Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.128
      1 /*	$NetBSD: if_sip.c,v 1.128 2008/02/29 06:13:39 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.128 2008/02/29 06:13:39 dyoung Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <sys/bus.h>
    116 #include <sys/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 /*
    130  * Transmit descriptor list size.  This is arbitrary, but allocate
    131  * enough descriptors for 128 pending transmissions, and 8 segments
    132  * per packet (64 for DP83820 for jumbo frames).
    133  *
    134  * This MUST work out to a power of 2.
    135  */
    136 #define	GSIP_NTXSEGS_ALLOC 16
    137 #define	SIP_NTXSEGS_ALLOC 8
    138 
    139 #define	SIP_TXQUEUELEN		256
    140 #define	MAX_SIP_NTXDESC	\
    141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    142 
    143 /*
    144  * Receive descriptor list size.  We have one Rx buffer per incoming
    145  * packet, so this logic is a little simpler.
    146  *
    147  * Actually, on the DP83820, we allow the packet to consume more than
    148  * one buffer, in order to support jumbo Ethernet frames.  In that
    149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    151  * so we'd better be quick about handling receive interrupts.
    152  */
    153 #define	GSIP_NRXDESC		256
    154 #define	SIP_NRXDESC		128
    155 
    156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    157 
    158 /*
    159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    160  * a single clump that maps to a single DMA segment to make several things
    161  * easier.
    162  */
    163 struct sip_control_data {
    164 	/*
    165 	 * The transmit descriptors.
    166 	 */
    167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    168 
    169 	/*
    170 	 * The receive descriptors.
    171 	 */
    172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    173 };
    174 
    175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    178 
    179 /*
    180  * Software state for transmit jobs.
    181  */
    182 struct sip_txsoft {
    183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    185 	int txs_firstdesc;		/* first descriptor in packet */
    186 	int txs_lastdesc;		/* last descriptor in packet */
    187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    188 };
    189 
    190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    191 
    192 /*
    193  * Software state for receive jobs.
    194  */
    195 struct sip_rxsoft {
    196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    198 };
    199 
    200 enum sip_attach_stage {
    201 	  SIP_ATTACH_FIN = 0
    202 	, SIP_ATTACH_CREATE_RXMAP
    203 	, SIP_ATTACH_CREATE_TXMAP
    204 	, SIP_ATTACH_LOAD_MAP
    205 	, SIP_ATTACH_CREATE_MAP
    206 	, SIP_ATTACH_MAP_MEM
    207 	, SIP_ATTACH_ALLOC_MEM
    208 	, SIP_ATTACH_INTR
    209 	, SIP_ATTACH_MAP
    210 };
    211 
    212 /*
    213  * Software state per device.
    214  */
    215 struct sip_softc {
    216 	struct device sc_dev;		/* generic device information */
    217 	bus_space_tag_t sc_st;		/* bus space tag */
    218 	bus_space_handle_t sc_sh;	/* bus space handle */
    219 	bus_size_t sc_sz;		/* bus space size */
    220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    221 	pci_chipset_tag_t sc_pc;
    222 	bus_dma_segment_t sc_seg;
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 
    225 	const struct sip_product *sc_model; /* which model are we? */
    226 	int sc_gigabit;			/* 1: 83820, 0: other */
    227 	int sc_rev;			/* chip revision */
    228 
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* MII/media information */
    232 
    233 	callout_t sc_tick_ch;		/* tick callout */
    234 
    235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    237 
    238 	/*
    239 	 * Software state for transmit and receive descriptors.
    240 	 */
    241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    242 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    243 
    244 	/*
    245 	 * Control data structures.
    246 	 */
    247 	struct sip_control_data *sc_control_data;
    248 #define	sc_txdescs	sc_control_data->scd_txdescs
    249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    250 
    251 #ifdef SIP_EVENT_COUNTERS
    252 	/*
    253 	 * Event counters.
    254 	 */
    255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    261 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    262 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    263 	/* DP83820 only */
    264 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    265 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    266 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    268 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    269 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    271 #endif /* SIP_EVENT_COUNTERS */
    272 
    273 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    274 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    275 	u_int32_t sc_imr;		/* prototype IMR register */
    276 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    277 
    278 	u_int32_t sc_cfg;		/* prototype CFG register */
    279 
    280 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    281 
    282 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    283 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    284 
    285 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    286 
    287 	int	sc_flowflags;		/* 802.3x flow control flags */
    288 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    289 	int	sc_paused;		/* paused indication */
    290 
    291 	int	sc_txfree;		/* number of free Tx descriptors */
    292 	int	sc_txnext;		/* next ready Tx descriptor */
    293 	int	sc_txwin;		/* Tx descriptors since last intr */
    294 
    295 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    296 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    297 
    298 	/* values of interface state at last init */
    299 	struct {
    300 		/* if_capenable */
    301 		uint64_t	if_capenable;
    302 		/* ec_capenable */
    303 		int		ec_capenable;
    304 		/* VLAN_ATTACHED */
    305 		int		is_vlan;
    306 	}	sc_prev;
    307 
    308 	short	sc_if_flags;
    309 
    310 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    311 	int	sc_rxdiscard;
    312 	int	sc_rxlen;
    313 	struct mbuf *sc_rxhead;
    314 	struct mbuf *sc_rxtail;
    315 	struct mbuf **sc_rxtailp;
    316 
    317 	int sc_ntxdesc;
    318 	int sc_ntxdesc_mask;
    319 
    320 	int sc_nrxdesc_mask;
    321 
    322 	const struct sip_parm {
    323 		const struct sip_regs {
    324 			int r_rxcfg;
    325 			int r_txcfg;
    326 		} p_regs;
    327 
    328 		const struct sip_bits {
    329 			uint32_t b_txcfg_mxdma_8;
    330 			uint32_t b_txcfg_mxdma_16;
    331 			uint32_t b_txcfg_mxdma_32;
    332 			uint32_t b_txcfg_mxdma_64;
    333 			uint32_t b_txcfg_mxdma_128;
    334 			uint32_t b_txcfg_mxdma_256;
    335 			uint32_t b_txcfg_mxdma_512;
    336 			uint32_t b_txcfg_flth_mask;
    337 			uint32_t b_txcfg_drth_mask;
    338 
    339 			uint32_t b_rxcfg_mxdma_8;
    340 			uint32_t b_rxcfg_mxdma_16;
    341 			uint32_t b_rxcfg_mxdma_32;
    342 			uint32_t b_rxcfg_mxdma_64;
    343 			uint32_t b_rxcfg_mxdma_128;
    344 			uint32_t b_rxcfg_mxdma_256;
    345 			uint32_t b_rxcfg_mxdma_512;
    346 
    347 			uint32_t b_isr_txrcmp;
    348 			uint32_t b_isr_rxrcmp;
    349 			uint32_t b_isr_dperr;
    350 			uint32_t b_isr_sserr;
    351 			uint32_t b_isr_rmabt;
    352 			uint32_t b_isr_rtabt;
    353 
    354 			uint32_t b_cmdsts_size_mask;
    355 		} p_bits;
    356 		int		p_filtmem;
    357 		int		p_rxbuf_len;
    358 		bus_size_t	p_tx_dmamap_size;
    359 		int		p_ntxsegs;
    360 		int		p_ntxsegs_alloc;
    361 		int		p_nrxdesc;
    362 	} *sc_parm;
    363 
    364 	void (*sc_rxintr)(struct sip_softc *);
    365 
    366 #if NRND > 0
    367 	rndsource_element_t rnd_source;	/* random source */
    368 #endif
    369 };
    370 
    371 #define	sc_bits	sc_parm->p_bits
    372 #define	sc_regs	sc_parm->p_regs
    373 
    374 static const struct sip_parm sip_parm = {
    375 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    376 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    377 	, .p_tx_dmamap_size = MCLBYTES
    378 	, .p_ntxsegs = 16
    379 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    380 	, .p_nrxdesc = SIP_NRXDESC
    381 	, .p_bits = {
    382 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    383 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    384 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    385 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    386 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    387 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    388 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    389 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    390 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    391 
    392 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    393 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    394 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    395 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    396 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    397 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    398 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    399 
    400 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    401 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    402 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    403 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    404 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    405 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    406 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    407 	}
    408 	, .p_regs = {
    409 		.r_rxcfg = OTHER_SIP_RXCFG,
    410 		.r_txcfg = OTHER_SIP_TXCFG
    411 	}
    412 }, gsip_parm = {
    413 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    414 	, .p_rxbuf_len = MCLBYTES - 8
    415 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    416 	, .p_ntxsegs = 64
    417 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    418 	, .p_nrxdesc = GSIP_NRXDESC
    419 	, .p_bits = {
    420 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    421 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    422 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    423 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    424 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    425 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    426 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    427 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    428 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    429 
    430 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    431 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    432 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    433 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    434 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    435 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    436 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    437 
    438 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    439 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    440 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    441 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    442 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    443 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    444 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    445 	}
    446 	, .p_regs = {
    447 		.r_rxcfg = DP83820_SIP_RXCFG,
    448 		.r_txcfg = DP83820_SIP_TXCFG
    449 	}
    450 };
    451 
    452 static inline int
    453 sip_nexttx(const struct sip_softc *sc, int x)
    454 {
    455 	return (x + 1) & sc->sc_ntxdesc_mask;
    456 }
    457 
    458 static inline int
    459 sip_nextrx(const struct sip_softc *sc, int x)
    460 {
    461 	return (x + 1) & sc->sc_nrxdesc_mask;
    462 }
    463 
    464 /* 83820 only */
    465 static inline void
    466 sip_rxchain_reset(struct sip_softc *sc)
    467 {
    468 	sc->sc_rxtailp = &sc->sc_rxhead;
    469 	*sc->sc_rxtailp = NULL;
    470 	sc->sc_rxlen = 0;
    471 }
    472 
    473 /* 83820 only */
    474 static inline void
    475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    476 {
    477 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    478 	sc->sc_rxtailp = &m->m_next;
    479 }
    480 
    481 #ifdef SIP_EVENT_COUNTERS
    482 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    483 #else
    484 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    485 #endif
    486 
    487 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    488 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    489 
    490 static inline void
    491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    492 {
    493 	int x, n;
    494 
    495 	x = x0;
    496 	n = n0;
    497 
    498 	/* If it will wrap around, sync to the end of the ring. */
    499 	if (x + n > sc->sc_ntxdesc) {
    500 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    501 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    502 		    (sc->sc_ntxdesc - x), ops);
    503 		n -= (sc->sc_ntxdesc - x);
    504 		x = 0;
    505 	}
    506 
    507 	/* Now sync whatever is left. */
    508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    509 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    510 }
    511 
    512 static inline void
    513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    514 {
    515 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    516 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    517 }
    518 
    519 #if 0
    520 #ifdef DP83820
    521 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    522 	u_int32_t	sipd_cmdsts;	/* command/status word */
    523 #else
    524 	u_int32_t	sipd_cmdsts;	/* command/status word */
    525 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    526 #endif /* DP83820 */
    527 #endif /* 0 */
    528 
    529 static inline volatile uint32_t *
    530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    531 {
    532 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    533 }
    534 
    535 static inline volatile uint32_t *
    536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    537 {
    538 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    539 }
    540 
    541 static inline void
    542 sip_init_rxdesc(struct sip_softc *sc, int x)
    543 {
    544 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    545 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    546 
    547 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    548 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    549 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    550 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    551 	sipd->sipd_extsts = 0;
    552 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    553 }
    554 
    555 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    556 	((sc)->sc_model->sip_vendor == (v) &&				\
    557 	 (sc)->sc_model->sip_product == (p) &&				\
    558 	 (sc)->sc_rev == (r))
    559 
    560 #define	SIP_CHIP_MODEL(sc, v, p)					\
    561 	((sc)->sc_model->sip_vendor == (v) &&				\
    562 	 (sc)->sc_model->sip_product == (p))
    563 
    564 #define	SIP_SIS900_REV(sc, rev)						\
    565 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    566 
    567 #define SIP_TIMEOUT 1000
    568 
    569 static void	sipcom_start(struct ifnet *);
    570 static void	sipcom_watchdog(struct ifnet *);
    571 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    572 static int	sipcom_init(struct ifnet *);
    573 static void	sipcom_stop(struct ifnet *, int);
    574 
    575 static bool	sipcom_reset(struct sip_softc *);
    576 static void	sipcom_rxdrain(struct sip_softc *);
    577 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    578 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    579 				      u_int16_t *);
    580 static void	sipcom_tick(void *);
    581 
    582 static void	sipcom_sis900_set_filter(struct sip_softc *);
    583 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    584 
    585 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    586 		    const struct pci_attach_args *, u_int8_t *);
    587 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    588 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    589 		    const struct pci_attach_args *, u_int8_t *);
    590 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    591 		    const struct pci_attach_args *, u_int8_t *);
    592 
    593 static int	sipcom_intr(void *);
    594 static void	sipcom_txintr(struct sip_softc *);
    595 static void	sip_rxintr(struct sip_softc *);
    596 static void	gsip_rxintr(struct sip_softc *);
    597 
    598 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
    599 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
    600 static void	sipcom_dp83820_mii_statchg(struct device *);
    601 
    602 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
    603 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
    604 static void	sipcom_sis900_mii_statchg(struct device *);
    605 
    606 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
    607 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
    608 static void	sipcom_dp83815_mii_statchg(struct device *);
    609 
    610 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    611 
    612 static int	sipcom_match(struct device *, struct cfdata *, void *);
    613 static void	sipcom_attach(struct device *, struct device *, void *);
    614 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    615 static int	sipcom_detach(device_t, int);
    616 static bool	sipcom_resume(device_t PMF_FN_PROTO);
    617 
    618 int	gsip_copy_small = 0;
    619 int	sip_copy_small = 0;
    620 
    621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    622     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    624     sipcom_match, sipcom_attach, sipcom_detach, NULL);
    625 
    626 /*
    627  * Descriptions of the variants of the SiS900.
