if_sip.c revision 1.132.4.2 1 /* $NetBSD: if_sip.c,v 1.132.4.2 2009/05/04 08:12:57 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.132.4.2 2009/05/04 08:12:57 yamt Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92
93 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
94
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/pci/if_sipreg.h>
121
122 /*
123 * Transmit descriptor list size. This is arbitrary, but allocate
124 * enough descriptors for 128 pending transmissions, and 8 segments
125 * per packet (64 for DP83820 for jumbo frames).
126 *
127 * This MUST work out to a power of 2.
128 */
129 #define GSIP_NTXSEGS_ALLOC 16
130 #define SIP_NTXSEGS_ALLOC 8
131
132 #define SIP_TXQUEUELEN 256
133 #define MAX_SIP_NTXDESC \
134 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135
136 /*
137 * Receive descriptor list size. We have one Rx buffer per incoming
138 * packet, so this logic is a little simpler.
139 *
140 * Actually, on the DP83820, we allow the packet to consume more than
141 * one buffer, in order to support jumbo Ethernet frames. In that
142 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
144 * so we'd better be quick about handling receive interrupts.
145 */
146 #define GSIP_NRXDESC 256
147 #define SIP_NRXDESC 128
148
149 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
150
151 /*
152 * Control structures are DMA'd to the SiS900 chip. We allocate them in
153 * a single clump that maps to a single DMA segment to make several things
154 * easier.
155 */
156 struct sip_control_data {
157 /*
158 * The transmit descriptors.
159 */
160 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161
162 /*
163 * The receive descriptors.
164 */
165 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167
168 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
169 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
170 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
171
172 /*
173 * Software state for transmit jobs.
174 */
175 struct sip_txsoft {
176 struct mbuf *txs_mbuf; /* head of our mbuf chain */
177 bus_dmamap_t txs_dmamap; /* our DMA map */
178 int txs_firstdesc; /* first descriptor in packet */
179 int txs_lastdesc; /* last descriptor in packet */
180 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184
185 /*
186 * Software state for receive jobs.
187 */
188 struct sip_rxsoft {
189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap; /* our DMA map */
191 };
192
193 enum sip_attach_stage {
194 SIP_ATTACH_FIN = 0
195 , SIP_ATTACH_CREATE_RXMAP
196 , SIP_ATTACH_CREATE_TXMAP
197 , SIP_ATTACH_LOAD_MAP
198 , SIP_ATTACH_CREATE_MAP
199 , SIP_ATTACH_MAP_MEM
200 , SIP_ATTACH_ALLOC_MEM
201 , SIP_ATTACH_INTR
202 , SIP_ATTACH_MAP
203 };
204
205 /*
206 * Software state per device.
207 */
208 struct sip_softc {
209 struct device sc_dev; /* generic device information */
210 bus_space_tag_t sc_st; /* bus space tag */
211 bus_space_handle_t sc_sh; /* bus space handle */
212 bus_size_t sc_sz; /* bus space size */
213 bus_dma_tag_t sc_dmat; /* bus DMA tag */
214 pci_chipset_tag_t sc_pc;
215 bus_dma_segment_t sc_seg;
216 struct ethercom sc_ethercom; /* ethernet common data */
217
218 const struct sip_product *sc_model; /* which model are we? */
219 int sc_gigabit; /* 1: 83820, 0: other */
220 int sc_rev; /* chip revision */
221
222 void *sc_ih; /* interrupt cookie */
223
224 struct mii_data sc_mii; /* MII/media information */
225
226 callout_t sc_tick_ch; /* tick callout */
227
228 bus_dmamap_t sc_cddmamap; /* control data DMA map */
229 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
230
231 /*
232 * Software state for transmit and receive descriptors.
233 */
234 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236
237 /*
238 * Control data structures.
239 */
240 struct sip_control_data *sc_control_data;
241 #define sc_txdescs sc_control_data->scd_txdescs
242 #define sc_rxdescs sc_control_data->scd_rxdescs
243
244 #ifdef SIP_EVENT_COUNTERS
245 /*
246 * Event counters.
247 */
248 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
249 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
250 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
251 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
252 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
253 struct evcnt sc_ev_rxintr; /* Rx interrupts */
254 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
255 struct evcnt sc_ev_rxpause; /* PAUSE received */
256 /* DP83820 only */
257 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
258 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
259 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
260 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
261 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
262 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
263 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265
266 u_int32_t sc_txcfg; /* prototype TXCFG register */
267 u_int32_t sc_rxcfg; /* prototype RXCFG register */
268 u_int32_t sc_imr; /* prototype IMR register */
269 u_int32_t sc_rfcr; /* prototype RFCR register */
270
271 u_int32_t sc_cfg; /* prototype CFG register */
272
273 u_int32_t sc_gpior; /* prototype GPIOR register */
274
275 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
276 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
277
278 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
279
280 int sc_flowflags; /* 802.3x flow control flags */
281 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
282 int sc_paused; /* paused indication */
283
284 int sc_txfree; /* number of free Tx descriptors */
285 int sc_txnext; /* next ready Tx descriptor */
286 int sc_txwin; /* Tx descriptors since last intr */
287
288 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
289 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
290
291 /* values of interface state at last init */
292 struct {
293 /* if_capenable */
294 uint64_t if_capenable;
295 /* ec_capenable */
296 int ec_capenable;
297 /* VLAN_ATTACHED */
298 int is_vlan;
299 } sc_prev;
300
301 short sc_if_flags;
302
303 int sc_rxptr; /* next ready Rx descriptor/descsoft */
304 int sc_rxdiscard;
305 int sc_rxlen;
306 struct mbuf *sc_rxhead;
307 struct mbuf *sc_rxtail;
308 struct mbuf **sc_rxtailp;
309
310 int sc_ntxdesc;
311 int sc_ntxdesc_mask;
312
313 int sc_nrxdesc_mask;
314
315 const struct sip_parm {
316 const struct sip_regs {
317 int r_rxcfg;
318 int r_txcfg;
319 } p_regs;
320
321 const struct sip_bits {
322 uint32_t b_txcfg_mxdma_8;
323 uint32_t b_txcfg_mxdma_16;
324 uint32_t b_txcfg_mxdma_32;
325 uint32_t b_txcfg_mxdma_64;
326 uint32_t b_txcfg_mxdma_128;
327 uint32_t b_txcfg_mxdma_256;
328 uint32_t b_txcfg_mxdma_512;
329 uint32_t b_txcfg_flth_mask;
330 uint32_t b_txcfg_drth_mask;
331
332 uint32_t b_rxcfg_mxdma_8;
333 uint32_t b_rxcfg_mxdma_16;
334 uint32_t b_rxcfg_mxdma_32;
335 uint32_t b_rxcfg_mxdma_64;
336 uint32_t b_rxcfg_mxdma_128;
337 uint32_t b_rxcfg_mxdma_256;
338 uint32_t b_rxcfg_mxdma_512;
339
340 uint32_t b_isr_txrcmp;
341 uint32_t b_isr_rxrcmp;
342 uint32_t b_isr_dperr;
343 uint32_t b_isr_sserr;
344 uint32_t b_isr_rmabt;
345 uint32_t b_isr_rtabt;
346
347 uint32_t b_cmdsts_size_mask;
348 } p_bits;
349 int p_filtmem;
350 int p_rxbuf_len;
351 bus_size_t p_tx_dmamap_size;
352 int p_ntxsegs;
353 int p_ntxsegs_alloc;
354 int p_nrxdesc;
355 } *sc_parm;
356
357 void (*sc_rxintr)(struct sip_softc *);
358
359 #if NRND > 0
360 rndsource_element_t rnd_source; /* random source */
361 #endif
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 int x, n;
487
488 x = x0;
489 n = n0;
490
491 /* If it will wrap around, sync to the end of the ring. */
492 if (x + n > sc->sc_ntxdesc) {
493 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 (sc->sc_ntxdesc - x), ops);
496 n -= (sc->sc_ntxdesc - x);
497 x = 0;
498 }
499
500 /* Now sync whatever is left. */
501 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511
512 #if 0
513 #ifdef DP83820
514 u_int32_t sipd_bufptr; /* pointer to DMA segment */
515 u_int32_t sipd_cmdsts; /* command/status word */
516 #else
517 u_int32_t sipd_cmdsts; /* command/status word */
518 u_int32_t sipd_bufptr; /* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 struct sip_desc *sipd = &sc->sc_rxdescs[x];
539
540 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 sipd->sipd_extsts = 0;
545 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547
548 #define SIP_CHIP_VERS(sc, v, p, r) \
549 ((sc)->sc_model->sip_vendor == (v) && \
550 (sc)->sc_model->sip_product == (p) && \
551 (sc)->sc_rev == (r))
552
553 #define SIP_CHIP_MODEL(sc, v, p) \
554 ((sc)->sc_model->sip_vendor == (v) && \
555 (sc)->sc_model->sip_product == (p))
556
557 #define SIP_SIS900_REV(sc, rev) \
558 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559
560 #define SIP_TIMEOUT 1000
561
562 static int sip_ifflags_cb(struct ethercom *);
563 static void sipcom_start(struct ifnet *);
564 static void sipcom_watchdog(struct ifnet *);
565 static int sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int sipcom_init(struct ifnet *);
567 static void sipcom_stop(struct ifnet *, int);
568
569 static bool sipcom_reset(struct sip_softc *);
570 static void sipcom_rxdrain(struct sip_softc *);
571 static int sipcom_add_rxbuf(struct sip_softc *, int);
572 static void sipcom_read_eeprom(struct sip_softc *, int, int,
573 u_int16_t *);
574 static void sipcom_tick(void *);
575
576 static void sipcom_sis900_set_filter(struct sip_softc *);
577 static void sipcom_dp83815_set_filter(struct sip_softc *);
578
579 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
580 const struct pci_attach_args *, u_int8_t *);
581 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void sipcom_sis900_read_macaddr(struct sip_softc *,
583 const struct pci_attach_args *, u_int8_t *);
584 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
585 const struct pci_attach_args *, u_int8_t *);
586
587 static int sipcom_intr(void *);
588 static void sipcom_txintr(struct sip_softc *);
589 static void sip_rxintr(struct sip_softc *);
590 static void gsip_rxintr(struct sip_softc *);
591
592 static int sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void sipcom_dp83820_mii_statchg(device_t);
595
596 static int sipcom_sis900_mii_readreg(device_t, int, int);
597 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void sipcom_sis900_mii_statchg(device_t);
599
600 static int sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void sipcom_dp83815_mii_statchg(device_t);
603
604 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605
606 static int sipcom_match(device_t, struct cfdata *, void *);
607 static void sipcom_attach(device_t, device_t, void *);
608 static void sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int sipcom_detach(device_t, int);
610 static bool sipcom_resume(device_t PMF_FN_PROTO);
611 static bool sipcom_suspend(device_t PMF_FN_PROTO);
612
613 int gsip_copy_small = 0;
614 int sip_copy_small = 0;
615
616 CFATTACH_DECL3(gsip, sizeof(struct sip_softc),
617 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
618 DVF_DETACH_SHUTDOWN);
619 CFATTACH_DECL3(sip, sizeof(struct sip_softc),
620 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621 DVF_DETACH_SHUTDOWN);
622
623 /*
624 * Descriptions of the variants of the SiS900.
625 */
626 struct sip_variant {
627 int (*sipv_mii_readreg)(device_t, int, int);
628 void (*sipv_mii_writereg)(device_t, int, int, int);
629 void (*sipv_mii_statchg)(device_t);
630 void (*sipv_set_filter)(struct sip_softc *);
631 void (*sipv_read_macaddr)(struct sip_softc *,
632 const struct pci_attach_args *, u_int8_t *);
633 };
634
635 static u_int32_t sipcom_mii_bitbang_read(device_t);
636 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
637
638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
639 sipcom_mii_bitbang_read,
640 sipcom_mii_bitbang_write,
641 {
642 EROMAR_MDIO, /* MII_BIT_MDO */
643 EROMAR_MDIO, /* MII_BIT_MDI */
644 EROMAR_MDC, /* MII_BIT_MDC */
645 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
646 0, /* MII_BIT_DIR_PHY_HOST */
647 }
648 };
649
650 static const struct sip_variant sipcom_variant_dp83820 = {
651 sipcom_dp83820_mii_readreg,
652 sipcom_dp83820_mii_writereg,
653 sipcom_dp83820_mii_statchg,
654 sipcom_dp83815_set_filter,
655 sipcom_dp83820_read_macaddr,
656 };
657
658 static const struct sip_variant sipcom_variant_sis900 = {
659 sipcom_sis900_mii_readreg,
660 sipcom_sis900_mii_writereg,
661 sipcom_sis900_mii_statchg,
662 sipcom_sis900_set_filter,
663 sipcom_sis900_read_macaddr,
664 };
665
666 static const struct sip_variant sipcom_variant_dp83815 = {
667 sipcom_dp83815_mii_readreg,
668 sipcom_dp83815_mii_writereg,
669 sipcom_dp83815_mii_statchg,
670 sipcom_dp83815_set_filter,
671 sipcom_dp83815_read_macaddr,
672 };
673
674
675 /*
676 * Devices supported by this driver.
