMAP:
930 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
931 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->sc_rxsoft[i].rxs_dmamap);
934 }
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_CREATE_TXMAP:
937 for (i = 0; i < SIP_TXQUEUELEN; i++) {
938 if (sc->sc_txsoft[i].txs_dmamap != NULL)
939 bus_dmamap_destroy(sc->sc_dmat,
940 sc->sc_txsoft[i].txs_dmamap);
941 }
942 /*FALLTHROUGH*/
943 case SIP_ATTACH_LOAD_MAP:
944 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
945 /*FALLTHROUGH*/
946 case SIP_ATTACH_CREATE_MAP:
947 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
948 /*FALLTHROUGH*/
949 case SIP_ATTACH_MAP_MEM:
950 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
951 sizeof(struct sip_control_data));
952 /*FALLTHROUGH*/
953 case SIP_ATTACH_ALLOC_MEM:
954 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
955 /* FALLTHROUGH*/
956 case SIP_ATTACH_INTR:
957 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
958 /* FALLTHROUGH*/
959 case SIP_ATTACH_MAP:
960 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
961 break;
962 default:
963 break;
964 }
965 return;
966 }
967
968 static bool
969 sipcom_resume(device_t self)
970 {
971 struct sip_softc *sc = device_private(self);
972
973 return sipcom_reset(sc);
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = (struct sip_softc *) self;
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t pmreg;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997
998 callout_init(&sc->sc_tick_ch, 0);
999
1000 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 if (sip == NULL) {
1002 printf("\n");
1003 panic("%s: impossible", __func__);
1004 }
1005 sc->sc_gigabit = sip->sip_gigabit;
1006
1007 sc->sc_pc = pc;
1008
1009 if (sc->sc_gigabit) {
1010 sc->sc_rxintr = gsip_rxintr;
1011 sc->sc_parm = &gsip_parm;
1012 } else {
1013 sc->sc_rxintr = sip_rxintr;
1014 sc->sc_parm = &sip_parm;
1015 }
1016 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1017 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1018 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1019 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1020 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1021
1022 sc->sc_rev = PCI_REVISION(pa->pa_class);
1023
1024 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1025
1026 sc->sc_model = sip;
1027
1028 /*
1029 * XXX Work-around broken PXE firmware on some boards.
1030 *
1031 * The DP83815 shares an address decoder with the MEM BAR
1032 * and the ROM BAR. Make sure the ROM BAR is disabled,
1033 * so that memory mapped access works.
1034 */
1035 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1036 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1037 ~PCI_MAPREG_ROM_ENABLE);
1038
1039 /*
1040 * Map the device.
1041 */
1042 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1043 PCI_MAPREG_TYPE_IO, 0,
1044 &iot, &ioh, NULL, &iosz) == 0);
1045 if (sc->sc_gigabit) {
1046 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1047 switch (memtype) {
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1049 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1050 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1051 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1052 break;
1053 default:
1054 memh_valid = 0;
1055 }
1056 } else {
1057 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1058 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1059 &memt, &memh, NULL, &memsz) == 0);
1060 }
1061
1062 if (memh_valid) {
1063 sc->sc_st = memt;
1064 sc->sc_sh = memh;
1065 sc->sc_sz = memsz;
1066 } else if (ioh_valid) {
1067 sc->sc_st = iot;
1068 sc->sc_sh = ioh;
1069 sc->sc_sz = iosz;
1070 } else {
1071 printf("%s: unable to map device registers\n",
1072 sc->sc_dev.dv_xname);
1073 return;
1074 }
1075
1076 sc->sc_dmat = pa->pa_dmat;
1077
1078 /*
1079 * Make sure bus mastering is enabled. Also make sure
1080 * Write/Invalidate is enabled if we're allowed to use it.
1081 */
1082 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1083 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1084 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1085 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1086 pmreg | PCI_COMMAND_MASTER_ENABLE);
1087
1088 /* power up chip */
1089 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1090 NULL)) && error != EOPNOTSUPP) {
1091 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1092 error);
1093 return;
1094 }
1095
1096 /*
1097 * Map and establish our interrupt.
1098 */
1099 if (pci_intr_map(pa, &ih)) {
1100 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1101 return;
1102 }
1103 intrstr = pci_intr_string(pc, ih);
1104 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1105 if (sc->sc_ih == NULL) {
1106 printf("%s: unable to establish interrupt",
1107 sc->sc_dev.dv_xname);
1108 if (intrstr != NULL)
1109 printf(" at %s", intrstr);
1110 printf("\n");
1111 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 }
1113 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1114
1115 SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117
1118 /*
1119 * Allocate the control data structures, and create and load the
1120 * DMA map for it.
1121 */
1122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 &rseg, 0)) != 0) {
1125 printf("%s: unable to allocate control data, error = %d\n",
1126 sc->sc_dev.dv_xname, error);
1127 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 }
1129
1130 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1133 printf("%s: unable to map control data, error = %d\n",
1134 sc->sc_dev.dv_xname, error);
1135 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 }
1137
1138 if ((error = bus_dmamap_create(sc->sc_dmat,
1139 sizeof(struct sip_control_data), 1,
1140 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 printf("%s: unable to create control data DMA map, "
1142 "error = %d\n", sc->sc_dev.dv_xname, error);
1143 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 }
1145
1146 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 0)) != 0) {
1149 printf("%s: unable to load control data DMA map, error = %d\n",
1150 sc->sc_dev.dv_xname, error);
1151 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 }
1153
1154 /*
1155 * Create the transmit buffer DMA maps.
1156 */
1157 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 printf("%s: unable to create tx DMA map %d, "
1162 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1163 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 }
1165 }
1166
1167 /*
1168 * Create the receive buffer DMA maps.
1169 */
1170 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 printf("%s: unable to create rx DMA map %d, "
1174 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1175 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 }
1177 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 }
1179
1180 /*
1181 * Reset the chip to a known state.
1182 */
1183 sipcom_reset(sc);
1184
1185 /*
1186 * Read the Ethernet address from the EEPROM. This might
1187 * also fetch other stuff from the EEPROM and stash it
1188 * in the softc.
1189 */
1190 sc->sc_cfg = 0;
1191 if (!sc->sc_gigabit) {
1192 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1193 SIP_SIS900_REV(sc,SIS_REV_900B))
1194 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195
1196 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 SIP_SIS900_REV(sc,SIS_REV_960) ||
1198 SIP_SIS900_REV(sc,SIS_REV_900B))
1199 sc->sc_cfg |=
1200 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 CFG_EDBMASTEN);
1202 }
1203
1204 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205
1206 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1207 ether_sprintf(enaddr));
1208
1209 /*
1210 * Initialize the configuration register: aggressive PCI
1211 * bus request algorithm, default backoff, default OW timer,
1212 * default parity error detection.
1213 *
1214 * NOTE: "Big endian mode" is useless on the SiS900 and
1215 * friends -- it affects packet data, not descriptors.
1216 */
1217 if (sc->sc_gigabit)
1218 sipcom_dp83820_attach(sc, pa);
1219
1220 /*
1221 * Initialize our media structures and probe the MII.
1222 */
1223 sc->sc_mii.mii_ifp = ifp;
1224 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1225 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1226 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1227 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
1228 sipcom_mediastatus);
1229
1230 /*
1231 * XXX We cannot handle flow control on the DP83815.
1232 */
1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1235 MII_OFFSET_ANY, 0);
1236 else
1237 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1240 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1241 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1242 } else
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1244
1245 ifp = &sc->sc_ethercom.ec_if;
1246 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1247 ifp->if_softc = sc;
1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 sc->sc_if_flags = ifp->if_flags;
1250 ifp->if_ioctl = sipcom_ioctl;
1251 ifp->if_start = sipcom_start;
1252 ifp->if_watchdog = sipcom_watchdog;
1253 ifp->if_init = sipcom_init;
1254 ifp->if_stop = sipcom_stop;
1255 IFQ_SET_READY(&ifp->if_snd);
1256
1257 /*
1258 * We can support 802.1Q VLAN-sized frames.
1259 */
1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261
1262 if (sc->sc_gigabit) {
1263 /*
1264 * And the DP83820 can do VLAN tagging in hardware, and
1265 * support the jumbo Ethernet MTU.
1266 */
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269
1270 /*
1271 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 * in hardware.
1273 */
1274 ifp->if_capabilities |=
1275 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 }
1279
1280 /*
1281 * Attach the interface.
1282 */
1283 if_attach(ifp);
1284 ether_ifattach(ifp, enaddr);
1285 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 sc->sc_prev.if_capenable = ifp->if_capenable;
1288 #if NRND > 0
1289 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1290 RND_TYPE_NET, 0);
1291 #endif
1292
1293 /*
1294 * The number of bytes that must be available in
1295 * the Tx FIFO before the bus master can DMA more
1296 * data into the FIFO.
1297 */
1298 sc->sc_tx_fill_thresh = 64 / 32;
1299
1300 /*
1301 * Start at a drain threshold of 512 bytes. We will
1302 * increase it if a DMA underrun occurs.
1303 *
1304 * XXX The minimum value of this variable should be
1305 * tuned. We may be able to improve performance
1306 * by starting with a lower value. That, however,
1307 * may trash the first few outgoing packets if the
1308 * PCI bus is saturated.
1309 */
1310 if (sc->sc_gigabit)
1311 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 else
1313 sc->sc_tx_drain_thresh = 1504 / 32;
1314
1315 /*
1316 * Initialize the Rx FIFO drain threshold.
1317 *
1318 * This is in units of 8 bytes.
1319 *
1320 * We should never set this value lower than 2; 14 bytes are
1321 * required to filter the packet.
1322 */
1323 sc->sc_rx_drain_thresh = 128 / 8;
1324
1325 #ifdef SIP_EVENT_COUNTERS
1326 /*
1327 * Attach event counters.
1328 */
1329 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 NULL, sc->sc_dev.dv_xname, "txsstall");
1331 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 NULL, sc->sc_dev.dv_xname, "txdstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 NULL, sc->sc_dev.dv_xname, "txforceintr");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 NULL, sc->sc_dev.dv_xname, "txdintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 NULL, sc->sc_dev.dv_xname, "txiintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 NULL, sc->sc_dev.dv_xname, "rxintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 NULL, sc->sc_dev.dv_xname, "hiberr");
1343 if (!sc->sc_gigabit) {
1344 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 NULL, sc->sc_dev.dv_xname, "rxpause");
1346 } else {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 NULL, sc->sc_dev.dv_xname, "rxpause");
1349 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 NULL, sc->sc_dev.dv_xname, "txpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 NULL, sc->sc_dev.dv_xname, "rxipsum");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 NULL, sc->sc_dev.dv_xname, "txipsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 NULL, sc->sc_dev.dv_xname, "txudpsum");
1363 }
1364 #endif /* SIP_EVENT_COUNTERS */
1365
1366 if (!pmf_device_register(self, NULL, sipcom_resume))
1367 aprint_error_dev(self, "couldn't establish power handler\n");
1368 else
1369 pmf_class_network_register(self, ifp);
1370
1371 /*
1372 * Make sure the interface is shutdown during reboot.
