Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.132.4.5
      1 /*	$NetBSD: if_sip.c,v 1.132.4.5 2010/03/11 15:03:47 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.132.4.5 2010/03/11 15:03:47 yamt Exp $");
     77 
     78 #include "rnd.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/callout.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/malloc.h>
     85 #include <sys/kernel.h>
     86 #include <sys/socket.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/errno.h>
     89 #include <sys/device.h>
     90 #include <sys/queue.h>
     91 
     92 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     93 
     94 #if NRND > 0
     95 #include <sys/rnd.h>
     96 #endif
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #include <net/bpf.h>
    104 
    105 #include <sys/bus.h>
    106 #include <sys/intr.h>
    107 #include <machine/endian.h>
    108 
    109 #include <dev/mii/mii.h>
    110 #include <dev/mii/miivar.h>
    111 #include <dev/mii/mii_bitbang.h>
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/pci/if_sipreg.h>
    118 
    119 /*
    120  * Transmit descriptor list size.  This is arbitrary, but allocate
    121  * enough descriptors for 128 pending transmissions, and 8 segments
    122  * per packet (64 for DP83820 for jumbo frames).
    123  *
    124  * This MUST work out to a power of 2.
    125  */
    126 #define	GSIP_NTXSEGS_ALLOC 16
    127 #define	SIP_NTXSEGS_ALLOC 8
    128 
    129 #define	SIP_TXQUEUELEN		256
    130 #define	MAX_SIP_NTXDESC	\
    131     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    132 
    133 /*
    134  * Receive descriptor list size.  We have one Rx buffer per incoming
    135  * packet, so this logic is a little simpler.
    136  *
    137  * Actually, on the DP83820, we allow the packet to consume more than
    138  * one buffer, in order to support jumbo Ethernet frames.  In that
    139  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    140  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    141  * so we'd better be quick about handling receive interrupts.
    142  */
    143 #define	GSIP_NRXDESC		256
    144 #define	SIP_NRXDESC		128
    145 
    146 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    147 
    148 /*
    149  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    150  * a single clump that maps to a single DMA segment to make several things
    151  * easier.
    152  */
    153 struct sip_control_data {
    154 	/*
    155 	 * The transmit descriptors.
    156 	 */
    157 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    158 
    159 	/*
    160 	 * The receive descriptors.
    161 	 */
    162 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    163 };
    164 
    165 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    166 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    167 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    168 
    169 /*
    170  * Software state for transmit jobs.
    171  */
    172 struct sip_txsoft {
    173 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    174 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    175 	int txs_firstdesc;		/* first descriptor in packet */
    176 	int txs_lastdesc;		/* last descriptor in packet */
    177 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    178 };
    179 
    180 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    181 
    182 /*
    183  * Software state for receive jobs.
    184  */
    185 struct sip_rxsoft {
    186 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    187 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    188 };
    189 
    190 enum sip_attach_stage {
    191 	  SIP_ATTACH_FIN = 0
    192 	, SIP_ATTACH_CREATE_RXMAP
    193 	, SIP_ATTACH_CREATE_TXMAP
    194 	, SIP_ATTACH_LOAD_MAP
    195 	, SIP_ATTACH_CREATE_MAP
    196 	, SIP_ATTACH_MAP_MEM
    197 	, SIP_ATTACH_ALLOC_MEM
    198 	, SIP_ATTACH_INTR
    199 	, SIP_ATTACH_MAP
    200 };
    201 
    202 /*
    203  * Software state per device.
    204  */
    205 struct sip_softc {
    206 	device_t sc_dev;		/* generic device information */
    207 	device_suspensor_t		sc_suspensor;
    208 	pmf_qual_t			sc_qual;
    209 
    210 	bus_space_tag_t sc_st;		/* bus space tag */
    211 	bus_space_handle_t sc_sh;	/* bus space handle */
    212 	bus_size_t sc_sz;		/* bus space size */
    213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    214 	pci_chipset_tag_t sc_pc;
    215 	bus_dma_segment_t sc_seg;
    216 	struct ethercom sc_ethercom;	/* ethernet common data */
    217 
    218 	const struct sip_product *sc_model; /* which model are we? */
    219 	int sc_gigabit;			/* 1: 83820, 0: other */
    220 	int sc_rev;			/* chip revision */
    221 
    222 	void *sc_ih;			/* interrupt cookie */
    223 
    224 	struct mii_data sc_mii;		/* MII/media information */
    225 
    226 	callout_t sc_tick_ch;		/* tick callout */
    227 
    228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    230 
    231 	/*
    232 	 * Software state for transmit and receive descriptors.
    233 	 */
    234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    236 
    237 	/*
    238 	 * Control data structures.
    239 	 */
    240 	struct sip_control_data *sc_control_data;
    241 #define	sc_txdescs	sc_control_data->scd_txdescs
    242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    243 
    244 #ifdef SIP_EVENT_COUNTERS
    245 	/*
    246 	 * Event counters.
    247 	 */
    248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    256 	/* DP83820 only */
    257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    264 #endif /* SIP_EVENT_COUNTERS */
    265 
    266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    268 	u_int32_t sc_imr;		/* prototype IMR register */
    269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    270 
    271 	u_int32_t sc_cfg;		/* prototype CFG register */
    272 
    273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    274 
    275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    277 
    278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    279 
    280 	int	sc_flowflags;		/* 802.3x flow control flags */
    281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    282 	int	sc_paused;		/* paused indication */
    283 
    284 	int	sc_txfree;		/* number of free Tx descriptors */
    285 	int	sc_txnext;		/* next ready Tx descriptor */
    286 	int	sc_txwin;		/* Tx descriptors since last intr */
    287 
    288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    290 
    291 	/* values of interface state at last init */
    292 	struct {
    293 		/* if_capenable */
    294 		uint64_t	if_capenable;
    295 		/* ec_capenable */
    296 		int		ec_capenable;
    297 		/* VLAN_ATTACHED */
    298 		int		is_vlan;
    299 	}	sc_prev;
    300 
    301 	short	sc_if_flags;
    302 
    303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    304 	int	sc_rxdiscard;
    305 	int	sc_rxlen;
    306 	struct mbuf *sc_rxhead;
    307 	struct mbuf *sc_rxtail;
    308 	struct mbuf **sc_rxtailp;
    309 
    310 	int sc_ntxdesc;
    311 	int sc_ntxdesc_mask;
    312 
    313 	int sc_nrxdesc_mask;
    314 
    315 	const struct sip_parm {
    316 		const struct sip_regs {
    317 			int r_rxcfg;
    318 			int r_txcfg;
    319 		} p_regs;
    320 
    321 		const struct sip_bits {
    322 			uint32_t b_txcfg_mxdma_8;
    323 			uint32_t b_txcfg_mxdma_16;
    324 			uint32_t b_txcfg_mxdma_32;
    325 			uint32_t b_txcfg_mxdma_64;
    326 			uint32_t b_txcfg_mxdma_128;
    327 			uint32_t b_txcfg_mxdma_256;
    328 			uint32_t b_txcfg_mxdma_512;
    329 			uint32_t b_txcfg_flth_mask;
    330 			uint32_t b_txcfg_drth_mask;
    331 
    332 			uint32_t b_rxcfg_mxdma_8;
    333 			uint32_t b_rxcfg_mxdma_16;
    334 			uint32_t b_rxcfg_mxdma_32;
    335 			uint32_t b_rxcfg_mxdma_64;
    336 			uint32_t b_rxcfg_mxdma_128;
    337 			uint32_t b_rxcfg_mxdma_256;
    338 			uint32_t b_rxcfg_mxdma_512;
    339 
    340 			uint32_t b_isr_txrcmp;
    341 			uint32_t b_isr_rxrcmp;
    342 			uint32_t b_isr_dperr;
    343 			uint32_t b_isr_sserr;
    344 			uint32_t b_isr_rmabt;
    345 			uint32_t b_isr_rtabt;
    346 
    347 			uint32_t b_cmdsts_size_mask;
    348 		} p_bits;
    349 		int		p_filtmem;
    350 		int		p_rxbuf_len;
    351 		bus_size_t	p_tx_dmamap_size;
    352 		int		p_ntxsegs;
    353 		int		p_ntxsegs_alloc;
    354 		int		p_nrxdesc;
    355 	} *sc_parm;
    356 
    357 	void (*sc_rxintr)(struct sip_softc *);
    358 
    359 #if NRND > 0
    360 	rndsource_element_t rnd_source;	/* random source */
    361 #endif
    362 };
    363 
    364 #define	sc_bits	sc_parm->p_bits
    365 #define	sc_regs	sc_parm->p_regs
    366 
    367 static const struct sip_parm sip_parm = {
    368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    370 	, .p_tx_dmamap_size = MCLBYTES
    371 	, .p_ntxsegs = 16
    372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    373 	, .p_nrxdesc = SIP_NRXDESC
    374 	, .p_bits = {
    375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    384 
    385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    392 
    393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    400 	}
    401 	, .p_regs = {
    402 		.r_rxcfg = OTHER_SIP_RXCFG,
    403 		.r_txcfg = OTHER_SIP_TXCFG
    404 	}
    405 }, gsip_parm = {
    406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    407 	, .p_rxbuf_len = MCLBYTES - 8
    408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    409 	, .p_ntxsegs = 64
    410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    411 	, .p_nrxdesc = GSIP_NRXDESC
    412 	, .p_bits = {
    413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    422 
    423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    430 
