if_sip.c revision 1.13 1 /* $NetBSD: if_sip.c,v 1.13 2000/08/04 09:30:56 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78
79 #include <dev/mii/miivar.h>
80
81 #include <dev/pci/pcireg.h>
82 #include <dev/pci/pcivar.h>
83 #include <dev/pci/pcidevs.h>
84
85 #include <dev/pci/if_sipreg.h>
86
87 /*
88 * Devices supported by this driver.
89 */
90 const struct sip_product {
91 pci_vendor_id_t sip_vendor;
92 pci_product_id_t sip_product;
93 const char *sip_name;
94 } sip_products[] = {
95 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
96 "SiS 900 10/100 Ethernet" },
97 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
98 "SiS 7016 10/100 Ethernet" },
99
100 { 0, 0,
101 NULL },
102 };
103
104 /*
105 * Transmit descriptor list size. This is arbitrary, but allocate
106 * enough descriptors for 64 pending transmissions, and 16 segments
107 * per packet. This MUST work out to a power of 2.
108 */
109 #define SIP_NTXSEGS 16
110
111 #define SIP_TXQUEUELEN 64
112 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
113 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
114 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
115
116 /*
117 * Receive descriptor list size. We have one Rx buffer per incoming
118 * packet, so this logic is a little simpler.
119 */
120 #define SIP_NRXDESC 64
121 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
122 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
123
124 /*
125 * Control structures are DMA'd to the SiS900 chip. We allocate them in
126 * a single clump that maps to a single DMA segment to make several things
127 * easier.
128 */
129 struct sip_control_data {
130 /*
131 * The transmit descriptors.
132 */
133 struct sip_desc scd_txdescs[SIP_NTXDESC];
134
135 /*
136 * The receive descriptors.
137 */
138 struct sip_desc scd_rxdescs[SIP_NRXDESC];
139 };
140
141 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
142 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
143 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
144
145 /*
146 * Software state for transmit jobs.
147 */
148 struct sip_txsoft {
149 struct mbuf *txs_mbuf; /* head of our mbuf chain */
150 bus_dmamap_t txs_dmamap; /* our DMA map */
151 int txs_firstdesc; /* first descriptor in packet */
152 int txs_lastdesc; /* last descriptor in packet */
153 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
154 };
155
156 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
157
158 /*
159 * Software state for receive jobs.
160 */
161 struct sip_rxsoft {
162 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
163 bus_dmamap_t rxs_dmamap; /* our DMA map */
164 };
165
166 /*
167 * Software state per device.
168 */
169 struct sip_softc {
170 struct device sc_dev; /* generic device information */
171 bus_space_tag_t sc_st; /* bus space tag */
172 bus_space_handle_t sc_sh; /* bus space handle */
173 bus_dma_tag_t sc_dmat; /* bus DMA tag */
174 struct ethercom sc_ethercom; /* ethernet common data */
175 void *sc_sdhook; /* shutdown hook */
176 pci_product_id_t sc_model; /* which model are we? */
177
178 void *sc_ih; /* interrupt cookie */
179
180 struct mii_data sc_mii; /* MII/media information */
181
182 struct callout sc_tick_ch; /* tick callout */
183
184 bus_dmamap_t sc_cddmamap; /* control data DMA map */
185 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
186
187 /*
188 * Software state for transmit and receive descriptors.
189 */
190 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
191 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
192
193 /*
194 * Control data structures.
195 */
196 struct sip_control_data *sc_control_data;
197 #define sc_txdescs sc_control_data->scd_txdescs
198 #define sc_rxdescs sc_control_data->scd_rxdescs
199
200 u_int32_t sc_txcfg; /* prototype TXCFG register */
201 u_int32_t sc_rxcfg; /* prototype RXCFG register */
202 u_int32_t sc_imr; /* prototype IMR register */
203 u_int32_t sc_rfcr; /* prototype RFCR register */
204
205 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
206 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
207
208 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
209
210 int sc_flags; /* misc. flags; see below */
211
212 int sc_txfree; /* number of free Tx descriptors */
213 int sc_txnext; /* next ready Tx descriptor */
214
215 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
216 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
217
218 int sc_rxptr; /* next ready Rx descriptor/descsoft */
219 };
220
221 /* sc_flags */
222 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
223
224 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
225 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
226
227 #define SIP_CDTXSYNC(sc, x, n, ops) \
228 do { \
229 int __x, __n; \
230 \
231 __x = (x); \
232 __n = (n); \
233 \
234 /* If it will wrap around, sync to the end of the ring. */ \
235 if ((__x + __n) > SIP_NTXDESC) { \
236 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
237 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
238 (SIP_NTXDESC - __x), (ops)); \
239 __n -= (SIP_NTXDESC - __x); \
240 __x = 0; \
241 } \
242 \
243 /* Now sync whatever is left. */ \
244 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
245 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
246 } while (0)
247
248 #define SIP_CDRXSYNC(sc, x, ops) \
249 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
250 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
251
252 /*
253 * Note we rely on MCLBYTES being a power of two below.
254 */
255 #define SIP_INIT_RXDESC(sc, x) \
256 do { \
257 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
258 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
259 \
260 __sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x))); \
261 __sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
262 __sipd->sipd_cmdsts = CMDSTS_INTR | \
263 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK); \
264 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
265 } while (0)
266
267 void sip_start __P((struct ifnet *));
268 void sip_watchdog __P((struct ifnet *));
269 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
270
271 void sip_shutdown __P((void *));
272
273 void sip_reset __P((struct sip_softc *));
274 int sip_init __P((struct sip_softc *));
275 void sip_stop __P((struct sip_softc *, int));
276 void sip_rxdrain __P((struct sip_softc *));
277 int sip_add_rxbuf __P((struct sip_softc *, int));
278 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
279 void sip_set_filter __P((struct sip_softc *));
280 void sip_tick __P((void *));
281
282 int sip_intr __P((void *));
283 void sip_txintr __P((struct sip_softc *));
284 void sip_rxintr __P((struct sip_softc *));
285
286 int sip_mii_readreg __P((struct device *, int, int));
287 void sip_mii_writereg __P((struct device *, int, int, int));
288 void sip_mii_statchg __P((struct device *));
289
290 int sip_mediachange __P((struct ifnet *));
291 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
292
293 int sip_match __P((struct device *, struct cfdata *, void *));
294 void sip_attach __P((struct device *, struct device *, void *));
295
296 int sip_copy_small = 0;
297
298 struct cfattach sip_ca = {
299 sizeof(struct sip_softc), sip_match, sip_attach,
300 };
301
302 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
303
304 const struct sip_product *
305 sip_lookup(pa)
306 const struct pci_attach_args *pa;
307 {
308 const struct sip_product *sip;
309
310 for (sip = sip_products; sip->sip_name != NULL; sip++) {
311 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
312 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
313 return (sip);
314 }
315 return (NULL);
316 }
317
318 int
319 sip_match(parent, cf, aux)
320 struct device *parent;
321 struct cfdata *cf;
322 void *aux;
323 {
324 struct pci_attach_args *pa = aux;
325
326 if (sip_lookup(pa) != NULL)
327 return (1);
328
329 return (0);
330 }
331
332 void
333 sip_attach(parent, self, aux)
334 struct device *parent, *self;
335 void *aux;
336 {
337 struct sip_softc *sc = (struct sip_softc *) self;
338 struct pci_attach_args *pa = aux;
339 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
340 pci_chipset_tag_t pc = pa->pa_pc;
341 pci_intr_handle_t ih;
342 const char *intrstr = NULL;
343 bus_space_tag_t iot, memt;
344 bus_space_handle_t ioh, memh;
345 bus_dma_segment_t seg;
346 int ioh_valid, memh_valid;
347 int i, rseg, error;
348 const struct sip_product *sip;
349 pcireg_t pmode;
350 u_int16_t enaddr[ETHER_ADDR_LEN / 2];
351 int pmreg;
352
353 callout_init(&sc->sc_tick_ch);
354
355 sip = sip_lookup(pa);
356 if (sip == NULL) {
357 printf("\n");
358 panic("sip_attach: impossible");
359 }
360
361 printf(": %s\n", sip->sip_name);
362
363 sc->sc_model = PCI_PRODUCT(pa->pa_id);
364
365 /*
366 * Map the device.