1373 */
1374 sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
1375 if (sc->sc_sdhook == NULL)
1376 printf("%s: WARNING: unable to establish shutdown hook\n",
1377 sc->sc_dev.dv_xname);
1378 }
1379
1380 /*
1381 * sip_shutdown:
1382 *
1383 * Make sure the interface is stopped at reboot time.
1384 */
1385 static void
1386 sipcom_shutdown(void *arg)
1387 {
1388 struct sip_softc *sc = arg;
1389
1390 sipcom_stop(&sc->sc_ethercom.ec_if, 1);
1391 }
1392
1393 static inline void
1394 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1395 uint64_t capenable)
1396 {
1397 struct m_tag *mtag;
1398 u_int32_t extsts;
1399 #ifdef DEBUG
1400 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1401 #endif
1402 /*
1403 * If VLANs are enabled and the packet has a VLAN tag, set
1404 * up the descriptor to encapsulate the packet for us.
1405 *
1406 * This apparently has to be on the last descriptor of
1407 * the packet.
1408 */
1409
1410 /*
1411 * Byte swapping is tricky. We need to provide the tag
1412 * in a network byte order. On a big-endian machine,
1413 * the byteorder is correct, but we need to swap it
1414 * anyway, because this will be undone by the outside
1415 * htole32(). That's why there must be an
1416 * unconditional swap instead of htons() inside.
1417 */
1418 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1419 sc->sc_txdescs[lasttx].sipd_extsts |=
1420 htole32(EXTSTS_VPKT |
1421 (bswap16(VLAN_TAG_VALUE(mtag)) &
1422 EXTSTS_VTCI));
1423 }
1424
1425 /*
1426 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1427 * checksumming, set up the descriptor to do this work
1428 * for us.
1429 *
1430 * This apparently has to be on the first descriptor of
1431 * the packet.
1432 *
1433 * Byte-swap constants so the compiler can optimize.
1434 */
1435 extsts = 0;
1436 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1437 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1438 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1439 extsts |= htole32(EXTSTS_IPPKT);
1440 }
1441 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1442 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1443 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1444 extsts |= htole32(EXTSTS_TCPPKT);
1445 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1446 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1447 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1448 extsts |= htole32(EXTSTS_UDPPKT);
1449 }
1450 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1451 }
1452
1453 /*
1454 * sip_start: [ifnet interface function]
1455 *
1456 * Start packet transmission on the interface.
1457 */
1458 static void
1459 sipcom_start(struct ifnet *ifp)
1460 {
1461 struct sip_softc *sc = ifp->if_softc;
1462 struct mbuf *m0;
1463 struct mbuf *m;
1464 struct sip_txsoft *txs;
1465 bus_dmamap_t dmamap;
1466 int error, nexttx, lasttx, seg;
1467 int ofree = sc->sc_txfree;
1468 #if 0
1469 int firsttx = sc->sc_txnext;
1470 #endif
1471
1472 /*
1473 * If we've been told to pause, don't transmit any more packets.
1474 */
1475 if (!sc->sc_gigabit && sc->sc_paused)
1476 ifp->if_flags |= IFF_OACTIVE;
1477
1478 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1479 return;
1480
1481 /*
1482 * Loop through the send queue, setting up transmit descriptors
1483 * until we drain the queue, or use up all available transmit
1484 * descriptors.
1485 */
1486 for (;;) {
1487 /* Get a work queue entry. */
1488 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1489 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1490 break;
1491 }
1492
1493 /*
1494 * Grab a packet off the queue.
1495 */
1496 IFQ_POLL(&ifp->if_snd, m0);
1497 if (m0 == NULL)
1498 break;
1499 m = NULL;
1500
1501 dmamap = txs->txs_dmamap;
1502
1503 /*
1504 * Load the DMA map. If this fails, the packet either
1505 * didn't fit in the alloted number of segments, or we
1506 * were short on resources.
1507 */
1508 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1509 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1510 /* In the non-gigabit case, we'll copy and try again. */
1511 if (error != 0 && !sc->sc_gigabit) {
1512 MGETHDR(m, M_DONTWAIT, MT_DATA);
1513 if (m == NULL) {
1514 printf("%s: unable to allocate Tx mbuf\n",
1515 sc->sc_dev.dv_xname);
1516 break;
1517 }
1518 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1519 if (m0->m_pkthdr.len > MHLEN) {
1520 MCLGET(m, M_DONTWAIT);
1521 if ((m->m_flags & M_EXT) == 0) {
1522 printf("%s: unable to allocate Tx "
1523 "cluster\n", sc->sc_dev.dv_xname);
1524 m_freem(m);
1525 break;
1526 }
1527 }
1528 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1529 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1530 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1531 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1532 if (error) {
1533 printf("%s: unable to load Tx buffer, "
1534 "error = %d\n", sc->sc_dev.dv_xname, error);
1535 break;
1536 }
1537 } else if (error == EFBIG) {
1538 /*
1539 * For the too-many-segments case, we simply
1540 * report an error and drop the packet,
1541 * since we can't sanely copy a jumbo packet
1542 * to a single buffer.
1543 */
1544 printf("%s: Tx packet consumes too many "
1545 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1546 IFQ_DEQUEUE(&ifp->if_snd, m0);
1547 m_freem(m0);
1548 continue;
1549 } else if (error != 0) {
1550 /*
1551 * Short on resources, just stop for now.
1552 */
1553 break;
1554 }
1555
1556 /*
1557 * Ensure we have enough descriptors free to describe
1558 * the packet. Note, we always reserve one descriptor
1559 * at the end of the ring as a termination point, to
1560 * prevent wrap-around.
1561 */
1562 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1563 /*
1564 * Not enough free descriptors to transmit this
1565 * packet. We haven't committed anything yet,
1566 * so just unload the DMA map, put the packet
1567 * back on the queue, and punt. Notify the upper
1568 * layer that there are not more slots left.
1569 *
1570 * XXX We could allocate an mbuf and copy, but
1571 * XXX is it worth it?
1572 */
1573 ifp->if_flags |= IFF_OACTIVE;
1574 bus_dmamap_unload(sc->sc_dmat, dmamap);
1575 if (m != NULL)
1576 m_freem(m);
1577 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1578 break;
1579 }
1580
1581 IFQ_DEQUEUE(&ifp->if_snd, m0);
1582 if (m != NULL) {
1583 m_freem(m0);
1584 m0 = m;
1585 }
1586
1587 /*
1588 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1589 */
1590
1591 /* Sync the DMA map. */
1592 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1593 BUS_DMASYNC_PREWRITE);
1594
1595 /*
1596 * Initialize the transmit descriptors.
1597 */
1598 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1599 seg < dmamap->dm_nsegs;
1600 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1601 /*
1602 * If this is the first descriptor we're
1603 * enqueueing, don't set the OWN bit just
1604 * yet. That could cause a race condition.
1605 * We'll do it below.
1606 */
1607 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1608 htole32(dmamap->dm_segs[seg].ds_addr);
1609 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1610 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1611 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1612 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1613 lasttx = nexttx;
1614 }
1615
1616 /* Clear the MORE bit on the last segment. */
1617 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1618 htole32(~CMDSTS_MORE);
1619
1620 /*
1621 * If we're in the interrupt delay window, delay the
1622 * interrupt.
1623 */
1624 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1625 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1626 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1627 htole32(CMDSTS_INTR);
1628 sc->sc_txwin = 0;
1629 }
1630
1631 if (sc->sc_gigabit)
1632 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1633
1634 /* Sync the descriptors we're using. */
1635 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1636 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1637
1638 /*
1639 * The entire packet is set up. Give the first descrptor
1640 * to the chip now.
1641 */
1642 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1643 htole32(CMDSTS_OWN);
1644 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1645 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1646
1647 /*
1648 * Store a pointer to the packet so we can free it later,
1649 * and remember what txdirty will be once the packet is
1650 * done.
1651 */
1652 txs->txs_mbuf = m0;
1653 txs->txs_firstdesc = sc->sc_txnext;
1654 txs->txs_lastdesc = lasttx;
1655
1656 /* Advance the tx pointer. */
1657 sc->sc_txfree -= dmamap->dm_nsegs;
1658 sc->sc_txnext = nexttx;
1659
1660 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1661 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1662
1663 #if NBPFILTER > 0
1664 /*
1665 * Pass the packet to any BPF listeners.
1666 */
1667 if (ifp->if_bpf)
1668 bpf_mtap(ifp->if_bpf, m0);
1669 #endif /* NBPFILTER > 0 */
1670 }
1671
1672 if (txs == NULL || sc->sc_txfree == 0) {
1673 /* No more slots left; notify upper layer. */
1674 ifp->if_flags |= IFF_OACTIVE;
1675 }
1676
1677 if (sc->sc_txfree != ofree) {
1678 /*
1679 * Start the transmit process. Note, the manual says
1680 * that if there are no pending transmissions in the
1681 * chip's internal queue (indicated by TXE being clear),
1682 * then the driver software must set the TXDP to the
1683 * first descriptor to be transmitted. However, if we
1684 * do this, it causes serious performance degredation on
1685 * the DP83820 under load, not setting TXDP doesn't seem
1686 * to adversely affect the SiS 900 or DP83815.
1687 *
1688 * Well, I guess it wouldn't be the first time a manual
1689 * has lied -- and they could be speaking of the NULL-
1690 * terminated descriptor list case, rather than OWN-
1691 * terminated rings.
1692 */
1693 #if 0
1694 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1695 CR_TXE) == 0) {
1696 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1697 SIP_CDTXADDR(sc, firsttx));
1698 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1699 }
1700 #else
1701 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1702 #endif
1703
1704 /* Set a watchdog timer in case the chip flakes out. */
1705 /* Gigabit autonegotiation takes 5 seconds. */
1706 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1707 }
1708 }
1709
1710 /*
1711 * sip_watchdog: [ifnet interface function]
1712 *
1713 * Watchdog timer handler.
1714 */
1715 static void
1716 sipcom_watchdog(struct ifnet *ifp)
1717 {
1718 struct sip_softc *sc = ifp->if_softc;
1719
1720 /*
1721 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1722 * If we get a timeout, try and sweep up transmit descriptors.