    628  */
    629 struct sip_variant {
    630 	int	(*sipv_mii_readreg)(struct device *, int, int);
    631 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    632 	void	(*sipv_mii_statchg)(struct device *);
    633 	void	(*sipv_set_filter)(struct sip_softc *);
    634 	void	(*sipv_read_macaddr)(struct sip_softc *,
    635 		    const struct pci_attach_args *, u_int8_t *);
    636 };
    637 
    638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
    639 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
    640 
    641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    642 	sipcom_mii_bitbang_read,
    643 	sipcom_mii_bitbang_write,
    644 	{
    645 		EROMAR_MDIO,		/* MII_BIT_MDO */
    646 		EROMAR_MDIO,		/* MII_BIT_MDI */
    647 		EROMAR_MDC,		/* MII_BIT_MDC */
    648 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    649 		0,			/* MII_BIT_DIR_PHY_HOST */
    650 	}
    651 };
    652 
    653 static const struct sip_variant sipcom_variant_dp83820 = {
    654 	sipcom_dp83820_mii_readreg,
    655 	sipcom_dp83820_mii_writereg,
    656 	sipcom_dp83820_mii_statchg,
    657 	sipcom_dp83815_set_filter,
    658 	sipcom_dp83820_read_macaddr,
    659 };
    660 
    661 static const struct sip_variant sipcom_variant_sis900 = {
    662 	sipcom_sis900_mii_readreg,
    663 	sipcom_sis900_mii_writereg,
    664 	sipcom_sis900_mii_statchg,
    665 	sipcom_sis900_set_filter,
    666 	sipcom_sis900_read_macaddr,
    667 };
    668 
    669 static const struct sip_variant sipcom_variant_dp83815 = {
    670 	sipcom_dp83815_mii_readreg,
    671 	sipcom_dp83815_mii_writereg,
    672 	sipcom_dp83815_mii_statchg,
    673 	sipcom_dp83815_set_filter,
    674 	sipcom_dp83815_read_macaddr,
    675 };
    676 
    677 
    678 /*
    679  * Devices supported by this driver.
    680  */
    681 static const struct sip_product {
    682 	pci_vendor_id_t		sip_vendor;
    683 	pci_product_id_t	sip_product;
    684 	const char		*sip_name;
    685 	const struct sip_variant *sip_variant;
    686 	int			sip_gigabit;
    687 } sipcom_products[] = {
    688 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    689 	  "NatSemi DP83820 Gigabit Ethernet",
    690 	  &sipcom_variant_dp83820, 1 },
    691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    692 	  "SiS 900 10/100 Ethernet",
    693 	  &sipcom_variant_sis900, 0 },
    694 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    695 	  "SiS 7016 10/100 Ethernet",
    696 	  &sipcom_variant_sis900, 0 },
    697 
    698 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    699 	  "NatSemi DP83815 10/100 Ethernet",
    700 	  &sipcom_variant_dp83815, 0 },
    701 
    702 	{ 0,			0,
    703 	  NULL,
    704 	  NULL, 0 },
    705 };
    706 
    707 static const struct sip_product *
    708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    709 {
    710 	const struct sip_product *sip;
    711 
    712 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    713 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    714 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    715 		    sip->sip_gigabit == gigabit)
    716 			return sip;
    717 	}
    718 	return NULL;
    719 }
    720 
    721 /*
    722  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    723  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    724  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    725  * which means we try to use 64-bit data transfers on those cards if we
    726  * happen to be plugged into a 32-bit slot.
    727  *
    728  * What we do is use this table of cards known to be 64-bit cards.  If
    729  * you have a 64-bit card who's subsystem ID is not listed in this table,
    730  * send the output of "pcictl dump ..." of the device to me so that your
    731  * card will use the 64-bit data path when plugged into a 64-bit slot.
    732  *
    733  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    734  *	   June 30, 2002
    735  */
    736 static int
    737 sipcom_check_64bit(const struct pci_attach_args *pa)
    738 {
    739 	static const struct {
    740 		pci_vendor_id_t c64_vendor;
    741 		pci_product_id_t c64_product;
    742 	} card64[] = {
    743 		/* Asante GigaNIX */
    744 		{ 0x128a,	0x0002 },
    745 
    746 		/* Accton EN1407-T, Planex GN-1000TE */
    747 		{ 0x1113,	0x1407 },
    748 
    749 		/* Netgear GA-621 */
    750 		{ 0x1385,	0x621a },
    751 
    752 		/* SMC EZ Card */
    753 		{ 0x10b8,	0x9462 },
    754 
    755 		{ 0, 0}
    756 	};
    757 	pcireg_t subsys;
    758 	int i;
    759 
    760 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    761 
    762 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    763 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    764 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    765 			return (1);
    766 	}
    767 
    768 	return (0);
    769 }
    770 
    771 static int
    772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
    773 {
    774 	struct pci_attach_args *pa = aux;
    775 
    776 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    777 		return 1;
    778 
    779 	return 0;
    780 }
    781 
    782 static void
    783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    784 {
    785 	u_int32_t reg;
    786 	int i;
    787 
    788 	/*
    789 	 * Cause the chip to load configuration data from the EEPROM.
    790 	 */
    791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    792 	for (i = 0; i < 10000; i++) {
    793 		delay(10);
    794 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    795 		    PTSCR_EELOAD_EN) == 0)
    796 			break;
    797 	}
    798 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    799 	    PTSCR_EELOAD_EN) {
    800 		printf("%s: timeout loading configuration from EEPROM\n",
    801 		    sc->sc_dev.dv_xname);
    802 		return;
    803 	}
    804 
    805 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    806 
    807 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    808 	if (reg & CFG_PCI64_DET) {
    809 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    810 		/*
    811 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    812 		 * data transfers.
    813 		 *
    814 		 * We can't use the DATA64_EN bit in the EEPROM, because
    815 		 * vendors of 32-bit cards fail to clear that bit in many
    816 		 * cases (yet the card still detects that it's in a 64-bit
    817 		 * slot; go figure).
    818 		 */
    819 		if (sipcom_check_64bit(pa)) {
    820 			sc->sc_cfg |= CFG_DATA64_EN;
    821 			printf(", using 64-bit data transfers");
    822 		}
    823 		printf("\n");
    824 	}
    825 
    826 	/*
    827 	 * XXX Need some PCI flags indicating support for
    828 	 * XXX 64-bit addressing.
    829 	 */
    830 #if 0
    831 	if (reg & CFG_M64ADDR)
    832 		sc->sc_cfg |= CFG_M64ADDR;
    833 	if (reg & CFG_T64ADDR)
    834 		sc->sc_cfg |= CFG_T64ADDR;
    835 #endif
    836 
    837 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    838 		const char *sep = "";
    839 		printf("%s: using ", sc->sc_dev.dv_xname);
    840 		if (reg & CFG_EXT_125) {
    841 			sc->sc_cfg |= CFG_EXT_125;
    842 			printf("%s125MHz clock", sep);
    843 			sep = ", ";
    844 		}
    845 		if (reg & CFG_TBI_EN) {
    846 			sc->sc_cfg |= CFG_TBI_EN;
    847 			printf("%sten-bit interface", sep);
    848 			sep = ", ";
    849 		}
    850 		printf("\n");
    851 	}
    852 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    853 	    (reg & CFG_MRM_DIS) != 0)
    854 		sc->sc_cfg |= CFG_MRM_DIS;
    855 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    856 	    (reg & CFG_MWI_DIS) != 0)
    857 		sc->sc_cfg |= CFG_MWI_DIS;
    858 
    859 	/*
    860 	 * Use the extended descriptor format on the DP83820.  This
    861 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    862 	 * checksumming.
    863 	 */
    864 	sc->sc_cfg |= CFG_EXTSTS_EN;
    865 }
    866 
    867 static int
    868 sipcom_detach(device_t self, int flags)
    869 {
    870 	int s;
    871 
    872 	s = splnet();
    873 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    874 	splx(s);
    875 
    876 	return 0;
    877 }
    878 
    879 static void
    880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    881 {
    882 	int i;
    883 	struct sip_softc *sc = device_private(self);
    884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    885 
    886 	/*
    887 	 * Free any resources we've allocated during attach.
    888 	 * Do this in reverse order and fall through.
    889 	 */
    890 	switch (stage) {
    891 	case SIP_ATTACH_FIN:
    892 		sipcom_stop(ifp, 1);
    893 		pmf_device_deregister(self);
    894 #ifdef SIP_EVENT_COUNTERS
    895 		/*
    896 		 * Attach event counters.
    897 		 */
    898 		evcnt_detach(&sc->sc_ev_txforceintr);
    899 		evcnt_detach(&sc->sc_ev_txdstall);
    900 		evcnt_detach(&sc->sc_ev_txsstall);
    901 		evcnt_detach(&sc->sc_ev_hiberr);
    902 		evcnt_detach(&sc->sc_ev_rxintr);
    903 		evcnt_detach(&sc->sc_ev_txiintr);
    904 		evcnt_detach(&sc->sc_ev_txdintr);
    905 		if (!sc->sc_gigabit) {
    906 			evcnt_detach(&sc->sc_ev_rxpause);
    907 		} else {
    908 			evcnt_detach(&sc->sc_ev_txudpsum);
    909 			evcnt_detach(&sc->sc_ev_txtcpsum);
    910 			evcnt_detach(&sc->sc_ev_txipsum);
    911 			evcnt_detach(&sc->sc_ev_rxudpsum);
    912 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    913 			evcnt_detach(&sc->sc_ev_rxipsum);
    914 			evcnt_detach(&sc->sc_ev_txpause);
    915 			evcnt_detach(&sc->sc_ev_rxpause);
    916 		}
    917 #endif /* SIP_EVENT_COUNTERS */
    918 
    919 #if NRND > 0
    920 		rnd_detach_source(&sc->rnd_source);
    921 #endif
    922 
    923 		ether_ifdetach(ifp);
    924 		if_detach(ifp);
    925 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    926 
    927 		/*FALLTHROUGH*/
    928 	case SIP_ATTACH_CREATE_RXMAP:
    929 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    930 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    931 				bus_dmamap_destroy(sc->sc_dmat,
    932 				    sc->sc_rxsoft[i].rxs_dmamap);
    933 		}
    934 		/*FALLTHROUGH*/
    935 	case SIP_ATTACH_CREATE_TXMAP:
    936 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    937 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    938 				bus_dmamap_destroy(sc->sc_dmat,
    939 				    sc->sc_txsoft[i].txs_dmamap);
    940 		}
    941 		/*FALLTHROUGH*/
    942 	case SIP_ATTACH_LOAD_MAP:
    943 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    944 		/*FALLTHROUGH*/
    945 	case SIP_ATTACH_CREATE_MAP:
    946 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    947 		/*FALLTHROUGH*/
    948 	case SIP_ATTACH_MAP_MEM:
    949 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    950 		    sizeof(struct sip_control_data));
    951 		/*FALLTHROUGH*/
    952 	case SIP_ATTACH_ALLOC_MEM:
    953 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    954 		/* FALLTHROUGH*/
    955 	case SIP_ATTACH_INTR:
    956 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    957 		/* FALLTHROUGH*/
    958 	case SIP_ATTACH_MAP:
    959 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    960 		break;
    961 	default:
    962 		break;
    963 	}
    964 	return;
    965 }
    966 
    967 static bool
    968 sipcom_resume(device_t self PMF_FN_ARGS)
    969 {
    970 	struct sip_softc *sc = device_private(self);
    971 
    972 	return sipcom_reset(sc);
    973 }
    974 
    975 static void
    976 sipcom_attach(device_t parent, device_t self, void *aux)
    977 {
    978 	struct sip_softc *sc = (struct sip_softc *) self;
    979 	struct pci_attach_args *pa = aux;
    980 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    981 	pci_chipset_tag_t pc = pa->pa_pc;
    982 	pci_intr_handle_t ih;
    983 	const char *intrstr = NULL;
    984 	bus_space_tag_t iot, memt;
    985 	bus_space_handle_t ioh, memh;
    986 	bus_size_t iosz, memsz;
    987 	int ioh_valid, memh_valid;
    988 	int i, rseg, error;
    989 	const struct sip_product *sip;
    990 	u_int8_t enaddr[ETHER_ADDR_LEN];
    991 	pcireg_t pmreg;
    992 	pcireg_t memtype;
    993 	bus_size_t tx_dmamap_size;
    994 	int ntxsegs_alloc;
    995 	cfdata_t cf = device_cfdata(self);
    996 
    997 	callout_init(&sc->sc_tick_ch, 0);
    998 
    999 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1000 	if (sip == NULL) {
   1001 		printf("\n");
   1002 		panic("%s: impossible", __func__);
   1003 	}
   1004 	sc->sc_gigabit = sip->sip_gigabit;
   1005 
   1006 	sc->sc_pc = pc;
   1007 
   1008 	if (sc->sc_gigabit) {
   1009 		sc->sc_rxintr = gsip_rxintr;
   1010 		sc->sc_parm = &gsip_parm;
   1011 	} else {
   1012 		sc->sc_rxintr = sip_rxintr;
   1013 		sc->sc_parm = &sip_parm;
   1014 	}
   1015 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1016 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1017 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1018 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1019 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1020 
   1021 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1022 
   1023 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1024 
   1025 	sc->sc_model = sip;
   1026 
   1027 	/*
   1028 	 * XXX Work-around broken PXE firmware on some boards.
   1029 	 *
   1030 	 * The DP83815 shares an address decoder with the MEM BAR
   1031 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1032 	 * so that memory mapped access works.
   1033 	 */
   1034 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1035 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1036 	    ~PCI_MAPREG_ROM_ENABLE);
   1037 
   1038 	/*
   1039 	 * Map the device.
   1040 	 */
   1041 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1042 	    PCI_MAPREG_TYPE_IO, 0,
   1043 	    &iot, &ioh, NULL, &iosz) == 0);
   1044 	if (sc->sc_gigabit) {
   1045 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1046 		switch (memtype) {
   1047 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1048 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1049 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1050 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1051 			break;
   1052 		default:
   1053 			memh_valid = 0;
   1054 		}
   1055 	} else {
   1056 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1057 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1058 		    &memt, &memh, NULL, &memsz) == 0);
   1059 	}
   1060 
   1061 	if (memh_valid) {
   1062 		sc->sc_st = memt;
   1063 		sc->sc_sh = memh;
   1064 		sc->sc_sz = memsz;
   1065 	} else if (ioh_valid) {
   1066 		sc->sc_st = iot;
   1067 		sc->sc_sh = ioh;
   1068 		sc->sc_sz = iosz;
   1069 	} else {
   1070 		printf("%s: unable to map device registers\n",
   1071 		    sc->sc_dev.dv_xname);
   1072 		return;
   1073 	}
   1074 
   1075 	sc->sc_dmat = pa->pa_dmat;
   1076 
   1077 	/*
   1078 	 * Make sure bus mastering is enabled.  Also make sure
   1079 	 * Write/Invalidate is enabled if we're allowed to use it.