    431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    438 	}
    439 	, .p_regs = {
    440 		.r_rxcfg = DP83820_SIP_RXCFG,
    441 		.r_txcfg = DP83820_SIP_TXCFG
    442 	}
    443 };
    444 
    445 static inline int
    446 sip_nexttx(const struct sip_softc *sc, int x)
    447 {
    448 	return (x + 1) & sc->sc_ntxdesc_mask;
    449 }
    450 
    451 static inline int
    452 sip_nextrx(const struct sip_softc *sc, int x)
    453 {
    454 	return (x + 1) & sc->sc_nrxdesc_mask;
    455 }
    456 
    457 /* 83820 only */
    458 static inline void
    459 sip_rxchain_reset(struct sip_softc *sc)
    460 {
    461 	sc->sc_rxtailp = &sc->sc_rxhead;
    462 	*sc->sc_rxtailp = NULL;
    463 	sc->sc_rxlen = 0;
    464 }
    465 
    466 /* 83820 only */
    467 static inline void
    468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    469 {
    470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    471 	sc->sc_rxtailp = &m->m_next;
    472 }
    473 
    474 #ifdef SIP_EVENT_COUNTERS
    475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    476 #else
    477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    478 #endif
    479 
    480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    482 
    483 static inline void
    484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    485 {
    486 	int x, n;
    487 
    488 	x = x0;
    489 	n = n0;
    490 
    491 	/* If it will wrap around, sync to the end of the ring. */
    492 	if (x + n > sc->sc_ntxdesc) {
    493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    495 		    (sc->sc_ntxdesc - x), ops);
    496 		n -= (sc->sc_ntxdesc - x);
    497 		x = 0;
    498 	}
    499 
    500 	/* Now sync whatever is left. */
    501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    503 }
    504 
    505 static inline void
    506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    507 {
    508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    510 }
    511 
    512 #if 0
    513 #ifdef DP83820
    514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    515 	u_int32_t	sipd_cmdsts;	/* command/status word */
    516 #else
    517 	u_int32_t	sipd_cmdsts;	/* command/status word */
    518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    519 #endif /* DP83820 */
    520 #endif /* 0 */
    521 
    522 static inline volatile uint32_t *
    523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    524 {
    525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    526 }
    527 
    528 static inline volatile uint32_t *
    529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    530 {
    531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    532 }
    533 
    534 static inline void
    535 sip_init_rxdesc(struct sip_softc *sc, int x)
    536 {
    537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    539 
    540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    544 	sipd->sipd_extsts = 0;
    545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    546 }
    547 
    548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    549 	((sc)->sc_model->sip_vendor == (v) &&				\
    550 	 (sc)->sc_model->sip_product == (p) &&				\
    551 	 (sc)->sc_rev == (r))
    552 
    553 #define	SIP_CHIP_MODEL(sc, v, p)					\
    554 	((sc)->sc_model->sip_vendor == (v) &&				\
    555 	 (sc)->sc_model->sip_product == (p))
    556 
    557 #define	SIP_SIS900_REV(sc, rev)						\
    558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    559 
    560 #define SIP_TIMEOUT 1000
    561 
    562 static int	sip_ifflags_cb(struct ethercom *);
    563 static void	sipcom_start(struct ifnet *);
    564 static void	sipcom_watchdog(struct ifnet *);
    565 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    566 static int	sipcom_init(struct ifnet *);
    567 static void	sipcom_stop(struct ifnet *, int);
    568 
    569 static bool	sipcom_reset(struct sip_softc *);
    570 static void	sipcom_rxdrain(struct sip_softc *);
    571 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    572 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    573 				      u_int16_t *);
    574 static void	sipcom_tick(void *);
    575 
    576 static void	sipcom_sis900_set_filter(struct sip_softc *);
    577 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    578 
    579 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    580 		    const struct pci_attach_args *, u_int8_t *);
    581 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    582 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    583 		    const struct pci_attach_args *, u_int8_t *);
    584 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    585 		    const struct pci_attach_args *, u_int8_t *);
    586 
    587 static int	sipcom_intr(void *);
    588 static void	sipcom_txintr(struct sip_softc *);
    589 static void	sip_rxintr(struct sip_softc *);
    590 static void	gsip_rxintr(struct sip_softc *);
    591 
    592 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
    593 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
    594 static void	sipcom_dp83820_mii_statchg(device_t);
    595 
    596 static int	sipcom_sis900_mii_readreg(device_t, int, int);
    597 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
    598 static void	sipcom_sis900_mii_statchg(device_t);
    599 
    600 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
    601 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
    602 static void	sipcom_dp83815_mii_statchg(device_t);
    603 
    604 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    605 
    606 static int	sipcom_match(device_t, cfdata_t, void *);
    607 static void	sipcom_attach(device_t, device_t, void *);
    608 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    609 static int	sipcom_detach(device_t, int);
    610 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    611 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    612 
    613 int	gsip_copy_small = 0;
    614 int	sip_copy_small = 0;
    615 
    616 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    617     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    618     DVF_DETACH_SHUTDOWN);
    619 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    621     DVF_DETACH_SHUTDOWN);
    622 
    623 /*
    624  * Descriptions of the variants of the SiS900.
    625  */
    626 struct sip_variant {
    627 	int	(*sipv_mii_readreg)(device_t, int, int);
    628 	void	(*sipv_mii_writereg)(device_t, int, int, int);
    629 	void	(*sipv_mii_statchg)(device_t);
    630 	void	(*sipv_set_filter)(struct sip_softc *);
    631 	void	(*sipv_read_macaddr)(struct sip_softc *,
    632 		    const struct pci_attach_args *, u_int8_t *);
    633 };
    634 
    635 static u_int32_t sipcom_mii_bitbang_read(device_t);
    636 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
    637 
    638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    639 	sipcom_mii_bitbang_read,
    640 	sipcom_mii_bitbang_write,
    641 	{
    642 		EROMAR_MDIO,		/* MII_BIT_MDO */
    643 		EROMAR_MDIO,		/* MII_BIT_MDI */
    644 		EROMAR_MDC,		/* MII_BIT_MDC */
    645 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    646 		0,			/* MII_BIT_DIR_PHY_HOST */
    647 	}
    648 };
    649 
    650 static const struct sip_variant sipcom_variant_dp83820 = {
    651 	sipcom_dp83820_mii_readreg,
    652 	sipcom_dp83820_mii_writereg,
    653 	sipcom_dp83820_mii_statchg,
    654 	sipcom_dp83815_set_filter,
    655 	sipcom_dp83820_read_macaddr,
    656 };
    657 
    658 static const struct sip_variant sipcom_variant_sis900 = {
    659 	sipcom_sis900_mii_readreg,
    660 	sipcom_sis900_mii_writereg,
    661 	sipcom_sis900_mii_statchg,
    662 	sipcom_sis900_set_filter,
    663 	sipcom_sis900_read_macaddr,
    664 };
    665 
    666 static const struct sip_variant sipcom_variant_dp83815 = {
    667 	sipcom_dp83815_mii_readreg,
    668 	sipcom_dp83815_mii_writereg,
    669 	sipcom_dp83815_mii_statchg,
    670 	sipcom_dp83815_set_filter,
    671 	sipcom_dp83815_read_macaddr,
    672 };
    673 
    674 
    675 /*
    676  * Devices supported by this driver.
    677  */
    678 static const struct sip_product {
    679 	pci_vendor_id_t		sip_vendor;
    680 	pci_product_id_t	sip_product;
    681 	const char		*sip_name;
    682 	const struct sip_variant *sip_variant;
    683 	int			sip_gigabit;
    684 } sipcom_products[] = {
    685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    686 	  "NatSemi DP83820 Gigabit Ethernet",
    687 	  &sipcom_variant_dp83820, 1 },
    688 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    689 	  "SiS 900 10/100 Ethernet",
    690 	  &sipcom_variant_sis900, 0 },
    691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    692 	  "SiS 7016 10/100 Ethernet",
    693 	  &sipcom_variant_sis900, 0 },
    694 
    695 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    696 	  "NatSemi DP83815 10/100 Ethernet",
    697 	  &sipcom_variant_dp83815, 0 },
    698 
    699 	{ 0,			0,
    700 	  NULL,
    701 	  NULL, 0 },
    702 };
    703 
    704 static const struct sip_product *
    705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    706 {
    707 	const struct sip_product *sip;
    708 
    709 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    710 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    711 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    712 		    sip->sip_gigabit == gigabit)
    713 			return sip;
    714 	}
    715 	return NULL;
    716 }
    717 
    718 /*
    719  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    720  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    721  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    722  * which means we try to use 64-bit data transfers on those cards if we
    723  * happen to be plugged into a 32-bit slot.