1723 * If we manage to sweep them all up, ignore the lack of
1724 * interrupt.
1725 */
1726 sipcom_txintr(sc);
1727
1728 if (sc->sc_txfree != sc->sc_ntxdesc) {
1729 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1730 ifp->if_oerrors++;
1731
1732 /* Reset the interface. */
1733 (void) sipcom_init(ifp);
1734 } else if (ifp->if_flags & IFF_DEBUG)
1735 printf("%s: recovered from device timeout\n",
1736 sc->sc_dev.dv_xname);
1737
1738 /* Try to get more packets going. */
1739 sipcom_start(ifp);
1740 }
1741
1742 /*
1743 * sip_ioctl: [ifnet interface function]
1744 *
1745 * Handle control requests from the operator.
1746 */
1747 static int
1748 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1749 {
1750 struct sip_softc *sc = ifp->if_softc;
1751 struct ifreq *ifr = (struct ifreq *)data;
1752 int s, error;
1753
1754 s = splnet();
1755
1756 switch (cmd) {
1757 case SIOCSIFMEDIA:
1758 /* Flow control requires full-duplex mode. */
1759 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1760 (ifr->ifr_media & IFM_FDX) == 0)
1761 ifr->ifr_media &= ~IFM_ETH_FMASK;
1762
1763 /* XXX */
1764 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1765 ifr->ifr_media &= ~IFM_ETH_FMASK;
1766 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1767 if (sc->sc_gigabit &&
1768 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1769 /* We can do both TXPAUSE and RXPAUSE. */
1770 ifr->ifr_media |=
1771 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1772 } else if (ifr->ifr_media & IFM_FLOW) {
1773 /*
1774 * Both TXPAUSE and RXPAUSE must be set.
1775 * (SiS900 and DP83815 don't have PAUSE_ASYM
1776 * feature.)
1777 *
1778 * XXX Can SiS900 and DP83815 send PAUSE?
1779 */
1780 ifr->ifr_media |=
1781 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1782 }
1783 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1784 }
1785 /* FALLTHROUGH */
1786 case SIOCGIFMEDIA:
1787 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1788 break;
1789 case SIOCSIFFLAGS:
1790 /* If the interface is up and running, only modify the receive
1791 * filter when setting promiscuous or debug mode. Otherwise
1792 * fall through to ether_ioctl, which will reset the chip.
1793 */
1794
1795 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1796 == (sc)->sc_ethercom.ec_capenable) \
1797 && ((sc)->sc_prev.is_vlan == \
1798 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1799
1800 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1801
1802 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1803 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1804 == (IFF_UP|IFF_RUNNING))
1805 && ((ifp->if_flags & (~RESETIGN))
1806 == (sc->sc_if_flags & (~RESETIGN)))
1807 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1808 /* Set up the receive filter. */
1809 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 error = 0;
1811 break;
1812 #undef RESETIGN
1813 }
1814 /* FALLTHROUGH */
1815 default:
1816 error = ether_ioctl(ifp, cmd, data);
1817 if (error == ENETRESET) {
1818 /*
1819 * Multicast list has changed; set the hardware filter
1820 * accordingly.
1821 */
1822 if (ifp->if_flags & IFF_RUNNING)
1823 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1824 error = 0;
1825 }
1826 break;
1827 }
1828
1829 /* Try to get more packets going. */
1830 sipcom_start(ifp);
1831
1832 sc->sc_if_flags = ifp->if_flags;
1833 splx(s);
1834 return (error);
1835 }
1836
1837 /*
1838 * sip_intr:
1839 *
1840 * Interrupt service routine.
1841 */
1842 static int
1843 sipcom_intr(void *arg)
1844 {
1845 struct sip_softc *sc = arg;
1846 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1847 u_int32_t isr;
1848 int handled = 0;
1849
1850 /* Disable interrupts. */
1851 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1852
1853 for (;;) {
1854 /* Reading clears interrupt. */
1855 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1856 if ((isr & sc->sc_imr) == 0)
1857 break;
1858
1859 #if NRND > 0
1860 if (RND_ENABLED(&sc->rnd_source))
1861 rnd_add_uint32(&sc->rnd_source, isr);
1862 #endif
1863
1864 handled = 1;
1865
1866 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1867 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1868
1869 /* Grab any new packets. */
1870 (*sc->sc_rxintr)(sc);
1871
1872 if (isr & ISR_RXORN) {
1873 printf("%s: receive FIFO overrun\n",
1874 sc->sc_dev.dv_xname);
1875
1876 /* XXX adjust rx_drain_thresh? */
1877 }
1878
1879 if (isr & ISR_RXIDLE) {
1880 printf("%s: receive ring overrun\n",
1881 sc->sc_dev.dv_xname);
1882
1883 /* Get the receive process going again. */
1884 bus_space_write_4(sc->sc_st, sc->sc_sh,
1885 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1886 bus_space_write_4(sc->sc_st, sc->sc_sh,
1887 SIP_CR, CR_RXE);
1888 }
1889 }
1890
1891 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1892 #ifdef SIP_EVENT_COUNTERS
1893 if (isr & ISR_TXDESC)
1894 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1895 else if (isr & ISR_TXIDLE)
1896 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1897 #endif
1898
1899 /* Sweep up transmit descriptors. */
1900 sipcom_txintr(sc);
1901
1902 if (isr & ISR_TXURN) {
1903 u_int32_t thresh;
1904 int txfifo_size = (sc->sc_gigabit)
1905 ? DP83820_SIP_TXFIFO_SIZE
1906 : OTHER_SIP_TXFIFO_SIZE;
1907
1908 printf("%s: transmit FIFO underrun",
1909 sc->sc_dev.dv_xname);
1910 thresh = sc->sc_tx_drain_thresh + 1;
1911 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1912 && (thresh * 32) <= (txfifo_size -
1913 (sc->sc_tx_fill_thresh * 32))) {
1914 printf("; increasing Tx drain "
1915 "threshold to %u bytes\n",
1916 thresh * 32);
1917 sc->sc_tx_drain_thresh = thresh;
1918 (void) sipcom_init(ifp);
1919 } else {
1920 (void) sipcom_init(ifp);
1921 printf("\n");
1922 }
1923 }
1924 }
1925
1926 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1927 if (isr & ISR_PAUSE_ST) {
1928 sc->sc_paused = 1;
1929 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1930 ifp->if_flags |= IFF_OACTIVE;
1931 }
1932 if (isr & ISR_PAUSE_END) {
1933 sc->sc_paused = 0;
1934 ifp->if_flags &= ~IFF_OACTIVE;
1935 }
1936 }
1937
1938 if (isr & ISR_HIBERR) {
1939 int want_init = 0;
1940
1941 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1942
1943 #define PRINTERR(bit, str) \
1944 do { \
1945 if ((isr & (bit)) != 0) { \
1946 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1947 printf("%s: %s\n", \
1948 sc->sc_dev.dv_xname, str); \
1949 want_init = 1; \
1950 } \
1951 } while (/*CONSTCOND*/0)
1952
1953 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1954 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1955 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1956 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1957 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1958 /*
1959 * Ignore:
1960 * Tx reset complete
1961 * Rx reset complete
1962 */
1963 if (want_init)
1964 (void) sipcom_init(ifp);
1965 #undef PRINTERR
1966 }
1967 }
1968
1969 /* Re-enable interrupts. */
1970 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1971
1972 /* Try to get more packets going. */
1973 sipcom_start(ifp);
1974
1975 return (handled);
1976 }
1977
1978 /*
1979 * sip_txintr:
1980 *
1981 * Helper; handle transmit interrupts.
1982 */
1983 static void
1984 sipcom_txintr(struct sip_softc *sc)
1985 {
1986 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1987 struct sip_txsoft *txs;
1988 u_int32_t cmdsts;
1989
1990 if (sc->sc_paused == 0)
1991 ifp->if_flags &= ~IFF_OACTIVE;
1992
1993 /*
1994 * Go through our Tx list and free mbufs for those
1995 * frames which have been transmitted.
1996 */
1997 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1998 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1999 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2000
2001 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2002 if (cmdsts & CMDSTS_OWN)
2003 break;
2004
2005 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2006
2007 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2008
2009 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2010 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2011 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2012 m_freem(txs->txs_mbuf);
2013 txs->txs_mbuf = NULL;
2014
2015 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2016
2017 /*
2018 * Check for errors and collisions.
2019 */
2020 if (cmdsts &
2021 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2022 ifp->if_oerrors++;
2023 if (cmdsts & CMDSTS_Tx_EC)
2024 ifp->if_collisions += 16;
2025 if (ifp->if_flags & IFF_DEBUG) {
2026 if (cmdsts & CMDSTS_Tx_ED)
2027 printf("%s: excessive deferral\n",
2028 sc->sc_dev.dv_xname);
2029 if (cmdsts & CMDSTS_Tx_EC)
2030 printf("%s: excessive collisions\n",
2031 sc->sc_dev.dv_xname);
2032 }
2033 } else {
2034 /* Packet was transmitted successfully. */
2035 ifp->if_opackets++;
2036 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2037 }
2038 }
2039
2040 /*
2041 * If there are no more pending transmissions, cancel the watchdog
2042 * timer.
2043 */
2044 if (txs == NULL) {
2045 ifp->if_timer = 0;
2046 sc->sc_txwin = 0;
2047 }
2048 }
2049
2050 /*
2051 * gsip_rxintr:
2052 *
2053 * Helper; handle receive interrupts on gigabit parts.
2054 */
2055 static void
2056 gsip_rxintr(struct sip_softc *sc)
2057 {
2058 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2059 struct sip_rxsoft *rxs;
2060 struct mbuf *m;
2061 u_int32_t cmdsts, extsts;
2062 int i, len;
2063
2064 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2065 rxs = &sc->sc_rxsoft[i];
2066
2067 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2068
2069 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2070 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2071 len = CMDSTS_SIZE(sc, cmdsts);
2072
2073 /*
2074 * NOTE: OWN is set if owned by _consumer_. We're the
2075 * consumer of the receive ring, so if the bit is clear,
2076 * we have processed all of the packets.
2077 */
2078 if ((cmdsts & CMDSTS_OWN) == 0) {
2079 /*
2080 * We have processed all of the receive buffers.
2081 */
2082 break;
2083 }
2084
2085 if (__predict_false(sc->sc_rxdiscard)) {
2086 SIP_INIT_RXDESC(sc, i);
2087 if ((cmdsts & CMDSTS_MORE) == 0) {
2088 /* Reset our state. */
2089 sc->sc_rxdiscard = 0;
2090 }
2091 continue;
2092 }
2093
2094 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2095 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2096
2097 m = rxs->rxs_mbuf;
2098
2099 /*
2100 * Add a new receive buffer to the ring.
