if_sip.c revision 1.128 1 /* $NetBSD: if_sip.c,v 1.128 2008/02/29 06:13:39 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.128 2008/02/29 06:13:39 dyoung Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 /*
130 * Transmit descriptor list size. This is arbitrary, but allocate
131 * enough descriptors for 128 pending transmissions, and 8 segments
132 * per packet (64 for DP83820 for jumbo frames).
133 *
134 * This MUST work out to a power of 2.
135 */
136 #define GSIP_NTXSEGS_ALLOC 16
137 #define SIP_NTXSEGS_ALLOC 8
138
139 #define SIP_TXQUEUELEN 256
140 #define MAX_SIP_NTXDESC \
141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer per incoming
145 * packet, so this logic is a little simpler.
146 *
147 * Actually, on the DP83820, we allow the packet to consume more than
148 * one buffer, in order to support jumbo Ethernet frames. In that
149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
151 * so we'd better be quick about handling receive interrupts.
152 */
153 #define GSIP_NRXDESC 256
154 #define SIP_NRXDESC 128
155
156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
157
158 /*
159 * Control structures are DMA'd to the SiS900 chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct sip_control_data {
164 /*
165 * The transmit descriptors.
166 */
167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168
169 /*
170 * The receive descriptors.
171 */
172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174
175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct sip_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191
192 /*
193 * Software state for receive jobs.
194 */
195 struct sip_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 enum sip_attach_stage {
201 SIP_ATTACH_FIN = 0
202 , SIP_ATTACH_CREATE_RXMAP
203 , SIP_ATTACH_CREATE_TXMAP
204 , SIP_ATTACH_LOAD_MAP
205 , SIP_ATTACH_CREATE_MAP
206 , SIP_ATTACH_MAP_MEM
207 , SIP_ATTACH_ALLOC_MEM
208 , SIP_ATTACH_INTR
209 , SIP_ATTACH_MAP
210 };
211
212 /*
213 * Software state per device.
214 */
215 struct sip_softc {
216 struct device sc_dev; /* generic device information */
217 bus_space_tag_t sc_st; /* bus space tag */
218 bus_space_handle_t sc_sh; /* bus space handle */
219 bus_size_t sc_sz; /* bus space size */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 pci_chipset_tag_t sc_pc;
222 bus_dma_segment_t sc_seg;
223 struct ethercom sc_ethercom; /* ethernet common data */
224
225 const struct sip_product *sc_model; /* which model are we? */
226 int sc_gigabit; /* 1: 83820, 0: other */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 callout_t sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
262 struct evcnt sc_ev_rxpause; /* PAUSE received */
263 /* DP83820 only */
264 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
265 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
266 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
267 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
268 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
269 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
270 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
271 #endif /* SIP_EVENT_COUNTERS */
272
273 u_int32_t sc_txcfg; /* prototype TXCFG register */
274 u_int32_t sc_rxcfg; /* prototype RXCFG register */
275 u_int32_t sc_imr; /* prototype IMR register */
276 u_int32_t sc_rfcr; /* prototype RFCR register */
277
278 u_int32_t sc_cfg; /* prototype CFG register */
279
280 u_int32_t sc_gpior; /* prototype GPIOR register */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flowflags; /* 802.3x flow control flags */
288 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
289 int sc_paused; /* paused indication */
290
291 int sc_txfree; /* number of free Tx descriptors */
292 int sc_txnext; /* next ready Tx descriptor */
293 int sc_txwin; /* Tx descriptors since last intr */
294
295 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
296 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
297
298 /* values of interface state at last init */
299 struct {
300 /* if_capenable */
301 uint64_t if_capenable;
302 /* ec_capenable */
303 int ec_capenable;
304 /* VLAN_ATTACHED */
305 int is_vlan;
306 } sc_prev;
307
308 short sc_if_flags;
309
310 int sc_rxptr; /* next ready Rx descriptor/descsoft */
311 int sc_rxdiscard;
312 int sc_rxlen;
313 struct mbuf *sc_rxhead;
314 struct mbuf *sc_rxtail;
315 struct mbuf **sc_rxtailp;
316
317 int sc_ntxdesc;
318 int sc_ntxdesc_mask;
319
320 int sc_nrxdesc_mask;
321
322 const struct sip_parm {
323 const struct sip_regs {
324 int r_rxcfg;
325 int r_txcfg;
326 } p_regs;
327
328 const struct sip_bits {
329 uint32_t b_txcfg_mxdma_8;
330 uint32_t b_txcfg_mxdma_16;
331 uint32_t b_txcfg_mxdma_32;
332 uint32_t b_txcfg_mxdma_64;
333 uint32_t b_txcfg_mxdma_128;
334 uint32_t b_txcfg_mxdma_256;
335 uint32_t b_txcfg_mxdma_512;
336 uint32_t b_txcfg_flth_mask;
337 uint32_t b_txcfg_drth_mask;
338
339 uint32_t b_rxcfg_mxdma_8;
340 uint32_t b_rxcfg_mxdma_16;
341 uint32_t b_rxcfg_mxdma_32;
342 uint32_t b_rxcfg_mxdma_64;
343 uint32_t b_rxcfg_mxdma_128;
344 uint32_t b_rxcfg_mxdma_256;
345 uint32_t b_rxcfg_mxdma_512;
346
347 uint32_t b_isr_txrcmp;
348 uint32_t b_isr_rxrcmp;
349 uint32_t b_isr_dperr;
350 uint32_t b_isr_sserr;
351 uint32_t b_isr_rmabt;
352 uint32_t b_isr_rtabt;
353
354 uint32_t b_cmdsts_size_mask;
355 } p_bits;
356 int p_filtmem;
357 int p_rxbuf_len;
358 bus_size_t p_tx_dmamap_size;
359 int p_ntxsegs;
360 int p_ntxsegs_alloc;
361 int p_nrxdesc;
362 } *sc_parm;
363
364 void (*sc_rxintr)(struct sip_softc *);
365
366 #if NRND > 0
367 rndsource_element_t rnd_source; /* random source */
368 #endif
369 };
370
371 #define sc_bits sc_parm->p_bits
372 #define sc_regs sc_parm->p_regs
373
374 static const struct sip_parm sip_parm = {
375 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
376 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
377 , .p_tx_dmamap_size = MCLBYTES
378 , .p_ntxsegs = 16
379 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
380 , .p_nrxdesc = SIP_NRXDESC
381 , .p_bits = {
382 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
383 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
384 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
385 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
386 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
387 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
388 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
389 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
390 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
391
392 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
393 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
394 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
395 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
396 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
397 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
398 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
399
400 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
401 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
402 , .b_isr_dperr = 0x00800000 /* detected parity error */
403 , .b_isr_sserr = 0x00400000 /* signalled system error */
404 , .b_isr_rmabt = 0x00200000 /* received master abort */
405 , .b_isr_rtabt = 0x00100000 /* received target abort */
406 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
407 }
408 , .p_regs = {
409 .r_rxcfg = OTHER_SIP_RXCFG,
410 .r_txcfg = OTHER_SIP_TXCFG
411 }
412 }, gsip_parm = {
413 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
414 , .p_rxbuf_len = MCLBYTES - 8
415 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
416 , .p_ntxsegs = 64
417 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
418 , .p_nrxdesc = GSIP_NRXDESC
419 , .p_bits = {
420 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
421 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
422 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
423 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
424 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
425 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
426 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
427 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
428 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
429
430 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
431 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
432 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
433 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
434 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
435 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
436 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
437
438 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
439 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
440 , .b_isr_dperr = 0x00100000 /* detected parity error */
441 , .b_isr_sserr = 0x00080000 /* signalled system error */
442 , .b_isr_rmabt = 0x00040000 /* received master abort */
443 , .b_isr_rtabt = 0x00020000 /* received target abort */
444 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
445 }
446 , .p_regs = {
447 .r_rxcfg = DP83820_SIP_RXCFG,
448 .r_txcfg = DP83820_SIP_TXCFG
449 }
450 };
451
452 static inline int
453 sip_nexttx(const struct sip_softc *sc, int x)
454 {
455 return (x + 1) & sc->sc_ntxdesc_mask;
456 }
457
458 static inline int
459 sip_nextrx(const struct sip_softc *sc, int x)
460 {
461 return (x + 1) & sc->sc_nrxdesc_mask;
462 }
463
464 /* 83820 only */
465 static inline void
466 sip_rxchain_reset(struct sip_softc *sc)
467 {
468 sc->sc_rxtailp = &sc->sc_rxhead;
469 *sc->sc_rxtailp = NULL;
470 sc->sc_rxlen = 0;
471 }
472
473 /* 83820 only */
474 static inline void
475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
476 {
477 *sc->sc_rxtailp = sc->sc_rxtail = m;
478 sc->sc_rxtailp = &m->m_next;
479 }
480
481 #ifdef SIP_EVENT_COUNTERS
482 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
483 #else
484 #define SIP_EVCNT_INCR(ev) /* nothing */
485 #endif
486
487 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
488 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
489
490 static inline void
491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
492 {
493 int x, n;
494
495 x = x0;
496 n = n0;
497
498 /* If it will wrap around, sync to the end of the ring. */
499 if (x + n > sc->sc_ntxdesc) {
500 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
501 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
502 (sc->sc_ntxdesc - x), ops);
503 n -= (sc->sc_ntxdesc - x);
504 x = 0;
505 }
506
507 /* Now sync whatever is left. */
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
510 }
511
512 static inline void
513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
514 {
515 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
516 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
517 }
518
519 #if 0
520 #ifdef DP83820
521 u_int32_t sipd_bufptr; /* pointer to DMA segment */
522 u_int32_t sipd_cmdsts; /* command/status word */
523 #else
524 u_int32_t sipd_cmdsts; /* command/status word */
525 u_int32_t sipd_bufptr; /* pointer to DMA segment */
526 #endif /* DP83820 */
527 #endif /* 0 */
528
529 static inline volatile uint32_t *
530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
531 {
532 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
533 }
534
535 static inline volatile uint32_t *
536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
537 {
538 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
539 }
540
541 static inline void
542 sip_init_rxdesc(struct sip_softc *sc, int x)
543 {
544 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
545 struct sip_desc *sipd = &sc->sc_rxdescs[x];
546
547 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
548 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
549 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
550 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
551 sipd->sipd_extsts = 0;
552 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 }
554
555 #define SIP_CHIP_VERS(sc, v, p, r) \
556 ((sc)->sc_model->sip_vendor == (v) && \
557 (sc)->sc_model->sip_product == (p) && \
558 (sc)->sc_rev == (r))
559
560 #define SIP_CHIP_MODEL(sc, v, p) \
561 ((sc)->sc_model->sip_vendor == (v) && \
562 (sc)->sc_model->sip_product == (p))
563
564 #define SIP_SIS900_REV(sc, rev) \
565 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
566
567 #define SIP_TIMEOUT 1000
568
569 static void sipcom_start(struct ifnet *);
570 static void sipcom_watchdog(struct ifnet *);
571 static int sipcom_ioctl(struct ifnet *, u_long, void *);
572 static int sipcom_init(struct ifnet *);
573 static void sipcom_stop(struct ifnet *, int);
574
575 static bool sipcom_reset(struct sip_softc *);
576 static void sipcom_rxdrain(struct sip_softc *);
577 static int sipcom_add_rxbuf(struct sip_softc *, int);
578 static void sipcom_read_eeprom(struct sip_softc *, int, int,
579 u_int16_t *);
580 static void sipcom_tick(void *);
581
582 static void sipcom_sis900_set_filter(struct sip_softc *);
583 static void sipcom_dp83815_set_filter(struct sip_softc *);
584
585 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
586 const struct pci_attach_args *, u_int8_t *);
587 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
588 static void sipcom_sis900_read_macaddr(struct sip_softc *,
589 const struct pci_attach_args *, u_int8_t *);
590 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
591 const struct pci_attach_args *, u_int8_t *);
592
593 static int sipcom_intr(void *);
594 static void sipcom_txintr(struct sip_softc *);
595 static void sip_rxintr(struct sip_softc *);
596 static void gsip_rxintr(struct sip_softc *);
597
598 static int sipcom_dp83820_mii_readreg(struct device *, int, int);
599 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int);
600 static void sipcom_dp83820_mii_statchg(struct device *);
601
602 static int sipcom_sis900_mii_readreg(struct device *, int, int);
603 static void sipcom_sis900_mii_writereg(struct device *, int, int, int);
604 static void sipcom_sis900_mii_statchg(struct device *);
605
606 static int sipcom_dp83815_mii_readreg(struct device *, int, int);
607 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int);
608 static void sipcom_dp83815_mii_statchg(struct device *);
609
610 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
611
612 static int sipcom_match(struct device *, struct cfdata *, void *);
613 static void sipcom_attach(struct device *, struct device *, void *);
614 static void sipcom_do_detach(device_t, enum sip_attach_stage);
615 static int sipcom_detach(device_t, int);
616 static bool sipcom_resume(device_t PMF_FN_PROTO);
617
618 int gsip_copy_small = 0;
619 int sip_copy_small = 0;
620
621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
622 sipcom_match, sipcom_attach, sipcom_detach, NULL);
623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
624 sipcom_match, sipcom_attach, sipcom_detach, NULL);
625
626 /*
627 * Descriptions of the variants of the SiS900.
