Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.13
      1 /*	$NetBSD: if_sip.c,v 1.13 2000/08/04 09:30:56 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 #include <sys/queue.h>
     54 
     55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/if_inarp.h>
     69 #endif
     70 
     71 #ifdef NS
     72 #include <netns/ns.h>
     73 #include <netns/ns_if.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/mii/miivar.h>
     80 
     81 #include <dev/pci/pcireg.h>
     82 #include <dev/pci/pcivar.h>
     83 #include <dev/pci/pcidevs.h>
     84 
     85 #include <dev/pci/if_sipreg.h>
     86 
     87 /*
     88  * Devices supported by this driver.
     89  */
     90 const struct sip_product {
     91 	pci_vendor_id_t		sip_vendor;
     92 	pci_product_id_t	sip_product;
     93 	const char		*sip_name;
     94 } sip_products[] = {
     95 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
     96 	  "SiS 900 10/100 Ethernet" },
     97 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
     98 	  "SiS 7016 10/100 Ethernet" },
     99 
    100 	{ 0,			0,
    101 	  NULL },
    102 };
    103 
    104 /*
    105  * Transmit descriptor list size.  This is arbitrary, but allocate
    106  * enough descriptors for 64 pending transmissions, and 16 segments
    107  * per packet.  This MUST work out to a power of 2.
    108  */
    109 #define	SIP_NTXSEGS		16
    110 
    111 #define	SIP_TXQUEUELEN		64
    112 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    113 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    114 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    115 
    116 /*
    117  * Receive descriptor list size.  We have one Rx buffer per incoming
    118  * packet, so this logic is a little simpler.
    119  */
    120 #define	SIP_NRXDESC		64
    121 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    122 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    123 
    124 /*
    125  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    126  * a single clump that maps to a single DMA segment to make several things
    127  * easier.
    128  */
    129 struct sip_control_data {
    130 	/*
    131 	 * The transmit descriptors.
    132 	 */
    133 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    134 
    135 	/*
    136 	 * The receive descriptors.
    137 	 */
    138 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    139 };
    140 
    141 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    142 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    143 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    144 
    145 /*
    146  * Software state for transmit jobs.
    147  */
    148 struct sip_txsoft {
    149 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    150 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    151 	int txs_firstdesc;		/* first descriptor in packet */
    152 	int txs_lastdesc;		/* last descriptor in packet */
    153 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    154 };
    155 
    156 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    157 
    158 /*
    159  * Software state for receive jobs.
    160  */
    161 struct sip_rxsoft {
    162 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    163 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    164 };
    165 
    166 /*
    167  * Software state per device.
    168  */
    169 struct sip_softc {
    170 	struct device sc_dev;		/* generic device information */
    171 	bus_space_tag_t sc_st;		/* bus space tag */
    172 	bus_space_handle_t sc_sh;	/* bus space handle */
    173 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    174 	struct ethercom sc_ethercom;	/* ethernet common data */
    175 	void *sc_sdhook;		/* shutdown hook */
    176 	pci_product_id_t sc_model;	/* which model are we? */
    177 
    178 	void *sc_ih;			/* interrupt cookie */
    179 
    180 	struct mii_data sc_mii;		/* MII/media information */
    181 
    182 	struct callout sc_tick_ch;	/* tick callout */
    183 
    184 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    185 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    186 
    187 	/*
    188 	 * Software state for transmit and receive descriptors.
    189 	 */
    190 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    191 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    192 
    193 	/*
    194 	 * Control data structures.
    195 	 */
    196 	struct sip_control_data *sc_control_data;
    197 #define	sc_txdescs	sc_control_data->scd_txdescs
    198 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    199 
    200 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    201 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    202 	u_int32_t sc_imr;		/* prototype IMR register */
    203 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    204 
    205 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    206 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    207 
    208 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    209 
    210 	int	sc_flags;		/* misc. flags; see below */
    211 
    212 	int	sc_txfree;		/* number of free Tx descriptors */
    213 	int	sc_txnext;		/* next ready Tx descriptor */
    214 
    215 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    216 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    217 
    218 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    219 };
    220 
    221 /* sc_flags */
    222 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    223 
    224 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    225 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    226 
    227 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    228 do {									\
    229 	int __x, __n;							\
    230 									\
    231 	__x = (x);							\
    232 	__n = (n);							\
    233 									\
    234 	/* If it will wrap around, sync to the end of the ring. */	\
    235 	if ((__x + __n) > SIP_NTXDESC) {				\
    236 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    237 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    238 		    (SIP_NTXDESC - __x), (ops));			\
    239 		__n -= (SIP_NTXDESC - __x);				\
    240 		__x = 0;						\
    241 	}								\
    242 									\
    243 	/* Now sync whatever is left. */				\
    244 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    245 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    246 } while (0)
    247 
    248 #define	SIP_CDRXSYNC(sc, x, ops)					\
    249 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    250 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    251 
    252 /*
    253  * Note we rely on MCLBYTES being a power of two below.
    254  */
    255 #define	SIP_INIT_RXDESC(sc, x)						\
    256 do {									\
    257 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    258 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    259 									\
    260 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
    261 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    262 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
    263 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
    264 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    265 } while (0)
    266 
    267 void	sip_start __P((struct ifnet *));
    268 void	sip_watchdog __P((struct ifnet *));
    269 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    270 
    271 void	sip_shutdown __P((void *));
    272 
    273 void	sip_reset __P((struct sip_softc *));
    274 int	sip_init __P((struct sip_softc *));
    275 void	sip_stop __P((struct sip_softc *, int));
    276 void	sip_rxdrain __P((struct sip_softc *));
    277 int	sip_add_rxbuf __P((struct sip_softc *, int));
    278 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    279 void	sip_set_filter __P((struct sip_softc *));
    280 void	sip_tick __P((void *));
    281 
    282 int	sip_intr __P((void *));
    283 void	sip_txintr __P((struct sip_softc *));
    284 void	sip_rxintr __P((struct sip_softc *));
    285 
    286 int	sip_mii_readreg __P((struct device *, int, int));
    287 void	sip_mii_writereg __P((struct device *, int, int, int));
    288 void	sip_mii_statchg __P((struct device *));
    289 
    290 int	sip_mediachange __P((struct ifnet *));
    291 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    292 
    293 int	sip_match __P((struct device *, struct cfdata *, void *));
    294 void	sip_attach __P((struct device *, struct device *, void *));
    295 
    296 int	sip_copy_small = 0;
    297 
    298 struct cfattach sip_ca = {
    299 	sizeof(struct sip_softc), sip_match, sip_attach,
    300 };
    301 
    302 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    303 
    304 const struct sip_product *
    305 sip_lookup(pa)
    306 	const struct pci_attach_args *pa;
    307 {
    308 	const struct sip_product *sip;
    309 
    310 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    311 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    312 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    313 			return (sip);
    314 	}
    315 	return (NULL);
    316 }
    317 
    318 int
    319 sip_match(parent, cf, aux)
    320 	struct device *parent;
    321 	struct cfdata *cf;
    322 	void *aux;
    323 {
    324 	struct pci_attach_args *pa = aux;
    325 
    326 	if (sip_lookup(pa) != NULL)
    327 		return (1);
    328 
    329 	return (0);
    330 }
    331 
    332 void
    333 sip_attach(parent, self, aux)
    334 	struct device *parent, *self;
    335 	void *aux;
    336 {
    337 	struct sip_softc *sc = (struct sip_softc *) self;
    338 	struct pci_attach_args *pa = aux;
    339 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    340 	pci_chipset_tag_t pc = pa->pa_pc;
    341 	pci_intr_handle_t ih;
    342 	const char *intrstr = NULL;
    343 	bus_space_tag_t iot, memt;
    344 	bus_space_handle_t ioh, memh;
    345 	bus_dma_segment_t seg;
    346 	int ioh_valid, memh_valid;
    347 	int i, rseg, error;
    348 	const struct sip_product *sip;
    349 	pcireg_t pmode;
    350 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
    351 	int pmreg;
    352 
    353 	callout_init(&sc->sc_tick_ch);
    354 
    355 	sip = sip_lookup(pa);
    356 	if (sip == NULL) {
    357 		printf("\n");
    358 		panic("sip_attach: impossible");
    359 	}
    360 
    361 	printf(": %s\n", sip->sip_name);
    362 
    363 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
    364 
    365 	/*
    366 	 * Map the device.