2101 */
2102 if (sipcom_add_rxbuf(sc, i) != 0) {
2103 /*
2104 * Failed, throw away what we've done so
2105 * far, and discard the rest of the packet.
2106 */
2107 ifp->if_ierrors++;
2108 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2109 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2110 SIP_INIT_RXDESC(sc, i);
2111 if (cmdsts & CMDSTS_MORE)
2112 sc->sc_rxdiscard = 1;
2113 if (sc->sc_rxhead != NULL)
2114 m_freem(sc->sc_rxhead);
2115 SIP_RXCHAIN_RESET(sc);
2116 continue;
2117 }
2118
2119 SIP_RXCHAIN_LINK(sc, m);
2120
2121 m->m_len = len;
2122
2123 /*
2124 * If this is not the end of the packet, keep
2125 * looking.
2126 */
2127 if (cmdsts & CMDSTS_MORE) {
2128 sc->sc_rxlen += len;
2129 continue;
2130 }
2131
2132 /*
2133 * Okay, we have the entire packet now. The chip includes
2134 * the FCS, so we need to trim it.
2135 */
2136 m->m_len -= ETHER_CRC_LEN;
2137
2138 *sc->sc_rxtailp = NULL;
2139 len = m->m_len + sc->sc_rxlen;
2140 m = sc->sc_rxhead;
2141
2142 SIP_RXCHAIN_RESET(sc);
2143
2144 /*
2145 * If an error occurred, update stats and drop the packet.
2146 */
2147 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2148 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2149 ifp->if_ierrors++;
2150 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2151 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2152 /* Receive overrun handled elsewhere. */
2153 printf("%s: receive descriptor error\n",
2154 sc->sc_dev.dv_xname);
2155 }
2156 #define PRINTERR(bit, str) \
2157 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2158 (cmdsts & (bit)) != 0) \
2159 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2160 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2161 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2162 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2163 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2164 #undef PRINTERR
2165 m_freem(m);
2166 continue;
2167 }
2168
2169 /*
2170 * If the packet is small enough to fit in a
2171 * single header mbuf, allocate one and copy
2172 * the data into it. This greatly reduces
2173 * memory consumption when we receive lots
2174 * of small packets.
2175 */
2176 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2177 struct mbuf *nm;
2178 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2179 if (nm == NULL) {
2180 ifp->if_ierrors++;
2181 m_freem(m);
2182 continue;
2183 }
2184 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2185 nm->m_data += 2;
2186 nm->m_pkthdr.len = nm->m_len = len;
2187 m_copydata(m, 0, len, mtod(nm, void *));
2188 m_freem(m);
2189 m = nm;
2190 }
2191 #ifndef __NO_STRICT_ALIGNMENT
2192 else {
2193 /*
2194 * The DP83820's receive buffers must be 4-byte
2195 * aligned. But this means that the data after
2196 * the Ethernet header is misaligned. To compensate,
2197 * we have artificially shortened the buffer size
2198 * in the descriptor, and we do an overlapping copy
2199 * of the data two bytes further in (in the first
2200 * buffer of the chain only).
2201 */
2202 memmove(mtod(m, char *) + 2, mtod(m, void *),
2203 m->m_len);
2204 m->m_data += 2;
2205 }
2206 #endif /* ! __NO_STRICT_ALIGNMENT */
2207
2208 /*
2209 * If VLANs are enabled, VLAN packets have been unwrapped
2210 * for us. Associate the tag with the packet.
2211 */
2212
2213 /*
2214 * Again, byte swapping is tricky. Hardware provided
2215 * the tag in the network byte order, but extsts was
2216 * passed through le32toh() in the meantime. On a
2217 * big-endian machine, we need to swap it again. On a
2218 * little-endian machine, we need to convert from the
2219 * network to host byte order. This means that we must
2220 * swap it in any case, so unconditional swap instead
2221 * of htons() is used.
2222 */
2223 if ((extsts & EXTSTS_VPKT) != 0) {
2224 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2225 continue);
2226 }
2227
2228 /*
2229 * Set the incoming checksum information for the
2230 * packet.
2231 */
2232 if ((extsts & EXTSTS_IPPKT) != 0) {
2233 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2234 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2235 if (extsts & EXTSTS_Rx_IPERR)
2236 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2237 if (extsts & EXTSTS_TCPPKT) {
2238 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2239 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2240 if (extsts & EXTSTS_Rx_TCPERR)
2241 m->m_pkthdr.csum_flags |=
2242 M_CSUM_TCP_UDP_BAD;
2243 } else if (extsts & EXTSTS_UDPPKT) {
2244 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2245 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2246 if (extsts & EXTSTS_Rx_UDPERR)
2247 m->m_pkthdr.csum_flags |=
2248 M_CSUM_TCP_UDP_BAD;
2249 }
2250 }
2251
2252 ifp->if_ipackets++;
2253 m->m_pkthdr.rcvif = ifp;
2254 m->m_pkthdr.len = len;
2255
2256 #if NBPFILTER > 0
2257 /*
2258 * Pass this up to any BPF listeners, but only
2259 * pass if up the stack if it's for us.
2260 */
2261 if (ifp->if_bpf)
2262 bpf_mtap(ifp->if_bpf, m);
2263 #endif /* NBPFILTER > 0 */
2264
2265 /* Pass it on. */
2266 (*ifp->if_input)(ifp, m);
2267 }
2268
2269 /* Update the receive pointer. */
2270 sc->sc_rxptr = i;
2271 }
2272
2273 /*
2274 * sip_rxintr:
2275 *
2276 * Helper; handle receive interrupts on 10/100 parts.
2277 */
2278 static void
2279 sip_rxintr(struct sip_softc *sc)
2280 {
2281 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2282 struct sip_rxsoft *rxs;
2283 struct mbuf *m;
2284 u_int32_t cmdsts;
2285 int i, len;
2286
2287 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2288 rxs = &sc->sc_rxsoft[i];
2289
2290 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2291
2292 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2293
2294 /*
2295 * NOTE: OWN is set if owned by _consumer_. We're the
2296 * consumer of the receive ring, so if the bit is clear,
2297 * we have processed all of the packets.
2298 */
2299 if ((cmdsts & CMDSTS_OWN) == 0) {
2300 /*
2301 * We have processed all of the receive buffers.
2302 */
2303 break;
2304 }
2305
2306 /*
2307 * If any collisions were seen on the wire, count one.
2308 */
2309 if (cmdsts & CMDSTS_Rx_COL)
2310 ifp->if_collisions++;
2311
2312 /*
2313 * If an error occurred, update stats, clear the status
2314 * word, and leave the packet buffer in place. It will
2315 * simply be reused the next time the ring comes around.
2316 */
2317 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2318 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2319 ifp->if_ierrors++;
2320 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2321 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2322 /* Receive overrun handled elsewhere. */
2323 printf("%s: receive descriptor error\n",
2324 sc->sc_dev.dv_xname);
2325 }
2326 #define PRINTERR(bit, str) \
2327 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2328 (cmdsts & (bit)) != 0) \
2329 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2330 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2331 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2332 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2333 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2334 #undef PRINTERR
2335 SIP_INIT_RXDESC(sc, i);
2336 continue;
2337 }
2338
2339 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2340 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2341
2342 /*
2343 * No errors; receive the packet. Note, the SiS 900
2344 * includes the CRC with every packet.
2345 */
2346 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2347
2348 #ifdef __NO_STRICT_ALIGNMENT
2349 /*
2350 * If the packet is small enough to fit in a
2351 * single header mbuf, allocate one and copy
2352 * the data into it. This greatly reduces
2353 * memory consumption when we receive lots
2354 * of small packets.
2355 *
2356 * Otherwise, we add a new buffer to the receive
2357 * chain. If this fails, we drop the packet and
2358 * recycle the old buffer.
2359 */
2360 if (sip_copy_small != 0 && len <= MHLEN) {
2361 MGETHDR(m, M_DONTWAIT, MT_DATA);
2362 if (m == NULL)
2363 goto dropit;
2364 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2365 memcpy(mtod(m, void *),
2366 mtod(rxs->rxs_mbuf, void *), len);
2367 SIP_INIT_RXDESC(sc, i);
2368 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2369 rxs->rxs_dmamap->dm_mapsize,
2370 BUS_DMASYNC_PREREAD);
2371 } else {
2372 m = rxs->rxs_mbuf;
2373 if (sipcom_add_rxbuf(sc, i) != 0) {
2374 dropit:
2375 ifp->if_ierrors++;
2376 SIP_INIT_RXDESC(sc, i);
2377 bus_dmamap_sync(sc->sc_dmat,
2378 rxs->rxs_dmamap, 0,
2379 rxs->rxs_dmamap->dm_mapsize,
2380 BUS_DMASYNC_PREREAD);
2381 continue;
2382 }
2383 }
2384 #else
2385 /*
2386 * The SiS 900's receive buffers must be 4-byte aligned.
2387 * But this means that the data after the Ethernet header
2388 * is misaligned. We must allocate a new buffer and
2389 * copy the data, shifted forward 2 bytes.
2390 */
2391 MGETHDR(m, M_DONTWAIT, MT_DATA);
2392 if (m == NULL) {
2393 dropit:
2394 ifp->if_ierrors++;
2395 SIP_INIT_RXDESC(sc, i);
2396 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2397 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2398 continue;
2399 }
2400 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2401 if (len > (MHLEN - 2)) {
2402 MCLGET(m, M_DONTWAIT);
2403 if ((m->m_flags & M_EXT) == 0) {
2404 m_freem(m);
2405 goto dropit;
2406 }
2407 }
2408 m->m_data += 2;
2409
2410 /*
2411 * Note that we use clusters for incoming frames, so the
2412 * buffer is virtually contiguous.
2413 */
2414 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2415
2416 /* Allow the receive descriptor to continue using its mbuf. */
2417 SIP_INIT_RXDESC(sc, i);
2418 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2419 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2420 #endif /* __NO_STRICT_ALIGNMENT */
2421
2422 ifp->if_ipackets++;
2423 m->m_pkthdr.rcvif = ifp;
2424 m->m_pkthdr.len = m->m_len = len;
2425
2426 #if NBPFILTER > 0
2427 /*
2428 * Pass this up to any BPF listeners, but only
2429 * pass if up the stack if it's for us.
2430 */
2431 if (ifp->if_bpf)
2432 bpf_mtap(ifp->if_bpf, m);
2433 #endif /* NBPFILTER > 0 */
2434
2435 /* Pass it on. */
2436 (*ifp->if_input)(ifp, m);
2437 }
2438
2439 /* Update the receive pointer. */
2440 sc->sc_rxptr = i;
2441 }
2442
2443 /*
2444 * sip_tick:
2445 *
2446 * One second timer, used to tick the MII.