367 */
368 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
369 PCI_MAPREG_TYPE_IO, 0,
370 &iot, &ioh, NULL, NULL) == 0);
371 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
372 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
373 &memt, &memh, NULL, NULL) == 0);
374
375 if (memh_valid) {
376 sc->sc_st = memt;
377 sc->sc_sh = memh;
378 } else if (ioh_valid) {
379 sc->sc_st = iot;
380 sc->sc_sh = ioh;
381 } else {
382 printf("%s: unable to map device registers\n",
383 sc->sc_dev.dv_xname);
384 return;
385 }
386
387 sc->sc_dmat = pa->pa_dmat;
388
389 /* Enable bus mastering. */
390 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
391 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
392 PCI_COMMAND_MASTER_ENABLE);
393
394 /* Get it out of power save mode if needed. */
395 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
396 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
397 if (pmode == 3) {
398 /*
399 * The card has lost all configuration data in
400 * this state, so punt.
401 */
402 printf("%s: unable to wake up from power state D3\n",
403 sc->sc_dev.dv_xname);
404 return;
405 }
406 if (pmode != 0) {
407 printf("%s: waking up from power state D%d\n",
408 sc->sc_dev.dv_xname, pmode);
409 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
410 }
411 }
412
413 /*
414 * Map and establish our interrupt.
415 */
416 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
417 pa->pa_intrline, &ih)) {
418 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
419 return;
420 }
421 intrstr = pci_intr_string(pc, ih);
422 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
423 if (sc->sc_ih == NULL) {
424 printf("%s: unable to establish interrupt",
425 sc->sc_dev.dv_xname);
426 if (intrstr != NULL)
427 printf(" at %s", intrstr);
428 printf("\n");
429 return;
430 }
431 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
432
433 SIMPLEQ_INIT(&sc->sc_txfreeq);
434 SIMPLEQ_INIT(&sc->sc_txdirtyq);
435
436 /*
437 * Allocate the control data structures, and create and load the
438 * DMA map for it.
439 */
440 if ((error = bus_dmamem_alloc(sc->sc_dmat,
441 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
442 0)) != 0) {
443 printf("%s: unable to allocate control data, error = %d\n",
444 sc->sc_dev.dv_xname, error);
445 goto fail_0;
446 }
447
448 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
449 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
450 BUS_DMA_COHERENT)) != 0) {
451 printf("%s: unable to map control data, error = %d\n",
452 sc->sc_dev.dv_xname, error);
453 goto fail_1;
454 }
455
456 if ((error = bus_dmamap_create(sc->sc_dmat,
457 sizeof(struct sip_control_data), 1,
458 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
459 printf("%s: unable to create control data DMA map, "
460 "error = %d\n", sc->sc_dev.dv_xname, error);
461 goto fail_2;
462 }
463
464 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
465 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
466 0)) != 0) {
467 printf("%s: unable to load control data DMA map, error = %d\n",
468 sc->sc_dev.dv_xname, error);
469 goto fail_3;
470 }
471
472 /*
473 * Create the transmit buffer DMA maps.
474 */
475 for (i = 0; i < SIP_TXQUEUELEN; i++) {
476 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 SIP_NTXSEGS, MCLBYTES, 0, 0,
478 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
479 printf("%s: unable to create tx DMA map %d, "
480 "error = %d\n", sc->sc_dev.dv_xname, i, error);
481 goto fail_4;
482 }
483 }
484
485 /*
486 * Create the receive buffer DMA maps.
487 */
488 for (i = 0; i < SIP_NRXDESC; i++) {
489 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
490 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
491 printf("%s: unable to create rx DMA map %d, "
492 "error = %d\n", sc->sc_dev.dv_xname, i, error);
493 goto fail_5;
494 }
495 sc->sc_rxsoft[i].rxs_mbuf = NULL;
496 }
497
498 /*
499 * Reset the chip to a known state.
500 */
501 sip_reset(sc);
502
503 /*
504 * Read the Ethernet address from the EEPROM.
505 */
506 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
507 sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
508
509 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
510 ether_sprintf((u_int8_t *)enaddr));
511
512 /*
513 * Initialize our media structures and probe the MII.
514 */
515 sc->sc_mii.mii_ifp = ifp;
516 sc->sc_mii.mii_readreg = sip_mii_readreg;
517 sc->sc_mii.mii_writereg = sip_mii_writereg;
518 sc->sc_mii.mii_statchg = sip_mii_statchg;
519 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
520 sip_mediastatus);
521 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
522 MII_OFFSET_ANY, 0);
523 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
524 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
525 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
526 } else
527 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
528
529 ifp = &sc->sc_ethercom.ec_if;
530 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
531 ifp->if_softc = sc;
532 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
533 ifp->if_ioctl = sip_ioctl;
534 ifp->if_start = sip_start;
535 ifp->if_watchdog = sip_watchdog;
536
537 /*
538 * Attach the interface.
539 */
540 if_attach(ifp);
541 ether_ifattach(ifp, (u_int8_t *)enaddr);
542 #if NBPFILTER > 0
543 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
544 sizeof(struct ether_header));
545 #endif
546
547 /*
548 * Make sure the interface is shutdown during reboot.