    367 	 */
    368 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    369 	    PCI_MAPREG_TYPE_IO, 0,
    370 	    &iot, &ioh, NULL, NULL) == 0);
    371 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    372 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    373 	    &memt, &memh, NULL, NULL) == 0);
    374 
    375 	if (memh_valid) {
    376 		sc->sc_st = memt;
    377 		sc->sc_sh = memh;
    378 	} else if (ioh_valid) {
    379 		sc->sc_st = iot;
    380 		sc->sc_sh = ioh;
    381 	} else {
    382 		printf("%s: unable to map device registers\n",
    383 		    sc->sc_dev.dv_xname);
    384 		return;
    385 	}
    386 
    387 	sc->sc_dmat = pa->pa_dmat;
    388 
    389 	/* Enable bus mastering. */
    390 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    391 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    392 	    PCI_COMMAND_MASTER_ENABLE);
    393 
    394 	/* Get it out of power save mode if needed. */
    395 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    396 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    397 		if (pmode == 3) {
    398 			/*
    399 			 * The card has lost all configuration data in
    400 			 * this state, so punt.
    401 			 */
    402 			printf("%s: unable to wake up from power state D3\n",
    403 			    sc->sc_dev.dv_xname);
    404 			return;
    405 		}
    406 		if (pmode != 0) {
    407 			printf("%s: waking up from power state D%d\n",
    408 			    sc->sc_dev.dv_xname, pmode);
    409 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    410 		}
    411 	}
    412 
    413 	/*
    414 	 * Map and establish our interrupt.
    415 	 */
    416 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    417 	    pa->pa_intrline, &ih)) {
    418 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    419 		return;
    420 	}
    421 	intrstr = pci_intr_string(pc, ih);
    422 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    423 	if (sc->sc_ih == NULL) {
    424 		printf("%s: unable to establish interrupt",
    425 		    sc->sc_dev.dv_xname);
    426 		if (intrstr != NULL)
    427 			printf(" at %s", intrstr);
    428 		printf("\n");
    429 		return;
    430 	}
    431 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    432 
    433 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    434 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    435 
    436 	/*
    437 	 * Allocate the control data structures, and create and load the
    438 	 * DMA map for it.
    439 	 */
    440 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    441 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    442 	    0)) != 0) {
    443 		printf("%s: unable to allocate control data, error = %d\n",
    444 		    sc->sc_dev.dv_xname, error);
    445 		goto fail_0;
    446 	}
    447 
    448 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    449 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    450 	    BUS_DMA_COHERENT)) != 0) {
    451 		printf("%s: unable to map control data, error = %d\n",
    452 		    sc->sc_dev.dv_xname, error);
    453 		goto fail_1;
    454 	}
    455 
    456 	if ((error = bus_dmamap_create(sc->sc_dmat,
    457 	    sizeof(struct sip_control_data), 1,
    458 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    459 		printf("%s: unable to create control data DMA map, "
    460 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    461 		goto fail_2;
    462 	}
    463 
    464 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    465 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    466 	    0)) != 0) {
    467 		printf("%s: unable to load control data DMA map, error = %d\n",
    468 		    sc->sc_dev.dv_xname, error);
    469 		goto fail_3;
    470 	}
    471 
    472 	/*
    473 	 * Create the transmit buffer DMA maps.
    474 	 */
    475 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    476 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    477 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    478 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    479 			printf("%s: unable to create tx DMA map %d, "
    480 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    481 			goto fail_4;
    482 		}
    483 	}
    484 
    485 	/*
    486 	 * Create the receive buffer DMA maps.
    487 	 */
    488 	for (i = 0; i < SIP_NRXDESC; i++) {
    489 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    490 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    491 			printf("%s: unable to create rx DMA map %d, "
    492 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    493 			goto fail_5;
    494 		}
    495 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    496 	}
    497 
    498 	/*
    499 	 * Reset the chip to a known state.
    500 	 */
    501 	sip_reset(sc);
    502 
    503 	/*
    504 	 * Read the Ethernet address from the EEPROM.
    505 	 */
    506 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    507 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
    508 
    509 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    510 	    ether_sprintf((u_int8_t *)enaddr));
    511 
    512 	/*
    513 	 * Initialize our media structures and probe the MII.
    514 	 */
    515 	sc->sc_mii.mii_ifp = ifp;
    516 	sc->sc_mii.mii_readreg = sip_mii_readreg;
    517 	sc->sc_mii.mii_writereg = sip_mii_writereg;
    518 	sc->sc_mii.mii_statchg = sip_mii_statchg;
    519 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    520 	    sip_mediastatus);
    521 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    522 	    MII_OFFSET_ANY, 0);
    523 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    524 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    525 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    526 	} else
    527 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    528 
    529 	ifp = &sc->sc_ethercom.ec_if;
    530 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    531 	ifp->if_softc = sc;
    532 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    533 	ifp->if_ioctl = sip_ioctl;
    534 	ifp->if_start = sip_start;
    535 	ifp->if_watchdog = sip_watchdog;
    536 
    537 	/*
    538 	 * Attach the interface.
    539 	 */
    540 	if_attach(ifp);
    541 	ether_ifattach(ifp, (u_int8_t *)enaddr);
    542 #if NBPFILTER > 0
    543 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    544 	    sizeof(struct ether_header));
    545 #endif
    546 
    547 	/*
    548 	 * Make sure the interface is shutdown during reboot.
    549 	 */
    550 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    551 	if (sc->sc_sdhook == NULL)
    552 		printf("%s: WARNING: unable to establish shutdown hook\n",
    553 		    sc->sc_dev.dv_xname);
    554 	return;
    555 
    556 	/*
    557 	 * Free any resources we've allocated during the failed attach
    558 	 * attempt.  Do this in reverse order and fall through.
    559 	 */
    560  fail_5:
    561 	for (i = 0; i < SIP_NRXDESC; i++) {
    562 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    563 			bus_dmamap_destroy(sc->sc_dmat,
    564 			    sc->sc_rxsoft[i].rxs_dmamap);
    565 	}
    566  fail_4:
    567 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    568 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    569 			bus_dmamap_destroy(sc->sc_dmat,
    570 			    sc->sc_txsoft[i].txs_dmamap);
    571 	}
    572 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    573  fail_3:
    574 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    575  fail_2:
    576 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    577 	    sizeof(struct sip_control_data));
    578  fail_1:
    579 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    580  fail_0:
    581 	return;
    582 }
    583 
    584 /*
    585  * sip_shutdown:
    586  *
    587  *	Make sure the interface is stopped at reboot time.
