if_sip.c revision 1.132 1 /* $NetBSD: if_sip.c,v 1.132 2008/04/10 19:13:37 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.132 2008/04/10 19:13:37 cegger Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 /*
130 * Transmit descriptor list size. This is arbitrary, but allocate
131 * enough descriptors for 128 pending transmissions, and 8 segments
132 * per packet (64 for DP83820 for jumbo frames).
133 *
134 * This MUST work out to a power of 2.
135 */
136 #define GSIP_NTXSEGS_ALLOC 16
137 #define SIP_NTXSEGS_ALLOC 8
138
139 #define SIP_TXQUEUELEN 256
140 #define MAX_SIP_NTXDESC \
141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142
143 /*
144 * Receive descriptor list size. We have one Rx buffer per incoming
145 * packet, so this logic is a little simpler.
146 *
147 * Actually, on the DP83820, we allow the packet to consume more than
148 * one buffer, in order to support jumbo Ethernet frames. In that
149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
151 * so we'd better be quick about handling receive interrupts.
152 */
153 #define GSIP_NRXDESC 256
154 #define SIP_NRXDESC 128
155
156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
157
158 /*
159 * Control structures are DMA'd to the SiS900 chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct sip_control_data {
164 /*
165 * The transmit descriptors.
166 */
167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168
169 /*
170 * The receive descriptors.
171 */
172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174
175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
178
179 /*
180 * Software state for transmit jobs.
181 */
182 struct sip_txsoft {
183 struct mbuf *txs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t txs_dmamap; /* our DMA map */
185 int txs_firstdesc; /* first descriptor in packet */
186 int txs_lastdesc; /* last descriptor in packet */
187 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191
192 /*
193 * Software state for receive jobs.
194 */
195 struct sip_rxsoft {
196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t rxs_dmamap; /* our DMA map */
198 };
199
200 enum sip_attach_stage {
201 SIP_ATTACH_FIN = 0
202 , SIP_ATTACH_CREATE_RXMAP
203 , SIP_ATTACH_CREATE_TXMAP
204 , SIP_ATTACH_LOAD_MAP
205 , SIP_ATTACH_CREATE_MAP
206 , SIP_ATTACH_MAP_MEM
207 , SIP_ATTACH_ALLOC_MEM
208 , SIP_ATTACH_INTR
209 , SIP_ATTACH_MAP
210 };
211
212 /*
213 * Software state per device.
214 */
215 struct sip_softc {
216 struct device sc_dev; /* generic device information */
217 bus_space_tag_t sc_st; /* bus space tag */
218 bus_space_handle_t sc_sh; /* bus space handle */
219 bus_size_t sc_sz; /* bus space size */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 pci_chipset_tag_t sc_pc;
222 bus_dma_segment_t sc_seg;
223 struct ethercom sc_ethercom; /* ethernet common data */
224
225 const struct sip_product *sc_model; /* which model are we? */
226 int sc_gigabit; /* 1: 83820, 0: other */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 callout_t sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
262 struct evcnt sc_ev_rxpause; /* PAUSE received */
263 /* DP83820 only */
264 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
265 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
266 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
267 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
268 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
269 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
270 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
271 #endif /* SIP_EVENT_COUNTERS */
272
273 u_int32_t sc_txcfg; /* prototype TXCFG register */
274 u_int32_t sc_rxcfg; /* prototype RXCFG register */
275 u_int32_t sc_imr; /* prototype IMR register */
276 u_int32_t sc_rfcr; /* prototype RFCR register */
277
278 u_int32_t sc_cfg; /* prototype CFG register */
279
280 u_int32_t sc_gpior; /* prototype GPIOR register */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flowflags; /* 802.3x flow control flags */
288 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
289 int sc_paused; /* paused indication */
290
291 int sc_txfree; /* number of free Tx descriptors */
292 int sc_txnext; /* next ready Tx descriptor */
293 int sc_txwin; /* Tx descriptors since last intr */
294
295 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
296 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
297
298 /* values of interface state at last init */
299 struct {
300 /* if_capenable */
301 uint64_t if_capenable;
302 /* ec_capenable */
303 int ec_capenable;
304 /* VLAN_ATTACHED */
305 int is_vlan;
306 } sc_prev;
307
308 short sc_if_flags;
309
310 int sc_rxptr; /* next ready Rx descriptor/descsoft */
311 int sc_rxdiscard;
312 int sc_rxlen;
313 struct mbuf *sc_rxhead;
314 struct mbuf *sc_rxtail;
315 struct mbuf **sc_rxtailp;
316
317 int sc_ntxdesc;
318 int sc_ntxdesc_mask;
319
320 int sc_nrxdesc_mask;
321
322 const struct sip_parm {
323 const struct sip_regs {
324 int r_rxcfg;
325 int r_txcfg;
326 } p_regs;
327
328 const struct sip_bits {
329 uint32_t b_txcfg_mxdma_8;
330 uint32_t b_txcfg_mxdma_16;
331 uint32_t b_txcfg_mxdma_32;
332 uint32_t b_txcfg_mxdma_64;
333 uint32_t b_txcfg_mxdma_128;
334 uint32_t b_txcfg_mxdma_256;
335 uint32_t b_txcfg_mxdma_512;
336 uint32_t b_txcfg_flth_mask;
337 uint32_t b_txcfg_drth_mask;
338
339 uint32_t b_rxcfg_mxdma_8;
340 uint32_t b_rxcfg_mxdma_16;
341 uint32_t b_rxcfg_mxdma_32;
342 uint32_t b_rxcfg_mxdma_64;
343 uint32_t b_rxcfg_mxdma_128;
344 uint32_t b_rxcfg_mxdma_256;
345 uint32_t b_rxcfg_mxdma_512;
346
347 uint32_t b_isr_txrcmp;
348 uint32_t b_isr_rxrcmp;
349 uint32_t b_isr_dperr;
350 uint32_t b_isr_sserr;
351 uint32_t b_isr_rmabt;
352 uint32_t b_isr_rtabt;
353
354 uint32_t b_cmdsts_size_mask;
355 } p_bits;
356 int p_filtmem;
357 int p_rxbuf_len;
358 bus_size_t p_tx_dmamap_size;
359 int p_ntxsegs;
360 int p_ntxsegs_alloc;
361 int p_nrxdesc;
362 } *sc_parm;
363
364 void (*sc_rxintr)(struct sip_softc *);
365
366 #if NRND > 0
367 rndsource_element_t rnd_source; /* random source */
368 #endif
369 };
370
371 #define sc_bits sc_parm->p_bits
372 #define sc_regs sc_parm->p_regs
373
374 static const struct sip_parm sip_parm = {
375 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
376 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
377 , .p_tx_dmamap_size = MCLBYTES
378 , .p_ntxsegs = 16
379 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
380 , .p_nrxdesc = SIP_NRXDESC
381 , .p_bits = {
382 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
383 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
384 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
385 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
386 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
387 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
388 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
389 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
390 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
391
392 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
393 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
394 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
395 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
396 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
397 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
398 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
399
400 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
401 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
402 , .b_isr_dperr = 0x00800000 /* detected parity error */
403 , .b_isr_sserr = 0x00400000 /* signalled system error */
404 , .b_isr_rmabt = 0x00200000 /* received master abort */
405 , .b_isr_rtabt = 0x00100000 /* received target abort */
406 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
407 }
408 , .p_regs = {
409 .r_rxcfg = OTHER_SIP_RXCFG,
410 .r_txcfg = OTHER_SIP_TXCFG
411 }
412 }, gsip_parm = {
413 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
414 , .p_rxbuf_len = MCLBYTES - 8
415 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
416 , .p_ntxsegs = 64
417 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
418 , .p_nrxdesc = GSIP_NRXDESC
419 , .p_bits = {
420 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
421 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
422 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
423 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
424 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
425 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
426 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
427 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
428 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
429
430 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
431 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
432 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
433 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
434 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
435 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
436 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
437
438 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
439 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
440 , .b_isr_dperr = 0x00100000 /* detected parity error */
441 , .b_isr_sserr = 0x00080000 /* signalled system error */
442 , .b_isr_rmabt = 0x00040000 /* received master abort */
443 , .b_isr_rtabt = 0x00020000 /* received target abort */
444 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
445 }
446 , .p_regs = {
447 .r_rxcfg = DP83820_SIP_RXCFG,
448 .r_txcfg = DP83820_SIP_TXCFG
449 }
450 };
451
452 static inline int
453 sip_nexttx(const struct sip_softc *sc, int x)
454 {
455 return (x + 1) & sc->sc_ntxdesc_mask;
456 }
457
458 static inline int
459 sip_nextrx(const struct sip_softc *sc, int x)
460 {
461 return (x + 1) & sc->sc_nrxdesc_mask;
462 }
463
464 /* 83820 only */
465 static inline void
466 sip_rxchain_reset(struct sip_softc *sc)
467 {
468 sc->sc_rxtailp = &sc->sc_rxhead;
469 *sc->sc_rxtailp = NULL;
470 sc->sc_rxlen = 0;
471 }
472
473 /* 83820 only */
474 static inline void
475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
476 {
477 *sc->sc_rxtailp = sc->sc_rxtail = m;
478 sc->sc_rxtailp = &m->m_next;
479 }
480
481 #ifdef SIP_EVENT_COUNTERS
482 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
483 #else
484 #define SIP_EVCNT_INCR(ev) /* nothing */
485 #endif
486
487 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
488 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
489
490 static inline void
491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
492 {
493 int x, n;
494
495 x = x0;
496 n = n0;
497
498 /* If it will wrap around, sync to the end of the ring. */
499 if (x + n > sc->sc_ntxdesc) {
500 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
501 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
502 (sc->sc_ntxdesc - x), ops);
503 n -= (sc->sc_ntxdesc - x);
504 x = 0;
505 }
506
507 /* Now sync whatever is left. */
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
510 }
511
512 static inline void
513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
514 {
515 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
516 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
517 }
518
519 #if 0
520 #ifdef DP83820
521 u_int32_t sipd_bufptr; /* pointer to DMA segment */
522 u_int32_t sipd_cmdsts; /* command/status word */
523 #else
524 u_int32_t sipd_cmdsts; /* command/status word */
525 u_int32_t sipd_bufptr; /* pointer to DMA segment */
526 #endif /* DP83820 */
527 #endif /* 0 */
528
529 static inline volatile uint32_t *
530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
531 {
532 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
533 }
534
535 static inline volatile uint32_t *
536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
537 {
538 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
539 }
540
541 static inline void
542 sip_init_rxdesc(struct sip_softc *sc, int x)
543 {
544 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
545 struct sip_desc *sipd = &sc->sc_rxdescs[x];
546
547 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
548 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
549 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
550 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
551 sipd->sipd_extsts = 0;
552 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 }
554
555 #define SIP_CHIP_VERS(sc, v, p, r) \
556 ((sc)->sc_model->sip_vendor == (v) && \
557 (sc)->sc_model->sip_product == (p) && \
558 (sc)->sc_rev == (r))
559
560 #define SIP_CHIP_MODEL(sc, v, p) \
561 ((sc)->sc_model->sip_vendor == (v) && \
562 (sc)->sc_model->sip_product == (p))
563
564 #define SIP_SIS900_REV(sc, rev) \
565 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
566
567 #define SIP_TIMEOUT 1000
568
569 static void sipcom_start(struct ifnet *);
570 static void sipcom_watchdog(struct ifnet *);
571 static int sipcom_ioctl(struct ifnet *, u_long, void *);
572 static int sipcom_init(struct ifnet *);
573 static void sipcom_stop(struct ifnet *, int);
574
575 static bool sipcom_reset(struct sip_softc *);
576 static void sipcom_rxdrain(struct sip_softc *);
577 static int sipcom_add_rxbuf(struct sip_softc *, int);
578 static void sipcom_read_eeprom(struct sip_softc *, int, int,
579 u_int16_t *);
580 static void sipcom_tick(void *);
581
582 static void sipcom_sis900_set_filter(struct sip_softc *);
583 static void sipcom_dp83815_set_filter(struct sip_softc *);
584
585 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
586 const struct pci_attach_args *, u_int8_t *);
587 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
588 static void sipcom_sis900_read_macaddr(struct sip_softc *,
589 const struct pci_attach_args *, u_int8_t *);
590 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
591 const struct pci_attach_args *, u_int8_t *);
592
593 static int sipcom_intr(void *);
594 static void sipcom_txintr(struct sip_softc *);
595 static void sip_rxintr(struct sip_softc *);
596 static void gsip_rxintr(struct sip_softc *);
597
598 static int sipcom_dp83820_mii_readreg(device_t, int, int);
599 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
600 static void sipcom_dp83820_mii_statchg(device_t);
601
602 static int sipcom_sis900_mii_readreg(device_t, int, int);
603 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
604 static void sipcom_sis900_mii_statchg(device_t);
605
606 static int sipcom_dp83815_mii_readreg(device_t, int, int);
607 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
608 static void sipcom_dp83815_mii_statchg(device_t);
609
610 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
611
612 static int sipcom_match(device_t, struct cfdata *, void *);
613 static void sipcom_attach(device_t, device_t, void *);
614 static void sipcom_do_detach(device_t, enum sip_attach_stage);
615 static int sipcom_detach(device_t, int);
616 static bool sipcom_resume(device_t PMF_FN_PROTO);
617 static bool sipcom_suspend(device_t PMF_FN_PROTO);
618
619 int gsip_copy_small = 0;
620 int sip_copy_small = 0;
621
622 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
623 sipcom_match, sipcom_attach, sipcom_detach, NULL);
624 CFATTACH_DECL(sip, sizeof(struct sip_softc),
625 sipcom_match, sipcom_attach, sipcom_detach, NULL);
626
627 /*
628 * Descriptions of the variants of the SiS900.