549 */
550 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
551 if (sc->sc_sdhook == NULL)
552 printf("%s: WARNING: unable to establish shutdown hook\n",
553 sc->sc_dev.dv_xname);
554 return;
555
556 /*
557 * Free any resources we've allocated during the failed attach
558 * attempt. Do this in reverse order and fall through.
559 */
560 fail_5:
561 for (i = 0; i < SIP_NRXDESC; i++) {
562 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
563 bus_dmamap_destroy(sc->sc_dmat,
564 sc->sc_rxsoft[i].rxs_dmamap);
565 }
566 fail_4:
567 for (i = 0; i < SIP_TXQUEUELEN; i++) {
568 if (sc->sc_txsoft[i].txs_dmamap != NULL)
569 bus_dmamap_destroy(sc->sc_dmat,
570 sc->sc_txsoft[i].txs_dmamap);
571 }
572 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
573 fail_3:
574 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
575 fail_2:
576 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
577 sizeof(struct sip_control_data));
578 fail_1:
579 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
580 fail_0:
581 return;
582 }
583
584 /*
585 * sip_shutdown:
586 *
587 * Make sure the interface is stopped at reboot time.
588 */
589 void
590 sip_shutdown(arg)
591 void *arg;
592 {
593 struct sip_softc *sc = arg;
594
595 sip_stop(sc, 1);
596 }
597
598 /*
599 * sip_start: [ifnet interface function]
600 *
601 * Start packet transmission on the interface.
602 */
603 void
604 sip_start(ifp)
605 struct ifnet *ifp;
606 {
607 struct sip_softc *sc = ifp->if_softc;
608 struct mbuf *m0, *m;
609 struct sip_txsoft *txs;
610 bus_dmamap_t dmamap;
611 int error, firsttx, nexttx, lasttx, ofree, seg;
612
613 /*
614 * If we've been told to pause, don't transmit any more packets.
615 */
616 if (sc->sc_flags & SIPF_PAUSED)
617 ifp->if_flags |= IFF_OACTIVE;
618
619 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
620 return;
621
622 /*
623 * Remember the previous number of free descriptors and
624 * the first descriptor we'll use.
625 */
626 ofree = sc->sc_txfree;
627 firsttx = sc->sc_txnext;
628
629 /*
630 * Loop through the send queue, setting up transmit descriptors
631 * until we drain the queue, or use up all available transmit
632 * descriptors.
633 */
634 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
635 sc->sc_txfree != 0) {
636 /*
637 * Grab a packet off the queue.
638 */
639 IF_DEQUEUE(&ifp->if_snd, m0);
640 if (m0 == NULL)
641 break;
642
643 dmamap = txs->txs_dmamap;
644
645 /*
646 * Load the DMA map. If this fails, the packet either
647 * didn't fit in the alloted number of segments, or we
648 * were short on resources. In this case, we'll copy
649 * and try again.
650 */
651 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
652 BUS_DMA_NOWAIT) != 0) {
653 MGETHDR(m, M_DONTWAIT, MT_DATA);
654 if (m == NULL) {
655 printf("%s: unable to allocate Tx mbuf\n",
656 sc->sc_dev.dv_xname);
657 IF_PREPEND(&ifp->if_snd, m0);
658 break;
659 }
660 if (m0->m_pkthdr.len > MHLEN) {
661 MCLGET(m, M_DONTWAIT);
662 if ((m->m_flags & M_EXT) == 0) {
663 printf("%s: unable to allocate Tx "
664 "cluster\n", sc->sc_dev.dv_xname);
665 m_freem(m);
666 IF_PREPEND(&ifp->if_snd, m0);
667 break;
668 }
669 }
670 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
671 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
672 m_freem(m0);
673 m0 = m;
674 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
675 m0, BUS_DMA_NOWAIT);
676 if (error) {
677 printf("%s: unable to load Tx buffer, "
678 "error = %d\n", sc->sc_dev.dv_xname, error);
679 IF_PREPEND(&ifp->if_snd, m0);
680 break;
681 }
682 }
683
684 /*
685 * Ensure we have enough descriptors free to describe
686 * the packet.
687 */
688 if (dmamap->dm_nsegs > sc->sc_txfree) {
689 /*
690 * Not enough free descriptors to transmit this
691 * packet. We haven't committed anything yet,
692 * so just unload the DMA map, put the packet
693 * back on the queue, and punt. Notify the upper
694 * layer that there are not more slots left.
695 *
696 * XXX We could allocate an mbuf and copy, but
697 * XXX is it worth it?
698 */
699 ifp->if_flags |= IFF_OACTIVE;
700 bus_dmamap_unload(sc->sc_dmat, dmamap);
701 IF_PREPEND(&ifp->if_snd, m0);
702 break;
703 }
704
705 /*
706 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
707 */
708
709 /* Sync the DMA map. */
710 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
711 BUS_DMASYNC_PREWRITE);
712
713 /*
714 * Initialize the transmit descriptors.
715 */
716 for (nexttx = sc->sc_txnext, seg = 0;
717 seg < dmamap->dm_nsegs;
718 seg++, nexttx = SIP_NEXTTX(nexttx)) {
719 /*
720 * If this is the first descriptor we're
721 * enqueueing, don't set the OWN bit just
722 * yet. That could cause a race condition.
723 * We'll do it below.
724 */
725 sc->sc_txdescs[nexttx].sipd_bufptr =
726 dmamap->dm_segs[seg].ds_addr;
727 sc->sc_txdescs[nexttx].sipd_cmdsts =
728 (nexttx == firsttx ? 0 : CMDSTS_OWN) |
729 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
730 lasttx = nexttx;
731 }
732
733 /* Clear the MORE bit on the last segment. */
734 sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
735
736 /* Sync the descriptors we're using. */
737 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
738 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
739
740 /*
741 * Store a pointer to the packet so we can free it later,
742 * and remember what txdirty will be once the packet is
743 * done.
744 */
745 txs->txs_mbuf = m0;
746 txs->txs_firstdesc = sc->sc_txnext;
747 txs->txs_lastdesc = lasttx;
748
749 /* Advance the tx pointer. */
750 sc->sc_txfree -= dmamap->dm_nsegs;
751 sc->sc_txnext = nexttx;
752
753 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
754 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
755
756 #if NBPFILTER > 0
757 /*
758 * Pass the packet to any BPF listeners.
759 */
760 if (ifp->if_bpf)
761 bpf_mtap(ifp->if_bpf, m0);
762 #endif /* NBPFILTER > 0 */
763 }
764
765 if (txs == NULL || sc->sc_txfree == 0) {
766 /* No more slots left; notify upper layer. */
767 ifp->if_flags |= IFF_OACTIVE;
768 }
769
770 if (sc->sc_txfree != ofree) {
771 /*
772 * Cause a descriptor interrupt to happen on the
773 * last packet we enqueued.
