if_sip.c revision 1.132.4.1 1 /* $NetBSD: if_sip.c,v 1.132.4.1 2008/05/16 02:24:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.132.4.1 2008/05/16 02:24:43 yamt Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92
93 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
94
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/pci/if_sipreg.h>
121
122 /*
123 * Transmit descriptor list size. This is arbitrary, but allocate
124 * enough descriptors for 128 pending transmissions, and 8 segments
125 * per packet (64 for DP83820 for jumbo frames).
126 *
127 * This MUST work out to a power of 2.
128 */
129 #define GSIP_NTXSEGS_ALLOC 16
130 #define SIP_NTXSEGS_ALLOC 8
131
132 #define SIP_TXQUEUELEN 256
133 #define MAX_SIP_NTXDESC \
134 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135
136 /*
137 * Receive descriptor list size. We have one Rx buffer per incoming
138 * packet, so this logic is a little simpler.
139 *
140 * Actually, on the DP83820, we allow the packet to consume more than
141 * one buffer, in order to support jumbo Ethernet frames. In that
142 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
144 * so we'd better be quick about handling receive interrupts.
145 */
146 #define GSIP_NRXDESC 256
147 #define SIP_NRXDESC 128
148
149 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
150
151 /*
152 * Control structures are DMA'd to the SiS900 chip. We allocate them in
153 * a single clump that maps to a single DMA segment to make several things
154 * easier.
155 */
156 struct sip_control_data {
157 /*
158 * The transmit descriptors.
159 */
160 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161
162 /*
163 * The receive descriptors.
164 */
165 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167
168 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
169 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
170 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
171
172 /*
173 * Software state for transmit jobs.
174 */
175 struct sip_txsoft {
176 struct mbuf *txs_mbuf; /* head of our mbuf chain */
177 bus_dmamap_t txs_dmamap; /* our DMA map */
178 int txs_firstdesc; /* first descriptor in packet */
179 int txs_lastdesc; /* last descriptor in packet */
180 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184
185 /*
186 * Software state for receive jobs.
187 */
188 struct sip_rxsoft {
189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap; /* our DMA map */
191 };
192
193 enum sip_attach_stage {
194 SIP_ATTACH_FIN = 0
195 , SIP_ATTACH_CREATE_RXMAP
196 , SIP_ATTACH_CREATE_TXMAP
197 , SIP_ATTACH_LOAD_MAP
198 , SIP_ATTACH_CREATE_MAP
199 , SIP_ATTACH_MAP_MEM
200 , SIP_ATTACH_ALLOC_MEM
201 , SIP_ATTACH_INTR
202 , SIP_ATTACH_MAP
203 };
204
205 /*
206 * Software state per device.
207 */
208 struct sip_softc {
209 struct device sc_dev; /* generic device information */
210 bus_space_tag_t sc_st; /* bus space tag */
211 bus_space_handle_t sc_sh; /* bus space handle */
212 bus_size_t sc_sz; /* bus space size */
213 bus_dma_tag_t sc_dmat; /* bus DMA tag */
214 pci_chipset_tag_t sc_pc;
215 bus_dma_segment_t sc_seg;
216 struct ethercom sc_ethercom; /* ethernet common data */
217
218 const struct sip_product *sc_model; /* which model are we? */
219 int sc_gigabit; /* 1: 83820, 0: other */
220 int sc_rev; /* chip revision */
221
222 void *sc_ih; /* interrupt cookie */
223
224 struct mii_data sc_mii; /* MII/media information */
225
226 callout_t sc_tick_ch; /* tick callout */
227
228 bus_dmamap_t sc_cddmamap; /* control data DMA map */
229 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
230
231 /*
232 * Software state for transmit and receive descriptors.
233 */
234 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236
237 /*
238 * Control data structures.
239 */
240 struct sip_control_data *sc_control_data;
241 #define sc_txdescs sc_control_data->scd_txdescs
242 #define sc_rxdescs sc_control_data->scd_rxdescs
243
244 #ifdef SIP_EVENT_COUNTERS
245 /*
246 * Event counters.
247 */
248 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
249 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
250 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
251 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
252 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
253 struct evcnt sc_ev_rxintr; /* Rx interrupts */
254 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
255 struct evcnt sc_ev_rxpause; /* PAUSE received */
256 /* DP83820 only */
257 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
258 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
259 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
260 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
261 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
262 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
263 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265
266 u_int32_t sc_txcfg; /* prototype TXCFG register */
267 u_int32_t sc_rxcfg; /* prototype RXCFG register */
268 u_int32_t sc_imr; /* prototype IMR register */
269 u_int32_t sc_rfcr; /* prototype RFCR register */
270
271 u_int32_t sc_cfg; /* prototype CFG register */
272
273 u_int32_t sc_gpior; /* prototype GPIOR register */
274
275 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
276 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
277
278 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
279
280 int sc_flowflags; /* 802.3x flow control flags */
281 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
282 int sc_paused; /* paused indication */
283
284 int sc_txfree; /* number of free Tx descriptors */
285 int sc_txnext; /* next ready Tx descriptor */
286 int sc_txwin; /* Tx descriptors since last intr */
287
288 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
289 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
290
291 /* values of interface state at last init */
292 struct {
293 /* if_capenable */
294 uint64_t if_capenable;
295 /* ec_capenable */
296 int ec_capenable;
297 /* VLAN_ATTACHED */
298 int is_vlan;
299 } sc_prev;
300
301 short sc_if_flags;
302
303 int sc_rxptr; /* next ready Rx descriptor/descsoft */
304 int sc_rxdiscard;
305 int sc_rxlen;
306 struct mbuf *sc_rxhead;
307 struct mbuf *sc_rxtail;
308 struct mbuf **sc_rxtailp;
309
310 int sc_ntxdesc;
311 int sc_ntxdesc_mask;
312
313 int sc_nrxdesc_mask;
314
315 const struct sip_parm {
316 const struct sip_regs {
317 int r_rxcfg;
318 int r_txcfg;
319 } p_regs;
320
321 const struct sip_bits {
322 uint32_t b_txcfg_mxdma_8;
323 uint32_t b_txcfg_mxdma_16;
324 uint32_t b_txcfg_mxdma_32;
325 uint32_t b_txcfg_mxdma_64;
326 uint32_t b_txcfg_mxdma_128;
327 uint32_t b_txcfg_mxdma_256;
328 uint32_t b_txcfg_mxdma_512;
329 uint32_t b_txcfg_flth_mask;
330 uint32_t b_txcfg_drth_mask;
331
332 uint32_t b_rxcfg_mxdma_8;
333 uint32_t b_rxcfg_mxdma_16;
334 uint32_t b_rxcfg_mxdma_32;
335 uint32_t b_rxcfg_mxdma_64;
336 uint32_t b_rxcfg_mxdma_128;
337 uint32_t b_rxcfg_mxdma_256;
338 uint32_t b_rxcfg_mxdma_512;
339
340 uint32_t b_isr_txrcmp;
341 uint32_t b_isr_rxrcmp;
342 uint32_t b_isr_dperr;
343 uint32_t b_isr_sserr;
344 uint32_t b_isr_rmabt;
345 uint32_t b_isr_rtabt;
346
347 uint32_t b_cmdsts_size_mask;
348 } p_bits;
349 int p_filtmem;
350 int p_rxbuf_len;
351 bus_size_t p_tx_dmamap_size;
352 int p_ntxsegs;
353 int p_ntxsegs_alloc;
354 int p_nrxdesc;
355 } *sc_parm;
356
357 void (*sc_rxintr)(struct sip_softc *);
358
359 #if NRND > 0
360 rndsource_element_t rnd_source; /* random source */
361 #endif
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 int x, n;
487
488 x = x0;
489 n = n0;
490
491 /* If it will wrap around, sync to the end of the ring. */
492 if (x + n > sc->sc_ntxdesc) {
493 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 (sc->sc_ntxdesc - x), ops);
496 n -= (sc->sc_ntxdesc - x);
497 x = 0;
498 }
499
500 /* Now sync whatever is left. */
501 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511
512 #if 0
513 #ifdef DP83820
514 u_int32_t sipd_bufptr; /* pointer to DMA segment */
515 u_int32_t sipd_cmdsts; /* command/status word */
516 #else
517 u_int32_t sipd_cmdsts; /* command/status word */
518 u_int32_t sipd_bufptr; /* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 struct sip_desc *sipd = &sc->sc_rxdescs[x];
539
540 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 sipd->sipd_extsts = 0;
545 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547
548 #define SIP_CHIP_VERS(sc, v, p, r) \
549 ((sc)->sc_model->sip_vendor == (v) && \
550 (sc)->sc_model->sip_product == (p) && \
551 (sc)->sc_rev == (r))
552
553 #define SIP_CHIP_MODEL(sc, v, p) \
554 ((sc)->sc_model->sip_vendor == (v) && \
555 (sc)->sc_model->sip_product == (p))
556
557 #define SIP_SIS900_REV(sc, rev) \
558 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559
560 #define SIP_TIMEOUT 1000
561
562 static void sipcom_start(struct ifnet *);
563 static void sipcom_watchdog(struct ifnet *);
564 static int sipcom_ioctl(struct ifnet *, u_long, void *);
565 static int sipcom_init(struct ifnet *);
566 static void sipcom_stop(struct ifnet *, int);
567
568 static bool sipcom_reset(struct sip_softc *);
569 static void sipcom_rxdrain(struct sip_softc *);
570 static int sipcom_add_rxbuf(struct sip_softc *, int);
571 static void sipcom_read_eeprom(struct sip_softc *, int, int,
572 u_int16_t *);
573 static void sipcom_tick(void *);
574
575 static void sipcom_sis900_set_filter(struct sip_softc *);
576 static void sipcom_dp83815_set_filter(struct sip_softc *);
577
578 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
581 static void sipcom_sis900_read_macaddr(struct sip_softc *,
582 const struct pci_attach_args *, u_int8_t *);
583 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
584 const struct pci_attach_args *, u_int8_t *);
585
586 static int sipcom_intr(void *);
587 static void sipcom_txintr(struct sip_softc *);
588 static void sip_rxintr(struct sip_softc *);
589 static void gsip_rxintr(struct sip_softc *);
590
591 static int sipcom_dp83820_mii_readreg(device_t, int, int);
592 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
593 static void sipcom_dp83820_mii_statchg(device_t);
594
595 static int sipcom_sis900_mii_readreg(device_t, int, int);
596 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
597 static void sipcom_sis900_mii_statchg(device_t);
598
599 static int sipcom_dp83815_mii_readreg(device_t, int, int);
600 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
601 static void sipcom_dp83815_mii_statchg(device_t);
602
603 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
604
605 static int sipcom_match(device_t, struct cfdata *, void *);
606 static void sipcom_attach(device_t, device_t, void *);
607 static void sipcom_do_detach(device_t, enum sip_attach_stage);
608 static int sipcom_detach(device_t, int);
609 static bool sipcom_resume(device_t PMF_FN_PROTO);
610 static bool sipcom_suspend(device_t PMF_FN_PROTO);
611
612 int gsip_copy_small = 0;
613 int sip_copy_small = 0;
614
615 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
616 sipcom_match, sipcom_attach, sipcom_detach, NULL);
617 CFATTACH_DECL(sip, sizeof(struct sip_softc),
618 sipcom_match, sipcom_attach, sipcom_detach, NULL);
619
620 /*
621 * Descriptions of the variants of the SiS900.