    588  */
    589 void
    590 sip_shutdown(arg)
    591 	void *arg;
    592 {
    593 	struct sip_softc *sc = arg;
    594 
    595 	sip_stop(sc, 1);
    596 }
    597 
    598 /*
    599  * sip_start:		[ifnet interface function]
    600  *
    601  *	Start packet transmission on the interface.
    602  */
    603 void
    604 sip_start(ifp)
    605 	struct ifnet *ifp;
    606 {
    607 	struct sip_softc *sc = ifp->if_softc;
    608 	struct mbuf *m0, *m;
    609 	struct sip_txsoft *txs;
    610 	bus_dmamap_t dmamap;
    611 	int error, firsttx, nexttx, lasttx, ofree, seg;
    612 
    613 	/*
    614 	 * If we've been told to pause, don't transmit any more packets.
    615 	 */
    616 	if (sc->sc_flags & SIPF_PAUSED)
    617 		ifp->if_flags |= IFF_OACTIVE;
    618 
    619 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    620 		return;
    621 
    622 	/*
    623 	 * Remember the previous number of free descriptors and
    624 	 * the first descriptor we'll use.
    625 	 */
    626 	ofree = sc->sc_txfree;
    627 	firsttx = sc->sc_txnext;
    628 
    629 	/*
    630 	 * Loop through the send queue, setting up transmit descriptors
    631 	 * until we drain the queue, or use up all available transmit
    632 	 * descriptors.
    633 	 */
    634 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    635 	       sc->sc_txfree != 0) {
    636 		/*
    637 		 * Grab a packet off the queue.
    638 		 */
    639 		IF_DEQUEUE(&ifp->if_snd, m0);
    640 		if (m0 == NULL)
    641 			break;
    642 
    643 		dmamap = txs->txs_dmamap;
    644 
    645 		/*
    646 		 * Load the DMA map.  If this fails, the packet either
    647 		 * didn't fit in the alloted number of segments, or we
    648 		 * were short on resources.  In this case, we'll copy
    649 		 * and try again.
    650 		 */
    651 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    652 		    BUS_DMA_NOWAIT) != 0) {
    653 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    654 			if (m == NULL) {
    655 				printf("%s: unable to allocate Tx mbuf\n",
    656 				    sc->sc_dev.dv_xname);
    657 				IF_PREPEND(&ifp->if_snd, m0);
    658 				break;
    659 			}
    660 			if (m0->m_pkthdr.len > MHLEN) {
    661 				MCLGET(m, M_DONTWAIT);
    662 				if ((m->m_flags & M_EXT) == 0) {
    663 					printf("%s: unable to allocate Tx "
    664 					    "cluster\n", sc->sc_dev.dv_xname);
    665 					m_freem(m);
    666 					IF_PREPEND(&ifp->if_snd, m0);
    667 					break;
    668 				}
    669 			}
    670 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    671 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    672 			m_freem(m0);
    673 			m0 = m;
    674 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    675 			    m0, BUS_DMA_NOWAIT);
    676 			if (error) {
    677 				printf("%s: unable to load Tx buffer, "
    678 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    679 				IF_PREPEND(&ifp->if_snd, m0);
    680 				break;
    681 			}
    682 		}
    683 
    684 		/*
    685 		 * Ensure we have enough descriptors free to describe
    686 		 * the packet.
    687 		 */
    688 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    689 			/*
    690 			 * Not enough free descriptors to transmit this
    691 			 * packet.  We haven't committed anything yet,
    692 			 * so just unload the DMA map, put the packet
    693 			 * back on the queue, and punt.  Notify the upper
    694 			 * layer that there are not more slots left.
    695 			 *
    696 			 * XXX We could allocate an mbuf and copy, but
    697 			 * XXX is it worth it?
    698 			 */
    699 			ifp->if_flags |= IFF_OACTIVE;
    700 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    701 			IF_PREPEND(&ifp->if_snd, m0);
    702 			break;
    703 		}
    704 
    705 		/*
    706 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    707 		 */
    708 
    709 		/* Sync the DMA map. */
    710 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    711 		    BUS_DMASYNC_PREWRITE);
    712 
    713 		/*
    714 		 * Initialize the transmit descriptors.
    715 		 */
    716 		for (nexttx = sc->sc_txnext, seg = 0;
    717 		     seg < dmamap->dm_nsegs;
    718 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    719 			/*
    720 			 * If this is the first descriptor we're
    721 			 * enqueueing, don't set the OWN bit just
    722 			 * yet.  That could cause a race condition.
    723 			 * We'll do it below.
    724 			 */
    725 			sc->sc_txdescs[nexttx].sipd_bufptr =
    726 			    dmamap->dm_segs[seg].ds_addr;
    727 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    728 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
    729 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
    730 			lasttx = nexttx;
    731 		}
    732 
    733 		/* Clear the MORE bit on the last segment. */
    734 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
    735 
    736 		/* Sync the descriptors we're using. */
    737 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    738 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    739 
    740 		/*
    741 		 * Store a pointer to the packet so we can free it later,
    742 		 * and remember what txdirty will be once the packet is
    743 		 * done.
    744 		 */
    745 		txs->txs_mbuf = m0;
    746 		txs->txs_firstdesc = sc->sc_txnext;
    747 		txs->txs_lastdesc = lasttx;
    748 
    749 		/* Advance the tx pointer. */
    750 		sc->sc_txfree -= dmamap->dm_nsegs;
    751 		sc->sc_txnext = nexttx;
    752 
    753 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    754 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    755 
    756 #if NBPFILTER > 0
    757 		/*
    758 		 * Pass the packet to any BPF listeners.
    759 		 */
    760 		if (ifp->if_bpf)
    761 			bpf_mtap(ifp->if_bpf, m0);
    762 #endif /* NBPFILTER > 0 */
    763 	}
    764 
    765 	if (txs == NULL || sc->sc_txfree == 0) {
    766 		/* No more slots left; notify upper layer. */
    767 		ifp->if_flags |= IFF_OACTIVE;
    768 	}
    769 
    770 	if (sc->sc_txfree != ofree) {
    771 		/*
    772 		 * Cause a descriptor interrupt to happen on the
    773 		 * last packet we enqueued.
    774 		 */
    775 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
    776 		SIP_CDTXSYNC(sc, lasttx, 1,
    777 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    778 
    779 		/*
    780 		 * The entire packet chain is set up.  Give the
    781 		 * first descrptor to the chip now.
    782 		 */
    783 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
    784 		SIP_CDTXSYNC(sc, firsttx, 1,
    785 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    786 
    787 		/* Start the transmit process. */
    788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    789 		     CR_TXE) == 0) {
    790 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    791 			    SIP_CDTXADDR(sc, firsttx));
    792 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    793 		}
    794 
    795 		/* Set a watchdog timer in case the chip flakes out. */
    796 		ifp->if_timer = 5;
    797 	}
    798 }
    799 
    800 /*
    801  * sip_watchdog:	[ifnet interface function]
    802  *
    803  *	Watchdog timer handler.