629 */
630 struct sip_variant {
631 int (*sipv_mii_readreg)(device_t, int, int);
632 void (*sipv_mii_writereg)(device_t, int, int, int);
633 void (*sipv_mii_statchg)(device_t);
634 void (*sipv_set_filter)(struct sip_softc *);
635 void (*sipv_read_macaddr)(struct sip_softc *,
636 const struct pci_attach_args *, u_int8_t *);
637 };
638
639 static u_int32_t sipcom_mii_bitbang_read(device_t);
640 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
641
642 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
643 sipcom_mii_bitbang_read,
644 sipcom_mii_bitbang_write,
645 {
646 EROMAR_MDIO, /* MII_BIT_MDO */
647 EROMAR_MDIO, /* MII_BIT_MDI */
648 EROMAR_MDC, /* MII_BIT_MDC */
649 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
650 0, /* MII_BIT_DIR_PHY_HOST */
651 }
652 };
653
654 static const struct sip_variant sipcom_variant_dp83820 = {
655 sipcom_dp83820_mii_readreg,
656 sipcom_dp83820_mii_writereg,
657 sipcom_dp83820_mii_statchg,
658 sipcom_dp83815_set_filter,
659 sipcom_dp83820_read_macaddr,
660 };
661
662 static const struct sip_variant sipcom_variant_sis900 = {
663 sipcom_sis900_mii_readreg,
664 sipcom_sis900_mii_writereg,
665 sipcom_sis900_mii_statchg,
666 sipcom_sis900_set_filter,
667 sipcom_sis900_read_macaddr,
668 };
669
670 static const struct sip_variant sipcom_variant_dp83815 = {
671 sipcom_dp83815_mii_readreg,
672 sipcom_dp83815_mii_writereg,
673 sipcom_dp83815_mii_statchg,
674 sipcom_dp83815_set_filter,
675 sipcom_dp83815_read_macaddr,
676 };
677
678
679 /*
680 * Devices supported by this driver.
681 */
682 static const struct sip_product {
683 pci_vendor_id_t sip_vendor;
684 pci_product_id_t sip_product;
685 const char *sip_name;
686 const struct sip_variant *sip_variant;
687 int sip_gigabit;
688 } sipcom_products[] = {
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
690 "NatSemi DP83820 Gigabit Ethernet",
691 &sipcom_variant_dp83820, 1 },
692 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
693 "SiS 900 10/100 Ethernet",
694 &sipcom_variant_sis900, 0 },
695 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
696 "SiS 7016 10/100 Ethernet",
697 &sipcom_variant_sis900, 0 },
698
699 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
700 "NatSemi DP83815 10/100 Ethernet",
701 &sipcom_variant_dp83815, 0 },
702
703 { 0, 0,
704 NULL,
705 NULL, 0 },
706 };
707
708 static const struct sip_product *
709 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
710 {
711 const struct sip_product *sip;
712
713 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
714 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
715 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
716 sip->sip_gigabit == gigabit)
717 return sip;
718 }
719 return NULL;
720 }
721
722 /*
723 * I really hate stupid hardware vendors. There's a bit in the EEPROM
724 * which indicates if the card can do 64-bit data transfers. Unfortunately,
725 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
726 * which means we try to use 64-bit data transfers on those cards if we
727 * happen to be plugged into a 32-bit slot.
728 *
729 * What we do is use this table of cards known to be 64-bit cards. If
730 * you have a 64-bit card who's subsystem ID is not listed in this table,
731 * send the output of "pcictl dump ..." of the device to me so that your
732 * card will use the 64-bit data path when plugged into a 64-bit slot.
733 *
734 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
735 * June 30, 2002
736 */
737 static int
738 sipcom_check_64bit(const struct pci_attach_args *pa)
739 {
740 static const struct {
741 pci_vendor_id_t c64_vendor;
742 pci_product_id_t c64_product;
743 } card64[] = {
744 /* Asante GigaNIX */
745 { 0x128a, 0x0002 },
746
747 /* Accton EN1407-T, Planex GN-1000TE */
748 { 0x1113, 0x1407 },
749
750 /* Netgear GA-621 */
751 { 0x1385, 0x621a },
752
753 /* SMC EZ Card */
754 { 0x10b8, 0x9462 },
755
756 { 0, 0}
757 };
758 pcireg_t subsys;
759 int i;
760
761 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
762
763 for (i = 0; card64[i].c64_vendor != 0; i++) {
764 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
765 PCI_PRODUCT(subsys) == card64[i].c64_product)
766 return (1);
767 }
768
769 return (0);
770 }
771
772 static int
773 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
774 {
775 struct pci_attach_args *pa = aux;
776
777 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
778 return 1;
779
780 return 0;
781 }
782
783 static void
784 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
785 {
786 u_int32_t reg;
787 int i;
788
789 /*
790 * Cause the chip to load configuration data from the EEPROM.
791 */
792 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
793 for (i = 0; i < 10000; i++) {
794 delay(10);
795 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 PTSCR_EELOAD_EN) == 0)
797 break;
798 }
799 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
800 PTSCR_EELOAD_EN) {
801 printf("%s: timeout loading configuration from EEPROM\n",
802 device_xname(&sc->sc_dev));
803 return;
804 }
805
806 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
807
808 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
809 if (reg & CFG_PCI64_DET) {
810 printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
811 /*
812 * Check to see if this card is 64-bit. If so, enable 64-bit
813 * data transfers.
814 *
815 * We can't use the DATA64_EN bit in the EEPROM, because
816 * vendors of 32-bit cards fail to clear that bit in many
817 * cases (yet the card still detects that it's in a 64-bit
818 * slot; go figure).
819 */
820 if (sipcom_check_64bit(pa)) {
821 sc->sc_cfg |= CFG_DATA64_EN;
822 printf(", using 64-bit data transfers");
823 }
824 printf("\n");
825 }
826
827 /*
828 * XXX Need some PCI flags indicating support for
829 * XXX 64-bit addressing.
830 */
831 #if 0
832 if (reg & CFG_M64ADDR)
833 sc->sc_cfg |= CFG_M64ADDR;
834 if (reg & CFG_T64ADDR)
835 sc->sc_cfg |= CFG_T64ADDR;
836 #endif
837
838 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
839 const char *sep = "";
840 printf("%s: using ", device_xname(&sc->sc_dev));
841 if (reg & CFG_EXT_125) {
842 sc->sc_cfg |= CFG_EXT_125;
843 printf("%s125MHz clock", sep);
844 sep = ", ";
845 }
846 if (reg & CFG_TBI_EN) {
847 sc->sc_cfg |= CFG_TBI_EN;
848 printf("%sten-bit interface", sep);
849 sep = ", ";
850 }
851 printf("\n");
852 }
853 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
854 (reg & CFG_MRM_DIS) != 0)
855 sc->sc_cfg |= CFG_MRM_DIS;
856 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
857 (reg & CFG_MWI_DIS) != 0)
858 sc->sc_cfg |= CFG_MWI_DIS;
859
860 /*
861 * Use the extended descriptor format on the DP83820. This
862 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
863 * checksumming.
864 */
865 sc->sc_cfg |= CFG_EXTSTS_EN;
866 }
867
868 static int
869 sipcom_detach(device_t self, int flags)
870 {
871 int s;
872
873 s = splnet();
874 sipcom_do_detach(self, SIP_ATTACH_FIN);
875 splx(s);
876
877 return 0;
878 }
879
880 static void
881 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
882 {
883 int i;
884 struct sip_softc *sc = device_private(self);
885 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
886
887 /*
888 * Free any resources we've allocated during attach.
889 * Do this in reverse order and fall through.
890 */
891 switch (stage) {
892 case SIP_ATTACH_FIN:
893 sipcom_stop(ifp, 1);
894 pmf_device_deregister(self);
895 #ifdef SIP_EVENT_COUNTERS
896 /*
897 * Attach event counters.
898 */
899 evcnt_detach(&sc->sc_ev_txforceintr);
900 evcnt_detach(&sc->sc_ev_txdstall);
901 evcnt_detach(&sc->sc_ev_txsstall);
902 evcnt_detach(&sc->sc_ev_hiberr);
903 evcnt_detach(&sc->sc_ev_rxintr);
904 evcnt_detach(&sc->sc_ev_txiintr);
905 evcnt_detach(&sc->sc_ev_txdintr);
906 if (!sc->sc_gigabit) {
907 evcnt_detach(&sc->sc_ev_rxpause);
908 } else {
909 evcnt_detach(&sc->sc_ev_txudpsum);
910 evcnt_detach(&sc->sc_ev_txtcpsum);
911 evcnt_detach(&sc->sc_ev_txipsum);
912 evcnt_detach(&sc->sc_ev_rxudpsum);
913 evcnt_detach(&sc->sc_ev_rxtcpsum);
914 evcnt_detach(&sc->sc_ev_rxipsum);
915 evcnt_detach(&sc->sc_ev_txpause);
916 evcnt_detach(&sc->sc_ev_rxpause);
917 }
918 #endif /* SIP_EVENT_COUNTERS */
919
920 #if NRND > 0
921 rnd_detach_source(&sc->rnd_source);
922 #endif
923
924 ether_ifdetach(ifp);
925 if_detach(ifp);
926 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
927
928 /*FALLTHROUGH*/
929 case SIP_ATTACH_CREATE_RXMAP:
930 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
931 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->sc_rxsoft[i].rxs_dmamap);
934 }
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_CREATE_TXMAP:
937 for (i = 0; i < SIP_TXQUEUELEN; i++) {
938 if (sc->sc_txsoft[i].txs_dmamap != NULL)
939 bus_dmamap_destroy(sc->sc_dmat,
940 sc->sc_txsoft[i].txs_dmamap);
941 }
942 /*FALLTHROUGH*/
943 case SIP_ATTACH_LOAD_MAP:
944 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
945 /*FALLTHROUGH*/
946 case SIP_ATTACH_CREATE_MAP:
947 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
948 /*FALLTHROUGH*/
949 case SIP_ATTACH_MAP_MEM:
950 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
951 sizeof(struct sip_control_data));
952 /*FALLTHROUGH*/
953 case SIP_ATTACH_ALLOC_MEM:
954 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
955 /* FALLTHROUGH*/
956 case SIP_ATTACH_INTR:
957 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
958 /* FALLTHROUGH*/
959 case SIP_ATTACH_MAP:
960 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
961 break;
962 default:
963 break;
964 }
965 return;
966 }
967
968 static bool
969 sipcom_resume(device_t self PMF_FN_ARGS)
970 {
971 struct sip_softc *sc = device_private(self);
972
973 return sipcom_reset(sc);
974 }
975
976 static bool
977 sipcom_suspend(device_t self PMF_FN_ARGS)
978 {
979 struct sip_softc *sc = device_private(self);
980
981 sipcom_rxdrain(sc);
982 return true;
983 }
984
985 static void
986 sipcom_attach(device_t parent, device_t self, void *aux)
987 {
988 struct sip_softc *sc = device_private(self);
989 struct pci_attach_args *pa = aux;
990 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
991 pci_chipset_tag_t pc = pa->pa_pc;
992 pci_intr_handle_t ih;
993 const char *intrstr = NULL;
994 bus_space_tag_t iot, memt;
995 bus_space_handle_t ioh, memh;
996 bus_size_t iosz, memsz;
997 int ioh_valid, memh_valid;
998 int i, rseg, error;
999 const struct sip_product *sip;
1000 u_int8_t enaddr[ETHER_ADDR_LEN];
1001 pcireg_t pmreg;
1002 pcireg_t memtype;
1003 bus_size_t tx_dmamap_size;
1004 int ntxsegs_alloc;
1005 cfdata_t cf = device_cfdata(self);
1006
1007 callout_init(&sc->sc_tick_ch, 0);
1008
1009 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1010 if (sip == NULL) {
1011 printf("\n");
1012 panic("%s: impossible", __func__);
1013 }
1014 sc->sc_gigabit = sip->sip_gigabit;
1015
1016 sc->sc_pc = pc;
1017
1018 if (sc->sc_gigabit) {
1019 sc->sc_rxintr = gsip_rxintr;
1020 sc->sc_parm = &gsip_parm;
1021 } else {
1022 sc->sc_rxintr = sip_rxintr;
1023 sc->sc_parm = &sip_parm;
1024 }
1025 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1026 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1027 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1028 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1029 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1030
1031 sc->sc_rev = PCI_REVISION(pa->pa_class);
1032
1033 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1034
1035 sc->sc_model = sip;
1036
1037 /*
1038 * XXX Work-around broken PXE firmware on some boards.
1039 *
1040 * The DP83815 shares an address decoder with the MEM BAR
1041 * and the ROM BAR. Make sure the ROM BAR is disabled,
1042 * so that memory mapped access works.
1043 */
1044 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1045 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1046 ~PCI_MAPREG_ROM_ENABLE);
1047
1048 /*
1049 * Map the device.