622 */
623 struct sip_variant {
624 int (*sipv_mii_readreg)(device_t, int, int);
625 void (*sipv_mii_writereg)(device_t, int, int, int);
626 void (*sipv_mii_statchg)(device_t);
627 void (*sipv_set_filter)(struct sip_softc *);
628 void (*sipv_read_macaddr)(struct sip_softc *,
629 const struct pci_attach_args *, u_int8_t *);
630 };
631
632 static u_int32_t sipcom_mii_bitbang_read(device_t);
633 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
634
635 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
636 sipcom_mii_bitbang_read,
637 sipcom_mii_bitbang_write,
638 {
639 EROMAR_MDIO, /* MII_BIT_MDO */
640 EROMAR_MDIO, /* MII_BIT_MDI */
641 EROMAR_MDC, /* MII_BIT_MDC */
642 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
643 0, /* MII_BIT_DIR_PHY_HOST */
644 }
645 };
646
647 static const struct sip_variant sipcom_variant_dp83820 = {
648 sipcom_dp83820_mii_readreg,
649 sipcom_dp83820_mii_writereg,
650 sipcom_dp83820_mii_statchg,
651 sipcom_dp83815_set_filter,
652 sipcom_dp83820_read_macaddr,
653 };
654
655 static const struct sip_variant sipcom_variant_sis900 = {
656 sipcom_sis900_mii_readreg,
657 sipcom_sis900_mii_writereg,
658 sipcom_sis900_mii_statchg,
659 sipcom_sis900_set_filter,
660 sipcom_sis900_read_macaddr,
661 };
662
663 static const struct sip_variant sipcom_variant_dp83815 = {
664 sipcom_dp83815_mii_readreg,
665 sipcom_dp83815_mii_writereg,
666 sipcom_dp83815_mii_statchg,
667 sipcom_dp83815_set_filter,
668 sipcom_dp83815_read_macaddr,
669 };
670
671
672 /*
673 * Devices supported by this driver.
674 */
675 static const struct sip_product {
676 pci_vendor_id_t sip_vendor;
677 pci_product_id_t sip_product;
678 const char *sip_name;
679 const struct sip_variant *sip_variant;
680 int sip_gigabit;
681 } sipcom_products[] = {
682 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
683 "NatSemi DP83820 Gigabit Ethernet",
684 &sipcom_variant_dp83820, 1 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
686 "SiS 900 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
689 "SiS 7016 10/100 Ethernet",
690 &sipcom_variant_sis900, 0 },
691
692 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
693 "NatSemi DP83815 10/100 Ethernet",
694 &sipcom_variant_dp83815, 0 },
695
696 { 0, 0,
697 NULL,
698 NULL, 0 },
699 };
700
701 static const struct sip_product *
702 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
703 {
704 const struct sip_product *sip;
705
706 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
707 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
708 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
709 sip->sip_gigabit == gigabit)
710 return sip;
711 }
712 return NULL;
713 }
714
715 /*
716 * I really hate stupid hardware vendors. There's a bit in the EEPROM
717 * which indicates if the card can do 64-bit data transfers. Unfortunately,
718 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
719 * which means we try to use 64-bit data transfers on those cards if we
720 * happen to be plugged into a 32-bit slot.
721 *
722 * What we do is use this table of cards known to be 64-bit cards. If
723 * you have a 64-bit card who's subsystem ID is not listed in this table,
724 * send the output of "pcictl dump ..." of the device to me so that your
725 * card will use the 64-bit data path when plugged into a 64-bit slot.
726 *
727 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
728 * June 30, 2002
729 */
730 static int
731 sipcom_check_64bit(const struct pci_attach_args *pa)
732 {
733 static const struct {
734 pci_vendor_id_t c64_vendor;
735 pci_product_id_t c64_product;
736 } card64[] = {
737 /* Asante GigaNIX */
738 { 0x128a, 0x0002 },
739
740 /* Accton EN1407-T, Planex GN-1000TE */
741 { 0x1113, 0x1407 },
742
743 /* Netgear GA-621 */
744 { 0x1385, 0x621a },
745
746 /* SMC EZ Card */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(&sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(&sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 #if NRND > 0
914 rnd_detach_source(&sc->rnd_source);
915 #endif
916
917 ether_ifdetach(ifp);
918 if_detach(ifp);
919 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
920
921 /*FALLTHROUGH*/
922 case SIP_ATTACH_CREATE_RXMAP:
923 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
924 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
925 bus_dmamap_destroy(sc->sc_dmat,
926 sc->sc_rxsoft[i].rxs_dmamap);
927 }
928 /*FALLTHROUGH*/
929 case SIP_ATTACH_CREATE_TXMAP:
930 for (i = 0; i < SIP_TXQUEUELEN; i++) {
931 if (sc->sc_txsoft[i].txs_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->sc_txsoft[i].txs_dmamap);
934 }
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_LOAD_MAP:
937 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
938 /*FALLTHROUGH*/
939 case SIP_ATTACH_CREATE_MAP:
940 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_MAP_MEM:
943 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
944 sizeof(struct sip_control_data));
945 /*FALLTHROUGH*/
946 case SIP_ATTACH_ALLOC_MEM:
947 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
948 /* FALLTHROUGH*/
949 case SIP_ATTACH_INTR:
950 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
951 /* FALLTHROUGH*/
952 case SIP_ATTACH_MAP:
953 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
954 break;
955 default:
956 break;
957 }
958 return;
959 }
960
961 static bool
962 sipcom_resume(device_t self PMF_FN_ARGS)
963 {
964 struct sip_softc *sc = device_private(self);
965
966 return sipcom_reset(sc);
967 }
968
969 static bool
970 sipcom_suspend(device_t self PMF_FN_ARGS)
971 {
972 struct sip_softc *sc = device_private(self);
973
974 sipcom_rxdrain(sc);
975 return true;
976 }
977
978 static void
979 sipcom_attach(device_t parent, device_t self, void *aux)
980 {
981 struct sip_softc *sc = device_private(self);
982 struct pci_attach_args *pa = aux;
983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 pci_chipset_tag_t pc = pa->pa_pc;
985 pci_intr_handle_t ih;
986 const char *intrstr = NULL;
987 bus_space_tag_t iot, memt;
988 bus_space_handle_t ioh, memh;
989 bus_size_t iosz, memsz;
990 int ioh_valid, memh_valid;
991 int i, rseg, error;
992 const struct sip_product *sip;
993 u_int8_t enaddr[ETHER_ADDR_LEN];
994 pcireg_t csr;
995 pcireg_t memtype;
996 bus_size_t tx_dmamap_size;
997 int ntxsegs_alloc;
998 cfdata_t cf = device_cfdata(self);
999
1000 callout_init(&sc->sc_tick_ch, 0);
1001
1002 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1003 if (sip == NULL) {
1004 printf("\n");
1005 panic("%s: impossible", __func__);
1006 }
1007 sc->sc_gigabit = sip->sip_gigabit;
1008
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 printf("%s: unable to map device registers\n",
1074 device_xname(&sc->sc_dev));
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih);
1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 printf(" at %s", intrstr);
1110 printf("\n");
1111 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 }
1113 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1114
1115 SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117
1118 /*
1119 * Allocate the control data structures, and create and load the
1120 * DMA map for it.
1121 */
1122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 &rseg, 0)) != 0) {
1125 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1126 error);
1127 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 }
1129
1130 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1133 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1134 error);
1135 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 }
1137
1138 if ((error = bus_dmamap_create(sc->sc_dmat,
1139 sizeof(struct sip_control_data), 1,
1140 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1142 "error = %d\n", error);
1143 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 }
1145
1146 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 0)) != 0) {
1149 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1150 error);
1151 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 }
1153
1154 /*
1155 * Create the transmit buffer DMA maps.
1156 */
1157 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1162 "error = %d\n", i, error);
1163 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 }
1165 }
1166
1167 /*
1168 * Create the receive buffer DMA maps.
1169 */
1170 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1174 "error = %d\n", i, error);
1175 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 }
1177 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 }
1179
1180 /*
1181 * Reset the chip to a known state.
1182 */
1183 sipcom_reset(sc);
1184
1185 /*
1186 * Read the Ethernet address from the EEPROM. This might
1187 * also fetch other stuff from the EEPROM and stash it
1188 * in the softc.
1189 */
1190 sc->sc_cfg = 0;
1191 if (!sc->sc_gigabit) {
1192 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1193 SIP_SIS900_REV(sc,SIS_REV_900B))
1194 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195
1196 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 SIP_SIS900_REV(sc,SIS_REV_960) ||
1198 SIP_SIS900_REV(sc,SIS_REV_900B))
1199 sc->sc_cfg |=
1200 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 CFG_EDBMASTEN);
1202 }
1203
1204 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205
1206 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1207 ether_sprintf(enaddr));
1208
1209 /*
1210 * Initialize the configuration register: aggressive PCI
1211 * bus request algorithm, default backoff, default OW timer,
1212 * default parity error detection.
1213 *
1214 * NOTE: "Big endian mode" is useless on the SiS900 and
1215 * friends -- it affects packet data, not descriptors.
1216 */
1217 if (sc->sc_gigabit)
1218 sipcom_dp83820_attach(sc, pa);
1219
1220 /*
1221 * Initialize our media structures and probe the MII.
1222 */
1223 sc->sc_mii.mii_ifp = ifp;
1224 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1225 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1226 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1227 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1228 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1229 sipcom_mediastatus);
1230
1231 /*
1232 * XXX We cannot handle flow control on the DP83815.
1233 */
1234 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1235 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1236 MII_OFFSET_ANY, 0);
1237 else
1238 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1239 MII_OFFSET_ANY, MIIF_DOPAUSE);
1240 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1241 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1242 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1243 } else
1244 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1245
1246 ifp = &sc->sc_ethercom.ec_if;
1247 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1248 ifp->if_softc = sc;
1249 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1250 sc->sc_if_flags = ifp->if_flags;
1251 ifp->if_ioctl = sipcom_ioctl;
1252 ifp->if_start = sipcom_start;
1253 ifp->if_watchdog = sipcom_watchdog;
1254 ifp->if_init = sipcom_init;
1255 ifp->if_stop = sipcom_stop;
1256 IFQ_SET_READY(&ifp->if_snd);
1257
1258 /*
1259 * We can support 802.1Q VLAN-sized frames.
1260 */
1261 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1262
1263 if (sc->sc_gigabit) {
1264 /*
1265 * And the DP83820 can do VLAN tagging in hardware, and
1266 * support the jumbo Ethernet MTU.
1267 */
1268 sc->sc_ethercom.ec_capabilities |=
1269 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1270
1271 /*
1272 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1273 * in hardware.
1274 */
1275 ifp->if_capabilities |=
1276 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1277 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1278 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1279 }
1280
1281 /*
1282 * Attach the interface.
1283 */
1284 if_attach(ifp);
1285 ether_ifattach(ifp, enaddr);
1286 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1287 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1288 sc->sc_prev.if_capenable = ifp->if_capenable;
1289 #if NRND > 0
1290 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1291 RND_TYPE_NET, 0);
1292 #endif
1293
1294 /*
1295 * The number of bytes that must be available in
1296 * the Tx FIFO before the bus master can DMA more
1297 * data into the FIFO.
1298 */
1299 sc->sc_tx_fill_thresh = 64 / 32;
1300
1301 /*
1302 * Start at a drain threshold of 512 bytes. We will
1303 * increase it if a DMA underrun occurs.
1304 *
1305 * XXX The minimum value of this variable should be
1306 * tuned. We may be able to improve performance
1307 * by starting with a lower value. That, however,
1308 * may trash the first few outgoing packets if the
1309 * PCI bus is saturated.
1310 */
1311 if (sc->sc_gigabit)
1312 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1313 else
1314 sc->sc_tx_drain_thresh = 1504 / 32;
1315
1316 /*
1317 * Initialize the Rx FIFO drain threshold.
1318 *
1319 * This is in units of 8 bytes.
1320 *
1321 * We should never set this value lower than 2; 14 bytes are
1322 * required to filter the packet.
1323 */
1324 sc->sc_rx_drain_thresh = 128 / 8;
1325
1326 #ifdef SIP_EVENT_COUNTERS
1327 /*
1328 * Attach event counters.