    804  */
    805 void
    806 sip_watchdog(ifp)
    807 	struct ifnet *ifp;
    808 {
    809 	struct sip_softc *sc = ifp->if_softc;
    810 
    811 	/*
    812 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    813 	 * If we get a timeout, try and sweep up transmit descriptors.
    814 	 * If we manage to sweep them all up, ignore the lack of
    815 	 * interrupt.
    816 	 */
    817 	sip_txintr(sc);
    818 
    819 	if (sc->sc_txfree != SIP_NTXDESC) {
    820 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    821 		ifp->if_oerrors++;
    822 
    823 		/* Reset the interface. */
    824 		(void) sip_init(sc);
    825 	} else if (ifp->if_flags & IFF_DEBUG)
    826 		printf("%s: recovered from device timeout\n",
    827 		    sc->sc_dev.dv_xname);
    828 
    829 	/* Try to get more packets going. */
    830 	sip_start(ifp);
    831 }
    832 
    833 /*
    834  * sip_ioctl:		[ifnet interface function]
    835  *
    836  *	Handle control requests from the operator.
    837  */
    838 int
    839 sip_ioctl(ifp, cmd, data)
    840 	struct ifnet *ifp;
    841 	u_long cmd;
    842 	caddr_t data;
    843 {
    844 	struct sip_softc *sc = ifp->if_softc;
    845 	struct ifreq *ifr = (struct ifreq *)data;
    846 	struct ifaddr *ifa = (struct ifaddr *)data;
    847 	int s, error = 0;
    848 
    849 	s = splnet();
    850 
    851 	switch (cmd) {
    852 	case SIOCSIFADDR:
    853 		ifp->if_flags |= IFF_UP;
    854 
    855 		switch (ifa->ifa_addr->sa_family) {
    856 #ifdef INET
    857 		case AF_INET:
    858 			if ((error = sip_init(sc)) != 0)
    859 				break;
    860 			arp_ifinit(ifp, ifa);
    861 			break;
    862 #endif /* INET */
    863 #ifdef NS
    864 		case AF_NS:
    865 		    {
    866 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    867 
    868 			if (ns_nullhost(*ina))
    869 				ina->x_host = *(union ns_host *)
    870 				    LLADDR(ifp->if_sadl);
    871 			else
    872 				memcpy(LLADDR(ifp->if_sadl),
    873 				    ina->x_host.c_host, ifp->if_addrlen);
    874 			error = sip_init(sc);
    875 			break;
    876 		    }
    877 #endif /* NS */
    878 		default:
    879 			error = sip_init(sc);
    880 			break;
    881 		}
    882 		break;
    883 
    884 	case SIOCSIFMTU:
    885 		if (ifr->ifr_mtu > ETHERMTU)
    886 			error = EINVAL;
    887 		else
    888 			ifp->if_mtu = ifr->ifr_mtu;
    889 		break;
    890 
    891 	case SIOCSIFFLAGS:
    892 		if ((ifp->if_flags & IFF_UP) == 0 &&
    893 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    894 			/*
    895 			 * If interface is marked down and it is running, then
    896 			 * stop it.
    897 			 */
    898 			sip_stop(sc, 1);
    899 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    900 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    901 			/*
    902 			 * If interfase it marked up and it is stopped, then
    903 			 * start it.
    904 			 */
    905 			error = sip_init(sc);
    906 		} else if ((ifp->if_flags & IFF_UP) != 0) {
    907 			/*
    908 			 * Reset the interface to pick up changes in any other
    909 			 * flags that affect the hardware state.
    910 			 */
    911 			error = sip_init(sc);
    912 		}
    913 		break;
    914 
    915 	case SIOCADDMULTI:
    916 	case SIOCDELMULTI:
    917 		error = (cmd == SIOCADDMULTI) ?
    918 		    ether_addmulti(ifr, &sc->sc_ethercom) :
    919 		    ether_delmulti(ifr, &sc->sc_ethercom);
    920 
    921 		if (error == ENETRESET) {
    922 			/*
    923 			 * Multicast list has changed; set the hardware filter
    924 			 * accordingly.
    925 			 */
    926 			sip_set_filter(sc);
    927 			error = 0;
    928 		}
    929 		break;
    930 
    931 	case SIOCSIFMEDIA:
    932 	case SIOCGIFMEDIA:
    933 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    934 		break;
    935 
    936 	default:
    937 		error = EINVAL;
    938 		break;
    939 	}
    940 
    941 	/* Try to get more packets going. */
    942 	sip_start(ifp);
    943 
    944 	splx(s);
    945 	return (error);
    946 }
    947 
    948 /*
    949  * sip_intr:
    950  *
    951  *	Interrupt service routine.
    952  */
    953 int
    954 sip_intr(arg)
    955 	void *arg;
    956 {
    957 	struct sip_softc *sc = arg;
    958 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    959 	u_int32_t isr;
    960 	int handled = 0;
    961 
    962 	for (;;) {
    963 		/* Reading clears interrupt. */
    964 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    965 		if ((isr & sc->sc_imr) == 0)
    966 			break;
    967 
    968 		handled = 1;
    969 
    970 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    971 			/* Grab any new packets. */
    972 			sip_rxintr(sc);
    973 
    974 			if (isr & ISR_RXORN) {
    975 				printf("%s: receive FIFO overrun\n",
    976 				    sc->sc_dev.dv_xname);
    977 
    978 				/* XXX adjust rx_drain_thresh? */
    979 			}
    980 
    981 			if (isr & ISR_RXIDLE) {
    982 				printf("%s: receive ring overrun\n",
    983 				    sc->sc_dev.dv_xname);
    984 
    985 				/* Get the receive process going again. */
    986 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    987 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    988 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    989 				    SIP_CR, CR_RXE);
    990 			}
    991 		}
    992 
    993 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    994 			/* Sweep up transmit descriptors. */
    995 			sip_txintr(sc);
    996 
    997 			if (isr & ISR_TXURN) {
    998 				u_int32_t thresh;
    999 
   1000 				printf("%s: transmit FIFO underrun",
   1001 				    sc->sc_dev.dv_xname);
   1002 
   1003 				thresh = sc->sc_tx_drain_thresh + 1;
   1004 				if (thresh <= TXCFG_DRTH &&
   1005 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1006 				     (sc->sc_tx_fill_thresh * 32))) {
   1007 					printf("; increasing Tx drain "
   1008 					    "threshold to %u bytes\n",
   1009 					    thresh * 32);
   1010 					sc->sc_tx_drain_thresh = thresh;
   1011 					(void) sip_init(sc);
   1012 				} else {
   1013 					(void) sip_init(sc);
   1014 					printf("\n");
   1015 				}
   1016 			}
   1017 		}
   1018 
   1019 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1020 			if (isr & ISR_PAUSE_ST) {
   1021 				sc->sc_flags |= SIPF_PAUSED;
   1022 				ifp->if_flags |= IFF_OACTIVE;
   1023 			}
   1024 			if (isr & ISR_PAUSE_END) {
   1025 				sc->sc_flags &= ~SIPF_PAUSED;
   1026 				ifp->if_flags &= ~IFF_OACTIVE;
   1027 			}
   1028 		}
   1029 
   1030 		if (isr & ISR_HIBERR) {
   1031 #define	PRINTERR(bit, str)						\
   1032 			if (isr & (bit))				\
   1033 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1034 			PRINTERR(ISR_DPERR, "parity error");
   1035 			PRINTERR(ISR_SSERR, "system error");
   1036 			PRINTERR(ISR_RMABT, "master abort");
   1037 			PRINTERR(ISR_RTABT, "target abort");
   1038 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1039 			(void) sip_init(sc);
   1040 #undef PRINTERR
   1041 		}
   1042 	}
   1043 
   1044 	/* Try to get more packets going. */
   1045 	sip_start(ifp);
   1046 
   1047 	return (handled);
   1048 }
   1049 
   1050 /*
   1051  * sip_txintr:
   1052  *
   1053  *	Helper; handle transmit interrupts.