   1080 	 */
   1081 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1082 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1083 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
   1084 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1085 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
   1086 
   1087 	/* power up chip */
   1088 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
   1089 	    NULL)) && error != EOPNOTSUPP) {
   1090 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
   1091 		    error);
   1092 		return;
   1093 	}
   1094 
   1095 	/*
   1096 	 * Map and establish our interrupt.
   1097 	 */
   1098 	if (pci_intr_map(pa, &ih)) {
   1099 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
   1100 		return;
   1101 	}
   1102 	intrstr = pci_intr_string(pc, ih);
   1103 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1104 	if (sc->sc_ih == NULL) {
   1105 		printf("%s: unable to establish interrupt",
   1106 		    sc->sc_dev.dv_xname);
   1107 		if (intrstr != NULL)
   1108 			printf(" at %s", intrstr);
   1109 		printf("\n");
   1110 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1111 	}
   1112 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1113 
   1114 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1115 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1116 
   1117 	/*
   1118 	 * Allocate the control data structures, and create and load the
   1119 	 * DMA map for it.
   1120 	 */
   1121 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1122 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1123 	    &rseg, 0)) != 0) {
   1124 		printf("%s: unable to allocate control data, error = %d\n",
   1125 		    sc->sc_dev.dv_xname, error);
   1126 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1127 	}
   1128 
   1129 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1130 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1131 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1132 		printf("%s: unable to map control data, error = %d\n",
   1133 		    sc->sc_dev.dv_xname, error);
   1134 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1135 	}
   1136 
   1137 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1138 	    sizeof(struct sip_control_data), 1,
   1139 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1140 		printf("%s: unable to create control data DMA map, "
   1141 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1142 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1143 	}
   1144 
   1145 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1146 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1147 	    0)) != 0) {
   1148 		printf("%s: unable to load control data DMA map, error = %d\n",
   1149 		    sc->sc_dev.dv_xname, error);
   1150 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1151 	}
   1152 
   1153 	/*
   1154 	 * Create the transmit buffer DMA maps.
   1155 	 */
   1156 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1157 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1158 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1159 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1160 			printf("%s: unable to create tx DMA map %d, "
   1161 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1162 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1163 		}
   1164 	}
   1165 
   1166 	/*
   1167 	 * Create the receive buffer DMA maps.
   1168 	 */
   1169 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1170 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1171 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1172 			printf("%s: unable to create rx DMA map %d, "
   1173 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
   1174 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1175 		}
   1176 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1177 	}
   1178 
   1179 	/*
   1180 	 * Reset the chip to a known state.
   1181 	 */
   1182 	sipcom_reset(sc);
   1183 
   1184 	/*
   1185 	 * Read the Ethernet address from the EEPROM.  This might
   1186 	 * also fetch other stuff from the EEPROM and stash it
   1187 	 * in the softc.
   1188 	 */
   1189 	sc->sc_cfg = 0;
   1190 	if (!sc->sc_gigabit) {
   1191 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1192 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1193 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1194 
   1195 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1196 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1198 			sc->sc_cfg |=
   1199 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1200 			     CFG_EDBMASTEN);
   1201 	}
   1202 
   1203 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1204 
   1205 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
   1206 	    ether_sprintf(enaddr));
   1207 
   1208 	/*
   1209 	 * Initialize the configuration register: aggressive PCI
   1210 	 * bus request algorithm, default backoff, default OW timer,
   1211 	 * default parity error detection.
   1212 	 *
   1213 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1214 	 * friends -- it affects packet data, not descriptors.
   1215 	 */
   1216 	if (sc->sc_gigabit)
   1217 		sipcom_dp83820_attach(sc, pa);
   1218 
   1219 	/*
   1220 	 * Initialize our media structures and probe the MII.
   1221 	 */
   1222 	sc->sc_mii.mii_ifp = ifp;
   1223 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1224 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1225 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1226 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1227 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1228 	    sipcom_mediastatus);
   1229 
   1230 	/*
   1231 	 * XXX We cannot handle flow control on the DP83815.
   1232 	 */
   1233 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1234 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1235 			   MII_OFFSET_ANY, 0);
   1236 	else
   1237 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1238 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1239 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1240 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1241 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1242 	} else
   1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1244 
   1245 	ifp = &sc->sc_ethercom.ec_if;
   1246 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1247 	ifp->if_softc = sc;
   1248 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1249 	sc->sc_if_flags = ifp->if_flags;
   1250 	ifp->if_ioctl = sipcom_ioctl;
   1251 	ifp->if_start = sipcom_start;
   1252 	ifp->if_watchdog = sipcom_watchdog;
   1253 	ifp->if_init = sipcom_init;
   1254 	ifp->if_stop = sipcom_stop;
   1255 	IFQ_SET_READY(&ifp->if_snd);
   1256 
   1257 	/*
   1258 	 * We can support 802.1Q VLAN-sized frames.
   1259 	 */
   1260 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1261 
   1262 	if (sc->sc_gigabit) {
   1263 		/*
   1264 		 * And the DP83820 can do VLAN tagging in hardware, and
   1265 		 * support the jumbo Ethernet MTU.
   1266 		 */
   1267 		sc->sc_ethercom.ec_capabilities |=
   1268 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1269 
   1270 		/*
   1271 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1272 		 * in hardware.
   1273 		 */
   1274 		ifp->if_capabilities |=
   1275 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1276 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1277 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1278 	}
   1279 
   1280 	/*
   1281 	 * Attach the interface.
   1282 	 */
   1283 	if_attach(ifp);
   1284 	ether_ifattach(ifp, enaddr);
   1285 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1286 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1287 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1288 #if NRND > 0
   1289 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
   1290 	    RND_TYPE_NET, 0);
   1291 #endif
   1292 
   1293 	/*
   1294 	 * The number of bytes that must be available in
   1295 	 * the Tx FIFO before the bus master can DMA more
   1296 	 * data into the FIFO.
   1297 	 */
   1298 	sc->sc_tx_fill_thresh = 64 / 32;
   1299 
   1300 	/*
   1301 	 * Start at a drain threshold of 512 bytes.  We will
   1302 	 * increase it if a DMA underrun occurs.
   1303 	 *
   1304 	 * XXX The minimum value of this variable should be
   1305 	 * tuned.  We may be able to improve performance
   1306 	 * by starting with a lower value.  That, however,
   1307 	 * may trash the first few outgoing packets if the
   1308 	 * PCI bus is saturated.
   1309 	 */
   1310 	if (sc->sc_gigabit)
   1311 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1312 	else
   1313 		sc->sc_tx_drain_thresh = 1504 / 32;
   1314 
   1315 	/*
   1316 	 * Initialize the Rx FIFO drain threshold.
   1317 	 *
   1318 	 * This is in units of 8 bytes.
   1319 	 *
   1320 	 * We should never set this value lower than 2; 14 bytes are
   1321 	 * required to filter the packet.
   1322 	 */
   1323 	sc->sc_rx_drain_thresh = 128 / 8;
   1324 
   1325 #ifdef SIP_EVENT_COUNTERS
   1326 	/*
   1327 	 * Attach event counters.
   1328 	 */
   1329 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1330 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1331 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1332 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1333 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1334 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1336 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1338 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1340 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1342 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1343 	if (!sc->sc_gigabit) {
   1344 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1345 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1346 	} else {
   1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1348 		    NULL, sc->sc_dev.dv_xname, "rxpause");
   1349 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1350 		    NULL, sc->sc_dev.dv_xname, "txpause");
   1351 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1352 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1354 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1356 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1358 		    NULL, sc->sc_dev.dv_xname, "txipsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1360 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1362 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1363 	}
   1364 #endif /* SIP_EVENT_COUNTERS */
   1365 
   1366 	if (!pmf_device_register(self, NULL, sipcom_resume))
   1367 		aprint_error_dev(self, "couldn't establish power handler\n");
   1368 	else
   1369 		pmf_class_network_register(self, ifp);
   1370 }
   1371 
   1372 static inline void
   1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1374     uint64_t capenable)
   1375 {
   1376 	struct m_tag *mtag;
   1377 	u_int32_t extsts;
   1378 #ifdef DEBUG
   1379 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1380 #endif
   1381 	/*
   1382 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1383 	 * up the descriptor to encapsulate the packet for us.
   1384 	 *
   1385 	 * This apparently has to be on the last descriptor of
   1386 	 * the packet.
   1387 	 */
   1388 
   1389 	/*
   1390 	 * Byte swapping is tricky. We need to provide the tag
   1391 	 * in a network byte order. On a big-endian machine,
   1392 	 * the byteorder is correct, but we need to swap it
   1393 	 * anyway, because this will be undone by the outside
   1394 	 * htole32(). That's why there must be an
   1395 	 * unconditional swap instead of htons() inside.
   1396 	 */
   1397 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1398 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1399 		    htole32(EXTSTS_VPKT |
   1400 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1401 				 EXTSTS_VTCI));
   1402 	}
   1403 
   1404 	/*
   1405 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1406 	 * checksumming, set up the descriptor to do this work
   1407 	 * for us.
   1408 	 *
   1409 	 * This apparently has to be on the first descriptor of
   1410 	 * the packet.
   1411 	 *
   1412 	 * Byte-swap constants so the compiler can optimize.
   1413 	 */
   1414 	extsts = 0;
   1415 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1416 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1417 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1418 		extsts |= htole32(EXTSTS_IPPKT);
   1419 	}
   1420 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1421 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1422 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1423 		extsts |= htole32(EXTSTS_TCPPKT);
   1424 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1426 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1427 		extsts |= htole32(EXTSTS_UDPPKT);
   1428 	}
   1429 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1430 }
   1431 
   1432 /*
   1433  * sip_start:		[ifnet interface function]
   1434  *
   1435  *	Start packet transmission on the interface.
   1436  */
   1437 static void
   1438 sipcom_start(struct ifnet *ifp)
   1439 {
   1440 	struct sip_softc *sc = ifp->if_softc;
   1441 	struct mbuf *m0;
   1442 	struct mbuf *m;
   1443 	struct sip_txsoft *txs;
   1444 	bus_dmamap_t dmamap;
   1445 	int error, nexttx, lasttx, seg;
   1446 	int ofree = sc->sc_txfree;
   1447 #if 0
   1448 	int firsttx = sc->sc_txnext;
   1449 #endif
   1450 
   1451 	/*
   1452 	 * If we've been told to pause, don't transmit any more packets.
   1453 	 */
   1454 	if (!sc->sc_gigabit && sc->sc_paused)
   1455 		ifp->if_flags |= IFF_OACTIVE;
   1456 
   1457 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1458 		return;
   1459 
   1460 	/*
   1461 	 * Loop through the send queue, setting up transmit descriptors
   1462 	 * until we drain the queue, or use up all available transmit
   1463 	 * descriptors.
   1464 	 */
   1465 	for (;;) {
   1466 		/* Get a work queue entry. */
   1467 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1468 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1469 			break;
   1470 		}
   1471 
   1472 		/*
   1473 		 * Grab a packet off the queue.
   1474 		 */
   1475 		IFQ_POLL(&ifp->if_snd, m0);
   1476 		if (m0 == NULL)
   1477 			break;
   1478 		m = NULL;
   1479 
   1480 		dmamap = txs->txs_dmamap;
   1481 
   1482 		/*
   1483 		 * Load the DMA map.  If this fails, the packet either
   1484 		 * didn't fit in the alloted number of segments, or we
   1485 		 * were short on resources.
   1486 		 */
   1487 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1488 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1489 		/* In the non-gigabit case, we'll copy and try again. */
   1490 		if (error != 0 && !sc->sc_gigabit) {
   1491 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1492 			if (m == NULL) {
   1493 				printf("%s: unable to allocate Tx mbuf\n",
   1494 				    sc->sc_dev.dv_xname);
   1495 				break;
   1496 			}
   1497 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1498 			if (m0->m_pkthdr.len > MHLEN) {
   1499 				MCLGET(m, M_DONTWAIT);
   1500 				if ((m->m_flags & M_EXT) == 0) {
   1501 					printf("%s: unable to allocate Tx "
   1502 					    "cluster\n", sc->sc_dev.dv_xname);
   1503 					m_freem(m);
   1504 					break;
   1505 				}
   1506 			}
   1507 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1508 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1509 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1510 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1511 			if (error) {
   1512 				printf("%s: unable to load Tx buffer, "
   1513 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1514 				break;
   1515 			}
   1516 		} else if (error == EFBIG) {
   1517 			/*
   1518 			 * For the too-many-segments case, we simply
   1519 			 * report an error and drop the packet,
   1520 			 * since we can't sanely copy a jumbo packet
   1521 			 * to a single buffer.
   1522 			 */
   1523 			printf("%s: Tx packet consumes too many "
   1524 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
   1525 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1526 			m_freem(m0);
   1527 			continue;
   1528 		} else if (error != 0) {
   1529 			/*
   1530 			 * Short on resources, just stop for now.
   1531 			 */
   1532 			break;
   1533 		}
   1534 
   1535 		/*
   1536 		 * Ensure we have enough descriptors free to describe
   1537 		 * the packet.  Note, we always reserve one descriptor
   1538 		 * at the end of the ring as a termination point, to
   1539 		 * prevent wrap-around.
   1540 		 */
   1541 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1542 			/*
   1543 			 * Not enough free descriptors to transmit this
   1544 			 * packet.  We haven't committed anything yet,
   1545 			 * so just unload the DMA map, put the packet
   1546 			 * back on the queue, and punt.  Notify the upper
   1547 			 * layer that there are not more slots left.
   1548 			 *
   1549 			 * XXX We could allocate an mbuf and copy, but
   1550 			 * XXX is it worth it?