677 */
678 static const struct sip_product {
679 pci_vendor_id_t sip_vendor;
680 pci_product_id_t sip_product;
681 const char *sip_name;
682 const struct sip_variant *sip_variant;
683 int sip_gigabit;
684 } sipcom_products[] = {
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
686 "NatSemi DP83820 Gigabit Ethernet",
687 &sipcom_variant_dp83820, 1 },
688 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
689 "SiS 900 10/100 Ethernet",
690 &sipcom_variant_sis900, 0 },
691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
692 "SiS 7016 10/100 Ethernet",
693 &sipcom_variant_sis900, 0 },
694
695 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
696 "NatSemi DP83815 10/100 Ethernet",
697 &sipcom_variant_dp83815, 0 },
698
699 { 0, 0,
700 NULL,
701 NULL, 0 },
702 };
703
704 static const struct sip_product *
705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
706 {
707 const struct sip_product *sip;
708
709 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
710 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
711 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
712 sip->sip_gigabit == gigabit)
713 return sip;
714 }
715 return NULL;
716 }
717
718 /*
719 * I really hate stupid hardware vendors. There's a bit in the EEPROM
720 * which indicates if the card can do 64-bit data transfers. Unfortunately,
721 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
722 * which means we try to use 64-bit data transfers on those cards if we
723 * happen to be plugged into a 32-bit slot.
724 *
725 * What we do is use this table of cards known to be 64-bit cards. If
726 * you have a 64-bit card who's subsystem ID is not listed in this table,
727 * send the output of "pcictl dump ..." of the device to me so that your
728 * card will use the 64-bit data path when plugged into a 64-bit slot.
729 *
730 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
731 * June 30, 2002
732 */
733 static int
734 sipcom_check_64bit(const struct pci_attach_args *pa)
735 {
736 static const struct {
737 pci_vendor_id_t c64_vendor;
738 pci_product_id_t c64_product;
739 } card64[] = {
740 /* Asante GigaNIX */
741 { 0x128a, 0x0002 },
742
743 /* Accton EN1407-T, Planex GN-1000TE */
744 { 0x1113, 0x1407 },
745
746 /* Netgear GA-621 */
747 { 0x1385, 0x621a },
748
749 /* SMC EZ Card */
750 { 0x10b8, 0x9462 },
751
752 { 0, 0}
753 };
754 pcireg_t subsys;
755 int i;
756
757 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
758
759 for (i = 0; card64[i].c64_vendor != 0; i++) {
760 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
761 PCI_PRODUCT(subsys) == card64[i].c64_product)
762 return (1);
763 }
764
765 return (0);
766 }
767
768 static int
769 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
770 {
771 struct pci_attach_args *pa = aux;
772
773 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
774 return 1;
775
776 return 0;
777 }
778
779 static void
780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
781 {
782 u_int32_t reg;
783 int i;
784
785 /*
786 * Cause the chip to load configuration data from the EEPROM.
787 */
788 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
789 for (i = 0; i < 10000; i++) {
790 delay(10);
791 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
792 PTSCR_EELOAD_EN) == 0)
793 break;
794 }
795 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 PTSCR_EELOAD_EN) {
797 printf("%s: timeout loading configuration from EEPROM\n",
798 device_xname(&sc->sc_dev));
799 return;
800 }
801
802 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
803
804 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
805 if (reg & CFG_PCI64_DET) {
806 printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
807 /*
808 * Check to see if this card is 64-bit. If so, enable 64-bit
809 * data transfers.
810 *
811 * We can't use the DATA64_EN bit in the EEPROM, because
812 * vendors of 32-bit cards fail to clear that bit in many
813 * cases (yet the card still detects that it's in a 64-bit
814 * slot; go figure).
815 */
816 if (sipcom_check_64bit(pa)) {
817 sc->sc_cfg |= CFG_DATA64_EN;
818 printf(", using 64-bit data transfers");
819 }
820 printf("\n");
821 }
822
823 /*
824 * XXX Need some PCI flags indicating support for
825 * XXX 64-bit addressing.
826 */
827 #if 0
828 if (reg & CFG_M64ADDR)
829 sc->sc_cfg |= CFG_M64ADDR;
830 if (reg & CFG_T64ADDR)
831 sc->sc_cfg |= CFG_T64ADDR;
832 #endif
833
834 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
835 const char *sep = "";
836 printf("%s: using ", device_xname(&sc->sc_dev));
837 if (reg & CFG_EXT_125) {
838 sc->sc_cfg |= CFG_EXT_125;
839 printf("%s125MHz clock", sep);
840 sep = ", ";
841 }
842 if (reg & CFG_TBI_EN) {
843 sc->sc_cfg |= CFG_TBI_EN;
844 printf("%sten-bit interface", sep);
845 sep = ", ";
846 }
847 printf("\n");
848 }
849 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
850 (reg & CFG_MRM_DIS) != 0)
851 sc->sc_cfg |= CFG_MRM_DIS;
852 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
853 (reg & CFG_MWI_DIS) != 0)
854 sc->sc_cfg |= CFG_MWI_DIS;
855
856 /*
857 * Use the extended descriptor format on the DP83820. This
858 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
859 * checksumming.
860 */
861 sc->sc_cfg |= CFG_EXTSTS_EN;
862 }
863
864 static int
865 sipcom_detach(device_t self, int flags)
866 {
867 int s;
868
869 s = splnet();
870 sipcom_do_detach(self, SIP_ATTACH_FIN);
871 splx(s);
872
873 return 0;
874 }
875
876 static void
877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
878 {
879 int i;
880 struct sip_softc *sc = device_private(self);
881 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882
883 /*
884 * Free any resources we've allocated during attach.
885 * Do this in reverse order and fall through.
886 */
887 switch (stage) {
888 case SIP_ATTACH_FIN:
889 sipcom_stop(ifp, 1);
890 pmf_device_deregister(self);
891 #ifdef SIP_EVENT_COUNTERS
892 /*
893 * Attach event counters.
894 */
895 evcnt_detach(&sc->sc_ev_txforceintr);
896 evcnt_detach(&sc->sc_ev_txdstall);
897 evcnt_detach(&sc->sc_ev_txsstall);
898 evcnt_detach(&sc->sc_ev_hiberr);
899 evcnt_detach(&sc->sc_ev_rxintr);
900 evcnt_detach(&sc->sc_ev_txiintr);
901 evcnt_detach(&sc->sc_ev_txdintr);
902 if (!sc->sc_gigabit) {
903 evcnt_detach(&sc->sc_ev_rxpause);
904 } else {
905 evcnt_detach(&sc->sc_ev_txudpsum);
906 evcnt_detach(&sc->sc_ev_txtcpsum);
907 evcnt_detach(&sc->sc_ev_txipsum);
908 evcnt_detach(&sc->sc_ev_rxudpsum);
909 evcnt_detach(&sc->sc_ev_rxtcpsum);
910 evcnt_detach(&sc->sc_ev_rxipsum);
911 evcnt_detach(&sc->sc_ev_txpause);
912 evcnt_detach(&sc->sc_ev_rxpause);
913 }
914 #endif /* SIP_EVENT_COUNTERS */
915
916 #if NRND > 0
917 rnd_detach_source(&sc->rnd_source);
918 #endif
919
920 ether_ifdetach(ifp);
921 if_detach(ifp);
922 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
923
924 /*FALLTHROUGH*/
925 case SIP_ATTACH_CREATE_RXMAP:
926 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
927 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
928 bus_dmamap_destroy(sc->sc_dmat,
929 sc->sc_rxsoft[i].rxs_dmamap);
930 }
931 /*FALLTHROUGH*/
932 case SIP_ATTACH_CREATE_TXMAP:
933 for (i = 0; i < SIP_TXQUEUELEN; i++) {
934 if (sc->sc_txsoft[i].txs_dmamap != NULL)
935 bus_dmamap_destroy(sc->sc_dmat,
936 sc->sc_txsoft[i].txs_dmamap);
937 }
938 /*FALLTHROUGH*/
939 case SIP_ATTACH_LOAD_MAP:
940 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_CREATE_MAP:
943 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
944 /*FALLTHROUGH*/
945 case SIP_ATTACH_MAP_MEM:
946 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
947 sizeof(struct sip_control_data));
948 /*FALLTHROUGH*/
949 case SIP_ATTACH_ALLOC_MEM:
950 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
951 /* FALLTHROUGH*/
952 case SIP_ATTACH_INTR:
953 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
954 /* FALLTHROUGH*/
955 case SIP_ATTACH_MAP:
956 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
957 break;
958 default:
959 break;
960 }
961 return;
962 }
963
964 static bool
965 sipcom_resume(device_t self PMF_FN_ARGS)
966 {
967 struct sip_softc *sc = device_private(self);
968
969 return sipcom_reset(sc);
970 }
971
972 static bool
973 sipcom_suspend(device_t self PMF_FN_ARGS)
974 {
975 struct sip_softc *sc = device_private(self);
976
977 sipcom_rxdrain(sc);
978 return true;
979 }
980
981 static void
982 sipcom_attach(device_t parent, device_t self, void *aux)
983 {
984 struct sip_softc *sc = device_private(self);
985 struct pci_attach_args *pa = aux;
986 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 pci_chipset_tag_t pc = pa->pa_pc;
988 pci_intr_handle_t ih;
989 const char *intrstr = NULL;
990 bus_space_tag_t iot, memt;
991 bus_space_handle_t ioh, memh;
992 bus_size_t iosz, memsz;
993 int ioh_valid, memh_valid;
994 int i, rseg, error;
995 const struct sip_product *sip;
996 u_int8_t enaddr[ETHER_ADDR_LEN];
997 pcireg_t csr;
998 pcireg_t memtype;
999 bus_size_t tx_dmamap_size;
1000 int ntxsegs_alloc;
1001 cfdata_t cf = device_cfdata(self);
1002
1003 callout_init(&sc->sc_tick_ch, 0);
1004
1005 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1006 if (sip == NULL) {
1007 printf("\n");
1008 panic("%s: impossible", __func__);
1009 }
1010 sc->sc_gigabit = sip->sip_gigabit;
1011
1012 sc->sc_pc = pc;
1013
1014 if (sc->sc_gigabit) {
1015 sc->sc_rxintr = gsip_rxintr;
1016 sc->sc_parm = &gsip_parm;
1017 } else {
1018 sc->sc_rxintr = sip_rxintr;
1019 sc->sc_parm = &sip_parm;
1020 }
1021 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1022 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1023 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1024 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1025 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1026
1027 sc->sc_rev = PCI_REVISION(pa->pa_class);
1028
1029 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1030
1031 sc->sc_model = sip;
1032
1033 /*
1034 * XXX Work-around broken PXE firmware on some boards.
1035 *
1036 * The DP83815 shares an address decoder with the MEM BAR
1037 * and the ROM BAR. Make sure the ROM BAR is disabled,
1038 * so that memory mapped access works.
1039 */
1040 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1041 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1042 ~PCI_MAPREG_ROM_ENABLE);
1043
1044 /*
1045 * Map the device.
1046 */
1047 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1048 PCI_MAPREG_TYPE_IO, 0,
1049 &iot, &ioh, NULL, &iosz) == 0);
1050 if (sc->sc_gigabit) {
1051 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1052 switch (memtype) {
1053 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1054 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1055 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1056 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1057 break;
1058 default:
1059 memh_valid = 0;
1060 }
1061 } else {
1062 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1063 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1064 &memt, &memh, NULL, &memsz) == 0);
1065 }
1066
1067 if (memh_valid) {
1068 sc->sc_st = memt;
1069 sc->sc_sh = memh;
1070 sc->sc_sz = memsz;
1071 } else if (ioh_valid) {
1072 sc->sc_st = iot;
1073 sc->sc_sh = ioh;
1074 sc->sc_sz = iosz;
1075 } else {
1076 printf("%s: unable to map device registers\n",
1077 device_xname(&sc->sc_dev));
1078 return;
1079 }
1080
1081 sc->sc_dmat = pa->pa_dmat;
1082
1083 /*
1084 * Make sure bus mastering is enabled. Also make sure
1085 * Write/Invalidate is enabled if we're allowed to use it.
1086 */
1087 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1088 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1089 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1090 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1091 csr | PCI_COMMAND_MASTER_ENABLE);
1092
1093 /* power up chip */
1094 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1095 if (error != 0 && error != EOPNOTSUPP) {
1096 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n", error);
1097 return;
1098 }
1099
1100 /*
1101 * Map and establish our interrupt.
1102 */
1103 if (pci_intr_map(pa, &ih)) {
1104 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1105 return;
1106 }
1107 intrstr = pci_intr_string(pc, ih);
1108 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1109 if (sc->sc_ih == NULL) {
1110 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1111 if (intrstr != NULL)
1112 printf(" at %s", intrstr);
1113 printf("\n");
1114 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1115 }
1116 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1117
1118 SIMPLEQ_INIT(&sc->sc_txfreeq);
1119 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1120
1121 /*
1122 * Allocate the control data structures, and create and load the
1123 * DMA map for it.