1050 */
1051 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1052 PCI_MAPREG_TYPE_IO, 0,
1053 &iot, &ioh, NULL, &iosz) == 0);
1054 if (sc->sc_gigabit) {
1055 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1056 switch (memtype) {
1057 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1058 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1061 break;
1062 default:
1063 memh_valid = 0;
1064 }
1065 } else {
1066 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1067 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1068 &memt, &memh, NULL, &memsz) == 0);
1069 }
1070
1071 if (memh_valid) {
1072 sc->sc_st = memt;
1073 sc->sc_sh = memh;
1074 sc->sc_sz = memsz;
1075 } else if (ioh_valid) {
1076 sc->sc_st = iot;
1077 sc->sc_sh = ioh;
1078 sc->sc_sz = iosz;
1079 } else {
1080 printf("%s: unable to map device registers\n",
1081 device_xname(&sc->sc_dev));
1082 return;
1083 }
1084
1085 sc->sc_dmat = pa->pa_dmat;
1086
1087 /*
1088 * Make sure bus mastering is enabled. Also make sure
1089 * Write/Invalidate is enabled if we're allowed to use it.
1090 */
1091 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1092 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1093 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1094 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1095 pmreg | PCI_COMMAND_MASTER_ENABLE);
1096
1097 /* power up chip */
1098 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
1099 error != EOPNOTSUPP) {
1100 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
1101 error);
1102 return;
1103 }
1104
1105 /*
1106 * Map and establish our interrupt.
1107 */
1108 if (pci_intr_map(pa, &ih)) {
1109 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1110 return;
1111 }
1112 intrstr = pci_intr_string(pc, ih);
1113 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1114 if (sc->sc_ih == NULL) {
1115 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1116 if (intrstr != NULL)
1117 printf(" at %s", intrstr);
1118 printf("\n");
1119 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1120 }
1121 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1122
1123 SIMPLEQ_INIT(&sc->sc_txfreeq);
1124 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1125
1126 /*
1127 * Allocate the control data structures, and create and load the
1128 * DMA map for it.
1129 */
1130 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1131 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1132 &rseg, 0)) != 0) {
1133 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1134 error);
1135 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1136 }
1137
1138 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1139 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1140 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1141 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1142 error);
1143 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1144 }
1145
1146 if ((error = bus_dmamap_create(sc->sc_dmat,
1147 sizeof(struct sip_control_data), 1,
1148 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1149 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1150 "error = %d\n", error);
1151 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1152 }
1153
1154 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1155 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1156 0)) != 0) {
1157 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1158 error);
1159 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1160 }
1161
1162 /*
1163 * Create the transmit buffer DMA maps.
1164 */
1165 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1166 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1167 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1168 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1169 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1170 "error = %d\n", i, error);
1171 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1172 }
1173 }
1174
1175 /*
1176 * Create the receive buffer DMA maps.
1177 */
1178 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1179 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1180 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1181 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1182 "error = %d\n", i, error);
1183 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1184 }
1185 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1186 }
1187
1188 /*
1189 * Reset the chip to a known state.
1190 */
1191 sipcom_reset(sc);
1192
1193 /*
1194 * Read the Ethernet address from the EEPROM. This might
1195 * also fetch other stuff from the EEPROM and stash it
1196 * in the softc.
1197 */
1198 sc->sc_cfg = 0;
1199 if (!sc->sc_gigabit) {
1200 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 SIP_SIS900_REV(sc,SIS_REV_900B))
1202 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1203
1204 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1205 SIP_SIS900_REV(sc,SIS_REV_960) ||
1206 SIP_SIS900_REV(sc,SIS_REV_900B))
1207 sc->sc_cfg |=
1208 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1209 CFG_EDBMASTEN);
1210 }
1211
1212 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1213
1214 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1215 ether_sprintf(enaddr));
1216
1217 /*
1218 * Initialize the configuration register: aggressive PCI
1219 * bus request algorithm, default backoff, default OW timer,
1220 * default parity error detection.
1221 *
1222 * NOTE: "Big endian mode" is useless on the SiS900 and
1223 * friends -- it affects packet data, not descriptors.
1224 */
1225 if (sc->sc_gigabit)
1226 sipcom_dp83820_attach(sc, pa);
1227
1228 /*
1229 * Initialize our media structures and probe the MII.
1230 */
1231 sc->sc_mii.mii_ifp = ifp;
1232 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1233 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1234 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1235 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1236 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1237 sipcom_mediastatus);
1238
1239 /*
1240 * XXX We cannot handle flow control on the DP83815.
1241 */
1242 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1243 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1244 MII_OFFSET_ANY, 0);
1245 else
1246 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1247 MII_OFFSET_ANY, MIIF_DOPAUSE);
1248 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1249 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1250 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1251 } else
1252 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1253
1254 ifp = &sc->sc_ethercom.ec_if;
1255 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1256 ifp->if_softc = sc;
1257 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1258 sc->sc_if_flags = ifp->if_flags;
1259 ifp->if_ioctl = sipcom_ioctl;
1260 ifp->if_start = sipcom_start;
1261 ifp->if_watchdog = sipcom_watchdog;
1262 ifp->if_init = sipcom_init;
1263 ifp->if_stop = sipcom_stop;
1264 IFQ_SET_READY(&ifp->if_snd);
1265
1266 /*
1267 * We can support 802.1Q VLAN-sized frames.
1268 */
1269 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1270
1271 if (sc->sc_gigabit) {
1272 /*
1273 * And the DP83820 can do VLAN tagging in hardware, and
1274 * support the jumbo Ethernet MTU.
1275 */
1276 sc->sc_ethercom.ec_capabilities |=
1277 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1278
1279 /*
1280 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1281 * in hardware.
1282 */
1283 ifp->if_capabilities |=
1284 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1285 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1286 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1287 }
1288
1289 /*
1290 * Attach the interface.
1291 */
1292 if_attach(ifp);
1293 ether_ifattach(ifp, enaddr);
1294 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1295 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1296 sc->sc_prev.if_capenable = ifp->if_capenable;
1297 #if NRND > 0
1298 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1299 RND_TYPE_NET, 0);
1300 #endif
1301
1302 /*
1303 * The number of bytes that must be available in
1304 * the Tx FIFO before the bus master can DMA more
1305 * data into the FIFO.
1306 */
1307 sc->sc_tx_fill_thresh = 64 / 32;
1308
1309 /*
1310 * Start at a drain threshold of 512 bytes. We will
1311 * increase it if a DMA underrun occurs.
1312 *
1313 * XXX The minimum value of this variable should be
1314 * tuned. We may be able to improve performance
1315 * by starting with a lower value. That, however,
1316 * may trash the first few outgoing packets if the
1317 * PCI bus is saturated.
1318 */
1319 if (sc->sc_gigabit)
1320 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1321 else
1322 sc->sc_tx_drain_thresh = 1504 / 32;
1323
1324 /*
1325 * Initialize the Rx FIFO drain threshold.
1326 *
1327 * This is in units of 8 bytes.
1328 *
1329 * We should never set this value lower than 2; 14 bytes are
1330 * required to filter the packet.
1331 */
1332 sc->sc_rx_drain_thresh = 128 / 8;
1333
1334 #ifdef SIP_EVENT_COUNTERS
1335 /*
1336 * Attach event counters.
1337 */
1338 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1339 NULL, device_xname(&sc->sc_dev), "txsstall");
1340 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1341 NULL, device_xname(&sc->sc_dev), "txdstall");
1342 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(&sc->sc_dev), "txforceintr");
1344 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1345 NULL, device_xname(&sc->sc_dev), "txdintr");
1346 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1347 NULL, device_xname(&sc->sc_dev), "txiintr");
1348 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1349 NULL, device_xname(&sc->sc_dev), "rxintr");
1350 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1351 NULL, device_xname(&sc->sc_dev), "hiberr");
1352 if (!sc->sc_gigabit) {
1353 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1354 NULL, device_xname(&sc->sc_dev), "rxpause");
1355 } else {
1356 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1357 NULL, device_xname(&sc->sc_dev), "rxpause");
1358 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1359 NULL, device_xname(&sc->sc_dev), "txpause");
1360 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(&sc->sc_dev), "rxipsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1364 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1365 NULL, device_xname(&sc->sc_dev), "rxudpsum");
1366 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1367 NULL, device_xname(&sc->sc_dev), "txipsum");
1368 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1369 NULL, device_xname(&sc->sc_dev), "txtcpsum");
1370 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1371 NULL, device_xname(&sc->sc_dev), "txudpsum");
1372 }
1373 #endif /* SIP_EVENT_COUNTERS */
1374
1375 if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1376 aprint_error_dev(self, "couldn't establish power handler\n");
1377 else
1378 pmf_class_network_register(self, ifp);
1379 }
1380
1381 static inline void
1382 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1383 uint64_t capenable)
1384 {
1385 struct m_tag *mtag;
1386 u_int32_t extsts;
1387 #ifdef DEBUG
1388 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1389 #endif
1390 /*
1391 * If VLANs are enabled and the packet has a VLAN tag, set
1392 * up the descriptor to encapsulate the packet for us.
1393 *
1394 * This apparently has to be on the last descriptor of
1395 * the packet.
1396 */
1397
1398 /*
1399 * Byte swapping is tricky. We need to provide the tag
1400 * in a network byte order. On a big-endian machine,
1401 * the byteorder is correct, but we need to swap it
1402 * anyway, because this will be undone by the outside
1403 * htole32(). That's why there must be an
1404 * unconditional swap instead of htons() inside.
1405 */
1406 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1407 sc->sc_txdescs[lasttx].sipd_extsts |=
1408 htole32(EXTSTS_VPKT |
1409 (bswap16(VLAN_TAG_VALUE(mtag)) &
1410 EXTSTS_VTCI));
1411 }
1412
1413 /*
1414 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1415 * checksumming, set up the descriptor to do this work
1416 * for us.
1417 *
1418 * This apparently has to be on the first descriptor of
1419 * the packet.
1420 *
1421 * Byte-swap constants so the compiler can optimize.
1422 */
1423 extsts = 0;
1424 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1427 extsts |= htole32(EXTSTS_IPPKT);
1428 }
1429 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1430 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1431 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1432 extsts |= htole32(EXTSTS_TCPPKT);
1433 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1434 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1435 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1436 extsts |= htole32(EXTSTS_UDPPKT);
1437 }
1438 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1439 }
1440
1441 /*
1442 * sip_start: [ifnet interface function]
1443 *
1444 * Start packet transmission on the interface.
1445 */
1446 static void
1447 sipcom_start(struct ifnet *ifp)
1448 {
1449 struct sip_softc *sc = ifp->if_softc;
1450 struct mbuf *m0;
1451 struct mbuf *m;
1452 struct sip_txsoft *txs;
1453 bus_dmamap_t dmamap;
1454 int error, nexttx, lasttx, seg;
1455 int ofree = sc->sc_txfree;
1456 #if 0
1457 int firsttx = sc->sc_txnext;
1458 #endif
1459
1460 /*
1461 * If we've been told to pause, don't transmit any more packets.
1462 */
1463 if (!sc->sc_gigabit && sc->sc_paused)
1464 ifp->if_flags |= IFF_OACTIVE;
1465
1466 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1467 return;
1468
1469 /*
1470 * Loop through the send queue, setting up transmit descriptors
1471 * until we drain the queue, or use up all available transmit
1472 * descriptors.
1473 */
1474 for (;;) {
1475 /* Get a work queue entry. */
1476 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1477 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1478 break;
1479 }
1480
1481 /*
1482 * Grab a packet off the queue.
1483 */
1484 IFQ_POLL(&ifp->if_snd, m0);
1485 if (m0 == NULL)
1486 break;
1487 m = NULL;
1488
1489 dmamap = txs->txs_dmamap;
1490
1491 /*
1492 * Load the DMA map. If this fails, the packet either
1493 * didn't fit in the alloted number of segments, or we
1494 * were short on resources.
1495 */
1496 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1497 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1498 /* In the non-gigabit case, we'll copy and try again. */
1499 if (error != 0 && !sc->sc_gigabit) {
1500 MGETHDR(m, M_DONTWAIT, MT_DATA);
1501 if (m == NULL) {
1502 printf("%s: unable to allocate Tx mbuf\n",
1503 device_xname(&sc->sc_dev));
1504 break;
1505 }
1506 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1507 if (m0->m_pkthdr.len > MHLEN) {
1508 MCLGET(m, M_DONTWAIT);
1509 if ((m->m_flags & M_EXT) == 0) {
1510 printf("%s: unable to allocate Tx "
1511 "cluster\n", device_xname(&sc->sc_dev));
1512 m_freem(m);
1513 break;
1514 }
1515 }
1516 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1517 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1518 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1519 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1520 if (error) {
1521 printf("%s: unable to load Tx buffer, "
1522 "error = %d\n", device_xname(&sc->sc_dev), error);
1523 break;
1524 }
1525 } else if (error == EFBIG) {
1526 /*
1527 * For the too-many-segments case, we simply
1528 * report an error and drop the packet,
1529 * since we can't sanely copy a jumbo packet
1530 * to a single buffer.
1531 */
1532 printf("%s: Tx packet consumes too many "
1533 "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1534 IFQ_DEQUEUE(&ifp->if_snd, m0);
1535 m_freem(m0);
1536 continue;
1537 } else if (error != 0) {
1538 /*
1539 * Short on resources, just stop for now.
1540 */
1541 break;
1542 }
1543
1544 /*
1545 * Ensure we have enough descriptors free to describe
1546 * the packet. Note, we always reserve one descriptor
1547 * at the end of the ring as a termination point, to
1548 * prevent wrap-around.
1549 */
1550 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1551 /*
1552 * Not enough free descriptors to transmit this
1553 * packet. We haven't committed anything yet,
1554 * so just unload the DMA map, put the packet
1555 * back on the queue, and punt. Notify the upper
1556 * layer that there are not more slots left.