   1551 			 */
   1552 			ifp->if_flags |= IFF_OACTIVE;
   1553 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1554 			if (m != NULL)
   1555 				m_freem(m);
   1556 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1557 			break;
   1558 		}
   1559 
   1560 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1561 		if (m != NULL) {
   1562 			m_freem(m0);
   1563 			m0 = m;
   1564 		}
   1565 
   1566 		/*
   1567 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1568 		 */
   1569 
   1570 		/* Sync the DMA map. */
   1571 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1572 		    BUS_DMASYNC_PREWRITE);
   1573 
   1574 		/*
   1575 		 * Initialize the transmit descriptors.
   1576 		 */
   1577 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1578 		     seg < dmamap->dm_nsegs;
   1579 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1580 			/*
   1581 			 * If this is the first descriptor we're
   1582 			 * enqueueing, don't set the OWN bit just
   1583 			 * yet.  That could cause a race condition.
   1584 			 * We'll do it below.
   1585 			 */
   1586 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1587 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1588 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1589 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1590 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1591 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1592 			lasttx = nexttx;
   1593 		}
   1594 
   1595 		/* Clear the MORE bit on the last segment. */
   1596 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1597 		    htole32(~CMDSTS_MORE);
   1598 
   1599 		/*
   1600 		 * If we're in the interrupt delay window, delay the
   1601 		 * interrupt.
   1602 		 */
   1603 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1604 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1605 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1606 			    htole32(CMDSTS_INTR);
   1607 			sc->sc_txwin = 0;
   1608 		}
   1609 
   1610 		if (sc->sc_gigabit)
   1611 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1612 
   1613 		/* Sync the descriptors we're using. */
   1614 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1615 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1616 
   1617 		/*
   1618 		 * The entire packet is set up.  Give the first descrptor
   1619 		 * to the chip now.
   1620 		 */
   1621 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1622 		    htole32(CMDSTS_OWN);
   1623 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1625 
   1626 		/*
   1627 		 * Store a pointer to the packet so we can free it later,
   1628 		 * and remember what txdirty will be once the packet is
   1629 		 * done.
   1630 		 */
   1631 		txs->txs_mbuf = m0;
   1632 		txs->txs_firstdesc = sc->sc_txnext;
   1633 		txs->txs_lastdesc = lasttx;
   1634 
   1635 		/* Advance the tx pointer. */
   1636 		sc->sc_txfree -= dmamap->dm_nsegs;
   1637 		sc->sc_txnext = nexttx;
   1638 
   1639 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1640 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1641 
   1642 #if NBPFILTER > 0
   1643 		/*
   1644 		 * Pass the packet to any BPF listeners.
   1645 		 */
   1646 		if (ifp->if_bpf)
   1647 			bpf_mtap(ifp->if_bpf, m0);
   1648 #endif /* NBPFILTER > 0 */
   1649 	}
   1650 
   1651 	if (txs == NULL || sc->sc_txfree == 0) {
   1652 		/* No more slots left; notify upper layer. */
   1653 		ifp->if_flags |= IFF_OACTIVE;
   1654 	}
   1655 
   1656 	if (sc->sc_txfree != ofree) {
   1657 		/*
   1658 		 * Start the transmit process.  Note, the manual says
   1659 		 * that if there are no pending transmissions in the
   1660 		 * chip's internal queue (indicated by TXE being clear),
   1661 		 * then the driver software must set the TXDP to the
   1662 		 * first descriptor to be transmitted.  However, if we
   1663 		 * do this, it causes serious performance degredation on
   1664 		 * the DP83820 under load, not setting TXDP doesn't seem
   1665 		 * to adversely affect the SiS 900 or DP83815.
   1666 		 *
   1667 		 * Well, I guess it wouldn't be the first time a manual
   1668 		 * has lied -- and they could be speaking of the NULL-
   1669 		 * terminated descriptor list case, rather than OWN-
   1670 		 * terminated rings.
   1671 		 */
   1672 #if 0
   1673 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1674 		     CR_TXE) == 0) {
   1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1676 			    SIP_CDTXADDR(sc, firsttx));
   1677 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1678 		}
   1679 #else
   1680 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1681 #endif
   1682 
   1683 		/* Set a watchdog timer in case the chip flakes out. */
   1684 		/* Gigabit autonegotiation takes 5 seconds. */
   1685 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1686 	}
   1687 }
   1688 
   1689 /*
   1690  * sip_watchdog:	[ifnet interface function]
   1691  *
   1692  *	Watchdog timer handler.
   1693  */
   1694 static void
   1695 sipcom_watchdog(struct ifnet *ifp)
   1696 {
   1697 	struct sip_softc *sc = ifp->if_softc;
   1698 
   1699 	/*
   1700 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1701 	 * If we get a timeout, try and sweep up transmit descriptors.
   1702 	 * If we manage to sweep them all up, ignore the lack of
   1703 	 * interrupt.
   1704 	 */
   1705 	sipcom_txintr(sc);
   1706 
   1707 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1708 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1709 		ifp->if_oerrors++;
   1710 
   1711 		/* Reset the interface. */
   1712 		(void) sipcom_init(ifp);
   1713 	} else if (ifp->if_flags & IFF_DEBUG)
   1714 		printf("%s: recovered from device timeout\n",
   1715 		    sc->sc_dev.dv_xname);
   1716 
   1717 	/* Try to get more packets going. */
   1718 	sipcom_start(ifp);
   1719 }
   1720 
   1721 /*
   1722  * sip_ioctl:		[ifnet interface function]
   1723  *
   1724  *	Handle control requests from the operator.
   1725  */
   1726 static int
   1727 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1728 {
   1729 	struct sip_softc *sc = ifp->if_softc;
   1730 	struct ifreq *ifr = (struct ifreq *)data;
   1731 	int s, error;
   1732 
   1733 	s = splnet();
   1734 
   1735 	switch (cmd) {
   1736 	case SIOCSIFMEDIA:
   1737 		/* Flow control requires full-duplex mode. */
   1738 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1739 		    (ifr->ifr_media & IFM_FDX) == 0)
   1740 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1741 
   1742 		/* XXX */
   1743 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1744 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1745 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1746 			if (sc->sc_gigabit &&
   1747 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1748 				/* We can do both TXPAUSE and RXPAUSE. */
   1749 				ifr->ifr_media |=
   1750 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1751 			} else if (ifr->ifr_media & IFM_FLOW) {
   1752 				/*
   1753 				 * Both TXPAUSE and RXPAUSE must be set.
   1754 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1755 				 * feature.)
   1756 				 *
   1757 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1758 				 */
   1759 				ifr->ifr_media |=
   1760 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1761 			}
   1762 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1763 		}
   1764 		goto ethioctl;
   1765 	case SIOCSIFFLAGS:
   1766 		/* If the interface is up and running, only modify the receive
   1767 		 * filter when setting promiscuous or debug mode.  Otherwise
   1768 		 * fall through to ether_ioctl, which will reset the chip.
   1769 		 */
   1770 
   1771 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1772 			 == (sc)->sc_ethercom.ec_capenable)		\
   1773 			&& ((sc)->sc_prev.is_vlan ==			\
   1774 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1775 
   1776 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1777 
   1778 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1779 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1780 		    == (IFF_UP|IFF_RUNNING))
   1781 		    && ((ifp->if_flags & (~RESETIGN))
   1782 		    == (sc->sc_if_flags & (~RESETIGN)))
   1783 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
   1784 			/* Set up the receive filter. */
   1785 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1786 			error = 0;
   1787 			break;
   1788 #undef RESETIGN
   1789 		}
   1790 		/* FALLTHROUGH */
   1791 	ethioctl:
   1792 	default:
   1793 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1794 			break;
   1795 
   1796 		error = 0;
   1797 
   1798 		if (cmd == SIOCSIFCAP)
   1799 			error = (*ifp->if_init)(ifp);
   1800 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1801 			;
   1802 		else if (ifp->if_flags & IFF_RUNNING) {
   1803 			/*
   1804 			 * Multicast list has changed; set the hardware filter
   1805 			 * accordingly.
   1806 			 */
   1807 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1808 		}
   1809 		break;
   1810 	}
   1811 
   1812 	/* Try to get more packets going. */
   1813 	sipcom_start(ifp);
   1814 
   1815 	sc->sc_if_flags = ifp->if_flags;
   1816 	splx(s);
   1817 	return (error);
   1818 }
   1819 
   1820 /*
   1821  * sip_intr:
   1822  *
   1823  *	Interrupt service routine.
   1824  */
   1825 static int
   1826 sipcom_intr(void *arg)
   1827 {
   1828 	struct sip_softc *sc = arg;
   1829 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1830 	u_int32_t isr;
   1831 	int handled = 0;
   1832 
   1833 	/* Disable interrupts. */
   1834 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1835 
   1836 	for (;;) {
   1837 		/* Reading clears interrupt. */
   1838 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1839 		if ((isr & sc->sc_imr) == 0)
   1840 			break;
   1841 
   1842 #if NRND > 0
   1843 		if (RND_ENABLED(&sc->rnd_source))
   1844 			rnd_add_uint32(&sc->rnd_source, isr);
   1845 #endif
   1846 
   1847 		handled = 1;
   1848 
   1849 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1850 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1851 
   1852 			/* Grab any new packets. */
   1853 			(*sc->sc_rxintr)(sc);
   1854 
   1855 			if (isr & ISR_RXORN) {
   1856 				printf("%s: receive FIFO overrun\n",
   1857 				    sc->sc_dev.dv_xname);
   1858 
   1859 				/* XXX adjust rx_drain_thresh? */
   1860 			}
   1861 
   1862 			if (isr & ISR_RXIDLE) {
   1863 				printf("%s: receive ring overrun\n",
   1864 				    sc->sc_dev.dv_xname);
   1865 
   1866 				/* Get the receive process going again. */
   1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1868 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1869 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1870 				    SIP_CR, CR_RXE);
   1871 			}
   1872 		}
   1873 
   1874 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1875 #ifdef SIP_EVENT_COUNTERS
   1876 			if (isr & ISR_TXDESC)
   1877 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1878 			else if (isr & ISR_TXIDLE)
   1879 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1880 #endif
   1881 
   1882 			/* Sweep up transmit descriptors. */
   1883 			sipcom_txintr(sc);
   1884 
   1885 			if (isr & ISR_TXURN) {
   1886 				u_int32_t thresh;
   1887 				int txfifo_size = (sc->sc_gigabit)
   1888 				    ? DP83820_SIP_TXFIFO_SIZE
   1889 				    : OTHER_SIP_TXFIFO_SIZE;
   1890 
   1891 				printf("%s: transmit FIFO underrun",
   1892 				    sc->sc_dev.dv_xname);
   1893 				thresh = sc->sc_tx_drain_thresh + 1;
   1894 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1895 				&& (thresh * 32) <= (txfifo_size -
   1896 				     (sc->sc_tx_fill_thresh * 32))) {
   1897 					printf("; increasing Tx drain "
   1898 					    "threshold to %u bytes\n",
   1899 					    thresh * 32);
   1900 					sc->sc_tx_drain_thresh = thresh;
   1901 					(void) sipcom_init(ifp);
   1902 				} else {
   1903 					(void) sipcom_init(ifp);
   1904 					printf("\n");
   1905 				}
   1906 			}
   1907 		}
   1908 
   1909 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1910 			if (isr & ISR_PAUSE_ST) {
   1911 				sc->sc_paused = 1;
   1912 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1913 				ifp->if_flags |= IFF_OACTIVE;
   1914 			}
   1915 			if (isr & ISR_PAUSE_END) {
   1916 				sc->sc_paused = 0;
   1917 				ifp->if_flags &= ~IFF_OACTIVE;
   1918 			}
   1919 		}
   1920 
   1921 		if (isr & ISR_HIBERR) {
   1922 			int want_init = 0;
   1923 
   1924 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1925 
   1926 #define	PRINTERR(bit, str)						\
   1927 			do {						\
   1928 				if ((isr & (bit)) != 0) {		\
   1929 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1930 						printf("%s: %s\n",	\
   1931 						    sc->sc_dev.dv_xname, str); \
   1932 					want_init = 1;			\
   1933 				}					\
   1934 			} while (/*CONSTCOND*/0)
   1935 
   1936 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1937 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1938 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1939 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1940 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1941 			/*
   1942 			 * Ignore:
   1943 			 *	Tx reset complete
   1944 			 *	Rx reset complete
   1945 			 */
   1946 			if (want_init)
   1947 				(void) sipcom_init(ifp);
   1948 #undef PRINTERR
   1949 		}
   1950 	}
   1951 
   1952 	/* Re-enable interrupts. */
   1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1954 
   1955 	/* Try to get more packets going. */
   1956 	sipcom_start(ifp);
   1957 
   1958 	return (handled);
   1959 }
   1960 
   1961 /*
   1962  * sip_txintr:
   1963  *
   1964  *	Helper; handle transmit interrupts.
   1965  */
   1966 static void
   1967 sipcom_txintr(struct sip_softc *sc)
   1968 {
   1969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1970 	struct sip_txsoft *txs;
   1971 	u_int32_t cmdsts;
   1972 
   1973 	if (sc->sc_paused == 0)
   1974 		ifp->if_flags &= ~IFF_OACTIVE;
   1975 
   1976 	/*
   1977 	 * Go through our Tx list and free mbufs for those
   1978 	 * frames which have been transmitted.
   1979 	 */
   1980 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1981 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1982 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1983 
   1984 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1985 		if (cmdsts & CMDSTS_OWN)
   1986 			break;
   1987 
   1988 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1989 
   1990 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1991 
   1992 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1993 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1994 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1995 		m_freem(txs->txs_mbuf);
   1996 		txs->txs_mbuf = NULL;
   1997 
   1998 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1999 
   2000 		/*
   2001 		 * Check for errors and collisions.
   2002 		 */
   2003 		if (cmdsts &
   2004 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2005 			ifp->if_oerrors++;
   2006 			if (cmdsts & CMDSTS_Tx_EC)
   2007 				ifp->if_collisions += 16;
   2008 			if (ifp->if_flags & IFF_DEBUG) {
   2009 				if (cmdsts & CMDSTS_Tx_ED)
   2010 					printf("%s: excessive deferral\n",
   2011 					    sc->sc_dev.dv_xname);
   2012 				if (cmdsts & CMDSTS_Tx_EC)
   2013 					printf("%s: excessive collisions\n",
   2014 					    sc->sc_dev.dv_xname);
   2015 			}
   2016 		} else {
   2017 			/* Packet was transmitted successfully. */
   2018 			ifp->if_opackets++;
   2019 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2020 		}
   2021 	}
   2022 
   2023 	/*
   2024 	 * If there are no more pending transmissions, cancel the watchdog
   2025 	 * timer.