1124 */
1125 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1126 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1127 &rseg, 0)) != 0) {
1128 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1129 error);
1130 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1131 }
1132
1133 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1134 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1135 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1136 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1137 error);
1138 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1139 }
1140
1141 if ((error = bus_dmamap_create(sc->sc_dmat,
1142 sizeof(struct sip_control_data), 1,
1143 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1144 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1145 "error = %d\n", error);
1146 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1147 }
1148
1149 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1150 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1151 0)) != 0) {
1152 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1153 error);
1154 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1155 }
1156
1157 /*
1158 * Create the transmit buffer DMA maps.
1159 */
1160 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1161 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1162 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1163 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1164 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1165 "error = %d\n", i, error);
1166 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1167 }
1168 }
1169
1170 /*
1171 * Create the receive buffer DMA maps.
1172 */
1173 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1174 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1175 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1176 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1177 "error = %d\n", i, error);
1178 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1179 }
1180 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1181 }
1182
1183 /*
1184 * Reset the chip to a known state.
1185 */
1186 sipcom_reset(sc);
1187
1188 /*
1189 * Read the Ethernet address from the EEPROM. This might
1190 * also fetch other stuff from the EEPROM and stash it
1191 * in the softc.
1192 */
1193 sc->sc_cfg = 0;
1194 if (!sc->sc_gigabit) {
1195 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 SIP_SIS900_REV(sc,SIS_REV_900B))
1197 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1198
1199 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1200 SIP_SIS900_REV(sc,SIS_REV_960) ||
1201 SIP_SIS900_REV(sc,SIS_REV_900B))
1202 sc->sc_cfg |=
1203 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1204 CFG_EDBMASTEN);
1205 }
1206
1207 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1208
1209 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1210 ether_sprintf(enaddr));
1211
1212 /*
1213 * Initialize the configuration register: aggressive PCI
1214 * bus request algorithm, default backoff, default OW timer,
1215 * default parity error detection.
1216 *
1217 * NOTE: "Big endian mode" is useless on the SiS900 and
1218 * friends -- it affects packet data, not descriptors.
1219 */
1220 if (sc->sc_gigabit)
1221 sipcom_dp83820_attach(sc, pa);
1222
1223 /*
1224 * Initialize our media structures and probe the MII.
1225 */
1226 sc->sc_mii.mii_ifp = ifp;
1227 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1228 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1229 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1230 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1231 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1232 sipcom_mediastatus);
1233
1234 /*
1235 * XXX We cannot handle flow control on the DP83815.
1236 */
1237 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1238 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1239 MII_OFFSET_ANY, 0);
1240 else
1241 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1242 MII_OFFSET_ANY, MIIF_DOPAUSE);
1243 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1244 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1246 } else
1247 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1248
1249 ifp = &sc->sc_ethercom.ec_if;
1250 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1251 ifp->if_softc = sc;
1252 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253 sc->sc_if_flags = ifp->if_flags;
1254 ifp->if_ioctl = sipcom_ioctl;
1255 ifp->if_start = sipcom_start;
1256 ifp->if_watchdog = sipcom_watchdog;
1257 ifp->if_init = sipcom_init;
1258 ifp->if_stop = sipcom_stop;
1259 IFQ_SET_READY(&ifp->if_snd);
1260
1261 /*
1262 * We can support 802.1Q VLAN-sized frames.
1263 */
1264 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1265
1266 if (sc->sc_gigabit) {
1267 /*
1268 * And the DP83820 can do VLAN tagging in hardware, and
1269 * support the jumbo Ethernet MTU.
1270 */
1271 sc->sc_ethercom.ec_capabilities |=
1272 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1273
1274 /*
1275 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1276 * in hardware.
1277 */
1278 ifp->if_capabilities |=
1279 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1280 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1281 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1282 }
1283
1284 /*
1285 * Attach the interface.
1286 */
1287 if_attach(ifp);
1288 ether_ifattach(ifp, enaddr);
1289 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 sc->sc_prev.if_capenable = ifp->if_capenable;
1293 #if NRND > 0
1294 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1295 RND_TYPE_NET, 0);
1296 #endif
1297
1298 /*
1299 * The number of bytes that must be available in
1300 * the Tx FIFO before the bus master can DMA more
1301 * data into the FIFO.
1302 */
1303 sc->sc_tx_fill_thresh = 64 / 32;
1304
1305 /*
1306 * Start at a drain threshold of 512 bytes. We will
1307 * increase it if a DMA underrun occurs.
1308 *
1309 * XXX The minimum value of this variable should be
1310 * tuned. We may be able to improve performance
1311 * by starting with a lower value. That, however,
1312 * may trash the first few outgoing packets if the
1313 * PCI bus is saturated.
1314 */
1315 if (sc->sc_gigabit)
1316 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1317 else
1318 sc->sc_tx_drain_thresh = 1504 / 32;
1319
1320 /*
1321 * Initialize the Rx FIFO drain threshold.
1322 *
1323 * This is in units of 8 bytes.
1324 *
1325 * We should never set this value lower than 2; 14 bytes are
1326 * required to filter the packet.
1327 */
1328 sc->sc_rx_drain_thresh = 128 / 8;
1329
1330 #ifdef SIP_EVENT_COUNTERS
1331 /*
1332 * Attach event counters.
1333 */
1334 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1335 NULL, device_xname(&sc->sc_dev), "txsstall");
1336 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1337 NULL, device_xname(&sc->sc_dev), "txdstall");
1338 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(&sc->sc_dev), "txforceintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(&sc->sc_dev), "txdintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(&sc->sc_dev), "txiintr");
1344 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1345 NULL, device_xname(&sc->sc_dev), "rxintr");
1346 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1347 NULL, device_xname(&sc->sc_dev), "hiberr");
1348 if (!sc->sc_gigabit) {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1350 NULL, device_xname(&sc->sc_dev), "rxpause");
1351 } else {
1352 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1353 NULL, device_xname(&sc->sc_dev), "rxpause");
1354 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1355 NULL, device_xname(&sc->sc_dev), "txpause");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(&sc->sc_dev), "rxipsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(&sc->sc_dev), "rxudpsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(&sc->sc_dev), "txipsum");
1364 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1365 NULL, device_xname(&sc->sc_dev), "txtcpsum");
1366 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1367 NULL, device_xname(&sc->sc_dev), "txudpsum");
1368 }
1369 #endif /* SIP_EVENT_COUNTERS */
1370
1371 if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1372 aprint_error_dev(self, "couldn't establish power handler\n");
1373 else
1374 pmf_class_network_register(self, ifp);
1375 }
1376
1377 static inline void
1378 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1379 uint64_t capenable)
1380 {
1381 struct m_tag *mtag;
1382 u_int32_t extsts;
1383 #ifdef DEBUG
1384 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1385 #endif
1386 /*
1387 * If VLANs are enabled and the packet has a VLAN tag, set
1388 * up the descriptor to encapsulate the packet for us.
1389 *
1390 * This apparently has to be on the last descriptor of
1391 * the packet.
1392 */
1393
1394 /*
1395 * Byte swapping is tricky. We need to provide the tag
1396 * in a network byte order. On a big-endian machine,
1397 * the byteorder is correct, but we need to swap it
1398 * anyway, because this will be undone by the outside
1399 * htole32(). That's why there must be an
1400 * unconditional swap instead of htons() inside.
1401 */
1402 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1403 sc->sc_txdescs[lasttx].sipd_extsts |=
1404 htole32(EXTSTS_VPKT |
1405 (bswap16(VLAN_TAG_VALUE(mtag)) &
1406 EXTSTS_VTCI));
1407 }
1408
1409 /*
1410 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1411 * checksumming, set up the descriptor to do this work
1412 * for us.
1413 *
1414 * This apparently has to be on the first descriptor of
1415 * the packet.
1416 *
1417 * Byte-swap constants so the compiler can optimize.
1418 */
1419 extsts = 0;
1420 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1421 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1422 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1423 extsts |= htole32(EXTSTS_IPPKT);
1424 }
1425 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1426 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1427 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1428 extsts |= htole32(EXTSTS_TCPPKT);
1429 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1430 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1431 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1432 extsts |= htole32(EXTSTS_UDPPKT);
1433 }
1434 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1435 }
1436
1437 /*
1438 * sip_start: [ifnet interface function]
1439 *
1440 * Start packet transmission on the interface.
1441 */
1442 static void
1443 sipcom_start(struct ifnet *ifp)
1444 {
1445 struct sip_softc *sc = ifp->if_softc;
1446 struct mbuf *m0;
1447 struct mbuf *m;
1448 struct sip_txsoft *txs;
1449 bus_dmamap_t dmamap;
1450 int error, nexttx, lasttx, seg;
1451 int ofree = sc->sc_txfree;
1452 #if 0
1453 int firsttx = sc->sc_txnext;
1454 #endif
1455
1456 /*
1457 * If we've been told to pause, don't transmit any more packets.
1458 */
1459 if (!sc->sc_gigabit && sc->sc_paused)
1460 ifp->if_flags |= IFF_OACTIVE;
1461
1462 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1463 return;
1464
1465 /*
1466 * Loop through the send queue, setting up transmit descriptors
1467 * until we drain the queue, or use up all available transmit
1468 * descriptors.
1469 */
1470 for (;;) {
1471 /* Get a work queue entry. */
1472 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1473 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1474 break;
1475 }
1476
1477 /*
1478 * Grab a packet off the queue.
1479 */
1480 IFQ_POLL(&ifp->if_snd, m0);
1481 if (m0 == NULL)
1482 break;
1483 m = NULL;
1484
1485 dmamap = txs->txs_dmamap;
1486
1487 /*
1488 * Load the DMA map. If this fails, the packet either
1489 * didn't fit in the alloted number of segments, or we
1490 * were short on resources.
1491 */
1492 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1493 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1494 /* In the non-gigabit case, we'll copy and try again. */
1495 if (error != 0 && !sc->sc_gigabit) {
1496 MGETHDR(m, M_DONTWAIT, MT_DATA);
1497 if (m == NULL) {
1498 printf("%s: unable to allocate Tx mbuf\n",
1499 device_xname(&sc->sc_dev));
1500 break;
1501 }
1502 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1503 if (m0->m_pkthdr.len > MHLEN) {
1504 MCLGET(m, M_DONTWAIT);
1505 if ((m->m_flags & M_EXT) == 0) {
1506 printf("%s: unable to allocate Tx "
1507 "cluster\n", device_xname(&sc->sc_dev));
1508 m_freem(m);
1509 break;
1510 }
1511 }
1512 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1513 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1514 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1515 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1516 if (error) {
1517 printf("%s: unable to load Tx buffer, "
1518 "error = %d\n", device_xname(&sc->sc_dev), error);
1519 break;
1520 }
1521 } else if (error == EFBIG) {
1522 /*
1523 * For the too-many-segments case, we simply
1524 * report an error and drop the packet,
1525 * since we can't sanely copy a jumbo packet
1526 * to a single buffer.
1527 */
1528 printf("%s: Tx packet consumes too many "
1529 "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1530 IFQ_DEQUEUE(&ifp->if_snd, m0);
1531 m_freem(m0);
1532 continue;
1533 } else if (error != 0) {
1534 /*
1535 * Short on resources, just stop for now.
1536 */
1537 break;
1538 }
1539
1540 /*
1541 * Ensure we have enough descriptors free to describe
1542 * the packet. Note, we always reserve one descriptor
1543 * at the end of the ring as a termination point, to
1544 * prevent wrap-around.
1545 */
1546 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1547 /*
1548 * Not enough free descriptors to transmit this
1549 * packet. We haven't committed anything yet,
1550 * so just unload the DMA map, put the packet
1551 * back on the queue, and punt. Notify the upper
1552 * layer that there are not more slots left.
1553 *
1554 * XXX We could allocate an mbuf and copy, but
1555 * XXX is it worth it?
1556 */
1557 ifp->if_flags |= IFF_OACTIVE;
1558 bus_dmamap_unload(sc->sc_dmat, dmamap);
1559 if (m != NULL)
1560 m_freem(m);
1561 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1562 break;
1563 }
1564
1565 IFQ_DEQUEUE(&ifp->if_snd, m0);
1566 if (m != NULL) {
1567 m_freem(m0);
1568 m0 = m;
1569 }
1570
1571 /*
1572 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1573 */
1574
1575 /* Sync the DMA map. */
1576 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1577 BUS_DMASYNC_PREWRITE);
1578
1579 /*
1580 * Initialize the transmit descriptors.
1581 */
1582 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1583 seg < dmamap->dm_nsegs;
1584 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1585 /*
1586 * If this is the first descriptor we're
1587 * enqueueing, don't set the OWN bit just
1588 * yet. That could cause a race condition.
1589 * We'll do it below.
1590 */
1591 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1592 htole32(dmamap->dm_segs[seg].ds_addr);
1593 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1594 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1595 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1596 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1597 lasttx = nexttx;
1598 }
1599
1600 /* Clear the MORE bit on the last segment. */
1601 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1602 htole32(~CMDSTS_MORE);
1603
1604 /*
1605 * If we're in the interrupt delay window, delay the
1606 * interrupt.
1607 */
1608 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1609 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1610 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1611 htole32(CMDSTS_INTR);
1612 sc->sc_txwin = 0;
1613 }
1614
1615 if (sc->sc_gigabit)
1616 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1617
1618 /* Sync the descriptors we're using. */
1619 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1620 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1621
1622 /*
1623 * The entire packet is set up. Give the first descrptor
1624 * to the chip now.