    724  *
    725  * What we do is use this table of cards known to be 64-bit cards.  If
    726  * you have a 64-bit card who's subsystem ID is not listed in this table,
    727  * send the output of "pcictl dump ..." of the device to me so that your
    728  * card will use the 64-bit data path when plugged into a 64-bit slot.
    729  *
    730  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    731  *	   June 30, 2002
    732  */
    733 static int
    734 sipcom_check_64bit(const struct pci_attach_args *pa)
    735 {
    736 	static const struct {
    737 		pci_vendor_id_t c64_vendor;
    738 		pci_product_id_t c64_product;
    739 	} card64[] = {
    740 		/* Asante GigaNIX */
    741 		{ 0x128a,	0x0002 },
    742 
    743 		/* Accton EN1407-T, Planex GN-1000TE */
    744 		{ 0x1113,	0x1407 },
    745 
    746 		/* Netgear GA-621 */
    747 		{ 0x1385,	0x621a },
    748 
    749 		/* SMC EZ Card */
    750 		{ 0x10b8,	0x9462 },
    751 
    752 		{ 0, 0}
    753 	};
    754 	pcireg_t subsys;
    755 	int i;
    756 
    757 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    758 
    759 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    760 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    761 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    762 			return (1);
    763 	}
    764 
    765 	return (0);
    766 }
    767 
    768 static int
    769 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    770 {
    771 	struct pci_attach_args *pa = aux;
    772 
    773 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    774 		return 1;
    775 
    776 	return 0;
    777 }
    778 
    779 static void
    780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    781 {
    782 	u_int32_t reg;
    783 	int i;
    784 
    785 	/*
    786 	 * Cause the chip to load configuration data from the EEPROM.
    787 	 */
    788 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    789 	for (i = 0; i < 10000; i++) {
    790 		delay(10);
    791 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    792 		    PTSCR_EELOAD_EN) == 0)
    793 			break;
    794 	}
    795 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    796 	    PTSCR_EELOAD_EN) {
    797 		printf("%s: timeout loading configuration from EEPROM\n",
    798 		    device_xname(sc->sc_dev));
    799 		return;
    800 	}
    801 
    802 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    803 
    804 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    805 	if (reg & CFG_PCI64_DET) {
    806 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    807 		/*
    808 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    809 		 * data transfers.
    810 		 *
    811 		 * We can't use the DATA64_EN bit in the EEPROM, because
    812 		 * vendors of 32-bit cards fail to clear that bit in many
    813 		 * cases (yet the card still detects that it's in a 64-bit
    814 		 * slot; go figure).
    815 		 */
    816 		if (sipcom_check_64bit(pa)) {
    817 			sc->sc_cfg |= CFG_DATA64_EN;
    818 			printf(", using 64-bit data transfers");
    819 		}
    820 		printf("\n");
    821 	}
    822 
    823 	/*
    824 	 * XXX Need some PCI flags indicating support for
    825 	 * XXX 64-bit addressing.
    826 	 */
    827 #if 0
    828 	if (reg & CFG_M64ADDR)
    829 		sc->sc_cfg |= CFG_M64ADDR;
    830 	if (reg & CFG_T64ADDR)
    831 		sc->sc_cfg |= CFG_T64ADDR;
    832 #endif
    833 
    834 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    835 		const char *sep = "";
    836 		printf("%s: using ", device_xname(sc->sc_dev));
    837 		if (reg & CFG_EXT_125) {
    838 			sc->sc_cfg |= CFG_EXT_125;
    839 			printf("%s125MHz clock", sep);
    840 			sep = ", ";
    841 		}
    842 		if (reg & CFG_TBI_EN) {
    843 			sc->sc_cfg |= CFG_TBI_EN;
    844 			printf("%sten-bit interface", sep);
    845 			sep = ", ";
    846 		}
    847 		printf("\n");
    848 	}
    849 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    850 	    (reg & CFG_MRM_DIS) != 0)
    851 		sc->sc_cfg |= CFG_MRM_DIS;
    852 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    853 	    (reg & CFG_MWI_DIS) != 0)
    854 		sc->sc_cfg |= CFG_MWI_DIS;
    855 
    856 	/*
    857 	 * Use the extended descriptor format on the DP83820.  This
    858 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    859 	 * checksumming.
    860 	 */
    861 	sc->sc_cfg |= CFG_EXTSTS_EN;
    862 }
    863 
    864 static int
    865 sipcom_detach(device_t self, int flags)
    866 {
    867 	int s;
    868 
    869 	s = splnet();
    870 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    871 	splx(s);
    872 
    873 	return 0;
    874 }
    875 
    876 static void
    877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    878 {
    879 	int i;
    880 	struct sip_softc *sc = device_private(self);
    881 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    882 
    883 	/*
    884 	 * Free any resources we've allocated during attach.
    885 	 * Do this in reverse order and fall through.
    886 	 */
    887 	switch (stage) {
    888 	case SIP_ATTACH_FIN:
    889 		sipcom_stop(ifp, 1);
    890 		pmf_device_deregister(self);
    891 #ifdef SIP_EVENT_COUNTERS
    892 		/*
    893 		 * Attach event counters.
    894 		 */
    895 		evcnt_detach(&sc->sc_ev_txforceintr);
    896 		evcnt_detach(&sc->sc_ev_txdstall);
    897 		evcnt_detach(&sc->sc_ev_txsstall);
    898 		evcnt_detach(&sc->sc_ev_hiberr);
    899 		evcnt_detach(&sc->sc_ev_rxintr);
    900 		evcnt_detach(&sc->sc_ev_txiintr);
    901 		evcnt_detach(&sc->sc_ev_txdintr);
    902 		if (!sc->sc_gigabit) {
    903 			evcnt_detach(&sc->sc_ev_rxpause);
    904 		} else {
    905 			evcnt_detach(&sc->sc_ev_txudpsum);
    906 			evcnt_detach(&sc->sc_ev_txtcpsum);
    907 			evcnt_detach(&sc->sc_ev_txipsum);
    908 			evcnt_detach(&sc->sc_ev_rxudpsum);
    909 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    910 			evcnt_detach(&sc->sc_ev_rxipsum);
    911 			evcnt_detach(&sc->sc_ev_txpause);
    912 			evcnt_detach(&sc->sc_ev_rxpause);
    913 		}
    914 #endif /* SIP_EVENT_COUNTERS */
    915 
    916 #if NRND > 0
    917 		rnd_detach_source(&sc->rnd_source);
    918 #endif
    919 
    920 		ether_ifdetach(ifp);
    921 		if_detach(ifp);
    922 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    923 
    924 		/*FALLTHROUGH*/
    925 	case SIP_ATTACH_CREATE_RXMAP:
    926 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    927 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    928 				bus_dmamap_destroy(sc->sc_dmat,
    929 				    sc->sc_rxsoft[i].rxs_dmamap);
    930 		}
    931 		/*FALLTHROUGH*/
    932 	case SIP_ATTACH_CREATE_TXMAP:
    933 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    934 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    935 				bus_dmamap_destroy(sc->sc_dmat,
    936 				    sc->sc_txsoft[i].txs_dmamap);
    937 		}
    938 		/*FALLTHROUGH*/
    939 	case SIP_ATTACH_LOAD_MAP:
    940 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    941 		/*FALLTHROUGH*/
    942 	case SIP_ATTACH_CREATE_MAP:
    943 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    944 		/*FALLTHROUGH*/
    945 	case SIP_ATTACH_MAP_MEM:
    946 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    947 		    sizeof(struct sip_control_data));
    948 		/*FALLTHROUGH*/
    949 	case SIP_ATTACH_ALLOC_MEM:
    950 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    951 		/* FALLTHROUGH*/
    952 	case SIP_ATTACH_INTR:
    953 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    954 		/* FALLTHROUGH*/
    955 	case SIP_ATTACH_MAP:
    956 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    957 		break;
    958 	default:
    959 		break;
    960 	}
    961 	return;
    962 }
    963 
    964 static bool
    965 sipcom_resume(device_t self, const pmf_qual_t *qual)
    966 {
    967 	struct sip_softc *sc = device_private(self);
    968 
    969 	return sipcom_reset(sc);
    970 }
    971 
    972 static bool
    973 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    974 {
    975 	struct sip_softc *sc = device_private(self);
    976 
    977 	sipcom_rxdrain(sc);
    978 	return true;
    979 }
    980 
    981 static void
    982 sipcom_attach(device_t parent, device_t self, void *aux)
    983 {
    984 	struct sip_softc *sc = device_private(self);
    985 	struct pci_attach_args *pa = aux;
    986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    987 	pci_chipset_tag_t pc = pa->pa_pc;
    988 	pci_intr_handle_t ih;
    989 	const char *intrstr = NULL;
    990 	bus_space_tag_t iot, memt;
    991 	bus_space_handle_t ioh, memh;
    992 	bus_size_t iosz, memsz;
    993 	int ioh_valid, memh_valid;
    994 	int i, rseg, error;
    995 	const struct sip_product *sip;
    996 	u_int8_t enaddr[ETHER_ADDR_LEN];
    997 	pcireg_t csr;
    998 	pcireg_t memtype;
    999 	bus_size_t tx_dmamap_size;
   1000 	int ntxsegs_alloc;
   1001 	cfdata_t cf = device_cfdata(self);
   1002 
   1003 	callout_init(&sc->sc_tick_ch, 0);
   1004 
   1005 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1006 	if (sip == NULL) {
   1007 		printf("\n");
   1008 		panic("%s: impossible", __func__);
   1009 	}
   1010 	sc->sc_dev = self;
   1011 	sc->sc_gigabit = sip->sip_gigabit;
   1012 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1013 	sc->sc_pc = pc;
   1014 
   1015 	if (sc->sc_gigabit) {
   1016 		sc->sc_rxintr = gsip_rxintr;
   1017 		sc->sc_parm = &gsip_parm;
   1018 	} else {
   1019 		sc->sc_rxintr = sip_rxintr;
   1020 		sc->sc_parm = &sip_parm;
   1021 	}
   1022 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1023 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1024 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1025 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1026 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1027 
   1028 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1029 
   1030 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1031 
   1032 	sc->sc_model = sip;
   1033 
   1034 	/*
   1035 	 * XXX Work-around broken PXE firmware on some boards.