   1054  */
   1055 void
   1056 sip_txintr(sc)
   1057 	struct sip_softc *sc;
   1058 {
   1059 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1060 	struct sip_txsoft *txs;
   1061 	u_int32_t cmdsts;
   1062 
   1063 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1064 		ifp->if_flags &= ~IFF_OACTIVE;
   1065 
   1066 	/*
   1067 	 * Go through our Tx list and free mbufs for those
   1068 	 * frames which have been transmitted.
   1069 	 */
   1070 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1071 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1072 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1073 
   1074 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1075 		if (cmdsts & CMDSTS_OWN)
   1076 			break;
   1077 
   1078 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1079 
   1080 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1081 
   1082 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1083 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1084 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1085 		m_freem(txs->txs_mbuf);
   1086 		txs->txs_mbuf = NULL;
   1087 
   1088 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1089 
   1090 		/*
   1091 		 * Check for errors and collisions.
   1092 		 */
   1093 		if (cmdsts &
   1094 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1095 			if (ifp->if_flags & IFF_DEBUG) {
   1096 				if (CMDSTS_Tx_ED)
   1097 					printf("%s: excessive deferral\n",
   1098 					    sc->sc_dev.dv_xname);
   1099 				if (CMDSTS_Tx_EC) {
   1100 					printf("%s: excessive collisions\n",
   1101 					    sc->sc_dev.dv_xname);
   1102 					ifp->if_collisions += 16;
   1103 				}
   1104 			}
   1105 		} else {
   1106 			/* Packet was transmitted successfully. */
   1107 			ifp->if_opackets++;
   1108 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1109 		}
   1110 	}
   1111 
   1112 	/*
   1113 	 * If there are no more pending transmissions, cancel the watchdog
   1114 	 * timer.
   1115 	 */
   1116 	if (txs == NULL)
   1117 		ifp->if_timer = 0;
   1118 }
   1119 
   1120 /*
   1121  * sip_rxintr:
   1122  *
   1123  *	Helper; handle receive interrupts.
   1124  */
   1125 void
   1126 sip_rxintr(sc)
   1127 	struct sip_softc *sc;
   1128 {
   1129 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1130 	struct ether_header *eh;
   1131 	struct sip_rxsoft *rxs;
   1132 	struct mbuf *m;
   1133 	u_int32_t cmdsts;
   1134 	int i, len;
   1135 
   1136 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1137 		rxs = &sc->sc_rxsoft[i];
   1138 
   1139 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1140 
   1141 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
   1142 
   1143 		/*
   1144 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1145 		 * consumer of the receive ring, so if the bit is clear,
   1146 		 * we have processed all of the packets.
   1147 		 */
   1148 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1149 			/*
   1150 			 * We have processed all of the receive buffers.
   1151 			 */
   1152 			break;
   1153 		}
   1154 
   1155 		/*
   1156 		 * If any collisions were seen on the wire, count one.
   1157 		 */
   1158 		if (cmdsts & CMDSTS_Rx_COL)
   1159 			ifp->if_collisions++;
   1160 
   1161 		/*
   1162 		 * If an error occurred, update stats, clear the status
   1163 		 * word, and leave the packet buffer in place.  It will
   1164 		 * simply be reused the next time the ring comes around.
   1165 		 */
   1166 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1167 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1168 			ifp->if_ierrors++;
   1169 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1170 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1171 				/* Receive overrun handled elsewhere. */
   1172 				printf("%s: receive descriptor error\n",
   1173 				    sc->sc_dev.dv_xname);
   1174 			}
   1175 #define	PRINTERR(bit, str)						\
   1176 			if (cmdsts & (bit))				\
   1177 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1178 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1179 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1180 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1181 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1182 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1183 #undef PRINTERR
   1184 			SIP_INIT_RXDESC(sc, i);
   1185 			continue;
   1186 		}
   1187 
   1188 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1189 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1190 
   1191 		/*
   1192 		 * No errors; receive the packet.  Note, the SiS 900
   1193 		 * includes the CRC with every packet; trim it.
   1194 		 */
   1195 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   1196 
   1197 #ifdef __NO_STRICT_ALIGNMENT
   1198 		/*
   1199 		 * If the packet is small enough to fit in a
   1200 		 * single header mbuf, allocate one and copy
   1201 		 * the data into it.  This greatly reduces
   1202 		 * memory consumption when we receive lots
   1203 		 * of small packets.
   1204 		 *
   1205 		 * Otherwise, we add a new buffer to the receive
   1206 		 * chain.  If this fails, we drop the packet and
   1207 		 * recycle the old buffer.
   1208 		 */
   1209 		if (sip_copy_small != 0 && len <= MHLEN) {
   1210 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1211 			if (m == NULL)
   1212 				goto dropit;
   1213 			memcpy(mtod(m, caddr_t),
   1214 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1215 			SIP_INIT_RXDESC(sc, i);
   1216 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1217 			    rxs->rxs_dmamap->dm_mapsize,
   1218 			    BUS_DMASYNC_PREREAD);
   1219 		} else {
   1220 			m = rxs->rxs_mbuf;
   1221 			if (sip_add_rxbuf(sc, i) != 0) {
   1222  dropit:
   1223 				ifp->if_ierrors++;
   1224 				SIP_INIT_RXDESC(sc, i);
   1225 				bus_dmamap_sync(sc->sc_dmat,
   1226 				    rxs->rxs_dmamap, 0,
   1227 				    rxs->rxs_dmamap->dm_mapsize,
   1228 				    BUS_DMASYNC_PREREAD);
   1229 				continue;
   1230 			}
   1231 		}
   1232 #else
   1233 		/*
   1234 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1235 		 * But this means that the data after the Ethernet header
   1236 		 * is misaligned.  We must allocate a new buffer and
   1237 		 * copy the data, shifted forward 2 bytes.
   1238 		 */
   1239 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1240 		if (m == NULL) {
   1241  dropit:
   1242 			ifp->if_ierrors++;
   1243 			SIP_INIT_RXDESC(sc, i);
   1244 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1245 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1246 			continue;
   1247 		}
   1248 		if (len > (MHLEN - 2)) {
   1249 			MCLGET(m, M_DONTWAIT);
   1250 			if ((m->m_flags & M_EXT) == 0) {
   1251 				m_freem(m);
   1252 				goto dropit;
   1253 			}
   1254 		}
   1255 		m->m_data += 2;
   1256 
   1257 		/*
   1258 		 * Note that we use clusters for incoming frames, so the
   1259 		 * buffer is virtually contiguous.