628 */
629 struct sip_variant {
630 int (*sipv_mii_readreg)(struct device *, int, int);
631 void (*sipv_mii_writereg)(struct device *, int, int, int);
632 void (*sipv_mii_statchg)(struct device *);
633 void (*sipv_set_filter)(struct sip_softc *);
634 void (*sipv_read_macaddr)(struct sip_softc *,
635 const struct pci_attach_args *, u_int8_t *);
636 };
637
638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
639 static void sipcom_mii_bitbang_write(struct device *, u_int32_t);
640
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
642 sipcom_mii_bitbang_read,
643 sipcom_mii_bitbang_write,
644 {
645 EROMAR_MDIO, /* MII_BIT_MDO */
646 EROMAR_MDIO, /* MII_BIT_MDI */
647 EROMAR_MDC, /* MII_BIT_MDC */
648 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
649 0, /* MII_BIT_DIR_PHY_HOST */
650 }
651 };
652
653 static const struct sip_variant sipcom_variant_dp83820 = {
654 sipcom_dp83820_mii_readreg,
655 sipcom_dp83820_mii_writereg,
656 sipcom_dp83820_mii_statchg,
657 sipcom_dp83815_set_filter,
658 sipcom_dp83820_read_macaddr,
659 };
660
661 static const struct sip_variant sipcom_variant_sis900 = {
662 sipcom_sis900_mii_readreg,
663 sipcom_sis900_mii_writereg,
664 sipcom_sis900_mii_statchg,
665 sipcom_sis900_set_filter,
666 sipcom_sis900_read_macaddr,
667 };
668
669 static const struct sip_variant sipcom_variant_dp83815 = {
670 sipcom_dp83815_mii_readreg,
671 sipcom_dp83815_mii_writereg,
672 sipcom_dp83815_mii_statchg,
673 sipcom_dp83815_set_filter,
674 sipcom_dp83815_read_macaddr,
675 };
676
677
678 /*
679 * Devices supported by this driver.
680 */
681 static const struct sip_product {
682 pci_vendor_id_t sip_vendor;
683 pci_product_id_t sip_product;
684 const char *sip_name;
685 const struct sip_variant *sip_variant;
686 int sip_gigabit;
687 } sipcom_products[] = {
688 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
689 "NatSemi DP83820 Gigabit Ethernet",
690 &sipcom_variant_dp83820, 1 },
691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
692 "SiS 900 10/100 Ethernet",
693 &sipcom_variant_sis900, 0 },
694 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
695 "SiS 7016 10/100 Ethernet",
696 &sipcom_variant_sis900, 0 },
697
698 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
699 "NatSemi DP83815 10/100 Ethernet",
700 &sipcom_variant_dp83815, 0 },
701
702 { 0, 0,
703 NULL,
704 NULL, 0 },
705 };
706
707 static const struct sip_product *
708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
709 {
710 const struct sip_product *sip;
711
712 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
713 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
714 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
715 sip->sip_gigabit == gigabit)
716 return sip;
717 }
718 return NULL;
719 }
720
721 /*
722 * I really hate stupid hardware vendors. There's a bit in the EEPROM
723 * which indicates if the card can do 64-bit data transfers. Unfortunately,
724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725 * which means we try to use 64-bit data transfers on those cards if we
726 * happen to be plugged into a 32-bit slot.
727 *
728 * What we do is use this table of cards known to be 64-bit cards. If
729 * you have a 64-bit card who's subsystem ID is not listed in this table,
730 * send the output of "pcictl dump ..." of the device to me so that your
731 * card will use the 64-bit data path when plugged into a 64-bit slot.
732 *
733 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
734 * June 30, 2002
735 */
736 static int
737 sipcom_check_64bit(const struct pci_attach_args *pa)
738 {
739 static const struct {
740 pci_vendor_id_t c64_vendor;
741 pci_product_id_t c64_product;
742 } card64[] = {
743 /* Asante GigaNIX */
744 { 0x128a, 0x0002 },
745
746 /* Accton EN1407-T, Planex GN-1000TE */
747 { 0x1113, 0x1407 },
748
749 /* Netgear GA-621 */
750 { 0x1385, 0x621a },
751
752 /* SMC EZ Card */
753 { 0x10b8, 0x9462 },
754
755 { 0, 0}
756 };
757 pcireg_t subsys;
758 int i;
759
760 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
761
762 for (i = 0; card64[i].c64_vendor != 0; i++) {
763 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
764 PCI_PRODUCT(subsys) == card64[i].c64_product)
765 return (1);
766 }
767
768 return (0);
769 }
770
771 static int
772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
773 {
774 struct pci_attach_args *pa = aux;
775
776 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
777 return 1;
778
779 return 0;
780 }
781
782 static void
783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
784 {
785 u_int32_t reg;
786 int i;
787
788 /*
789 * Cause the chip to load configuration data from the EEPROM.
790 */
791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
792 for (i = 0; i < 10000; i++) {
793 delay(10);
794 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
795 PTSCR_EELOAD_EN) == 0)
796 break;
797 }
798 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
799 PTSCR_EELOAD_EN) {
800 printf("%s: timeout loading configuration from EEPROM\n",
801 sc->sc_dev.dv_xname);
802 return;
803 }
804
805 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
806
807 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
808 if (reg & CFG_PCI64_DET) {
809 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
810 /*
811 * Check to see if this card is 64-bit. If so, enable 64-bit
812 * data transfers.
813 *
814 * We can't use the DATA64_EN bit in the EEPROM, because
815 * vendors of 32-bit cards fail to clear that bit in many
816 * cases (yet the card still detects that it's in a 64-bit
817 * slot; go figure).
818 */
819 if (sipcom_check_64bit(pa)) {
820 sc->sc_cfg |= CFG_DATA64_EN;
821 printf(", using 64-bit data transfers");
822 }
823 printf("\n");
824 }
825
826 /*
827 * XXX Need some PCI flags indicating support for
828 * XXX 64-bit addressing.
829 */
830 #if 0
831 if (reg & CFG_M64ADDR)
832 sc->sc_cfg |= CFG_M64ADDR;
833 if (reg & CFG_T64ADDR)
834 sc->sc_cfg |= CFG_T64ADDR;
835 #endif
836
837 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
838 const char *sep = "";
839 printf("%s: using ", sc->sc_dev.dv_xname);
840 if (reg & CFG_EXT_125) {
841 sc->sc_cfg |= CFG_EXT_125;
842 printf("%s125MHz clock", sep);
843 sep = ", ";
844 }
845 if (reg & CFG_TBI_EN) {
846 sc->sc_cfg |= CFG_TBI_EN;
847 printf("%sten-bit interface", sep);
848 sep = ", ";
849 }
850 printf("\n");
851 }
852 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
853 (reg & CFG_MRM_DIS) != 0)
854 sc->sc_cfg |= CFG_MRM_DIS;
855 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
856 (reg & CFG_MWI_DIS) != 0)
857 sc->sc_cfg |= CFG_MWI_DIS;
858
859 /*
860 * Use the extended descriptor format on the DP83820. This
861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
862 * checksumming.
863 */
864 sc->sc_cfg |= CFG_EXTSTS_EN;
865 }
866
867 static int
868 sipcom_detach(device_t self, int flags)
869 {
870 int s;
871
872 s = splnet();
873 sipcom_do_detach(self, SIP_ATTACH_FIN);
874 splx(s);
875
876 return 0;
877 }
878
879 static void
880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
881 {
882 int i;
883 struct sip_softc *sc = device_private(self);
884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885
886 /*
887 * Free any resources we've allocated during attach.
888 * Do this in reverse order and fall through.
889 */
890 switch (stage) {
891 case SIP_ATTACH_FIN:
892 sipcom_stop(ifp, 1);
893 pmf_device_deregister(self);
894 #ifdef SIP_EVENT_COUNTERS
895 /*
896 * Attach event counters.
897 */
898 evcnt_detach(&sc->sc_ev_txforceintr);
899 evcnt_detach(&sc->sc_ev_txdstall);
900 evcnt_detach(&sc->sc_ev_txsstall);
901 evcnt_detach(&sc->sc_ev_hiberr);
902 evcnt_detach(&sc->sc_ev_rxintr);
903 evcnt_detach(&sc->sc_ev_txiintr);
904 evcnt_detach(&sc->sc_ev_txdintr);
905 if (!sc->sc_gigabit) {
906 evcnt_detach(&sc->sc_ev_rxpause);
907 } else {
908 evcnt_detach(&sc->sc_ev_txudpsum);
909 evcnt_detach(&sc->sc_ev_txtcpsum);
910 evcnt_detach(&sc->sc_ev_txipsum);
911 evcnt_detach(&sc->sc_ev_rxudpsum);
912 evcnt_detach(&sc->sc_ev_rxtcpsum);
913 evcnt_detach(&sc->sc_ev_rxipsum);
914 evcnt_detach(&sc->sc_ev_txpause);
915 evcnt_detach(&sc->sc_ev_rxpause);
916 }
917 #endif /* SIP_EVENT_COUNTERS */
918
919 #if NRND > 0
920 rnd_detach_source(&sc->rnd_source);
921 #endif
922
923 ether_ifdetach(ifp);
924 if_detach(ifp);
925 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
926
927 /*FALLTHROUGH*/
928 case SIP_ATTACH_CREATE_RXMAP:
929 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
930 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->sc_rxsoft[i].rxs_dmamap);
933 }
934 /*FALLTHROUGH*/
935 case SIP_ATTACH_CREATE_TXMAP:
936 for (i = 0; i < SIP_TXQUEUELEN; i++) {
937 if (sc->sc_txsoft[i].txs_dmamap != NULL)
938 bus_dmamap_destroy(sc->sc_dmat,
939 sc->sc_txsoft[i].txs_dmamap);
940 }
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_LOAD_MAP:
943 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
944 /*FALLTHROUGH*/
945 case SIP_ATTACH_CREATE_MAP:
946 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
947 /*FALLTHROUGH*/
948 case SIP_ATTACH_MAP_MEM:
949 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
950 sizeof(struct sip_control_data));
951 /*FALLTHROUGH*/
952 case SIP_ATTACH_ALLOC_MEM:
953 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
954 /* FALLTHROUGH*/
955 case SIP_ATTACH_INTR:
956 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
957 /* FALLTHROUGH*/
958 case SIP_ATTACH_MAP:
959 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
960 break;
961 default:
962 break;
963 }
964 return;
965 }
966
967 static bool
968 sipcom_resume(device_t self PMF_FN_ARGS)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 return sipcom_reset(sc);
973 }
974
975 static void
976 sipcom_attach(device_t parent, device_t self, void *aux)
977 {
978 struct sip_softc *sc = (struct sip_softc *) self;
979 struct pci_attach_args *pa = aux;
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 pci_chipset_tag_t pc = pa->pa_pc;
982 pci_intr_handle_t ih;
983 const char *intrstr = NULL;
984 bus_space_tag_t iot, memt;
985 bus_space_handle_t ioh, memh;
986 bus_size_t iosz, memsz;
987 int ioh_valid, memh_valid;
988 int i, rseg, error;
989 const struct sip_product *sip;
990 u_int8_t enaddr[ETHER_ADDR_LEN];
991 pcireg_t pmreg;
992 pcireg_t memtype;
993 bus_size_t tx_dmamap_size;
994 int ntxsegs_alloc;
995 cfdata_t cf = device_cfdata(self);
996
997 callout_init(&sc->sc_tick_ch, 0);
998
999 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1000 if (sip == NULL) {
1001 printf("\n");
1002 panic("%s: impossible", __func__);
1003 }
1004 sc->sc_gigabit = sip->sip_gigabit;
1005
1006 sc->sc_pc = pc;
1007
1008 if (sc->sc_gigabit) {
1009 sc->sc_rxintr = gsip_rxintr;
1010 sc->sc_parm = &gsip_parm;
1011 } else {
1012 sc->sc_rxintr = sip_rxintr;
1013 sc->sc_parm = &sip_parm;
1014 }
1015 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020
1021 sc->sc_rev = PCI_REVISION(pa->pa_class);
1022
1023 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1024
1025 sc->sc_model = sip;
1026
1027 /*
1028 * XXX Work-around broken PXE firmware on some boards.
1029 *
1030 * The DP83815 shares an address decoder with the MEM BAR
1031 * and the ROM BAR. Make sure the ROM BAR is disabled,
1032 * so that memory mapped access works.
1033 */
1034 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1035 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1036 ~PCI_MAPREG_ROM_ENABLE);
1037
1038 /*
1039 * Map the device.
1040 */
1041 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1042 PCI_MAPREG_TYPE_IO, 0,
1043 &iot, &ioh, NULL, &iosz) == 0);
1044 if (sc->sc_gigabit) {
1045 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1046 switch (memtype) {
1047 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1049 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1050 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1051 break;
1052 default:
1053 memh_valid = 0;
1054 }
1055 } else {
1056 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1058 &memt, &memh, NULL, &memsz) == 0);
1059 }
1060
1061 if (memh_valid) {
1062 sc->sc_st = memt;
1063 sc->sc_sh = memh;
1064 sc->sc_sz = memsz;
1065 } else if (ioh_valid) {
1066 sc->sc_st = iot;
1067 sc->sc_sh = ioh;
1068 sc->sc_sz = iosz;
1069 } else {
1070 printf("%s: unable to map device registers\n",
1071 sc->sc_dev.dv_xname);
1072 return;
1073 }
1074
1075 sc->sc_dmat = pa->pa_dmat;
1076
1077 /*
1078 * Make sure bus mastering is enabled. Also make sure
1079 * Write/Invalidate is enabled if we're allowed to use it.