   1036 	 *
   1037 	 * The DP83815 shares an address decoder with the MEM BAR
   1038 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1039 	 * so that memory mapped access works.
   1040 	 */
   1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1042 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1043 	    ~PCI_MAPREG_ROM_ENABLE);
   1044 
   1045 	/*
   1046 	 * Map the device.
   1047 	 */
   1048 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1049 	    PCI_MAPREG_TYPE_IO, 0,
   1050 	    &iot, &ioh, NULL, &iosz) == 0);
   1051 	if (sc->sc_gigabit) {
   1052 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1053 		switch (memtype) {
   1054 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1055 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1056 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1057 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1058 			break;
   1059 		default:
   1060 			memh_valid = 0;
   1061 		}
   1062 	} else {
   1063 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1064 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1065 		    &memt, &memh, NULL, &memsz) == 0);
   1066 	}
   1067 
   1068 	if (memh_valid) {
   1069 		sc->sc_st = memt;
   1070 		sc->sc_sh = memh;
   1071 		sc->sc_sz = memsz;
   1072 	} else if (ioh_valid) {
   1073 		sc->sc_st = iot;
   1074 		sc->sc_sh = ioh;
   1075 		sc->sc_sz = iosz;
   1076 	} else {
   1077 		printf("%s: unable to map device registers\n",
   1078 		    device_xname(sc->sc_dev));
   1079 		return;
   1080 	}
   1081 
   1082 	sc->sc_dmat = pa->pa_dmat;
   1083 
   1084 	/*
   1085 	 * Make sure bus mastering is enabled.  Also make sure
   1086 	 * Write/Invalidate is enabled if we're allowed to use it.
   1087 	 */
   1088 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1089 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1090 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1091 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1092 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1093 
   1094 	/* power up chip */
   1095 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1096 	if (error != 0 && error != EOPNOTSUPP) {
   1097 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1098 		return;
   1099 	}
   1100 
   1101 	/*
   1102 	 * Map and establish our interrupt.
   1103 	 */
   1104 	if (pci_intr_map(pa, &ih)) {
   1105 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1106 		return;
   1107 	}
   1108 	intrstr = pci_intr_string(pc, ih);
   1109 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1110 	if (sc->sc_ih == NULL) {
   1111 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1112 		if (intrstr != NULL)
   1113 			aprint_error(" at %s", intrstr);
   1114 		aprint_error("\n");
   1115 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1116 	}
   1117 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1118 
   1119 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1120 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1121 
   1122 	/*
   1123 	 * Allocate the control data structures, and create and load the
   1124 	 * DMA map for it.
   1125 	 */
   1126 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1127 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1128 	    &rseg, 0)) != 0) {
   1129 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
   1130 		    error);
   1131 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1132 	}
   1133 
   1134 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1135 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1136 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1137 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
   1138 		    error);
   1139 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1140 	}
   1141 
   1142 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1143 	    sizeof(struct sip_control_data), 1,
   1144 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1145 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
   1146 		    "error = %d\n", error);
   1147 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1148 	}
   1149 
   1150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1151 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1152 	    0)) != 0) {
   1153 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
   1154 		    error);
   1155 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1156 	}
   1157 
   1158 	/*
   1159 	 * Create the transmit buffer DMA maps.
   1160 	 */
   1161 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1162 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1163 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1164 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1165 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
   1166 			    "error = %d\n", i, error);
   1167 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1168 		}
   1169 	}
   1170 
   1171 	/*
   1172 	 * Create the receive buffer DMA maps.
   1173 	 */
   1174 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1175 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1176 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1177 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
   1178 			    "error = %d\n", i, error);
   1179 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1180 		}
   1181 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1182 	}
   1183 
   1184 	/*
   1185 	 * Reset the chip to a known state.
   1186 	 */
   1187 	sipcom_reset(sc);
   1188 
   1189 	/*
   1190 	 * Read the Ethernet address from the EEPROM.  This might
   1191 	 * also fetch other stuff from the EEPROM and stash it
   1192 	 * in the softc.
   1193 	 */
   1194 	sc->sc_cfg = 0;
   1195 	if (!sc->sc_gigabit) {
   1196 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1198 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1199 
   1200 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1201 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1202 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1203 			sc->sc_cfg |=
   1204 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1205 			     CFG_EDBMASTEN);
   1206 	}
   1207 
   1208 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1209 
   1210 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
   1211 	    ether_sprintf(enaddr));
   1212 
   1213 	/*
   1214 	 * Initialize the configuration register: aggressive PCI
   1215 	 * bus request algorithm, default backoff, default OW timer,
   1216 	 * default parity error detection.
   1217 	 *
   1218 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1219 	 * friends -- it affects packet data, not descriptors.
   1220 	 */
   1221 	if (sc->sc_gigabit)
   1222 		sipcom_dp83820_attach(sc, pa);
   1223 
   1224 	/*
   1225 	 * Initialize our media structures and probe the MII.
   1226 	 */
   1227 	sc->sc_mii.mii_ifp = ifp;
   1228 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1229 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1230 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1231 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1232 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1233 	    sipcom_mediastatus);
   1234 
   1235 	/*
   1236 	 * XXX We cannot handle flow control on the DP83815.
   1237 	 */
   1238 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1240 			   MII_OFFSET_ANY, 0);
   1241 	else
   1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1243 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1244 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1245 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1247 	} else
   1248 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1249 
   1250 	ifp = &sc->sc_ethercom.ec_if;
   1251 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1252 	ifp->if_softc = sc;
   1253 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1254 	sc->sc_if_flags = ifp->if_flags;
   1255 	ifp->if_ioctl = sipcom_ioctl;
   1256 	ifp->if_start = sipcom_start;
   1257 	ifp->if_watchdog = sipcom_watchdog;
   1258 	ifp->if_init = sipcom_init;
   1259 	ifp->if_stop = sipcom_stop;
   1260 	IFQ_SET_READY(&ifp->if_snd);
   1261 
   1262 	/*
   1263 	 * We can support 802.1Q VLAN-sized frames.
   1264 	 */
   1265 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1266 
   1267 	if (sc->sc_gigabit) {
   1268 		/*
   1269 		 * And the DP83820 can do VLAN tagging in hardware, and
   1270 		 * support the jumbo Ethernet MTU.
   1271 		 */
   1272 		sc->sc_ethercom.ec_capabilities |=
   1273 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1274 
   1275 		/*
   1276 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1277 		 * in hardware.
   1278 		 */
   1279 		ifp->if_capabilities |=
   1280 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1281 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1282 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1283 	}
   1284 
   1285 	/*
   1286 	 * Attach the interface.