1329 */
1330 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1331 NULL, device_xname(&sc->sc_dev), "txsstall");
1332 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1333 NULL, device_xname(&sc->sc_dev), "txdstall");
1334 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1335 NULL, device_xname(&sc->sc_dev), "txforceintr");
1336 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(&sc->sc_dev), "txdintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(&sc->sc_dev), "txiintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(&sc->sc_dev), "rxintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(&sc->sc_dev), "hiberr");
1344 if (!sc->sc_gigabit) {
1345 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1346 NULL, device_xname(&sc->sc_dev), "rxpause");
1347 } else {
1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1349 NULL, device_xname(&sc->sc_dev), "rxpause");
1350 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1351 NULL, device_xname(&sc->sc_dev), "txpause");
1352 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1353 NULL, device_xname(&sc->sc_dev), "rxipsum");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(&sc->sc_dev), "rxudpsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(&sc->sc_dev), "txipsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(&sc->sc_dev), "txtcpsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(&sc->sc_dev), "txudpsum");
1364 }
1365 #endif /* SIP_EVENT_COUNTERS */
1366
1367 if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1368 aprint_error_dev(self, "couldn't establish power handler\n");
1369 else
1370 pmf_class_network_register(self, ifp);
1371 }
1372
1373 static inline void
1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1375 uint64_t capenable)
1376 {
1377 struct m_tag *mtag;
1378 u_int32_t extsts;
1379 #ifdef DEBUG
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 #endif
1382 /*
1383 * If VLANs are enabled and the packet has a VLAN tag, set
1384 * up the descriptor to encapsulate the packet for us.
1385 *
1386 * This apparently has to be on the last descriptor of
1387 * the packet.
1388 */
1389
1390 /*
1391 * Byte swapping is tricky. We need to provide the tag
1392 * in a network byte order. On a big-endian machine,
1393 * the byteorder is correct, but we need to swap it
1394 * anyway, because this will be undone by the outside
1395 * htole32(). That's why there must be an
1396 * unconditional swap instead of htons() inside.
1397 */
1398 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1399 sc->sc_txdescs[lasttx].sipd_extsts |=
1400 htole32(EXTSTS_VPKT |
1401 (bswap16(VLAN_TAG_VALUE(mtag)) &
1402 EXTSTS_VTCI));
1403 }
1404
1405 /*
1406 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1407 * checksumming, set up the descriptor to do this work
1408 * for us.
1409 *
1410 * This apparently has to be on the first descriptor of
1411 * the packet.
1412 *
1413 * Byte-swap constants so the compiler can optimize.
1414 */
1415 extsts = 0;
1416 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1417 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1418 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1419 extsts |= htole32(EXTSTS_IPPKT);
1420 }
1421 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1422 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1423 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1424 extsts |= htole32(EXTSTS_TCPPKT);
1425 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1426 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1427 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1428 extsts |= htole32(EXTSTS_UDPPKT);
1429 }
1430 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1431 }
1432
1433 /*
1434 * sip_start: [ifnet interface function]
1435 *
1436 * Start packet transmission on the interface.
1437 */
1438 static void
1439 sipcom_start(struct ifnet *ifp)
1440 {
1441 struct sip_softc *sc = ifp->if_softc;
1442 struct mbuf *m0;
1443 struct mbuf *m;
1444 struct sip_txsoft *txs;
1445 bus_dmamap_t dmamap;
1446 int error, nexttx, lasttx, seg;
1447 int ofree = sc->sc_txfree;
1448 #if 0
1449 int firsttx = sc->sc_txnext;
1450 #endif
1451
1452 /*
1453 * If we've been told to pause, don't transmit any more packets.
1454 */
1455 if (!sc->sc_gigabit && sc->sc_paused)
1456 ifp->if_flags |= IFF_OACTIVE;
1457
1458 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1459 return;
1460
1461 /*
1462 * Loop through the send queue, setting up transmit descriptors
1463 * until we drain the queue, or use up all available transmit
1464 * descriptors.
1465 */
1466 for (;;) {
1467 /* Get a work queue entry. */
1468 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1469 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1470 break;
1471 }
1472
1473 /*
1474 * Grab a packet off the queue.
1475 */
1476 IFQ_POLL(&ifp->if_snd, m0);
1477 if (m0 == NULL)
1478 break;
1479 m = NULL;
1480
1481 dmamap = txs->txs_dmamap;
1482
1483 /*
1484 * Load the DMA map. If this fails, the packet either
1485 * didn't fit in the alloted number of segments, or we
1486 * were short on resources.
1487 */
1488 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1489 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1490 /* In the non-gigabit case, we'll copy and try again. */
1491 if (error != 0 && !sc->sc_gigabit) {
1492 MGETHDR(m, M_DONTWAIT, MT_DATA);
1493 if (m == NULL) {
1494 printf("%s: unable to allocate Tx mbuf\n",
1495 device_xname(&sc->sc_dev));
1496 break;
1497 }
1498 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1499 if (m0->m_pkthdr.len > MHLEN) {
1500 MCLGET(m, M_DONTWAIT);
1501 if ((m->m_flags & M_EXT) == 0) {
1502 printf("%s: unable to allocate Tx "
1503 "cluster\n", device_xname(&sc->sc_dev));
1504 m_freem(m);
1505 break;
1506 }
1507 }
1508 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1509 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1510 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1511 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1512 if (error) {
1513 printf("%s: unable to load Tx buffer, "
1514 "error = %d\n", device_xname(&sc->sc_dev), error);
1515 break;
1516 }
1517 } else if (error == EFBIG) {
1518 /*
1519 * For the too-many-segments case, we simply
1520 * report an error and drop the packet,
1521 * since we can't sanely copy a jumbo packet
1522 * to a single buffer.
1523 */
1524 printf("%s: Tx packet consumes too many "
1525 "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1526 IFQ_DEQUEUE(&ifp->if_snd, m0);
1527 m_freem(m0);
1528 continue;
1529 } else if (error != 0) {
1530 /*
1531 * Short on resources, just stop for now.
1532 */
1533 break;
1534 }
1535
1536 /*
1537 * Ensure we have enough descriptors free to describe
1538 * the packet. Note, we always reserve one descriptor
1539 * at the end of the ring as a termination point, to
1540 * prevent wrap-around.
1541 */
1542 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1543 /*
1544 * Not enough free descriptors to transmit this
1545 * packet. We haven't committed anything yet,
1546 * so just unload the DMA map, put the packet
1547 * back on the queue, and punt. Notify the upper
1548 * layer that there are not more slots left.
1549 *
1550 * XXX We could allocate an mbuf and copy, but
1551 * XXX is it worth it?
1552 */
1553 ifp->if_flags |= IFF_OACTIVE;
1554 bus_dmamap_unload(sc->sc_dmat, dmamap);
1555 if (m != NULL)
1556 m_freem(m);
1557 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1558 break;
1559 }
1560
1561 IFQ_DEQUEUE(&ifp->if_snd, m0);
1562 if (m != NULL) {
1563 m_freem(m0);
1564 m0 = m;
1565 }
1566
1567 /*
1568 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1569 */
1570
1571 /* Sync the DMA map. */
1572 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1573 BUS_DMASYNC_PREWRITE);
1574
1575 /*
1576 * Initialize the transmit descriptors.
1577 */
1578 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1579 seg < dmamap->dm_nsegs;
1580 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1581 /*
1582 * If this is the first descriptor we're
1583 * enqueueing, don't set the OWN bit just
1584 * yet. That could cause a race condition.
1585 * We'll do it below.
1586 */
1587 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1588 htole32(dmamap->dm_segs[seg].ds_addr);
1589 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1591 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1592 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1593 lasttx = nexttx;
1594 }
1595
1596 /* Clear the MORE bit on the last segment. */
1597 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1598 htole32(~CMDSTS_MORE);
1599
1600 /*
1601 * If we're in the interrupt delay window, delay the
1602 * interrupt.
1603 */
1604 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1605 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1606 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1607 htole32(CMDSTS_INTR);
1608 sc->sc_txwin = 0;
1609 }
1610
1611 if (sc->sc_gigabit)
1612 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1613
1614 /* Sync the descriptors we're using. */
1615 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1616 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1617
1618 /*
1619 * The entire packet is set up. Give the first descrptor
1620 * to the chip now.
1621 */
1622 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1623 htole32(CMDSTS_OWN);
1624 sip_cdtxsync(sc, sc->sc_txnext, 1,
1625 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1626
1627 /*
1628 * Store a pointer to the packet so we can free it later,
1629 * and remember what txdirty will be once the packet is
1630 * done.
1631 */
1632 txs->txs_mbuf = m0;
1633 txs->txs_firstdesc = sc->sc_txnext;
1634 txs->txs_lastdesc = lasttx;
1635
1636 /* Advance the tx pointer. */
1637 sc->sc_txfree -= dmamap->dm_nsegs;
1638 sc->sc_txnext = nexttx;
1639
1640 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1641 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1642
1643 #if NBPFILTER > 0
1644 /*
1645 * Pass the packet to any BPF listeners.
1646 */
1647 if (ifp->if_bpf)
1648 bpf_mtap(ifp->if_bpf, m0);
1649 #endif /* NBPFILTER > 0 */
1650 }
1651
1652 if (txs == NULL || sc->sc_txfree == 0) {
1653 /* No more slots left; notify upper layer. */
1654 ifp->if_flags |= IFF_OACTIVE;
1655 }
1656
1657 if (sc->sc_txfree != ofree) {
1658 /*
1659 * Start the transmit process. Note, the manual says
1660 * that if there are no pending transmissions in the
1661 * chip's internal queue (indicated by TXE being clear),
1662 * then the driver software must set the TXDP to the
1663 * first descriptor to be transmitted. However, if we
1664 * do this, it causes serious performance degredation on
1665 * the DP83820 under load, not setting TXDP doesn't seem
1666 * to adversely affect the SiS 900 or DP83815.
1667 *
1668 * Well, I guess it wouldn't be the first time a manual
1669 * has lied -- and they could be speaking of the NULL-
1670 * terminated descriptor list case, rather than OWN-
1671 * terminated rings.
1672 */
1673 #if 0
1674 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1675 CR_TXE) == 0) {
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1677 SIP_CDTXADDR(sc, firsttx));
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 }
1680 #else
1681 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 #endif
1683
1684 /* Set a watchdog timer in case the chip flakes out. */
1685 /* Gigabit autonegotiation takes 5 seconds. */
1686 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1687 }
1688 }
1689
1690 /*
1691 * sip_watchdog: [ifnet interface function]
1692 *
1693 * Watchdog timer handler.
1694 */
1695 static void
1696 sipcom_watchdog(struct ifnet *ifp)
1697 {
1698 struct sip_softc *sc = ifp->if_softc;
1699
1700 /*
1701 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1702 * If we get a timeout, try and sweep up transmit descriptors.
1703 * If we manage to sweep them all up, ignore the lack of
1704 * interrupt.
1705 */
1706 sipcom_txintr(sc);
1707
1708 if (sc->sc_txfree != sc->sc_ntxdesc) {
1709 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1710 ifp->if_oerrors++;
1711
1712 /* Reset the interface. */
1713 (void) sipcom_init(ifp);
1714 } else if (ifp->if_flags & IFF_DEBUG)
1715 printf("%s: recovered from device timeout\n",
1716 device_xname(&sc->sc_dev));
1717
1718 /* Try to get more packets going. */
1719 sipcom_start(ifp);
1720 }
1721
1722 /*
1723 * sip_ioctl: [ifnet interface function]
1724 *
1725 * Handle control requests from the operator.
1726 */
1727 static int
1728 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1729 {
1730 struct sip_softc *sc = ifp->if_softc;
1731 struct ifreq *ifr = (struct ifreq *)data;
1732 int s, error;
1733
1734 s = splnet();
1735
1736 switch (cmd) {
1737 case SIOCSIFMEDIA:
1738 /* Flow control requires full-duplex mode. */
1739 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1740 (ifr->ifr_media & IFM_FDX) == 0)
1741 ifr->ifr_media &= ~IFM_ETH_FMASK;
1742
1743 /* XXX */
1744 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1745 ifr->ifr_media &= ~IFM_ETH_FMASK;
1746 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1747 if (sc->sc_gigabit &&
1748 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1749 /* We can do both TXPAUSE and RXPAUSE. */
1750 ifr->ifr_media |=
1751 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1752 } else if (ifr->ifr_media & IFM_FLOW) {
1753 /*
1754 * Both TXPAUSE and RXPAUSE must be set.
1755 * (SiS900 and DP83815 don't have PAUSE_ASYM
1756 * feature.)
1757 *
1758 * XXX Can SiS900 and DP83815 send PAUSE?
1759 */
1760 ifr->ifr_media |=
1761 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1762 }
1763 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1764 }
1765 goto ethioctl;
1766 case SIOCSIFFLAGS:
1767 /* If the interface is up and running, only modify the receive
1768 * filter when setting promiscuous or debug mode. Otherwise
1769 * fall through to ether_ioctl, which will reset the chip.