1080 */
1081 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 pmreg | PCI_COMMAND_MASTER_ENABLE);
1086
1087 /* power up chip */
1088 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1089 NULL)) && error != EOPNOTSUPP) {
1090 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1091 error);
1092 return;
1093 }
1094
1095 /*
1096 * Map and establish our interrupt.
1097 */
1098 if (pci_intr_map(pa, &ih)) {
1099 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1100 return;
1101 }
1102 intrstr = pci_intr_string(pc, ih);
1103 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1104 if (sc->sc_ih == NULL) {
1105 printf("%s: unable to establish interrupt",
1106 sc->sc_dev.dv_xname);
1107 if (intrstr != NULL)
1108 printf(" at %s", intrstr);
1109 printf("\n");
1110 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 }
1112 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1113
1114 SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116
1117 /*
1118 * Allocate the control data structures, and create and load the
1119 * DMA map for it.
1120 */
1121 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 &rseg, 0)) != 0) {
1124 printf("%s: unable to allocate control data, error = %d\n",
1125 sc->sc_dev.dv_xname, error);
1126 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 }
1128
1129 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1130 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1131 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1132 printf("%s: unable to map control data, error = %d\n",
1133 sc->sc_dev.dv_xname, error);
1134 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1135 }
1136
1137 if ((error = bus_dmamap_create(sc->sc_dmat,
1138 sizeof(struct sip_control_data), 1,
1139 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1140 printf("%s: unable to create control data DMA map, "
1141 "error = %d\n", sc->sc_dev.dv_xname, error);
1142 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1143 }
1144
1145 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1146 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1147 0)) != 0) {
1148 printf("%s: unable to load control data DMA map, error = %d\n",
1149 sc->sc_dev.dv_xname, error);
1150 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1151 }
1152
1153 /*
1154 * Create the transmit buffer DMA maps.
1155 */
1156 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1157 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1158 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1159 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1160 printf("%s: unable to create tx DMA map %d, "
1161 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1162 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1163 }
1164 }
1165
1166 /*
1167 * Create the receive buffer DMA maps.
1168 */
1169 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1170 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1171 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1172 printf("%s: unable to create rx DMA map %d, "
1173 "error = %d\n", sc->sc_dev.dv_xname, i, error);
1174 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1175 }
1176 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1177 }
1178
1179 /*
1180 * Reset the chip to a known state.
1181 */
1182 sipcom_reset(sc);
1183
1184 /*
1185 * Read the Ethernet address from the EEPROM. This might
1186 * also fetch other stuff from the EEPROM and stash it
1187 * in the softc.
1188 */
1189 sc->sc_cfg = 0;
1190 if (!sc->sc_gigabit) {
1191 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1192 SIP_SIS900_REV(sc,SIS_REV_900B))
1193 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1194
1195 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 SIP_SIS900_REV(sc,SIS_REV_960) ||
1197 SIP_SIS900_REV(sc,SIS_REV_900B))
1198 sc->sc_cfg |=
1199 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1200 CFG_EDBMASTEN);
1201 }
1202
1203 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1204
1205 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1206 ether_sprintf(enaddr));
1207
1208 /*
1209 * Initialize the configuration register: aggressive PCI
1210 * bus request algorithm, default backoff, default OW timer,
1211 * default parity error detection.
1212 *
1213 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 * friends -- it affects packet data, not descriptors.
1215 */
1216 if (sc->sc_gigabit)
1217 sipcom_dp83820_attach(sc, pa);
1218
1219 /*
1220 * Initialize our media structures and probe the MII.
1221 */
1222 sc->sc_mii.mii_ifp = ifp;
1223 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1227 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1228 sipcom_mediastatus);
1229
1230 /*
1231 * XXX We cannot handle flow control on the DP83815.
1232 */
1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1235 MII_OFFSET_ANY, 0);
1236 else
1237 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1240 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1241 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1242 } else
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1244
1245 ifp = &sc->sc_ethercom.ec_if;
1246 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1247 ifp->if_softc = sc;
1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 sc->sc_if_flags = ifp->if_flags;
1250 ifp->if_ioctl = sipcom_ioctl;
1251 ifp->if_start = sipcom_start;
1252 ifp->if_watchdog = sipcom_watchdog;
1253 ifp->if_init = sipcom_init;
1254 ifp->if_stop = sipcom_stop;
1255 IFQ_SET_READY(&ifp->if_snd);
1256
1257 /*
1258 * We can support 802.1Q VLAN-sized frames.
1259 */
1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261
1262 if (sc->sc_gigabit) {
1263 /*
1264 * And the DP83820 can do VLAN tagging in hardware, and
1265 * support the jumbo Ethernet MTU.
1266 */
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269
1270 /*
1271 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 * in hardware.
1273 */
1274 ifp->if_capabilities |=
1275 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 }
1279
1280 /*
1281 * Attach the interface.
1282 */
1283 if_attach(ifp);
1284 ether_ifattach(ifp, enaddr);
1285 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 sc->sc_prev.if_capenable = ifp->if_capenable;
1288 #if NRND > 0
1289 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1290 RND_TYPE_NET, 0);
1291 #endif
1292
1293 /*
1294 * The number of bytes that must be available in
1295 * the Tx FIFO before the bus master can DMA more
1296 * data into the FIFO.
1297 */
1298 sc->sc_tx_fill_thresh = 64 / 32;
1299
1300 /*
1301 * Start at a drain threshold of 512 bytes. We will
1302 * increase it if a DMA underrun occurs.
1303 *
1304 * XXX The minimum value of this variable should be
1305 * tuned. We may be able to improve performance
1306 * by starting with a lower value. That, however,
1307 * may trash the first few outgoing packets if the
1308 * PCI bus is saturated.
1309 */
1310 if (sc->sc_gigabit)
1311 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 else
1313 sc->sc_tx_drain_thresh = 1504 / 32;
1314
1315 /*
1316 * Initialize the Rx FIFO drain threshold.
1317 *
1318 * This is in units of 8 bytes.
1319 *
1320 * We should never set this value lower than 2; 14 bytes are
1321 * required to filter the packet.
1322 */
1323 sc->sc_rx_drain_thresh = 128 / 8;
1324
1325 #ifdef SIP_EVENT_COUNTERS
1326 /*
1327 * Attach event counters.
1328 */
1329 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 NULL, sc->sc_dev.dv_xname, "txsstall");
1331 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 NULL, sc->sc_dev.dv_xname, "txdstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 NULL, sc->sc_dev.dv_xname, "txforceintr");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 NULL, sc->sc_dev.dv_xname, "txdintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 NULL, sc->sc_dev.dv_xname, "txiintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 NULL, sc->sc_dev.dv_xname, "rxintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 NULL, sc->sc_dev.dv_xname, "hiberr");
1343 if (!sc->sc_gigabit) {
1344 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 NULL, sc->sc_dev.dv_xname, "rxpause");
1346 } else {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 NULL, sc->sc_dev.dv_xname, "rxpause");
1349 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 NULL, sc->sc_dev.dv_xname, "txpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 NULL, sc->sc_dev.dv_xname, "rxipsum");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 NULL, sc->sc_dev.dv_xname, "txipsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 NULL, sc->sc_dev.dv_xname, "txudpsum");
1363 }
1364 #endif /* SIP_EVENT_COUNTERS */
1365
1366 if (!pmf_device_register(self, NULL, sipcom_resume))
1367 aprint_error_dev(self, "couldn't establish power handler\n");
1368 else
1369 pmf_class_network_register(self, ifp);
1370 }
1371
1372 static inline void
1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1374 uint64_t capenable)
1375 {
1376 struct m_tag *mtag;
1377 u_int32_t extsts;
1378 #ifdef DEBUG
1379 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1380 #endif
1381 /*
1382 * If VLANs are enabled and the packet has a VLAN tag, set
1383 * up the descriptor to encapsulate the packet for us.
1384 *
1385 * This apparently has to be on the last descriptor of
1386 * the packet.
1387 */
1388
1389 /*
1390 * Byte swapping is tricky. We need to provide the tag
1391 * in a network byte order. On a big-endian machine,
1392 * the byteorder is correct, but we need to swap it
1393 * anyway, because this will be undone by the outside
1394 * htole32(). That's why there must be an
1395 * unconditional swap instead of htons() inside.
1396 */
1397 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1398 sc->sc_txdescs[lasttx].sipd_extsts |=
1399 htole32(EXTSTS_VPKT |
1400 (bswap16(VLAN_TAG_VALUE(mtag)) &
1401 EXTSTS_VTCI));
1402 }
1403
1404 /*
1405 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1406 * checksumming, set up the descriptor to do this work
1407 * for us.
1408 *
1409 * This apparently has to be on the first descriptor of
1410 * the packet.
1411 *
1412 * Byte-swap constants so the compiler can optimize.
1413 */
1414 extsts = 0;
1415 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1416 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1417 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1418 extsts |= htole32(EXTSTS_IPPKT);
1419 }
1420 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1421 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1422 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1423 extsts |= htole32(EXTSTS_TCPPKT);
1424 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1427 extsts |= htole32(EXTSTS_UDPPKT);
1428 }
1429 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1430 }
1431
1432 /*
1433 * sip_start: [ifnet interface function]
1434 *
1435 * Start packet transmission on the interface.
1436 */
1437 static void
1438 sipcom_start(struct ifnet *ifp)
1439 {
1440 struct sip_softc *sc = ifp->if_softc;
1441 struct mbuf *m0;
1442 struct mbuf *m;
1443 struct sip_txsoft *txs;
1444 bus_dmamap_t dmamap;
1445 int error, nexttx, lasttx, seg;
1446 int ofree = sc->sc_txfree;
1447 #if 0
1448 int firsttx = sc->sc_txnext;
1449 #endif
1450
1451 /*
1452 * If we've been told to pause, don't transmit any more packets.
1453 */
1454 if (!sc->sc_gigabit && sc->sc_paused)
1455 ifp->if_flags |= IFF_OACTIVE;
1456
1457 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1458 return;
1459
1460 /*
1461 * Loop through the send queue, setting up transmit descriptors
1462 * until we drain the queue, or use up all available transmit
1463 * descriptors.
1464 */
1465 for (;;) {
1466 /* Get a work queue entry. */
1467 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1468 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1469 break;
1470 }
1471
1472 /*
1473 * Grab a packet off the queue.
1474 */
1475 IFQ_POLL(&ifp->if_snd, m0);
1476 if (m0 == NULL)
1477 break;
1478 m = NULL;
1479
1480 dmamap = txs->txs_dmamap;
1481
1482 /*
1483 * Load the DMA map. If this fails, the packet either
1484 * didn't fit in the alloted number of segments, or we
1485 * were short on resources.
1486 */
1487 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1488 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1489 /* In the non-gigabit case, we'll copy and try again. */
1490 if (error != 0 && !sc->sc_gigabit) {
1491 MGETHDR(m, M_DONTWAIT, MT_DATA);
1492 if (m == NULL) {
1493 printf("%s: unable to allocate Tx mbuf\n",
1494 sc->sc_dev.dv_xname);
1495 break;
1496 }
1497 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1498 if (m0->m_pkthdr.len > MHLEN) {
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 printf("%s: unable to allocate Tx "
1502 "cluster\n", sc->sc_dev.dv_xname);
1503 m_freem(m);
1504 break;
1505 }
1506 }
1507 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1508 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1509 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1510 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1511 if (error) {
1512 printf("%s: unable to load Tx buffer, "
1513 "error = %d\n", sc->sc_dev.dv_xname, error);
1514 break;
1515 }
1516 } else if (error == EFBIG) {
1517 /*
1518 * For the too-many-segments case, we simply
1519 * report an error and drop the packet,
1520 * since we can't sanely copy a jumbo packet
1521 * to a single buffer.
1522 */
1523 printf("%s: Tx packet consumes too many "
1524 "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1525 IFQ_DEQUEUE(&ifp->if_snd, m0);
1526 m_freem(m0);
1527 continue;
1528 } else if (error != 0) {
1529 /*
1530 * Short on resources, just stop for now.
1531 */
1532 break;
1533 }
1534
1535 /*
1536 * Ensure we have enough descriptors free to describe
1537 * the packet. Note, we always reserve one descriptor
1538 * at the end of the ring as a termination point, to
1539 * prevent wrap-around.
1540 */
1541 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1542 /*
1543 * Not enough free descriptors to transmit this
1544 * packet. We haven't committed anything yet,
1545 * so just unload the DMA map, put the packet
1546 * back on the queue, and punt. Notify the upper
1547 * layer that there are not more slots left.
1548 *
1549 * XXX We could allocate an mbuf and copy, but
1550 * XXX is it worth it?
1551 */
1552 ifp->if_flags |= IFF_OACTIVE;
1553 bus_dmamap_unload(sc->sc_dmat, dmamap);
1554 if (m != NULL)
1555 m_freem(m);
1556 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1557 break;
1558 }
1559
1560 IFQ_DEQUEUE(&ifp->if_snd, m0);
1561 if (m != NULL) {
1562 m_freem(m0);
1563 m0 = m;
1564 }
1565
1566 /*
1567 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1568 */
1569
1570 /* Sync the DMA map. */
1571 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1572 BUS_DMASYNC_PREWRITE);
1573
1574 /*
1575 * Initialize the transmit descriptors.