   1287 	 */
   1288 	if_attach(ifp);
   1289 	ether_ifattach(ifp, enaddr);
   1290 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1291 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1292 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1293 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1294 #if NRND > 0
   1295 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1296 	    RND_TYPE_NET, 0);
   1297 #endif
   1298 
   1299 	/*
   1300 	 * The number of bytes that must be available in
   1301 	 * the Tx FIFO before the bus master can DMA more
   1302 	 * data into the FIFO.
   1303 	 */
   1304 	sc->sc_tx_fill_thresh = 64 / 32;
   1305 
   1306 	/*
   1307 	 * Start at a drain threshold of 512 bytes.  We will
   1308 	 * increase it if a DMA underrun occurs.
   1309 	 *
   1310 	 * XXX The minimum value of this variable should be
   1311 	 * tuned.  We may be able to improve performance
   1312 	 * by starting with a lower value.  That, however,
   1313 	 * may trash the first few outgoing packets if the
   1314 	 * PCI bus is saturated.
   1315 	 */
   1316 	if (sc->sc_gigabit)
   1317 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1318 	else
   1319 		sc->sc_tx_drain_thresh = 1504 / 32;
   1320 
   1321 	/*
   1322 	 * Initialize the Rx FIFO drain threshold.
   1323 	 *
   1324 	 * This is in units of 8 bytes.
   1325 	 *
   1326 	 * We should never set this value lower than 2; 14 bytes are
   1327 	 * required to filter the packet.
   1328 	 */
   1329 	sc->sc_rx_drain_thresh = 128 / 8;
   1330 
   1331 #ifdef SIP_EVENT_COUNTERS
   1332 	/*
   1333 	 * Attach event counters.
   1334 	 */
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1336 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1338 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1340 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1342 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1343 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1344 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1345 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1346 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1347 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1348 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1349 	if (!sc->sc_gigabit) {
   1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1352 	} else {
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1356 		    NULL, device_xname(sc->sc_dev), "txpause");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1358 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1360 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1362 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1363 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1364 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1365 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1366 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1367 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1368 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1369 	}
   1370 #endif /* SIP_EVENT_COUNTERS */
   1371 
   1372 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1373 		pmf_class_network_register(self, ifp);
   1374 	else
   1375 		aprint_error_dev(self, "couldn't establish power handler\n");
   1376 }
   1377 
   1378 static inline void
   1379 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1380     uint64_t capenable)
   1381 {
   1382 	struct m_tag *mtag;
   1383 	u_int32_t extsts;
   1384 #ifdef DEBUG
   1385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1386 #endif
   1387 	/*
   1388 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1389 	 * up the descriptor to encapsulate the packet for us.
   1390 	 *
   1391 	 * This apparently has to be on the last descriptor of
   1392 	 * the packet.
   1393 	 */
   1394 
   1395 	/*
   1396 	 * Byte swapping is tricky. We need to provide the tag
   1397 	 * in a network byte order. On a big-endian machine,
   1398 	 * the byteorder is correct, but we need to swap it
   1399 	 * anyway, because this will be undone by the outside
   1400 	 * htole32(). That's why there must be an
   1401 	 * unconditional swap instead of htons() inside.
   1402 	 */
   1403 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1404 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1405 		    htole32(EXTSTS_VPKT |
   1406 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1407 				 EXTSTS_VTCI));
   1408 	}
   1409 
   1410 	/*
   1411 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1412 	 * checksumming, set up the descriptor to do this work
   1413 	 * for us.
   1414 	 *
   1415 	 * This apparently has to be on the first descriptor of
   1416 	 * the packet.
   1417 	 *
   1418 	 * Byte-swap constants so the compiler can optimize.
   1419 	 */
   1420 	extsts = 0;
   1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1423 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1424 		extsts |= htole32(EXTSTS_IPPKT);
   1425 	}
   1426 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1428 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1429 		extsts |= htole32(EXTSTS_TCPPKT);
   1430 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1431 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1432 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1433 		extsts |= htole32(EXTSTS_UDPPKT);
   1434 	}
   1435 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1436 }
   1437 
   1438 /*
   1439  * sip_start:		[ifnet interface function]
   1440  *
   1441  *	Start packet transmission on the interface.
   1442  */
   1443 static void
   1444 sipcom_start(struct ifnet *ifp)
   1445 {
   1446 	struct sip_softc *sc = ifp->if_softc;
   1447 	struct mbuf *m0;
   1448 	struct mbuf *m;
   1449 	struct sip_txsoft *txs;
   1450 	bus_dmamap_t dmamap;
   1451 	int error, nexttx, lasttx, seg;
   1452 	int ofree = sc->sc_txfree;
   1453 #if 0
   1454 	int firsttx = sc->sc_txnext;
   1455 #endif
   1456 
   1457 	/*
   1458 	 * If we've been told to pause, don't transmit any more packets.
   1459 	 */
   1460 	if (!sc->sc_gigabit && sc->sc_paused)
   1461 		ifp->if_flags |= IFF_OACTIVE;
   1462 
   1463 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1464 		return;
   1465 
   1466 	/*
   1467 	 * Loop through the send queue, setting up transmit descriptors
   1468 	 * until we drain the queue, or use up all available transmit
   1469 	 * descriptors.
   1470 	 */
   1471 	for (;;) {
   1472 		/* Get a work queue entry. */
   1473 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1474 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1475 			break;
   1476 		}
   1477 
   1478 		/*
   1479 		 * Grab a packet off the queue.
   1480 		 */
   1481 		IFQ_POLL(&ifp->if_snd, m0);
   1482 		if (m0 == NULL)
   1483 			break;
   1484 		m = NULL;
   1485 
   1486 		dmamap = txs->txs_dmamap;
   1487 
   1488 		/*
   1489 		 * Load the DMA map.  If this fails, the packet either
   1490 		 * didn't fit in the alloted number of segments, or we
   1491 		 * were short on resources.
   1492 		 */
   1493 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1494 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1495 		/* In the non-gigabit case, we'll copy and try again. */
   1496 		if (error != 0 && !sc->sc_gigabit) {
   1497 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1498 			if (m == NULL) {
   1499 				printf("%s: unable to allocate Tx mbuf\n",
   1500 				    device_xname(sc->sc_dev));
   1501 				break;
   1502 			}
   1503 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1504 			if (m0->m_pkthdr.len > MHLEN) {
   1505 				MCLGET(m, M_DONTWAIT);
   1506 				if ((m->m_flags & M_EXT) == 0) {
   1507 					printf("%s: unable to allocate Tx "
   1508 					    "cluster\n", device_xname(sc->sc_dev));
   1509 					m_freem(m);
   1510 					break;
   1511 				}
   1512 			}
   1513 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1514 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1515 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1516 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1517 			if (error) {
   1518 				printf("%s: unable to load Tx buffer, "
   1519 				    "error = %d\n", device_xname(sc->sc_dev), error);
   1520 				break;
   1521 			}
   1522 		} else if (error == EFBIG) {
   1523 			/*
   1524 			 * For the too-many-segments case, we simply
   1525 			 * report an error and drop the packet,
   1526 			 * since we can't sanely copy a jumbo packet
   1527 			 * to a single buffer.
   1528 			 */
   1529 			printf("%s: Tx packet consumes too many "
   1530 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
   1531 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1532 			m_freem(m0);
   1533 			continue;
   1534 		} else if (error != 0) {
   1535 			/*
   1536 			 * Short on resources, just stop for now.
   1537 			 */
   1538 			break;
   1539 		}
   1540 
   1541 		/*
   1542 		 * Ensure we have enough descriptors free to describe
   1543 		 * the packet.  Note, we always reserve one descriptor
   1544 		 * at the end of the ring as a termination point, to
   1545 		 * prevent wrap-around.
   1546 		 */
   1547 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1548 			/*
   1549 			 * Not enough free descriptors to transmit this
   1550 			 * packet.  We haven't committed anything yet,
   1551 			 * so just unload the DMA map, put the packet
   1552 			 * back on the queue, and punt.  Notify the upper
   1553 			 * layer that there are not more slots left.
   1554 			 *
   1555 			 * XXX We could allocate an mbuf and copy, but
   1556 			 * XXX is it worth it?
   1557 			 */
   1558 			ifp->if_flags |= IFF_OACTIVE;
   1559 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1560 			if (m != NULL)
   1561 				m_freem(m);
   1562 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1563 			break;
   1564 		}
   1565 
   1566 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1567 		if (m != NULL) {
   1568 			m_freem(m0);
   1569 			m0 = m;
   1570 		}
   1571 
   1572 		/*
   1573 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1574 		 */
   1575 
   1576 		/* Sync the DMA map. */
   1577 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1578 		    BUS_DMASYNC_PREWRITE);
   1579 
   1580 		/*
   1581 		 * Initialize the transmit descriptors.