   1260 		 */
   1261 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1262 
   1263 		/* Allow the receive descriptor to continue using its mbuf. */
   1264 		SIP_INIT_RXDESC(sc, i);
   1265 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1266 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1267 #endif /* __NO_STRICT_ALIGNMENT */
   1268 
   1269 		ifp->if_ipackets++;
   1270 		eh = mtod(m, struct ether_header *);
   1271 		m->m_pkthdr.rcvif = ifp;
   1272 		m->m_pkthdr.len = m->m_len = len;
   1273 
   1274 #if NBPFILTER > 0
   1275 		/*
   1276 		 * Pass this up to any BPF listeners, but only
   1277 		 * pass if up the stack if it's for us.
   1278 		 */
   1279 		if (ifp->if_bpf) {
   1280 			bpf_mtap(ifp->if_bpf, m);
   1281 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1282 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
   1283 				m_freem(m);
   1284 				continue;
   1285 			}
   1286 		}
   1287 #endif /* NBPFILTER > 0 */
   1288 
   1289 		/* Pass it on. */
   1290 		(*ifp->if_input)(ifp, m);
   1291 	}
   1292 
   1293 	/* Update the receive pointer. */
   1294 	sc->sc_rxptr = i;
   1295 }
   1296 
   1297 /*
   1298  * sip_tick:
   1299  *
   1300  *	One second timer, used to tick the MII.
   1301  */
   1302 void
   1303 sip_tick(arg)
   1304 	void *arg;
   1305 {
   1306 	struct sip_softc *sc = arg;
   1307 	int s;
   1308 
   1309 	s = splnet();
   1310 	mii_tick(&sc->sc_mii);
   1311 	splx(s);
   1312 
   1313 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1314 }
   1315 
   1316 /*
   1317  * sip_reset:
   1318  *
   1319  *	Perform a soft reset on the SiS 900.
   1320  */
   1321 void
   1322 sip_reset(sc)
   1323 	struct sip_softc *sc;
   1324 {
   1325 	bus_space_tag_t st = sc->sc_st;
   1326 	bus_space_handle_t sh = sc->sc_sh;
   1327 	int i;
   1328 
   1329 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1330 
   1331 	for (i = 0; i < 1000; i++) {
   1332 		if ((bus_space_read_4(st, sh, SIP_ISR) &
   1333 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
   1334 			return;
   1335 		delay(2);
   1336 	}
   1337 
   1338 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1339 }
   1340 
   1341 /*
   1342  * sip_init:
   1343  *
   1344  *	Initialize the interface.  Must be called at splnet().
   1345  */
   1346 int
   1347 sip_init(sc)
   1348 	struct sip_softc *sc;
   1349 {
   1350 	bus_space_tag_t st = sc->sc_st;
   1351 	bus_space_handle_t sh = sc->sc_sh;
   1352 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1353 	struct sip_txsoft *txs;
   1354 	struct sip_rxsoft *rxs;
   1355 	struct sip_desc *sipd;
   1356 	u_int32_t cfg;
   1357 	int i, error = 0;
   1358 
   1359 	/*
   1360 	 * Cancel any pending I/O.
   1361 	 */
   1362 	sip_stop(sc, 0);
   1363 
   1364 	/*
   1365 	 * Reset the chip to a known state.
   1366 	 */
   1367 	sip_reset(sc);
   1368 
   1369 	/*
   1370 	 * Initialize the transmit descriptor ring.
   1371 	 */
   1372 	for (i = 0; i < SIP_NTXDESC; i++) {
   1373 		sipd = &sc->sc_txdescs[i];
   1374 		memset(sipd, 0, sizeof(struct sip_desc));
   1375 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
   1376 	}
   1377 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1378 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1379 	sc->sc_txfree = SIP_NTXDESC;
   1380 	sc->sc_txnext = 0;
   1381 
   1382 	/*
   1383 	 * Initialize the transmit job descriptors.
   1384 	 */
   1385 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1386 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1387 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1388 		txs = &sc->sc_txsoft[i];
   1389 		txs->txs_mbuf = NULL;
   1390 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1391 	}
   1392 
   1393 	/*
   1394 	 * Initialize the receive descriptor and receive job
   1395 	 * descriptor rings.
   1396 	 */
   1397 	for (i = 0; i < SIP_NRXDESC; i++) {
   1398 		rxs = &sc->sc_rxsoft[i];
   1399 		if (rxs->rxs_mbuf == NULL) {
   1400 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1401 				printf("%s: unable to allocate or map rx "
   1402 				    "buffer %d, error = %d\n",
   1403 				    sc->sc_dev.dv_xname, i, error);
   1404 				/*
   1405 				 * XXX Should attempt to run with fewer receive
   1406 				 * XXX buffers instead of just failing.
   1407 				 */
   1408 				sip_rxdrain(sc);
   1409 				goto out;
   1410 			}
   1411 		}
   1412 	}
   1413 	sc->sc_rxptr = 0;
   1414 
   1415 	/*
   1416 	 * Initialize the configuration register: aggressive PCI
   1417 	 * bus request algorithm, default backoff, default OW timer,
   1418 	 * default parity error detection.
   1419 	 */
   1420 	cfg = 0;
   1421 #if BYTE_ORDER == BIG_ENDIAN
   1422 	/*
   1423 	 * ...descriptors in big-endian mode.
   1424 	 */
   1425 	cfg |= CFG_BEM;
   1426 #endif
   1427 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1428 
   1429 	/*
   1430 	 * Initialize the transmit fill and drain thresholds if
   1431 	 * we have never done so.
   1432 	 */
   1433 	if (sc->sc_tx_fill_thresh == 0) {
   1434 		/*
   1435 		 * XXX This value should be tuned.  This is the
   1436 		 * minimum (32 bytes), and we may be able to
   1437 		 * improve performance by increasing it.
   1438 		 */
   1439 		sc->sc_tx_fill_thresh = 1;
   1440 	}
   1441 	if (sc->sc_tx_drain_thresh == 0) {
   1442 		/*
   1443 		 * Start at a drain threshold of 128 bytes.  We will
   1444 		 * increase it if a DMA underrun occurs.
   1445 		 *
   1446 		 * XXX The minimum value of this variable should be
   1447 		 * tuned.  We may be able to improve performance
   1448 		 * by starting with a lower value.  That, however,
   1449 		 * may trash the first few outgoing packets if the
   1450 		 * PCI bus is saturated.
   1451 		 */
   1452 		sc->sc_tx_drain_thresh = 4;
   1453 	}
   1454 
   1455 	/*
   1456 	 * Initialize the prototype TXCFG register.
   1457 	 */
   1458 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1459 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1460 	    sc->sc_tx_drain_thresh;
   1461 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1462 
   1463 	/*
   1464 	 * Initialize the receive drain threshold if we have never
   1465 	 * done so.
   1466 	 */
   1467 	if (sc->sc_rx_drain_thresh == 0) {
   1468 		/*
   1469 		 * XXX This value should be tuned.  This is set to the
   1470 		 * maximum of 248 bytes, and we may be able to improve
   1471 		 * performance by decreasing it (although we should never
   1472 		 * set this value lower than 2; 14 bytes are required to
   1473 		 * filter the packet).
   1474 		 */
   1475 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1476 	}
   1477 
   1478 	/*
   1479 	 * Initialize the prototype RXCFG register.
   1480 	 */
   1481 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1482 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1483 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1484 
   1485 	/* Set up the receive filter. */
   1486 	sip_set_filter(sc);
   1487 
   1488 	/*
   1489 	 * Give the transmit and receive rings to the chip.
   1490 	 */
   1491 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1492 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1493 
   1494 	/*
   1495 	 * Initialize the interrupt mask.