1576 */
1577 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1578 seg < dmamap->dm_nsegs;
1579 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1580 /*
1581 * If this is the first descriptor we're
1582 * enqueueing, don't set the OWN bit just
1583 * yet. That could cause a race condition.
1584 * We'll do it below.
1585 */
1586 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1587 htole32(dmamap->dm_segs[seg].ds_addr);
1588 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1590 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1591 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1592 lasttx = nexttx;
1593 }
1594
1595 /* Clear the MORE bit on the last segment. */
1596 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1597 htole32(~CMDSTS_MORE);
1598
1599 /*
1600 * If we're in the interrupt delay window, delay the
1601 * interrupt.
1602 */
1603 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1604 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1606 htole32(CMDSTS_INTR);
1607 sc->sc_txwin = 0;
1608 }
1609
1610 if (sc->sc_gigabit)
1611 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1612
1613 /* Sync the descriptors we're using. */
1614 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616
1617 /*
1618 * The entire packet is set up. Give the first descrptor
1619 * to the chip now.
1620 */
1621 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1622 htole32(CMDSTS_OWN);
1623 sip_cdtxsync(sc, sc->sc_txnext, 1,
1624 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625
1626 /*
1627 * Store a pointer to the packet so we can free it later,
1628 * and remember what txdirty will be once the packet is
1629 * done.
1630 */
1631 txs->txs_mbuf = m0;
1632 txs->txs_firstdesc = sc->sc_txnext;
1633 txs->txs_lastdesc = lasttx;
1634
1635 /* Advance the tx pointer. */
1636 sc->sc_txfree -= dmamap->dm_nsegs;
1637 sc->sc_txnext = nexttx;
1638
1639 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1640 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1641
1642 #if NBPFILTER > 0
1643 /*
1644 * Pass the packet to any BPF listeners.
1645 */
1646 if (ifp->if_bpf)
1647 bpf_mtap(ifp->if_bpf, m0);
1648 #endif /* NBPFILTER > 0 */
1649 }
1650
1651 if (txs == NULL || sc->sc_txfree == 0) {
1652 /* No more slots left; notify upper layer. */
1653 ifp->if_flags |= IFF_OACTIVE;
1654 }
1655
1656 if (sc->sc_txfree != ofree) {
1657 /*
1658 * Start the transmit process. Note, the manual says
1659 * that if there are no pending transmissions in the
1660 * chip's internal queue (indicated by TXE being clear),
1661 * then the driver software must set the TXDP to the
1662 * first descriptor to be transmitted. However, if we
1663 * do this, it causes serious performance degredation on
1664 * the DP83820 under load, not setting TXDP doesn't seem
1665 * to adversely affect the SiS 900 or DP83815.
1666 *
1667 * Well, I guess it wouldn't be the first time a manual
1668 * has lied -- and they could be speaking of the NULL-
1669 * terminated descriptor list case, rather than OWN-
1670 * terminated rings.
1671 */
1672 #if 0
1673 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 CR_TXE) == 0) {
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 SIP_CDTXADDR(sc, firsttx));
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 }
1679 #else
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682
1683 /* Set a watchdog timer in case the chip flakes out. */
1684 /* Gigabit autonegotiation takes 5 seconds. */
1685 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 }
1687 }
1688
1689 /*
1690 * sip_watchdog: [ifnet interface function]
1691 *
1692 * Watchdog timer handler.
1693 */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 struct sip_softc *sc = ifp->if_softc;
1698
1699 /*
1700 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 * If we get a timeout, try and sweep up transmit descriptors.
1702 * If we manage to sweep them all up, ignore the lack of
1703 * interrupt.
1704 */
1705 sipcom_txintr(sc);
1706
1707 if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1709 ifp->if_oerrors++;
1710
1711 /* Reset the interface. */
1712 (void) sipcom_init(ifp);
1713 } else if (ifp->if_flags & IFF_DEBUG)
1714 printf("%s: recovered from device timeout\n",
1715 sc->sc_dev.dv_xname);
1716
1717 /* Try to get more packets going. */
1718 sipcom_start(ifp);
1719 }
1720
1721 /*
1722 * sip_ioctl: [ifnet interface function]
1723 *
1724 * Handle control requests from the operator.
1725 */
1726 static int
1727 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1728 {
1729 struct sip_softc *sc = ifp->if_softc;
1730 struct ifreq *ifr = (struct ifreq *)data;
1731 int s, error;
1732
1733 s = splnet();
1734
1735 switch (cmd) {
1736 case SIOCSIFMEDIA:
1737 /* Flow control requires full-duplex mode. */
1738 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1739 (ifr->ifr_media & IFM_FDX) == 0)
1740 ifr->ifr_media &= ~IFM_ETH_FMASK;
1741
1742 /* XXX */
1743 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1744 ifr->ifr_media &= ~IFM_ETH_FMASK;
1745 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1746 if (sc->sc_gigabit &&
1747 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1748 /* We can do both TXPAUSE and RXPAUSE. */
1749 ifr->ifr_media |=
1750 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1751 } else if (ifr->ifr_media & IFM_FLOW) {
1752 /*
1753 * Both TXPAUSE and RXPAUSE must be set.
1754 * (SiS900 and DP83815 don't have PAUSE_ASYM
1755 * feature.)
1756 *
1757 * XXX Can SiS900 and DP83815 send PAUSE?
1758 */
1759 ifr->ifr_media |=
1760 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1761 }
1762 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1763 }
1764 goto ethioctl;
1765 case SIOCSIFFLAGS:
1766 /* If the interface is up and running, only modify the receive
1767 * filter when setting promiscuous or debug mode. Otherwise
1768 * fall through to ether_ioctl, which will reset the chip.
1769 */
1770
1771 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1772 == (sc)->sc_ethercom.ec_capenable) \
1773 && ((sc)->sc_prev.is_vlan == \
1774 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1775
1776 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1777
1778 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1779 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1780 == (IFF_UP|IFF_RUNNING))
1781 && ((ifp->if_flags & (~RESETIGN))
1782 == (sc->sc_if_flags & (~RESETIGN)))
1783 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1784 /* Set up the receive filter. */
1785 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1786 error = 0;
1787 break;
1788 #undef RESETIGN
1789 }
1790 /* FALLTHROUGH */
1791 ethioctl:
1792 default:
1793 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1794 break;
1795
1796 error = 0;
1797
1798 if (cmd == SIOCSIFCAP)
1799 error = (*ifp->if_init)(ifp);
1800 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1801 ;
1802 else if (ifp->if_flags & IFF_RUNNING) {
1803 /*
1804 * Multicast list has changed; set the hardware filter
1805 * accordingly.
1806 */
1807 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1808 }
1809 break;
1810 }
1811
1812 /* Try to get more packets going. */
1813 sipcom_start(ifp);
1814
1815 sc->sc_if_flags = ifp->if_flags;
1816 splx(s);
1817 return (error);
1818 }
1819
1820 /*
1821 * sip_intr:
1822 *
1823 * Interrupt service routine.
1824 */
1825 static int
1826 sipcom_intr(void *arg)
1827 {
1828 struct sip_softc *sc = arg;
1829 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 u_int32_t isr;
1831 int handled = 0;
1832
1833 /* Disable interrupts. */
1834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1835
1836 for (;;) {
1837 /* Reading clears interrupt. */
1838 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1839 if ((isr & sc->sc_imr) == 0)
1840 break;
1841
1842 #if NRND > 0
1843 if (RND_ENABLED(&sc->rnd_source))
1844 rnd_add_uint32(&sc->rnd_source, isr);
1845 #endif
1846
1847 handled = 1;
1848
1849 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1850 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1851
1852 /* Grab any new packets. */
1853 (*sc->sc_rxintr)(sc);
1854
1855 if (isr & ISR_RXORN) {
1856 printf("%s: receive FIFO overrun\n",
1857 sc->sc_dev.dv_xname);
1858
1859 /* XXX adjust rx_drain_thresh? */
1860 }
1861
1862 if (isr & ISR_RXIDLE) {
1863 printf("%s: receive ring overrun\n",
1864 sc->sc_dev.dv_xname);
1865
1866 /* Get the receive process going again. */
1867 bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1869 bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 SIP_CR, CR_RXE);
1871 }
1872 }
1873
1874 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1875 #ifdef SIP_EVENT_COUNTERS
1876 if (isr & ISR_TXDESC)
1877 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1878 else if (isr & ISR_TXIDLE)
1879 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1880 #endif
1881
1882 /* Sweep up transmit descriptors. */
1883 sipcom_txintr(sc);
1884
1885 if (isr & ISR_TXURN) {
1886 u_int32_t thresh;
1887 int txfifo_size = (sc->sc_gigabit)
1888 ? DP83820_SIP_TXFIFO_SIZE
1889 : OTHER_SIP_TXFIFO_SIZE;
1890
1891 printf("%s: transmit FIFO underrun",
1892 sc->sc_dev.dv_xname);
1893 thresh = sc->sc_tx_drain_thresh + 1;
1894 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1895 && (thresh * 32) <= (txfifo_size -
1896 (sc->sc_tx_fill_thresh * 32))) {
1897 printf("; increasing Tx drain "
1898 "threshold to %u bytes\n",
1899 thresh * 32);
1900 sc->sc_tx_drain_thresh = thresh;
1901 (void) sipcom_init(ifp);
1902 } else {
1903 (void) sipcom_init(ifp);
1904 printf("\n");
1905 }
1906 }
1907 }
1908
1909 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1910 if (isr & ISR_PAUSE_ST) {
1911 sc->sc_paused = 1;
1912 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1913 ifp->if_flags |= IFF_OACTIVE;
1914 }
1915 if (isr & ISR_PAUSE_END) {
1916 sc->sc_paused = 0;
1917 ifp->if_flags &= ~IFF_OACTIVE;
1918 }
1919 }
1920
1921 if (isr & ISR_HIBERR) {
1922 int want_init = 0;
1923
1924 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1925
1926 #define PRINTERR(bit, str) \
1927 do { \
1928 if ((isr & (bit)) != 0) { \
1929 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1930 printf("%s: %s\n", \
1931 sc->sc_dev.dv_xname, str); \
1932 want_init = 1; \
1933 } \
1934 } while (/*CONSTCOND*/0)
1935
1936 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1937 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1938 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1939 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1940 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1941 /*
1942 * Ignore:
1943 * Tx reset complete
1944 * Rx reset complete
1945 */
1946 if (want_init)
1947 (void) sipcom_init(ifp);
1948 #undef PRINTERR
1949 }
1950 }
1951
1952 /* Re-enable interrupts. */
1953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1954
1955 /* Try to get more packets going. */
1956 sipcom_start(ifp);
1957
1958 return (handled);
1959 }
1960
1961 /*
1962 * sip_txintr:
1963 *
1964 * Helper; handle transmit interrupts.
1965 */
1966 static void
1967 sipcom_txintr(struct sip_softc *sc)
1968 {
1969 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 struct sip_txsoft *txs;
1971 u_int32_t cmdsts;
1972
1973 if (sc->sc_paused == 0)
1974 ifp->if_flags &= ~IFF_OACTIVE;
1975
1976 /*
1977 * Go through our Tx list and free mbufs for those
1978 * frames which have been transmitted.
1979 */
1980 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1983
1984 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1985 if (cmdsts & CMDSTS_OWN)
1986 break;
1987
1988 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1989
1990 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1991
1992 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1993 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1994 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1995 m_freem(txs->txs_mbuf);
1996 txs->txs_mbuf = NULL;
1997
1998 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1999
2000 /*
2001 * Check for errors and collisions.
2002 */
2003 if (cmdsts &
2004 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2005 ifp->if_oerrors++;
2006 if (cmdsts & CMDSTS_Tx_EC)
2007 ifp->if_collisions += 16;
2008 if (ifp->if_flags & IFF_DEBUG) {
2009 if (cmdsts & CMDSTS_Tx_ED)
2010 printf("%s: excessive deferral\n",
2011 sc->sc_dev.dv_xname);
2012 if (cmdsts & CMDSTS_Tx_EC)
2013 printf("%s: excessive collisions\n",
2014 sc->sc_dev.dv_xname);
2015 }
2016 } else {
2017 /* Packet was transmitted successfully. */
2018 ifp->if_opackets++;
2019 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2020 }
2021 }
2022
2023 /*
2024 * If there are no more pending transmissions, cancel the watchdog
2025 * timer.
2026 */
2027 if (txs == NULL) {
2028 ifp->if_timer = 0;
2029 sc->sc_txwin = 0;
2030 }
2031 }
2032
2033 /*
2034 * gsip_rxintr:
2035 *
2036 * Helper; handle receive interrupts on gigabit parts.
2037 */
2038 static void
2039 gsip_rxintr(struct sip_softc *sc)
2040 {
2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042 struct sip_rxsoft *rxs;
2043 struct mbuf *m;
2044 u_int32_t cmdsts, extsts;
2045 int i, len;
2046
2047 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2048 rxs = &sc->sc_rxsoft[i];
2049
2050 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2051
2052 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2053 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2054 len = CMDSTS_SIZE(sc, cmdsts);
2055
2056 /*
2057 * NOTE: OWN is set if owned by _consumer_. We're the
2058 * consumer of the receive ring, so if the bit is clear,
2059 * we have processed all of the packets.