1770 */
1771
1772 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1773 == (sc)->sc_ethercom.ec_capenable) \
1774 && ((sc)->sc_prev.is_vlan == \
1775 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1776
1777 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1778
1779 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1780 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1781 == (IFF_UP|IFF_RUNNING))
1782 && ((ifp->if_flags & (~RESETIGN))
1783 == (sc->sc_if_flags & (~RESETIGN)))
1784 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1785 /* Set up the receive filter. */
1786 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1787 error = 0;
1788 break;
1789 #undef RESETIGN
1790 }
1791 /* FALLTHROUGH */
1792 ethioctl:
1793 default:
1794 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1795 break;
1796
1797 error = 0;
1798
1799 if (cmd == SIOCSIFCAP)
1800 error = (*ifp->if_init)(ifp);
1801 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1802 ;
1803 else if (ifp->if_flags & IFF_RUNNING) {
1804 /*
1805 * Multicast list has changed; set the hardware filter
1806 * accordingly.
1807 */
1808 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1809 }
1810 break;
1811 }
1812
1813 /* Try to get more packets going. */
1814 sipcom_start(ifp);
1815
1816 sc->sc_if_flags = ifp->if_flags;
1817 splx(s);
1818 return (error);
1819 }
1820
1821 /*
1822 * sip_intr:
1823 *
1824 * Interrupt service routine.
1825 */
1826 static int
1827 sipcom_intr(void *arg)
1828 {
1829 struct sip_softc *sc = arg;
1830 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1831 u_int32_t isr;
1832 int handled = 0;
1833
1834 if (!device_is_active(&sc->sc_dev))
1835 return 0;
1836
1837 /* Disable interrupts. */
1838 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1839
1840 for (;;) {
1841 /* Reading clears interrupt. */
1842 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1843 if ((isr & sc->sc_imr) == 0)
1844 break;
1845
1846 #if NRND > 0
1847 if (RND_ENABLED(&sc->rnd_source))
1848 rnd_add_uint32(&sc->rnd_source, isr);
1849 #endif
1850
1851 handled = 1;
1852
1853 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1854 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1855
1856 /* Grab any new packets. */
1857 (*sc->sc_rxintr)(sc);
1858
1859 if (isr & ISR_RXORN) {
1860 printf("%s: receive FIFO overrun\n",
1861 device_xname(&sc->sc_dev));
1862
1863 /* XXX adjust rx_drain_thresh? */
1864 }
1865
1866 if (isr & ISR_RXIDLE) {
1867 printf("%s: receive ring overrun\n",
1868 device_xname(&sc->sc_dev));
1869
1870 /* Get the receive process going again. */
1871 bus_space_write_4(sc->sc_st, sc->sc_sh,
1872 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1873 bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 SIP_CR, CR_RXE);
1875 }
1876 }
1877
1878 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1879 #ifdef SIP_EVENT_COUNTERS
1880 if (isr & ISR_TXDESC)
1881 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1882 else if (isr & ISR_TXIDLE)
1883 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1884 #endif
1885
1886 /* Sweep up transmit descriptors. */
1887 sipcom_txintr(sc);
1888
1889 if (isr & ISR_TXURN) {
1890 u_int32_t thresh;
1891 int txfifo_size = (sc->sc_gigabit)
1892 ? DP83820_SIP_TXFIFO_SIZE
1893 : OTHER_SIP_TXFIFO_SIZE;
1894
1895 printf("%s: transmit FIFO underrun",
1896 device_xname(&sc->sc_dev));
1897 thresh = sc->sc_tx_drain_thresh + 1;
1898 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1899 && (thresh * 32) <= (txfifo_size -
1900 (sc->sc_tx_fill_thresh * 32))) {
1901 printf("; increasing Tx drain "
1902 "threshold to %u bytes\n",
1903 thresh * 32);
1904 sc->sc_tx_drain_thresh = thresh;
1905 (void) sipcom_init(ifp);
1906 } else {
1907 (void) sipcom_init(ifp);
1908 printf("\n");
1909 }
1910 }
1911 }
1912
1913 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1914 if (isr & ISR_PAUSE_ST) {
1915 sc->sc_paused = 1;
1916 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1917 ifp->if_flags |= IFF_OACTIVE;
1918 }
1919 if (isr & ISR_PAUSE_END) {
1920 sc->sc_paused = 0;
1921 ifp->if_flags &= ~IFF_OACTIVE;
1922 }
1923 }
1924
1925 if (isr & ISR_HIBERR) {
1926 int want_init = 0;
1927
1928 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1929
1930 #define PRINTERR(bit, str) \
1931 do { \
1932 if ((isr & (bit)) != 0) { \
1933 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1934 printf("%s: %s\n", \
1935 device_xname(&sc->sc_dev), str); \
1936 want_init = 1; \
1937 } \
1938 } while (/*CONSTCOND*/0)
1939
1940 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1941 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1942 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1943 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1944 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1945 /*
1946 * Ignore:
1947 * Tx reset complete
1948 * Rx reset complete
1949 */
1950 if (want_init)
1951 (void) sipcom_init(ifp);
1952 #undef PRINTERR
1953 }
1954 }
1955
1956 /* Re-enable interrupts. */
1957 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1958
1959 /* Try to get more packets going. */
1960 sipcom_start(ifp);
1961
1962 return (handled);
1963 }
1964
1965 /*
1966 * sip_txintr:
1967 *
1968 * Helper; handle transmit interrupts.
1969 */
1970 static void
1971 sipcom_txintr(struct sip_softc *sc)
1972 {
1973 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1974 struct sip_txsoft *txs;
1975 u_int32_t cmdsts;
1976
1977 if (sc->sc_paused == 0)
1978 ifp->if_flags &= ~IFF_OACTIVE;
1979
1980 /*
1981 * Go through our Tx list and free mbufs for those
1982 * frames which have been transmitted.
1983 */
1984 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1985 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1986 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1987
1988 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1989 if (cmdsts & CMDSTS_OWN)
1990 break;
1991
1992 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1993
1994 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1995
1996 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1997 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1998 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1999 m_freem(txs->txs_mbuf);
2000 txs->txs_mbuf = NULL;
2001
2002 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2003
2004 /*
2005 * Check for errors and collisions.
2006 */
2007 if (cmdsts &
2008 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2009 ifp->if_oerrors++;
2010 if (cmdsts & CMDSTS_Tx_EC)
2011 ifp->if_collisions += 16;
2012 if (ifp->if_flags & IFF_DEBUG) {
2013 if (cmdsts & CMDSTS_Tx_ED)
2014 printf("%s: excessive deferral\n",
2015 device_xname(&sc->sc_dev));
2016 if (cmdsts & CMDSTS_Tx_EC)
2017 printf("%s: excessive collisions\n",
2018 device_xname(&sc->sc_dev));
2019 }
2020 } else {
2021 /* Packet was transmitted successfully. */
2022 ifp->if_opackets++;
2023 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2024 }
2025 }
2026
2027 /*
2028 * If there are no more pending transmissions, cancel the watchdog
2029 * timer.
2030 */
2031 if (txs == NULL) {
2032 ifp->if_timer = 0;
2033 sc->sc_txwin = 0;
2034 }
2035 }
2036
2037 /*
2038 * gsip_rxintr:
2039 *
2040 * Helper; handle receive interrupts on gigabit parts.
2041 */
2042 static void
2043 gsip_rxintr(struct sip_softc *sc)
2044 {
2045 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2046 struct sip_rxsoft *rxs;
2047 struct mbuf *m;
2048 u_int32_t cmdsts, extsts;
2049 int i, len;
2050
2051 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2052 rxs = &sc->sc_rxsoft[i];
2053
2054 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2055
2056 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2057 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2058 len = CMDSTS_SIZE(sc, cmdsts);
2059
2060 /*
2061 * NOTE: OWN is set if owned by _consumer_. We're the
2062 * consumer of the receive ring, so if the bit is clear,
2063 * we have processed all of the packets.
2064 */
2065 if ((cmdsts & CMDSTS_OWN) == 0) {
2066 /*
2067 * We have processed all of the receive buffers.
2068 */
2069 break;
2070 }
2071
2072 if (__predict_false(sc->sc_rxdiscard)) {
2073 sip_init_rxdesc(sc, i);
2074 if ((cmdsts & CMDSTS_MORE) == 0) {
2075 /* Reset our state. */
2076 sc->sc_rxdiscard = 0;
2077 }
2078 continue;
2079 }
2080
2081 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2082 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2083
2084 m = rxs->rxs_mbuf;
2085
2086 /*
2087 * Add a new receive buffer to the ring.
2088 */
2089 if (sipcom_add_rxbuf(sc, i) != 0) {
2090 /*
2091 * Failed, throw away what we've done so
2092 * far, and discard the rest of the packet.
2093 */
2094 ifp->if_ierrors++;
2095 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2096 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2097 sip_init_rxdesc(sc, i);
2098 if (cmdsts & CMDSTS_MORE)
2099 sc->sc_rxdiscard = 1;
2100 if (sc->sc_rxhead != NULL)
2101 m_freem(sc->sc_rxhead);
2102 sip_rxchain_reset(sc);
2103 continue;
2104 }
2105
2106 sip_rxchain_link(sc, m);
2107
2108 m->m_len = len;
2109
2110 /*
2111 * If this is not the end of the packet, keep
2112 * looking.
2113 */
2114 if (cmdsts & CMDSTS_MORE) {
2115 sc->sc_rxlen += len;
2116 continue;
2117 }
2118
2119 /*
2120 * Okay, we have the entire packet now. The chip includes
2121 * the FCS, so we need to trim it.
2122 */
2123 m->m_len -= ETHER_CRC_LEN;
2124
2125 *sc->sc_rxtailp = NULL;
2126 len = m->m_len + sc->sc_rxlen;
2127 m = sc->sc_rxhead;
2128
2129 sip_rxchain_reset(sc);
2130
2131 /*
2132 * If an error occurred, update stats and drop the packet.
2133 */
2134 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2135 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2136 ifp->if_ierrors++;
2137 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2138 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2139 /* Receive overrun handled elsewhere. */
2140 printf("%s: receive descriptor error\n",
2141 device_xname(&sc->sc_dev));
2142 }
2143 #define PRINTERR(bit, str) \
2144 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2145 (cmdsts & (bit)) != 0) \
2146 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2147 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2148 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2149 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2150 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2151 #undef PRINTERR
2152 m_freem(m);
2153 continue;
2154 }
2155
2156 /*
2157 * If the packet is small enough to fit in a
2158 * single header mbuf, allocate one and copy
2159 * the data into it. This greatly reduces
2160 * memory consumption when we receive lots
2161 * of small packets.
2162 */
2163 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2164 struct mbuf *nm;
2165 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2166 if (nm == NULL) {
2167 ifp->if_ierrors++;
2168 m_freem(m);
2169 continue;
2170 }
2171 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2172 nm->m_data += 2;
2173 nm->m_pkthdr.len = nm->m_len = len;
2174 m_copydata(m, 0, len, mtod(nm, void *));
2175 m_freem(m);
2176 m = nm;
2177 }
2178 #ifndef __NO_STRICT_ALIGNMENT
2179 else {
2180 /*
2181 * The DP83820's receive buffers must be 4-byte
2182 * aligned. But this means that the data after
2183 * the Ethernet header is misaligned. To compensate,
2184 * we have artificially shortened the buffer size
2185 * in the descriptor, and we do an overlapping copy
2186 * of the data two bytes further in (in the first
2187 * buffer of the chain only).
2188 */
2189 memmove(mtod(m, char *) + 2, mtod(m, void *),
2190 m->m_len);
2191 m->m_data += 2;
2192 }
2193 #endif /* ! __NO_STRICT_ALIGNMENT */
2194
2195 /*
2196 * If VLANs are enabled, VLAN packets have been unwrapped
2197 * for us. Associate the tag with the packet.
2198 */
2199
2200 /*
2201 * Again, byte swapping is tricky. Hardware provided
2202 * the tag in the network byte order, but extsts was
2203 * passed through le32toh() in the meantime. On a
2204 * big-endian machine, we need to swap it again. On a
2205 * little-endian machine, we need to convert from the
2206 * network to host byte order. This means that we must
2207 * swap it in any case, so unconditional swap instead
2208 * of htons() is used.