2447 */
2448 static void
2449 sipcom_tick(void *arg)
2450 {
2451 struct sip_softc *sc = arg;
2452 int s;
2453
2454 s = splnet();
2455 #ifdef SIP_EVENT_COUNTERS
2456 if (sc->sc_gigabit) {
2457 /* Read PAUSE related counts from MIB registers. */
2458 sc->sc_ev_rxpause.ev_count +=
2459 bus_space_read_4(sc->sc_st, sc->sc_sh,
2460 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2461 sc->sc_ev_txpause.ev_count +=
2462 bus_space_read_4(sc->sc_st, sc->sc_sh,
2463 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2464 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2465 }
2466 #endif /* SIP_EVENT_COUNTERS */
2467 mii_tick(&sc->sc_mii);
2468 splx(s);
2469
2470 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2471 }
2472
2473 /*
2474 * sip_reset:
2475 *
2476 * Perform a soft reset on the SiS 900.
2477 */
2478 static bool
2479 sipcom_reset(struct sip_softc *sc)
2480 {
2481 bus_space_tag_t st = sc->sc_st;
2482 bus_space_handle_t sh = sc->sc_sh;
2483 int i;
2484
2485 bus_space_write_4(st, sh, SIP_IER, 0);
2486 bus_space_write_4(st, sh, SIP_IMR, 0);
2487 bus_space_write_4(st, sh, SIP_RFCR, 0);
2488 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2489
2490 for (i = 0; i < SIP_TIMEOUT; i++) {
2491 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2492 break;
2493 delay(2);
2494 }
2495
2496 if (i == SIP_TIMEOUT) {
2497 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2498 return false;
2499 }
2500
2501 delay(1000);
2502
2503 if (sc->sc_gigabit) {
2504 /*
2505 * Set the general purpose I/O bits. Do it here in case we
2506 * need to have GPIO set up to talk to the media interface.
2507 */
2508 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2509 delay(1000);
2510 }
2511 return true;
2512 }
2513
2514 static void
2515 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2516 {
2517 u_int32_t reg;
2518 bus_space_tag_t st = sc->sc_st;
2519 bus_space_handle_t sh = sc->sc_sh;
2520 /*
2521 * Initialize the VLAN/IP receive control register.
2522 * We enable checksum computation on all incoming
2523 * packets, and do not reject packets w/ bad checksums.
2524 */
2525 reg = 0;
2526 if (capenable &
2527 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2528 reg |= VRCR_IPEN;
2529 if (VLAN_ATTACHED(&sc->sc_ethercom))
2530 reg |= VRCR_VTDEN|VRCR_VTREN;
2531 bus_space_write_4(st, sh, SIP_VRCR, reg);
2532
2533 /*
2534 * Initialize the VLAN/IP transmit control register.
2535 * We enable outgoing checksum computation on a
2536 * per-packet basis.
2537 */
2538 reg = 0;
2539 if (capenable &
2540 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2541 reg |= VTCR_PPCHK;
2542 if (VLAN_ATTACHED(&sc->sc_ethercom))
2543 reg |= VTCR_VPPTI;
2544 bus_space_write_4(st, sh, SIP_VTCR, reg);
2545
2546 /*
2547 * If we're using VLANs, initialize the VLAN data register.
2548 * To understand why we bswap the VLAN Ethertype, see section
2549 * 4.2.36 of the DP83820 manual.
2550 */
2551 if (VLAN_ATTACHED(&sc->sc_ethercom))
2552 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2553 }
2554
2555 /*
2556 * sip_init: [ ifnet interface function ]
2557 *
2558 * Initialize the interface. Must be called at splnet().
2559 */
2560 static int
2561 sipcom_init(struct ifnet *ifp)
2562 {
2563 struct sip_softc *sc = ifp->if_softc;
2564 bus_space_tag_t st = sc->sc_st;
2565 bus_space_handle_t sh = sc->sc_sh;
2566 struct sip_txsoft *txs;
2567 struct sip_rxsoft *rxs;
2568 struct sip_desc *sipd;
2569 int i, error = 0;
2570
2571 if (!device_has_power(&sc->sc_dev))
2572 return EBUSY;
2573
2574 /*
2575 * Cancel any pending I/O.
2576 */
2577 sipcom_stop(ifp, 0);
2578
2579 /*
2580 * Reset the chip to a known state.
2581 */
2582 if (!sipcom_reset(sc))
2583 return EBUSY;
2584
2585 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2586 /*
2587 * DP83815 manual, page 78:
2588 * 4.4 Recommended Registers Configuration
2589 * For optimum performance of the DP83815, version noted
2590 * as DP83815CVNG (SRR = 203h), the listed register
2591 * modifications must be followed in sequence...
2592 *
2593 * It's not clear if this should be 302h or 203h because that
2594 * chip name is listed as SRR 302h in the description of the
2595 * SRR register. However, my revision 302h DP83815 on the
2596 * Netgear FA311 purchased in 02/2001 needs these settings
2597 * to avoid tons of errors in AcceptPerfectMatch (non-
2598 * IFF_PROMISC) mode. I do not know if other revisions need
2599 * this set or not. [briggs -- 09 March 2001]
2600 *
2601 * Note that only the low-order 12 bits of 0xe4 are documented
2602 * and that this sets reserved bits in that register.
2603 */
2604 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2605
2606 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2607 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2608 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2609 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2610
2611 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2612 }
2613
2614 /*
2615 * Initialize the transmit descriptor ring.
2616 */
2617 for (i = 0; i < sc->sc_ntxdesc; i++) {
2618 sipd = &sc->sc_txdescs[i];
2619 memset(sipd, 0, sizeof(struct sip_desc));
2620 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2621 }
2622 SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
2623 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2624 sc->sc_txfree = sc->sc_ntxdesc;
2625 sc->sc_txnext = 0;
2626 sc->sc_txwin = 0;
2627
2628 /*
2629 * Initialize the transmit job descriptors.
2630 */
2631 SIMPLEQ_INIT(&sc->sc_txfreeq);
2632 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2633 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2634 txs = &sc->sc_txsoft[i];
2635 txs->txs_mbuf = NULL;
2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 }
2638
2639 /*
2640 * Initialize the receive descriptor and receive job
2641 * descriptor rings.
2642 */
2643 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2644 rxs = &sc->sc_rxsoft[i];
2645 if (rxs->rxs_mbuf == NULL) {
2646 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2647 printf("%s: unable to allocate or map rx "
2648 "buffer %d, error = %d\n",
2649 sc->sc_dev.dv_xname, i, error);
2650 /*
2651 * XXX Should attempt to run with fewer receive
2652 * XXX buffers instead of just failing.
2653 */
2654 sipcom_rxdrain(sc);
2655 goto out;
2656 }
2657 } else
2658 SIP_INIT_RXDESC(sc, i);
2659 }
2660 sc->sc_rxptr = 0;
2661 sc->sc_rxdiscard = 0;
2662 SIP_RXCHAIN_RESET(sc);
2663
2664 /*
2665 * Set the configuration register; it's already initialized
2666 * in sip_attach().
2667 */
2668 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2669
2670 /*
2671 * Initialize the prototype TXCFG register.
2672 */
2673 if (sc->sc_gigabit) {
2674 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2675 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2676 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2677 SIP_SIS900_REV(sc, SIS_REV_960) ||
2678 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2679 (sc->sc_cfg & CFG_EDBMASTEN)) {
2680 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2681 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2682 } else {
2683 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2684 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2685 }
2686
2687 sc->sc_txcfg |= TXCFG_ATP |
2688 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2689 sc->sc_tx_drain_thresh;
2690 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2691
2692 /*
2693 * Initialize the receive drain threshold if we have never
2694 * done so.
2695 */
2696 if (sc->sc_rx_drain_thresh == 0) {
2697 /*
2698 * XXX This value should be tuned. This is set to the
2699 * maximum of 248 bytes, and we may be able to improve
2700 * performance by decreasing it (although we should never
2701 * set this value lower than 2; 14 bytes are required to
2702 * filter the packet).
2703 */
2704 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2705 }
2706
2707 /*
2708 * Initialize the prototype RXCFG register.
2709 */
2710 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2711 /*
2712 * Accept long packets (including FCS) so we can handle
2713 * 802.1q-tagged frames and jumbo frames properly.
2714 */
2715 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2716 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2717 sc->sc_rxcfg |= RXCFG_ALP;
2718
2719 /*
2720 * Checksum offloading is disabled if the user selects an MTU
2721 * larger than 8109. (FreeBSD says 8152, but there is emperical
2722 * evidence that >8109 does not work on some boards, such as the
2723 * Planex GN-1000TE).
2724 */
2725 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2726 (ifp->if_capenable &
2727 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2728 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2729 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2730 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2731 "disabled.\n", sc->sc_dev.dv_xname);
2732 ifp->if_capenable &=
2733 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2734 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2735 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2736 ifp->if_csum_flags_tx = 0;
2737 ifp->if_csum_flags_rx = 0;
2738 }
2739
2740 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2741
2742 if (sc->sc_gigabit)
2743 sipcom_dp83820_init(sc, ifp->if_capenable);
2744
2745 /*
2746 * Give the transmit and receive rings to the chip.
2747 */
2748 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2749 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2750
2751 /*
2752 * Initialize the interrupt mask.
2753 */
2754 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2755 sc->sc_bits.b_isr_sserr |
2756 sc->sc_bits.b_isr_rmabt |
2757 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2758 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2759 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2760
2761 /* Set up the receive filter. */
2762 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2763
2764 /*
2765 * Tune sc_rx_flow_thresh.
2766 * XXX "More than 8KB" is too short for jumbo frames.
2767 * XXX TODO: Threshold value should be user-settable.
2768 */
2769 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2770 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2771 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2772
2773 /*
2774 * Set the current media. Do this after initializing the prototype
2775 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2776 * control.
2777 */
2778 mii_mediachg(&sc->sc_mii);
2779
2780 /*
2781 * Set the interrupt hold-off timer to 100us.
2782 */
2783 if (sc->sc_gigabit)
2784 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2785
2786 /*
2787 * Enable interrupts.
2788 */
2789 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2790
2791 /*
2792 * Start the transmit and receive processes.
2793 */
2794 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2795
2796 /*
2797 * Start the one second MII clock.
2798 */
2799 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2800
2801 /*
2802 * ...all done!