2060 */
2061 if ((cmdsts & CMDSTS_OWN) == 0) {
2062 /*
2063 * We have processed all of the receive buffers.
2064 */
2065 break;
2066 }
2067
2068 if (__predict_false(sc->sc_rxdiscard)) {
2069 sip_init_rxdesc(sc, i);
2070 if ((cmdsts & CMDSTS_MORE) == 0) {
2071 /* Reset our state. */
2072 sc->sc_rxdiscard = 0;
2073 }
2074 continue;
2075 }
2076
2077 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2078 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079
2080 m = rxs->rxs_mbuf;
2081
2082 /*
2083 * Add a new receive buffer to the ring.
2084 */
2085 if (sipcom_add_rxbuf(sc, i) != 0) {
2086 /*
2087 * Failed, throw away what we've done so
2088 * far, and discard the rest of the packet.
2089 */
2090 ifp->if_ierrors++;
2091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2093 sip_init_rxdesc(sc, i);
2094 if (cmdsts & CMDSTS_MORE)
2095 sc->sc_rxdiscard = 1;
2096 if (sc->sc_rxhead != NULL)
2097 m_freem(sc->sc_rxhead);
2098 sip_rxchain_reset(sc);
2099 continue;
2100 }
2101
2102 sip_rxchain_link(sc, m);
2103
2104 m->m_len = len;
2105
2106 /*
2107 * If this is not the end of the packet, keep
2108 * looking.
2109 */
2110 if (cmdsts & CMDSTS_MORE) {
2111 sc->sc_rxlen += len;
2112 continue;
2113 }
2114
2115 /*
2116 * Okay, we have the entire packet now. The chip includes
2117 * the FCS, so we need to trim it.
2118 */
2119 m->m_len -= ETHER_CRC_LEN;
2120
2121 *sc->sc_rxtailp = NULL;
2122 len = m->m_len + sc->sc_rxlen;
2123 m = sc->sc_rxhead;
2124
2125 sip_rxchain_reset(sc);
2126
2127 /*
2128 * If an error occurred, update stats and drop the packet.
2129 */
2130 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2131 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2132 ifp->if_ierrors++;
2133 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2134 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2135 /* Receive overrun handled elsewhere. */
2136 printf("%s: receive descriptor error\n",
2137 sc->sc_dev.dv_xname);
2138 }
2139 #define PRINTERR(bit, str) \
2140 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2141 (cmdsts & (bit)) != 0) \
2142 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2143 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2144 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2145 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2146 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2147 #undef PRINTERR
2148 m_freem(m);
2149 continue;
2150 }
2151
2152 /*
2153 * If the packet is small enough to fit in a
2154 * single header mbuf, allocate one and copy
2155 * the data into it. This greatly reduces
2156 * memory consumption when we receive lots
2157 * of small packets.
2158 */
2159 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2160 struct mbuf *nm;
2161 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2162 if (nm == NULL) {
2163 ifp->if_ierrors++;
2164 m_freem(m);
2165 continue;
2166 }
2167 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2168 nm->m_data += 2;
2169 nm->m_pkthdr.len = nm->m_len = len;
2170 m_copydata(m, 0, len, mtod(nm, void *));
2171 m_freem(m);
2172 m = nm;
2173 }
2174 #ifndef __NO_STRICT_ALIGNMENT
2175 else {
2176 /*
2177 * The DP83820's receive buffers must be 4-byte
2178 * aligned. But this means that the data after
2179 * the Ethernet header is misaligned. To compensate,
2180 * we have artificially shortened the buffer size
2181 * in the descriptor, and we do an overlapping copy
2182 * of the data two bytes further in (in the first
2183 * buffer of the chain only).
2184 */
2185 memmove(mtod(m, char *) + 2, mtod(m, void *),
2186 m->m_len);
2187 m->m_data += 2;
2188 }
2189 #endif /* ! __NO_STRICT_ALIGNMENT */
2190
2191 /*
2192 * If VLANs are enabled, VLAN packets have been unwrapped
2193 * for us. Associate the tag with the packet.
2194 */
2195
2196 /*
2197 * Again, byte swapping is tricky. Hardware provided
2198 * the tag in the network byte order, but extsts was
2199 * passed through le32toh() in the meantime. On a
2200 * big-endian machine, we need to swap it again. On a
2201 * little-endian machine, we need to convert from the
2202 * network to host byte order. This means that we must
2203 * swap it in any case, so unconditional swap instead
2204 * of htons() is used.
2205 */
2206 if ((extsts & EXTSTS_VPKT) != 0) {
2207 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2208 continue);
2209 }
2210
2211 /*
2212 * Set the incoming checksum information for the
2213 * packet.
2214 */
2215 if ((extsts & EXTSTS_IPPKT) != 0) {
2216 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2217 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2218 if (extsts & EXTSTS_Rx_IPERR)
2219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2220 if (extsts & EXTSTS_TCPPKT) {
2221 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2222 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2223 if (extsts & EXTSTS_Rx_TCPERR)
2224 m->m_pkthdr.csum_flags |=
2225 M_CSUM_TCP_UDP_BAD;
2226 } else if (extsts & EXTSTS_UDPPKT) {
2227 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2228 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2229 if (extsts & EXTSTS_Rx_UDPERR)
2230 m->m_pkthdr.csum_flags |=
2231 M_CSUM_TCP_UDP_BAD;
2232 }
2233 }
2234
2235 ifp->if_ipackets++;
2236 m->m_pkthdr.rcvif = ifp;
2237 m->m_pkthdr.len = len;
2238
2239 #if NBPFILTER > 0
2240 /*
2241 * Pass this up to any BPF listeners, but only
2242 * pass if up the stack if it's for us.
2243 */
2244 if (ifp->if_bpf)
2245 bpf_mtap(ifp->if_bpf, m);
2246 #endif /* NBPFILTER > 0 */
2247
2248 /* Pass it on. */
2249 (*ifp->if_input)(ifp, m);
2250 }
2251
2252 /* Update the receive pointer. */
2253 sc->sc_rxptr = i;
2254 }
2255
2256 /*
2257 * sip_rxintr:
2258 *
2259 * Helper; handle receive interrupts on 10/100 parts.
2260 */
2261 static void
2262 sip_rxintr(struct sip_softc *sc)
2263 {
2264 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2265 struct sip_rxsoft *rxs;
2266 struct mbuf *m;
2267 u_int32_t cmdsts;
2268 int i, len;
2269
2270 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2271 rxs = &sc->sc_rxsoft[i];
2272
2273 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2274
2275 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2276
2277 /*
2278 * NOTE: OWN is set if owned by _consumer_. We're the
2279 * consumer of the receive ring, so if the bit is clear,
2280 * we have processed all of the packets.
2281 */
2282 if ((cmdsts & CMDSTS_OWN) == 0) {
2283 /*
2284 * We have processed all of the receive buffers.
2285 */
2286 break;
2287 }
2288
2289 /*
2290 * If any collisions were seen on the wire, count one.
2291 */
2292 if (cmdsts & CMDSTS_Rx_COL)
2293 ifp->if_collisions++;
2294
2295 /*
2296 * If an error occurred, update stats, clear the status
2297 * word, and leave the packet buffer in place. It will
2298 * simply be reused the next time the ring comes around.
2299 */
2300 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2301 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2302 ifp->if_ierrors++;
2303 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2304 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2305 /* Receive overrun handled elsewhere. */
2306 printf("%s: receive descriptor error\n",
2307 sc->sc_dev.dv_xname);
2308 }
2309 #define PRINTERR(bit, str) \
2310 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2311 (cmdsts & (bit)) != 0) \
2312 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2313 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2314 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2315 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2316 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2317 #undef PRINTERR
2318 sip_init_rxdesc(sc, i);
2319 continue;
2320 }
2321
2322 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2323 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2324
2325 /*
2326 * No errors; receive the packet. Note, the SiS 900
2327 * includes the CRC with every packet.
2328 */
2329 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2330
2331 #ifdef __NO_STRICT_ALIGNMENT
2332 /*
2333 * If the packet is small enough to fit in a
2334 * single header mbuf, allocate one and copy
2335 * the data into it. This greatly reduces
2336 * memory consumption when we receive lots
2337 * of small packets.
2338 *
2339 * Otherwise, we add a new buffer to the receive
2340 * chain. If this fails, we drop the packet and
2341 * recycle the old buffer.
2342 */
2343 if (sip_copy_small != 0 && len <= MHLEN) {
2344 MGETHDR(m, M_DONTWAIT, MT_DATA);
2345 if (m == NULL)
2346 goto dropit;
2347 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2348 memcpy(mtod(m, void *),
2349 mtod(rxs->rxs_mbuf, void *), len);
2350 sip_init_rxdesc(sc, i);
2351 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2352 rxs->rxs_dmamap->dm_mapsize,
2353 BUS_DMASYNC_PREREAD);
2354 } else {
2355 m = rxs->rxs_mbuf;
2356 if (sipcom_add_rxbuf(sc, i) != 0) {
2357 dropit:
2358 ifp->if_ierrors++;
2359 sip_init_rxdesc(sc, i);
2360 bus_dmamap_sync(sc->sc_dmat,
2361 rxs->rxs_dmamap, 0,
2362 rxs->rxs_dmamap->dm_mapsize,
2363 BUS_DMASYNC_PREREAD);
2364 continue;
2365 }
2366 }
2367 #else
2368 /*
2369 * The SiS 900's receive buffers must be 4-byte aligned.
2370 * But this means that the data after the Ethernet header
2371 * is misaligned. We must allocate a new buffer and
2372 * copy the data, shifted forward 2 bytes.
2373 */
2374 MGETHDR(m, M_DONTWAIT, MT_DATA);
2375 if (m == NULL) {
2376 dropit:
2377 ifp->if_ierrors++;
2378 sip_init_rxdesc(sc, i);
2379 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2380 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2381 continue;
2382 }
2383 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2384 if (len > (MHLEN - 2)) {
2385 MCLGET(m, M_DONTWAIT);
2386 if ((m->m_flags & M_EXT) == 0) {
2387 m_freem(m);
2388 goto dropit;
2389 }
2390 }
2391 m->m_data += 2;
2392
2393 /*
2394 * Note that we use clusters for incoming frames, so the
2395 * buffer is virtually contiguous.
2396 */
2397 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2398
2399 /* Allow the receive descriptor to continue using its mbuf. */
2400 sip_init_rxdesc(sc, i);
2401 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2402 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2403 #endif /* __NO_STRICT_ALIGNMENT */
2404
2405 ifp->if_ipackets++;
2406 m->m_pkthdr.rcvif = ifp;
2407 m->m_pkthdr.len = m->m_len = len;
2408
2409 #if NBPFILTER > 0
2410 /*
2411 * Pass this up to any BPF listeners, but only
2412 * pass if up the stack if it's for us.
2413 */
2414 if (ifp->if_bpf)
2415 bpf_mtap(ifp->if_bpf, m);
2416 #endif /* NBPFILTER > 0 */
2417
2418 /* Pass it on. */
2419 (*ifp->if_input)(ifp, m);
2420 }
2421
2422 /* Update the receive pointer. */
2423 sc->sc_rxptr = i;
2424 }
2425
2426 /*
2427 * sip_tick:
2428 *
2429 * One second timer, used to tick the MII.
2430 */
2431 static void
2432 sipcom_tick(void *arg)
2433 {
2434 struct sip_softc *sc = arg;
2435 int s;
2436
2437 s = splnet();
2438 #ifdef SIP_EVENT_COUNTERS
2439 if (sc->sc_gigabit) {
2440 /* Read PAUSE related counts from MIB registers. */
2441 sc->sc_ev_rxpause.ev_count +=
2442 bus_space_read_4(sc->sc_st, sc->sc_sh,
2443 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2444 sc->sc_ev_txpause.ev_count +=
2445 bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2447 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2448 }
2449 #endif /* SIP_EVENT_COUNTERS */
2450 mii_tick(&sc->sc_mii);
2451 splx(s);
2452
2453 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2454 }
2455
2456 /*
2457 * sip_reset:
2458 *
2459 * Perform a soft reset on the SiS 900.
2460 */
2461 static bool
2462 sipcom_reset(struct sip_softc *sc)
2463 {
2464 bus_space_tag_t st = sc->sc_st;
2465 bus_space_handle_t sh = sc->sc_sh;
2466 int i;
2467
2468 bus_space_write_4(st, sh, SIP_IER, 0);
2469 bus_space_write_4(st, sh, SIP_IMR, 0);
2470 bus_space_write_4(st, sh, SIP_RFCR, 0);
2471 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2472
2473 for (i = 0; i < SIP_TIMEOUT; i++) {
2474 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2475 break;
2476 delay(2);
2477 }
2478
2479 if (i == SIP_TIMEOUT) {
2480 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2481 return false;
2482 }
2483
2484 delay(1000);
2485
2486 if (sc->sc_gigabit) {
2487 /*
2488 * Set the general purpose I/O bits. Do it here in case we
2489 * need to have GPIO set up to talk to the media interface.