2209 */
2210 if ((extsts & EXTSTS_VPKT) != 0) {
2211 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2212 continue);
2213 }
2214
2215 /*
2216 * Set the incoming checksum information for the
2217 * packet.
2218 */
2219 if ((extsts & EXTSTS_IPPKT) != 0) {
2220 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2221 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2222 if (extsts & EXTSTS_Rx_IPERR)
2223 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2224 if (extsts & EXTSTS_TCPPKT) {
2225 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2226 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2227 if (extsts & EXTSTS_Rx_TCPERR)
2228 m->m_pkthdr.csum_flags |=
2229 M_CSUM_TCP_UDP_BAD;
2230 } else if (extsts & EXTSTS_UDPPKT) {
2231 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2232 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2233 if (extsts & EXTSTS_Rx_UDPERR)
2234 m->m_pkthdr.csum_flags |=
2235 M_CSUM_TCP_UDP_BAD;
2236 }
2237 }
2238
2239 ifp->if_ipackets++;
2240 m->m_pkthdr.rcvif = ifp;
2241 m->m_pkthdr.len = len;
2242
2243 #if NBPFILTER > 0
2244 /*
2245 * Pass this up to any BPF listeners, but only
2246 * pass if up the stack if it's for us.
2247 */
2248 if (ifp->if_bpf)
2249 bpf_mtap(ifp->if_bpf, m);
2250 #endif /* NBPFILTER > 0 */
2251
2252 /* Pass it on. */
2253 (*ifp->if_input)(ifp, m);
2254 }
2255
2256 /* Update the receive pointer. */
2257 sc->sc_rxptr = i;
2258 }
2259
2260 /*
2261 * sip_rxintr:
2262 *
2263 * Helper; handle receive interrupts on 10/100 parts.
2264 */
2265 static void
2266 sip_rxintr(struct sip_softc *sc)
2267 {
2268 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2269 struct sip_rxsoft *rxs;
2270 struct mbuf *m;
2271 u_int32_t cmdsts;
2272 int i, len;
2273
2274 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2275 rxs = &sc->sc_rxsoft[i];
2276
2277 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2278
2279 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2280
2281 /*
2282 * NOTE: OWN is set if owned by _consumer_. We're the
2283 * consumer of the receive ring, so if the bit is clear,
2284 * we have processed all of the packets.
2285 */
2286 if ((cmdsts & CMDSTS_OWN) == 0) {
2287 /*
2288 * We have processed all of the receive buffers.
2289 */
2290 break;
2291 }
2292
2293 /*
2294 * If any collisions were seen on the wire, count one.
2295 */
2296 if (cmdsts & CMDSTS_Rx_COL)
2297 ifp->if_collisions++;
2298
2299 /*
2300 * If an error occurred, update stats, clear the status
2301 * word, and leave the packet buffer in place. It will
2302 * simply be reused the next time the ring comes around.
2303 */
2304 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2305 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2306 ifp->if_ierrors++;
2307 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2308 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2309 /* Receive overrun handled elsewhere. */
2310 printf("%s: receive descriptor error\n",
2311 device_xname(&sc->sc_dev));
2312 }
2313 #define PRINTERR(bit, str) \
2314 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2315 (cmdsts & (bit)) != 0) \
2316 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2317 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2318 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2319 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2320 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2321 #undef PRINTERR
2322 sip_init_rxdesc(sc, i);
2323 continue;
2324 }
2325
2326 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2327 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2328
2329 /*
2330 * No errors; receive the packet. Note, the SiS 900
2331 * includes the CRC with every packet.
2332 */
2333 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2334
2335 #ifdef __NO_STRICT_ALIGNMENT
2336 /*
2337 * If the packet is small enough to fit in a
2338 * single header mbuf, allocate one and copy
2339 * the data into it. This greatly reduces
2340 * memory consumption when we receive lots
2341 * of small packets.
2342 *
2343 * Otherwise, we add a new buffer to the receive
2344 * chain. If this fails, we drop the packet and
2345 * recycle the old buffer.
2346 */
2347 if (sip_copy_small != 0 && len <= MHLEN) {
2348 MGETHDR(m, M_DONTWAIT, MT_DATA);
2349 if (m == NULL)
2350 goto dropit;
2351 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2352 memcpy(mtod(m, void *),
2353 mtod(rxs->rxs_mbuf, void *), len);
2354 sip_init_rxdesc(sc, i);
2355 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2356 rxs->rxs_dmamap->dm_mapsize,
2357 BUS_DMASYNC_PREREAD);
2358 } else {
2359 m = rxs->rxs_mbuf;
2360 if (sipcom_add_rxbuf(sc, i) != 0) {
2361 dropit:
2362 ifp->if_ierrors++;
2363 sip_init_rxdesc(sc, i);
2364 bus_dmamap_sync(sc->sc_dmat,
2365 rxs->rxs_dmamap, 0,
2366 rxs->rxs_dmamap->dm_mapsize,
2367 BUS_DMASYNC_PREREAD);
2368 continue;
2369 }
2370 }
2371 #else
2372 /*
2373 * The SiS 900's receive buffers must be 4-byte aligned.
2374 * But this means that the data after the Ethernet header
2375 * is misaligned. We must allocate a new buffer and
2376 * copy the data, shifted forward 2 bytes.
2377 */
2378 MGETHDR(m, M_DONTWAIT, MT_DATA);
2379 if (m == NULL) {
2380 dropit:
2381 ifp->if_ierrors++;
2382 sip_init_rxdesc(sc, i);
2383 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2384 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2385 continue;
2386 }
2387 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2388 if (len > (MHLEN - 2)) {
2389 MCLGET(m, M_DONTWAIT);
2390 if ((m->m_flags & M_EXT) == 0) {
2391 m_freem(m);
2392 goto dropit;
2393 }
2394 }
2395 m->m_data += 2;
2396
2397 /*
2398 * Note that we use clusters for incoming frames, so the
2399 * buffer is virtually contiguous.
2400 */
2401 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2402
2403 /* Allow the receive descriptor to continue using its mbuf. */
2404 sip_init_rxdesc(sc, i);
2405 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2406 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2407 #endif /* __NO_STRICT_ALIGNMENT */
2408
2409 ifp->if_ipackets++;
2410 m->m_pkthdr.rcvif = ifp;
2411 m->m_pkthdr.len = m->m_len = len;
2412
2413 #if NBPFILTER > 0
2414 /*
2415 * Pass this up to any BPF listeners, but only
2416 * pass if up the stack if it's for us.
2417 */
2418 if (ifp->if_bpf)
2419 bpf_mtap(ifp->if_bpf, m);
2420 #endif /* NBPFILTER > 0 */
2421
2422 /* Pass it on. */
2423 (*ifp->if_input)(ifp, m);
2424 }
2425
2426 /* Update the receive pointer. */
2427 sc->sc_rxptr = i;
2428 }
2429
2430 /*
2431 * sip_tick:
2432 *
2433 * One second timer, used to tick the MII.
2434 */
2435 static void
2436 sipcom_tick(void *arg)
2437 {
2438 struct sip_softc *sc = arg;
2439 int s;
2440
2441 s = splnet();
2442 #ifdef SIP_EVENT_COUNTERS
2443 if (sc->sc_gigabit) {
2444 /* Read PAUSE related counts from MIB registers. */
2445 sc->sc_ev_rxpause.ev_count +=
2446 bus_space_read_4(sc->sc_st, sc->sc_sh,
2447 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2448 sc->sc_ev_txpause.ev_count +=
2449 bus_space_read_4(sc->sc_st, sc->sc_sh,
2450 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2452 }
2453 #endif /* SIP_EVENT_COUNTERS */
2454 mii_tick(&sc->sc_mii);
2455 splx(s);
2456
2457 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2458 }
2459
2460 /*
2461 * sip_reset:
2462 *
2463 * Perform a soft reset on the SiS 900.
2464 */
2465 static bool
2466 sipcom_reset(struct sip_softc *sc)
2467 {
2468 bus_space_tag_t st = sc->sc_st;
2469 bus_space_handle_t sh = sc->sc_sh;
2470 int i;
2471
2472 bus_space_write_4(st, sh, SIP_IER, 0);
2473 bus_space_write_4(st, sh, SIP_IMR, 0);
2474 bus_space_write_4(st, sh, SIP_RFCR, 0);
2475 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2476
2477 for (i = 0; i < SIP_TIMEOUT; i++) {
2478 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2479 break;
2480 delay(2);
2481 }
2482
2483 if (i == SIP_TIMEOUT) {
2484 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2485 return false;
2486 }
2487
2488 delay(1000);
2489
2490 if (sc->sc_gigabit) {
2491 /*
2492 * Set the general purpose I/O bits. Do it here in case we
2493 * need to have GPIO set up to talk to the media interface.
2494 */
2495 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2496 delay(1000);
2497 }
2498 return true;
2499 }
2500
2501 static void
2502 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2503 {
2504 u_int32_t reg;
2505 bus_space_tag_t st = sc->sc_st;
2506 bus_space_handle_t sh = sc->sc_sh;
2507 /*
2508 * Initialize the VLAN/IP receive control register.
2509 * We enable checksum computation on all incoming
2510 * packets, and do not reject packets w/ bad checksums.
2511 */
2512 reg = 0;
2513 if (capenable &
2514 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2515 reg |= VRCR_IPEN;
2516 if (VLAN_ATTACHED(&sc->sc_ethercom))
2517 reg |= VRCR_VTDEN|VRCR_VTREN;
2518 bus_space_write_4(st, sh, SIP_VRCR, reg);
2519
2520 /*
2521 * Initialize the VLAN/IP transmit control register.
2522 * We enable outgoing checksum computation on a
2523 * per-packet basis.
2524 */
2525 reg = 0;
2526 if (capenable &
2527 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2528 reg |= VTCR_PPCHK;
2529 if (VLAN_ATTACHED(&sc->sc_ethercom))
2530 reg |= VTCR_VPPTI;
2531 bus_space_write_4(st, sh, SIP_VTCR, reg);
2532
2533 /*
2534 * If we're using VLANs, initialize the VLAN data register.
2535 * To understand why we bswap the VLAN Ethertype, see section
2536 * 4.2.36 of the DP83820 manual.
2537 */
2538 if (VLAN_ATTACHED(&sc->sc_ethercom))
2539 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2540 }
2541
2542 /*
2543 * sip_init: [ ifnet interface function ]
2544 *
2545 * Initialize the interface. Must be called at splnet().
2546 */
2547 static int
2548 sipcom_init(struct ifnet *ifp)
2549 {
2550 struct sip_softc *sc = ifp->if_softc;
2551 bus_space_tag_t st = sc->sc_st;
2552 bus_space_handle_t sh = sc->sc_sh;
2553 struct sip_txsoft *txs;
2554 struct sip_rxsoft *rxs;
2555 struct sip_desc *sipd;
2556 int i, error = 0;
2557
2558 if (device_is_active(&sc->sc_dev)) {
2559 /*
2560 * Cancel any pending I/O.
2561 */
2562 sipcom_stop(ifp, 0);
2563 } else if (!pmf_device_resume_self(&sc->sc_dev))
2564 return 0;
2565
2566 /*
2567 * Reset the chip to a known state.
2568 */
2569 if (!sipcom_reset(sc))
2570 return EBUSY;
2571
2572 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2573 /*
2574 * DP83815 manual, page 78:
2575 * 4.4 Recommended Registers Configuration
2576 * For optimum performance of the DP83815, version noted
2577 * as DP83815CVNG (SRR = 203h), the listed register
2578 * modifications must be followed in sequence...
2579 *
2580 * It's not clear if this should be 302h or 203h because that
2581 * chip name is listed as SRR 302h in the description of the
2582 * SRR register. However, my revision 302h DP83815 on the
2583 * Netgear FA311 purchased in 02/2001 needs these settings
2584 * to avoid tons of errors in AcceptPerfectMatch (non-
2585 * IFF_PROMISC) mode. I do not know if other revisions need
2586 * this set or not. [briggs -- 09 March 2001]
2587 *
2588 * Note that only the low-order 12 bits of 0xe4 are documented
2589 * and that this sets reserved bits in that register.