   2026 	 */
   2027 	if (txs == NULL) {
   2028 		ifp->if_timer = 0;
   2029 		sc->sc_txwin = 0;
   2030 	}
   2031 }
   2032 
   2033 /*
   2034  * gsip_rxintr:
   2035  *
   2036  *	Helper; handle receive interrupts on gigabit parts.
   2037  */
   2038 static void
   2039 gsip_rxintr(struct sip_softc *sc)
   2040 {
   2041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2042 	struct sip_rxsoft *rxs;
   2043 	struct mbuf *m;
   2044 	u_int32_t cmdsts, extsts;
   2045 	int i, len;
   2046 
   2047 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2048 		rxs = &sc->sc_rxsoft[i];
   2049 
   2050 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2051 
   2052 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2053 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2054 		len = CMDSTS_SIZE(sc, cmdsts);
   2055 
   2056 		/*
   2057 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2058 		 * consumer of the receive ring, so if the bit is clear,
   2059 		 * we have processed all of the packets.
   2060 		 */
   2061 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2062 			/*
   2063 			 * We have processed all of the receive buffers.
   2064 			 */
   2065 			break;
   2066 		}
   2067 
   2068 		if (__predict_false(sc->sc_rxdiscard)) {
   2069 			sip_init_rxdesc(sc, i);
   2070 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2071 				/* Reset our state. */
   2072 				sc->sc_rxdiscard = 0;
   2073 			}
   2074 			continue;
   2075 		}
   2076 
   2077 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2078 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2079 
   2080 		m = rxs->rxs_mbuf;
   2081 
   2082 		/*
   2083 		 * Add a new receive buffer to the ring.
   2084 		 */
   2085 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2086 			/*
   2087 			 * Failed, throw away what we've done so
   2088 			 * far, and discard the rest of the packet.
   2089 			 */
   2090 			ifp->if_ierrors++;
   2091 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2092 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2093 			sip_init_rxdesc(sc, i);
   2094 			if (cmdsts & CMDSTS_MORE)
   2095 				sc->sc_rxdiscard = 1;
   2096 			if (sc->sc_rxhead != NULL)
   2097 				m_freem(sc->sc_rxhead);
   2098 			sip_rxchain_reset(sc);
   2099 			continue;
   2100 		}
   2101 
   2102 		sip_rxchain_link(sc, m);
   2103 
   2104 		m->m_len = len;
   2105 
   2106 		/*
   2107 		 * If this is not the end of the packet, keep
   2108 		 * looking.
   2109 		 */
   2110 		if (cmdsts & CMDSTS_MORE) {
   2111 			sc->sc_rxlen += len;
   2112 			continue;
   2113 		}
   2114 
   2115 		/*
   2116 		 * Okay, we have the entire packet now.  The chip includes
   2117 		 * the FCS, so we need to trim it.
   2118 		 */
   2119 		m->m_len -= ETHER_CRC_LEN;
   2120 
   2121 		*sc->sc_rxtailp = NULL;
   2122 		len = m->m_len + sc->sc_rxlen;
   2123 		m = sc->sc_rxhead;
   2124 
   2125 		sip_rxchain_reset(sc);
   2126 
   2127 		/*
   2128 		 * If an error occurred, update stats and drop the packet.
   2129 		 */
   2130 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2131 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2132 			ifp->if_ierrors++;
   2133 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2134 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2135 				/* Receive overrun handled elsewhere. */
   2136 				printf("%s: receive descriptor error\n",
   2137 				    sc->sc_dev.dv_xname);
   2138 			}
   2139 #define	PRINTERR(bit, str)						\
   2140 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2141 			    (cmdsts & (bit)) != 0)			\
   2142 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2143 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2144 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2145 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2146 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2147 #undef PRINTERR
   2148 			m_freem(m);
   2149 			continue;
   2150 		}
   2151 
   2152 		/*
   2153 		 * If the packet is small enough to fit in a
   2154 		 * single header mbuf, allocate one and copy
   2155 		 * the data into it.  This greatly reduces
   2156 		 * memory consumption when we receive lots
   2157 		 * of small packets.
   2158 		 */
   2159 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2160 			struct mbuf *nm;
   2161 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2162 			if (nm == NULL) {
   2163 				ifp->if_ierrors++;
   2164 				m_freem(m);
   2165 				continue;
   2166 			}
   2167 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2168 			nm->m_data += 2;
   2169 			nm->m_pkthdr.len = nm->m_len = len;
   2170 			m_copydata(m, 0, len, mtod(nm, void *));
   2171 			m_freem(m);
   2172 			m = nm;
   2173 		}
   2174 #ifndef __NO_STRICT_ALIGNMENT
   2175 		else {
   2176 			/*
   2177 			 * The DP83820's receive buffers must be 4-byte
   2178 			 * aligned.  But this means that the data after
   2179 			 * the Ethernet header is misaligned.  To compensate,
   2180 			 * we have artificially shortened the buffer size
   2181 			 * in the descriptor, and we do an overlapping copy
   2182 			 * of the data two bytes further in (in the first
   2183 			 * buffer of the chain only).
   2184 			 */
   2185 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2186 			    m->m_len);
   2187 			m->m_data += 2;
   2188 		}
   2189 #endif /* ! __NO_STRICT_ALIGNMENT */
   2190 
   2191 		/*
   2192 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2193 		 * for us.  Associate the tag with the packet.
   2194 		 */
   2195 
   2196 		/*
   2197 		 * Again, byte swapping is tricky. Hardware provided
   2198 		 * the tag in the network byte order, but extsts was
   2199 		 * passed through le32toh() in the meantime. On a
   2200 		 * big-endian machine, we need to swap it again. On a
   2201 		 * little-endian machine, we need to convert from the
   2202 		 * network to host byte order. This means that we must
   2203 		 * swap it in any case, so unconditional swap instead
   2204 		 * of htons() is used.
   2205 		 */
   2206 		if ((extsts & EXTSTS_VPKT) != 0) {
   2207 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2208 			    continue);
   2209 		}
   2210 
   2211 		/*
   2212 		 * Set the incoming checksum information for the
   2213 		 * packet.
   2214 		 */
   2215 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2216 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2217 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2218 			if (extsts & EXTSTS_Rx_IPERR)
   2219 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2220 			if (extsts & EXTSTS_TCPPKT) {
   2221 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2222 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2223 				if (extsts & EXTSTS_Rx_TCPERR)
   2224 					m->m_pkthdr.csum_flags |=
   2225 					    M_CSUM_TCP_UDP_BAD;
   2226 			} else if (extsts & EXTSTS_UDPPKT) {
   2227 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2228 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2229 				if (extsts & EXTSTS_Rx_UDPERR)
   2230 					m->m_pkthdr.csum_flags |=
   2231 					    M_CSUM_TCP_UDP_BAD;
   2232 			}
   2233 		}
   2234 
   2235 		ifp->if_ipackets++;
   2236 		m->m_pkthdr.rcvif = ifp;
   2237 		m->m_pkthdr.len = len;
   2238 
   2239 #if NBPFILTER > 0
   2240 		/*
   2241 		 * Pass this up to any BPF listeners, but only
   2242 		 * pass if up the stack if it's for us.
   2243 		 */
   2244 		if (ifp->if_bpf)
   2245 			bpf_mtap(ifp->if_bpf, m);
   2246 #endif /* NBPFILTER > 0 */
   2247 
   2248 		/* Pass it on. */
   2249 		(*ifp->if_input)(ifp, m);
   2250 	}
   2251 
   2252 	/* Update the receive pointer. */
   2253 	sc->sc_rxptr = i;
   2254 }
   2255 
   2256 /*
   2257  * sip_rxintr:
   2258  *
   2259  *	Helper; handle receive interrupts on 10/100 parts.
   2260  */
   2261 static void
   2262 sip_rxintr(struct sip_softc *sc)
   2263 {
   2264 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2265 	struct sip_rxsoft *rxs;
   2266 	struct mbuf *m;
   2267 	u_int32_t cmdsts;
   2268 	int i, len;
   2269 
   2270 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2271 		rxs = &sc->sc_rxsoft[i];
   2272 
   2273 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2274 
   2275 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2276 
   2277 		/*
   2278 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2279 		 * consumer of the receive ring, so if the bit is clear,
   2280 		 * we have processed all of the packets.
   2281 		 */
   2282 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2283 			/*
   2284 			 * We have processed all of the receive buffers.
   2285 			 */
   2286 			break;
   2287 		}
   2288 
   2289 		/*
   2290 		 * If any collisions were seen on the wire, count one.
   2291 		 */
   2292 		if (cmdsts & CMDSTS_Rx_COL)
   2293 			ifp->if_collisions++;
   2294 
   2295 		/*
   2296 		 * If an error occurred, update stats, clear the status
   2297 		 * word, and leave the packet buffer in place.  It will
   2298 		 * simply be reused the next time the ring comes around.
   2299 		 */
   2300 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2301 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2302 			ifp->if_ierrors++;
   2303 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2304 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2305 				/* Receive overrun handled elsewhere. */
   2306 				printf("%s: receive descriptor error\n",
   2307 				    sc->sc_dev.dv_xname);
   2308 			}
   2309 #define	PRINTERR(bit, str)						\
   2310 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2311 			    (cmdsts & (bit)) != 0)			\
   2312 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   2313 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2314 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2315 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2316 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2317 #undef PRINTERR
   2318 			sip_init_rxdesc(sc, i);
   2319 			continue;
   2320 		}
   2321 
   2322 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2323 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2324 
   2325 		/*
   2326 		 * No errors; receive the packet.  Note, the SiS 900
   2327 		 * includes the CRC with every packet.
   2328 		 */
   2329 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2330 
   2331 #ifdef __NO_STRICT_ALIGNMENT
   2332 		/*
   2333 		 * If the packet is small enough to fit in a
   2334 		 * single header mbuf, allocate one and copy
   2335 		 * the data into it.  This greatly reduces
   2336 		 * memory consumption when we receive lots
   2337 		 * of small packets.
   2338 		 *
   2339 		 * Otherwise, we add a new buffer to the receive
   2340 		 * chain.  If this fails, we drop the packet and
   2341 		 * recycle the old buffer.
   2342 		 */
   2343 		if (sip_copy_small != 0 && len <= MHLEN) {
   2344 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2345 			if (m == NULL)
   2346 				goto dropit;
   2347 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2348 			memcpy(mtod(m, void *),
   2349 			    mtod(rxs->rxs_mbuf, void *), len);
   2350 			sip_init_rxdesc(sc, i);
   2351 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2352 			    rxs->rxs_dmamap->dm_mapsize,
   2353 			    BUS_DMASYNC_PREREAD);
   2354 		} else {
   2355 			m = rxs->rxs_mbuf;
   2356 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2357  dropit:
   2358 				ifp->if_ierrors++;
   2359 				sip_init_rxdesc(sc, i);
   2360 				bus_dmamap_sync(sc->sc_dmat,
   2361 				    rxs->rxs_dmamap, 0,
   2362 				    rxs->rxs_dmamap->dm_mapsize,
   2363 				    BUS_DMASYNC_PREREAD);
   2364 				continue;
   2365 			}
   2366 		}
   2367 #else
   2368 		/*
   2369 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2370 		 * But this means that the data after the Ethernet header
   2371 		 * is misaligned.  We must allocate a new buffer and
   2372 		 * copy the data, shifted forward 2 bytes.
   2373 		 */
   2374 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2375 		if (m == NULL) {
   2376  dropit:
   2377 			ifp->if_ierrors++;
   2378 			sip_init_rxdesc(sc, i);
   2379 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2380 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2381 			continue;
   2382 		}
   2383 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2384 		if (len > (MHLEN - 2)) {
   2385 			MCLGET(m, M_DONTWAIT);
   2386 			if ((m->m_flags & M_EXT) == 0) {
   2387 				m_freem(m);
   2388 				goto dropit;
   2389 			}
   2390 		}
   2391 		m->m_data += 2;
   2392 
   2393 		/*
   2394 		 * Note that we use clusters for incoming frames, so the
   2395 		 * buffer is virtually contiguous.
   2396 		 */
   2397 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2398 
   2399 		/* Allow the receive descriptor to continue using its mbuf. */
   2400 		sip_init_rxdesc(sc, i);
   2401 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2402 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2403 #endif /* __NO_STRICT_ALIGNMENT */
   2404 
   2405 		ifp->if_ipackets++;
   2406 		m->m_pkthdr.rcvif = ifp;
   2407 		m->m_pkthdr.len = m->m_len = len;
   2408 
   2409 #if NBPFILTER > 0
   2410 		/*
   2411 		 * Pass this up to any BPF listeners, but only
   2412 		 * pass if up the stack if it's for us.
   2413 		 */
   2414 		if (ifp->if_bpf)
   2415 			bpf_mtap(ifp->if_bpf, m);
   2416 #endif /* NBPFILTER > 0 */
   2417 
   2418 		/* Pass it on. */
   2419 		(*ifp->if_input)(ifp, m);
   2420 	}
   2421 
   2422 	/* Update the receive pointer. */
   2423 	sc->sc_rxptr = i;
   2424 }
   2425 
   2426 /*
   2427  * sip_tick:
   2428  *
   2429  *	One second timer, used to tick the MII.
   2430  */
   2431 static void
   2432 sipcom_tick(void *arg)
   2433 {
   2434 	struct sip_softc *sc = arg;
   2435 	int s;
   2436 
   2437 	s = splnet();
   2438 #ifdef SIP_EVENT_COUNTERS
   2439 	if (sc->sc_gigabit) {
   2440 		/* Read PAUSE related counts from MIB registers. */
   2441 		sc->sc_ev_rxpause.ev_count +=
   2442 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2443 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2444 		sc->sc_ev_txpause.ev_count +=
   2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2446 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2447 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2448 	}
   2449 #endif /* SIP_EVENT_COUNTERS */
   2450 	mii_tick(&sc->sc_mii);
   2451 	splx(s);
   2452 
   2453 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2454 }
   2455 
   2456 /*
   2457  * sip_reset:
   2458  *
   2459  *	Perform a soft reset on the SiS 900.