2490 */
2491 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2492 delay(1000);
2493 }
2494 return true;
2495 }
2496
2497 static void
2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2499 {
2500 u_int32_t reg;
2501 bus_space_tag_t st = sc->sc_st;
2502 bus_space_handle_t sh = sc->sc_sh;
2503 /*
2504 * Initialize the VLAN/IP receive control register.
2505 * We enable checksum computation on all incoming
2506 * packets, and do not reject packets w/ bad checksums.
2507 */
2508 reg = 0;
2509 if (capenable &
2510 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2511 reg |= VRCR_IPEN;
2512 if (VLAN_ATTACHED(&sc->sc_ethercom))
2513 reg |= VRCR_VTDEN|VRCR_VTREN;
2514 bus_space_write_4(st, sh, SIP_VRCR, reg);
2515
2516 /*
2517 * Initialize the VLAN/IP transmit control register.
2518 * We enable outgoing checksum computation on a
2519 * per-packet basis.
2520 */
2521 reg = 0;
2522 if (capenable &
2523 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2524 reg |= VTCR_PPCHK;
2525 if (VLAN_ATTACHED(&sc->sc_ethercom))
2526 reg |= VTCR_VPPTI;
2527 bus_space_write_4(st, sh, SIP_VTCR, reg);
2528
2529 /*
2530 * If we're using VLANs, initialize the VLAN data register.
2531 * To understand why we bswap the VLAN Ethertype, see section
2532 * 4.2.36 of the DP83820 manual.
2533 */
2534 if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2536 }
2537
2538 /*
2539 * sip_init: [ ifnet interface function ]
2540 *
2541 * Initialize the interface. Must be called at splnet().
2542 */
2543 static int
2544 sipcom_init(struct ifnet *ifp)
2545 {
2546 struct sip_softc *sc = ifp->if_softc;
2547 bus_space_tag_t st = sc->sc_st;
2548 bus_space_handle_t sh = sc->sc_sh;
2549 struct sip_txsoft *txs;
2550 struct sip_rxsoft *rxs;
2551 struct sip_desc *sipd;
2552 int i, error = 0;
2553
2554 if (!device_has_power(&sc->sc_dev))
2555 return EBUSY;
2556
2557 /*
2558 * Cancel any pending I/O.
2559 */
2560 sipcom_stop(ifp, 0);
2561
2562 /*
2563 * Reset the chip to a known state.
2564 */
2565 if (!sipcom_reset(sc))
2566 return EBUSY;
2567
2568 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2569 /*
2570 * DP83815 manual, page 78:
2571 * 4.4 Recommended Registers Configuration
2572 * For optimum performance of the DP83815, version noted
2573 * as DP83815CVNG (SRR = 203h), the listed register
2574 * modifications must be followed in sequence...
2575 *
2576 * It's not clear if this should be 302h or 203h because that
2577 * chip name is listed as SRR 302h in the description of the
2578 * SRR register. However, my revision 302h DP83815 on the
2579 * Netgear FA311 purchased in 02/2001 needs these settings
2580 * to avoid tons of errors in AcceptPerfectMatch (non-
2581 * IFF_PROMISC) mode. I do not know if other revisions need
2582 * this set or not. [briggs -- 09 March 2001]
2583 *
2584 * Note that only the low-order 12 bits of 0xe4 are documented
2585 * and that this sets reserved bits in that register.
2586 */
2587 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2588
2589 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2590 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2591 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2592 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2593
2594 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2595 }
2596
2597 /*
2598 * Initialize the transmit descriptor ring.
2599 */
2600 for (i = 0; i < sc->sc_ntxdesc; i++) {
2601 sipd = &sc->sc_txdescs[i];
2602 memset(sipd, 0, sizeof(struct sip_desc));
2603 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2604 }
2605 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2606 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2607 sc->sc_txfree = sc->sc_ntxdesc;
2608 sc->sc_txnext = 0;
2609 sc->sc_txwin = 0;
2610
2611 /*
2612 * Initialize the transmit job descriptors.
2613 */
2614 SIMPLEQ_INIT(&sc->sc_txfreeq);
2615 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2616 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2617 txs = &sc->sc_txsoft[i];
2618 txs->txs_mbuf = NULL;
2619 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2620 }
2621
2622 /*
2623 * Initialize the receive descriptor and receive job
2624 * descriptor rings.
2625 */
2626 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2627 rxs = &sc->sc_rxsoft[i];
2628 if (rxs->rxs_mbuf == NULL) {
2629 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2630 printf("%s: unable to allocate or map rx "
2631 "buffer %d, error = %d\n",
2632 sc->sc_dev.dv_xname, i, error);
2633 /*
2634 * XXX Should attempt to run with fewer receive
2635 * XXX buffers instead of just failing.
2636 */
2637 sipcom_rxdrain(sc);
2638 goto out;
2639 }
2640 } else
2641 sip_init_rxdesc(sc, i);
2642 }
2643 sc->sc_rxptr = 0;
2644 sc->sc_rxdiscard = 0;
2645 sip_rxchain_reset(sc);
2646
2647 /*
2648 * Set the configuration register; it's already initialized
2649 * in sip_attach().
2650 */
2651 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2652
2653 /*
2654 * Initialize the prototype TXCFG register.
2655 */
2656 if (sc->sc_gigabit) {
2657 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2658 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2659 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2660 SIP_SIS900_REV(sc, SIS_REV_960) ||
2661 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2662 (sc->sc_cfg & CFG_EDBMASTEN)) {
2663 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2664 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2665 } else {
2666 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2667 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2668 }
2669
2670 sc->sc_txcfg |= TXCFG_ATP |
2671 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2672 sc->sc_tx_drain_thresh;
2673 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2674
2675 /*
2676 * Initialize the receive drain threshold if we have never
2677 * done so.
2678 */
2679 if (sc->sc_rx_drain_thresh == 0) {
2680 /*
2681 * XXX This value should be tuned. This is set to the
2682 * maximum of 248 bytes, and we may be able to improve
2683 * performance by decreasing it (although we should never
2684 * set this value lower than 2; 14 bytes are required to
2685 * filter the packet).
2686 */
2687 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2688 }
2689
2690 /*
2691 * Initialize the prototype RXCFG register.
2692 */
2693 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2694 /*
2695 * Accept long packets (including FCS) so we can handle
2696 * 802.1q-tagged frames and jumbo frames properly.
2697 */
2698 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2699 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2700 sc->sc_rxcfg |= RXCFG_ALP;
2701
2702 /*
2703 * Checksum offloading is disabled if the user selects an MTU
2704 * larger than 8109. (FreeBSD says 8152, but there is emperical
2705 * evidence that >8109 does not work on some boards, such as the
2706 * Planex GN-1000TE).
2707 */
2708 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2709 (ifp->if_capenable &
2710 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2711 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2712 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2713 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2714 "disabled.\n", sc->sc_dev.dv_xname);
2715 ifp->if_capenable &=
2716 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2717 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2718 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2719 ifp->if_csum_flags_tx = 0;
2720 ifp->if_csum_flags_rx = 0;
2721 }
2722
2723 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2724
2725 if (sc->sc_gigabit)
2726 sipcom_dp83820_init(sc, ifp->if_capenable);
2727
2728 /*
2729 * Give the transmit and receive rings to the chip.
2730 */
2731 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2732 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2733
2734 /*
2735 * Initialize the interrupt mask.
2736 */
2737 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2738 sc->sc_bits.b_isr_sserr |
2739 sc->sc_bits.b_isr_rmabt |
2740 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2741 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2742 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2743
2744 /* Set up the receive filter. */
2745 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2746
2747 /*
2748 * Tune sc_rx_flow_thresh.
2749 * XXX "More than 8KB" is too short for jumbo frames.
2750 * XXX TODO: Threshold value should be user-settable.
2751 */
2752 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2753 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2754 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2755
2756 /*
2757 * Set the current media. Do this after initializing the prototype
2758 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2759 * control.
2760 */
2761 if ((error = ether_mediachange(ifp)) != 0)
2762 goto out;
2763
2764 /*
2765 * Set the interrupt hold-off timer to 100us.
2766 */
2767 if (sc->sc_gigabit)
2768 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2769
2770 /*
2771 * Enable interrupts.
2772 */
2773 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2774
2775 /*
2776 * Start the transmit and receive processes.
2777 */
2778 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2779
2780 /*
2781 * Start the one second MII clock.
2782 */
2783 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2784
2785 /*
2786 * ...all done!
2787 */
2788 ifp->if_flags |= IFF_RUNNING;
2789 ifp->if_flags &= ~IFF_OACTIVE;
2790 sc->sc_if_flags = ifp->if_flags;
2791 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2792 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2793 sc->sc_prev.if_capenable = ifp->if_capenable;
2794
2795 out:
2796 if (error)
2797 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2798 return (error);
2799 }
2800
2801 /*
2802 * sip_drain:
2803 *
2804 * Drain the receive queue.
2805 */
2806 static void
2807 sipcom_rxdrain(struct sip_softc *sc)
2808 {
2809 struct sip_rxsoft *rxs;
2810 int i;
2811
2812 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2813 rxs = &sc->sc_rxsoft[i];
2814 if (rxs->rxs_mbuf != NULL) {
2815 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2816 m_freem(rxs->rxs_mbuf);
2817 rxs->rxs_mbuf = NULL;
2818 }
2819 }
2820 }
2821
2822 /*
2823 * sip_stop: [ ifnet interface function ]
2824 *
2825 * Stop transmission on the interface.
2826 */
2827 static void
2828 sipcom_stop(struct ifnet *ifp, int disable)
2829 {
2830 struct sip_softc *sc = ifp->if_softc;
2831 bus_space_tag_t st = sc->sc_st;
2832 bus_space_handle_t sh = sc->sc_sh;
2833 struct sip_txsoft *txs;
2834 u_int32_t cmdsts = 0; /* DEBUG */
2835
2836 /*
2837 * Stop the one second clock.
2838 */
2839 callout_stop(&sc->sc_tick_ch);
2840
2841 /* Down the MII. */
2842 mii_down(&sc->sc_mii);
2843
2844 /*
2845 * Disable interrupts.
2846 */
2847 bus_space_write_4(st, sh, SIP_IER, 0);
2848
2849 /*
2850 * Stop receiver and transmitter.
2851 */
2852 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2853
2854 /*
2855 * Release any queued transmit buffers.
2856 */
2857 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2858 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2859 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2860 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2861 CMDSTS_INTR) == 0)
2862 printf("%s: sip_stop: last descriptor does not "
2863 "have INTR bit set\n", sc->sc_dev.dv_xname);
2864 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2865 #ifdef DIAGNOSTIC
2866 if (txs->txs_mbuf == NULL) {
2867 printf("%s: dirty txsoft with no mbuf chain\n",
2868 sc->sc_dev.dv_xname);
2869 panic("sip_stop");
2870 }
2871 #endif
2872 cmdsts |= /* DEBUG */
2873 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2874 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2875 m_freem(txs->txs_mbuf);
2876 txs->txs_mbuf = NULL;
2877 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2878 }
2879
2880 if (disable)
2881 sipcom_rxdrain(sc);
2882
2883 /*
2884 * Mark the interface down and cancel the watchdog timer.
2885 */
2886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887 ifp->if_timer = 0;
2888
2889 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2890 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2891 printf("%s: sip_stop: no INTR bits set in dirty tx "
2892 "descriptors\n", sc->sc_dev.dv_xname);
2893 }
2894
2895 /*
2896 * sip_read_eeprom:
2897 *
2898 * Read data from the serial EEPROM.
2899 */
2900 static void
2901 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2902 u_int16_t *data)
2903 {
2904 bus_space_tag_t st = sc->sc_st;
2905 bus_space_handle_t sh = sc->sc_sh;
2906 u_int16_t reg;
2907 int i, x;
2908
2909 for (i = 0; i < wordcnt; i++) {
2910 /* Send CHIP SELECT. */
2911 reg = EROMAR_EECS;
2912 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2913
2914 /* Shift in the READ opcode. */
2915 for (x = 3; x > 0; x--) {
2916 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2917 reg |= EROMAR_EEDI;
2918 else
2919 reg &= ~EROMAR_EEDI;
2920 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 bus_space_write_4(st, sh, SIP_EROMAR,
2922 reg | EROMAR_EESK);
2923 delay(4);
2924 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2925 delay(4);
2926 }
2927
2928 /* Shift in address. */
2929 for (x = 6; x > 0; x--) {
2930 if ((word + i) & (1 << (x - 1)))
2931 reg |= EROMAR_EEDI;
2932 else
2933 reg &= ~EROMAR_EEDI;
2934 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 bus_space_write_4(st, sh, SIP_EROMAR,
2936 reg | EROMAR_EESK);
2937 delay(4);
2938 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2939 delay(4);
2940 }
2941
2942 /* Shift out data. */
2943 reg = EROMAR_EECS;
2944 data[i] = 0;
2945 for (x = 16; x > 0; x--) {
2946 bus_space_write_4(st, sh, SIP_EROMAR,
2947 reg | EROMAR_EESK);
2948 delay(4);
2949 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2950 data[i] |= (1 << (x - 1));
2951 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2952 delay(4);
2953 }
2954
2955 /* Clear CHIP SELECT. */
2956 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2957 delay(4);
2958 }
2959 }
2960
2961 /*
2962 * sipcom_add_rxbuf:
2963 *
2964 * Add a receive buffer to the indicated descriptor.