2590 */
2591 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2592
2593 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2594 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2595 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2596 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2597
2598 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2599 }
2600
2601 /*
2602 * Initialize the transmit descriptor ring.
2603 */
2604 for (i = 0; i < sc->sc_ntxdesc; i++) {
2605 sipd = &sc->sc_txdescs[i];
2606 memset(sipd, 0, sizeof(struct sip_desc));
2607 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2608 }
2609 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2610 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2611 sc->sc_txfree = sc->sc_ntxdesc;
2612 sc->sc_txnext = 0;
2613 sc->sc_txwin = 0;
2614
2615 /*
2616 * Initialize the transmit job descriptors.
2617 */
2618 SIMPLEQ_INIT(&sc->sc_txfreeq);
2619 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2620 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2621 txs = &sc->sc_txsoft[i];
2622 txs->txs_mbuf = NULL;
2623 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2624 }
2625
2626 /*
2627 * Initialize the receive descriptor and receive job
2628 * descriptor rings.
2629 */
2630 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2631 rxs = &sc->sc_rxsoft[i];
2632 if (rxs->rxs_mbuf == NULL) {
2633 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2634 printf("%s: unable to allocate or map rx "
2635 "buffer %d, error = %d\n",
2636 device_xname(&sc->sc_dev), i, error);
2637 /*
2638 * XXX Should attempt to run with fewer receive
2639 * XXX buffers instead of just failing.
2640 */
2641 sipcom_rxdrain(sc);
2642 goto out;
2643 }
2644 } else
2645 sip_init_rxdesc(sc, i);
2646 }
2647 sc->sc_rxptr = 0;
2648 sc->sc_rxdiscard = 0;
2649 sip_rxchain_reset(sc);
2650
2651 /*
2652 * Set the configuration register; it's already initialized
2653 * in sip_attach().
2654 */
2655 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2656
2657 /*
2658 * Initialize the prototype TXCFG register.
2659 */
2660 if (sc->sc_gigabit) {
2661 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2662 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2663 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2664 SIP_SIS900_REV(sc, SIS_REV_960) ||
2665 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2666 (sc->sc_cfg & CFG_EDBMASTEN)) {
2667 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2668 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2669 } else {
2670 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2671 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2672 }
2673
2674 sc->sc_txcfg |= TXCFG_ATP |
2675 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2676 sc->sc_tx_drain_thresh;
2677 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2678
2679 /*
2680 * Initialize the receive drain threshold if we have never
2681 * done so.
2682 */
2683 if (sc->sc_rx_drain_thresh == 0) {
2684 /*
2685 * XXX This value should be tuned. This is set to the
2686 * maximum of 248 bytes, and we may be able to improve
2687 * performance by decreasing it (although we should never
2688 * set this value lower than 2; 14 bytes are required to
2689 * filter the packet).
2690 */
2691 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2692 }
2693
2694 /*
2695 * Initialize the prototype RXCFG register.
2696 */
2697 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2698 /*
2699 * Accept long packets (including FCS) so we can handle
2700 * 802.1q-tagged frames and jumbo frames properly.
2701 */
2702 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2703 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2704 sc->sc_rxcfg |= RXCFG_ALP;
2705
2706 /*
2707 * Checksum offloading is disabled if the user selects an MTU
2708 * larger than 8109. (FreeBSD says 8152, but there is emperical
2709 * evidence that >8109 does not work on some boards, such as the
2710 * Planex GN-1000TE).
2711 */
2712 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2713 (ifp->if_capenable &
2714 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2715 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2716 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2717 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2718 "disabled.\n", device_xname(&sc->sc_dev));
2719 ifp->if_capenable &=
2720 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2721 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2722 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2723 ifp->if_csum_flags_tx = 0;
2724 ifp->if_csum_flags_rx = 0;
2725 }
2726
2727 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2728
2729 if (sc->sc_gigabit)
2730 sipcom_dp83820_init(sc, ifp->if_capenable);
2731
2732 /*
2733 * Give the transmit and receive rings to the chip.
2734 */
2735 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2736 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2737
2738 /*
2739 * Initialize the interrupt mask.
2740 */
2741 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2742 sc->sc_bits.b_isr_sserr |
2743 sc->sc_bits.b_isr_rmabt |
2744 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2745 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2746 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2747
2748 /* Set up the receive filter. */
2749 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2750
2751 /*
2752 * Tune sc_rx_flow_thresh.
2753 * XXX "More than 8KB" is too short for jumbo frames.
2754 * XXX TODO: Threshold value should be user-settable.
2755 */
2756 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2757 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2758 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2759
2760 /*
2761 * Set the current media. Do this after initializing the prototype
2762 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2763 * control.
2764 */
2765 if ((error = ether_mediachange(ifp)) != 0)
2766 goto out;
2767
2768 /*
2769 * Set the interrupt hold-off timer to 100us.
2770 */
2771 if (sc->sc_gigabit)
2772 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2773
2774 /*
2775 * Enable interrupts.
2776 */
2777 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2778
2779 /*
2780 * Start the transmit and receive processes.
2781 */
2782 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2783
2784 /*
2785 * Start the one second MII clock.
2786 */
2787 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2788
2789 /*
2790 * ...all done!
2791 */
2792 ifp->if_flags |= IFF_RUNNING;
2793 ifp->if_flags &= ~IFF_OACTIVE;
2794 sc->sc_if_flags = ifp->if_flags;
2795 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2796 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2797 sc->sc_prev.if_capenable = ifp->if_capenable;
2798
2799 out:
2800 if (error)
2801 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2802 return (error);
2803 }
2804
2805 /*
2806 * sip_drain:
2807 *
2808 * Drain the receive queue.
2809 */
2810 static void
2811 sipcom_rxdrain(struct sip_softc *sc)
2812 {
2813 struct sip_rxsoft *rxs;
2814 int i;
2815
2816 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2817 rxs = &sc->sc_rxsoft[i];
2818 if (rxs->rxs_mbuf != NULL) {
2819 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2820 m_freem(rxs->rxs_mbuf);
2821 rxs->rxs_mbuf = NULL;
2822 }
2823 }
2824 }
2825
2826 /*
2827 * sip_stop: [ ifnet interface function ]
2828 *
2829 * Stop transmission on the interface.
2830 */
2831 static void
2832 sipcom_stop(struct ifnet *ifp, int disable)
2833 {
2834 struct sip_softc *sc = ifp->if_softc;
2835 bus_space_tag_t st = sc->sc_st;
2836 bus_space_handle_t sh = sc->sc_sh;
2837 struct sip_txsoft *txs;
2838 u_int32_t cmdsts = 0; /* DEBUG */
2839
2840 /*
2841 * Stop the one second clock.
2842 */
2843 callout_stop(&sc->sc_tick_ch);
2844
2845 /* Down the MII. */
2846 mii_down(&sc->sc_mii);
2847
2848 /*
2849 * Disable interrupts.
2850 */
2851 bus_space_write_4(st, sh, SIP_IER, 0);
2852
2853 /*
2854 * Stop receiver and transmitter.
2855 */
2856 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2857
2858 /*
2859 * Release any queued transmit buffers.
2860 */
2861 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2862 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2863 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2864 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2865 CMDSTS_INTR) == 0)
2866 printf("%s: sip_stop: last descriptor does not "
2867 "have INTR bit set\n", device_xname(&sc->sc_dev));
2868 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2869 #ifdef DIAGNOSTIC
2870 if (txs->txs_mbuf == NULL) {
2871 printf("%s: dirty txsoft with no mbuf chain\n",
2872 device_xname(&sc->sc_dev));
2873 panic("sip_stop");
2874 }
2875 #endif
2876 cmdsts |= /* DEBUG */
2877 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2878 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2879 m_freem(txs->txs_mbuf);
2880 txs->txs_mbuf = NULL;
2881 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2882 }
2883
2884 /*
2885 * Mark the interface down and cancel the watchdog timer.
2886 */
2887 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2888 ifp->if_timer = 0;
2889
2890 if (disable)
2891 pmf_device_suspend_self(&sc->sc_dev);
2892
2893 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2894 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2895 printf("%s: sip_stop: no INTR bits set in dirty tx "
2896 "descriptors\n", device_xname(&sc->sc_dev));
2897 }
2898
2899 /*
2900 * sip_read_eeprom:
2901 *
2902 * Read data from the serial EEPROM.
2903 */
2904 static void
2905 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2906 u_int16_t *data)
2907 {
2908 bus_space_tag_t st = sc->sc_st;
2909 bus_space_handle_t sh = sc->sc_sh;
2910 u_int16_t reg;
2911 int i, x;
2912
2913 for (i = 0; i < wordcnt; i++) {
2914 /* Send CHIP SELECT. */
2915 reg = EROMAR_EECS;
2916 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917
2918 /* Shift in the READ opcode. */
2919 for (x = 3; x > 0; x--) {
2920 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2921 reg |= EROMAR_EEDI;
2922 else
2923 reg &= ~EROMAR_EEDI;
2924 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2925 bus_space_write_4(st, sh, SIP_EROMAR,
2926 reg | EROMAR_EESK);
2927 delay(4);
2928 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2929 delay(4);
2930 }
2931
2932 /* Shift in address. */
2933 for (x = 6; x > 0; x--) {
2934 if ((word + i) & (1 << (x - 1)))
2935 reg |= EROMAR_EEDI;
2936 else
2937 reg &= ~EROMAR_EEDI;
2938 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2939 bus_space_write_4(st, sh, SIP_EROMAR,
2940 reg | EROMAR_EESK);
2941 delay(4);
2942 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2943 delay(4);
2944 }
2945
2946 /* Shift out data. */
2947 reg = EROMAR_EECS;
2948 data[i] = 0;
2949 for (x = 16; x > 0; x--) {
2950 bus_space_write_4(st, sh, SIP_EROMAR,
2951 reg | EROMAR_EESK);
2952 delay(4);
2953 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2954 data[i] |= (1 << (x - 1));
2955 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2956 delay(4);
2957 }
2958
2959 /* Clear CHIP SELECT. */
2960 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2961 delay(4);
2962 }
2963 }
2964
2965 /*
2966 * sipcom_add_rxbuf:
2967 *
2968 * Add a receive buffer to the indicated descriptor.
2969 */
2970 static int
2971 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2972 {
2973 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2974 struct mbuf *m;
2975 int error;
2976
2977 MGETHDR(m, M_DONTWAIT, MT_DATA);
2978 if (m == NULL)
2979 return (ENOBUFS);
2980 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2981
2982 MCLGET(m, M_DONTWAIT);
2983 if ((m->m_flags & M_EXT) == 0) {
2984 m_freem(m);
2985 return (ENOBUFS);
2986 }
2987
2988 /* XXX I don't believe this is necessary. --dyoung */
2989 if (sc->sc_gigabit)
2990 m->m_len = sc->sc_parm->p_rxbuf_len;
2991
2992 if (rxs->rxs_mbuf != NULL)
2993 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2994
2995 rxs->rxs_mbuf = m;
2996
2997 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2998 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2999 BUS_DMA_READ|BUS_DMA_NOWAIT);
3000 if (error) {
3001 printf("%s: can't load rx DMA map %d, error = %d\n",
3002 device_xname(&sc->sc_dev), idx, error);
3003 panic("%s", __func__); /* XXX */
3004 }
3005
3006 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3007 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3008
3009 sip_init_rxdesc(sc, idx);
3010
3011 return (0);
3012 }
3013
3014 /*
3015 * sip_sis900_set_filter:
3016 *
3017 * Set up the receive filter.
3018 */
3019 static void
3020 sipcom_sis900_set_filter(struct sip_softc *sc)
3021 {
3022 bus_space_tag_t st = sc->sc_st;
3023 bus_space_handle_t sh = sc->sc_sh;
3024 struct ethercom *ec = &sc->sc_ethercom;
3025 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3026 struct ether_multi *enm;
3027 const u_int8_t *cp;
3028 struct ether_multistep step;
3029 u_int32_t crc, mchash[16];
3030
3031 /*
3032 * Initialize the prototype RFCR.