   2460  */
   2461 static bool
   2462 sipcom_reset(struct sip_softc *sc)
   2463 {
   2464 	bus_space_tag_t st = sc->sc_st;
   2465 	bus_space_handle_t sh = sc->sc_sh;
   2466 	int i;
   2467 
   2468 	bus_space_write_4(st, sh, SIP_IER, 0);
   2469 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2470 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2471 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2472 
   2473 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2474 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2475 			break;
   2476 		delay(2);
   2477 	}
   2478 
   2479 	if (i == SIP_TIMEOUT) {
   2480 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2481 		return false;
   2482 	}
   2483 
   2484 	delay(1000);
   2485 
   2486 	if (sc->sc_gigabit) {
   2487 		/*
   2488 		 * Set the general purpose I/O bits.  Do it here in case we
   2489 		 * need to have GPIO set up to talk to the media interface.
   2490 		 */
   2491 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2492 		delay(1000);
   2493 	}
   2494 	return true;
   2495 }
   2496 
   2497 static void
   2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2499 {
   2500 	u_int32_t reg;
   2501 	bus_space_tag_t st = sc->sc_st;
   2502 	bus_space_handle_t sh = sc->sc_sh;
   2503 	/*
   2504 	 * Initialize the VLAN/IP receive control register.
   2505 	 * We enable checksum computation on all incoming
   2506 	 * packets, and do not reject packets w/ bad checksums.
   2507 	 */
   2508 	reg = 0;
   2509 	if (capenable &
   2510 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2511 		reg |= VRCR_IPEN;
   2512 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2513 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2514 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2515 
   2516 	/*
   2517 	 * Initialize the VLAN/IP transmit control register.
   2518 	 * We enable outgoing checksum computation on a
   2519 	 * per-packet basis.
   2520 	 */
   2521 	reg = 0;
   2522 	if (capenable &
   2523 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2524 		reg |= VTCR_PPCHK;
   2525 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2526 		reg |= VTCR_VPPTI;
   2527 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2528 
   2529 	/*
   2530 	 * If we're using VLANs, initialize the VLAN data register.
   2531 	 * To understand why we bswap the VLAN Ethertype, see section
   2532 	 * 4.2.36 of the DP83820 manual.
   2533 	 */
   2534 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2535 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2536 }
   2537 
   2538 /*
   2539  * sip_init:		[ ifnet interface function ]
   2540  *
   2541  *	Initialize the interface.  Must be called at splnet().
   2542  */
   2543 static int
   2544 sipcom_init(struct ifnet *ifp)
   2545 {
   2546 	struct sip_softc *sc = ifp->if_softc;
   2547 	bus_space_tag_t st = sc->sc_st;
   2548 	bus_space_handle_t sh = sc->sc_sh;
   2549 	struct sip_txsoft *txs;
   2550 	struct sip_rxsoft *rxs;
   2551 	struct sip_desc *sipd;
   2552 	int i, error = 0;
   2553 
   2554 	if (!device_has_power(&sc->sc_dev))
   2555 		return EBUSY;
   2556 
   2557 	/*
   2558 	 * Cancel any pending I/O.
   2559 	 */
   2560 	sipcom_stop(ifp, 0);
   2561 
   2562 	/*
   2563 	 * Reset the chip to a known state.
   2564 	 */
   2565 	if (!sipcom_reset(sc))
   2566 		return EBUSY;
   2567 
   2568 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2569 		/*
   2570 		 * DP83815 manual, page 78:
   2571 		 *    4.4 Recommended Registers Configuration
   2572 		 *    For optimum performance of the DP83815, version noted
   2573 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2574 		 *    modifications must be followed in sequence...
   2575 		 *
   2576 		 * It's not clear if this should be 302h or 203h because that
   2577 		 * chip name is listed as SRR 302h in the description of the
   2578 		 * SRR register.  However, my revision 302h DP83815 on the
   2579 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2580 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2581 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2582 		 * this set or not.  [briggs -- 09 March 2001]
   2583 		 *
   2584 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2585 		 * and that this sets reserved bits in that register.
   2586 		 */
   2587 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2588 
   2589 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2590 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2591 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2592 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2593 
   2594 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2595 	}
   2596 
   2597 	/*
   2598 	 * Initialize the transmit descriptor ring.
   2599 	 */
   2600 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2601 		sipd = &sc->sc_txdescs[i];
   2602 		memset(sipd, 0, sizeof(struct sip_desc));
   2603 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2604 	}
   2605 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2606 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2607 	sc->sc_txfree = sc->sc_ntxdesc;
   2608 	sc->sc_txnext = 0;
   2609 	sc->sc_txwin = 0;
   2610 
   2611 	/*
   2612 	 * Initialize the transmit job descriptors.
   2613 	 */
   2614 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2615 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2616 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2617 		txs = &sc->sc_txsoft[i];
   2618 		txs->txs_mbuf = NULL;
   2619 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2620 	}
   2621 
   2622 	/*
   2623 	 * Initialize the receive descriptor and receive job
   2624 	 * descriptor rings.
   2625 	 */
   2626 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2627 		rxs = &sc->sc_rxsoft[i];
   2628 		if (rxs->rxs_mbuf == NULL) {
   2629 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2630 				printf("%s: unable to allocate or map rx "
   2631 				    "buffer %d, error = %d\n",
   2632 				    sc->sc_dev.dv_xname, i, error);
   2633 				/*
   2634 				 * XXX Should attempt to run with fewer receive
   2635 				 * XXX buffers instead of just failing.
   2636 				 */
   2637 				sipcom_rxdrain(sc);
   2638 				goto out;
   2639 			}
   2640 		} else
   2641 			sip_init_rxdesc(sc, i);
   2642 	}
   2643 	sc->sc_rxptr = 0;
   2644 	sc->sc_rxdiscard = 0;
   2645 	sip_rxchain_reset(sc);
   2646 
   2647 	/*
   2648 	 * Set the configuration register; it's already initialized
   2649 	 * in sip_attach().
   2650 	 */
   2651 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2652 
   2653 	/*
   2654 	 * Initialize the prototype TXCFG register.
   2655 	 */
   2656 	if (sc->sc_gigabit) {
   2657 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2658 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2659 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2660 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2661 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2662 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2663 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2664 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2665 	} else {
   2666 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2667 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2668 	}
   2669 
   2670 	sc->sc_txcfg |= TXCFG_ATP |
   2671 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2672 	    sc->sc_tx_drain_thresh;
   2673 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2674 
   2675 	/*
   2676 	 * Initialize the receive drain threshold if we have never
   2677 	 * done so.
   2678 	 */
   2679 	if (sc->sc_rx_drain_thresh == 0) {
   2680 		/*
   2681 		 * XXX This value should be tuned.  This is set to the
   2682 		 * maximum of 248 bytes, and we may be able to improve
   2683 		 * performance by decreasing it (although we should never
   2684 		 * set this value lower than 2; 14 bytes are required to
   2685 		 * filter the packet).
   2686 		 */
   2687 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2688 	}
   2689 
   2690 	/*
   2691 	 * Initialize the prototype RXCFG register.
   2692 	 */
   2693 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2694 	/*
   2695 	 * Accept long packets (including FCS) so we can handle
   2696 	 * 802.1q-tagged frames and jumbo frames properly.
   2697 	 */
   2698 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2699 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2700 		sc->sc_rxcfg |= RXCFG_ALP;
   2701 
   2702 	/*
   2703 	 * Checksum offloading is disabled if the user selects an MTU
   2704 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2705 	 * evidence that >8109 does not work on some boards, such as the
   2706 	 * Planex GN-1000TE).
   2707 	 */
   2708 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2709 	    (ifp->if_capenable &
   2710 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2711 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2712 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2713 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2714 		       "disabled.\n", sc->sc_dev.dv_xname);
   2715 		ifp->if_capenable &=
   2716 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2717 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2718 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2719 		ifp->if_csum_flags_tx = 0;
   2720 		ifp->if_csum_flags_rx = 0;
   2721 	}
   2722 
   2723 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2724 
   2725 	if (sc->sc_gigabit)
   2726 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2727 
   2728 	/*
   2729 	 * Give the transmit and receive rings to the chip.
   2730 	 */
   2731 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2732 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2733 
   2734 	/*
   2735 	 * Initialize the interrupt mask.
   2736 	 */
   2737 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2738 	             sc->sc_bits.b_isr_sserr |
   2739 		     sc->sc_bits.b_isr_rmabt |
   2740 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2741 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2742 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2743 
   2744 	/* Set up the receive filter. */
   2745 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2746 
   2747 	/*
   2748 	 * Tune sc_rx_flow_thresh.
   2749 	 * XXX "More than 8KB" is too short for jumbo frames.
   2750 	 * XXX TODO: Threshold value should be user-settable.
   2751 	 */
   2752 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2753 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2754 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2755 
   2756 	/*
   2757 	 * Set the current media.  Do this after initializing the prototype
   2758 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2759 	 * control.
   2760 	 */
   2761 	if ((error = ether_mediachange(ifp)) != 0)
   2762 		goto out;
   2763 
   2764 	/*
   2765 	 * Set the interrupt hold-off timer to 100us.
   2766 	 */
   2767 	if (sc->sc_gigabit)
   2768 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2769 
   2770 	/*
   2771 	 * Enable interrupts.
   2772 	 */
   2773 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2774 
   2775 	/*
   2776 	 * Start the transmit and receive processes.
   2777 	 */
   2778 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2779 
   2780 	/*
   2781 	 * Start the one second MII clock.
   2782 	 */
   2783 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2784 
   2785 	/*
   2786 	 * ...all done!
   2787 	 */
   2788 	ifp->if_flags |= IFF_RUNNING;
   2789 	ifp->if_flags &= ~IFF_OACTIVE;
   2790 	sc->sc_if_flags = ifp->if_flags;
   2791 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2792 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2793 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2794 
   2795  out:
   2796 	if (error)
   2797 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2798 	return (error);
   2799 }
   2800 
   2801 /*
   2802  * sip_drain:
   2803  *
   2804  *	Drain the receive queue.
   2805  */
   2806 static void
   2807 sipcom_rxdrain(struct sip_softc *sc)
   2808 {
   2809 	struct sip_rxsoft *rxs;
   2810 	int i;
   2811 
   2812 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2813 		rxs = &sc->sc_rxsoft[i];
   2814 		if (rxs->rxs_mbuf != NULL) {
   2815 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2816 			m_freem(rxs->rxs_mbuf);
   2817 			rxs->rxs_mbuf = NULL;
   2818 		}
   2819 	}
   2820 }
   2821 
   2822 /*
   2823  * sip_stop:		[ ifnet interface function ]
   2824  *
   2825  *	Stop transmission on the interface.
   2826  */
   2827 static void
   2828 sipcom_stop(struct ifnet *ifp, int disable)
   2829 {
   2830 	struct sip_softc *sc = ifp->if_softc;
   2831 	bus_space_tag_t st = sc->sc_st;
   2832 	bus_space_handle_t sh = sc->sc_sh;
   2833 	struct sip_txsoft *txs;
   2834 	u_int32_t cmdsts = 0;		/* DEBUG */
   2835 
   2836 	/*
   2837 	 * Stop the one second clock.
   2838 	 */
   2839 	callout_stop(&sc->sc_tick_ch);
   2840 
   2841 	/* Down the MII. */
   2842 	mii_down(&sc->sc_mii);
   2843 
   2844 	/*
   2845 	 * Disable interrupts.
   2846 	 */
   2847 	bus_space_write_4(st, sh, SIP_IER, 0);
   2848 
   2849 	/*
   2850 	 * Stop receiver and transmitter.
   2851 	 */
   2852 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2853 
   2854 	/*
   2855 	 * Release any queued transmit buffers.
   2856 	 */
   2857 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2858 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2859 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2860 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2861 		     CMDSTS_INTR) == 0)
   2862 			printf("%s: sip_stop: last descriptor does not "
   2863 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2864 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2865 #ifdef DIAGNOSTIC
   2866 		if (txs->txs_mbuf == NULL) {
   2867 			printf("%s: dirty txsoft with no mbuf chain\n",
   2868 			    sc->sc_dev.dv_xname);
   2869 			panic("sip_stop");
   2870 		}
   2871 #endif
   2872 		cmdsts |=		/* DEBUG */
   2873 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2874 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2875 		m_freem(txs->txs_mbuf);
   2876 		txs->txs_mbuf = NULL;
   2877 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2878 	}
   2879 
   2880 	if (disable)
   2881 		sipcom_rxdrain(sc);
   2882 
   2883 	/*
   2884 	 * Mark the interface down and cancel the watchdog timer.
   2885 	 */
   2886 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2887 	ifp->if_timer = 0;
   2888 
   2889 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2890 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2891 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2892 		    "descriptors\n", sc->sc_dev.dv_xname);
   2893 }
   2894 
   2895 /*
   2896  * sip_read_eeprom:
   2897  *
   2898  *	Read data from the serial EEPROM.