   1582 		 */
   1583 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1584 		     seg < dmamap->dm_nsegs;
   1585 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1586 			/*
   1587 			 * If this is the first descriptor we're
   1588 			 * enqueueing, don't set the OWN bit just
   1589 			 * yet.  That could cause a race condition.
   1590 			 * We'll do it below.
   1591 			 */
   1592 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1593 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1594 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1595 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1596 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1597 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1598 			lasttx = nexttx;
   1599 		}
   1600 
   1601 		/* Clear the MORE bit on the last segment. */
   1602 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1603 		    htole32(~CMDSTS_MORE);
   1604 
   1605 		/*
   1606 		 * If we're in the interrupt delay window, delay the
   1607 		 * interrupt.
   1608 		 */
   1609 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1610 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1611 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1612 			    htole32(CMDSTS_INTR);
   1613 			sc->sc_txwin = 0;
   1614 		}
   1615 
   1616 		if (sc->sc_gigabit)
   1617 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1618 
   1619 		/* Sync the descriptors we're using. */
   1620 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1622 
   1623 		/*
   1624 		 * The entire packet is set up.  Give the first descrptor
   1625 		 * to the chip now.
   1626 		 */
   1627 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1628 		    htole32(CMDSTS_OWN);
   1629 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1630 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1631 
   1632 		/*
   1633 		 * Store a pointer to the packet so we can free it later,
   1634 		 * and remember what txdirty will be once the packet is
   1635 		 * done.
   1636 		 */
   1637 		txs->txs_mbuf = m0;
   1638 		txs->txs_firstdesc = sc->sc_txnext;
   1639 		txs->txs_lastdesc = lasttx;
   1640 
   1641 		/* Advance the tx pointer. */
   1642 		sc->sc_txfree -= dmamap->dm_nsegs;
   1643 		sc->sc_txnext = nexttx;
   1644 
   1645 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1646 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1647 
   1648 		/*
   1649 		 * Pass the packet to any BPF listeners.
   1650 		 */
   1651 		if (ifp->if_bpf)
   1652 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
   1653 	}
   1654 
   1655 	if (txs == NULL || sc->sc_txfree == 0) {
   1656 		/* No more slots left; notify upper layer. */
   1657 		ifp->if_flags |= IFF_OACTIVE;
   1658 	}
   1659 
   1660 	if (sc->sc_txfree != ofree) {
   1661 		/*
   1662 		 * Start the transmit process.  Note, the manual says
   1663 		 * that if there are no pending transmissions in the
   1664 		 * chip's internal queue (indicated by TXE being clear),
   1665 		 * then the driver software must set the TXDP to the
   1666 		 * first descriptor to be transmitted.  However, if we
   1667 		 * do this, it causes serious performance degredation on
   1668 		 * the DP83820 under load, not setting TXDP doesn't seem
   1669 		 * to adversely affect the SiS 900 or DP83815.
   1670 		 *
   1671 		 * Well, I guess it wouldn't be the first time a manual
   1672 		 * has lied -- and they could be speaking of the NULL-
   1673 		 * terminated descriptor list case, rather than OWN-
   1674 		 * terminated rings.
   1675 		 */
   1676 #if 0
   1677 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1678 		     CR_TXE) == 0) {
   1679 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1680 			    SIP_CDTXADDR(sc, firsttx));
   1681 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1682 		}
   1683 #else
   1684 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1685 #endif
   1686 
   1687 		/* Set a watchdog timer in case the chip flakes out. */
   1688 		/* Gigabit autonegotiation takes 5 seconds. */
   1689 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1690 	}
   1691 }
   1692 
   1693 /*
   1694  * sip_watchdog:	[ifnet interface function]
   1695  *
   1696  *	Watchdog timer handler.
   1697  */
   1698 static void
   1699 sipcom_watchdog(struct ifnet *ifp)
   1700 {
   1701 	struct sip_softc *sc = ifp->if_softc;
   1702 
   1703 	/*
   1704 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1705 	 * If we get a timeout, try and sweep up transmit descriptors.
   1706 	 * If we manage to sweep them all up, ignore the lack of
   1707 	 * interrupt.
   1708 	 */
   1709 	sipcom_txintr(sc);
   1710 
   1711 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1712 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1713 		ifp->if_oerrors++;
   1714 
   1715 		/* Reset the interface. */
   1716 		(void) sipcom_init(ifp);
   1717 	} else if (ifp->if_flags & IFF_DEBUG)
   1718 		printf("%s: recovered from device timeout\n",
   1719 		    device_xname(sc->sc_dev));
   1720 
   1721 	/* Try to get more packets going. */
   1722 	sipcom_start(ifp);
   1723 }
   1724 
   1725 /* If the interface is up and running, only modify the receive
   1726  * filter when setting promiscuous or debug mode.  Otherwise fall
   1727  * through to ether_ioctl, which will reset the chip.
   1728  */
   1729 static int
   1730 sip_ifflags_cb(struct ethercom *ec)
   1731 {
   1732 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1733 			 == (sc)->sc_ethercom.ec_capenable)		\
   1734 			&& ((sc)->sc_prev.is_vlan ==			\
   1735 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1736 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1737 	struct ifnet *ifp = &ec->ec_if;
   1738 	struct sip_softc *sc = ifp->if_softc;
   1739 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1740 
   1741 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1742 	    !COMPARE_IC(sc, ifp))
   1743 		return ENETRESET;
   1744 	/* Set up the receive filter. */
   1745 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1746 	return 0;
   1747 }
   1748 
   1749 /*
   1750  * sip_ioctl:		[ifnet interface function]
   1751  *
   1752  *	Handle control requests from the operator.
   1753  */
   1754 static int
   1755 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1756 {
   1757 	struct sip_softc *sc = ifp->if_softc;
   1758 	struct ifreq *ifr = (struct ifreq *)data;
   1759 	int s, error;
   1760 
   1761 	s = splnet();
   1762 
   1763 	switch (cmd) {
   1764 	case SIOCSIFMEDIA:
   1765 		/* Flow control requires full-duplex mode. */
   1766 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1767 		    (ifr->ifr_media & IFM_FDX) == 0)
   1768 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1769 
   1770 		/* XXX */
   1771 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1772 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1773 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1774 			if (sc->sc_gigabit &&
   1775 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1776 				/* We can do both TXPAUSE and RXPAUSE. */
   1777 				ifr->ifr_media |=
   1778 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1779 			} else if (ifr->ifr_media & IFM_FLOW) {
   1780 				/*
   1781 				 * Both TXPAUSE and RXPAUSE must be set.
   1782 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1783 				 * feature.)
   1784 				 *
   1785 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1786 				 */
   1787 				ifr->ifr_media |=
   1788 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1789 			}
   1790 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1791 		}
   1792 		/*FALLTHROUGH*/
   1793 	default:
   1794 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1795 			break;
   1796 
   1797 		error = 0;
   1798 
   1799 		if (cmd == SIOCSIFCAP)
   1800 			error = (*ifp->if_init)(ifp);
   1801 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1802 			;
   1803 		else if (ifp->if_flags & IFF_RUNNING) {
   1804 			/*
   1805 			 * Multicast list has changed; set the hardware filter
   1806 			 * accordingly.
   1807 			 */
   1808 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1809 		}
   1810 		break;
   1811 	}
   1812 
   1813 	/* Try to get more packets going. */
   1814 	sipcom_start(ifp);
   1815 
   1816 	sc->sc_if_flags = ifp->if_flags;
   1817 	splx(s);
   1818 	return (error);
   1819 }
   1820 
   1821 /*
   1822  * sip_intr:
   1823  *
   1824  *	Interrupt service routine.