1625 */
1626 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1627 htole32(CMDSTS_OWN);
1628 sip_cdtxsync(sc, sc->sc_txnext, 1,
1629 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630
1631 /*
1632 * Store a pointer to the packet so we can free it later,
1633 * and remember what txdirty will be once the packet is
1634 * done.
1635 */
1636 txs->txs_mbuf = m0;
1637 txs->txs_firstdesc = sc->sc_txnext;
1638 txs->txs_lastdesc = lasttx;
1639
1640 /* Advance the tx pointer. */
1641 sc->sc_txfree -= dmamap->dm_nsegs;
1642 sc->sc_txnext = nexttx;
1643
1644 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1645 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1646
1647 #if NBPFILTER > 0
1648 /*
1649 * Pass the packet to any BPF listeners.
1650 */
1651 if (ifp->if_bpf)
1652 bpf_mtap(ifp->if_bpf, m0);
1653 #endif /* NBPFILTER > 0 */
1654 }
1655
1656 if (txs == NULL || sc->sc_txfree == 0) {
1657 /* No more slots left; notify upper layer. */
1658 ifp->if_flags |= IFF_OACTIVE;
1659 }
1660
1661 if (sc->sc_txfree != ofree) {
1662 /*
1663 * Start the transmit process. Note, the manual says
1664 * that if there are no pending transmissions in the
1665 * chip's internal queue (indicated by TXE being clear),
1666 * then the driver software must set the TXDP to the
1667 * first descriptor to be transmitted. However, if we
1668 * do this, it causes serious performance degredation on
1669 * the DP83820 under load, not setting TXDP doesn't seem
1670 * to adversely affect the SiS 900 or DP83815.
1671 *
1672 * Well, I guess it wouldn't be the first time a manual
1673 * has lied -- and they could be speaking of the NULL-
1674 * terminated descriptor list case, rather than OWN-
1675 * terminated rings.
1676 */
1677 #if 0
1678 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1679 CR_TXE) == 0) {
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1681 SIP_CDTXADDR(sc, firsttx));
1682 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1683 }
1684 #else
1685 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1686 #endif
1687
1688 /* Set a watchdog timer in case the chip flakes out. */
1689 /* Gigabit autonegotiation takes 5 seconds. */
1690 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1691 }
1692 }
1693
1694 /*
1695 * sip_watchdog: [ifnet interface function]
1696 *
1697 * Watchdog timer handler.
1698 */
1699 static void
1700 sipcom_watchdog(struct ifnet *ifp)
1701 {
1702 struct sip_softc *sc = ifp->if_softc;
1703
1704 /*
1705 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1706 * If we get a timeout, try and sweep up transmit descriptors.
1707 * If we manage to sweep them all up, ignore the lack of
1708 * interrupt.
1709 */
1710 sipcom_txintr(sc);
1711
1712 if (sc->sc_txfree != sc->sc_ntxdesc) {
1713 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1714 ifp->if_oerrors++;
1715
1716 /* Reset the interface. */
1717 (void) sipcom_init(ifp);
1718 } else if (ifp->if_flags & IFF_DEBUG)
1719 printf("%s: recovered from device timeout\n",
1720 device_xname(&sc->sc_dev));
1721
1722 /* Try to get more packets going. */
1723 sipcom_start(ifp);
1724 }
1725
1726 /* If the interface is up and running, only modify the receive
1727 * filter when setting promiscuous or debug mode. Otherwise fall
1728 * through to ether_ioctl, which will reset the chip.
1729 */
1730 static int
1731 sip_ifflags_cb(struct ethercom *ec)
1732 {
1733 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1734 == (sc)->sc_ethercom.ec_capenable) \
1735 && ((sc)->sc_prev.is_vlan == \
1736 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1737 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1738 struct ifnet *ifp = &ec->ec_if;
1739 struct sip_softc *sc = ifp->if_softc;
1740 int change = ifp->if_flags ^ sc->sc_if_flags;
1741
1742 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1743 !COMPARE_IC(sc, ifp))
1744 return ENETRESET;
1745 /* Set up the receive filter. */
1746 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1747 return 0;
1748 }
1749
1750 /*
1751 * sip_ioctl: [ifnet interface function]
1752 *
1753 * Handle control requests from the operator.
1754 */
1755 static int
1756 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1757 {
1758 struct sip_softc *sc = ifp->if_softc;
1759 struct ifreq *ifr = (struct ifreq *)data;
1760 int s, error;
1761
1762 s = splnet();
1763
1764 switch (cmd) {
1765 case SIOCSIFMEDIA:
1766 /* Flow control requires full-duplex mode. */
1767 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1768 (ifr->ifr_media & IFM_FDX) == 0)
1769 ifr->ifr_media &= ~IFM_ETH_FMASK;
1770
1771 /* XXX */
1772 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1773 ifr->ifr_media &= ~IFM_ETH_FMASK;
1774 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1775 if (sc->sc_gigabit &&
1776 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1777 /* We can do both TXPAUSE and RXPAUSE. */
1778 ifr->ifr_media |=
1779 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 } else if (ifr->ifr_media & IFM_FLOW) {
1781 /*
1782 * Both TXPAUSE and RXPAUSE must be set.
1783 * (SiS900 and DP83815 don't have PAUSE_ASYM
1784 * feature.)
1785 *
1786 * XXX Can SiS900 and DP83815 send PAUSE?
1787 */
1788 ifr->ifr_media |=
1789 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1790 }
1791 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1792 }
1793 /*FALLTHROUGH*/
1794 default:
1795 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1796 break;
1797
1798 error = 0;
1799
1800 if (cmd == SIOCSIFCAP)
1801 error = (*ifp->if_init)(ifp);
1802 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1803 ;
1804 else if (ifp->if_flags & IFF_RUNNING) {
1805 /*
1806 * Multicast list has changed; set the hardware filter
1807 * accordingly.
1808 */
1809 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 }
1811 break;
1812 }
1813
1814 /* Try to get more packets going. */
1815 sipcom_start(ifp);
1816
1817 sc->sc_if_flags = ifp->if_flags;
1818 splx(s);
1819 return (error);
1820 }
1821
1822 /*
1823 * sip_intr:
1824 *
1825 * Interrupt service routine.
1826 */
1827 static int
1828 sipcom_intr(void *arg)
1829 {
1830 struct sip_softc *sc = arg;
1831 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1832 u_int32_t isr;
1833 int handled = 0;
1834
1835 if (!device_is_active(&sc->sc_dev))
1836 return 0;
1837
1838 /* Disable interrupts. */
1839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1840
1841 for (;;) {
1842 /* Reading clears interrupt. */
1843 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1844 if ((isr & sc->sc_imr) == 0)
1845 break;
1846
1847 #if NRND > 0
1848 if (RND_ENABLED(&sc->rnd_source))
1849 rnd_add_uint32(&sc->rnd_source, isr);
1850 #endif
1851
1852 handled = 1;
1853
1854 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1855 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1856
1857 /* Grab any new packets. */
1858 (*sc->sc_rxintr)(sc);
1859
1860 if (isr & ISR_RXORN) {
1861 printf("%s: receive FIFO overrun\n",
1862 device_xname(&sc->sc_dev));
1863
1864 /* XXX adjust rx_drain_thresh? */
1865 }
1866
1867 if (isr & ISR_RXIDLE) {
1868 printf("%s: receive ring overrun\n",
1869 device_xname(&sc->sc_dev));
1870
1871 /* Get the receive process going again. */
1872 bus_space_write_4(sc->sc_st, sc->sc_sh,
1873 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1874 bus_space_write_4(sc->sc_st, sc->sc_sh,
1875 SIP_CR, CR_RXE);
1876 }
1877 }
1878
1879 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1880 #ifdef SIP_EVENT_COUNTERS
1881 if (isr & ISR_TXDESC)
1882 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1883 else if (isr & ISR_TXIDLE)
1884 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1885 #endif
1886
1887 /* Sweep up transmit descriptors. */
1888 sipcom_txintr(sc);
1889
1890 if (isr & ISR_TXURN) {
1891 u_int32_t thresh;
1892 int txfifo_size = (sc->sc_gigabit)
1893 ? DP83820_SIP_TXFIFO_SIZE
1894 : OTHER_SIP_TXFIFO_SIZE;
1895
1896 printf("%s: transmit FIFO underrun",
1897 device_xname(&sc->sc_dev));
1898 thresh = sc->sc_tx_drain_thresh + 1;
1899 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1900 && (thresh * 32) <= (txfifo_size -
1901 (sc->sc_tx_fill_thresh * 32))) {
1902 printf("; increasing Tx drain "
1903 "threshold to %u bytes\n",
1904 thresh * 32);
1905 sc->sc_tx_drain_thresh = thresh;
1906 (void) sipcom_init(ifp);
1907 } else {
1908 (void) sipcom_init(ifp);
1909 printf("\n");
1910 }
1911 }
1912 }
1913
1914 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1915 if (isr & ISR_PAUSE_ST) {
1916 sc->sc_paused = 1;
1917 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1918 ifp->if_flags |= IFF_OACTIVE;
1919 }
1920 if (isr & ISR_PAUSE_END) {
1921 sc->sc_paused = 0;
1922 ifp->if_flags &= ~IFF_OACTIVE;
1923 }
1924 }
1925
1926 if (isr & ISR_HIBERR) {
1927 int want_init = 0;
1928
1929 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1930
1931 #define PRINTERR(bit, str) \
1932 do { \
1933 if ((isr & (bit)) != 0) { \
1934 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1935 printf("%s: %s\n", \
1936 device_xname(&sc->sc_dev), str); \
1937 want_init = 1; \
1938 } \
1939 } while (/*CONSTCOND*/0)
1940
1941 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1942 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1943 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1944 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1945 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1946 /*
1947 * Ignore:
1948 * Tx reset complete
1949 * Rx reset complete
1950 */
1951 if (want_init)
1952 (void) sipcom_init(ifp);
1953 #undef PRINTERR
1954 }
1955 }
1956
1957 /* Re-enable interrupts. */
1958 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1959
1960 /* Try to get more packets going. */
1961 sipcom_start(ifp);
1962
1963 return (handled);
1964 }
1965
1966 /*
1967 * sip_txintr:
1968 *
1969 * Helper; handle transmit interrupts.
1970 */
1971 static void
1972 sipcom_txintr(struct sip_softc *sc)
1973 {
1974 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1975 struct sip_txsoft *txs;
1976 u_int32_t cmdsts;
1977
1978 if (sc->sc_paused == 0)
1979 ifp->if_flags &= ~IFF_OACTIVE;
1980
1981 /*
1982 * Go through our Tx list and free mbufs for those
1983 * frames which have been transmitted.
1984 */
1985 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1986 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1987 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1988
1989 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1990 if (cmdsts & CMDSTS_OWN)
1991 break;
1992
1993 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1994
1995 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1996
1997 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1998 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1999 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2000 m_freem(txs->txs_mbuf);
2001 txs->txs_mbuf = NULL;
2002
2003 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2004
2005 /*
2006 * Check for errors and collisions.
2007 */
2008 if (cmdsts &
2009 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2010 ifp->if_oerrors++;
2011 if (cmdsts & CMDSTS_Tx_EC)
2012 ifp->if_collisions += 16;
2013 if (ifp->if_flags & IFF_DEBUG) {
2014 if (cmdsts & CMDSTS_Tx_ED)
2015 printf("%s: excessive deferral\n",
2016 device_xname(&sc->sc_dev));
2017 if (cmdsts & CMDSTS_Tx_EC)
2018 printf("%s: excessive collisions\n",
2019 device_xname(&sc->sc_dev));
2020 }
2021 } else {
2022 /* Packet was transmitted successfully. */
2023 ifp->if_opackets++;
2024 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2025 }
2026 }
2027
2028 /*
2029 * If there are no more pending transmissions, cancel the watchdog
2030 * timer.
2031 */
2032 if (txs == NULL) {
2033 ifp->if_timer = 0;
2034 sc->sc_txwin = 0;
2035 }
2036 }
2037
2038 /*
2039 * gsip_rxintr:
2040 *
2041 * Helper; handle receive interrupts on gigabit parts.
2042 */
2043 static void
2044 gsip_rxintr(struct sip_softc *sc)
2045 {
2046 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2047 struct sip_rxsoft *rxs;
2048 struct mbuf *m;
2049 u_int32_t cmdsts, extsts;
2050 int i, len;
2051
2052 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2053 rxs = &sc->sc_rxsoft[i];
2054
2055 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2056
2057 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2058 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2059 len = CMDSTS_SIZE(sc, cmdsts);
2060
2061 /*
2062 * NOTE: OWN is set if owned by _consumer_. We're the
2063 * consumer of the receive ring, so if the bit is clear,
2064 * we have processed all of the packets.
2065 */
2066 if ((cmdsts & CMDSTS_OWN) == 0) {
2067 /*
2068 * We have processed all of the receive buffers.