774 */
775 sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
776 SIP_CDTXSYNC(sc, lasttx, 1,
777 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778
779 /*
780 * The entire packet chain is set up. Give the
781 * first descrptor to the chip now.
782 */
783 sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
784 SIP_CDTXSYNC(sc, firsttx, 1,
785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786
787 /* Start the transmit process. */
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
789 CR_TXE) == 0) {
790 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
791 SIP_CDTXADDR(sc, firsttx));
792 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
793 }
794
795 /* Set a watchdog timer in case the chip flakes out. */
796 ifp->if_timer = 5;
797 }
798 }
799
800 /*
801 * sip_watchdog: [ifnet interface function]
802 *
803 * Watchdog timer handler.
804 */
805 void
806 sip_watchdog(ifp)
807 struct ifnet *ifp;
808 {
809 struct sip_softc *sc = ifp->if_softc;
810
811 /*
812 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
813 * If we get a timeout, try and sweep up transmit descriptors.
814 * If we manage to sweep them all up, ignore the lack of
815 * interrupt.
816 */
817 sip_txintr(sc);
818
819 if (sc->sc_txfree != SIP_NTXDESC) {
820 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
821 ifp->if_oerrors++;
822
823 /* Reset the interface. */
824 (void) sip_init(sc);
825 } else if (ifp->if_flags & IFF_DEBUG)
826 printf("%s: recovered from device timeout\n",
827 sc->sc_dev.dv_xname);
828
829 /* Try to get more packets going. */
830 sip_start(ifp);
831 }
832
833 /*
834 * sip_ioctl: [ifnet interface function]
835 *
836 * Handle control requests from the operator.
837 */
838 int
839 sip_ioctl(ifp, cmd, data)
840 struct ifnet *ifp;
841 u_long cmd;
842 caddr_t data;
843 {
844 struct sip_softc *sc = ifp->if_softc;
845 struct ifreq *ifr = (struct ifreq *)data;
846 struct ifaddr *ifa = (struct ifaddr *)data;
847 int s, error = 0;
848
849 s = splnet();
850
851 switch (cmd) {
852 case SIOCSIFADDR:
853 ifp->if_flags |= IFF_UP;
854
855 switch (ifa->ifa_addr->sa_family) {
856 #ifdef INET
857 case AF_INET:
858 if ((error = sip_init(sc)) != 0)
859 break;
860 arp_ifinit(ifp, ifa);
861 break;
862 #endif /* INET */
863 #ifdef NS
864 case AF_NS:
865 {
866 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
867
868 if (ns_nullhost(*ina))
869 ina->x_host = *(union ns_host *)
870 LLADDR(ifp->if_sadl);
871 else
872 memcpy(LLADDR(ifp->if_sadl),
873 ina->x_host.c_host, ifp->if_addrlen);
874 error = sip_init(sc);
875 break;
876 }
877 #endif /* NS */
878 default:
879 error = sip_init(sc);
880 break;
881 }
882 break;
883
884 case SIOCSIFMTU:
885 if (ifr->ifr_mtu > ETHERMTU)
886 error = EINVAL;
887 else
888 ifp->if_mtu = ifr->ifr_mtu;
889 break;
890
891 case SIOCSIFFLAGS:
892 if ((ifp->if_flags & IFF_UP) == 0 &&
893 (ifp->if_flags & IFF_RUNNING) != 0) {
894 /*
895 * If interface is marked down and it is running, then
896 * stop it.
897 */
898 sip_stop(sc, 1);
899 } else if ((ifp->if_flags & IFF_UP) != 0 &&
900 (ifp->if_flags & IFF_RUNNING) == 0) {
901 /*
902 * If interfase it marked up and it is stopped, then
903 * start it.
904 */
905 error = sip_init(sc);
906 } else if ((ifp->if_flags & IFF_UP) != 0) {
907 /*
908 * Reset the interface to pick up changes in any other
909 * flags that affect the hardware state.
910 */
911 error = sip_init(sc);
912 }
913 break;
914
915 case SIOCADDMULTI:
916 case SIOCDELMULTI:
917 error = (cmd == SIOCADDMULTI) ?
918 ether_addmulti(ifr, &sc->sc_ethercom) :
919 ether_delmulti(ifr, &sc->sc_ethercom);
920
921 if (error == ENETRESET) {
922 /*
923 * Multicast list has changed; set the hardware filter
924 * accordingly.
925 */
926 sip_set_filter(sc);
927 error = 0;
928 }
929 break;
930
931 case SIOCSIFMEDIA:
932 case SIOCGIFMEDIA:
933 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
934 break;
935
936 default:
937 error = EINVAL;
938 break;
939 }
940
941 /* Try to get more packets going. */
942 sip_start(ifp);
943
944 splx(s);
945 return (error);
946 }
947
948 /*
949 * sip_intr:
950 *
951 * Interrupt service routine.
952 */
953 int
954 sip_intr(arg)
955 void *arg;
956 {
957 struct sip_softc *sc = arg;
958 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
959 u_int32_t isr;
960 int handled = 0;
961
962 for (;;) {
963 /* Reading clears interrupt. */
964 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
965 if ((isr & sc->sc_imr) == 0)
966 break;
967
968 handled = 1;
969
970 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
971 /* Grab any new packets. */
972 sip_rxintr(sc);
973
974 if (isr & ISR_RXORN) {
975 printf("%s: receive FIFO overrun\n",
976 sc->sc_dev.dv_xname);
977
978 /* XXX adjust rx_drain_thresh? */
979 }
980
981 if (isr & ISR_RXIDLE) {
982 printf("%s: receive ring overrun\n",
983 sc->sc_dev.dv_xname);
984
985 /* Get the receive process going again. */
986 bus_space_write_4(sc->sc_st, sc->sc_sh,
987 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
988 bus_space_write_4(sc->sc_st, sc->sc_sh,
989 SIP_CR, CR_RXE);
990 }
991 }
992
993 if (isr & (ISR_TXURN|ISR_TXDESC)) {
994 /* Sweep up transmit descriptors. */
995 sip_txintr(sc);
996
997 if (isr & ISR_TXURN) {
998 u_int32_t thresh;
999
1000 printf("%s: transmit FIFO underrun",
1001 sc->sc_dev.dv_xname);
1002
1003 thresh = sc->sc_tx_drain_thresh + 1;
1004 if (thresh <= TXCFG_DRTH &&
1005 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1006 (sc->sc_tx_fill_thresh * 32))) {
1007 printf("; increasing Tx drain "
1008 "threshold to %u bytes\n",
1009 thresh * 32);
1010 sc->sc_tx_drain_thresh = thresh;
1011 (void) sip_init(sc);
1012 } else {
1013 (void) sip_init(sc);
1014 printf("\n");
1015 }
1016 }
1017 }
1018
1019 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1020 if (isr & ISR_PAUSE_ST) {
1021 sc->sc_flags |= SIPF_PAUSED;
1022 ifp->if_flags |= IFF_OACTIVE;
1023 }
1024 if (isr & ISR_PAUSE_END) {
1025 sc->sc_flags &= ~SIPF_PAUSED;
1026 ifp->if_flags &= ~IFF_OACTIVE;
1027 }
1028 }
1029
1030 if (isr & ISR_HIBERR) {
1031 #define PRINTERR(bit, str) \
1032 if (isr & (bit)) \
1033 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1034 PRINTERR(ISR_DPERR, "parity error");
1035 PRINTERR(ISR_SSERR, "system error");
1036 PRINTERR(ISR_RMABT, "master abort");
1037 PRINTERR(ISR_RTABT, "target abort");
1038 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1039 (void) sip_init(sc);
1040 #undef PRINTERR
1041 }
1042 }
1043
1044 /* Try to get more packets going. */
1045 sip_start(ifp);
1046
1047 return (handled);
1048 }
1049
1050 /*
1051 * sip_txintr:
1052 *
1053 * Helper; handle transmit interrupts.