2803 */
2804 ifp->if_flags |= IFF_RUNNING;
2805 ifp->if_flags &= ~IFF_OACTIVE;
2806 sc->sc_if_flags = ifp->if_flags;
2807 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2808 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2809 sc->sc_prev.if_capenable = ifp->if_capenable;
2810
2811 out:
2812 if (error)
2813 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2814 return (error);
2815 }
2816
2817 /*
2818 * sip_drain:
2819 *
2820 * Drain the receive queue.
2821 */
2822 static void
2823 sipcom_rxdrain(struct sip_softc *sc)
2824 {
2825 struct sip_rxsoft *rxs;
2826 int i;
2827
2828 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2829 rxs = &sc->sc_rxsoft[i];
2830 if (rxs->rxs_mbuf != NULL) {
2831 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2832 m_freem(rxs->rxs_mbuf);
2833 rxs->rxs_mbuf = NULL;
2834 }
2835 }
2836 }
2837
2838 /*
2839 * sip_stop: [ ifnet interface function ]
2840 *
2841 * Stop transmission on the interface.
2842 */
2843 static void
2844 sipcom_stop(struct ifnet *ifp, int disable)
2845 {
2846 struct sip_softc *sc = ifp->if_softc;
2847 bus_space_tag_t st = sc->sc_st;
2848 bus_space_handle_t sh = sc->sc_sh;
2849 struct sip_txsoft *txs;
2850 u_int32_t cmdsts = 0; /* DEBUG */
2851
2852 /*
2853 * Stop the one second clock.
2854 */
2855 callout_stop(&sc->sc_tick_ch);
2856
2857 /* Down the MII. */
2858 mii_down(&sc->sc_mii);
2859
2860 /*
2861 * Disable interrupts.
2862 */
2863 bus_space_write_4(st, sh, SIP_IER, 0);
2864
2865 /*
2866 * Stop receiver and transmitter.
2867 */
2868 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2869
2870 /*
2871 * Release any queued transmit buffers.
2872 */
2873 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2874 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2875 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2876 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2877 CMDSTS_INTR) == 0)
2878 printf("%s: sip_stop: last descriptor does not "
2879 "have INTR bit set\n", sc->sc_dev.dv_xname);
2880 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2881 #ifdef DIAGNOSTIC
2882 if (txs->txs_mbuf == NULL) {
2883 printf("%s: dirty txsoft with no mbuf chain\n",
2884 sc->sc_dev.dv_xname);
2885 panic("sip_stop");
2886 }
2887 #endif
2888 cmdsts |= /* DEBUG */
2889 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2890 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2891 m_freem(txs->txs_mbuf);
2892 txs->txs_mbuf = NULL;
2893 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2894 }
2895
2896 if (disable)
2897 sipcom_rxdrain(sc);
2898
2899 /*
2900 * Mark the interface down and cancel the watchdog timer.
2901 */
2902 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2903 ifp->if_timer = 0;
2904
2905 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2906 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2907 printf("%s: sip_stop: no INTR bits set in dirty tx "
2908 "descriptors\n", sc->sc_dev.dv_xname);
2909 }
2910
2911 /*
2912 * sip_read_eeprom:
2913 *
2914 * Read data from the serial EEPROM.
2915 */
2916 static void
2917 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2918 u_int16_t *data)
2919 {
2920 bus_space_tag_t st = sc->sc_st;
2921 bus_space_handle_t sh = sc->sc_sh;
2922 u_int16_t reg;
2923 int i, x;
2924
2925 for (i = 0; i < wordcnt; i++) {
2926 /* Send CHIP SELECT. */
2927 reg = EROMAR_EECS;
2928 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2929
2930 /* Shift in the READ opcode. */
2931 for (x = 3; x > 0; x--) {
2932 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2933 reg |= EROMAR_EEDI;
2934 else
2935 reg &= ~EROMAR_EEDI;
2936 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 bus_space_write_4(st, sh, SIP_EROMAR,
2938 reg | EROMAR_EESK);
2939 delay(4);
2940 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2941 delay(4);
2942 }
2943
2944 /* Shift in address. */
2945 for (x = 6; x > 0; x--) {
2946 if ((word + i) & (1 << (x - 1)))
2947 reg |= EROMAR_EEDI;
2948 else
2949 reg &= ~EROMAR_EEDI;
2950 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2951 bus_space_write_4(st, sh, SIP_EROMAR,
2952 reg | EROMAR_EESK);
2953 delay(4);
2954 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2955 delay(4);
2956 }
2957
2958 /* Shift out data. */
2959 reg = EROMAR_EECS;
2960 data[i] = 0;
2961 for (x = 16; x > 0; x--) {
2962 bus_space_write_4(st, sh, SIP_EROMAR,
2963 reg | EROMAR_EESK);
2964 delay(4);
2965 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2966 data[i] |= (1 << (x - 1));
2967 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2968 delay(4);
2969 }
2970
2971 /* Clear CHIP SELECT. */
2972 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2973 delay(4);
2974 }
2975 }
2976
2977 /*
2978 * sipcom_add_rxbuf:
2979 *
2980 * Add a receive buffer to the indicated descriptor.
2981 */
2982 static int
2983 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2984 {
2985 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2986 struct mbuf *m;
2987 int error;
2988
2989 MGETHDR(m, M_DONTWAIT, MT_DATA);
2990 if (m == NULL)
2991 return (ENOBUFS);
2992 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2993
2994 MCLGET(m, M_DONTWAIT);
2995 if ((m->m_flags & M_EXT) == 0) {
2996 m_freem(m);
2997 return (ENOBUFS);
2998 }
2999
3000 /* XXX I don't believe this is necessary. --dyoung */
3001 if (sc->sc_gigabit)
3002 m->m_len = sc->sc_parm->p_rxbuf_len;
3003
3004 if (rxs->rxs_mbuf != NULL)
3005 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3006
3007 rxs->rxs_mbuf = m;
3008
3009 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3010 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3011 BUS_DMA_READ|BUS_DMA_NOWAIT);
3012 if (error) {
3013 printf("%s: can't load rx DMA map %d, error = %d\n",
3014 sc->sc_dev.dv_xname, idx, error);
3015 panic("%s", __func__); /* XXX */
3016 }
3017
3018 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3019 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3020
3021 SIP_INIT_RXDESC(sc, idx);
3022
3023 return (0);
3024 }
3025
3026 /*
3027 * sip_sis900_set_filter:
3028 *
3029 * Set up the receive filter.
3030 */
3031 static void
3032 sipcom_sis900_set_filter(struct sip_softc *sc)
3033 {
3034 bus_space_tag_t st = sc->sc_st;
3035 bus_space_handle_t sh = sc->sc_sh;
3036 struct ethercom *ec = &sc->sc_ethercom;
3037 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3038 struct ether_multi *enm;
3039 const u_int8_t *cp;
3040 struct ether_multistep step;
3041 u_int32_t crc, mchash[16];
3042
3043 /*
3044 * Initialize the prototype RFCR.
3045 */
3046 sc->sc_rfcr = RFCR_RFEN;
3047 if (ifp->if_flags & IFF_BROADCAST)
3048 sc->sc_rfcr |= RFCR_AAB;
3049 if (ifp->if_flags & IFF_PROMISC) {
3050 sc->sc_rfcr |= RFCR_AAP;
3051 goto allmulti;
3052 }
3053
3054 /*
3055 * Set up the multicast address filter by passing all multicast
3056 * addresses through a CRC generator, and then using the high-order
3057 * 6 bits as an index into the 128 bit multicast hash table (only
3058 * the lower 16 bits of each 32 bit multicast hash register are
3059 * valid). The high order bits select the register, while the
3060 * rest of the bits select the bit within the register.
3061 */
3062
3063 memset(mchash, 0, sizeof(mchash));
3064
3065 /*
3066 * SiS900 (at least SiS963) requires us to register the address of
3067 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3068 */
3069 crc = 0x0ed423f9;
3070
3071 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3072 SIP_SIS900_REV(sc, SIS_REV_960) ||
3073 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3074 /* Just want the 8 most significant bits. */
3075 crc >>= 24;
3076 } else {
3077 /* Just want the 7 most significant bits. */
3078 crc >>= 25;
3079 }
3080
3081 /* Set the corresponding bit in the hash table. */
3082 mchash[crc >> 4] |= 1 << (crc & 0xf);
3083
3084 ETHER_FIRST_MULTI(step, ec, enm);
3085 while (enm != NULL) {
3086 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3087 /*
3088 * We must listen to a range of multicast addresses.
3089 * For now, just accept all multicasts, rather than
3090 * trying to set only those filter bits needed to match
3091 * the range. (At this time, the only use of address
3092 * ranges is for IP multicast routing, for which the
3093 * range is big enough to require all bits set.)
3094 */
3095 goto allmulti;
3096 }
3097
3098 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3099
3100 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3101 SIP_SIS900_REV(sc, SIS_REV_960) ||
3102 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3103 /* Just want the 8 most significant bits. */
3104 crc >>= 24;
3105 } else {
3106 /* Just want the 7 most significant bits. */
3107 crc >>= 25;
3108 }
3109
3110 /* Set the corresponding bit in the hash table. */
3111 mchash[crc >> 4] |= 1 << (crc & 0xf);
3112
3113 ETHER_NEXT_MULTI(step, enm);
3114 }
3115
3116 ifp->if_flags &= ~IFF_ALLMULTI;
3117 goto setit;
3118
3119 allmulti:
3120 ifp->if_flags |= IFF_ALLMULTI;
3121 sc->sc_rfcr |= RFCR_AAM;
3122
3123 setit:
3124 #define FILTER_EMIT(addr, data) \
3125 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3126 delay(1); \
3127 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3128 delay(1)
3129
3130 /*
3131 * Disable receive filter, and program the node address.
3132 */
3133 cp = CLLADDR(ifp->if_sadl);
3134 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3135 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3136 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3137
3138 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3139 /*
3140 * Program the multicast hash table.
3141 */
3142 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3143 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3144 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3145 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3146 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3147 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3148 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3149 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3150 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3151 SIP_SIS900_REV(sc, SIS_REV_960) ||
3152 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3153 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3154 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3155 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3156 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3157 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3158 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3159 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3160 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3161 }
3162 }
3163 #undef FILTER_EMIT
3164
3165 /*
3166 * Re-enable the receiver filter.
3167 */
3168 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3169 }
3170
3171 /*
3172 * sip_dp83815_set_filter:
3173 *
3174 * Set up the receive filter.