2069 */
2070 break;
2071 }
2072
2073 if (__predict_false(sc->sc_rxdiscard)) {
2074 sip_init_rxdesc(sc, i);
2075 if ((cmdsts & CMDSTS_MORE) == 0) {
2076 /* Reset our state. */
2077 sc->sc_rxdiscard = 0;
2078 }
2079 continue;
2080 }
2081
2082 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2083 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2084
2085 m = rxs->rxs_mbuf;
2086
2087 /*
2088 * Add a new receive buffer to the ring.
2089 */
2090 if (sipcom_add_rxbuf(sc, i) != 0) {
2091 /*
2092 * Failed, throw away what we've done so
2093 * far, and discard the rest of the packet.
2094 */
2095 ifp->if_ierrors++;
2096 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2097 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2098 sip_init_rxdesc(sc, i);
2099 if (cmdsts & CMDSTS_MORE)
2100 sc->sc_rxdiscard = 1;
2101 if (sc->sc_rxhead != NULL)
2102 m_freem(sc->sc_rxhead);
2103 sip_rxchain_reset(sc);
2104 continue;
2105 }
2106
2107 sip_rxchain_link(sc, m);
2108
2109 m->m_len = len;
2110
2111 /*
2112 * If this is not the end of the packet, keep
2113 * looking.
2114 */
2115 if (cmdsts & CMDSTS_MORE) {
2116 sc->sc_rxlen += len;
2117 continue;
2118 }
2119
2120 /*
2121 * Okay, we have the entire packet now. The chip includes
2122 * the FCS, so we need to trim it.
2123 */
2124 m->m_len -= ETHER_CRC_LEN;
2125
2126 *sc->sc_rxtailp = NULL;
2127 len = m->m_len + sc->sc_rxlen;
2128 m = sc->sc_rxhead;
2129
2130 sip_rxchain_reset(sc);
2131
2132 /*
2133 * If an error occurred, update stats and drop the packet.
2134 */
2135 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2136 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2137 ifp->if_ierrors++;
2138 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2139 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2140 /* Receive overrun handled elsewhere. */
2141 printf("%s: receive descriptor error\n",
2142 device_xname(&sc->sc_dev));
2143 }
2144 #define PRINTERR(bit, str) \
2145 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2146 (cmdsts & (bit)) != 0) \
2147 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2148 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2149 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2150 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2151 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2152 #undef PRINTERR
2153 m_freem(m);
2154 continue;
2155 }
2156
2157 /*
2158 * If the packet is small enough to fit in a
2159 * single header mbuf, allocate one and copy
2160 * the data into it. This greatly reduces
2161 * memory consumption when we receive lots
2162 * of small packets.
2163 */
2164 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2165 struct mbuf *nm;
2166 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2167 if (nm == NULL) {
2168 ifp->if_ierrors++;
2169 m_freem(m);
2170 continue;
2171 }
2172 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2173 nm->m_data += 2;
2174 nm->m_pkthdr.len = nm->m_len = len;
2175 m_copydata(m, 0, len, mtod(nm, void *));
2176 m_freem(m);
2177 m = nm;
2178 }
2179 #ifndef __NO_STRICT_ALIGNMENT
2180 else {
2181 /*
2182 * The DP83820's receive buffers must be 4-byte
2183 * aligned. But this means that the data after
2184 * the Ethernet header is misaligned. To compensate,
2185 * we have artificially shortened the buffer size
2186 * in the descriptor, and we do an overlapping copy
2187 * of the data two bytes further in (in the first
2188 * buffer of the chain only).
2189 */
2190 memmove(mtod(m, char *) + 2, mtod(m, void *),
2191 m->m_len);
2192 m->m_data += 2;
2193 }
2194 #endif /* ! __NO_STRICT_ALIGNMENT */
2195
2196 /*
2197 * If VLANs are enabled, VLAN packets have been unwrapped
2198 * for us. Associate the tag with the packet.
2199 */
2200
2201 /*
2202 * Again, byte swapping is tricky. Hardware provided
2203 * the tag in the network byte order, but extsts was
2204 * passed through le32toh() in the meantime. On a
2205 * big-endian machine, we need to swap it again. On a
2206 * little-endian machine, we need to convert from the
2207 * network to host byte order. This means that we must
2208 * swap it in any case, so unconditional swap instead
2209 * of htons() is used.
2210 */
2211 if ((extsts & EXTSTS_VPKT) != 0) {
2212 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2213 continue);
2214 }
2215
2216 /*
2217 * Set the incoming checksum information for the
2218 * packet.
2219 */
2220 if ((extsts & EXTSTS_IPPKT) != 0) {
2221 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2222 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2223 if (extsts & EXTSTS_Rx_IPERR)
2224 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2225 if (extsts & EXTSTS_TCPPKT) {
2226 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2227 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2228 if (extsts & EXTSTS_Rx_TCPERR)
2229 m->m_pkthdr.csum_flags |=
2230 M_CSUM_TCP_UDP_BAD;
2231 } else if (extsts & EXTSTS_UDPPKT) {
2232 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2233 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2234 if (extsts & EXTSTS_Rx_UDPERR)
2235 m->m_pkthdr.csum_flags |=
2236 M_CSUM_TCP_UDP_BAD;
2237 }
2238 }
2239
2240 ifp->if_ipackets++;
2241 m->m_pkthdr.rcvif = ifp;
2242 m->m_pkthdr.len = len;
2243
2244 #if NBPFILTER > 0
2245 /*
2246 * Pass this up to any BPF listeners, but only
2247 * pass if up the stack if it's for us.
2248 */
2249 if (ifp->if_bpf)
2250 bpf_mtap(ifp->if_bpf, m);
2251 #endif /* NBPFILTER > 0 */
2252
2253 /* Pass it on. */
2254 (*ifp->if_input)(ifp, m);
2255 }
2256
2257 /* Update the receive pointer. */
2258 sc->sc_rxptr = i;
2259 }
2260
2261 /*
2262 * sip_rxintr:
2263 *
2264 * Helper; handle receive interrupts on 10/100 parts.
2265 */
2266 static void
2267 sip_rxintr(struct sip_softc *sc)
2268 {
2269 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2270 struct sip_rxsoft *rxs;
2271 struct mbuf *m;
2272 u_int32_t cmdsts;
2273 int i, len;
2274
2275 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2276 rxs = &sc->sc_rxsoft[i];
2277
2278 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2279
2280 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2281
2282 /*
2283 * NOTE: OWN is set if owned by _consumer_. We're the
2284 * consumer of the receive ring, so if the bit is clear,
2285 * we have processed all of the packets.
2286 */
2287 if ((cmdsts & CMDSTS_OWN) == 0) {
2288 /*
2289 * We have processed all of the receive buffers.
2290 */
2291 break;
2292 }
2293
2294 /*
2295 * If any collisions were seen on the wire, count one.
2296 */
2297 if (cmdsts & CMDSTS_Rx_COL)
2298 ifp->if_collisions++;
2299
2300 /*
2301 * If an error occurred, update stats, clear the status
2302 * word, and leave the packet buffer in place. It will
2303 * simply be reused the next time the ring comes around.
2304 */
2305 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2306 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2307 ifp->if_ierrors++;
2308 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2309 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2310 /* Receive overrun handled elsewhere. */
2311 printf("%s: receive descriptor error\n",
2312 device_xname(&sc->sc_dev));
2313 }
2314 #define PRINTERR(bit, str) \
2315 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2316 (cmdsts & (bit)) != 0) \
2317 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2318 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2319 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2320 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2321 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2322 #undef PRINTERR
2323 sip_init_rxdesc(sc, i);
2324 continue;
2325 }
2326
2327 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2328 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2329
2330 /*
2331 * No errors; receive the packet. Note, the SiS 900
2332 * includes the CRC with every packet.
2333 */
2334 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2335
2336 #ifdef __NO_STRICT_ALIGNMENT
2337 /*
2338 * If the packet is small enough to fit in a
2339 * single header mbuf, allocate one and copy
2340 * the data into it. This greatly reduces
2341 * memory consumption when we receive lots
2342 * of small packets.
2343 *
2344 * Otherwise, we add a new buffer to the receive
2345 * chain. If this fails, we drop the packet and
2346 * recycle the old buffer.
2347 */
2348 if (sip_copy_small != 0 && len <= MHLEN) {
2349 MGETHDR(m, M_DONTWAIT, MT_DATA);
2350 if (m == NULL)
2351 goto dropit;
2352 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2353 memcpy(mtod(m, void *),
2354 mtod(rxs->rxs_mbuf, void *), len);
2355 sip_init_rxdesc(sc, i);
2356 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2357 rxs->rxs_dmamap->dm_mapsize,
2358 BUS_DMASYNC_PREREAD);
2359 } else {
2360 m = rxs->rxs_mbuf;
2361 if (sipcom_add_rxbuf(sc, i) != 0) {
2362 dropit:
2363 ifp->if_ierrors++;
2364 sip_init_rxdesc(sc, i);
2365 bus_dmamap_sync(sc->sc_dmat,
2366 rxs->rxs_dmamap, 0,
2367 rxs->rxs_dmamap->dm_mapsize,
2368 BUS_DMASYNC_PREREAD);
2369 continue;
2370 }
2371 }
2372 #else
2373 /*
2374 * The SiS 900's receive buffers must be 4-byte aligned.
2375 * But this means that the data after the Ethernet header
2376 * is misaligned. We must allocate a new buffer and
2377 * copy the data, shifted forward 2 bytes.
2378 */
2379 MGETHDR(m, M_DONTWAIT, MT_DATA);
2380 if (m == NULL) {
2381 dropit:
2382 ifp->if_ierrors++;
2383 sip_init_rxdesc(sc, i);
2384 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2385 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2386 continue;
2387 }
2388 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2389 if (len > (MHLEN - 2)) {
2390 MCLGET(m, M_DONTWAIT);
2391 if ((m->m_flags & M_EXT) == 0) {
2392 m_freem(m);
2393 goto dropit;
2394 }
2395 }
2396 m->m_data += 2;
2397
2398 /*
2399 * Note that we use clusters for incoming frames, so the
2400 * buffer is virtually contiguous.
2401 */
2402 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2403
2404 /* Allow the receive descriptor to continue using its mbuf. */
2405 sip_init_rxdesc(sc, i);
2406 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2407 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2408 #endif /* __NO_STRICT_ALIGNMENT */
2409
2410 ifp->if_ipackets++;
2411 m->m_pkthdr.rcvif = ifp;
2412 m->m_pkthdr.len = m->m_len = len;
2413
2414 #if NBPFILTER > 0
2415 /*
2416 * Pass this up to any BPF listeners, but only
2417 * pass if up the stack if it's for us.
2418 */
2419 if (ifp->if_bpf)
2420 bpf_mtap(ifp->if_bpf, m);
2421 #endif /* NBPFILTER > 0 */
2422
2423 /* Pass it on. */
2424 (*ifp->if_input)(ifp, m);
2425 }
2426
2427 /* Update the receive pointer. */
2428 sc->sc_rxptr = i;
2429 }
2430
2431 /*
2432 * sip_tick:
2433 *
2434 * One second timer, used to tick the MII.
2435 */
2436 static void
2437 sipcom_tick(void *arg)
2438 {
2439 struct sip_softc *sc = arg;
2440 int s;
2441
2442 s = splnet();
2443 #ifdef SIP_EVENT_COUNTERS
2444 if (sc->sc_gigabit) {
2445 /* Read PAUSE related counts from MIB registers. */
2446 sc->sc_ev_rxpause.ev_count +=
2447 bus_space_read_4(sc->sc_st, sc->sc_sh,
2448 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2449 sc->sc_ev_txpause.ev_count +=
2450 bus_space_read_4(sc->sc_st, sc->sc_sh,
2451 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2453 }
2454 #endif /* SIP_EVENT_COUNTERS */
2455 mii_tick(&sc->sc_mii);
2456 splx(s);
2457
2458 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2459 }
2460
2461 /*
2462 * sip_reset:
2463 *
2464 * Perform a soft reset on the SiS 900.
2465 */
2466 static bool
2467 sipcom_reset(struct sip_softc *sc)
2468 {
2469 bus_space_tag_t st = sc->sc_st;
2470 bus_space_handle_t sh = sc->sc_sh;
2471 int i;
2472
2473 bus_space_write_4(st, sh, SIP_IER, 0);
2474 bus_space_write_4(st, sh, SIP_IMR, 0);
2475 bus_space_write_4(st, sh, SIP_RFCR, 0);
2476 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2477
2478 for (i = 0; i < SIP_TIMEOUT; i++) {
2479 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2480 break;
2481 delay(2);
2482 }
2483
2484 if (i == SIP_TIMEOUT) {
2485 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2486 return false;
2487 }
2488
2489 delay(1000);
2490
2491 if (sc->sc_gigabit) {
2492 /*
2493 * Set the general purpose I/O bits. Do it here in case we
2494 * need to have GPIO set up to talk to the media interface.
2495 */
2496 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2497 delay(1000);
2498 }
2499 return true;
2500 }
2501
2502 static void
2503 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2504 {
2505 u_int32_t reg;
2506 bus_space_tag_t st = sc->sc_st;
2507 bus_space_handle_t sh = sc->sc_sh;
2508 /*
2509 * Initialize the VLAN/IP receive control register.
2510 * We enable checksum computation on all incoming
2511 * packets, and do not reject packets w/ bad checksums.