1054 */
1055 void
1056 sip_txintr(sc)
1057 struct sip_softc *sc;
1058 {
1059 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1060 struct sip_txsoft *txs;
1061 u_int32_t cmdsts;
1062
1063 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1064 ifp->if_flags &= ~IFF_OACTIVE;
1065
1066 /*
1067 * Go through our Tx list and free mbufs for those
1068 * frames which have been transmitted.
1069 */
1070 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1071 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1072 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1073
1074 cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1075 if (cmdsts & CMDSTS_OWN)
1076 break;
1077
1078 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1079
1080 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1081
1082 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1083 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1084 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1085 m_freem(txs->txs_mbuf);
1086 txs->txs_mbuf = NULL;
1087
1088 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1089
1090 /*
1091 * Check for errors and collisions.
1092 */
1093 if (cmdsts &
1094 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1095 if (ifp->if_flags & IFF_DEBUG) {
1096 if (CMDSTS_Tx_ED)
1097 printf("%s: excessive deferral\n",
1098 sc->sc_dev.dv_xname);
1099 if (CMDSTS_Tx_EC) {
1100 printf("%s: excessive collisions\n",
1101 sc->sc_dev.dv_xname);
1102 ifp->if_collisions += 16;
1103 }
1104 }
1105 } else {
1106 /* Packet was transmitted successfully. */
1107 ifp->if_opackets++;
1108 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1109 }
1110 }
1111
1112 /*
1113 * If there are no more pending transmissions, cancel the watchdog
1114 * timer.
1115 */
1116 if (txs == NULL)
1117 ifp->if_timer = 0;
1118 }
1119
1120 /*
1121 * sip_rxintr:
1122 *
1123 * Helper; handle receive interrupts.
1124 */
1125 void
1126 sip_rxintr(sc)
1127 struct sip_softc *sc;
1128 {
1129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1130 struct ether_header *eh;
1131 struct sip_rxsoft *rxs;
1132 struct mbuf *m;
1133 u_int32_t cmdsts;
1134 int i, len;
1135
1136 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1137 rxs = &sc->sc_rxsoft[i];
1138
1139 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140
1141 cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
1142
1143 /*
1144 * NOTE: OWN is set if owned by _consumer_. We're the
1145 * consumer of the receive ring, so if the bit is clear,
1146 * we have processed all of the packets.
1147 */
1148 if ((cmdsts & CMDSTS_OWN) == 0) {
1149 /*
1150 * We have processed all of the receive buffers.
1151 */
1152 break;
1153 }
1154
1155 /*
1156 * If any collisions were seen on the wire, count one.
1157 */
1158 if (cmdsts & CMDSTS_Rx_COL)
1159 ifp->if_collisions++;
1160
1161 /*
1162 * If an error occurred, update stats, clear the status
1163 * word, and leave the packet buffer in place. It will
1164 * simply be reused the next time the ring comes around.
1165 */
1166 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1167 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1168 ifp->if_ierrors++;
1169 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1170 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1171 /* Receive overrun handled elsewhere. */
1172 printf("%s: receive descriptor error\n",
1173 sc->sc_dev.dv_xname);
1174 }
1175 #define PRINTERR(bit, str) \
1176 if (cmdsts & (bit)) \
1177 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1178 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1179 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1180 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1181 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1182 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1183 #undef PRINTERR
1184 SIP_INIT_RXDESC(sc, i);
1185 continue;
1186 }
1187
1188 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1190
1191 /*
1192 * No errors; receive the packet. Note, the SiS 900
1193 * includes the CRC with every packet; trim it.
1194 */
1195 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1196
1197 #ifdef __NO_STRICT_ALIGNMENT
1198 /*
1199 * If the packet is small enough to fit in a
1200 * single header mbuf, allocate one and copy
1201 * the data into it. This greatly reduces
1202 * memory consumption when we receive lots
1203 * of small packets.
1204 *
1205 * Otherwise, we add a new buffer to the receive
1206 * chain. If this fails, we drop the packet and
1207 * recycle the old buffer.
1208 */
1209 if (sip_copy_small != 0 && len <= MHLEN) {
1210 MGETHDR(m, M_DONTWAIT, MT_DATA);
1211 if (m == NULL)
1212 goto dropit;
1213 memcpy(mtod(m, caddr_t),
1214 mtod(rxs->rxs_mbuf, caddr_t), len);
1215 SIP_INIT_RXDESC(sc, i);
1216 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 rxs->rxs_dmamap->dm_mapsize,
1218 BUS_DMASYNC_PREREAD);
1219 } else {
1220 m = rxs->rxs_mbuf;
1221 if (sip_add_rxbuf(sc, i) != 0) {
1222 dropit:
1223 ifp->if_ierrors++;
1224 SIP_INIT_RXDESC(sc, i);
1225 bus_dmamap_sync(sc->sc_dmat,
1226 rxs->rxs_dmamap, 0,
1227 rxs->rxs_dmamap->dm_mapsize,
1228 BUS_DMASYNC_PREREAD);
1229 continue;
1230 }
1231 }
1232 #else
1233 /*
1234 * The SiS 900's receive buffers must be 4-byte aligned.
1235 * But this means that the data after the Ethernet header
1236 * is misaligned. We must allocate a new buffer and
1237 * copy the data, shifted forward 2 bytes.
1238 */
1239 MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 if (m == NULL) {
1241 dropit:
1242 ifp->if_ierrors++;
1243 SIP_INIT_RXDESC(sc, i);
1244 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1245 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1246 continue;
1247 }
1248 if (len > (MHLEN - 2)) {
1249 MCLGET(m, M_DONTWAIT);
1250 if ((m->m_flags & M_EXT) == 0) {
1251 m_freem(m);
1252 goto dropit;
1253 }
1254 }
1255 m->m_data += 2;
1256
1257 /*
1258 * Note that we use clusters for incoming frames, so the
1259 * buffer is virtually contiguous.