   1496 	 */
   1497 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1498 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1499 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1500 
   1501 	/*
   1502 	 * Set the current media.  Do this after initializing the prototype
   1503 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1504 	 * control.
   1505 	 */
   1506 	mii_mediachg(&sc->sc_mii);
   1507 
   1508 	/*
   1509 	 * Enable interrupts.
   1510 	 */
   1511 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1512 
   1513 	/*
   1514 	 * Start the transmit and receive processes.
   1515 	 */
   1516 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1517 
   1518 	/*
   1519 	 * Start the one second MII clock.
   1520 	 */
   1521 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1522 
   1523 	/*
   1524 	 * ...all done!
   1525 	 */
   1526 	ifp->if_flags |= IFF_RUNNING;
   1527 	ifp->if_flags &= ~IFF_OACTIVE;
   1528 
   1529  out:
   1530 	if (error)
   1531 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1532 	return (error);
   1533 }
   1534 
   1535 /*
   1536  * sip_drain:
   1537  *
   1538  *	Drain the receive queue.
   1539  */
   1540 void
   1541 sip_rxdrain(sc)
   1542 	struct sip_softc *sc;
   1543 {
   1544 	struct sip_rxsoft *rxs;
   1545 	int i;
   1546 
   1547 	for (i = 0; i < SIP_NRXDESC; i++) {
   1548 		rxs = &sc->sc_rxsoft[i];
   1549 		if (rxs->rxs_mbuf != NULL) {
   1550 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1551 			m_freem(rxs->rxs_mbuf);
   1552 			rxs->rxs_mbuf = NULL;
   1553 		}
   1554 	}
   1555 }
   1556 
   1557 /*
   1558  * sip_stop:
   1559  *
   1560  *	Stop transmission on the interface.
   1561  */
   1562 void
   1563 sip_stop(sc, drain)
   1564 	struct sip_softc *sc;
   1565 {
   1566 	bus_space_tag_t st = sc->sc_st;
   1567 	bus_space_handle_t sh = sc->sc_sh;
   1568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1569 	struct sip_txsoft *txs;
   1570 	u_int32_t cmdsts = 0;		/* DEBUG */
   1571 
   1572 	/*
   1573 	 * Stop the one second clock.
   1574 	 */
   1575 	callout_stop(&sc->sc_tick_ch);
   1576 
   1577 	/* Down the MII. */
   1578 	mii_down(&sc->sc_mii);
   1579 
   1580 	/*
   1581 	 * Disable interrupts.
   1582 	 */
   1583 	bus_space_write_4(st, sh, SIP_IER, 0);
   1584 
   1585 	/*
   1586 	 * Stop receiver and transmitter.
   1587 	 */
   1588 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1589 
   1590 	/*
   1591 	 * Release any queued transmit buffers.
   1592 	 */
   1593 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1594 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1595 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1596 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
   1597 		     CMDSTS_INTR) == 0)
   1598 			printf("%s: sip_stop: last descriptor does not "
   1599 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1600 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1601 #ifdef DIAGNOSTIC
   1602 		if (txs->txs_mbuf == NULL) {
   1603 			printf("%s: dirty txsoft with no mbuf chain\n",
   1604 			    sc->sc_dev.dv_xname);
   1605 			panic("sip_stop");
   1606 		}
   1607 #endif
   1608 		cmdsts |=		/* DEBUG */
   1609 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1610 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1611 		m_freem(txs->txs_mbuf);
   1612 		txs->txs_mbuf = NULL;
   1613 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1614 	}
   1615 
   1616 	if (drain) {
   1617 		/*
   1618 		 * Release the receive buffers.
   1619 		 */
   1620 		sip_rxdrain(sc);
   1621 	}
   1622 
   1623 	/*
   1624 	 * Mark the interface down and cancel the watchdog timer.
   1625 	 */
   1626 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1627 	ifp->if_timer = 0;
   1628 
   1629 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1630 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1631 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1632 		    "descriptors\n", sc->sc_dev.dv_xname);
   1633 }
   1634 
   1635 /*
   1636  * sip_read_eeprom:
   1637  *
   1638  *	Read data from the serial EEPROM.
   1639  */
   1640 void
   1641 sip_read_eeprom(sc, word, wordcnt, data)
   1642 	struct sip_softc *sc;
   1643 	int word, wordcnt;
   1644 	u_int16_t *data;
   1645 {
   1646 	bus_space_tag_t st = sc->sc_st;
   1647 	bus_space_handle_t sh = sc->sc_sh;
   1648 	u_int16_t reg;
   1649 	int i, x;
   1650 
   1651 	for (i = 0; i < wordcnt; i++) {
   1652 		/* Send CHIP SELECT. */
   1653 		reg = EROMAR_EECS;
   1654 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1655 
   1656 		/* Shift in the READ opcode. */
   1657 		for (x = 3; x > 0; x--) {
   1658 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1659 				reg |= EROMAR_EEDI;
   1660 			else
   1661 				reg &= ~EROMAR_EEDI;
   1662 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1663 			bus_space_write_4(st, sh, SIP_EROMAR,
   1664 			    reg | EROMAR_EESK);
   1665 			delay(4);
   1666 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1667 			delay(4);
   1668 		}
   1669 
   1670 		/* Shift in address. */
   1671 		for (x = 6; x > 0; x--) {
   1672 			if ((word + i) & (1 << (x - 1)))
   1673 				reg |= EROMAR_EEDI;
   1674 			else
   1675 				reg &= ~EROMAR_EEDI;
   1676 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1677 			bus_space_write_4(st, sh, SIP_EROMAR,
   1678 			    reg | EROMAR_EESK);
   1679 			delay(4);
   1680 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1681 			delay(4);
   1682 		}
   1683 
   1684 		/* Shift out data. */
   1685 		reg = EROMAR_EECS;
   1686 		data[i] = 0;
   1687 		for (x = 16; x > 0; x--) {
   1688 			bus_space_write_4(st, sh, SIP_EROMAR,
   1689 			    reg | EROMAR_EESK);
   1690 			delay(4);
   1691 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1692 				data[i] |= (1 << (x - 1));
   1693 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1694 			delay(4);
   1695 		}
   1696 
   1697 		/* Clear CHIP SELECT. */
   1698 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1699 		delay(4);
   1700 	}
   1701 }
   1702 
   1703 /*
   1704  * sip_add_rxbuf:
   1705  *
   1706  *	Add a receive buffer to the indicated descriptor.
   1707  */
   1708 int
   1709 sip_add_rxbuf(sc, idx)
   1710 	struct sip_softc *sc;
   1711 	int idx;
   1712 {
   1713 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1714 	struct mbuf *m;
   1715 	int error;
   1716 
   1717 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1718 	if (m == NULL)
   1719 		return (ENOBUFS);
   1720 
   1721 	MCLGET(m, M_DONTWAIT);
   1722 	if ((m->m_flags & M_EXT) == 0) {
   1723 		m_freem(m);
   1724 		return (ENOBUFS);
   1725 	}
   1726 
   1727 	if (rxs->rxs_mbuf != NULL)
   1728 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1729 
   1730 	rxs->rxs_mbuf = m;
   1731 
   1732 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1733 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1734 	if (error) {
   1735 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1736 		    sc->sc_dev.dv_xname, idx, error);
   1737 		panic("sip_add_rxbuf");		/* XXX */
   1738 	}
   1739 
   1740 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1741 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1742 
   1743 	SIP_INIT_RXDESC(sc, idx);
   1744 
   1745 	return (0);
   1746 }
   1747 
   1748 /*
   1749  * sip_set_filter:
   1750  *
   1751  *	Set up the receive filter.