3033 */
3034 sc->sc_rfcr = RFCR_RFEN;
3035 if (ifp->if_flags & IFF_BROADCAST)
3036 sc->sc_rfcr |= RFCR_AAB;
3037 if (ifp->if_flags & IFF_PROMISC) {
3038 sc->sc_rfcr |= RFCR_AAP;
3039 goto allmulti;
3040 }
3041
3042 /*
3043 * Set up the multicast address filter by passing all multicast
3044 * addresses through a CRC generator, and then using the high-order
3045 * 6 bits as an index into the 128 bit multicast hash table (only
3046 * the lower 16 bits of each 32 bit multicast hash register are
3047 * valid). The high order bits select the register, while the
3048 * rest of the bits select the bit within the register.
3049 */
3050
3051 memset(mchash, 0, sizeof(mchash));
3052
3053 /*
3054 * SiS900 (at least SiS963) requires us to register the address of
3055 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3056 */
3057 crc = 0x0ed423f9;
3058
3059 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3060 SIP_SIS900_REV(sc, SIS_REV_960) ||
3061 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3062 /* Just want the 8 most significant bits. */
3063 crc >>= 24;
3064 } else {
3065 /* Just want the 7 most significant bits. */
3066 crc >>= 25;
3067 }
3068
3069 /* Set the corresponding bit in the hash table. */
3070 mchash[crc >> 4] |= 1 << (crc & 0xf);
3071
3072 ETHER_FIRST_MULTI(step, ec, enm);
3073 while (enm != NULL) {
3074 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3075 /*
3076 * We must listen to a range of multicast addresses.
3077 * For now, just accept all multicasts, rather than
3078 * trying to set only those filter bits needed to match
3079 * the range. (At this time, the only use of address
3080 * ranges is for IP multicast routing, for which the
3081 * range is big enough to require all bits set.)
3082 */
3083 goto allmulti;
3084 }
3085
3086 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3087
3088 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3089 SIP_SIS900_REV(sc, SIS_REV_960) ||
3090 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3091 /* Just want the 8 most significant bits. */
3092 crc >>= 24;
3093 } else {
3094 /* Just want the 7 most significant bits. */
3095 crc >>= 25;
3096 }
3097
3098 /* Set the corresponding bit in the hash table. */
3099 mchash[crc >> 4] |= 1 << (crc & 0xf);
3100
3101 ETHER_NEXT_MULTI(step, enm);
3102 }
3103
3104 ifp->if_flags &= ~IFF_ALLMULTI;
3105 goto setit;
3106
3107 allmulti:
3108 ifp->if_flags |= IFF_ALLMULTI;
3109 sc->sc_rfcr |= RFCR_AAM;
3110
3111 setit:
3112 #define FILTER_EMIT(addr, data) \
3113 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3114 delay(1); \
3115 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3116 delay(1)
3117
3118 /*
3119 * Disable receive filter, and program the node address.
3120 */
3121 cp = CLLADDR(ifp->if_sadl);
3122 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3123 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3124 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3125
3126 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3127 /*
3128 * Program the multicast hash table.
3129 */
3130 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3131 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3132 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3133 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3134 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3135 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3136 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3137 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3138 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3139 SIP_SIS900_REV(sc, SIS_REV_960) ||
3140 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3141 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3142 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3143 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3144 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3145 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3146 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3147 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3148 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3149 }
3150 }
3151 #undef FILTER_EMIT
3152
3153 /*
3154 * Re-enable the receiver filter.
3155 */
3156 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3157 }
3158
3159 /*
3160 * sip_dp83815_set_filter:
3161 *
3162 * Set up the receive filter.
3163 */
3164 static void
3165 sipcom_dp83815_set_filter(struct sip_softc *sc)
3166 {
3167 bus_space_tag_t st = sc->sc_st;
3168 bus_space_handle_t sh = sc->sc_sh;
3169 struct ethercom *ec = &sc->sc_ethercom;
3170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3171 struct ether_multi *enm;
3172 const u_int8_t *cp;
3173 struct ether_multistep step;
3174 u_int32_t crc, hash, slot, bit;
3175 #define MCHASH_NWORDS_83820 128
3176 #define MCHASH_NWORDS_83815 32
3177 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3178 u_int16_t mchash[MCHASH_NWORDS];
3179 int i;
3180
3181 /*
3182 * Initialize the prototype RFCR.
3183 * Enable the receive filter, and accept on
3184 * Perfect (destination address) Match
3185 * If IFF_BROADCAST, also accept all broadcast packets.
3186 * If IFF_PROMISC, accept all unicast packets (and later, set
3187 * IFF_ALLMULTI and accept all multicast, too).
3188 */
3189 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3190 if (ifp->if_flags & IFF_BROADCAST)
3191 sc->sc_rfcr |= RFCR_AAB;
3192 if (ifp->if_flags & IFF_PROMISC) {
3193 sc->sc_rfcr |= RFCR_AAP;
3194 goto allmulti;
3195 }
3196
3197 /*
3198 * Set up the DP83820/DP83815 multicast address filter by
3199 * passing all multicast addresses through a CRC generator,
3200 * and then using the high-order 11/9 bits as an index into
3201 * the 2048/512 bit multicast hash table. The high-order
3202 * 7/5 bits select the slot, while the low-order 4 bits
3203 * select the bit within the slot. Note that only the low
3204 * 16-bits of each filter word are used, and there are
3205 * 128/32 filter words.
3206 */
3207
3208 memset(mchash, 0, sizeof(mchash));
3209
3210 ifp->if_flags &= ~IFF_ALLMULTI;
3211 ETHER_FIRST_MULTI(step, ec, enm);
3212 if (enm == NULL)
3213 goto setit;
3214 while (enm != NULL) {
3215 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3216 /*
3217 * We must listen to a range of multicast addresses.
3218 * For now, just accept all multicasts, rather than
3219 * trying to set only those filter bits needed to match
3220 * the range. (At this time, the only use of address
3221 * ranges is for IP multicast routing, for which the
3222 * range is big enough to require all bits set.)
3223 */
3224 goto allmulti;
3225 }
3226
3227 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3228
3229 if (sc->sc_gigabit) {
3230 /* Just want the 11 most significant bits. */
3231 hash = crc >> 21;
3232 } else {
3233 /* Just want the 9 most significant bits. */
3234 hash = crc >> 23;
3235 }
3236
3237 slot = hash >> 4;
3238 bit = hash & 0xf;
3239
3240 /* Set the corresponding bit in the hash table. */
3241 mchash[slot] |= 1 << bit;
3242
3243 ETHER_NEXT_MULTI(step, enm);
3244 }
3245 sc->sc_rfcr |= RFCR_MHEN;
3246 goto setit;
3247
3248 allmulti:
3249 ifp->if_flags |= IFF_ALLMULTI;
3250 sc->sc_rfcr |= RFCR_AAM;
3251
3252 setit:
3253 #define FILTER_EMIT(addr, data) \
3254 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3255 delay(1); \
3256 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3257 delay(1)
3258
3259 /*
3260 * Disable receive filter, and program the node address.
3261 */
3262 cp = CLLADDR(ifp->if_sadl);
3263 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3264 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3265 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3266
3267 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3268 int nwords =
3269 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3270 /*
3271 * Program the multicast hash table.
3272 */
3273 for (i = 0; i < nwords; i++) {
3274 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3275 }
3276 }
3277 #undef FILTER_EMIT
3278 #undef MCHASH_NWORDS
3279 #undef MCHASH_NWORDS_83815
3280 #undef MCHASH_NWORDS_83820
3281
3282 /*
3283 * Re-enable the receiver filter.
3284 */
3285 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3286 }
3287
3288 /*
3289 * sip_dp83820_mii_readreg: [mii interface function]
3290 *
3291 * Read a PHY register on the MII of the DP83820.
3292 */
3293 static int
3294 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3295 {
3296 struct sip_softc *sc = device_private(self);
3297
3298 if (sc->sc_cfg & CFG_TBI_EN) {
3299 bus_addr_t tbireg;
3300 int rv;
3301
3302 if (phy != 0)
3303 return (0);
3304
3305 switch (reg) {
3306 case MII_BMCR: tbireg = SIP_TBICR; break;
3307 case MII_BMSR: tbireg = SIP_TBISR; break;
3308 case MII_ANAR: tbireg = SIP_TANAR; break;
3309 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3310 case MII_ANER: tbireg = SIP_TANER; break;
3311 case MII_EXTSR:
3312 /*
3313 * Don't even bother reading the TESR register.
3314 * The manual documents that the device has
3315 * 1000baseX full/half capability, but the
3316 * register itself seems read back 0 on some
3317 * boards. Just hard-code the result.
3318 */
3319 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3320
3321 default:
3322 return (0);
3323 }
3324
3325 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3326 if (tbireg == SIP_TBISR) {
3327 /* LINK and ACOMP are switched! */
3328 int val = rv;
3329
3330 rv = 0;
3331 if (val & TBISR_MR_LINK_STATUS)
3332 rv |= BMSR_LINK;
3333 if (val & TBISR_MR_AN_COMPLETE)
3334 rv |= BMSR_ACOMP;
3335
3336 /*
3337 * The manual claims this register reads back 0
3338 * on hard and soft reset. But we want to let
3339 * the gentbi driver know that we support auto-
3340 * negotiation, so hard-code this bit in the
3341 * result.
3342 */
3343 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3344 }
3345
3346 return (rv);
3347 }
3348
3349 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3350 }
3351
3352 /*
3353 * sip_dp83820_mii_writereg: [mii interface function]
3354 *
3355 * Write a PHY register on the MII of the DP83820.
3356 */
3357 static void
3358 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3359 {
3360 struct sip_softc *sc = device_private(self);
3361
3362 if (sc->sc_cfg & CFG_TBI_EN) {
3363 bus_addr_t tbireg;
3364
3365 if (phy != 0)
3366 return;
3367
3368 switch (reg) {
3369 case MII_BMCR: tbireg = SIP_TBICR; break;
3370 case MII_ANAR: tbireg = SIP_TANAR; break;
3371 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3372 default:
3373 return;
3374 }
3375
3376 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3377 return;
3378 }
3379
3380 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3381 }
3382
3383 /*
3384 * sip_dp83820_mii_statchg: [mii interface function]
3385 *
3386 * Callback from MII layer when media changes.
3387 */
3388 static void
3389 sipcom_dp83820_mii_statchg(device_t self)
3390 {
3391 struct sip_softc *sc = device_private(self);
3392 struct mii_data *mii = &sc->sc_mii;
3393 u_int32_t cfg, pcr;
3394
3395 /*
3396 * Get flow control negotiation result.
3397 */
3398 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3399 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3400 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3401 mii->mii_media_active &= ~IFM_ETH_FMASK;
3402 }
3403
3404 /*
3405 * Update TXCFG for full-duplex operation.
3406 */
3407 if ((mii->mii_media_active & IFM_FDX) != 0)
3408 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3409 else
3410 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3411
3412 /*
3413 * Update RXCFG for full-duplex or loopback.
3414 */
3415 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3416 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3417 sc->sc_rxcfg |= RXCFG_ATX;
3418 else
3419 sc->sc_rxcfg &= ~RXCFG_ATX;
3420
3421 /*
3422 * Update CFG for MII/GMII.
3423 */
3424 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3425 cfg = sc->sc_cfg | CFG_MODE_1000;
3426 else
3427 cfg = sc->sc_cfg;
3428
3429 /*
3430 * 802.3x flow control.
3431 */
3432 pcr = 0;
3433 if (sc->sc_flowflags & IFM_FLOW) {
3434 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3435 pcr |= sc->sc_rx_flow_thresh;
3436 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3437 pcr |= PCR_PSEN | PCR_PS_MCAST;
3438 }
3439
3440 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3441 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3442 sc->sc_txcfg);
3443 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3444 sc->sc_rxcfg);
3445 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3446 }
3447
3448 /*
3449 * sip_mii_bitbang_read: [mii bit-bang interface function]
3450 *
3451 * Read the MII serial port for the MII bit-bang module.
3452 */
3453 static u_int32_t
3454 sipcom_mii_bitbang_read(device_t self)
3455 {
3456 struct sip_softc *sc = device_private(self);
3457
3458 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3459 }
3460
3461 /*
3462 * sip_mii_bitbang_write: [mii big-bang interface function]
3463 *
3464 * Write the MII serial port for the MII bit-bang module.