2512 */
2513 reg = 0;
2514 if (capenable &
2515 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2516 reg |= VRCR_IPEN;
2517 if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 reg |= VRCR_VTDEN|VRCR_VTREN;
2519 bus_space_write_4(st, sh, SIP_VRCR, reg);
2520
2521 /*
2522 * Initialize the VLAN/IP transmit control register.
2523 * We enable outgoing checksum computation on a
2524 * per-packet basis.
2525 */
2526 reg = 0;
2527 if (capenable &
2528 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2529 reg |= VTCR_PPCHK;
2530 if (VLAN_ATTACHED(&sc->sc_ethercom))
2531 reg |= VTCR_VPPTI;
2532 bus_space_write_4(st, sh, SIP_VTCR, reg);
2533
2534 /*
2535 * If we're using VLANs, initialize the VLAN data register.
2536 * To understand why we bswap the VLAN Ethertype, see section
2537 * 4.2.36 of the DP83820 manual.
2538 */
2539 if (VLAN_ATTACHED(&sc->sc_ethercom))
2540 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2541 }
2542
2543 /*
2544 * sip_init: [ ifnet interface function ]
2545 *
2546 * Initialize the interface. Must be called at splnet().
2547 */
2548 static int
2549 sipcom_init(struct ifnet *ifp)
2550 {
2551 struct sip_softc *sc = ifp->if_softc;
2552 bus_space_tag_t st = sc->sc_st;
2553 bus_space_handle_t sh = sc->sc_sh;
2554 struct sip_txsoft *txs;
2555 struct sip_rxsoft *rxs;
2556 struct sip_desc *sipd;
2557 int i, error = 0;
2558
2559 if (device_is_active(&sc->sc_dev)) {
2560 /*
2561 * Cancel any pending I/O.
2562 */
2563 sipcom_stop(ifp, 0);
2564 } else if (!pmf_device_resume_self(&sc->sc_dev))
2565 return 0;
2566
2567 /*
2568 * Reset the chip to a known state.
2569 */
2570 if (!sipcom_reset(sc))
2571 return EBUSY;
2572
2573 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2574 /*
2575 * DP83815 manual, page 78:
2576 * 4.4 Recommended Registers Configuration
2577 * For optimum performance of the DP83815, version noted
2578 * as DP83815CVNG (SRR = 203h), the listed register
2579 * modifications must be followed in sequence...
2580 *
2581 * It's not clear if this should be 302h or 203h because that
2582 * chip name is listed as SRR 302h in the description of the
2583 * SRR register. However, my revision 302h DP83815 on the
2584 * Netgear FA311 purchased in 02/2001 needs these settings
2585 * to avoid tons of errors in AcceptPerfectMatch (non-
2586 * IFF_PROMISC) mode. I do not know if other revisions need
2587 * this set or not. [briggs -- 09 March 2001]
2588 *
2589 * Note that only the low-order 12 bits of 0xe4 are documented
2590 * and that this sets reserved bits in that register.
2591 */
2592 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2593
2594 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2595 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2596 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2597 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2598
2599 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2600 }
2601
2602 /*
2603 * Initialize the transmit descriptor ring.
2604 */
2605 for (i = 0; i < sc->sc_ntxdesc; i++) {
2606 sipd = &sc->sc_txdescs[i];
2607 memset(sipd, 0, sizeof(struct sip_desc));
2608 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2609 }
2610 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2611 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2612 sc->sc_txfree = sc->sc_ntxdesc;
2613 sc->sc_txnext = 0;
2614 sc->sc_txwin = 0;
2615
2616 /*
2617 * Initialize the transmit job descriptors.
2618 */
2619 SIMPLEQ_INIT(&sc->sc_txfreeq);
2620 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2621 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2622 txs = &sc->sc_txsoft[i];
2623 txs->txs_mbuf = NULL;
2624 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2625 }
2626
2627 /*
2628 * Initialize the receive descriptor and receive job
2629 * descriptor rings.
2630 */
2631 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2632 rxs = &sc->sc_rxsoft[i];
2633 if (rxs->rxs_mbuf == NULL) {
2634 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2635 printf("%s: unable to allocate or map rx "
2636 "buffer %d, error = %d\n",
2637 device_xname(&sc->sc_dev), i, error);
2638 /*
2639 * XXX Should attempt to run with fewer receive
2640 * XXX buffers instead of just failing.
2641 */
2642 sipcom_rxdrain(sc);
2643 goto out;
2644 }
2645 } else
2646 sip_init_rxdesc(sc, i);
2647 }
2648 sc->sc_rxptr = 0;
2649 sc->sc_rxdiscard = 0;
2650 sip_rxchain_reset(sc);
2651
2652 /*
2653 * Set the configuration register; it's already initialized
2654 * in sip_attach().
2655 */
2656 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2657
2658 /*
2659 * Initialize the prototype TXCFG register.
2660 */
2661 if (sc->sc_gigabit) {
2662 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2663 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2664 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2665 SIP_SIS900_REV(sc, SIS_REV_960) ||
2666 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2667 (sc->sc_cfg & CFG_EDBMASTEN)) {
2668 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2669 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2670 } else {
2671 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2672 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2673 }
2674
2675 sc->sc_txcfg |= TXCFG_ATP |
2676 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2677 sc->sc_tx_drain_thresh;
2678 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2679
2680 /*
2681 * Initialize the receive drain threshold if we have never
2682 * done so.
2683 */
2684 if (sc->sc_rx_drain_thresh == 0) {
2685 /*
2686 * XXX This value should be tuned. This is set to the
2687 * maximum of 248 bytes, and we may be able to improve
2688 * performance by decreasing it (although we should never
2689 * set this value lower than 2; 14 bytes are required to
2690 * filter the packet).
2691 */
2692 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2693 }
2694
2695 /*
2696 * Initialize the prototype RXCFG register.
2697 */
2698 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2699 /*
2700 * Accept long packets (including FCS) so we can handle
2701 * 802.1q-tagged frames and jumbo frames properly.
2702 */
2703 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2704 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2705 sc->sc_rxcfg |= RXCFG_ALP;
2706
2707 /*
2708 * Checksum offloading is disabled if the user selects an MTU
2709 * larger than 8109. (FreeBSD says 8152, but there is emperical
2710 * evidence that >8109 does not work on some boards, such as the
2711 * Planex GN-1000TE).
2712 */
2713 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2714 (ifp->if_capenable &
2715 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2716 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2717 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2718 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2719 "disabled.\n", device_xname(&sc->sc_dev));
2720 ifp->if_capenable &=
2721 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2722 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2723 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2724 ifp->if_csum_flags_tx = 0;
2725 ifp->if_csum_flags_rx = 0;
2726 }
2727
2728 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2729
2730 if (sc->sc_gigabit)
2731 sipcom_dp83820_init(sc, ifp->if_capenable);
2732
2733 /*
2734 * Give the transmit and receive rings to the chip.
2735 */
2736 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2737 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2738
2739 /*
2740 * Initialize the interrupt mask.
2741 */
2742 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2743 sc->sc_bits.b_isr_sserr |
2744 sc->sc_bits.b_isr_rmabt |
2745 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2746 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2747 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2748
2749 /* Set up the receive filter. */
2750 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2751
2752 /*
2753 * Tune sc_rx_flow_thresh.
2754 * XXX "More than 8KB" is too short for jumbo frames.
2755 * XXX TODO: Threshold value should be user-settable.
2756 */
2757 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2758 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2759 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2760
2761 /*
2762 * Set the current media. Do this after initializing the prototype
2763 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2764 * control.
2765 */
2766 if ((error = ether_mediachange(ifp)) != 0)
2767 goto out;
2768
2769 /*
2770 * Set the interrupt hold-off timer to 100us.
2771 */
2772 if (sc->sc_gigabit)
2773 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2774
2775 /*
2776 * Enable interrupts.
2777 */
2778 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2779
2780 /*
2781 * Start the transmit and receive processes.
2782 */
2783 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2784
2785 /*
2786 * Start the one second MII clock.
2787 */
2788 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2789
2790 /*
2791 * ...all done!
2792 */
2793 ifp->if_flags |= IFF_RUNNING;
2794 ifp->if_flags &= ~IFF_OACTIVE;
2795 sc->sc_if_flags = ifp->if_flags;
2796 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2797 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2798 sc->sc_prev.if_capenable = ifp->if_capenable;
2799
2800 out:
2801 if (error)
2802 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2803 return (error);
2804 }
2805
2806 /*
2807 * sip_drain:
2808 *
2809 * Drain the receive queue.
2810 */
2811 static void
2812 sipcom_rxdrain(struct sip_softc *sc)
2813 {
2814 struct sip_rxsoft *rxs;
2815 int i;
2816
2817 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2818 rxs = &sc->sc_rxsoft[i];
2819 if (rxs->rxs_mbuf != NULL) {
2820 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2821 m_freem(rxs->rxs_mbuf);
2822 rxs->rxs_mbuf = NULL;
2823 }
2824 }
2825 }
2826
2827 /*
2828 * sip_stop: [ ifnet interface function ]
2829 *
2830 * Stop transmission on the interface.
2831 */
2832 static void
2833 sipcom_stop(struct ifnet *ifp, int disable)
2834 {
2835 struct sip_softc *sc = ifp->if_softc;
2836 bus_space_tag_t st = sc->sc_st;
2837 bus_space_handle_t sh = sc->sc_sh;
2838 struct sip_txsoft *txs;
2839 u_int32_t cmdsts = 0; /* DEBUG */
2840
2841 /*
2842 * Stop the one second clock.
2843 */
2844 callout_stop(&sc->sc_tick_ch);
2845
2846 /* Down the MII. */
2847 mii_down(&sc->sc_mii);
2848
2849 if (device_is_active(&sc->sc_dev)) {
2850 /*
2851 * Disable interrupts.
2852 */
2853 bus_space_write_4(st, sh, SIP_IER, 0);
2854
2855 /*
2856 * Stop receiver and transmitter.
2857 */
2858 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2859 }
2860
2861 /*
2862 * Release any queued transmit buffers.
2863 */
2864 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2865 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2866 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2867 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2868 CMDSTS_INTR) == 0)
2869 printf("%s: sip_stop: last descriptor does not "
2870 "have INTR bit set\n", device_xname(&sc->sc_dev));
2871 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2872 #ifdef DIAGNOSTIC
2873 if (txs->txs_mbuf == NULL) {
2874 printf("%s: dirty txsoft with no mbuf chain\n",
2875 device_xname(&sc->sc_dev));
2876 panic("sip_stop");
2877 }
2878 #endif
2879 cmdsts |= /* DEBUG */
2880 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2881 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2882 m_freem(txs->txs_mbuf);
2883 txs->txs_mbuf = NULL;
2884 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2885 }
2886
2887 /*
2888 * Mark the interface down and cancel the watchdog timer.
2889 */
2890 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2891 ifp->if_timer = 0;
2892
2893 if (disable)
2894 pmf_device_suspend_self(&sc->sc_dev);
2895
2896 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2897 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2898 printf("%s: sip_stop: no INTR bits set in dirty tx "
2899 "descriptors\n", device_xname(&sc->sc_dev));
2900 }
2901
2902 /*
2903 * sip_read_eeprom:
2904 *
2905 * Read data from the serial EEPROM.
2906 */
2907 static void
2908 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2909 u_int16_t *data)
2910 {
2911 bus_space_tag_t st = sc->sc_st;
2912 bus_space_handle_t sh = sc->sc_sh;
2913 u_int16_t reg;
2914 int i, x;
2915
2916 for (i = 0; i < wordcnt; i++) {
2917 /* Send CHIP SELECT. */
2918 reg = EROMAR_EECS;
2919 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920
2921 /* Shift in the READ opcode. */
2922 for (x = 3; x > 0; x--) {
2923 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2924 reg |= EROMAR_EEDI;
2925 else
2926 reg &= ~EROMAR_EEDI;
2927 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 bus_space_write_4(st, sh, SIP_EROMAR,
2929 reg | EROMAR_EESK);
2930 delay(4);
2931 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2932 delay(4);
2933 }
2934
2935 /* Shift in address. */
2936 for (x = 6; x > 0; x--) {
2937 if ((word + i) & (1 << (x - 1)))
2938 reg |= EROMAR_EEDI;
2939 else
2940 reg &= ~EROMAR_EEDI;
2941 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2942 bus_space_write_4(st, sh, SIP_EROMAR,
2943 reg | EROMAR_EESK);
2944 delay(4);
2945 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2946 delay(4);
2947 }
2948
2949 /* Shift out data. */
2950 reg = EROMAR_EECS;
2951 data[i] = 0;
2952 for (x = 16; x > 0; x--) {
2953 bus_space_write_4(st, sh, SIP_EROMAR,
2954 reg | EROMAR_EESK);
2955 delay(4);
2956 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2957 data[i] |= (1 << (x - 1));
2958 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2959 delay(4);
2960 }
2961
2962 /* Clear CHIP SELECT. */
2963 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2964 delay(4);
2965 }
2966 }
2967
2968 /*
2969 * sipcom_add_rxbuf:
2970 *
2971 * Add a receive buffer to the indicated descriptor.