   1825  */
   1826 static int
   1827 sipcom_intr(void *arg)
   1828 {
   1829 	struct sip_softc *sc = arg;
   1830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1831 	u_int32_t isr;
   1832 	int handled = 0;
   1833 
   1834 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1835 		return 0;
   1836 
   1837 	/* Disable interrupts. */
   1838 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1839 
   1840 	for (;;) {
   1841 		/* Reading clears interrupt. */
   1842 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1843 		if ((isr & sc->sc_imr) == 0)
   1844 			break;
   1845 
   1846 #if NRND > 0
   1847 		if (RND_ENABLED(&sc->rnd_source))
   1848 			rnd_add_uint32(&sc->rnd_source, isr);
   1849 #endif
   1850 
   1851 		handled = 1;
   1852 
   1853 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1854 			break;
   1855 
   1856 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1857 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1858 
   1859 			/* Grab any new packets. */
   1860 			(*sc->sc_rxintr)(sc);
   1861 
   1862 			if (isr & ISR_RXORN) {
   1863 				printf("%s: receive FIFO overrun\n",
   1864 				    device_xname(sc->sc_dev));
   1865 
   1866 				/* XXX adjust rx_drain_thresh? */
   1867 			}
   1868 
   1869 			if (isr & ISR_RXIDLE) {
   1870 				printf("%s: receive ring overrun\n",
   1871 				    device_xname(sc->sc_dev));
   1872 
   1873 				/* Get the receive process going again. */
   1874 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1875 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1876 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1877 				    SIP_CR, CR_RXE);
   1878 			}
   1879 		}
   1880 
   1881 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1882 #ifdef SIP_EVENT_COUNTERS
   1883 			if (isr & ISR_TXDESC)
   1884 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1885 			else if (isr & ISR_TXIDLE)
   1886 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1887 #endif
   1888 
   1889 			/* Sweep up transmit descriptors. */
   1890 			sipcom_txintr(sc);
   1891 
   1892 			if (isr & ISR_TXURN) {
   1893 				u_int32_t thresh;
   1894 				int txfifo_size = (sc->sc_gigabit)
   1895 				    ? DP83820_SIP_TXFIFO_SIZE
   1896 				    : OTHER_SIP_TXFIFO_SIZE;
   1897 
   1898 				printf("%s: transmit FIFO underrun",
   1899 				    device_xname(sc->sc_dev));
   1900 				thresh = sc->sc_tx_drain_thresh + 1;
   1901 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1902 				&& (thresh * 32) <= (txfifo_size -
   1903 				     (sc->sc_tx_fill_thresh * 32))) {
   1904 					printf("; increasing Tx drain "
   1905 					    "threshold to %u bytes\n",
   1906 					    thresh * 32);
   1907 					sc->sc_tx_drain_thresh = thresh;
   1908 					(void) sipcom_init(ifp);
   1909 				} else {
   1910 					(void) sipcom_init(ifp);
   1911 					printf("\n");
   1912 				}
   1913 			}
   1914 		}
   1915 
   1916 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1917 			if (isr & ISR_PAUSE_ST) {
   1918 				sc->sc_paused = 1;
   1919 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1920 				ifp->if_flags |= IFF_OACTIVE;
   1921 			}
   1922 			if (isr & ISR_PAUSE_END) {
   1923 				sc->sc_paused = 0;
   1924 				ifp->if_flags &= ~IFF_OACTIVE;
   1925 			}
   1926 		}
   1927 
   1928 		if (isr & ISR_HIBERR) {
   1929 			int want_init = 0;
   1930 
   1931 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1932 
   1933 #define	PRINTERR(bit, str)						\
   1934 			do {						\
   1935 				if ((isr & (bit)) != 0) {		\
   1936 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1937 						printf("%s: %s\n",	\
   1938 						    device_xname(sc->sc_dev), str); \
   1939 					want_init = 1;			\
   1940 				}					\
   1941 			} while (/*CONSTCOND*/0)
   1942 
   1943 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1944 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1945 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1946 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1947 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1948 			/*
   1949 			 * Ignore:
   1950 			 *	Tx reset complete
   1951 			 *	Rx reset complete
   1952 			 */
   1953 			if (want_init)
   1954 				(void) sipcom_init(ifp);
   1955 #undef PRINTERR
   1956 		}
   1957 	}
   1958 
   1959 	/* Re-enable interrupts. */
   1960 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1961 
   1962 	/* Try to get more packets going. */
   1963 	sipcom_start(ifp);
   1964 
   1965 	return (handled);
   1966 }
   1967 
   1968 /*
   1969  * sip_txintr:
   1970  *
   1971  *	Helper; handle transmit interrupts.
   1972  */
   1973 static void
   1974 sipcom_txintr(struct sip_softc *sc)
   1975 {
   1976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1977 	struct sip_txsoft *txs;
   1978 	u_int32_t cmdsts;
   1979 
   1980 	if (sc->sc_paused == 0)
   1981 		ifp->if_flags &= ~IFF_OACTIVE;
   1982 
   1983 	/*
   1984 	 * Go through our Tx list and free mbufs for those
   1985 	 * frames which have been transmitted.
   1986 	 */
   1987 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1988 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1989 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1990 
   1991 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1992 		if (cmdsts & CMDSTS_OWN)
   1993 			break;
   1994 
   1995 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1996 
   1997 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1998 
   1999 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2000 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2001 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2002 		m_freem(txs->txs_mbuf);
   2003 		txs->txs_mbuf = NULL;
   2004 
   2005 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2006 
   2007 		/*
   2008 		 * Check for errors and collisions.
   2009 		 */
   2010 		if (cmdsts &
   2011 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2012 			ifp->if_oerrors++;
   2013 			if (cmdsts & CMDSTS_Tx_EC)
   2014 				ifp->if_collisions += 16;
   2015 			if (ifp->if_flags & IFF_DEBUG) {
   2016 				if (cmdsts & CMDSTS_Tx_ED)
   2017 					printf("%s: excessive deferral\n",
   2018 					    device_xname(sc->sc_dev));
   2019 				if (cmdsts & CMDSTS_Tx_EC)
   2020 					printf("%s: excessive collisions\n",
   2021 					    device_xname(sc->sc_dev));
   2022 			}
   2023 		} else {
   2024 			/* Packet was transmitted successfully. */
   2025 			ifp->if_opackets++;
   2026 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2027 		}
   2028 	}
   2029 
   2030 	/*
   2031 	 * If there are no more pending transmissions, cancel the watchdog
   2032 	 * timer.
   2033 	 */
   2034 	if (txs == NULL) {
   2035 		ifp->if_timer = 0;
   2036 		sc->sc_txwin = 0;
   2037 	}
   2038 }
   2039 
   2040 /*
   2041  * gsip_rxintr:
   2042  *
   2043  *	Helper; handle receive interrupts on gigabit parts.
   2044  */
   2045 static void
   2046 gsip_rxintr(struct sip_softc *sc)
   2047 {
   2048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2049 	struct sip_rxsoft *rxs;
   2050 	struct mbuf *m;
   2051 	u_int32_t cmdsts, extsts;
   2052 	int i, len;
   2053 
   2054 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2055 		rxs = &sc->sc_rxsoft[i];
   2056 
   2057 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2058 
   2059 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2060 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2061 		len = CMDSTS_SIZE(sc, cmdsts);
   2062 
   2063 		/*
   2064 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2065 		 * consumer of the receive ring, so if the bit is clear,
   2066 		 * we have processed all of the packets.
   2067 		 */
   2068 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2069 			/*
   2070 			 * We have processed all of the receive buffers.
   2071 			 */
   2072 			break;
   2073 		}
   2074 
   2075 		if (__predict_false(sc->sc_rxdiscard)) {
   2076 			sip_init_rxdesc(sc, i);
   2077 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2078 				/* Reset our state. */
   2079 				sc->sc_rxdiscard = 0;
   2080 			}
   2081 			continue;
   2082 		}
   2083 
   2084 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2085 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2086 
   2087 		m = rxs->rxs_mbuf;
   2088 
   2089 		/*
   2090 		 * Add a new receive buffer to the ring.
   2091 		 */
   2092 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2093 			/*
   2094 			 * Failed, throw away what we've done so
   2095 			 * far, and discard the rest of the packet.
   2096 			 */
   2097 			ifp->if_ierrors++;
   2098 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2099 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2100 			sip_init_rxdesc(sc, i);
   2101 			if (cmdsts & CMDSTS_MORE)
   2102 				sc->sc_rxdiscard = 1;
   2103 			if (sc->sc_rxhead != NULL)
   2104 				m_freem(sc->sc_rxhead);
   2105 			sip_rxchain_reset(sc);
   2106 			continue;
   2107 		}
   2108 
   2109 		sip_rxchain_link(sc, m);
   2110 
   2111 		m->m_len = len;
   2112 
   2113 		/*
   2114 		 * If this is not the end of the packet, keep
   2115 		 * looking.
   2116 		 */
   2117 		if (cmdsts & CMDSTS_MORE) {
   2118 			sc->sc_rxlen += len;
   2119 			continue;
   2120 		}
   2121 
   2122 		/*
   2123 		 * Okay, we have the entire packet now.  The chip includes
   2124 		 * the FCS, so we need to trim it.
   2125 		 */
   2126 		m->m_len -= ETHER_CRC_LEN;
   2127 
   2128 		*sc->sc_rxtailp = NULL;
   2129 		len = m->m_len + sc->sc_rxlen;
   2130 		m = sc->sc_rxhead;
   2131 
   2132 		sip_rxchain_reset(sc);
   2133 
   2134 		/*
   2135 		 * If an error occurred, update stats and drop the packet.