   2899  */
   2900 static void
   2901 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2902     u_int16_t *data)
   2903 {
   2904 	bus_space_tag_t st = sc->sc_st;
   2905 	bus_space_handle_t sh = sc->sc_sh;
   2906 	u_int16_t reg;
   2907 	int i, x;
   2908 
   2909 	for (i = 0; i < wordcnt; i++) {
   2910 		/* Send CHIP SELECT. */
   2911 		reg = EROMAR_EECS;
   2912 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2913 
   2914 		/* Shift in the READ opcode. */
   2915 		for (x = 3; x > 0; x--) {
   2916 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2917 				reg |= EROMAR_EEDI;
   2918 			else
   2919 				reg &= ~EROMAR_EEDI;
   2920 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2921 			bus_space_write_4(st, sh, SIP_EROMAR,
   2922 			    reg | EROMAR_EESK);
   2923 			delay(4);
   2924 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2925 			delay(4);
   2926 		}
   2927 
   2928 		/* Shift in address. */
   2929 		for (x = 6; x > 0; x--) {
   2930 			if ((word + i) & (1 << (x - 1)))
   2931 				reg |= EROMAR_EEDI;
   2932 			else
   2933 				reg &= ~EROMAR_EEDI;
   2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2935 			bus_space_write_4(st, sh, SIP_EROMAR,
   2936 			    reg | EROMAR_EESK);
   2937 			delay(4);
   2938 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2939 			delay(4);
   2940 		}
   2941 
   2942 		/* Shift out data. */
   2943 		reg = EROMAR_EECS;
   2944 		data[i] = 0;
   2945 		for (x = 16; x > 0; x--) {
   2946 			bus_space_write_4(st, sh, SIP_EROMAR,
   2947 			    reg | EROMAR_EESK);
   2948 			delay(4);
   2949 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2950 				data[i] |= (1 << (x - 1));
   2951 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2952 			delay(4);
   2953 		}
   2954 
   2955 		/* Clear CHIP SELECT. */
   2956 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2957 		delay(4);
   2958 	}
   2959 }
   2960 
   2961 /*
   2962  * sipcom_add_rxbuf:
   2963  *
   2964  *	Add a receive buffer to the indicated descriptor.
   2965  */
   2966 static int
   2967 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2968 {
   2969 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2970 	struct mbuf *m;
   2971 	int error;
   2972 
   2973 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2974 	if (m == NULL)
   2975 		return (ENOBUFS);
   2976 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2977 
   2978 	MCLGET(m, M_DONTWAIT);
   2979 	if ((m->m_flags & M_EXT) == 0) {
   2980 		m_freem(m);
   2981 		return (ENOBUFS);
   2982 	}
   2983 
   2984 	/* XXX I don't believe this is necessary. --dyoung */
   2985 	if (sc->sc_gigabit)
   2986 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2987 
   2988 	if (rxs->rxs_mbuf != NULL)
   2989 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2990 
   2991 	rxs->rxs_mbuf = m;
   2992 
   2993 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2994 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2995 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2996 	if (error) {
   2997 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2998 		    sc->sc_dev.dv_xname, idx, error);
   2999 		panic("%s", __func__);		/* XXX */
   3000 	}
   3001 
   3002 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3003 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3004 
   3005 	sip_init_rxdesc(sc, idx);
   3006 
   3007 	return (0);
   3008 }
   3009 
   3010 /*
   3011  * sip_sis900_set_filter:
   3012  *
   3013  *	Set up the receive filter.
   3014  */
   3015 static void
   3016 sipcom_sis900_set_filter(struct sip_softc *sc)
   3017 {
   3018 	bus_space_tag_t st = sc->sc_st;
   3019 	bus_space_handle_t sh = sc->sc_sh;
   3020 	struct ethercom *ec = &sc->sc_ethercom;
   3021 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3022 	struct ether_multi *enm;
   3023 	const u_int8_t *cp;
   3024 	struct ether_multistep step;
   3025 	u_int32_t crc, mchash[16];
   3026 
   3027 	/*
   3028 	 * Initialize the prototype RFCR.
   3029 	 */
   3030 	sc->sc_rfcr = RFCR_RFEN;
   3031 	if (ifp->if_flags & IFF_BROADCAST)
   3032 		sc->sc_rfcr |= RFCR_AAB;
   3033 	if (ifp->if_flags & IFF_PROMISC) {
   3034 		sc->sc_rfcr |= RFCR_AAP;
   3035 		goto allmulti;
   3036 	}
   3037 
   3038 	/*
   3039 	 * Set up the multicast address filter by passing all multicast
   3040 	 * addresses through a CRC generator, and then using the high-order
   3041 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3042 	 * the lower 16 bits of each 32 bit multicast hash register are
   3043 	 * valid).  The high order bits select the register, while the
   3044 	 * rest of the bits select the bit within the register.
   3045 	 */
   3046 
   3047 	memset(mchash, 0, sizeof(mchash));
   3048 
   3049 	/*
   3050 	 * SiS900 (at least SiS963) requires us to register the address of
   3051 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3052 	 */
   3053 	crc = 0x0ed423f9;
   3054 
   3055 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3056 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3057 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3058 		/* Just want the 8 most significant bits. */
   3059 		crc >>= 24;
   3060 	} else {
   3061 		/* Just want the 7 most significant bits. */
   3062 		crc >>= 25;
   3063 	}
   3064 
   3065 	/* Set the corresponding bit in the hash table. */
   3066 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3067 
   3068 	ETHER_FIRST_MULTI(step, ec, enm);
   3069 	while (enm != NULL) {
   3070 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3071 			/*
   3072 			 * We must listen to a range of multicast addresses.
   3073 			 * For now, just accept all multicasts, rather than
   3074 			 * trying to set only those filter bits needed to match
   3075 			 * the range.  (At this time, the only use of address
   3076 			 * ranges is for IP multicast routing, for which the
   3077 			 * range is big enough to require all bits set.)
   3078 			 */
   3079 			goto allmulti;
   3080 		}
   3081 
   3082 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3083 
   3084 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3085 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3086 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3087 			/* Just want the 8 most significant bits. */
   3088 			crc >>= 24;
   3089 		} else {
   3090 			/* Just want the 7 most significant bits. */
   3091 			crc >>= 25;
   3092 		}
   3093 
   3094 		/* Set the corresponding bit in the hash table. */
   3095 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3096 
   3097 		ETHER_NEXT_MULTI(step, enm);
   3098 	}
   3099 
   3100 	ifp->if_flags &= ~IFF_ALLMULTI;
   3101 	goto setit;
   3102 
   3103  allmulti:
   3104 	ifp->if_flags |= IFF_ALLMULTI;
   3105 	sc->sc_rfcr |= RFCR_AAM;
   3106 
   3107  setit:
   3108 #define	FILTER_EMIT(addr, data)						\
   3109 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3110 	delay(1);							\
   3111 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3112 	delay(1)
   3113 
   3114 	/*
   3115 	 * Disable receive filter, and program the node address.
   3116 	 */
   3117 	cp = CLLADDR(ifp->if_sadl);
   3118 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3119 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3120 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3121 
   3122 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3123 		/*
   3124 		 * Program the multicast hash table.
   3125 		 */
   3126 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3127 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3128 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3129 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3130 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3131 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3132 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3133 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3134 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3135 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3136 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3137 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3138 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3139 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3140 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3141 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3142 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3143 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3144 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3145 		}
   3146 	}
   3147 #undef FILTER_EMIT
   3148 
   3149 	/*
   3150 	 * Re-enable the receiver filter.
   3151 	 */
   3152 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3153 }
   3154 
   3155 /*
   3156  * sip_dp83815_set_filter:
   3157  *
   3158  *	Set up the receive filter.
   3159  */
   3160 static void
   3161 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3162 {
   3163 	bus_space_tag_t st = sc->sc_st;
   3164 	bus_space_handle_t sh = sc->sc_sh;
   3165 	struct ethercom *ec = &sc->sc_ethercom;
   3166 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3167 	struct ether_multi *enm;
   3168 	const u_int8_t *cp;
   3169 	struct ether_multistep step;
   3170 	u_int32_t crc, hash, slot, bit;
   3171 #define	MCHASH_NWORDS_83820	128
   3172 #define	MCHASH_NWORDS_83815	32
   3173 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3174 	u_int16_t mchash[MCHASH_NWORDS];
   3175 	int i;
   3176 
   3177 	/*
   3178 	 * Initialize the prototype RFCR.
   3179 	 * Enable the receive filter, and accept on
   3180 	 *    Perfect (destination address) Match
   3181 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3182 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3183 	 *    IFF_ALLMULTI and accept all multicast, too).
   3184 	 */
   3185 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3186 	if (ifp->if_flags & IFF_BROADCAST)
   3187 		sc->sc_rfcr |= RFCR_AAB;
   3188 	if (ifp->if_flags & IFF_PROMISC) {
   3189 		sc->sc_rfcr |= RFCR_AAP;
   3190 		goto allmulti;
   3191 	}
   3192 
   3193 	/*
   3194          * Set up the DP83820/DP83815 multicast address filter by
   3195          * passing all multicast addresses through a CRC generator,
   3196          * and then using the high-order 11/9 bits as an index into
   3197          * the 2048/512 bit multicast hash table.  The high-order
   3198          * 7/5 bits select the slot, while the low-order 4 bits
   3199          * select the bit within the slot.  Note that only the low
   3200          * 16-bits of each filter word are used, and there are
   3201          * 128/32 filter words.
   3202 	 */
   3203 
   3204 	memset(mchash, 0, sizeof(mchash));
   3205 
   3206 	ifp->if_flags &= ~IFF_ALLMULTI;
   3207 	ETHER_FIRST_MULTI(step, ec, enm);
   3208 	if (enm == NULL)
   3209 		goto setit;
   3210 	while (enm != NULL) {
   3211 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3212 			/*
   3213 			 * We must listen to a range of multicast addresses.
   3214 			 * For now, just accept all multicasts, rather than
   3215 			 * trying to set only those filter bits needed to match
   3216 			 * the range.  (At this time, the only use of address
   3217 			 * ranges is for IP multicast routing, for which the
   3218 			 * range is big enough to require all bits set.)
   3219 			 */
   3220 			goto allmulti;
   3221 		}
   3222 
   3223 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3224 
   3225 		if (sc->sc_gigabit) {
   3226 			/* Just want the 11 most significant bits. */
   3227 			hash = crc >> 21;
   3228 		} else {
   3229 			/* Just want the 9 most significant bits. */
   3230 			hash = crc >> 23;
   3231 		}
   3232 
   3233 		slot = hash >> 4;
   3234 		bit = hash & 0xf;
   3235 
   3236 		/* Set the corresponding bit in the hash table. */
   3237 		mchash[slot] |= 1 << bit;
   3238 
   3239 		ETHER_NEXT_MULTI(step, enm);
   3240 	}
   3241 	sc->sc_rfcr |= RFCR_MHEN;
   3242 	goto setit;
   3243 
   3244  allmulti:
   3245 	ifp->if_flags |= IFF_ALLMULTI;
   3246 	sc->sc_rfcr |= RFCR_AAM;
   3247 
   3248  setit:
   3249 #define	FILTER_EMIT(addr, data)						\
   3250 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3251 	delay(1);							\
   3252 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3253 	delay(1)
   3254 
   3255 	/*
   3256 	 * Disable receive filter, and program the node address.
   3257 	 */
   3258 	cp = CLLADDR(ifp->if_sadl);
   3259 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3260 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3261 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3262 
   3263 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3264 		int nwords =
   3265 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3266 		/*
   3267 		 * Program the multicast hash table.
   3268 		 */
   3269 		for (i = 0; i < nwords; i++) {
   3270 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3271 		}
   3272 	}
   3273 #undef FILTER_EMIT
   3274 #undef MCHASH_NWORDS
   3275 #undef MCHASH_NWORDS_83815
   3276 #undef MCHASH_NWORDS_83820
   3277 
   3278 	/*
   3279 	 * Re-enable the receiver filter.
   3280 	 */
   3281 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3282 }
   3283 
   3284 /*
   3285  * sip_dp83820_mii_readreg:	[mii interface function]
   3286  *
   3287  *	Read a PHY register on the MII of the DP83820.
   3288  */
   3289 static int
   3290 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
   3291 {
   3292 	struct sip_softc *sc = (void *) self;
   3293 
   3294 	if (sc->sc_cfg & CFG_TBI_EN) {
   3295 		bus_addr_t tbireg;
   3296 		int rv;
   3297 
   3298 		if (phy != 0)
   3299 			return (0);
   3300 
   3301 		switch (reg) {
   3302 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3303 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3304 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3305 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3306 		case MII_ANER:		tbireg = SIP_TANER; break;
   3307 		case MII_EXTSR:
   3308 			/*
   3309 			 * Don't even bother reading the TESR register.
   3310 			 * The manual documents that the device has
   3311 			 * 1000baseX full/half capability, but the
   3312 			 * register itself seems read back 0 on some
   3313 			 * boards.  Just hard-code the result.
   3314 			 */
   3315 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3316 
   3317 		default:
   3318 			return (0);
   3319 		}
   3320 
   3321 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3322 		if (tbireg == SIP_TBISR) {
   3323 			/* LINK and ACOMP are switched! */
   3324 			int val = rv;
   3325 
   3326 			rv = 0;
   3327 			if (val & TBISR_MR_LINK_STATUS)
   3328 				rv |= BMSR_LINK;
   3329 			if (val & TBISR_MR_AN_COMPLETE)
   3330 				rv |= BMSR_ACOMP;
   3331 
   3332 			/*
   3333 			 * The manual claims this register reads back 0
   3334 			 * on hard and soft reset.  But we want to let
   3335 			 * the gentbi driver know that we support auto-
   3336 			 * negotiation, so hard-code this bit in the
   3337 			 * result.
   3338 			 */
   3339 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3340 		}
   3341 
   3342 		return (rv);
   3343 	}
   3344 
   3345 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3346 }
   3347 
   3348 /*
   3349  * sip_dp83820_mii_writereg:	[mii interface function]
   3350  *
   3351  *	Write a PHY register on the MII of the DP83820.
   3352  */
   3353 static void
   3354 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
   3355 {
   3356 	struct sip_softc *sc = (void *) self;
   3357 
   3358 	if (sc->sc_cfg & CFG_TBI_EN) {
   3359 		bus_addr_t tbireg;
   3360 
   3361 		if (phy != 0)
   3362 			return;
   3363 
   3364 		switch (reg) {
   3365 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3366 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3367 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3368 		default:
   3369 			return;
   3370 		}
   3371 
   3372 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3373 		return;
   3374 	}
   3375 
   3376 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3377 }
   3378 
   3379 /*
   3380  * sip_dp83820_mii_statchg:	[mii interface function]
   3381  *
   3382  *	Callback from MII layer when media changes.
   3383  */
   3384 static void
   3385 sipcom_dp83820_mii_statchg(struct device *self)
   3386 {
   3387 	struct sip_softc *sc = (struct sip_softc *) self;
   3388 	struct mii_data *mii = &sc->sc_mii;
   3389 	u_int32_t cfg, pcr;
   3390 
   3391 	/*
   3392 	 * Get flow control negotiation result.