1557 *
1558 * XXX We could allocate an mbuf and copy, but
1559 * XXX is it worth it?
1560 */
1561 ifp->if_flags |= IFF_OACTIVE;
1562 bus_dmamap_unload(sc->sc_dmat, dmamap);
1563 if (m != NULL)
1564 m_freem(m);
1565 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1566 break;
1567 }
1568
1569 IFQ_DEQUEUE(&ifp->if_snd, m0);
1570 if (m != NULL) {
1571 m_freem(m0);
1572 m0 = m;
1573 }
1574
1575 /*
1576 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1577 */
1578
1579 /* Sync the DMA map. */
1580 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1581 BUS_DMASYNC_PREWRITE);
1582
1583 /*
1584 * Initialize the transmit descriptors.
1585 */
1586 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1587 seg < dmamap->dm_nsegs;
1588 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1589 /*
1590 * If this is the first descriptor we're
1591 * enqueueing, don't set the OWN bit just
1592 * yet. That could cause a race condition.
1593 * We'll do it below.
1594 */
1595 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1596 htole32(dmamap->dm_segs[seg].ds_addr);
1597 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1598 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1599 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1600 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1601 lasttx = nexttx;
1602 }
1603
1604 /* Clear the MORE bit on the last segment. */
1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1606 htole32(~CMDSTS_MORE);
1607
1608 /*
1609 * If we're in the interrupt delay window, delay the
1610 * interrupt.
1611 */
1612 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1613 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1614 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1615 htole32(CMDSTS_INTR);
1616 sc->sc_txwin = 0;
1617 }
1618
1619 if (sc->sc_gigabit)
1620 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1621
1622 /* Sync the descriptors we're using. */
1623 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1624 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625
1626 /*
1627 * The entire packet is set up. Give the first descrptor
1628 * to the chip now.
1629 */
1630 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1631 htole32(CMDSTS_OWN);
1632 sip_cdtxsync(sc, sc->sc_txnext, 1,
1633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1634
1635 /*
1636 * Store a pointer to the packet so we can free it later,
1637 * and remember what txdirty will be once the packet is
1638 * done.
1639 */
1640 txs->txs_mbuf = m0;
1641 txs->txs_firstdesc = sc->sc_txnext;
1642 txs->txs_lastdesc = lasttx;
1643
1644 /* Advance the tx pointer. */
1645 sc->sc_txfree -= dmamap->dm_nsegs;
1646 sc->sc_txnext = nexttx;
1647
1648 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1649 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1650
1651 #if NBPFILTER > 0
1652 /*
1653 * Pass the packet to any BPF listeners.
1654 */
1655 if (ifp->if_bpf)
1656 bpf_mtap(ifp->if_bpf, m0);
1657 #endif /* NBPFILTER > 0 */
1658 }
1659
1660 if (txs == NULL || sc->sc_txfree == 0) {
1661 /* No more slots left; notify upper layer. */
1662 ifp->if_flags |= IFF_OACTIVE;
1663 }
1664
1665 if (sc->sc_txfree != ofree) {
1666 /*
1667 * Start the transmit process. Note, the manual says
1668 * that if there are no pending transmissions in the
1669 * chip's internal queue (indicated by TXE being clear),
1670 * then the driver software must set the TXDP to the
1671 * first descriptor to be transmitted. However, if we
1672 * do this, it causes serious performance degredation on
1673 * the DP83820 under load, not setting TXDP doesn't seem
1674 * to adversely affect the SiS 900 or DP83815.
1675 *
1676 * Well, I guess it wouldn't be the first time a manual
1677 * has lied -- and they could be speaking of the NULL-
1678 * terminated descriptor list case, rather than OWN-
1679 * terminated rings.
1680 */
1681 #if 0
1682 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1683 CR_TXE) == 0) {
1684 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1685 SIP_CDTXADDR(sc, firsttx));
1686 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1687 }
1688 #else
1689 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1690 #endif
1691
1692 /* Set a watchdog timer in case the chip flakes out. */
1693 /* Gigabit autonegotiation takes 5 seconds. */
1694 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1695 }
1696 }
1697
1698 /*
1699 * sip_watchdog: [ifnet interface function]
1700 *
1701 * Watchdog timer handler.
1702 */
1703 static void
1704 sipcom_watchdog(struct ifnet *ifp)
1705 {
1706 struct sip_softc *sc = ifp->if_softc;
1707
1708 /*
1709 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1710 * If we get a timeout, try and sweep up transmit descriptors.
1711 * If we manage to sweep them all up, ignore the lack of
1712 * interrupt.
1713 */
1714 sipcom_txintr(sc);
1715
1716 if (sc->sc_txfree != sc->sc_ntxdesc) {
1717 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1718 ifp->if_oerrors++;
1719
1720 /* Reset the interface. */
1721 (void) sipcom_init(ifp);
1722 } else if (ifp->if_flags & IFF_DEBUG)
1723 printf("%s: recovered from device timeout\n",
1724 device_xname(&sc->sc_dev));
1725
1726 /* Try to get more packets going. */
1727 sipcom_start(ifp);
1728 }
1729
1730 /*
1731 * sip_ioctl: [ifnet interface function]
1732 *
1733 * Handle control requests from the operator.
1734 */
1735 static int
1736 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1737 {
1738 struct sip_softc *sc = ifp->if_softc;
1739 struct ifreq *ifr = (struct ifreq *)data;
1740 int s, error;
1741
1742 s = splnet();
1743
1744 switch (cmd) {
1745 case SIOCSIFMEDIA:
1746 /* Flow control requires full-duplex mode. */
1747 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1748 (ifr->ifr_media & IFM_FDX) == 0)
1749 ifr->ifr_media &= ~IFM_ETH_FMASK;
1750
1751 /* XXX */
1752 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1753 ifr->ifr_media &= ~IFM_ETH_FMASK;
1754 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1755 if (sc->sc_gigabit &&
1756 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1757 /* We can do both TXPAUSE and RXPAUSE. */
1758 ifr->ifr_media |=
1759 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1760 } else if (ifr->ifr_media & IFM_FLOW) {
1761 /*
1762 * Both TXPAUSE and RXPAUSE must be set.
1763 * (SiS900 and DP83815 don't have PAUSE_ASYM
1764 * feature.)
1765 *
1766 * XXX Can SiS900 and DP83815 send PAUSE?
1767 */
1768 ifr->ifr_media |=
1769 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 }
1771 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1772 }
1773 goto ethioctl;
1774 case SIOCSIFFLAGS:
1775 /* If the interface is up and running, only modify the receive
1776 * filter when setting promiscuous or debug mode. Otherwise
1777 * fall through to ether_ioctl, which will reset the chip.
1778 */
1779
1780 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1781 == (sc)->sc_ethercom.ec_capenable) \
1782 && ((sc)->sc_prev.is_vlan == \
1783 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1784
1785 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1786
1787 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1788 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1789 == (IFF_UP|IFF_RUNNING))
1790 && ((ifp->if_flags & (~RESETIGN))
1791 == (sc->sc_if_flags & (~RESETIGN)))
1792 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1793 /* Set up the receive filter. */
1794 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1795 error = 0;
1796 break;
1797 #undef RESETIGN
1798 }
1799 /* FALLTHROUGH */
1800 ethioctl:
1801 default:
1802 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1803 break;
1804
1805 error = 0;
1806
1807 if (cmd == SIOCSIFCAP)
1808 error = (*ifp->if_init)(ifp);
1809 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1810 ;
1811 else if (ifp->if_flags & IFF_RUNNING) {
1812 /*
1813 * Multicast list has changed; set the hardware filter
1814 * accordingly.
1815 */
1816 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1817 }
1818 break;
1819 }
1820
1821 /* Try to get more packets going. */
1822 sipcom_start(ifp);
1823
1824 sc->sc_if_flags = ifp->if_flags;
1825 splx(s);
1826 return (error);
1827 }
1828
1829 /*
1830 * sip_intr:
1831 *
1832 * Interrupt service routine.
1833 */
1834 static int
1835 sipcom_intr(void *arg)
1836 {
1837 struct sip_softc *sc = arg;
1838 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1839 u_int32_t isr;
1840 int handled = 0;
1841
1842 /* Disable interrupts. */
1843 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1844
1845 for (;;) {
1846 /* Reading clears interrupt. */
1847 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1848 if ((isr & sc->sc_imr) == 0)
1849 break;
1850
1851 #if NRND > 0
1852 if (RND_ENABLED(&sc->rnd_source))
1853 rnd_add_uint32(&sc->rnd_source, isr);
1854 #endif
1855
1856 handled = 1;
1857
1858 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1859 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1860
1861 /* Grab any new packets. */
1862 (*sc->sc_rxintr)(sc);
1863
1864 if (isr & ISR_RXORN) {
1865 printf("%s: receive FIFO overrun\n",
1866 device_xname(&sc->sc_dev));
1867
1868 /* XXX adjust rx_drain_thresh? */
1869 }
1870
1871 if (isr & ISR_RXIDLE) {
1872 printf("%s: receive ring overrun\n",
1873 device_xname(&sc->sc_dev));
1874
1875 /* Get the receive process going again. */
1876 bus_space_write_4(sc->sc_st, sc->sc_sh,
1877 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1878 bus_space_write_4(sc->sc_st, sc->sc_sh,
1879 SIP_CR, CR_RXE);
1880 }
1881 }
1882
1883 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1884 #ifdef SIP_EVENT_COUNTERS
1885 if (isr & ISR_TXDESC)
1886 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1887 else if (isr & ISR_TXIDLE)
1888 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1889 #endif
1890
1891 /* Sweep up transmit descriptors. */
1892 sipcom_txintr(sc);
1893
1894 if (isr & ISR_TXURN) {
1895 u_int32_t thresh;
1896 int txfifo_size = (sc->sc_gigabit)
1897 ? DP83820_SIP_TXFIFO_SIZE
1898 : OTHER_SIP_TXFIFO_SIZE;
1899
1900 printf("%s: transmit FIFO underrun",
1901 device_xname(&sc->sc_dev));
1902 thresh = sc->sc_tx_drain_thresh + 1;
1903 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1904 && (thresh * 32) <= (txfifo_size -
1905 (sc->sc_tx_fill_thresh * 32))) {
1906 printf("; increasing Tx drain "
1907 "threshold to %u bytes\n",
1908 thresh * 32);
1909 sc->sc_tx_drain_thresh = thresh;
1910 (void) sipcom_init(ifp);
1911 } else {
1912 (void) sipcom_init(ifp);
1913 printf("\n");
1914 }
1915 }
1916 }
1917
1918 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1919 if (isr & ISR_PAUSE_ST) {
1920 sc->sc_paused = 1;
1921 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1922 ifp->if_flags |= IFF_OACTIVE;
1923 }
1924 if (isr & ISR_PAUSE_END) {
1925 sc->sc_paused = 0;
1926 ifp->if_flags &= ~IFF_OACTIVE;
1927 }
1928 }
1929
1930 if (isr & ISR_HIBERR) {
1931 int want_init = 0;
1932
1933 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1934
1935 #define PRINTERR(bit, str) \
1936 do { \
1937 if ((isr & (bit)) != 0) { \
1938 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1939 printf("%s: %s\n", \
1940 device_xname(&sc->sc_dev), str); \
1941 want_init = 1; \
1942 } \
1943 } while (/*CONSTCOND*/0)
1944
1945 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1946 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1947 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1948 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1949 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1950 /*
1951 * Ignore:
1952 * Tx reset complete
1953 * Rx reset complete
1954 */
1955 if (want_init)
1956 (void) sipcom_init(ifp);
1957 #undef PRINTERR
1958 }
1959 }
1960
1961 /* Re-enable interrupts. */
1962 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1963
1964 /* Try to get more packets going. */
1965 sipcom_start(ifp);
1966
1967 return (handled);
1968 }
1969
1970 /*
1971 * sip_txintr:
1972 *
1973 * Helper; handle transmit interrupts.
1974 */
1975 static void
1976 sipcom_txintr(struct sip_softc *sc)
1977 {
1978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1979 struct sip_txsoft *txs;
1980 u_int32_t cmdsts;
1981
1982 if (sc->sc_paused == 0)
1983 ifp->if_flags &= ~IFF_OACTIVE;
1984
1985 /*
1986 * Go through our Tx list and free mbufs for those
1987 * frames which have been transmitted.
1988 */
1989 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1990 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1991 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1992
1993 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1994 if (cmdsts & CMDSTS_OWN)
1995 break;
1996
1997 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1998
1999 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2000
2001 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2002 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2004 m_freem(txs->txs_mbuf);
2005 txs->txs_mbuf = NULL;
2006
2007 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2008
2009 /*
2010 * Check for errors and collisions.
2011 */
2012 if (cmdsts &
2013 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2014 ifp->if_oerrors++;
2015 if (cmdsts & CMDSTS_Tx_EC)
2016 ifp->if_collisions += 16;
2017 if (ifp->if_flags & IFF_DEBUG) {
2018 if (cmdsts & CMDSTS_Tx_ED)
2019 printf("%s: excessive deferral\n",
2020 device_xname(&sc->sc_dev));
2021 if (cmdsts & CMDSTS_Tx_EC)
2022 printf("%s: excessive collisions\n",
2023 device_xname(&sc->sc_dev));
2024 }
2025 } else {
2026 /* Packet was transmitted successfully. */
2027 ifp->if_opackets++;
2028 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2029 }
2030 }
2031
2032 /*
2033 * If there are no more pending transmissions, cancel the watchdog
2034 * timer.