   1752  */
   1753 void
   1754 sip_set_filter(sc)
   1755 	struct sip_softc *sc;
   1756 {
   1757 	bus_space_tag_t st = sc->sc_st;
   1758 	bus_space_handle_t sh = sc->sc_sh;
   1759 	struct ethercom *ec = &sc->sc_ethercom;
   1760 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1761 	struct ether_multi *enm;
   1762 	u_int8_t *cp;
   1763 	struct ether_multistep step;
   1764 	u_int32_t crc, mchash[8];
   1765 
   1766 	/*
   1767 	 * Initialize the prototype RFCR.
   1768 	 */
   1769 	sc->sc_rfcr = RFCR_RFEN;
   1770 	if (ifp->if_flags & IFF_BROADCAST)
   1771 		sc->sc_rfcr |= RFCR_AAB;
   1772 	if (ifp->if_flags & IFF_PROMISC) {
   1773 		sc->sc_rfcr |= RFCR_AAP;
   1774 		goto allmulti;
   1775 	}
   1776 
   1777 	/*
   1778 	 * Set up the multicast address filter by passing all multicast
   1779 	 * addresses through a CRC generator, and then using the high-order
   1780 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1781 	 * the lower 16 bits of each 32 bit multicast hash register are
   1782 	 * valid).  The high order bits select the register, while the
   1783 	 * rest of the bits select the bit within the register.
   1784 	 */
   1785 
   1786 	memset(mchash, 0, sizeof(mchash));
   1787 
   1788 	ETHER_FIRST_MULTI(step, ec, enm);
   1789 	while (enm != NULL) {
   1790 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1791 			/*
   1792 			 * We must listen to a range of multicast addresses.
   1793 			 * For now, just accept all multicasts, rather than
   1794 			 * trying to set only those filter bits needed to match
   1795 			 * the range.  (At this time, the only use of address
   1796 			 * ranges is for IP multicast routing, for which the
   1797 			 * range is big enough to require all bits set.)
   1798 			 */
   1799 			goto allmulti;
   1800 		}
   1801 
   1802 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1803 
   1804 		/* Just want the 7 most significant bits. */
   1805 		crc >>= 25;
   1806 
   1807 		/* Set the corresponding bit in the hash table. */
   1808 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1809 
   1810 		ETHER_NEXT_MULTI(step, enm);
   1811 	}
   1812 
   1813 	ifp->if_flags &= ~IFF_ALLMULTI;
   1814 	goto setit;
   1815 
   1816  allmulti:
   1817 	ifp->if_flags |= IFF_ALLMULTI;
   1818 	sc->sc_rfcr |= RFCR_AAM;
   1819 
   1820  setit:
   1821 #define	FILTER_EMIT(addr, data)						\
   1822 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1823 	bus_space_write_4(st, sh, SIP_RFDR, (data))
   1824 
   1825 	/*
   1826 	 * Disable receive filter, and program the node address.
   1827 	 */
   1828 	cp = LLADDR(ifp->if_sadl);
   1829 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1830 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1831 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1832 
   1833 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1834 		/*
   1835 		 * Program the multicast hash table.
   1836 		 */
   1837 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1838 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1839 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1840 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1841 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1842 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1843 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1844 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1845 	}
   1846 #undef FILTER_EMIT
   1847 
   1848 	/*
   1849 	 * Re-enable the receiver filter.
   1850 	 */
   1851 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1852 }
   1853 
   1854 /*
   1855  * sip_mii_readreg:	[mii interface function]
   1856  *
   1857  *	Read a PHY register on the MII.
   1858  */
   1859 int
   1860 sip_mii_readreg(self, phy, reg)
   1861 	struct device *self;
   1862 	int phy, reg;
   1863 {
   1864 	struct sip_softc *sc = (struct sip_softc *) self;
   1865 	u_int32_t enphy;
   1866 
   1867 	/*
   1868 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1869 	 * MII address 0.
   1870 	 */
   1871 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1872 		return (0);
   1873 
   1874 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1875 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1876 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1877 	do {
   1878 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1879 	} while (enphy & ENPHY_ACCESS);
   1880 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1881 }
   1882 
   1883 /*
   1884  * sip_mii_writereg:	[mii interface function]
   1885  *
   1886  *	Write a PHY register on the MII.
   1887  */
   1888 void
   1889 sip_mii_writereg(self, phy, reg, val)
   1890 	struct device *self;
   1891 	int phy, reg, val;
   1892 {
   1893 	struct sip_softc *sc = (struct sip_softc *) self;
   1894 	u_int32_t enphy;
   1895 
   1896 	/*
   1897 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1898 	 * MII address 0.
   1899 	 */
   1900 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1901 		return;
   1902 
   1903 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1904 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1905 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1906 	do {
   1907 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1908 	} while (enphy & ENPHY_ACCESS);
   1909 }
   1910 
   1911 /*
   1912  * sip_mii_statchg:	[mii interface function]
   1913  *
   1914  *	Callback from MII layer when media changes.
   1915  */
   1916 void
   1917 sip_mii_statchg(self)
   1918 	struct device *self;
   1919 {
   1920 	struct sip_softc *sc = (struct sip_softc *) self;
   1921 	u_int32_t flowctl;
   1922 
   1923 	/*
   1924 	 * Update TXCFG for full-duplex operation.
   1925 	 */
   1926 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   1927 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   1928 	else
   1929 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   1930 
   1931 	/*
   1932 	 * Update RXCFG for full-duplex or loopback.
   1933 	 */
   1934 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   1935 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   1936 		sc->sc_rxcfg |= RXCFG_ATX;
   1937 	else
   1938 		sc->sc_rxcfg &= ~RXCFG_ATX;
   1939 
   1940 	/*
   1941 	 * Update IMR for use of 802.3x flow control.
   1942 	 */
   1943 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   1944 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   1945 		flowctl = FLOWCTL_FLOWEN;
   1946 	} else {
   1947 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   1948 		flowctl = 0;
   1949 	}
   1950 
   1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   1954 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   1955 }
   1956 
   1957 /*
   1958  * sip_mediastatus:	[ifmedia interface function]
   1959  *
   1960  *	Get the current interface media status.
   1961  */
   1962 void
   1963 sip_mediastatus(ifp, ifmr)
   1964 	struct ifnet *ifp;
   1965 	struct ifmediareq *ifmr;
   1966 {
   1967 	struct sip_softc *sc = ifp->if_softc;
   1968 
   1969 	mii_pollstat(&sc->sc_mii);
   1970 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1971 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1972 }
   1973 
   1974 /*
   1975  * sip_mediachange:	[ifmedia interface function]
   1976  *
   1977  *	Set hardware to newly-selected media.
   1978  */
   1979 int
   1980 sip_mediachange(ifp)
   1981 	struct ifnet *ifp;
   1982 {
   1983 	struct sip_softc *sc = ifp->if_softc;
   1984 
   1985 	if (ifp->if_flags & IFF_UP)
   1986 		mii_mediachg(&sc->sc_mii);
   1987 	return (0);
   1988 }
   1989