2965 */
2966 static int
2967 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2968 {
2969 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2970 struct mbuf *m;
2971 int error;
2972
2973 MGETHDR(m, M_DONTWAIT, MT_DATA);
2974 if (m == NULL)
2975 return (ENOBUFS);
2976 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2977
2978 MCLGET(m, M_DONTWAIT);
2979 if ((m->m_flags & M_EXT) == 0) {
2980 m_freem(m);
2981 return (ENOBUFS);
2982 }
2983
2984 /* XXX I don't believe this is necessary. --dyoung */
2985 if (sc->sc_gigabit)
2986 m->m_len = sc->sc_parm->p_rxbuf_len;
2987
2988 if (rxs->rxs_mbuf != NULL)
2989 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2990
2991 rxs->rxs_mbuf = m;
2992
2993 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2994 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2995 BUS_DMA_READ|BUS_DMA_NOWAIT);
2996 if (error) {
2997 printf("%s: can't load rx DMA map %d, error = %d\n",
2998 sc->sc_dev.dv_xname, idx, error);
2999 panic("%s", __func__); /* XXX */
3000 }
3001
3002 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3003 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3004
3005 sip_init_rxdesc(sc, idx);
3006
3007 return (0);
3008 }
3009
3010 /*
3011 * sip_sis900_set_filter:
3012 *
3013 * Set up the receive filter.
3014 */
3015 static void
3016 sipcom_sis900_set_filter(struct sip_softc *sc)
3017 {
3018 bus_space_tag_t st = sc->sc_st;
3019 bus_space_handle_t sh = sc->sc_sh;
3020 struct ethercom *ec = &sc->sc_ethercom;
3021 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3022 struct ether_multi *enm;
3023 const u_int8_t *cp;
3024 struct ether_multistep step;
3025 u_int32_t crc, mchash[16];
3026
3027 /*
3028 * Initialize the prototype RFCR.
3029 */
3030 sc->sc_rfcr = RFCR_RFEN;
3031 if (ifp->if_flags & IFF_BROADCAST)
3032 sc->sc_rfcr |= RFCR_AAB;
3033 if (ifp->if_flags & IFF_PROMISC) {
3034 sc->sc_rfcr |= RFCR_AAP;
3035 goto allmulti;
3036 }
3037
3038 /*
3039 * Set up the multicast address filter by passing all multicast
3040 * addresses through a CRC generator, and then using the high-order
3041 * 6 bits as an index into the 128 bit multicast hash table (only
3042 * the lower 16 bits of each 32 bit multicast hash register are
3043 * valid). The high order bits select the register, while the
3044 * rest of the bits select the bit within the register.
3045 */
3046
3047 memset(mchash, 0, sizeof(mchash));
3048
3049 /*
3050 * SiS900 (at least SiS963) requires us to register the address of
3051 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3052 */
3053 crc = 0x0ed423f9;
3054
3055 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3056 SIP_SIS900_REV(sc, SIS_REV_960) ||
3057 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3058 /* Just want the 8 most significant bits. */
3059 crc >>= 24;
3060 } else {
3061 /* Just want the 7 most significant bits. */
3062 crc >>= 25;
3063 }
3064
3065 /* Set the corresponding bit in the hash table. */
3066 mchash[crc >> 4] |= 1 << (crc & 0xf);
3067
3068 ETHER_FIRST_MULTI(step, ec, enm);
3069 while (enm != NULL) {
3070 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3071 /*
3072 * We must listen to a range of multicast addresses.
3073 * For now, just accept all multicasts, rather than
3074 * trying to set only those filter bits needed to match
3075 * the range. (At this time, the only use of address
3076 * ranges is for IP multicast routing, for which the
3077 * range is big enough to require all bits set.)
3078 */
3079 goto allmulti;
3080 }
3081
3082 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3083
3084 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3085 SIP_SIS900_REV(sc, SIS_REV_960) ||
3086 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3087 /* Just want the 8 most significant bits. */
3088 crc >>= 24;
3089 } else {
3090 /* Just want the 7 most significant bits. */
3091 crc >>= 25;
3092 }
3093
3094 /* Set the corresponding bit in the hash table. */
3095 mchash[crc >> 4] |= 1 << (crc & 0xf);
3096
3097 ETHER_NEXT_MULTI(step, enm);
3098 }
3099
3100 ifp->if_flags &= ~IFF_ALLMULTI;
3101 goto setit;
3102
3103 allmulti:
3104 ifp->if_flags |= IFF_ALLMULTI;
3105 sc->sc_rfcr |= RFCR_AAM;
3106
3107 setit:
3108 #define FILTER_EMIT(addr, data) \
3109 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3110 delay(1); \
3111 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3112 delay(1)
3113
3114 /*
3115 * Disable receive filter, and program the node address.
3116 */
3117 cp = CLLADDR(ifp->if_sadl);
3118 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3119 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3120 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3121
3122 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3123 /*
3124 * Program the multicast hash table.
3125 */
3126 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3127 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3128 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3129 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3130 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3131 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3132 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3133 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3134 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3135 SIP_SIS900_REV(sc, SIS_REV_960) ||
3136 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3137 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3138 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3139 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3140 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3141 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3142 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3143 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3144 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3145 }
3146 }
3147 #undef FILTER_EMIT
3148
3149 /*
3150 * Re-enable the receiver filter.
3151 */
3152 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3153 }
3154
3155 /*
3156 * sip_dp83815_set_filter:
3157 *
3158 * Set up the receive filter.
3159 */
3160 static void
3161 sipcom_dp83815_set_filter(struct sip_softc *sc)
3162 {
3163 bus_space_tag_t st = sc->sc_st;
3164 bus_space_handle_t sh = sc->sc_sh;
3165 struct ethercom *ec = &sc->sc_ethercom;
3166 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3167 struct ether_multi *enm;
3168 const u_int8_t *cp;
3169 struct ether_multistep step;
3170 u_int32_t crc, hash, slot, bit;
3171 #define MCHASH_NWORDS_83820 128
3172 #define MCHASH_NWORDS_83815 32
3173 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3174 u_int16_t mchash[MCHASH_NWORDS];
3175 int i;
3176
3177 /*
3178 * Initialize the prototype RFCR.
3179 * Enable the receive filter, and accept on
3180 * Perfect (destination address) Match
3181 * If IFF_BROADCAST, also accept all broadcast packets.
3182 * If IFF_PROMISC, accept all unicast packets (and later, set
3183 * IFF_ALLMULTI and accept all multicast, too).
3184 */
3185 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3186 if (ifp->if_flags & IFF_BROADCAST)
3187 sc->sc_rfcr |= RFCR_AAB;
3188 if (ifp->if_flags & IFF_PROMISC) {
3189 sc->sc_rfcr |= RFCR_AAP;
3190 goto allmulti;
3191 }
3192
3193 /*
3194 * Set up the DP83820/DP83815 multicast address filter by
3195 * passing all multicast addresses through a CRC generator,
3196 * and then using the high-order 11/9 bits as an index into
3197 * the 2048/512 bit multicast hash table. The high-order
3198 * 7/5 bits select the slot, while the low-order 4 bits
3199 * select the bit within the slot. Note that only the low
3200 * 16-bits of each filter word are used, and there are
3201 * 128/32 filter words.
3202 */
3203
3204 memset(mchash, 0, sizeof(mchash));
3205
3206 ifp->if_flags &= ~IFF_ALLMULTI;
3207 ETHER_FIRST_MULTI(step, ec, enm);
3208 if (enm == NULL)
3209 goto setit;
3210 while (enm != NULL) {
3211 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3212 /*
3213 * We must listen to a range of multicast addresses.
3214 * For now, just accept all multicasts, rather than
3215 * trying to set only those filter bits needed to match
3216 * the range. (At this time, the only use of address
3217 * ranges is for IP multicast routing, for which the
3218 * range is big enough to require all bits set.)
3219 */
3220 goto allmulti;
3221 }
3222
3223 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3224
3225 if (sc->sc_gigabit) {
3226 /* Just want the 11 most significant bits. */
3227 hash = crc >> 21;
3228 } else {
3229 /* Just want the 9 most significant bits. */
3230 hash = crc >> 23;
3231 }
3232
3233 slot = hash >> 4;
3234 bit = hash & 0xf;
3235
3236 /* Set the corresponding bit in the hash table. */
3237 mchash[slot] |= 1 << bit;
3238
3239 ETHER_NEXT_MULTI(step, enm);
3240 }
3241 sc->sc_rfcr |= RFCR_MHEN;
3242 goto setit;
3243
3244 allmulti:
3245 ifp->if_flags |= IFF_ALLMULTI;
3246 sc->sc_rfcr |= RFCR_AAM;
3247
3248 setit:
3249 #define FILTER_EMIT(addr, data) \
3250 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3251 delay(1); \
3252 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3253 delay(1)
3254
3255 /*
3256 * Disable receive filter, and program the node address.
3257 */
3258 cp = CLLADDR(ifp->if_sadl);
3259 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3260 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3261 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3262
3263 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3264 int nwords =
3265 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3266 /*
3267 * Program the multicast hash table.
3268 */
3269 for (i = 0; i < nwords; i++) {
3270 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3271 }
3272 }
3273 #undef FILTER_EMIT
3274 #undef MCHASH_NWORDS
3275 #undef MCHASH_NWORDS_83815
3276 #undef MCHASH_NWORDS_83820
3277
3278 /*
3279 * Re-enable the receiver filter.
3280 */
3281 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3282 }
3283
3284 /*
3285 * sip_dp83820_mii_readreg: [mii interface function]
3286 *
3287 * Read a PHY register on the MII of the DP83820.
3288 */
3289 static int
3290 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3291 {
3292 struct sip_softc *sc = (void *) self;
3293
3294 if (sc->sc_cfg & CFG_TBI_EN) {
3295 bus_addr_t tbireg;
3296 int rv;
3297
3298 if (phy != 0)
3299 return (0);
3300
3301 switch (reg) {
3302 case MII_BMCR: tbireg = SIP_TBICR; break;
3303 case MII_BMSR: tbireg = SIP_TBISR; break;
3304 case MII_ANAR: tbireg = SIP_TANAR; break;
3305 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3306 case MII_ANER: tbireg = SIP_TANER; break;
3307 case MII_EXTSR:
3308 /*
3309 * Don't even bother reading the TESR register.
3310 * The manual documents that the device has
3311 * 1000baseX full/half capability, but the
3312 * register itself seems read back 0 on some
3313 * boards. Just hard-code the result.
3314 */
3315 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3316
3317 default:
3318 return (0);
3319 }
3320
3321 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3322 if (tbireg == SIP_TBISR) {
3323 /* LINK and ACOMP are switched! */
3324 int val = rv;
3325
3326 rv = 0;
3327 if (val & TBISR_MR_LINK_STATUS)
3328 rv |= BMSR_LINK;
3329 if (val & TBISR_MR_AN_COMPLETE)
3330 rv |= BMSR_ACOMP;
3331
3332 /*
3333 * The manual claims this register reads back 0
3334 * on hard and soft reset. But we want to let
3335 * the gentbi driver know that we support auto-
3336 * negotiation, so hard-code this bit in the
3337 * result.
3338 */
3339 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3340 }
3341
3342 return (rv);
3343 }
3344
3345 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3346 }
3347
3348 /*
3349 * sip_dp83820_mii_writereg: [mii interface function]
3350 *
3351 * Write a PHY register on the MII of the DP83820.
3352 */
3353 static void
3354 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3355 {
3356 struct sip_softc *sc = (void *) self;
3357
3358 if (sc->sc_cfg & CFG_TBI_EN) {
3359 bus_addr_t tbireg;
3360
3361 if (phy != 0)
3362 return;
3363
3364 switch (reg) {
3365 case MII_BMCR: tbireg = SIP_TBICR; break;
3366 case MII_ANAR: tbireg = SIP_TANAR; break;
3367 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3368 default:
3369 return;
3370 }
3371
3372 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3373 return;
3374 }
3375
3376 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3377 }
3378
3379 /*
3380 * sip_dp83820_mii_statchg: [mii interface function]
3381 *
3382 * Callback from MII layer when media changes.
3383 */
3384 static void
3385 sipcom_dp83820_mii_statchg(struct device *self)
3386 {
3387 struct sip_softc *sc = (struct sip_softc *) self;
3388 struct mii_data *mii = &sc->sc_mii;
3389 u_int32_t cfg, pcr;
3390
3391 /*
3392 * Get flow control negotiation result.
3393 */
3394 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3395 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3396 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3397 mii->mii_media_active &= ~IFM_ETH_FMASK;
3398 }
3399
3400 /*
3401 * Update TXCFG for full-duplex operation.
3402 */
3403 if ((mii->mii_media_active & IFM_FDX) != 0)
3404 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3405 else
3406 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3407
3408 /*
3409 * Update RXCFG for full-duplex or loopback.
3410 */
3411 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3412 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3413 sc->sc_rxcfg |= RXCFG_ATX;
3414 else
3415 sc->sc_rxcfg &= ~RXCFG_ATX;
3416
3417 /*
3418 * Update CFG for MII/GMII.