1260 */
1261 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1262
1263 /* Allow the receive descriptor to continue using its mbuf. */
1264 SIP_INIT_RXDESC(sc, i);
1265 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1266 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1267 #endif /* __NO_STRICT_ALIGNMENT */
1268
1269 ifp->if_ipackets++;
1270 eh = mtod(m, struct ether_header *);
1271 m->m_pkthdr.rcvif = ifp;
1272 m->m_pkthdr.len = m->m_len = len;
1273
1274 #if NBPFILTER > 0
1275 /*
1276 * Pass this up to any BPF listeners, but only
1277 * pass if up the stack if it's for us.
1278 */
1279 if (ifp->if_bpf) {
1280 bpf_mtap(ifp->if_bpf, m);
1281 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1282 (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1283 m_freem(m);
1284 continue;
1285 }
1286 }
1287 #endif /* NBPFILTER > 0 */
1288
1289 /* Pass it on. */
1290 (*ifp->if_input)(ifp, m);
1291 }
1292
1293 /* Update the receive pointer. */
1294 sc->sc_rxptr = i;
1295 }
1296
1297 /*
1298 * sip_tick:
1299 *
1300 * One second timer, used to tick the MII.
1301 */
1302 void
1303 sip_tick(arg)
1304 void *arg;
1305 {
1306 struct sip_softc *sc = arg;
1307 int s;
1308
1309 s = splnet();
1310 mii_tick(&sc->sc_mii);
1311 splx(s);
1312
1313 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1314 }
1315
1316 /*
1317 * sip_reset:
1318 *
1319 * Perform a soft reset on the SiS 900.
1320 */
1321 void
1322 sip_reset(sc)
1323 struct sip_softc *sc;
1324 {
1325 bus_space_tag_t st = sc->sc_st;
1326 bus_space_handle_t sh = sc->sc_sh;
1327 int i;
1328
1329 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1330
1331 for (i = 0; i < 1000; i++) {
1332 if ((bus_space_read_4(st, sh, SIP_ISR) &
1333 (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
1334 return;
1335 delay(2);
1336 }
1337
1338 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1339 }
1340
1341 /*
1342 * sip_init:
1343 *
1344 * Initialize the interface. Must be called at splnet().
1345 */
1346 int
1347 sip_init(sc)
1348 struct sip_softc *sc;
1349 {
1350 bus_space_tag_t st = sc->sc_st;
1351 bus_space_handle_t sh = sc->sc_sh;
1352 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1353 struct sip_txsoft *txs;
1354 struct sip_rxsoft *rxs;
1355 struct sip_desc *sipd;
1356 u_int32_t cfg;
1357 int i, error = 0;
1358
1359 /*
1360 * Cancel any pending I/O.
1361 */
1362 sip_stop(sc, 0);
1363
1364 /*
1365 * Reset the chip to a known state.
1366 */
1367 sip_reset(sc);
1368
1369 /*
1370 * Initialize the transmit descriptor ring.
1371 */
1372 for (i = 0; i < SIP_NTXDESC; i++) {
1373 sipd = &sc->sc_txdescs[i];
1374 memset(sipd, 0, sizeof(struct sip_desc));
1375 sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
1376 }
1377 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1378 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1379 sc->sc_txfree = SIP_NTXDESC;
1380 sc->sc_txnext = 0;
1381
1382 /*
1383 * Initialize the transmit job descriptors.
1384 */
1385 SIMPLEQ_INIT(&sc->sc_txfreeq);
1386 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1387 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1388 txs = &sc->sc_txsoft[i];
1389 txs->txs_mbuf = NULL;
1390 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1391 }
1392
1393 /*
1394 * Initialize the receive descriptor and receive job
1395 * descriptor rings.
1396 */
1397 for (i = 0; i < SIP_NRXDESC; i++) {
1398 rxs = &sc->sc_rxsoft[i];
1399 if (rxs->rxs_mbuf == NULL) {
1400 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1401 printf("%s: unable to allocate or map rx "
1402 "buffer %d, error = %d\n",
1403 sc->sc_dev.dv_xname, i, error);
1404 /*
1405 * XXX Should attempt to run with fewer receive
1406 * XXX buffers instead of just failing.
1407 */
1408 sip_rxdrain(sc);
1409 goto out;
1410 }
1411 }
1412 }
1413 sc->sc_rxptr = 0;
1414
1415 /*
1416 * Initialize the configuration register: aggressive PCI
1417 * bus request algorithm, default backoff, default OW timer,
1418 * default parity error detection.
1419 */
1420 cfg = 0;
1421 #if BYTE_ORDER == BIG_ENDIAN
1422 /*
1423 * ...descriptors in big-endian mode.
1424 */
1425 cfg |= CFG_BEM;
1426 #endif
1427 bus_space_write_4(st, sh, SIP_CFG, cfg);
1428
1429 /*
1430 * Initialize the transmit fill and drain thresholds if
1431 * we have never done so.
1432 */
1433 if (sc->sc_tx_fill_thresh == 0) {
1434 /*
1435 * XXX This value should be tuned. This is the
1436 * minimum (32 bytes), and we may be able to
1437 * improve performance by increasing it.
1438 */
1439 sc->sc_tx_fill_thresh = 1;
1440 }
1441 if (sc->sc_tx_drain_thresh == 0) {
1442 /*
1443 * Start at a drain threshold of 128 bytes. We will
1444 * increase it if a DMA underrun occurs.
1445 *
1446 * XXX The minimum value of this variable should be
1447 * tuned. We may be able to improve performance
1448 * by starting with a lower value. That, however,
1449 * may trash the first few outgoing packets if the
1450 * PCI bus is saturated.
1451 */
1452 sc->sc_tx_drain_thresh = 4;
1453 }
1454
1455 /*
1456 * Initialize the prototype TXCFG register.
1457 */
1458 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1459 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1460 sc->sc_tx_drain_thresh;
1461 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1462
1463 /*
1464 * Initialize the receive drain threshold if we have never
1465 * done so.
1466 */
1467 if (sc->sc_rx_drain_thresh == 0) {
1468 /*
1469 * XXX This value should be tuned. This is set to the
1470 * maximum of 248 bytes, and we may be able to improve
1471 * performance by decreasing it (although we should never
1472 * set this value lower than 2; 14 bytes are required to
1473 * filter the packet).
1474 */
1475 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1476 }
1477
1478 /*
1479 * Initialize the prototype RXCFG register.