3175 */
3176 static void
3177 sipcom_dp83815_set_filter(struct sip_softc *sc)
3178 {
3179 bus_space_tag_t st = sc->sc_st;
3180 bus_space_handle_t sh = sc->sc_sh;
3181 struct ethercom *ec = &sc->sc_ethercom;
3182 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3183 struct ether_multi *enm;
3184 const u_int8_t *cp;
3185 struct ether_multistep step;
3186 u_int32_t crc, hash, slot, bit;
3187 #define MCHASH_NWORDS_83820 128
3188 #define MCHASH_NWORDS_83815 32
3189 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3190 u_int16_t mchash[MCHASH_NWORDS];
3191 int i;
3192
3193 /*
3194 * Initialize the prototype RFCR.
3195 * Enable the receive filter, and accept on
3196 * Perfect (destination address) Match
3197 * If IFF_BROADCAST, also accept all broadcast packets.
3198 * If IFF_PROMISC, accept all unicast packets (and later, set
3199 * IFF_ALLMULTI and accept all multicast, too).
3200 */
3201 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3202 if (ifp->if_flags & IFF_BROADCAST)
3203 sc->sc_rfcr |= RFCR_AAB;
3204 if (ifp->if_flags & IFF_PROMISC) {
3205 sc->sc_rfcr |= RFCR_AAP;
3206 goto allmulti;
3207 }
3208
3209 /*
3210 * Set up the DP83820/DP83815 multicast address filter by
3211 * passing all multicast addresses through a CRC generator,
3212 * and then using the high-order 11/9 bits as an index into
3213 * the 2048/512 bit multicast hash table. The high-order
3214 * 7/5 bits select the slot, while the low-order 4 bits
3215 * select the bit within the slot. Note that only the low
3216 * 16-bits of each filter word are used, and there are
3217 * 128/32 filter words.
3218 */
3219
3220 memset(mchash, 0, sizeof(mchash));
3221
3222 ifp->if_flags &= ~IFF_ALLMULTI;
3223 ETHER_FIRST_MULTI(step, ec, enm);
3224 if (enm == NULL)
3225 goto setit;
3226 while (enm != NULL) {
3227 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3228 /*
3229 * We must listen to a range of multicast addresses.
3230 * For now, just accept all multicasts, rather than
3231 * trying to set only those filter bits needed to match
3232 * the range. (At this time, the only use of address
3233 * ranges is for IP multicast routing, for which the
3234 * range is big enough to require all bits set.)
3235 */
3236 goto allmulti;
3237 }
3238
3239 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3240
3241 if (sc->sc_gigabit) {
3242 /* Just want the 11 most significant bits. */
3243 hash = crc >> 21;
3244 } else {
3245 /* Just want the 9 most significant bits. */
3246 hash = crc >> 23;
3247 }
3248
3249 slot = hash >> 4;
3250 bit = hash & 0xf;
3251
3252 /* Set the corresponding bit in the hash table. */
3253 mchash[slot] |= 1 << bit;
3254
3255 ETHER_NEXT_MULTI(step, enm);
3256 }
3257 sc->sc_rfcr |= RFCR_MHEN;
3258 goto setit;
3259
3260 allmulti:
3261 ifp->if_flags |= IFF_ALLMULTI;
3262 sc->sc_rfcr |= RFCR_AAM;
3263
3264 setit:
3265 #define FILTER_EMIT(addr, data) \
3266 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3267 delay(1); \
3268 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3269 delay(1)
3270
3271 /*
3272 * Disable receive filter, and program the node address.
3273 */
3274 cp = CLLADDR(ifp->if_sadl);
3275 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3276 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3277 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3278
3279 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3280 int nwords =
3281 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3282 /*
3283 * Program the multicast hash table.
3284 */
3285 for (i = 0; i < nwords; i++) {
3286 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3287 }
3288 }
3289 #undef FILTER_EMIT
3290 #undef MCHASH_NWORDS
3291 #undef MCHASH_NWORDS_83815
3292 #undef MCHASH_NWORDS_83820
3293
3294 /*
3295 * Re-enable the receiver filter.
3296 */
3297 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3298 }
3299
3300 /*
3301 * sip_dp83820_mii_readreg: [mii interface function]
3302 *
3303 * Read a PHY register on the MII of the DP83820.
3304 */
3305 static int
3306 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3307 {
3308 struct sip_softc *sc = (void *) self;
3309
3310 if (sc->sc_cfg & CFG_TBI_EN) {
3311 bus_addr_t tbireg;
3312 int rv;
3313
3314 if (phy != 0)
3315 return (0);
3316
3317 switch (reg) {
3318 case MII_BMCR: tbireg = SIP_TBICR; break;
3319 case MII_BMSR: tbireg = SIP_TBISR; break;
3320 case MII_ANAR: tbireg = SIP_TANAR; break;
3321 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3322 case MII_ANER: tbireg = SIP_TANER; break;
3323 case MII_EXTSR:
3324 /*
3325 * Don't even bother reading the TESR register.
3326 * The manual documents that the device has
3327 * 1000baseX full/half capability, but the
3328 * register itself seems read back 0 on some
3329 * boards. Just hard-code the result.
3330 */
3331 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3332
3333 default:
3334 return (0);
3335 }
3336
3337 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3338 if (tbireg == SIP_TBISR) {
3339 /* LINK and ACOMP are switched! */
3340 int val = rv;
3341
3342 rv = 0;
3343 if (val & TBISR_MR_LINK_STATUS)
3344 rv |= BMSR_LINK;
3345 if (val & TBISR_MR_AN_COMPLETE)
3346 rv |= BMSR_ACOMP;
3347
3348 /*
3349 * The manual claims this register reads back 0
3350 * on hard and soft reset. But we want to let
3351 * the gentbi driver know that we support auto-
3352 * negotiation, so hard-code this bit in the
3353 * result.
3354 */
3355 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3356 }
3357
3358 return (rv);
3359 }
3360
3361 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3362 }
3363
3364 /*
3365 * sip_dp83820_mii_writereg: [mii interface function]
3366 *
3367 * Write a PHY register on the MII of the DP83820.
3368 */
3369 static void
3370 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3371 {
3372 struct sip_softc *sc = (void *) self;
3373
3374 if (sc->sc_cfg & CFG_TBI_EN) {
3375 bus_addr_t tbireg;
3376
3377 if (phy != 0)
3378 return;
3379
3380 switch (reg) {
3381 case MII_BMCR: tbireg = SIP_TBICR; break;
3382 case MII_ANAR: tbireg = SIP_TANAR; break;
3383 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3384 default:
3385 return;
3386 }
3387
3388 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3389 return;
3390 }
3391
3392 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3393 }
3394
3395 /*
3396 * sip_dp83820_mii_statchg: [mii interface function]
3397 *
3398 * Callback from MII layer when media changes.
3399 */
3400 static void
3401 sipcom_dp83820_mii_statchg(struct device *self)
3402 {
3403 struct sip_softc *sc = (struct sip_softc *) self;
3404 struct mii_data *mii = &sc->sc_mii;
3405 u_int32_t cfg, pcr;
3406
3407 /*
3408 * Get flow control negotiation result.
3409 */
3410 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3411 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3412 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3413 mii->mii_media_active &= ~IFM_ETH_FMASK;
3414 }
3415
3416 /*
3417 * Update TXCFG for full-duplex operation.
3418 */
3419 if ((mii->mii_media_active & IFM_FDX) != 0)
3420 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3421 else
3422 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3423
3424 /*
3425 * Update RXCFG for full-duplex or loopback.
3426 */
3427 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3428 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3429 sc->sc_rxcfg |= RXCFG_ATX;
3430 else
3431 sc->sc_rxcfg &= ~RXCFG_ATX;
3432
3433 /*
3434 * Update CFG for MII/GMII.
3435 */
3436 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3437 cfg = sc->sc_cfg | CFG_MODE_1000;
3438 else
3439 cfg = sc->sc_cfg;
3440
3441 /*
3442 * 802.3x flow control.
3443 */
3444 pcr = 0;
3445 if (sc->sc_flowflags & IFM_FLOW) {
3446 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3447 pcr |= sc->sc_rx_flow_thresh;
3448 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3449 pcr |= PCR_PSEN | PCR_PS_MCAST;
3450 }
3451
3452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3453 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3454 sc->sc_txcfg);
3455 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3456 sc->sc_rxcfg);
3457 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3458 }
3459
3460 /*
3461 * sip_mii_bitbang_read: [mii bit-bang interface function]
3462 *
3463 * Read the MII serial port for the MII bit-bang module.
3464 */
3465 static u_int32_t
3466 sipcom_mii_bitbang_read(struct device *self)
3467 {
3468 struct sip_softc *sc = (void *) self;
3469
3470 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3471 }
3472
3473 /*
3474 * sip_mii_bitbang_write: [mii big-bang interface function]
3475 *
3476 * Write the MII serial port for the MII bit-bang module.
3477 */
3478 static void
3479 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3480 {
3481 struct sip_softc *sc = (void *) self;
3482
3483 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3484 }
3485
3486 /*
3487 * sip_sis900_mii_readreg: [mii interface function]
3488 *
3489 * Read a PHY register on the MII.
3490 */
3491 static int
3492 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3493 {
3494 struct sip_softc *sc = (struct sip_softc *) self;
3495 u_int32_t enphy;
3496
3497 /*
3498 * The PHY of recent SiS chipsets is accessed through bitbang
3499 * operations.
3500 */
3501 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3502 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3503 phy, reg);
3504
3505 #ifndef SIS900_MII_RESTRICT
3506 /*
3507 * The SiS 900 has only an internal PHY on the MII. Only allow
3508 * MII address 0.
3509 */
3510 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3511 return (0);
3512 #endif
3513
3514 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3515 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3516 ENPHY_RWCMD | ENPHY_ACCESS);
3517 do {
3518 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3519 } while (enphy & ENPHY_ACCESS);
3520 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3521 }
3522
3523 /*
3524 * sip_sis900_mii_writereg: [mii interface function]
3525 *
3526 * Write a PHY register on the MII.
3527 */
3528 static void
3529 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3530 {
3531 struct sip_softc *sc = (struct sip_softc *) self;
3532 u_int32_t enphy;
3533
3534 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3535 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3536 phy, reg, val);
3537 return;
3538 }
3539
3540 #ifndef SIS900_MII_RESTRICT
3541 /*
3542 * The SiS 900 has only an internal PHY on the MII. Only allow
3543 * MII address 0.
3544 */
3545 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3546 return;
3547 #endif
3548
3549 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3550 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3551 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3552 do {
3553 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3554 } while (enphy & ENPHY_ACCESS);
3555 }
3556
3557 /*
3558 * sip_sis900_mii_statchg: [mii interface function]
3559 *
3560 * Callback from MII layer when media changes.
3561 */
3562 static void
3563 sipcom_sis900_mii_statchg(struct device *self)
3564 {
3565 struct sip_softc *sc = (struct sip_softc *) self;
3566 struct mii_data *mii = &sc->sc_mii;
3567 u_int32_t flowctl;
3568
3569 /*
3570 * Get flow control negotiation result.