3419 */
3420 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3421 cfg = sc->sc_cfg | CFG_MODE_1000;
3422 else
3423 cfg = sc->sc_cfg;
3424
3425 /*
3426 * 802.3x flow control.
3427 */
3428 pcr = 0;
3429 if (sc->sc_flowflags & IFM_FLOW) {
3430 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3431 pcr |= sc->sc_rx_flow_thresh;
3432 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3433 pcr |= PCR_PSEN | PCR_PS_MCAST;
3434 }
3435
3436 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3438 sc->sc_txcfg);
3439 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3440 sc->sc_rxcfg);
3441 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3442 }
3443
3444 /*
3445 * sip_mii_bitbang_read: [mii bit-bang interface function]
3446 *
3447 * Read the MII serial port for the MII bit-bang module.
3448 */
3449 static u_int32_t
3450 sipcom_mii_bitbang_read(struct device *self)
3451 {
3452 struct sip_softc *sc = (void *) self;
3453
3454 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3455 }
3456
3457 /*
3458 * sip_mii_bitbang_write: [mii big-bang interface function]
3459 *
3460 * Write the MII serial port for the MII bit-bang module.
3461 */
3462 static void
3463 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3464 {
3465 struct sip_softc *sc = (void *) self;
3466
3467 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3468 }
3469
3470 /*
3471 * sip_sis900_mii_readreg: [mii interface function]
3472 *
3473 * Read a PHY register on the MII.
3474 */
3475 static int
3476 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3477 {
3478 struct sip_softc *sc = (struct sip_softc *) self;
3479 u_int32_t enphy;
3480
3481 /*
3482 * The PHY of recent SiS chipsets is accessed through bitbang
3483 * operations.
3484 */
3485 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3486 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3487 phy, reg);
3488
3489 #ifndef SIS900_MII_RESTRICT
3490 /*
3491 * The SiS 900 has only an internal PHY on the MII. Only allow
3492 * MII address 0.
3493 */
3494 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3495 return (0);
3496 #endif
3497
3498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3499 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3500 ENPHY_RWCMD | ENPHY_ACCESS);
3501 do {
3502 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3503 } while (enphy & ENPHY_ACCESS);
3504 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3505 }
3506
3507 /*
3508 * sip_sis900_mii_writereg: [mii interface function]
3509 *
3510 * Write a PHY register on the MII.
3511 */
3512 static void
3513 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3514 {
3515 struct sip_softc *sc = (struct sip_softc *) self;
3516 u_int32_t enphy;
3517
3518 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3519 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3520 phy, reg, val);
3521 return;
3522 }
3523
3524 #ifndef SIS900_MII_RESTRICT
3525 /*
3526 * The SiS 900 has only an internal PHY on the MII. Only allow
3527 * MII address 0.
3528 */
3529 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3530 return;
3531 #endif
3532
3533 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3534 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3535 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3536 do {
3537 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3538 } while (enphy & ENPHY_ACCESS);
3539 }
3540
3541 /*
3542 * sip_sis900_mii_statchg: [mii interface function]
3543 *
3544 * Callback from MII layer when media changes.
3545 */
3546 static void
3547 sipcom_sis900_mii_statchg(struct device *self)
3548 {
3549 struct sip_softc *sc = (struct sip_softc *) self;
3550 struct mii_data *mii = &sc->sc_mii;
3551 u_int32_t flowctl;
3552
3553 /*
3554 * Get flow control negotiation result.
3555 */
3556 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3557 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3558 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3559 mii->mii_media_active &= ~IFM_ETH_FMASK;
3560 }
3561
3562 /*
3563 * Update TXCFG for full-duplex operation.
3564 */
3565 if ((mii->mii_media_active & IFM_FDX) != 0)
3566 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3567 else
3568 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3569
3570 /*
3571 * Update RXCFG for full-duplex or loopback.
3572 */
3573 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3574 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3575 sc->sc_rxcfg |= RXCFG_ATX;
3576 else
3577 sc->sc_rxcfg &= ~RXCFG_ATX;
3578
3579 /*
3580 * Update IMR for use of 802.3x flow control.
3581 */
3582 if (sc->sc_flowflags & IFM_FLOW) {
3583 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3584 flowctl = FLOWCTL_FLOWEN;
3585 } else {
3586 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3587 flowctl = 0;
3588 }
3589
3590 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3591 sc->sc_txcfg);
3592 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3593 sc->sc_rxcfg);
3594 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3595 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3596 }
3597
3598 /*
3599 * sip_dp83815_mii_readreg: [mii interface function]
3600 *
3601 * Read a PHY register on the MII.
3602 */
3603 static int
3604 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3605 {
3606 struct sip_softc *sc = (struct sip_softc *) self;
3607 u_int32_t val;
3608
3609 /*
3610 * The DP83815 only has an internal PHY. Only allow
3611 * MII address 0.
3612 */
3613 if (phy != 0)
3614 return (0);
3615
3616 /*
3617 * Apparently, after a reset, the DP83815 can take a while
3618 * to respond. During this recovery period, the BMSR returns
3619 * a value of 0. Catch this -- it's not supposed to happen
3620 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3621 * PHY to come back to life.
3622 *
3623 * This works out because the BMSR is the first register
3624 * read during the PHY probe process.
3625 */
3626 do {
3627 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3628 } while (reg == MII_BMSR && val == 0);
3629
3630 return (val & 0xffff);
3631 }
3632
3633 /*
3634 * sip_dp83815_mii_writereg: [mii interface function]
3635 *
3636 * Write a PHY register to the MII.
3637 */
3638 static void
3639 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3640 {
3641 struct sip_softc *sc = (struct sip_softc *) self;
3642
3643 /*
3644 * The DP83815 only has an internal PHY. Only allow
3645 * MII address 0.
3646 */
3647 if (phy != 0)
3648 return;
3649
3650 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3651 }
3652
3653 /*
3654 * sip_dp83815_mii_statchg: [mii interface function]
3655 *
3656 * Callback from MII layer when media changes.
3657 */
3658 static void
3659 sipcom_dp83815_mii_statchg(struct device *self)
3660 {
3661 struct sip_softc *sc = (struct sip_softc *) self;
3662
3663 /*
3664 * Update TXCFG for full-duplex operation.
3665 */
3666 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3667 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3668 else
3669 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3670
3671 /*
3672 * Update RXCFG for full-duplex or loopback.
3673 */
3674 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3675 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3676 sc->sc_rxcfg |= RXCFG_ATX;
3677 else
3678 sc->sc_rxcfg &= ~RXCFG_ATX;
3679
3680 /*
3681 * XXX 802.3x flow control.
3682 */
3683
3684 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3685 sc->sc_txcfg);
3686 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3687 sc->sc_rxcfg);
3688
3689 /*
3690 * Some DP83815s experience problems when used with short
3691 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3692 * sequence adjusts the DSP's signal attenuation to fix the
3693 * problem.
3694 */
3695 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3696 uint32_t reg;
3697
3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3699
3700 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3701 reg &= 0x0fff;
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3703 delay(100);
3704 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3705 reg &= 0x00ff;
3706 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3707 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3708 0x00e8);
3709 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3710 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3711 reg | 0x20);
3712 }
3713
3714 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3715 }
3716 }
3717
3718 static void
3719 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3720 const struct pci_attach_args *pa, u_int8_t *enaddr)
3721 {
3722 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3723 u_int8_t cksum, *e, match;
3724 int i;
3725
3726 /*
3727 * EEPROM data format for the DP83820 can be found in
3728 * the DP83820 manual, section 4.2.4.
3729 */
3730
3731 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3732
3733 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3734 match = ~(match - 1);
3735
3736 cksum = 0x55;
3737 e = (u_int8_t *) eeprom_data;
3738 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3739 cksum += *e++;
3740
3741 if (cksum != match)
3742 printf("%s: Checksum (%x) mismatch (%x)",
3743 sc->sc_dev.dv_xname, cksum, match);
3744
3745 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3746 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3747 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3748 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3749 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3750 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3751 }
3752
3753 static void
3754 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3755 {
3756 int i;
3757
3758 /*
3759 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3760 * a reason, but I don't know it.
3761 */
3762 for (i = 0; i < 10; i++)
3763 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3764 }
3765
3766 static void
3767 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3768 const struct pci_attach_args *pa, u_int8_t *enaddr)
3769 {
3770 u_int16_t myea[ETHER_ADDR_LEN / 2];
3771
3772 switch (sc->sc_rev) {
3773 case SIS_REV_630S:
3774 case SIS_REV_630E:
3775 case SIS_REV_630EA1:
3776 case SIS_REV_630ET:
3777 case SIS_REV_635:
3778 /*
3779 * The MAC address for the on-board Ethernet of
3780 * the SiS 630 chipset is in the NVRAM. Kick
3781 * the chip into re-loading it from NVRAM, and
3782 * read the MAC address out of the filter registers.
3783 */
3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3785
3786 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3787 RFCR_RFADDR_NODE0);
3788 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3789 0xffff;
3790
3791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3792 RFCR_RFADDR_NODE2);
3793 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3794 0xffff;
3795
3796 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3797 RFCR_RFADDR_NODE4);
3798 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3799 0xffff;
3800 break;
3801
3802 case SIS_REV_960:
3803 {
3804 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3805 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3806
3807 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3808 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3809
3810 int waittime, i;
3811
3812 /* Allow to read EEPROM from LAN. It is shared
3813 * between a 1394 controller and the NIC and each
3814 * time we access it, we need to set SIS_EECMD_REQ.
3815 */
3816 SIS_SET_EROMAR(sc, EROMAR_REQ);
3817
3818 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3819 /* Force EEPROM to idle state. */
3820
3821 /*
3822 * XXX-cube This is ugly. I'll look for docs about it.
3823 */
3824 SIS_SET_EROMAR(sc, EROMAR_EECS);
3825 sipcom_sis900_eeprom_delay(sc);
3826 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3827 SIS_SET_EROMAR(sc, EROMAR_EESK);
3828 sipcom_sis900_eeprom_delay(sc);
3829 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3830 sipcom_sis900_eeprom_delay(sc);
3831 }
3832 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3833 sipcom_sis900_eeprom_delay(sc);
3834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3835
3836 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3837 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3838 sizeof(myea) / sizeof(myea[0]), myea);
3839 break;
3840 }
3841 DELAY(1);
3842 }
3843
3844 /*
3845 * Set SIS_EECTL_CLK to high, so a other master
3846 * can operate on the i2c bus.
3847 */
3848 SIS_SET_EROMAR(sc, EROMAR_EESK);
3849
3850 /* Refuse EEPROM access by LAN */
3851 SIS_SET_EROMAR(sc, EROMAR_DONE);
3852 } break;
3853
3854 default:
3855 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3856 sizeof(myea) / sizeof(myea[0]), myea);
3857 }
3858
3859 enaddr[0] = myea[0] & 0xff;
3860 enaddr[1] = myea[0] >> 8;
3861 enaddr[2] = myea[1] & 0xff;
3862 enaddr[3] = myea[1] >> 8;
3863 enaddr[4] = myea[2] & 0xff;
3864 enaddr[5] = myea[2] >> 8;
3865 }
3866
3867 /* Table and macro to bit-reverse an octet. */
3868 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3869 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3870
3871 static void
3872 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3873 const struct pci_attach_args *pa, u_int8_t *enaddr)
3874 {
3875 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3876 u_int8_t cksum, *e, match;
3877 int i;
3878
3879 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3880 sizeof(eeprom_data[0]), eeprom_data);
3881
3882 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3883 match = ~(match - 1);
3884
3885 cksum = 0x55;
3886 e = (u_int8_t *) eeprom_data;
3887 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3888 cksum += *e++;
3889 }
3890 if (cksum != match) {
3891 printf("%s: Checksum (%x) mismatch (%x)",
3892 sc->sc_dev.dv_xname, cksum, match);
3893 }
3894
3895 /*
3896 * Unrolled because it makes slightly more sense this way.
3897 * The DP83815 stores the MAC address in bit 0 of word 6
3898 * through bit 15 of word 8.
3899 */
3900 ea = &eeprom_data[6];
3901 enaddr[0] = ((*ea & 0x1) << 7);
3902 ea++;
3903 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3904 enaddr[1] = ((*ea & 0x1FE) >> 1);
3905 enaddr[2] = ((*ea & 0x1) << 7);
3906 ea++;
3907 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3908 enaddr[3] = ((*ea & 0x1FE) >> 1);
3909 enaddr[4] = ((*ea & 0x1) << 7);
3910 ea++;
3911 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3912 enaddr[5] = ((*ea & 0x1FE) >> 1);
3913
3914 /*
3915 * In case that's not weird enough, we also need to reverse
3916 * the bits in each byte. This all actually makes more sense
3917 * if you think about the EEPROM storage as an array of bits
3918 * being shifted into bytes, but that's not how we're looking
3919 * at it here...
3920 */
3921 for (i = 0; i < 6 ;i++)
3922 enaddr[i] = bbr(enaddr[i]);
3923 }
3924
3925 /*
3926 * sip_mediastatus: [ifmedia interface function]
3927 *
3928 * Get the current interface media status.
3929 */
3930 static void
3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3932 {
3933 struct sip_softc *sc = ifp->if_softc;
3934
3935 ether_mediastatus(ifp, ifmr);
3936 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3937 sc->sc_flowflags;
3938 }
3939