2035 */
2036 if (txs == NULL) {
2037 ifp->if_timer = 0;
2038 sc->sc_txwin = 0;
2039 }
2040 }
2041
2042 /*
2043 * gsip_rxintr:
2044 *
2045 * Helper; handle receive interrupts on gigabit parts.
2046 */
2047 static void
2048 gsip_rxintr(struct sip_softc *sc)
2049 {
2050 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2051 struct sip_rxsoft *rxs;
2052 struct mbuf *m;
2053 u_int32_t cmdsts, extsts;
2054 int i, len;
2055
2056 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2057 rxs = &sc->sc_rxsoft[i];
2058
2059 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2060
2061 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2062 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2063 len = CMDSTS_SIZE(sc, cmdsts);
2064
2065 /*
2066 * NOTE: OWN is set if owned by _consumer_. We're the
2067 * consumer of the receive ring, so if the bit is clear,
2068 * we have processed all of the packets.
2069 */
2070 if ((cmdsts & CMDSTS_OWN) == 0) {
2071 /*
2072 * We have processed all of the receive buffers.
2073 */
2074 break;
2075 }
2076
2077 if (__predict_false(sc->sc_rxdiscard)) {
2078 sip_init_rxdesc(sc, i);
2079 if ((cmdsts & CMDSTS_MORE) == 0) {
2080 /* Reset our state. */
2081 sc->sc_rxdiscard = 0;
2082 }
2083 continue;
2084 }
2085
2086 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2088
2089 m = rxs->rxs_mbuf;
2090
2091 /*
2092 * Add a new receive buffer to the ring.
2093 */
2094 if (sipcom_add_rxbuf(sc, i) != 0) {
2095 /*
2096 * Failed, throw away what we've done so
2097 * far, and discard the rest of the packet.
2098 */
2099 ifp->if_ierrors++;
2100 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2101 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2102 sip_init_rxdesc(sc, i);
2103 if (cmdsts & CMDSTS_MORE)
2104 sc->sc_rxdiscard = 1;
2105 if (sc->sc_rxhead != NULL)
2106 m_freem(sc->sc_rxhead);
2107 sip_rxchain_reset(sc);
2108 continue;
2109 }
2110
2111 sip_rxchain_link(sc, m);
2112
2113 m->m_len = len;
2114
2115 /*
2116 * If this is not the end of the packet, keep
2117 * looking.
2118 */
2119 if (cmdsts & CMDSTS_MORE) {
2120 sc->sc_rxlen += len;
2121 continue;
2122 }
2123
2124 /*
2125 * Okay, we have the entire packet now. The chip includes
2126 * the FCS, so we need to trim it.
2127 */
2128 m->m_len -= ETHER_CRC_LEN;
2129
2130 *sc->sc_rxtailp = NULL;
2131 len = m->m_len + sc->sc_rxlen;
2132 m = sc->sc_rxhead;
2133
2134 sip_rxchain_reset(sc);
2135
2136 /*
2137 * If an error occurred, update stats and drop the packet.
2138 */
2139 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2140 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2141 ifp->if_ierrors++;
2142 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2143 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2144 /* Receive overrun handled elsewhere. */
2145 printf("%s: receive descriptor error\n",
2146 device_xname(&sc->sc_dev));
2147 }
2148 #define PRINTERR(bit, str) \
2149 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2150 (cmdsts & (bit)) != 0) \
2151 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2152 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2153 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2154 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2155 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2156 #undef PRINTERR
2157 m_freem(m);
2158 continue;
2159 }
2160
2161 /*
2162 * If the packet is small enough to fit in a
2163 * single header mbuf, allocate one and copy
2164 * the data into it. This greatly reduces
2165 * memory consumption when we receive lots
2166 * of small packets.
2167 */
2168 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2169 struct mbuf *nm;
2170 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2171 if (nm == NULL) {
2172 ifp->if_ierrors++;
2173 m_freem(m);
2174 continue;
2175 }
2176 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2177 nm->m_data += 2;
2178 nm->m_pkthdr.len = nm->m_len = len;
2179 m_copydata(m, 0, len, mtod(nm, void *));
2180 m_freem(m);
2181 m = nm;
2182 }
2183 #ifndef __NO_STRICT_ALIGNMENT
2184 else {
2185 /*
2186 * The DP83820's receive buffers must be 4-byte
2187 * aligned. But this means that the data after
2188 * the Ethernet header is misaligned. To compensate,
2189 * we have artificially shortened the buffer size
2190 * in the descriptor, and we do an overlapping copy
2191 * of the data two bytes further in (in the first
2192 * buffer of the chain only).
2193 */
2194 memmove(mtod(m, char *) + 2, mtod(m, void *),
2195 m->m_len);
2196 m->m_data += 2;
2197 }
2198 #endif /* ! __NO_STRICT_ALIGNMENT */
2199
2200 /*
2201 * If VLANs are enabled, VLAN packets have been unwrapped
2202 * for us. Associate the tag with the packet.
2203 */
2204
2205 /*
2206 * Again, byte swapping is tricky. Hardware provided
2207 * the tag in the network byte order, but extsts was
2208 * passed through le32toh() in the meantime. On a
2209 * big-endian machine, we need to swap it again. On a
2210 * little-endian machine, we need to convert from the
2211 * network to host byte order. This means that we must
2212 * swap it in any case, so unconditional swap instead
2213 * of htons() is used.
2214 */
2215 if ((extsts & EXTSTS_VPKT) != 0) {
2216 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2217 continue);
2218 }
2219
2220 /*
2221 * Set the incoming checksum information for the
2222 * packet.
2223 */
2224 if ((extsts & EXTSTS_IPPKT) != 0) {
2225 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2226 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2227 if (extsts & EXTSTS_Rx_IPERR)
2228 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2229 if (extsts & EXTSTS_TCPPKT) {
2230 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2231 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2232 if (extsts & EXTSTS_Rx_TCPERR)
2233 m->m_pkthdr.csum_flags |=
2234 M_CSUM_TCP_UDP_BAD;
2235 } else if (extsts & EXTSTS_UDPPKT) {
2236 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2237 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2238 if (extsts & EXTSTS_Rx_UDPERR)
2239 m->m_pkthdr.csum_flags |=
2240 M_CSUM_TCP_UDP_BAD;
2241 }
2242 }
2243
2244 ifp->if_ipackets++;
2245 m->m_pkthdr.rcvif = ifp;
2246 m->m_pkthdr.len = len;
2247
2248 #if NBPFILTER > 0
2249 /*
2250 * Pass this up to any BPF listeners, but only
2251 * pass if up the stack if it's for us.
2252 */
2253 if (ifp->if_bpf)
2254 bpf_mtap(ifp->if_bpf, m);
2255 #endif /* NBPFILTER > 0 */
2256
2257 /* Pass it on. */
2258 (*ifp->if_input)(ifp, m);
2259 }
2260
2261 /* Update the receive pointer. */
2262 sc->sc_rxptr = i;
2263 }
2264
2265 /*
2266 * sip_rxintr:
2267 *
2268 * Helper; handle receive interrupts on 10/100 parts.
2269 */
2270 static void
2271 sip_rxintr(struct sip_softc *sc)
2272 {
2273 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2274 struct sip_rxsoft *rxs;
2275 struct mbuf *m;
2276 u_int32_t cmdsts;
2277 int i, len;
2278
2279 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2280 rxs = &sc->sc_rxsoft[i];
2281
2282 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2283
2284 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2285
2286 /*
2287 * NOTE: OWN is set if owned by _consumer_. We're the
2288 * consumer of the receive ring, so if the bit is clear,
2289 * we have processed all of the packets.
2290 */
2291 if ((cmdsts & CMDSTS_OWN) == 0) {
2292 /*
2293 * We have processed all of the receive buffers.
2294 */
2295 break;
2296 }
2297
2298 /*
2299 * If any collisions were seen on the wire, count one.
2300 */
2301 if (cmdsts & CMDSTS_Rx_COL)
2302 ifp->if_collisions++;
2303
2304 /*
2305 * If an error occurred, update stats, clear the status
2306 * word, and leave the packet buffer in place. It will
2307 * simply be reused the next time the ring comes around.
2308 */
2309 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2310 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2311 ifp->if_ierrors++;
2312 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2313 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2314 /* Receive overrun handled elsewhere. */
2315 printf("%s: receive descriptor error\n",
2316 device_xname(&sc->sc_dev));
2317 }
2318 #define PRINTERR(bit, str) \
2319 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2320 (cmdsts & (bit)) != 0) \
2321 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2322 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2323 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2324 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2325 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2326 #undef PRINTERR
2327 sip_init_rxdesc(sc, i);
2328 continue;
2329 }
2330
2331 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2332 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2333
2334 /*
2335 * No errors; receive the packet. Note, the SiS 900
2336 * includes the CRC with every packet.
2337 */
2338 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2339
2340 #ifdef __NO_STRICT_ALIGNMENT
2341 /*
2342 * If the packet is small enough to fit in a
2343 * single header mbuf, allocate one and copy
2344 * the data into it. This greatly reduces
2345 * memory consumption when we receive lots
2346 * of small packets.
2347 *
2348 * Otherwise, we add a new buffer to the receive
2349 * chain. If this fails, we drop the packet and
2350 * recycle the old buffer.
2351 */
2352 if (sip_copy_small != 0 && len <= MHLEN) {
2353 MGETHDR(m, M_DONTWAIT, MT_DATA);
2354 if (m == NULL)
2355 goto dropit;
2356 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2357 memcpy(mtod(m, void *),
2358 mtod(rxs->rxs_mbuf, void *), len);
2359 sip_init_rxdesc(sc, i);
2360 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2361 rxs->rxs_dmamap->dm_mapsize,
2362 BUS_DMASYNC_PREREAD);
2363 } else {
2364 m = rxs->rxs_mbuf;
2365 if (sipcom_add_rxbuf(sc, i) != 0) {
2366 dropit:
2367 ifp->if_ierrors++;
2368 sip_init_rxdesc(sc, i);
2369 bus_dmamap_sync(sc->sc_dmat,
2370 rxs->rxs_dmamap, 0,
2371 rxs->rxs_dmamap->dm_mapsize,
2372 BUS_DMASYNC_PREREAD);
2373 continue;
2374 }
2375 }
2376 #else
2377 /*
2378 * The SiS 900's receive buffers must be 4-byte aligned.
2379 * But this means that the data after the Ethernet header
2380 * is misaligned. We must allocate a new buffer and
2381 * copy the data, shifted forward 2 bytes.
2382 */
2383 MGETHDR(m, M_DONTWAIT, MT_DATA);
2384 if (m == NULL) {
2385 dropit:
2386 ifp->if_ierrors++;
2387 sip_init_rxdesc(sc, i);
2388 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2389 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2390 continue;
2391 }
2392 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2393 if (len > (MHLEN - 2)) {
2394 MCLGET(m, M_DONTWAIT);
2395 if ((m->m_flags & M_EXT) == 0) {
2396 m_freem(m);
2397 goto dropit;
2398 }
2399 }
2400 m->m_data += 2;
2401
2402 /*
2403 * Note that we use clusters for incoming frames, so the
2404 * buffer is virtually contiguous.
2405 */
2406 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2407
2408 /* Allow the receive descriptor to continue using its mbuf. */
2409 sip_init_rxdesc(sc, i);
2410 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2411 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2412 #endif /* __NO_STRICT_ALIGNMENT */
2413
2414 ifp->if_ipackets++;
2415 m->m_pkthdr.rcvif = ifp;
2416 m->m_pkthdr.len = m->m_len = len;
2417
2418 #if NBPFILTER > 0
2419 /*
2420 * Pass this up to any BPF listeners, but only
2421 * pass if up the stack if it's for us.
2422 */
2423 if (ifp->if_bpf)
2424 bpf_mtap(ifp->if_bpf, m);
2425 #endif /* NBPFILTER > 0 */
2426
2427 /* Pass it on. */
2428 (*ifp->if_input)(ifp, m);
2429 }
2430
2431 /* Update the receive pointer. */
2432 sc->sc_rxptr = i;
2433 }
2434
2435 /*
2436 * sip_tick:
2437 *
2438 * One second timer, used to tick the MII.
2439 */
2440 static void
2441 sipcom_tick(void *arg)
2442 {
2443 struct sip_softc *sc = arg;
2444 int s;
2445
2446 s = splnet();
2447 #ifdef SIP_EVENT_COUNTERS
2448 if (sc->sc_gigabit) {
2449 /* Read PAUSE related counts from MIB registers. */
2450 sc->sc_ev_rxpause.ev_count +=
2451 bus_space_read_4(sc->sc_st, sc->sc_sh,
2452 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2453 sc->sc_ev_txpause.ev_count +=
2454 bus_space_read_4(sc->sc_st, sc->sc_sh,
2455 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2457 }
2458 #endif /* SIP_EVENT_COUNTERS */
2459 mii_tick(&sc->sc_mii);
2460 splx(s);
2461
2462 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2463 }
2464
2465 /*
2466 * sip_reset:
2467 *
2468 * Perform a soft reset on the SiS 900.