1480 */
1481 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1482 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1483 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1484
1485 /* Set up the receive filter. */
1486 sip_set_filter(sc);
1487
1488 /*
1489 * Give the transmit and receive rings to the chip.
1490 */
1491 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1492 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1493
1494 /*
1495 * Initialize the interrupt mask.
1496 */
1497 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1498 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1499 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1500
1501 /*
1502 * Set the current media. Do this after initializing the prototype
1503 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1504 * control.
1505 */
1506 mii_mediachg(&sc->sc_mii);
1507
1508 /*
1509 * Enable interrupts.
1510 */
1511 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1512
1513 /*
1514 * Start the transmit and receive processes.
1515 */
1516 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1517
1518 /*
1519 * Start the one second MII clock.
1520 */
1521 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1522
1523 /*
1524 * ...all done!
1525 */
1526 ifp->if_flags |= IFF_RUNNING;
1527 ifp->if_flags &= ~IFF_OACTIVE;
1528
1529 out:
1530 if (error)
1531 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1532 return (error);
1533 }
1534
1535 /*
1536 * sip_drain:
1537 *
1538 * Drain the receive queue.
1539 */
1540 void
1541 sip_rxdrain(sc)
1542 struct sip_softc *sc;
1543 {
1544 struct sip_rxsoft *rxs;
1545 int i;
1546
1547 for (i = 0; i < SIP_NRXDESC; i++) {
1548 rxs = &sc->sc_rxsoft[i];
1549 if (rxs->rxs_mbuf != NULL) {
1550 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1551 m_freem(rxs->rxs_mbuf);
1552 rxs->rxs_mbuf = NULL;
1553 }
1554 }
1555 }
1556
1557 /*
1558 * sip_stop:
1559 *
1560 * Stop transmission on the interface.
1561 */
1562 void
1563 sip_stop(sc, drain)
1564 struct sip_softc *sc;
1565 {
1566 bus_space_tag_t st = sc->sc_st;
1567 bus_space_handle_t sh = sc->sc_sh;
1568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1569 struct sip_txsoft *txs;
1570 u_int32_t cmdsts = 0; /* DEBUG */
1571
1572 /*
1573 * Stop the one second clock.
1574 */
1575 callout_stop(&sc->sc_tick_ch);
1576
1577 /* Down the MII. */
1578 mii_down(&sc->sc_mii);
1579
1580 /*
1581 * Disable interrupts.
1582 */
1583 bus_space_write_4(st, sh, SIP_IER, 0);
1584
1585 /*
1586 * Stop receiver and transmitter.
1587 */
1588 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1589
1590 /*
1591 * Release any queued transmit buffers.
1592 */
1593 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1594 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1595 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1596 (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
1597 CMDSTS_INTR) == 0)
1598 printf("%s: sip_stop: last descriptor does not "
1599 "have INTR bit set\n", sc->sc_dev.dv_xname);
1600 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1601 #ifdef DIAGNOSTIC
1602 if (txs->txs_mbuf == NULL) {
1603 printf("%s: dirty txsoft with no mbuf chain\n",
1604 sc->sc_dev.dv_xname);
1605 panic("sip_stop");
1606 }
1607 #endif
1608 cmdsts |= /* DEBUG */
1609 sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1610 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1611 m_freem(txs->txs_mbuf);
1612 txs->txs_mbuf = NULL;
1613 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1614 }
1615
1616 if (drain) {
1617 /*
1618 * Release the receive buffers.
1619 */
1620 sip_rxdrain(sc);
1621 }
1622
1623 /*
1624 * Mark the interface down and cancel the watchdog timer.
1625 */
1626 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1627 ifp->if_timer = 0;
1628
1629 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1630 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1631 printf("%s: sip_stop: no INTR bits set in dirty tx "
1632 "descriptors\n", sc->sc_dev.dv_xname);
1633 }
1634
1635 /*
1636 * sip_read_eeprom:
1637 *
1638 * Read data from the serial EEPROM.
1639 */
1640 void
1641 sip_read_eeprom(sc, word, wordcnt, data)
1642 struct sip_softc *sc;
1643 int word, wordcnt;
1644 u_int16_t *data;
1645 {
1646 bus_space_tag_t st = sc->sc_st;
1647 bus_space_handle_t sh = sc->sc_sh;
1648 u_int16_t reg;
1649 int i, x;
1650
1651 for (i = 0; i < wordcnt; i++) {
1652 /* Send CHIP SELECT. */
1653 reg = EROMAR_EECS;
1654 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1655
1656 /* Shift in the READ opcode. */
1657 for (x = 3; x > 0; x--) {
1658 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1659 reg |= EROMAR_EEDI;
1660 else
1661 reg &= ~EROMAR_EEDI;
1662 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1663 bus_space_write_4(st, sh, SIP_EROMAR,
1664 reg | EROMAR_EESK);
1665 delay(4);
1666 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1667 delay(4);
1668 }
1669
1670 /* Shift in address. */
1671 for (x = 6; x > 0; x--) {
1672 if ((word + i) & (1 << (x - 1)))
1673 reg |= EROMAR_EEDI;
1674 else
1675 reg &= ~EROMAR_EEDI;
1676 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1677 bus_space_write_4(st, sh, SIP_EROMAR,
1678 reg | EROMAR_EESK);
1679 delay(4);
1680 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1681 delay(4);
1682 }
1683
1684 /* Shift out data. */
1685 reg = EROMAR_EECS;
1686 data[i] = 0;
1687 for (x = 16; x > 0; x--) {
1688 bus_space_write_4(st, sh, SIP_EROMAR,
1689 reg | EROMAR_EESK);
1690 delay(4);
1691 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1692 data[i] |= (1 << (x - 1));
1693 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1694 delay(4);
1695 }
1696
1697 /* Clear CHIP SELECT. */
1698 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1699 delay(4);
1700 }
1701 }
1702
1703 /*
1704 * sip_add_rxbuf:
1705 *
1706 * Add a receive buffer to the indicated descriptor.
1707 */
1708 int
1709 sip_add_rxbuf(sc, idx)
1710 struct sip_softc *sc;
1711 int idx;
1712 {
1713 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1714 struct mbuf *m;
1715 int error;
1716
1717 MGETHDR(m, M_DONTWAIT, MT_DATA);
1718 if (m == NULL)
1719 return (ENOBUFS);
1720
1721 MCLGET(m, M_DONTWAIT);
1722 if ((m->m_flags & M_EXT) == 0) {
1723 m_freem(m);
1724 return (ENOBUFS);
1725 }
1726
1727 if (rxs->rxs_mbuf != NULL)
1728 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1729
1730 rxs->rxs_mbuf = m;
1731
1732 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1733 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1734 if (error) {
1735 printf("%s: can't load rx DMA map %d, error = %d\n",
1736 sc->sc_dev.dv_xname, idx, error);
1737 panic("sip_add_rxbuf"); /* XXX */
1738 }
1739
1740 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1741 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1742
1743 SIP_INIT_RXDESC(sc, idx);
1744
1745 return (0);
1746 }
1747
1748 /*
1749 * sip_set_filter:
1750 *
1751 * Set up the receive filter.