2972 */
2973 static int
2974 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2975 {
2976 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2977 struct mbuf *m;
2978 int error;
2979
2980 MGETHDR(m, M_DONTWAIT, MT_DATA);
2981 if (m == NULL)
2982 return (ENOBUFS);
2983 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2984
2985 MCLGET(m, M_DONTWAIT);
2986 if ((m->m_flags & M_EXT) == 0) {
2987 m_freem(m);
2988 return (ENOBUFS);
2989 }
2990
2991 /* XXX I don't believe this is necessary. --dyoung */
2992 if (sc->sc_gigabit)
2993 m->m_len = sc->sc_parm->p_rxbuf_len;
2994
2995 if (rxs->rxs_mbuf != NULL)
2996 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2997
2998 rxs->rxs_mbuf = m;
2999
3000 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3001 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3002 BUS_DMA_READ|BUS_DMA_NOWAIT);
3003 if (error) {
3004 printf("%s: can't load rx DMA map %d, error = %d\n",
3005 device_xname(&sc->sc_dev), idx, error);
3006 panic("%s", __func__); /* XXX */
3007 }
3008
3009 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3010 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3011
3012 sip_init_rxdesc(sc, idx);
3013
3014 return (0);
3015 }
3016
3017 /*
3018 * sip_sis900_set_filter:
3019 *
3020 * Set up the receive filter.
3021 */
3022 static void
3023 sipcom_sis900_set_filter(struct sip_softc *sc)
3024 {
3025 bus_space_tag_t st = sc->sc_st;
3026 bus_space_handle_t sh = sc->sc_sh;
3027 struct ethercom *ec = &sc->sc_ethercom;
3028 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3029 struct ether_multi *enm;
3030 const u_int8_t *cp;
3031 struct ether_multistep step;
3032 u_int32_t crc, mchash[16];
3033
3034 /*
3035 * Initialize the prototype RFCR.
3036 */
3037 sc->sc_rfcr = RFCR_RFEN;
3038 if (ifp->if_flags & IFF_BROADCAST)
3039 sc->sc_rfcr |= RFCR_AAB;
3040 if (ifp->if_flags & IFF_PROMISC) {
3041 sc->sc_rfcr |= RFCR_AAP;
3042 goto allmulti;
3043 }
3044
3045 /*
3046 * Set up the multicast address filter by passing all multicast
3047 * addresses through a CRC generator, and then using the high-order
3048 * 6 bits as an index into the 128 bit multicast hash table (only
3049 * the lower 16 bits of each 32 bit multicast hash register are
3050 * valid). The high order bits select the register, while the
3051 * rest of the bits select the bit within the register.
3052 */
3053
3054 memset(mchash, 0, sizeof(mchash));
3055
3056 /*
3057 * SiS900 (at least SiS963) requires us to register the address of
3058 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3059 */
3060 crc = 0x0ed423f9;
3061
3062 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3063 SIP_SIS900_REV(sc, SIS_REV_960) ||
3064 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3065 /* Just want the 8 most significant bits. */
3066 crc >>= 24;
3067 } else {
3068 /* Just want the 7 most significant bits. */
3069 crc >>= 25;
3070 }
3071
3072 /* Set the corresponding bit in the hash table. */
3073 mchash[crc >> 4] |= 1 << (crc & 0xf);
3074
3075 ETHER_FIRST_MULTI(step, ec, enm);
3076 while (enm != NULL) {
3077 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3078 /*
3079 * We must listen to a range of multicast addresses.
3080 * For now, just accept all multicasts, rather than
3081 * trying to set only those filter bits needed to match
3082 * the range. (At this time, the only use of address
3083 * ranges is for IP multicast routing, for which the
3084 * range is big enough to require all bits set.)
3085 */
3086 goto allmulti;
3087 }
3088
3089 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3090
3091 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3092 SIP_SIS900_REV(sc, SIS_REV_960) ||
3093 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3094 /* Just want the 8 most significant bits. */
3095 crc >>= 24;
3096 } else {
3097 /* Just want the 7 most significant bits. */
3098 crc >>= 25;
3099 }
3100
3101 /* Set the corresponding bit in the hash table. */
3102 mchash[crc >> 4] |= 1 << (crc & 0xf);
3103
3104 ETHER_NEXT_MULTI(step, enm);
3105 }
3106
3107 ifp->if_flags &= ~IFF_ALLMULTI;
3108 goto setit;
3109
3110 allmulti:
3111 ifp->if_flags |= IFF_ALLMULTI;
3112 sc->sc_rfcr |= RFCR_AAM;
3113
3114 setit:
3115 #define FILTER_EMIT(addr, data) \
3116 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3117 delay(1); \
3118 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3119 delay(1)
3120
3121 /*
3122 * Disable receive filter, and program the node address.
3123 */
3124 cp = CLLADDR(ifp->if_sadl);
3125 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3126 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3127 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3128
3129 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3130 /*
3131 * Program the multicast hash table.
3132 */
3133 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3134 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3135 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3136 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3137 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3138 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3139 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3140 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3141 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3142 SIP_SIS900_REV(sc, SIS_REV_960) ||
3143 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3144 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3145 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3146 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3147 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3148 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3149 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3150 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3151 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3152 }
3153 }
3154 #undef FILTER_EMIT
3155
3156 /*
3157 * Re-enable the receiver filter.
3158 */
3159 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3160 }
3161
3162 /*
3163 * sip_dp83815_set_filter:
3164 *
3165 * Set up the receive filter.
3166 */
3167 static void
3168 sipcom_dp83815_set_filter(struct sip_softc *sc)
3169 {
3170 bus_space_tag_t st = sc->sc_st;
3171 bus_space_handle_t sh = sc->sc_sh;
3172 struct ethercom *ec = &sc->sc_ethercom;
3173 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3174 struct ether_multi *enm;
3175 const u_int8_t *cp;
3176 struct ether_multistep step;
3177 u_int32_t crc, hash, slot, bit;
3178 #define MCHASH_NWORDS_83820 128
3179 #define MCHASH_NWORDS_83815 32
3180 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3181 u_int16_t mchash[MCHASH_NWORDS];
3182 int i;
3183
3184 /*
3185 * Initialize the prototype RFCR.
3186 * Enable the receive filter, and accept on
3187 * Perfect (destination address) Match
3188 * If IFF_BROADCAST, also accept all broadcast packets.
3189 * If IFF_PROMISC, accept all unicast packets (and later, set
3190 * IFF_ALLMULTI and accept all multicast, too).
3191 */
3192 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3193 if (ifp->if_flags & IFF_BROADCAST)
3194 sc->sc_rfcr |= RFCR_AAB;
3195 if (ifp->if_flags & IFF_PROMISC) {
3196 sc->sc_rfcr |= RFCR_AAP;
3197 goto allmulti;
3198 }
3199
3200 /*
3201 * Set up the DP83820/DP83815 multicast address filter by
3202 * passing all multicast addresses through a CRC generator,
3203 * and then using the high-order 11/9 bits as an index into
3204 * the 2048/512 bit multicast hash table. The high-order
3205 * 7/5 bits select the slot, while the low-order 4 bits
3206 * select the bit within the slot. Note that only the low
3207 * 16-bits of each filter word are used, and there are
3208 * 128/32 filter words.
3209 */
3210
3211 memset(mchash, 0, sizeof(mchash));
3212
3213 ifp->if_flags &= ~IFF_ALLMULTI;
3214 ETHER_FIRST_MULTI(step, ec, enm);
3215 if (enm == NULL)
3216 goto setit;
3217 while (enm != NULL) {
3218 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3219 /*
3220 * We must listen to a range of multicast addresses.
3221 * For now, just accept all multicasts, rather than
3222 * trying to set only those filter bits needed to match
3223 * the range. (At this time, the only use of address
3224 * ranges is for IP multicast routing, for which the
3225 * range is big enough to require all bits set.)
3226 */
3227 goto allmulti;
3228 }
3229
3230 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3231
3232 if (sc->sc_gigabit) {
3233 /* Just want the 11 most significant bits. */
3234 hash = crc >> 21;
3235 } else {
3236 /* Just want the 9 most significant bits. */
3237 hash = crc >> 23;
3238 }
3239
3240 slot = hash >> 4;
3241 bit = hash & 0xf;
3242
3243 /* Set the corresponding bit in the hash table. */
3244 mchash[slot] |= 1 << bit;
3245
3246 ETHER_NEXT_MULTI(step, enm);
3247 }
3248 sc->sc_rfcr |= RFCR_MHEN;
3249 goto setit;
3250
3251 allmulti:
3252 ifp->if_flags |= IFF_ALLMULTI;
3253 sc->sc_rfcr |= RFCR_AAM;
3254
3255 setit:
3256 #define FILTER_EMIT(addr, data) \
3257 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3258 delay(1); \
3259 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3260 delay(1)
3261
3262 /*
3263 * Disable receive filter, and program the node address.
3264 */
3265 cp = CLLADDR(ifp->if_sadl);
3266 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3267 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3268 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3269
3270 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3271 int nwords =
3272 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3273 /*
3274 * Program the multicast hash table.
3275 */
3276 for (i = 0; i < nwords; i++) {
3277 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3278 }
3279 }
3280 #undef FILTER_EMIT
3281 #undef MCHASH_NWORDS
3282 #undef MCHASH_NWORDS_83815
3283 #undef MCHASH_NWORDS_83820
3284
3285 /*
3286 * Re-enable the receiver filter.
3287 */
3288 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3289 }
3290
3291 /*
3292 * sip_dp83820_mii_readreg: [mii interface function]
3293 *
3294 * Read a PHY register on the MII of the DP83820.
3295 */
3296 static int
3297 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3298 {
3299 struct sip_softc *sc = device_private(self);
3300
3301 if (sc->sc_cfg & CFG_TBI_EN) {
3302 bus_addr_t tbireg;
3303 int rv;
3304
3305 if (phy != 0)
3306 return (0);
3307
3308 switch (reg) {
3309 case MII_BMCR: tbireg = SIP_TBICR; break;
3310 case MII_BMSR: tbireg = SIP_TBISR; break;
3311 case MII_ANAR: tbireg = SIP_TANAR; break;
3312 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3313 case MII_ANER: tbireg = SIP_TANER; break;
3314 case MII_EXTSR:
3315 /*
3316 * Don't even bother reading the TESR register.
3317 * The manual documents that the device has
3318 * 1000baseX full/half capability, but the
3319 * register itself seems read back 0 on some
3320 * boards. Just hard-code the result.
3321 */
3322 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3323
3324 default:
3325 return (0);
3326 }
3327
3328 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3329 if (tbireg == SIP_TBISR) {
3330 /* LINK and ACOMP are switched! */
3331 int val = rv;
3332
3333 rv = 0;
3334 if (val & TBISR_MR_LINK_STATUS)
3335 rv |= BMSR_LINK;
3336 if (val & TBISR_MR_AN_COMPLETE)
3337 rv |= BMSR_ACOMP;
3338
3339 /*
3340 * The manual claims this register reads back 0
3341 * on hard and soft reset. But we want to let
3342 * the gentbi driver know that we support auto-
3343 * negotiation, so hard-code this bit in the
3344 * result.
3345 */
3346 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3347 }
3348
3349 return (rv);
3350 }
3351
3352 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3353 }
3354
3355 /*
3356 * sip_dp83820_mii_writereg: [mii interface function]
3357 *
3358 * Write a PHY register on the MII of the DP83820.
3359 */
3360 static void
3361 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3362 {
3363 struct sip_softc *sc = device_private(self);
3364
3365 if (sc->sc_cfg & CFG_TBI_EN) {
3366 bus_addr_t tbireg;
3367
3368 if (phy != 0)
3369 return;
3370
3371 switch (reg) {
3372 case MII_BMCR: tbireg = SIP_TBICR; break;
3373 case MII_ANAR: tbireg = SIP_TANAR; break;
3374 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3375 default:
3376 return;
3377 }
3378
3379 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3380 return;
3381 }
3382
3383 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3384 }
3385
3386 /*
3387 * sip_dp83820_mii_statchg: [mii interface function]
3388 *
3389 * Callback from MII layer when media changes.
3390 */
3391 static void
3392 sipcom_dp83820_mii_statchg(device_t self)
3393 {
3394 struct sip_softc *sc = device_private(self);
3395 struct mii_data *mii = &sc->sc_mii;
3396 u_int32_t cfg, pcr;
3397
3398 /*
3399 * Get flow control negotiation result.
3400 */
3401 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3402 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3403 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3404 mii->mii_media_active &= ~IFM_ETH_FMASK;
3405 }
3406
3407 /*
3408 * Update TXCFG for full-duplex operation.
3409 */
3410 if ((mii->mii_media_active & IFM_FDX) != 0)
3411 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3412 else
3413 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3414
3415 /*
3416 * Update RXCFG for full-duplex or loopback.
3417 */
3418 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3419 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3420 sc->sc_rxcfg |= RXCFG_ATX;
3421 else
3422 sc->sc_rxcfg &= ~RXCFG_ATX;
3423
3424 /*
3425 * Update CFG for MII/GMII.
3426 */
3427 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3428 cfg = sc->sc_cfg | CFG_MODE_1000;
3429 else
3430 cfg = sc->sc_cfg;
3431
3432 /*
3433 * 802.3x flow control.