2469 */
2470 static bool
2471 sipcom_reset(struct sip_softc *sc)
2472 {
2473 bus_space_tag_t st = sc->sc_st;
2474 bus_space_handle_t sh = sc->sc_sh;
2475 int i;
2476
2477 bus_space_write_4(st, sh, SIP_IER, 0);
2478 bus_space_write_4(st, sh, SIP_IMR, 0);
2479 bus_space_write_4(st, sh, SIP_RFCR, 0);
2480 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2481
2482 for (i = 0; i < SIP_TIMEOUT; i++) {
2483 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2484 break;
2485 delay(2);
2486 }
2487
2488 if (i == SIP_TIMEOUT) {
2489 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2490 return false;
2491 }
2492
2493 delay(1000);
2494
2495 if (sc->sc_gigabit) {
2496 /*
2497 * Set the general purpose I/O bits. Do it here in case we
2498 * need to have GPIO set up to talk to the media interface.
2499 */
2500 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2501 delay(1000);
2502 }
2503 return true;
2504 }
2505
2506 static void
2507 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2508 {
2509 u_int32_t reg;
2510 bus_space_tag_t st = sc->sc_st;
2511 bus_space_handle_t sh = sc->sc_sh;
2512 /*
2513 * Initialize the VLAN/IP receive control register.
2514 * We enable checksum computation on all incoming
2515 * packets, and do not reject packets w/ bad checksums.
2516 */
2517 reg = 0;
2518 if (capenable &
2519 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2520 reg |= VRCR_IPEN;
2521 if (VLAN_ATTACHED(&sc->sc_ethercom))
2522 reg |= VRCR_VTDEN|VRCR_VTREN;
2523 bus_space_write_4(st, sh, SIP_VRCR, reg);
2524
2525 /*
2526 * Initialize the VLAN/IP transmit control register.
2527 * We enable outgoing checksum computation on a
2528 * per-packet basis.
2529 */
2530 reg = 0;
2531 if (capenable &
2532 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2533 reg |= VTCR_PPCHK;
2534 if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 reg |= VTCR_VPPTI;
2536 bus_space_write_4(st, sh, SIP_VTCR, reg);
2537
2538 /*
2539 * If we're using VLANs, initialize the VLAN data register.
2540 * To understand why we bswap the VLAN Ethertype, see section
2541 * 4.2.36 of the DP83820 manual.
2542 */
2543 if (VLAN_ATTACHED(&sc->sc_ethercom))
2544 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2545 }
2546
2547 /*
2548 * sip_init: [ ifnet interface function ]
2549 *
2550 * Initialize the interface. Must be called at splnet().
2551 */
2552 static int
2553 sipcom_init(struct ifnet *ifp)
2554 {
2555 struct sip_softc *sc = ifp->if_softc;
2556 bus_space_tag_t st = sc->sc_st;
2557 bus_space_handle_t sh = sc->sc_sh;
2558 struct sip_txsoft *txs;
2559 struct sip_rxsoft *rxs;
2560 struct sip_desc *sipd;
2561 int i, error = 0;
2562
2563 if (device_is_active(&sc->sc_dev)) {
2564 /*
2565 * Cancel any pending I/O.
2566 */
2567 sipcom_stop(ifp, 0);
2568 } else if (!pmf_device_resume_self(&sc->sc_dev))
2569 return 0;
2570
2571 /*
2572 * Reset the chip to a known state.
2573 */
2574 if (!sipcom_reset(sc))
2575 return EBUSY;
2576
2577 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2578 /*
2579 * DP83815 manual, page 78:
2580 * 4.4 Recommended Registers Configuration
2581 * For optimum performance of the DP83815, version noted
2582 * as DP83815CVNG (SRR = 203h), the listed register
2583 * modifications must be followed in sequence...
2584 *
2585 * It's not clear if this should be 302h or 203h because that
2586 * chip name is listed as SRR 302h in the description of the
2587 * SRR register. However, my revision 302h DP83815 on the
2588 * Netgear FA311 purchased in 02/2001 needs these settings
2589 * to avoid tons of errors in AcceptPerfectMatch (non-
2590 * IFF_PROMISC) mode. I do not know if other revisions need
2591 * this set or not. [briggs -- 09 March 2001]
2592 *
2593 * Note that only the low-order 12 bits of 0xe4 are documented
2594 * and that this sets reserved bits in that register.
2595 */
2596 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2597
2598 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2599 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2600 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2601 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2602
2603 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2604 }
2605
2606 /*
2607 * Initialize the transmit descriptor ring.
2608 */
2609 for (i = 0; i < sc->sc_ntxdesc; i++) {
2610 sipd = &sc->sc_txdescs[i];
2611 memset(sipd, 0, sizeof(struct sip_desc));
2612 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2613 }
2614 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2616 sc->sc_txfree = sc->sc_ntxdesc;
2617 sc->sc_txnext = 0;
2618 sc->sc_txwin = 0;
2619
2620 /*
2621 * Initialize the transmit job descriptors.
2622 */
2623 SIMPLEQ_INIT(&sc->sc_txfreeq);
2624 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2625 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2626 txs = &sc->sc_txsoft[i];
2627 txs->txs_mbuf = NULL;
2628 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2629 }
2630
2631 /*
2632 * Initialize the receive descriptor and receive job
2633 * descriptor rings.
2634 */
2635 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2636 rxs = &sc->sc_rxsoft[i];
2637 if (rxs->rxs_mbuf == NULL) {
2638 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2639 printf("%s: unable to allocate or map rx "
2640 "buffer %d, error = %d\n",
2641 device_xname(&sc->sc_dev), i, error);
2642 /*
2643 * XXX Should attempt to run with fewer receive
2644 * XXX buffers instead of just failing.
2645 */
2646 sipcom_rxdrain(sc);
2647 goto out;
2648 }
2649 } else
2650 sip_init_rxdesc(sc, i);
2651 }
2652 sc->sc_rxptr = 0;
2653 sc->sc_rxdiscard = 0;
2654 sip_rxchain_reset(sc);
2655
2656 /*
2657 * Set the configuration register; it's already initialized
2658 * in sip_attach().
2659 */
2660 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2661
2662 /*
2663 * Initialize the prototype TXCFG register.
2664 */
2665 if (sc->sc_gigabit) {
2666 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2667 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2668 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2669 SIP_SIS900_REV(sc, SIS_REV_960) ||
2670 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2671 (sc->sc_cfg & CFG_EDBMASTEN)) {
2672 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2673 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2674 } else {
2675 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2676 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2677 }
2678
2679 sc->sc_txcfg |= TXCFG_ATP |
2680 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2681 sc->sc_tx_drain_thresh;
2682 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2683
2684 /*
2685 * Initialize the receive drain threshold if we have never
2686 * done so.
2687 */
2688 if (sc->sc_rx_drain_thresh == 0) {
2689 /*
2690 * XXX This value should be tuned. This is set to the
2691 * maximum of 248 bytes, and we may be able to improve
2692 * performance by decreasing it (although we should never
2693 * set this value lower than 2; 14 bytes are required to
2694 * filter the packet).
2695 */
2696 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2697 }
2698
2699 /*
2700 * Initialize the prototype RXCFG register.
2701 */
2702 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2703 /*
2704 * Accept long packets (including FCS) so we can handle
2705 * 802.1q-tagged frames and jumbo frames properly.
2706 */
2707 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2708 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2709 sc->sc_rxcfg |= RXCFG_ALP;
2710
2711 /*
2712 * Checksum offloading is disabled if the user selects an MTU
2713 * larger than 8109. (FreeBSD says 8152, but there is emperical
2714 * evidence that >8109 does not work on some boards, such as the
2715 * Planex GN-1000TE).
2716 */
2717 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2718 (ifp->if_capenable &
2719 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2720 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2721 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2722 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2723 "disabled.\n", device_xname(&sc->sc_dev));
2724 ifp->if_capenable &=
2725 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2726 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2727 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2728 ifp->if_csum_flags_tx = 0;
2729 ifp->if_csum_flags_rx = 0;
2730 }
2731
2732 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2733
2734 if (sc->sc_gigabit)
2735 sipcom_dp83820_init(sc, ifp->if_capenable);
2736
2737 /*
2738 * Give the transmit and receive rings to the chip.
2739 */
2740 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2741 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2742
2743 /*
2744 * Initialize the interrupt mask.
2745 */
2746 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2747 sc->sc_bits.b_isr_sserr |
2748 sc->sc_bits.b_isr_rmabt |
2749 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2750 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2751 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2752
2753 /* Set up the receive filter. */
2754 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2755
2756 /*
2757 * Tune sc_rx_flow_thresh.
2758 * XXX "More than 8KB" is too short for jumbo frames.
2759 * XXX TODO: Threshold value should be user-settable.
2760 */
2761 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2762 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2763 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2764
2765 /*
2766 * Set the current media. Do this after initializing the prototype
2767 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2768 * control.
2769 */
2770 if ((error = ether_mediachange(ifp)) != 0)
2771 goto out;
2772
2773 /*
2774 * Set the interrupt hold-off timer to 100us.
2775 */
2776 if (sc->sc_gigabit)
2777 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2778
2779 /*
2780 * Enable interrupts.
2781 */
2782 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2783
2784 /*
2785 * Start the transmit and receive processes.
2786 */
2787 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2788
2789 /*
2790 * Start the one second MII clock.
2791 */
2792 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2793
2794 /*
2795 * ...all done!
2796 */
2797 ifp->if_flags |= IFF_RUNNING;
2798 ifp->if_flags &= ~IFF_OACTIVE;
2799 sc->sc_if_flags = ifp->if_flags;
2800 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2801 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2802 sc->sc_prev.if_capenable = ifp->if_capenable;
2803
2804 out:
2805 if (error)
2806 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2807 return (error);
2808 }
2809
2810 /*
2811 * sip_drain:
2812 *
2813 * Drain the receive queue.
2814 */
2815 static void
2816 sipcom_rxdrain(struct sip_softc *sc)
2817 {
2818 struct sip_rxsoft *rxs;
2819 int i;
2820
2821 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2822 rxs = &sc->sc_rxsoft[i];
2823 if (rxs->rxs_mbuf != NULL) {
2824 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2825 m_freem(rxs->rxs_mbuf);
2826 rxs->rxs_mbuf = NULL;
2827 }
2828 }
2829 }
2830
2831 /*
2832 * sip_stop: [ ifnet interface function ]
2833 *
2834 * Stop transmission on the interface.
2835 */
2836 static void
2837 sipcom_stop(struct ifnet *ifp, int disable)
2838 {
2839 struct sip_softc *sc = ifp->if_softc;
2840 bus_space_tag_t st = sc->sc_st;
2841 bus_space_handle_t sh = sc->sc_sh;
2842 struct sip_txsoft *txs;
2843 u_int32_t cmdsts = 0; /* DEBUG */
2844
2845 /*
2846 * Stop the one second clock.
2847 */
2848 callout_stop(&sc->sc_tick_ch);
2849
2850 /* Down the MII. */
2851 mii_down(&sc->sc_mii);
2852
2853 /*
2854 * Disable interrupts.
2855 */
2856 bus_space_write_4(st, sh, SIP_IER, 0);
2857
2858 /*
2859 * Stop receiver and transmitter.
2860 */
2861 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2862
2863 /*
2864 * Release any queued transmit buffers.
2865 */
2866 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2867 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2868 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2869 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2870 CMDSTS_INTR) == 0)
2871 printf("%s: sip_stop: last descriptor does not "
2872 "have INTR bit set\n", device_xname(&sc->sc_dev));
2873 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2874 #ifdef DIAGNOSTIC
2875 if (txs->txs_mbuf == NULL) {
2876 printf("%s: dirty txsoft with no mbuf chain\n",
2877 device_xname(&sc->sc_dev));
2878 panic("sip_stop");
2879 }
2880 #endif
2881 cmdsts |= /* DEBUG */
2882 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2883 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2884 m_freem(txs->txs_mbuf);
2885 txs->txs_mbuf = NULL;
2886 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2887 }
2888
2889 /*
2890 * Mark the interface down and cancel the watchdog timer.
2891 */
2892 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2893 ifp->if_timer = 0;
2894
2895 if (disable)
2896 pmf_device_suspend_self(&sc->sc_dev);
2897
2898 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2899 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2900 printf("%s: sip_stop: no INTR bits set in dirty tx "
2901 "descriptors\n", device_xname(&sc->sc_dev));
2902 }
2903
2904 /*
2905 * sip_read_eeprom:
2906 *
2907 * Read data from the serial EEPROM.
2908 */
2909 static void
2910 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2911 u_int16_t *data)
2912 {
2913 bus_space_tag_t st = sc->sc_st;
2914 bus_space_handle_t sh = sc->sc_sh;
2915 u_int16_t reg;
2916 int i, x;
2917
2918 for (i = 0; i < wordcnt; i++) {
2919 /* Send CHIP SELECT. */
2920 reg = EROMAR_EECS;
2921 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922
2923 /* Shift in the READ opcode. */
2924 for (x = 3; x > 0; x--) {
2925 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2926 reg |= EROMAR_EEDI;
2927 else
2928 reg &= ~EROMAR_EEDI;
2929 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2930 bus_space_write_4(st, sh, SIP_EROMAR,
2931 reg | EROMAR_EESK);
2932 delay(4);
2933 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 delay(4);
2935 }
2936
2937 /* Shift in address. */
2938 for (x = 6; x > 0; x--) {
2939 if ((word + i) & (1 << (x - 1)))
2940 reg |= EROMAR_EEDI;
2941 else
2942 reg &= ~EROMAR_EEDI;
2943 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2944 bus_space_write_4(st, sh, SIP_EROMAR,
2945 reg | EROMAR_EESK);
2946 delay(4);
2947 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2948 delay(4);
2949 }
2950
2951 /* Shift out data. */
2952 reg = EROMAR_EECS;
2953 data[i] = 0;
2954 for (x = 16; x > 0; x--) {
2955 bus_space_write_4(st, sh, SIP_EROMAR,
2956 reg | EROMAR_EESK);
2957 delay(4);
2958 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2959 data[i] |= (1 << (x - 1));
2960 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2961 delay(4);
2962 }
2963
2964 /* Clear CHIP SELECT. */
2965 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2966 delay(4);
2967 }
2968 }
2969
2970 /*
2971 * sipcom_add_rxbuf:
2972 *
2973 * Add a receive buffer to the indicated descriptor.