1752 */
1753 void
1754 sip_set_filter(sc)
1755 struct sip_softc *sc;
1756 {
1757 bus_space_tag_t st = sc->sc_st;
1758 bus_space_handle_t sh = sc->sc_sh;
1759 struct ethercom *ec = &sc->sc_ethercom;
1760 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1761 struct ether_multi *enm;
1762 u_int8_t *cp;
1763 struct ether_multistep step;
1764 u_int32_t crc, mchash[8];
1765
1766 /*
1767 * Initialize the prototype RFCR.
1768 */
1769 sc->sc_rfcr = RFCR_RFEN;
1770 if (ifp->if_flags & IFF_BROADCAST)
1771 sc->sc_rfcr |= RFCR_AAB;
1772 if (ifp->if_flags & IFF_PROMISC) {
1773 sc->sc_rfcr |= RFCR_AAP;
1774 goto allmulti;
1775 }
1776
1777 /*
1778 * Set up the multicast address filter by passing all multicast
1779 * addresses through a CRC generator, and then using the high-order
1780 * 6 bits as an index into the 128 bit multicast hash table (only
1781 * the lower 16 bits of each 32 bit multicast hash register are
1782 * valid). The high order bits select the register, while the
1783 * rest of the bits select the bit within the register.
1784 */
1785
1786 memset(mchash, 0, sizeof(mchash));
1787
1788 ETHER_FIRST_MULTI(step, ec, enm);
1789 while (enm != NULL) {
1790 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1791 /*
1792 * We must listen to a range of multicast addresses.
1793 * For now, just accept all multicasts, rather than
1794 * trying to set only those filter bits needed to match
1795 * the range. (At this time, the only use of address
1796 * ranges is for IP multicast routing, for which the
1797 * range is big enough to require all bits set.)
1798 */
1799 goto allmulti;
1800 }
1801
1802 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1803
1804 /* Just want the 7 most significant bits. */
1805 crc >>= 25;
1806
1807 /* Set the corresponding bit in the hash table. */
1808 mchash[crc >> 4] |= 1 << (crc & 0xf);
1809
1810 ETHER_NEXT_MULTI(step, enm);
1811 }
1812
1813 ifp->if_flags &= ~IFF_ALLMULTI;
1814 goto setit;
1815
1816 allmulti:
1817 ifp->if_flags |= IFF_ALLMULTI;
1818 sc->sc_rfcr |= RFCR_AAM;
1819
1820 setit:
1821 #define FILTER_EMIT(addr, data) \
1822 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1823 bus_space_write_4(st, sh, SIP_RFDR, (data))
1824
1825 /*
1826 * Disable receive filter, and program the node address.
1827 */
1828 cp = LLADDR(ifp->if_sadl);
1829 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1830 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1831 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1832
1833 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1834 /*
1835 * Program the multicast hash table.
1836 */
1837 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1838 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1839 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1840 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1841 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1842 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1843 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1844 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1845 }
1846 #undef FILTER_EMIT
1847
1848 /*
1849 * Re-enable the receiver filter.
1850 */
1851 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1852 }
1853
1854 /*
1855 * sip_mii_readreg: [mii interface function]
1856 *
1857 * Read a PHY register on the MII.
1858 */
1859 int
1860 sip_mii_readreg(self, phy, reg)
1861 struct device *self;
1862 int phy, reg;
1863 {
1864 struct sip_softc *sc = (struct sip_softc *) self;
1865 u_int32_t enphy;
1866
1867 /*
1868 * The SiS 900 has only an internal PHY on the MII. Only allow
1869 * MII address 0.
1870 */
1871 if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1872 return (0);
1873
1874 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1875 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1876 ENPHY_RWCMD | ENPHY_ACCESS);
1877 do {
1878 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1879 } while (enphy & ENPHY_ACCESS);
1880 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1881 }
1882
1883 /*
1884 * sip_mii_writereg: [mii interface function]
1885 *
1886 * Write a PHY register on the MII.
1887 */
1888 void
1889 sip_mii_writereg(self, phy, reg, val)
1890 struct device *self;
1891 int phy, reg, val;
1892 {
1893 struct sip_softc *sc = (struct sip_softc *) self;
1894 u_int32_t enphy;
1895
1896 /*
1897 * The SiS 900 has only an internal PHY on the MII. Only allow
1898 * MII address 0.
1899 */
1900 if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1901 return;
1902
1903 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1904 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1905 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1906 do {
1907 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1908 } while (enphy & ENPHY_ACCESS);
1909 }
1910
1911 /*
1912 * sip_mii_statchg: [mii interface function]
1913 *
1914 * Callback from MII layer when media changes.
1915 */
1916 void
1917 sip_mii_statchg(self)
1918 struct device *self;
1919 {
1920 struct sip_softc *sc = (struct sip_softc *) self;
1921 u_int32_t flowctl;
1922
1923 /*
1924 * Update TXCFG for full-duplex operation.
1925 */
1926 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1927 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
1928 else
1929 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
1930
1931 /*
1932 * Update RXCFG for full-duplex or loopback.
1933 */
1934 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
1935 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
1936 sc->sc_rxcfg |= RXCFG_ATX;
1937 else
1938 sc->sc_rxcfg &= ~RXCFG_ATX;
1939
1940 /*
1941 * Update IMR for use of 802.3x flow control.
1942 */
1943 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
1944 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
1945 flowctl = FLOWCTL_FLOWEN;
1946 } else {
1947 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
1948 flowctl = 0;
1949 }
1950
1951 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
1952 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
1953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
1954 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
1955 }
1956
1957 /*
1958 * sip_mediastatus: [ifmedia interface function]
1959 *
1960 * Get the current interface media status.
1961 */
1962 void
1963 sip_mediastatus(ifp, ifmr)
1964 struct ifnet *ifp;
1965 struct ifmediareq *ifmr;
1966 {
1967 struct sip_softc *sc = ifp->if_softc;
1968
1969 mii_pollstat(&sc->sc_mii);
1970 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1971 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1972 }
1973
1974 /*
1975 * sip_mediachange: [ifmedia interface function]
1976 *
1977 * Set hardware to newly-selected media.
1978 */
1979 int
1980 sip_mediachange(ifp)
1981 struct ifnet *ifp;
1982 {
1983 struct sip_softc *sc = ifp->if_softc;
1984
1985 if (ifp->if_flags & IFF_UP)
1986 mii_mediachg(&sc->sc_mii);
1987 return (0);
1988 }
1989