3465 */
3466 static void
3467 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3468 {
3469 struct sip_softc *sc = device_private(self);
3470
3471 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3472 }
3473
3474 /*
3475 * sip_sis900_mii_readreg: [mii interface function]
3476 *
3477 * Read a PHY register on the MII.
3478 */
3479 static int
3480 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3481 {
3482 struct sip_softc *sc = device_private(self);
3483 u_int32_t enphy;
3484
3485 /*
3486 * The PHY of recent SiS chipsets is accessed through bitbang
3487 * operations.
3488 */
3489 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3490 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3491 phy, reg);
3492
3493 #ifndef SIS900_MII_RESTRICT
3494 /*
3495 * The SiS 900 has only an internal PHY on the MII. Only allow
3496 * MII address 0.
3497 */
3498 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3499 return (0);
3500 #endif
3501
3502 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3503 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3504 ENPHY_RWCMD | ENPHY_ACCESS);
3505 do {
3506 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3507 } while (enphy & ENPHY_ACCESS);
3508 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3509 }
3510
3511 /*
3512 * sip_sis900_mii_writereg: [mii interface function]
3513 *
3514 * Write a PHY register on the MII.
3515 */
3516 static void
3517 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3518 {
3519 struct sip_softc *sc = device_private(self);
3520 u_int32_t enphy;
3521
3522 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3523 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3524 phy, reg, val);
3525 return;
3526 }
3527
3528 #ifndef SIS900_MII_RESTRICT
3529 /*
3530 * The SiS 900 has only an internal PHY on the MII. Only allow
3531 * MII address 0.
3532 */
3533 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3534 return;
3535 #endif
3536
3537 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3538 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3539 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3540 do {
3541 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3542 } while (enphy & ENPHY_ACCESS);
3543 }
3544
3545 /*
3546 * sip_sis900_mii_statchg: [mii interface function]
3547 *
3548 * Callback from MII layer when media changes.
3549 */
3550 static void
3551 sipcom_sis900_mii_statchg(device_t self)
3552 {
3553 struct sip_softc *sc = device_private(self);
3554 struct mii_data *mii = &sc->sc_mii;
3555 u_int32_t flowctl;
3556
3557 /*
3558 * Get flow control negotiation result.
3559 */
3560 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3561 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3562 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3563 mii->mii_media_active &= ~IFM_ETH_FMASK;
3564 }
3565
3566 /*
3567 * Update TXCFG for full-duplex operation.
3568 */
3569 if ((mii->mii_media_active & IFM_FDX) != 0)
3570 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3571 else
3572 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3573
3574 /*
3575 * Update RXCFG for full-duplex or loopback.
3576 */
3577 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3578 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3579 sc->sc_rxcfg |= RXCFG_ATX;
3580 else
3581 sc->sc_rxcfg &= ~RXCFG_ATX;
3582
3583 /*
3584 * Update IMR for use of 802.3x flow control.
3585 */
3586 if (sc->sc_flowflags & IFM_FLOW) {
3587 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3588 flowctl = FLOWCTL_FLOWEN;
3589 } else {
3590 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3591 flowctl = 0;
3592 }
3593
3594 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3595 sc->sc_txcfg);
3596 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3597 sc->sc_rxcfg);
3598 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3599 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3600 }
3601
3602 /*
3603 * sip_dp83815_mii_readreg: [mii interface function]
3604 *
3605 * Read a PHY register on the MII.
3606 */
3607 static int
3608 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3609 {
3610 struct sip_softc *sc = device_private(self);
3611 u_int32_t val;
3612
3613 /*
3614 * The DP83815 only has an internal PHY. Only allow
3615 * MII address 0.
3616 */
3617 if (phy != 0)
3618 return (0);
3619
3620 /*
3621 * Apparently, after a reset, the DP83815 can take a while
3622 * to respond. During this recovery period, the BMSR returns
3623 * a value of 0. Catch this -- it's not supposed to happen
3624 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3625 * PHY to come back to life.
3626 *
3627 * This works out because the BMSR is the first register
3628 * read during the PHY probe process.
3629 */
3630 do {
3631 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3632 } while (reg == MII_BMSR && val == 0);
3633
3634 return (val & 0xffff);
3635 }
3636
3637 /*
3638 * sip_dp83815_mii_writereg: [mii interface function]
3639 *
3640 * Write a PHY register to the MII.
3641 */
3642 static void
3643 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3644 {
3645 struct sip_softc *sc = device_private(self);
3646
3647 /*
3648 * The DP83815 only has an internal PHY. Only allow
3649 * MII address 0.
3650 */
3651 if (phy != 0)
3652 return;
3653
3654 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3655 }
3656
3657 /*
3658 * sip_dp83815_mii_statchg: [mii interface function]
3659 *
3660 * Callback from MII layer when media changes.
3661 */
3662 static void
3663 sipcom_dp83815_mii_statchg(device_t self)
3664 {
3665 struct sip_softc *sc = device_private(self);
3666
3667 /*
3668 * Update TXCFG for full-duplex operation.
3669 */
3670 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3671 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3672 else
3673 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3674
3675 /*
3676 * Update RXCFG for full-duplex or loopback.
3677 */
3678 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3679 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3680 sc->sc_rxcfg |= RXCFG_ATX;
3681 else
3682 sc->sc_rxcfg &= ~RXCFG_ATX;
3683
3684 /*
3685 * XXX 802.3x flow control.
3686 */
3687
3688 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3689 sc->sc_txcfg);
3690 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3691 sc->sc_rxcfg);
3692
3693 /*
3694 * Some DP83815s experience problems when used with short
3695 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3696 * sequence adjusts the DSP's signal attenuation to fix the
3697 * problem.
3698 */
3699 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3700 uint32_t reg;
3701
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3703
3704 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3705 reg &= 0x0fff;
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3707 delay(100);
3708 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3709 reg &= 0x00ff;
3710 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3711 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3712 0x00e8);
3713 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3714 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3715 reg | 0x20);
3716 }
3717
3718 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3719 }
3720 }
3721
3722 static void
3723 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3724 const struct pci_attach_args *pa, u_int8_t *enaddr)
3725 {
3726 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3727 u_int8_t cksum, *e, match;
3728 int i;
3729
3730 /*
3731 * EEPROM data format for the DP83820 can be found in
3732 * the DP83820 manual, section 4.2.4.
3733 */
3734
3735 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3736
3737 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3738 match = ~(match - 1);
3739
3740 cksum = 0x55;
3741 e = (u_int8_t *) eeprom_data;
3742 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3743 cksum += *e++;
3744
3745 if (cksum != match)
3746 printf("%s: Checksum (%x) mismatch (%x)",
3747 device_xname(&sc->sc_dev), cksum, match);
3748
3749 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3750 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3751 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3752 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3753 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3754 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3755 }
3756
3757 static void
3758 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3759 {
3760 int i;
3761
3762 /*
3763 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3764 * a reason, but I don't know it.
3765 */
3766 for (i = 0; i < 10; i++)
3767 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3768 }
3769
3770 static void
3771 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3772 const struct pci_attach_args *pa, u_int8_t *enaddr)
3773 {
3774 u_int16_t myea[ETHER_ADDR_LEN / 2];
3775
3776 switch (sc->sc_rev) {
3777 case SIS_REV_630S:
3778 case SIS_REV_630E:
3779 case SIS_REV_630EA1:
3780 case SIS_REV_630ET:
3781 case SIS_REV_635:
3782 /*
3783 * The MAC address for the on-board Ethernet of
3784 * the SiS 630 chipset is in the NVRAM. Kick
3785 * the chip into re-loading it from NVRAM, and
3786 * read the MAC address out of the filter registers.
3787 */
3788 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3789
3790 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3791 RFCR_RFADDR_NODE0);
3792 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3793 0xffff;
3794
3795 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3796 RFCR_RFADDR_NODE2);
3797 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3798 0xffff;
3799
3800 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3801 RFCR_RFADDR_NODE4);
3802 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3803 0xffff;
3804 break;
3805
3806 case SIS_REV_960:
3807 {
3808 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3809 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3810
3811 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3812 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3813
3814 int waittime, i;
3815
3816 /* Allow to read EEPROM from LAN. It is shared
3817 * between a 1394 controller and the NIC and each
3818 * time we access it, we need to set SIS_EECMD_REQ.
3819 */
3820 SIS_SET_EROMAR(sc, EROMAR_REQ);
3821
3822 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3823 /* Force EEPROM to idle state. */
3824
3825 /*
3826 * XXX-cube This is ugly. I'll look for docs about it.
3827 */
3828 SIS_SET_EROMAR(sc, EROMAR_EECS);
3829 sipcom_sis900_eeprom_delay(sc);
3830 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3831 SIS_SET_EROMAR(sc, EROMAR_EESK);
3832 sipcom_sis900_eeprom_delay(sc);
3833 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3834 sipcom_sis900_eeprom_delay(sc);
3835 }
3836 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3837 sipcom_sis900_eeprom_delay(sc);
3838 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3839
3840 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3841 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3842 sizeof(myea) / sizeof(myea[0]), myea);
3843 break;
3844 }
3845 DELAY(1);
3846 }
3847
3848 /*
3849 * Set SIS_EECTL_CLK to high, so a other master
3850 * can operate on the i2c bus.
3851 */
3852 SIS_SET_EROMAR(sc, EROMAR_EESK);
3853
3854 /* Refuse EEPROM access by LAN */
3855 SIS_SET_EROMAR(sc, EROMAR_DONE);
3856 } break;
3857
3858 default:
3859 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3860 sizeof(myea) / sizeof(myea[0]), myea);
3861 }
3862
3863 enaddr[0] = myea[0] & 0xff;
3864 enaddr[1] = myea[0] >> 8;
3865 enaddr[2] = myea[1] & 0xff;
3866 enaddr[3] = myea[1] >> 8;
3867 enaddr[4] = myea[2] & 0xff;
3868 enaddr[5] = myea[2] >> 8;
3869 }
3870
3871 /* Table and macro to bit-reverse an octet. */
3872 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3873 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3874
3875 static void
3876 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3877 const struct pci_attach_args *pa, u_int8_t *enaddr)
3878 {
3879 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3880 u_int8_t cksum, *e, match;
3881 int i;
3882
3883 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3884 sizeof(eeprom_data[0]), eeprom_data);
3885
3886 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3887 match = ~(match - 1);
3888
3889 cksum = 0x55;
3890 e = (u_int8_t *) eeprom_data;
3891 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3892 cksum += *e++;
3893 }
3894 if (cksum != match) {
3895 printf("%s: Checksum (%x) mismatch (%x)",
3896 device_xname(&sc->sc_dev), cksum, match);
3897 }
3898
3899 /*
3900 * Unrolled because it makes slightly more sense this way.
3901 * The DP83815 stores the MAC address in bit 0 of word 6
3902 * through bit 15 of word 8.
3903 */
3904 ea = &eeprom_data[6];
3905 enaddr[0] = ((*ea & 0x1) << 7);
3906 ea++;
3907 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3908 enaddr[1] = ((*ea & 0x1FE) >> 1);
3909 enaddr[2] = ((*ea & 0x1) << 7);
3910 ea++;
3911 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3912 enaddr[3] = ((*ea & 0x1FE) >> 1);
3913 enaddr[4] = ((*ea & 0x1) << 7);
3914 ea++;
3915 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3916 enaddr[5] = ((*ea & 0x1FE) >> 1);
3917
3918 /*
3919 * In case that's not weird enough, we also need to reverse
3920 * the bits in each byte. This all actually makes more sense
3921 * if you think about the EEPROM storage as an array of bits
3922 * being shifted into bytes, but that's not how we're looking
3923 * at it here...
3924 */
3925 for (i = 0; i < 6 ;i++)
3926 enaddr[i] = bbr(enaddr[i]);
3927 }
3928
3929 /*
3930 * sip_mediastatus: [ifmedia interface function]
3931 *
3932 * Get the current interface media status.
3933 */
3934 static void
3935 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3936 {
3937 struct sip_softc *sc = ifp->if_softc;
3938
3939 ether_mediastatus(ifp, ifmr);
3940 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3941 sc->sc_flowflags;
3942 }
3943