2974 */
2975 static int
2976 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2977 {
2978 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2979 struct mbuf *m;
2980 int error;
2981
2982 MGETHDR(m, M_DONTWAIT, MT_DATA);
2983 if (m == NULL)
2984 return (ENOBUFS);
2985 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2986
2987 MCLGET(m, M_DONTWAIT);
2988 if ((m->m_flags & M_EXT) == 0) {
2989 m_freem(m);
2990 return (ENOBUFS);
2991 }
2992
2993 /* XXX I don't believe this is necessary. --dyoung */
2994 if (sc->sc_gigabit)
2995 m->m_len = sc->sc_parm->p_rxbuf_len;
2996
2997 if (rxs->rxs_mbuf != NULL)
2998 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2999
3000 rxs->rxs_mbuf = m;
3001
3002 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3003 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3004 BUS_DMA_READ|BUS_DMA_NOWAIT);
3005 if (error) {
3006 printf("%s: can't load rx DMA map %d, error = %d\n",
3007 device_xname(&sc->sc_dev), idx, error);
3008 panic("%s", __func__); /* XXX */
3009 }
3010
3011 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3012 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3013
3014 sip_init_rxdesc(sc, idx);
3015
3016 return (0);
3017 }
3018
3019 /*
3020 * sip_sis900_set_filter:
3021 *
3022 * Set up the receive filter.
3023 */
3024 static void
3025 sipcom_sis900_set_filter(struct sip_softc *sc)
3026 {
3027 bus_space_tag_t st = sc->sc_st;
3028 bus_space_handle_t sh = sc->sc_sh;
3029 struct ethercom *ec = &sc->sc_ethercom;
3030 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3031 struct ether_multi *enm;
3032 const u_int8_t *cp;
3033 struct ether_multistep step;
3034 u_int32_t crc, mchash[16];
3035
3036 /*
3037 * Initialize the prototype RFCR.
3038 */
3039 sc->sc_rfcr = RFCR_RFEN;
3040 if (ifp->if_flags & IFF_BROADCAST)
3041 sc->sc_rfcr |= RFCR_AAB;
3042 if (ifp->if_flags & IFF_PROMISC) {
3043 sc->sc_rfcr |= RFCR_AAP;
3044 goto allmulti;
3045 }
3046
3047 /*
3048 * Set up the multicast address filter by passing all multicast
3049 * addresses through a CRC generator, and then using the high-order
3050 * 6 bits as an index into the 128 bit multicast hash table (only
3051 * the lower 16 bits of each 32 bit multicast hash register are
3052 * valid). The high order bits select the register, while the
3053 * rest of the bits select the bit within the register.
3054 */
3055
3056 memset(mchash, 0, sizeof(mchash));
3057
3058 /*
3059 * SiS900 (at least SiS963) requires us to register the address of
3060 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3061 */
3062 crc = 0x0ed423f9;
3063
3064 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3065 SIP_SIS900_REV(sc, SIS_REV_960) ||
3066 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3067 /* Just want the 8 most significant bits. */
3068 crc >>= 24;
3069 } else {
3070 /* Just want the 7 most significant bits. */
3071 crc >>= 25;
3072 }
3073
3074 /* Set the corresponding bit in the hash table. */
3075 mchash[crc >> 4] |= 1 << (crc & 0xf);
3076
3077 ETHER_FIRST_MULTI(step, ec, enm);
3078 while (enm != NULL) {
3079 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3080 /*
3081 * We must listen to a range of multicast addresses.
3082 * For now, just accept all multicasts, rather than
3083 * trying to set only those filter bits needed to match
3084 * the range. (At this time, the only use of address
3085 * ranges is for IP multicast routing, for which the
3086 * range is big enough to require all bits set.)
3087 */
3088 goto allmulti;
3089 }
3090
3091 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3092
3093 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3094 SIP_SIS900_REV(sc, SIS_REV_960) ||
3095 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3096 /* Just want the 8 most significant bits. */
3097 crc >>= 24;
3098 } else {
3099 /* Just want the 7 most significant bits. */
3100 crc >>= 25;
3101 }
3102
3103 /* Set the corresponding bit in the hash table. */
3104 mchash[crc >> 4] |= 1 << (crc & 0xf);
3105
3106 ETHER_NEXT_MULTI(step, enm);
3107 }
3108
3109 ifp->if_flags &= ~IFF_ALLMULTI;
3110 goto setit;
3111
3112 allmulti:
3113 ifp->if_flags |= IFF_ALLMULTI;
3114 sc->sc_rfcr |= RFCR_AAM;
3115
3116 setit:
3117 #define FILTER_EMIT(addr, data) \
3118 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3119 delay(1); \
3120 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3121 delay(1)
3122
3123 /*
3124 * Disable receive filter, and program the node address.
3125 */
3126 cp = CLLADDR(ifp->if_sadl);
3127 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3128 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3129 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3130
3131 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3132 /*
3133 * Program the multicast hash table.
3134 */
3135 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3136 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3137 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3138 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3139 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3140 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3141 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3142 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3143 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3144 SIP_SIS900_REV(sc, SIS_REV_960) ||
3145 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3146 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3147 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3148 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3149 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3150 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3151 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3152 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3153 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3154 }
3155 }
3156 #undef FILTER_EMIT
3157
3158 /*
3159 * Re-enable the receiver filter.
3160 */
3161 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3162 }
3163
3164 /*
3165 * sip_dp83815_set_filter:
3166 *
3167 * Set up the receive filter.
3168 */
3169 static void
3170 sipcom_dp83815_set_filter(struct sip_softc *sc)
3171 {
3172 bus_space_tag_t st = sc->sc_st;
3173 bus_space_handle_t sh = sc->sc_sh;
3174 struct ethercom *ec = &sc->sc_ethercom;
3175 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3176 struct ether_multi *enm;
3177 const u_int8_t *cp;
3178 struct ether_multistep step;
3179 u_int32_t crc, hash, slot, bit;
3180 #define MCHASH_NWORDS_83820 128
3181 #define MCHASH_NWORDS_83815 32
3182 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3183 u_int16_t mchash[MCHASH_NWORDS];
3184 int i;
3185
3186 /*
3187 * Initialize the prototype RFCR.
3188 * Enable the receive filter, and accept on
3189 * Perfect (destination address) Match
3190 * If IFF_BROADCAST, also accept all broadcast packets.
3191 * If IFF_PROMISC, accept all unicast packets (and later, set
3192 * IFF_ALLMULTI and accept all multicast, too).
3193 */
3194 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3195 if (ifp->if_flags & IFF_BROADCAST)
3196 sc->sc_rfcr |= RFCR_AAB;
3197 if (ifp->if_flags & IFF_PROMISC) {
3198 sc->sc_rfcr |= RFCR_AAP;
3199 goto allmulti;
3200 }
3201
3202 /*
3203 * Set up the DP83820/DP83815 multicast address filter by
3204 * passing all multicast addresses through a CRC generator,
3205 * and then using the high-order 11/9 bits as an index into
3206 * the 2048/512 bit multicast hash table. The high-order
3207 * 7/5 bits select the slot, while the low-order 4 bits
3208 * select the bit within the slot. Note that only the low
3209 * 16-bits of each filter word are used, and there are
3210 * 128/32 filter words.
3211 */
3212
3213 memset(mchash, 0, sizeof(mchash));
3214
3215 ifp->if_flags &= ~IFF_ALLMULTI;
3216 ETHER_FIRST_MULTI(step, ec, enm);
3217 if (enm == NULL)
3218 goto setit;
3219 while (enm != NULL) {
3220 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3221 /*
3222 * We must listen to a range of multicast addresses.
3223 * For now, just accept all multicasts, rather than
3224 * trying to set only those filter bits needed to match
3225 * the range. (At this time, the only use of address
3226 * ranges is for IP multicast routing, for which the
3227 * range is big enough to require all bits set.)
3228 */
3229 goto allmulti;
3230 }
3231
3232 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3233
3234 if (sc->sc_gigabit) {
3235 /* Just want the 11 most significant bits. */
3236 hash = crc >> 21;
3237 } else {
3238 /* Just want the 9 most significant bits. */
3239 hash = crc >> 23;
3240 }
3241
3242 slot = hash >> 4;
3243 bit = hash & 0xf;
3244
3245 /* Set the corresponding bit in the hash table. */
3246 mchash[slot] |= 1 << bit;
3247
3248 ETHER_NEXT_MULTI(step, enm);
3249 }
3250 sc->sc_rfcr |= RFCR_MHEN;
3251 goto setit;
3252
3253 allmulti:
3254 ifp->if_flags |= IFF_ALLMULTI;
3255 sc->sc_rfcr |= RFCR_AAM;
3256
3257 setit:
3258 #define FILTER_EMIT(addr, data) \
3259 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3260 delay(1); \
3261 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3262 delay(1)
3263
3264 /*
3265 * Disable receive filter, and program the node address.
3266 */
3267 cp = CLLADDR(ifp->if_sadl);
3268 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3269 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3270 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3271
3272 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3273 int nwords =
3274 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3275 /*
3276 * Program the multicast hash table.
3277 */
3278 for (i = 0; i < nwords; i++) {
3279 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3280 }
3281 }
3282 #undef FILTER_EMIT
3283 #undef MCHASH_NWORDS
3284 #undef MCHASH_NWORDS_83815
3285 #undef MCHASH_NWORDS_83820
3286
3287 /*
3288 * Re-enable the receiver filter.
3289 */
3290 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3291 }
3292
3293 /*
3294 * sip_dp83820_mii_readreg: [mii interface function]
3295 *
3296 * Read a PHY register on the MII of the DP83820.
3297 */
3298 static int
3299 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3300 {
3301 struct sip_softc *sc = device_private(self);
3302
3303 if (sc->sc_cfg & CFG_TBI_EN) {
3304 bus_addr_t tbireg;
3305 int rv;
3306
3307 if (phy != 0)
3308 return (0);
3309
3310 switch (reg) {
3311 case MII_BMCR: tbireg = SIP_TBICR; break;
3312 case MII_BMSR: tbireg = SIP_TBISR; break;
3313 case MII_ANAR: tbireg = SIP_TANAR; break;
3314 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3315 case MII_ANER: tbireg = SIP_TANER; break;
3316 case MII_EXTSR:
3317 /*
3318 * Don't even bother reading the TESR register.
3319 * The manual documents that the device has
3320 * 1000baseX full/half capability, but the
3321 * register itself seems read back 0 on some
3322 * boards. Just hard-code the result.
3323 */
3324 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3325
3326 default:
3327 return (0);
3328 }
3329
3330 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3331 if (tbireg == SIP_TBISR) {
3332 /* LINK and ACOMP are switched! */
3333 int val = rv;
3334
3335 rv = 0;
3336 if (val & TBISR_MR_LINK_STATUS)
3337 rv |= BMSR_LINK;
3338 if (val & TBISR_MR_AN_COMPLETE)
3339 rv |= BMSR_ACOMP;
3340
3341 /*
3342 * The manual claims this register reads back 0
3343 * on hard and soft reset. But we want to let
3344 * the gentbi driver know that we support auto-
3345 * negotiation, so hard-code this bit in the
3346 * result.
3347 */
3348 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3349 }
3350
3351 return (rv);
3352 }
3353
3354 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3355 }
3356
3357 /*
3358 * sip_dp83820_mii_writereg: [mii interface function]
3359 *
3360 * Write a PHY register on the MII of the DP83820.
3361 */
3362 static void
3363 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3364 {
3365 struct sip_softc *sc = device_private(self);
3366
3367 if (sc->sc_cfg & CFG_TBI_EN) {
3368 bus_addr_t tbireg;
3369
3370 if (phy != 0)
3371 return;
3372
3373 switch (reg) {
3374 case MII_BMCR: tbireg = SIP_TBICR; break;
3375 case MII_ANAR: tbireg = SIP_TANAR; break;
3376 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3377 default:
3378 return;
3379 }
3380
3381 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3382 return;
3383 }
3384
3385 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3386 }
3387
3388 /*
3389 * sip_dp83820_mii_statchg: [mii interface function]
3390 *
3391 * Callback from MII layer when media changes.
3392 */
3393 static void
3394 sipcom_dp83820_mii_statchg(device_t self)
3395 {
3396 struct sip_softc *sc = device_private(self);
3397 struct mii_data *mii = &sc->sc_mii;
3398 u_int32_t cfg, pcr;
3399
3400 /*
3401 * Get flow control negotiation result.
3402 */
3403 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3404 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3405 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3406 mii->mii_media_active &= ~IFM_ETH_FMASK;
3407 }
3408
3409 /*
3410 * Update TXCFG for full-duplex operation.
3411 */
3412 if ((mii->mii_media_active & IFM_FDX) != 0)
3413 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3414 else
3415 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3416
3417 /*
3418 * Update RXCFG for full-duplex or loopback.