   3393 	 */
   3394 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3395 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3396 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3397 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3398 	}
   3399 
   3400 	/*
   3401 	 * Update TXCFG for full-duplex operation.
   3402 	 */
   3403 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3404 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3405 	else
   3406 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3407 
   3408 	/*
   3409 	 * Update RXCFG for full-duplex or loopback.
   3410 	 */
   3411 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3412 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3413 		sc->sc_rxcfg |= RXCFG_ATX;
   3414 	else
   3415 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3416 
   3417 	/*
   3418 	 * Update CFG for MII/GMII.
   3419 	 */
   3420 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3421 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3422 	else
   3423 		cfg = sc->sc_cfg;
   3424 
   3425 	/*
   3426 	 * 802.3x flow control.
   3427 	 */
   3428 	pcr = 0;
   3429 	if (sc->sc_flowflags & IFM_FLOW) {
   3430 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3431 			pcr |= sc->sc_rx_flow_thresh;
   3432 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3433 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3434 	}
   3435 
   3436 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3438 	    sc->sc_txcfg);
   3439 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3440 	    sc->sc_rxcfg);
   3441 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3442 }
   3443 
   3444 /*
   3445  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3446  *
   3447  *	Read the MII serial port for the MII bit-bang module.
   3448  */
   3449 static u_int32_t
   3450 sipcom_mii_bitbang_read(struct device *self)
   3451 {
   3452 	struct sip_softc *sc = (void *) self;
   3453 
   3454 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3455 }
   3456 
   3457 /*
   3458  * sip_mii_bitbang_write: [mii big-bang interface function]
   3459  *
   3460  *	Write the MII serial port for the MII bit-bang module.
   3461  */
   3462 static void
   3463 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
   3464 {
   3465 	struct sip_softc *sc = (void *) self;
   3466 
   3467 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3468 }
   3469 
   3470 /*
   3471  * sip_sis900_mii_readreg:	[mii interface function]
   3472  *
   3473  *	Read a PHY register on the MII.
   3474  */
   3475 static int
   3476 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
   3477 {
   3478 	struct sip_softc *sc = (struct sip_softc *) self;
   3479 	u_int32_t enphy;
   3480 
   3481 	/*
   3482 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3483 	 * operations.
   3484 	 */
   3485 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3486 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3487 		    phy, reg);
   3488 
   3489 #ifndef SIS900_MII_RESTRICT
   3490 	/*
   3491 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3492 	 * MII address 0.
   3493 	 */
   3494 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3495 		return (0);
   3496 #endif
   3497 
   3498 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3499 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3500 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3501 	do {
   3502 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3503 	} while (enphy & ENPHY_ACCESS);
   3504 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3505 }
   3506 
   3507 /*
   3508  * sip_sis900_mii_writereg:	[mii interface function]
   3509  *
   3510  *	Write a PHY register on the MII.
   3511  */
   3512 static void
   3513 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
   3514 {
   3515 	struct sip_softc *sc = (struct sip_softc *) self;
   3516 	u_int32_t enphy;
   3517 
   3518 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3519 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3520 		    phy, reg, val);
   3521 		return;
   3522 	}
   3523 
   3524 #ifndef SIS900_MII_RESTRICT
   3525 	/*
   3526 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3527 	 * MII address 0.
   3528 	 */
   3529 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3530 		return;
   3531 #endif
   3532 
   3533 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3534 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3535 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3536 	do {
   3537 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3538 	} while (enphy & ENPHY_ACCESS);
   3539 }
   3540 
   3541 /*
   3542  * sip_sis900_mii_statchg:	[mii interface function]
   3543  *
   3544  *	Callback from MII layer when media changes.
   3545  */
   3546 static void
   3547 sipcom_sis900_mii_statchg(struct device *self)
   3548 {
   3549 	struct sip_softc *sc = (struct sip_softc *) self;
   3550 	struct mii_data *mii = &sc->sc_mii;
   3551 	u_int32_t flowctl;
   3552 
   3553 	/*
   3554 	 * Get flow control negotiation result.
   3555 	 */
   3556 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3557 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3558 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3559 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3560 	}
   3561 
   3562 	/*
   3563 	 * Update TXCFG for full-duplex operation.
   3564 	 */
   3565 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3566 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3567 	else
   3568 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3569 
   3570 	/*
   3571 	 * Update RXCFG for full-duplex or loopback.
   3572 	 */
   3573 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3574 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3575 		sc->sc_rxcfg |= RXCFG_ATX;
   3576 	else
   3577 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3578 
   3579 	/*
   3580 	 * Update IMR for use of 802.3x flow control.
   3581 	 */
   3582 	if (sc->sc_flowflags & IFM_FLOW) {
   3583 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3584 		flowctl = FLOWCTL_FLOWEN;
   3585 	} else {
   3586 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3587 		flowctl = 0;
   3588 	}
   3589 
   3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3591 	    sc->sc_txcfg);
   3592 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3593 	    sc->sc_rxcfg);
   3594 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3596 }
   3597 
   3598 /*
   3599  * sip_dp83815_mii_readreg:	[mii interface function]
   3600  *
   3601  *	Read a PHY register on the MII.
   3602  */
   3603 static int
   3604 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
   3605 {
   3606 	struct sip_softc *sc = (struct sip_softc *) self;
   3607 	u_int32_t val;
   3608 
   3609 	/*
   3610 	 * The DP83815 only has an internal PHY.  Only allow
   3611 	 * MII address 0.
   3612 	 */
   3613 	if (phy != 0)
   3614 		return (0);
   3615 
   3616 	/*
   3617 	 * Apparently, after a reset, the DP83815 can take a while
   3618 	 * to respond.  During this recovery period, the BMSR returns
   3619 	 * a value of 0.  Catch this -- it's not supposed to happen
   3620 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3621 	 * PHY to come back to life.
   3622 	 *
   3623 	 * This works out because the BMSR is the first register
   3624 	 * read during the PHY probe process.
   3625 	 */
   3626 	do {
   3627 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3628 	} while (reg == MII_BMSR && val == 0);
   3629 
   3630 	return (val & 0xffff);
   3631 }
   3632 
   3633 /*
   3634  * sip_dp83815_mii_writereg:	[mii interface function]
   3635  *
   3636  *	Write a PHY register to the MII.
   3637  */
   3638 static void
   3639 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
   3640 {
   3641 	struct sip_softc *sc = (struct sip_softc *) self;
   3642 
   3643 	/*
   3644 	 * The DP83815 only has an internal PHY.  Only allow
   3645 	 * MII address 0.
   3646 	 */
   3647 	if (phy != 0)
   3648 		return;
   3649 
   3650 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3651 }
   3652 
   3653 /*
   3654  * sip_dp83815_mii_statchg:	[mii interface function]
   3655  *
   3656  *	Callback from MII layer when media changes.
   3657  */
   3658 static void
   3659 sipcom_dp83815_mii_statchg(struct device *self)
   3660 {
   3661 	struct sip_softc *sc = (struct sip_softc *) self;
   3662 
   3663 	/*
   3664 	 * Update TXCFG for full-duplex operation.
   3665 	 */
   3666 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3667 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3668 	else
   3669 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3670 
   3671 	/*
   3672 	 * Update RXCFG for full-duplex or loopback.
   3673 	 */
   3674 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3675 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3676 		sc->sc_rxcfg |= RXCFG_ATX;
   3677 	else
   3678 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3679 
   3680 	/*
   3681 	 * XXX 802.3x flow control.
   3682 	 */
   3683 
   3684 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3685 	    sc->sc_txcfg);
   3686 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3687 	    sc->sc_rxcfg);
   3688 
   3689 	/*
   3690 	 * Some DP83815s experience problems when used with short
   3691 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3692 	 * sequence adjusts the DSP's signal attenuation to fix the
   3693 	 * problem.
   3694 	 */
   3695 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3696 		uint32_t reg;
   3697 
   3698 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3699 
   3700 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3701 		reg &= 0x0fff;
   3702 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3703 		delay(100);
   3704 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3705 		reg &= 0x00ff;
   3706 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3707 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3708 			    0x00e8);
   3709 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3710 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3711 			    reg | 0x20);
   3712 		}
   3713 
   3714 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3715 	}
   3716 }
   3717 
   3718 static void
   3719 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3720     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3721 {
   3722 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3723 	u_int8_t cksum, *e, match;
   3724 	int i;
   3725 
   3726 	/*
   3727 	 * EEPROM data format for the DP83820 can be found in
   3728 	 * the DP83820 manual, section 4.2.4.
   3729 	 */
   3730 
   3731 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3732 
   3733 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3734 	match = ~(match - 1);
   3735 
   3736 	cksum = 0x55;
   3737 	e = (u_int8_t *) eeprom_data;
   3738 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3739 		cksum += *e++;
   3740 
   3741 	if (cksum != match)
   3742 		printf("%s: Checksum (%x) mismatch (%x)",
   3743 		    sc->sc_dev.dv_xname, cksum, match);
   3744 
   3745 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3746 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3747 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3748 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3749 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3750 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3751 }
   3752 
   3753 static void
   3754 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3755 {
   3756 	int i;
   3757 
   3758 	/*
   3759 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3760 	 * a reason, but I don't know it.
   3761 	 */
   3762 	for (i = 0; i < 10; i++)
   3763 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3764 }
   3765 
   3766 static void
   3767 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3768     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3769 {
   3770 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3771 
   3772 	switch (sc->sc_rev) {
   3773 	case SIS_REV_630S:
   3774 	case SIS_REV_630E:
   3775 	case SIS_REV_630EA1:
   3776 	case SIS_REV_630ET:
   3777 	case SIS_REV_635:
   3778 		/*
   3779 		 * The MAC address for the on-board Ethernet of
   3780 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3781 		 * the chip into re-loading it from NVRAM, and
   3782 		 * read the MAC address out of the filter registers.
   3783 		 */
   3784 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3785 
   3786 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3787 		    RFCR_RFADDR_NODE0);
   3788 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3789 		    0xffff;
   3790 
   3791 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3792 		    RFCR_RFADDR_NODE2);
   3793 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3794 		    0xffff;
   3795 
   3796 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3797 		    RFCR_RFADDR_NODE4);
   3798 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3799 		    0xffff;
   3800 		break;
   3801 
   3802 	case SIS_REV_960:
   3803 		{
   3804 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3805 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3806 
   3807 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3808 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3809 
   3810 			int waittime, i;
   3811 
   3812 			/* Allow to read EEPROM from LAN. It is shared
   3813 			 * between a 1394 controller and the NIC and each
   3814 			 * time we access it, we need to set SIS_EECMD_REQ.
   3815 			 */
   3816 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3817 
   3818 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3819 				/* Force EEPROM to idle state. */
   3820 
   3821 				/*
   3822 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3823 				 */
   3824 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3825 				sipcom_sis900_eeprom_delay(sc);
   3826 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3827 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3828 					sipcom_sis900_eeprom_delay(sc);
   3829 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3830 					sipcom_sis900_eeprom_delay(sc);
   3831 				}
   3832 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3833 				sipcom_sis900_eeprom_delay(sc);
   3834 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3835 
   3836 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3837 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3838 					    sizeof(myea) / sizeof(myea[0]), myea);
   3839 					break;
   3840 				}
   3841 				DELAY(1);
   3842 			}
   3843 
   3844 			/*
   3845 			 * Set SIS_EECTL_CLK to high, so a other master
   3846 			 * can operate on the i2c bus.
   3847 			 */
   3848 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3849 
   3850 			/* Refuse EEPROM access by LAN */
   3851 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3852 		} break;
   3853 
   3854 	default:
   3855 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3856 		    sizeof(myea) / sizeof(myea[0]), myea);
   3857 	}
   3858 
   3859 	enaddr[0] = myea[0] & 0xff;
   3860 	enaddr[1] = myea[0] >> 8;
   3861 	enaddr[2] = myea[1] & 0xff;
   3862 	enaddr[3] = myea[1] >> 8;
   3863 	enaddr[4] = myea[2] & 0xff;
   3864 	enaddr[5] = myea[2] >> 8;
   3865 }
   3866 
   3867 /* Table and macro to bit-reverse an octet. */
   3868 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3869 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3870 
   3871 static void
   3872 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3873     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3874 {
   3875 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3876 	u_int8_t cksum, *e, match;
   3877 	int i;
   3878 
   3879 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3880 	    sizeof(eeprom_data[0]), eeprom_data);
   3881 
   3882 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3883 	match = ~(match - 1);
   3884 
   3885 	cksum = 0x55;
   3886 	e = (u_int8_t *) eeprom_data;
   3887 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3888 		cksum += *e++;
   3889 	}
   3890 	if (cksum != match) {
   3891 		printf("%s: Checksum (%x) mismatch (%x)",
   3892 		    sc->sc_dev.dv_xname, cksum, match);
   3893 	}
   3894 
   3895 	/*
   3896 	 * Unrolled because it makes slightly more sense this way.
   3897 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3898 	 * through bit 15 of word 8.
   3899 	 */
   3900 	ea = &eeprom_data[6];
   3901 	enaddr[0] = ((*ea & 0x1) << 7);
   3902 	ea++;
   3903 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3904 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3905 	enaddr[2] = ((*ea & 0x1) << 7);
   3906 	ea++;
   3907 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3908 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3909 	enaddr[4] = ((*ea & 0x1) << 7);
   3910 	ea++;
   3911 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3912 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3913 
   3914 	/*
   3915 	 * In case that's not weird enough, we also need to reverse
   3916 	 * the bits in each byte.  This all actually makes more sense
   3917 	 * if you think about the EEPROM storage as an array of bits
   3918 	 * being shifted into bytes, but that's not how we're looking
   3919 	 * at it here...
   3920 	 */
   3921 	for (i = 0; i < 6 ;i++)
   3922 		enaddr[i] = bbr(enaddr[i]);
   3923 }
   3924 
   3925 /*
   3926  * sip_mediastatus:	[ifmedia interface function]
   3927  *
   3928  *	Get the current interface media status.
   3929  */
   3930 static void
   3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3932 {
   3933 	struct sip_softc *sc = ifp->if_softc;
   3934 
   3935 	ether_mediastatus(ifp, ifmr);
   3936 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3937 			   sc->sc_flowflags;
   3938 }
   3939