3434 */
3435 pcr = 0;
3436 if (sc->sc_flowflags & IFM_FLOW) {
3437 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3438 pcr |= sc->sc_rx_flow_thresh;
3439 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3440 pcr |= PCR_PSEN | PCR_PS_MCAST;
3441 }
3442
3443 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3444 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3445 sc->sc_txcfg);
3446 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3447 sc->sc_rxcfg);
3448 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3449 }
3450
3451 /*
3452 * sip_mii_bitbang_read: [mii bit-bang interface function]
3453 *
3454 * Read the MII serial port for the MII bit-bang module.
3455 */
3456 static u_int32_t
3457 sipcom_mii_bitbang_read(device_t self)
3458 {
3459 struct sip_softc *sc = device_private(self);
3460
3461 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3462 }
3463
3464 /*
3465 * sip_mii_bitbang_write: [mii big-bang interface function]
3466 *
3467 * Write the MII serial port for the MII bit-bang module.
3468 */
3469 static void
3470 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3471 {
3472 struct sip_softc *sc = device_private(self);
3473
3474 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3475 }
3476
3477 /*
3478 * sip_sis900_mii_readreg: [mii interface function]
3479 *
3480 * Read a PHY register on the MII.
3481 */
3482 static int
3483 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3484 {
3485 struct sip_softc *sc = device_private(self);
3486 u_int32_t enphy;
3487
3488 /*
3489 * The PHY of recent SiS chipsets is accessed through bitbang
3490 * operations.
3491 */
3492 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3493 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3494 phy, reg);
3495
3496 #ifndef SIS900_MII_RESTRICT
3497 /*
3498 * The SiS 900 has only an internal PHY on the MII. Only allow
3499 * MII address 0.
3500 */
3501 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3502 return (0);
3503 #endif
3504
3505 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3506 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3507 ENPHY_RWCMD | ENPHY_ACCESS);
3508 do {
3509 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3510 } while (enphy & ENPHY_ACCESS);
3511 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3512 }
3513
3514 /*
3515 * sip_sis900_mii_writereg: [mii interface function]
3516 *
3517 * Write a PHY register on the MII.
3518 */
3519 static void
3520 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3521 {
3522 struct sip_softc *sc = device_private(self);
3523 u_int32_t enphy;
3524
3525 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3526 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3527 phy, reg, val);
3528 return;
3529 }
3530
3531 #ifndef SIS900_MII_RESTRICT
3532 /*
3533 * The SiS 900 has only an internal PHY on the MII. Only allow
3534 * MII address 0.
3535 */
3536 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3537 return;
3538 #endif
3539
3540 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3541 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3542 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3543 do {
3544 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3545 } while (enphy & ENPHY_ACCESS);
3546 }
3547
3548 /*
3549 * sip_sis900_mii_statchg: [mii interface function]
3550 *
3551 * Callback from MII layer when media changes.
3552 */
3553 static void
3554 sipcom_sis900_mii_statchg(device_t self)
3555 {
3556 struct sip_softc *sc = device_private(self);
3557 struct mii_data *mii = &sc->sc_mii;
3558 u_int32_t flowctl;
3559
3560 /*
3561 * Get flow control negotiation result.
3562 */
3563 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3564 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3565 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3566 mii->mii_media_active &= ~IFM_ETH_FMASK;
3567 }
3568
3569 /*
3570 * Update TXCFG for full-duplex operation.
3571 */
3572 if ((mii->mii_media_active & IFM_FDX) != 0)
3573 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3574 else
3575 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3576
3577 /*
3578 * Update RXCFG for full-duplex or loopback.
3579 */
3580 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3581 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3582 sc->sc_rxcfg |= RXCFG_ATX;
3583 else
3584 sc->sc_rxcfg &= ~RXCFG_ATX;
3585
3586 /*
3587 * Update IMR for use of 802.3x flow control.
3588 */
3589 if (sc->sc_flowflags & IFM_FLOW) {
3590 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3591 flowctl = FLOWCTL_FLOWEN;
3592 } else {
3593 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3594 flowctl = 0;
3595 }
3596
3597 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3598 sc->sc_txcfg);
3599 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3600 sc->sc_rxcfg);
3601 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3602 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3603 }
3604
3605 /*
3606 * sip_dp83815_mii_readreg: [mii interface function]
3607 *
3608 * Read a PHY register on the MII.
3609 */
3610 static int
3611 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3612 {
3613 struct sip_softc *sc = device_private(self);
3614 u_int32_t val;
3615
3616 /*
3617 * The DP83815 only has an internal PHY. Only allow
3618 * MII address 0.
3619 */
3620 if (phy != 0)
3621 return (0);
3622
3623 /*
3624 * Apparently, after a reset, the DP83815 can take a while
3625 * to respond. During this recovery period, the BMSR returns
3626 * a value of 0. Catch this -- it's not supposed to happen
3627 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3628 * PHY to come back to life.
3629 *
3630 * This works out because the BMSR is the first register
3631 * read during the PHY probe process.
3632 */
3633 do {
3634 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3635 } while (reg == MII_BMSR && val == 0);
3636
3637 return (val & 0xffff);
3638 }
3639
3640 /*
3641 * sip_dp83815_mii_writereg: [mii interface function]
3642 *
3643 * Write a PHY register to the MII.
3644 */
3645 static void
3646 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3647 {
3648 struct sip_softc *sc = device_private(self);
3649
3650 /*
3651 * The DP83815 only has an internal PHY. Only allow
3652 * MII address 0.
3653 */
3654 if (phy != 0)
3655 return;
3656
3657 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3658 }
3659
3660 /*
3661 * sip_dp83815_mii_statchg: [mii interface function]
3662 *
3663 * Callback from MII layer when media changes.
3664 */
3665 static void
3666 sipcom_dp83815_mii_statchg(device_t self)
3667 {
3668 struct sip_softc *sc = device_private(self);
3669
3670 /*
3671 * Update TXCFG for full-duplex operation.
3672 */
3673 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3674 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3675 else
3676 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3677
3678 /*
3679 * Update RXCFG for full-duplex or loopback.
3680 */
3681 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3682 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3683 sc->sc_rxcfg |= RXCFG_ATX;
3684 else
3685 sc->sc_rxcfg &= ~RXCFG_ATX;
3686
3687 /*
3688 * XXX 802.3x flow control.
3689 */
3690
3691 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3692 sc->sc_txcfg);
3693 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3694 sc->sc_rxcfg);
3695
3696 /*
3697 * Some DP83815s experience problems when used with short
3698 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3699 * sequence adjusts the DSP's signal attenuation to fix the
3700 * problem.
3701 */
3702 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3703 uint32_t reg;
3704
3705 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3706
3707 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3708 reg &= 0x0fff;
3709 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3710 delay(100);
3711 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3712 reg &= 0x00ff;
3713 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3714 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3715 0x00e8);
3716 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3717 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3718 reg | 0x20);
3719 }
3720
3721 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3722 }
3723 }
3724
3725 static void
3726 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3727 const struct pci_attach_args *pa, u_int8_t *enaddr)
3728 {
3729 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3730 u_int8_t cksum, *e, match;
3731 int i;
3732
3733 /*
3734 * EEPROM data format for the DP83820 can be found in
3735 * the DP83820 manual, section 4.2.4.
3736 */
3737
3738 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3739
3740 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3741 match = ~(match - 1);
3742
3743 cksum = 0x55;
3744 e = (u_int8_t *) eeprom_data;
3745 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3746 cksum += *e++;
3747
3748 if (cksum != match)
3749 printf("%s: Checksum (%x) mismatch (%x)",
3750 device_xname(&sc->sc_dev), cksum, match);
3751
3752 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3753 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3754 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3755 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3756 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3757 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3758 }
3759
3760 static void
3761 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3762 {
3763 int i;
3764
3765 /*
3766 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3767 * a reason, but I don't know it.
3768 */
3769 for (i = 0; i < 10; i++)
3770 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3771 }
3772
3773 static void
3774 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3775 const struct pci_attach_args *pa, u_int8_t *enaddr)
3776 {
3777 u_int16_t myea[ETHER_ADDR_LEN / 2];
3778
3779 switch (sc->sc_rev) {
3780 case SIS_REV_630S:
3781 case SIS_REV_630E:
3782 case SIS_REV_630EA1:
3783 case SIS_REV_630ET:
3784 case SIS_REV_635:
3785 /*
3786 * The MAC address for the on-board Ethernet of
3787 * the SiS 630 chipset is in the NVRAM. Kick
3788 * the chip into re-loading it from NVRAM, and
3789 * read the MAC address out of the filter registers.
3790 */
3791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3792
3793 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3794 RFCR_RFADDR_NODE0);
3795 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3796 0xffff;
3797
3798 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3799 RFCR_RFADDR_NODE2);
3800 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3801 0xffff;
3802
3803 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3804 RFCR_RFADDR_NODE4);
3805 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3806 0xffff;
3807 break;
3808
3809 case SIS_REV_960:
3810 {
3811 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3812 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3813
3814 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3815 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3816
3817 int waittime, i;
3818
3819 /* Allow to read EEPROM from LAN. It is shared
3820 * between a 1394 controller and the NIC and each
3821 * time we access it, we need to set SIS_EECMD_REQ.
3822 */
3823 SIS_SET_EROMAR(sc, EROMAR_REQ);
3824
3825 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3826 /* Force EEPROM to idle state. */
3827
3828 /*
3829 * XXX-cube This is ugly. I'll look for docs about it.
3830 */
3831 SIS_SET_EROMAR(sc, EROMAR_EECS);
3832 sipcom_sis900_eeprom_delay(sc);
3833 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3834 SIS_SET_EROMAR(sc, EROMAR_EESK);
3835 sipcom_sis900_eeprom_delay(sc);
3836 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3837 sipcom_sis900_eeprom_delay(sc);
3838 }
3839 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3840 sipcom_sis900_eeprom_delay(sc);
3841 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3842
3843 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3844 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3845 sizeof(myea) / sizeof(myea[0]), myea);
3846 break;
3847 }
3848 DELAY(1);
3849 }
3850
3851 /*
3852 * Set SIS_EECTL_CLK to high, so a other master
3853 * can operate on the i2c bus.
3854 */
3855 SIS_SET_EROMAR(sc, EROMAR_EESK);
3856
3857 /* Refuse EEPROM access by LAN */
3858 SIS_SET_EROMAR(sc, EROMAR_DONE);
3859 } break;
3860
3861 default:
3862 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3863 sizeof(myea) / sizeof(myea[0]), myea);
3864 }
3865
3866 enaddr[0] = myea[0] & 0xff;
3867 enaddr[1] = myea[0] >> 8;
3868 enaddr[2] = myea[1] & 0xff;
3869 enaddr[3] = myea[1] >> 8;
3870 enaddr[4] = myea[2] & 0xff;
3871 enaddr[5] = myea[2] >> 8;
3872 }
3873
3874 /* Table and macro to bit-reverse an octet. */
3875 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3876 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3877
3878 static void
3879 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3880 const struct pci_attach_args *pa, u_int8_t *enaddr)
3881 {
3882 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3883 u_int8_t cksum, *e, match;
3884 int i;
3885
3886 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3887 sizeof(eeprom_data[0]), eeprom_data);
3888
3889 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3890 match = ~(match - 1);
3891
3892 cksum = 0x55;
3893 e = (u_int8_t *) eeprom_data;
3894 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3895 cksum += *e++;
3896 }
3897 if (cksum != match) {
3898 printf("%s: Checksum (%x) mismatch (%x)",
3899 device_xname(&sc->sc_dev), cksum, match);
3900 }
3901
3902 /*
3903 * Unrolled because it makes slightly more sense this way.
3904 * The DP83815 stores the MAC address in bit 0 of word 6
3905 * through bit 15 of word 8.
3906 */
3907 ea = &eeprom_data[6];
3908 enaddr[0] = ((*ea & 0x1) << 7);
3909 ea++;
3910 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3911 enaddr[1] = ((*ea & 0x1FE) >> 1);
3912 enaddr[2] = ((*ea & 0x1) << 7);
3913 ea++;
3914 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3915 enaddr[3] = ((*ea & 0x1FE) >> 1);
3916 enaddr[4] = ((*ea & 0x1) << 7);
3917 ea++;
3918 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3919 enaddr[5] = ((*ea & 0x1FE) >> 1);
3920
3921 /*
3922 * In case that's not weird enough, we also need to reverse
3923 * the bits in each byte. This all actually makes more sense
3924 * if you think about the EEPROM storage as an array of bits
3925 * being shifted into bytes, but that's not how we're looking
3926 * at it here...
3927 */
3928 for (i = 0; i < 6 ;i++)
3929 enaddr[i] = bbr(enaddr[i]);
3930 }
3931
3932 /*
3933 * sip_mediastatus: [ifmedia interface function]
3934 *
3935 * Get the current interface media status.
3936 */
3937 static void
3938 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3939 {
3940 struct sip_softc *sc = ifp->if_softc;
3941
3942 if (!device_is_active(&sc->sc_dev)) {
3943 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3944 ifmr->ifm_status = 0;
3945 return;
3946 }
3947 ether_mediastatus(ifp, ifmr);
3948 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3949 sc->sc_flowflags;
3950 }
3951