3419 */
3420 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3421 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3422 sc->sc_rxcfg |= RXCFG_ATX;
3423 else
3424 sc->sc_rxcfg &= ~RXCFG_ATX;
3425
3426 /*
3427 * Update CFG for MII/GMII.
3428 */
3429 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3430 cfg = sc->sc_cfg | CFG_MODE_1000;
3431 else
3432 cfg = sc->sc_cfg;
3433
3434 /*
3435 * 802.3x flow control.
3436 */
3437 pcr = 0;
3438 if (sc->sc_flowflags & IFM_FLOW) {
3439 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3440 pcr |= sc->sc_rx_flow_thresh;
3441 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3442 pcr |= PCR_PSEN | PCR_PS_MCAST;
3443 }
3444
3445 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3446 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3447 sc->sc_txcfg);
3448 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3449 sc->sc_rxcfg);
3450 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3451 }
3452
3453 /*
3454 * sip_mii_bitbang_read: [mii bit-bang interface function]
3455 *
3456 * Read the MII serial port for the MII bit-bang module.
3457 */
3458 static u_int32_t
3459 sipcom_mii_bitbang_read(device_t self)
3460 {
3461 struct sip_softc *sc = device_private(self);
3462
3463 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3464 }
3465
3466 /*
3467 * sip_mii_bitbang_write: [mii big-bang interface function]
3468 *
3469 * Write the MII serial port for the MII bit-bang module.
3470 */
3471 static void
3472 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3473 {
3474 struct sip_softc *sc = device_private(self);
3475
3476 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3477 }
3478
3479 /*
3480 * sip_sis900_mii_readreg: [mii interface function]
3481 *
3482 * Read a PHY register on the MII.
3483 */
3484 static int
3485 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3486 {
3487 struct sip_softc *sc = device_private(self);
3488 u_int32_t enphy;
3489
3490 /*
3491 * The PHY of recent SiS chipsets is accessed through bitbang
3492 * operations.
3493 */
3494 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3495 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3496 phy, reg);
3497
3498 #ifndef SIS900_MII_RESTRICT
3499 /*
3500 * The SiS 900 has only an internal PHY on the MII. Only allow
3501 * MII address 0.
3502 */
3503 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3504 return (0);
3505 #endif
3506
3507 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3508 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3509 ENPHY_RWCMD | ENPHY_ACCESS);
3510 do {
3511 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3512 } while (enphy & ENPHY_ACCESS);
3513 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3514 }
3515
3516 /*
3517 * sip_sis900_mii_writereg: [mii interface function]
3518 *
3519 * Write a PHY register on the MII.
3520 */
3521 static void
3522 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3523 {
3524 struct sip_softc *sc = device_private(self);
3525 u_int32_t enphy;
3526
3527 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3528 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3529 phy, reg, val);
3530 return;
3531 }
3532
3533 #ifndef SIS900_MII_RESTRICT
3534 /*
3535 * The SiS 900 has only an internal PHY on the MII. Only allow
3536 * MII address 0.
3537 */
3538 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3539 return;
3540 #endif
3541
3542 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3543 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3544 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3545 do {
3546 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3547 } while (enphy & ENPHY_ACCESS);
3548 }
3549
3550 /*
3551 * sip_sis900_mii_statchg: [mii interface function]
3552 *
3553 * Callback from MII layer when media changes.
3554 */
3555 static void
3556 sipcom_sis900_mii_statchg(device_t self)
3557 {
3558 struct sip_softc *sc = device_private(self);
3559 struct mii_data *mii = &sc->sc_mii;
3560 u_int32_t flowctl;
3561
3562 /*
3563 * Get flow control negotiation result.
3564 */
3565 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3566 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3567 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3568 mii->mii_media_active &= ~IFM_ETH_FMASK;
3569 }
3570
3571 /*
3572 * Update TXCFG for full-duplex operation.
3573 */
3574 if ((mii->mii_media_active & IFM_FDX) != 0)
3575 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3576 else
3577 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3578
3579 /*
3580 * Update RXCFG for full-duplex or loopback.
3581 */
3582 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3583 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3584 sc->sc_rxcfg |= RXCFG_ATX;
3585 else
3586 sc->sc_rxcfg &= ~RXCFG_ATX;
3587
3588 /*
3589 * Update IMR for use of 802.3x flow control.
3590 */
3591 if (sc->sc_flowflags & IFM_FLOW) {
3592 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3593 flowctl = FLOWCTL_FLOWEN;
3594 } else {
3595 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3596 flowctl = 0;
3597 }
3598
3599 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3600 sc->sc_txcfg);
3601 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3602 sc->sc_rxcfg);
3603 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3604 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3605 }
3606
3607 /*
3608 * sip_dp83815_mii_readreg: [mii interface function]
3609 *
3610 * Read a PHY register on the MII.
3611 */
3612 static int
3613 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3614 {
3615 struct sip_softc *sc = device_private(self);
3616 u_int32_t val;
3617
3618 /*
3619 * The DP83815 only has an internal PHY. Only allow
3620 * MII address 0.
3621 */
3622 if (phy != 0)
3623 return (0);
3624
3625 /*
3626 * Apparently, after a reset, the DP83815 can take a while
3627 * to respond. During this recovery period, the BMSR returns
3628 * a value of 0. Catch this -- it's not supposed to happen
3629 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3630 * PHY to come back to life.
3631 *
3632 * This works out because the BMSR is the first register
3633 * read during the PHY probe process.
3634 */
3635 do {
3636 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3637 } while (reg == MII_BMSR && val == 0);
3638
3639 return (val & 0xffff);
3640 }
3641
3642 /*
3643 * sip_dp83815_mii_writereg: [mii interface function]
3644 *
3645 * Write a PHY register to the MII.
3646 */
3647 static void
3648 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3649 {
3650 struct sip_softc *sc = device_private(self);
3651
3652 /*
3653 * The DP83815 only has an internal PHY. Only allow
3654 * MII address 0.
3655 */
3656 if (phy != 0)
3657 return;
3658
3659 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3660 }
3661
3662 /*
3663 * sip_dp83815_mii_statchg: [mii interface function]
3664 *
3665 * Callback from MII layer when media changes.
3666 */
3667 static void
3668 sipcom_dp83815_mii_statchg(device_t self)
3669 {
3670 struct sip_softc *sc = device_private(self);
3671
3672 /*
3673 * Update TXCFG for full-duplex operation.
3674 */
3675 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3676 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3677 else
3678 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3679
3680 /*
3681 * Update RXCFG for full-duplex or loopback.
3682 */
3683 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3684 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3685 sc->sc_rxcfg |= RXCFG_ATX;
3686 else
3687 sc->sc_rxcfg &= ~RXCFG_ATX;
3688
3689 /*
3690 * XXX 802.3x flow control.
3691 */
3692
3693 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3694 sc->sc_txcfg);
3695 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3696 sc->sc_rxcfg);
3697
3698 /*
3699 * Some DP83815s experience problems when used with short
3700 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3701 * sequence adjusts the DSP's signal attenuation to fix the
3702 * problem.
3703 */
3704 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3705 uint32_t reg;
3706
3707 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3708
3709 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3710 reg &= 0x0fff;
3711 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3712 delay(100);
3713 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3714 reg &= 0x00ff;
3715 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3716 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3717 0x00e8);
3718 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3719 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3720 reg | 0x20);
3721 }
3722
3723 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3724 }
3725 }
3726
3727 static void
3728 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3729 const struct pci_attach_args *pa, u_int8_t *enaddr)
3730 {
3731 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3732 u_int8_t cksum, *e, match;
3733 int i;
3734
3735 /*
3736 * EEPROM data format for the DP83820 can be found in
3737 * the DP83820 manual, section 4.2.4.
3738 */
3739
3740 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3741
3742 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3743 match = ~(match - 1);
3744
3745 cksum = 0x55;
3746 e = (u_int8_t *) eeprom_data;
3747 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3748 cksum += *e++;
3749
3750 if (cksum != match)
3751 printf("%s: Checksum (%x) mismatch (%x)",
3752 device_xname(&sc->sc_dev), cksum, match);
3753
3754 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3755 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3756 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3757 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3758 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3759 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3760 }
3761
3762 static void
3763 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3764 {
3765 int i;
3766
3767 /*
3768 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3769 * a reason, but I don't know it.
3770 */
3771 for (i = 0; i < 10; i++)
3772 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3773 }
3774
3775 static void
3776 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3777 const struct pci_attach_args *pa, u_int8_t *enaddr)
3778 {
3779 u_int16_t myea[ETHER_ADDR_LEN / 2];
3780
3781 switch (sc->sc_rev) {
3782 case SIS_REV_630S:
3783 case SIS_REV_630E:
3784 case SIS_REV_630EA1:
3785 case SIS_REV_630ET:
3786 case SIS_REV_635:
3787 /*
3788 * The MAC address for the on-board Ethernet of
3789 * the SiS 630 chipset is in the NVRAM. Kick
3790 * the chip into re-loading it from NVRAM, and
3791 * read the MAC address out of the filter registers.
3792 */
3793 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3794
3795 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3796 RFCR_RFADDR_NODE0);
3797 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3798 0xffff;
3799
3800 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3801 RFCR_RFADDR_NODE2);
3802 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3803 0xffff;
3804
3805 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3806 RFCR_RFADDR_NODE4);
3807 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3808 0xffff;
3809 break;
3810
3811 case SIS_REV_960:
3812 {
3813 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3814 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3815
3816 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3817 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3818
3819 int waittime, i;
3820
3821 /* Allow to read EEPROM from LAN. It is shared
3822 * between a 1394 controller and the NIC and each
3823 * time we access it, we need to set SIS_EECMD_REQ.
3824 */
3825 SIS_SET_EROMAR(sc, EROMAR_REQ);
3826
3827 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3828 /* Force EEPROM to idle state. */
3829
3830 /*
3831 * XXX-cube This is ugly. I'll look for docs about it.
3832 */
3833 SIS_SET_EROMAR(sc, EROMAR_EECS);
3834 sipcom_sis900_eeprom_delay(sc);
3835 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3836 SIS_SET_EROMAR(sc, EROMAR_EESK);
3837 sipcom_sis900_eeprom_delay(sc);
3838 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3839 sipcom_sis900_eeprom_delay(sc);
3840 }
3841 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3842 sipcom_sis900_eeprom_delay(sc);
3843 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3844
3845 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3846 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3847 sizeof(myea) / sizeof(myea[0]), myea);
3848 break;
3849 }
3850 DELAY(1);
3851 }
3852
3853 /*
3854 * Set SIS_EECTL_CLK to high, so a other master
3855 * can operate on the i2c bus.
3856 */
3857 SIS_SET_EROMAR(sc, EROMAR_EESK);
3858
3859 /* Refuse EEPROM access by LAN */
3860 SIS_SET_EROMAR(sc, EROMAR_DONE);
3861 } break;
3862
3863 default:
3864 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3865 sizeof(myea) / sizeof(myea[0]), myea);
3866 }
3867
3868 enaddr[0] = myea[0] & 0xff;
3869 enaddr[1] = myea[0] >> 8;
3870 enaddr[2] = myea[1] & 0xff;
3871 enaddr[3] = myea[1] >> 8;
3872 enaddr[4] = myea[2] & 0xff;
3873 enaddr[5] = myea[2] >> 8;
3874 }
3875
3876 /* Table and macro to bit-reverse an octet. */
3877 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3878 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3879
3880 static void
3881 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3882 const struct pci_attach_args *pa, u_int8_t *enaddr)
3883 {
3884 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3885 u_int8_t cksum, *e, match;
3886 int i;
3887
3888 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3889 sizeof(eeprom_data[0]), eeprom_data);
3890
3891 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3892 match = ~(match - 1);
3893
3894 cksum = 0x55;
3895 e = (u_int8_t *) eeprom_data;
3896 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3897 cksum += *e++;
3898 }
3899 if (cksum != match) {
3900 printf("%s: Checksum (%x) mismatch (%x)",
3901 device_xname(&sc->sc_dev), cksum, match);
3902 }
3903
3904 /*
3905 * Unrolled because it makes slightly more sense this way.
3906 * The DP83815 stores the MAC address in bit 0 of word 6
3907 * through bit 15 of word 8.
3908 */
3909 ea = &eeprom_data[6];
3910 enaddr[0] = ((*ea & 0x1) << 7);
3911 ea++;
3912 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3913 enaddr[1] = ((*ea & 0x1FE) >> 1);
3914 enaddr[2] = ((*ea & 0x1) << 7);
3915 ea++;
3916 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3917 enaddr[3] = ((*ea & 0x1FE) >> 1);
3918 enaddr[4] = ((*ea & 0x1) << 7);
3919 ea++;
3920 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3921 enaddr[5] = ((*ea & 0x1FE) >> 1);
3922
3923 /*
3924 * In case that's not weird enough, we also need to reverse
3925 * the bits in each byte. This all actually makes more sense
3926 * if you think about the EEPROM storage as an array of bits
3927 * being shifted into bytes, but that's not how we're looking
3928 * at it here...
3929 */
3930 for (i = 0; i < 6 ;i++)
3931 enaddr[i] = bbr(enaddr[i]);
3932 }
3933
3934 /*
3935 * sip_mediastatus: [ifmedia interface function]
3936 *
3937 * Get the current interface media status.
3938 */
3939 static void
3940 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3941 {
3942 struct sip_softc *sc = ifp->if_softc;
3943
3944 ether_mediastatus(ifp, ifmr);
3945 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3946 sc->sc_flowflags;
3947 }
3948