3571 */
3572 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3573 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3574 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3575 mii->mii_media_active &= ~IFM_ETH_FMASK;
3576 }
3577
3578 /*
3579 * Update TXCFG for full-duplex operation.
3580 */
3581 if ((mii->mii_media_active & IFM_FDX) != 0)
3582 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3583 else
3584 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3585
3586 /*
3587 * Update RXCFG for full-duplex or loopback.
3588 */
3589 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3590 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3591 sc->sc_rxcfg |= RXCFG_ATX;
3592 else
3593 sc->sc_rxcfg &= ~RXCFG_ATX;
3594
3595 /*
3596 * Update IMR for use of 802.3x flow control.
3597 */
3598 if (sc->sc_flowflags & IFM_FLOW) {
3599 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3600 flowctl = FLOWCTL_FLOWEN;
3601 } else {
3602 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3603 flowctl = 0;
3604 }
3605
3606 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3607 sc->sc_txcfg);
3608 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3609 sc->sc_rxcfg);
3610 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3611 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3612 }
3613
3614 /*
3615 * sip_dp83815_mii_readreg: [mii interface function]
3616 *
3617 * Read a PHY register on the MII.
3618 */
3619 static int
3620 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3621 {
3622 struct sip_softc *sc = (struct sip_softc *) self;
3623 u_int32_t val;
3624
3625 /*
3626 * The DP83815 only has an internal PHY. Only allow
3627 * MII address 0.
3628 */
3629 if (phy != 0)
3630 return (0);
3631
3632 /*
3633 * Apparently, after a reset, the DP83815 can take a while
3634 * to respond. During this recovery period, the BMSR returns
3635 * a value of 0. Catch this -- it's not supposed to happen
3636 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3637 * PHY to come back to life.
3638 *
3639 * This works out because the BMSR is the first register
3640 * read during the PHY probe process.
3641 */
3642 do {
3643 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3644 } while (reg == MII_BMSR && val == 0);
3645
3646 return (val & 0xffff);
3647 }
3648
3649 /*
3650 * sip_dp83815_mii_writereg: [mii interface function]
3651 *
3652 * Write a PHY register to the MII.
3653 */
3654 static void
3655 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3656 {
3657 struct sip_softc *sc = (struct sip_softc *) self;
3658
3659 /*
3660 * The DP83815 only has an internal PHY. Only allow
3661 * MII address 0.
3662 */
3663 if (phy != 0)
3664 return;
3665
3666 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3667 }
3668
3669 /*
3670 * sip_dp83815_mii_statchg: [mii interface function]
3671 *
3672 * Callback from MII layer when media changes.
3673 */
3674 static void
3675 sipcom_dp83815_mii_statchg(struct device *self)
3676 {
3677 struct sip_softc *sc = (struct sip_softc *) self;
3678
3679 /*
3680 * Update TXCFG for full-duplex operation.
3681 */
3682 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3683 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3684 else
3685 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3686
3687 /*
3688 * Update RXCFG for full-duplex or loopback.
3689 */
3690 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3691 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3692 sc->sc_rxcfg |= RXCFG_ATX;
3693 else
3694 sc->sc_rxcfg &= ~RXCFG_ATX;
3695
3696 /*
3697 * XXX 802.3x flow control.
3698 */
3699
3700 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3701 sc->sc_txcfg);
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3703 sc->sc_rxcfg);
3704
3705 /*
3706 * Some DP83815s experience problems when used with short
3707 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3708 * sequence adjusts the DSP's signal attenuation to fix the
3709 * problem.
3710 */
3711 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3712 uint32_t reg;
3713
3714 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3715
3716 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3717 reg &= 0x0fff;
3718 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3719 delay(100);
3720 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3721 reg &= 0x00ff;
3722 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3723 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3724 0x00e8);
3725 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3726 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3727 reg | 0x20);
3728 }
3729
3730 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3731 }
3732 }
3733
3734 static void
3735 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3736 const struct pci_attach_args *pa, u_int8_t *enaddr)
3737 {
3738 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3739 u_int8_t cksum, *e, match;
3740 int i;
3741
3742 /*
3743 * EEPROM data format for the DP83820 can be found in
3744 * the DP83820 manual, section 4.2.4.
3745 */
3746
3747 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3748
3749 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3750 match = ~(match - 1);
3751
3752 cksum = 0x55;
3753 e = (u_int8_t *) eeprom_data;
3754 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3755 cksum += *e++;
3756
3757 if (cksum != match)
3758 printf("%s: Checksum (%x) mismatch (%x)",
3759 sc->sc_dev.dv_xname, cksum, match);
3760
3761 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3762 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3763 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3764 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3765 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3766 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3767 }
3768
3769 static void
3770 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3771 {
3772 int i;
3773
3774 /*
3775 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3776 * a reason, but I don't know it.
3777 */
3778 for (i = 0; i < 10; i++)
3779 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3780 }
3781
3782 static void
3783 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3784 const struct pci_attach_args *pa, u_int8_t *enaddr)
3785 {
3786 u_int16_t myea[ETHER_ADDR_LEN / 2];
3787
3788 switch (sc->sc_rev) {
3789 case SIS_REV_630S:
3790 case SIS_REV_630E:
3791 case SIS_REV_630EA1:
3792 case SIS_REV_630ET:
3793 case SIS_REV_635:
3794 /*
3795 * The MAC address for the on-board Ethernet of
3796 * the SiS 630 chipset is in the NVRAM. Kick
3797 * the chip into re-loading it from NVRAM, and
3798 * read the MAC address out of the filter registers.
3799 */
3800 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3801
3802 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3803 RFCR_RFADDR_NODE0);
3804 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3805 0xffff;
3806
3807 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3808 RFCR_RFADDR_NODE2);
3809 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3810 0xffff;
3811
3812 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3813 RFCR_RFADDR_NODE4);
3814 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3815 0xffff;
3816 break;
3817
3818 case SIS_REV_960:
3819 {
3820 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3821 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3822
3823 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3824 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3825
3826 int waittime, i;
3827
3828 /* Allow to read EEPROM from LAN. It is shared
3829 * between a 1394 controller and the NIC and each
3830 * time we access it, we need to set SIS_EECMD_REQ.
3831 */
3832 SIS_SET_EROMAR(sc, EROMAR_REQ);
3833
3834 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3835 /* Force EEPROM to idle state. */
3836
3837 /*
3838 * XXX-cube This is ugly. I'll look for docs about it.
3839 */
3840 SIS_SET_EROMAR(sc, EROMAR_EECS);
3841 sipcom_sis900_eeprom_delay(sc);
3842 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3843 SIS_SET_EROMAR(sc, EROMAR_EESK);
3844 sipcom_sis900_eeprom_delay(sc);
3845 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3846 sipcom_sis900_eeprom_delay(sc);
3847 }
3848 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3849 sipcom_sis900_eeprom_delay(sc);
3850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3851
3852 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3853 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3854 sizeof(myea) / sizeof(myea[0]), myea);
3855 break;
3856 }
3857 DELAY(1);
3858 }
3859
3860 /*
3861 * Set SIS_EECTL_CLK to high, so a other master
3862 * can operate on the i2c bus.
3863 */
3864 SIS_SET_EROMAR(sc, EROMAR_EESK);
3865
3866 /* Refuse EEPROM access by LAN */
3867 SIS_SET_EROMAR(sc, EROMAR_DONE);
3868 } break;
3869
3870 default:
3871 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3872 sizeof(myea) / sizeof(myea[0]), myea);
3873 }
3874
3875 enaddr[0] = myea[0] & 0xff;
3876 enaddr[1] = myea[0] >> 8;
3877 enaddr[2] = myea[1] & 0xff;
3878 enaddr[3] = myea[1] >> 8;
3879 enaddr[4] = myea[2] & 0xff;
3880 enaddr[5] = myea[2] >> 8;
3881 }
3882
3883 /* Table and macro to bit-reverse an octet. */
3884 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3885 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3886
3887 static void
3888 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3889 const struct pci_attach_args *pa, u_int8_t *enaddr)
3890 {
3891 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3892 u_int8_t cksum, *e, match;
3893 int i;
3894
3895 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3896 sizeof(eeprom_data[0]), eeprom_data);
3897
3898 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3899 match = ~(match - 1);
3900
3901 cksum = 0x55;
3902 e = (u_int8_t *) eeprom_data;
3903 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3904 cksum += *e++;
3905 }
3906 if (cksum != match) {
3907 printf("%s: Checksum (%x) mismatch (%x)",
3908 sc->sc_dev.dv_xname, cksum, match);
3909 }
3910
3911 /*
3912 * Unrolled because it makes slightly more sense this way.
3913 * The DP83815 stores the MAC address in bit 0 of word 6
3914 * through bit 15 of word 8.
3915 */
3916 ea = &eeprom_data[6];
3917 enaddr[0] = ((*ea & 0x1) << 7);
3918 ea++;
3919 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3920 enaddr[1] = ((*ea & 0x1FE) >> 1);
3921 enaddr[2] = ((*ea & 0x1) << 7);
3922 ea++;
3923 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3924 enaddr[3] = ((*ea & 0x1FE) >> 1);
3925 enaddr[4] = ((*ea & 0x1) << 7);
3926 ea++;
3927 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3928 enaddr[5] = ((*ea & 0x1FE) >> 1);
3929
3930 /*
3931 * In case that's not weird enough, we also need to reverse
3932 * the bits in each byte. This all actually makes more sense
3933 * if you think about the EEPROM storage as an array of bits
3934 * being shifted into bytes, but that's not how we're looking
3935 * at it here...
3936 */
3937 for (i = 0; i < 6 ;i++)
3938 enaddr[i] = bbr(enaddr[i]);
3939 }
3940
3941 /*
3942 * sip_mediastatus: [ifmedia interface function]
3943 *
3944 * Get the current interface media status.
3945 */
3946 static void
3947 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3948 {
3949 struct sip_softc *sc = ifp->if_softc;
3950
3951 mii_pollstat(&sc->sc_mii);
3952 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3953 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3954 sc->sc_flowflags;
3955 }
3956
3957 /*
3958 * sip_mediachange: [ifmedia interface function]
3959 *
3960 * Set hardware to newly-selected media.
3961 */
3962 static int
3963 sipcom_mediachange(struct ifnet *ifp)
3964 {
3965 struct sip_softc *sc = ifp->if_softc;
3966
3967 if (ifp->if_flags & IFF_UP)
3968 mii_mediachg(&sc->sc_mii);
3969 return (0);
3970 }
3971