   2136 		 */
   2137 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2138 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2139 			ifp->if_ierrors++;
   2140 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2141 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2142 				/* Receive overrun handled elsewhere. */
   2143 				printf("%s: receive descriptor error\n",
   2144 				    device_xname(sc->sc_dev));
   2145 			}
   2146 #define	PRINTERR(bit, str)						\
   2147 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2148 			    (cmdsts & (bit)) != 0)			\
   2149 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2150 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2151 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2152 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2153 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2154 #undef PRINTERR
   2155 			m_freem(m);
   2156 			continue;
   2157 		}
   2158 
   2159 		/*
   2160 		 * If the packet is small enough to fit in a
   2161 		 * single header mbuf, allocate one and copy
   2162 		 * the data into it.  This greatly reduces
   2163 		 * memory consumption when we receive lots
   2164 		 * of small packets.
   2165 		 */
   2166 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2167 			struct mbuf *nm;
   2168 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2169 			if (nm == NULL) {
   2170 				ifp->if_ierrors++;
   2171 				m_freem(m);
   2172 				continue;
   2173 			}
   2174 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2175 			nm->m_data += 2;
   2176 			nm->m_pkthdr.len = nm->m_len = len;
   2177 			m_copydata(m, 0, len, mtod(nm, void *));
   2178 			m_freem(m);
   2179 			m = nm;
   2180 		}
   2181 #ifndef __NO_STRICT_ALIGNMENT
   2182 		else {
   2183 			/*
   2184 			 * The DP83820's receive buffers must be 4-byte
   2185 			 * aligned.  But this means that the data after
   2186 			 * the Ethernet header is misaligned.  To compensate,
   2187 			 * we have artificially shortened the buffer size
   2188 			 * in the descriptor, and we do an overlapping copy
   2189 			 * of the data two bytes further in (in the first
   2190 			 * buffer of the chain only).
   2191 			 */
   2192 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2193 			    m->m_len);
   2194 			m->m_data += 2;
   2195 		}
   2196 #endif /* ! __NO_STRICT_ALIGNMENT */
   2197 
   2198 		/*
   2199 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2200 		 * for us.  Associate the tag with the packet.
   2201 		 */
   2202 
   2203 		/*
   2204 		 * Again, byte swapping is tricky. Hardware provided
   2205 		 * the tag in the network byte order, but extsts was
   2206 		 * passed through le32toh() in the meantime. On a
   2207 		 * big-endian machine, we need to swap it again. On a
   2208 		 * little-endian machine, we need to convert from the
   2209 		 * network to host byte order. This means that we must
   2210 		 * swap it in any case, so unconditional swap instead
   2211 		 * of htons() is used.
   2212 		 */
   2213 		if ((extsts & EXTSTS_VPKT) != 0) {
   2214 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2215 			    continue);
   2216 		}
   2217 
   2218 		/*
   2219 		 * Set the incoming checksum information for the
   2220 		 * packet.
   2221 		 */
   2222 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2223 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2224 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2225 			if (extsts & EXTSTS_Rx_IPERR)
   2226 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2227 			if (extsts & EXTSTS_TCPPKT) {
   2228 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2229 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2230 				if (extsts & EXTSTS_Rx_TCPERR)
   2231 					m->m_pkthdr.csum_flags |=
   2232 					    M_CSUM_TCP_UDP_BAD;
   2233 			} else if (extsts & EXTSTS_UDPPKT) {
   2234 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2235 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2236 				if (extsts & EXTSTS_Rx_UDPERR)
   2237 					m->m_pkthdr.csum_flags |=
   2238 					    M_CSUM_TCP_UDP_BAD;
   2239 			}
   2240 		}
   2241 
   2242 		ifp->if_ipackets++;
   2243 		m->m_pkthdr.rcvif = ifp;
   2244 		m->m_pkthdr.len = len;
   2245 
   2246 		/*
   2247 		 * Pass this up to any BPF listeners, but only
   2248 		 * pass if up the stack if it's for us.
   2249 		 */
   2250 		if (ifp->if_bpf)
   2251 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   2252 
   2253 		/* Pass it on. */
   2254 		(*ifp->if_input)(ifp, m);
   2255 	}
   2256 
   2257 	/* Update the receive pointer. */
   2258 	sc->sc_rxptr = i;
   2259 }
   2260 
   2261 /*
   2262  * sip_rxintr:
   2263  *
   2264  *	Helper; handle receive interrupts on 10/100 parts.
   2265  */
   2266 static void
   2267 sip_rxintr(struct sip_softc *sc)
   2268 {
   2269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2270 	struct sip_rxsoft *rxs;
   2271 	struct mbuf *m;
   2272 	u_int32_t cmdsts;
   2273 	int i, len;
   2274 
   2275 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2276 		rxs = &sc->sc_rxsoft[i];
   2277 
   2278 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2279 
   2280 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2281 
   2282 		/*
   2283 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2284 		 * consumer of the receive ring, so if the bit is clear,
   2285 		 * we have processed all of the packets.
   2286 		 */
   2287 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2288 			/*
   2289 			 * We have processed all of the receive buffers.
   2290 			 */
   2291 			break;
   2292 		}
   2293 
   2294 		/*
   2295 		 * If any collisions were seen on the wire, count one.
   2296 		 */
   2297 		if (cmdsts & CMDSTS_Rx_COL)
   2298 			ifp->if_collisions++;
   2299 
   2300 		/*
   2301 		 * If an error occurred, update stats, clear the status
   2302 		 * word, and leave the packet buffer in place.  It will
   2303 		 * simply be reused the next time the ring comes around.
   2304 		 */
   2305 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2306 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2307 			ifp->if_ierrors++;
   2308 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2309 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2310 				/* Receive overrun handled elsewhere. */
   2311 				printf("%s: receive descriptor error\n",
   2312 				    device_xname(sc->sc_dev));
   2313 			}
   2314 #define	PRINTERR(bit, str)						\
   2315 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2316 			    (cmdsts & (bit)) != 0)			\
   2317 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2318 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2319 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2320 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2321 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2322 #undef PRINTERR
   2323 			sip_init_rxdesc(sc, i);
   2324 			continue;
   2325 		}
   2326 
   2327 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2328 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2329 
   2330 		/*
   2331 		 * No errors; receive the packet.  Note, the SiS 900
   2332 		 * includes the CRC with every packet.
   2333 		 */
   2334 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2335 
   2336 #ifdef __NO_STRICT_ALIGNMENT
   2337 		/*
   2338 		 * If the packet is small enough to fit in a
   2339 		 * single header mbuf, allocate one and copy
   2340 		 * the data into it.  This greatly reduces
   2341 		 * memory consumption when we receive lots
   2342 		 * of small packets.
   2343 		 *
   2344 		 * Otherwise, we add a new buffer to the receive
   2345 		 * chain.  If this fails, we drop the packet and
   2346 		 * recycle the old buffer.
   2347 		 */
   2348 		if (sip_copy_small != 0 && len <= MHLEN) {
   2349 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2350 			if (m == NULL)
   2351 				goto dropit;
   2352 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2353 			memcpy(mtod(m, void *),
   2354 			    mtod(rxs->rxs_mbuf, void *), len);
   2355 			sip_init_rxdesc(sc, i);
   2356 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2357 			    rxs->rxs_dmamap->dm_mapsize,
   2358 			    BUS_DMASYNC_PREREAD);
   2359 		} else {
   2360 			m = rxs->rxs_mbuf;
   2361 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2362  dropit:
   2363 				ifp->if_ierrors++;
   2364 				sip_init_rxdesc(sc, i);
   2365 				bus_dmamap_sync(sc->sc_dmat,
   2366 				    rxs->rxs_dmamap, 0,
   2367 				    rxs->rxs_dmamap->dm_mapsize,
   2368 				    BUS_DMASYNC_PREREAD);
   2369 				continue;
   2370 			}
   2371 		}
   2372 #else
   2373 		/*
   2374 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2375 		 * But this means that the data after the Ethernet header
   2376 		 * is misaligned.  We must allocate a new buffer and
   2377 		 * copy the data, shifted forward 2 bytes.
   2378 		 */
   2379 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2380 		if (m == NULL) {
   2381  dropit:
   2382 			ifp->if_ierrors++;
   2383 			sip_init_rxdesc(sc, i);
   2384 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2385 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2386 			continue;
   2387 		}
   2388 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2389 		if (len > (MHLEN - 2)) {
   2390 			MCLGET(m, M_DONTWAIT);
   2391 			if ((m->m_flags & M_EXT) == 0) {
   2392 				m_freem(m);
   2393 				goto dropit;
   2394 			}
   2395 		}
   2396 		m->m_data += 2;
   2397 
   2398 		/*
   2399 		 * Note that we use clusters for incoming frames, so the
   2400 		 * buffer is virtually contiguous.
   2401 		 */
   2402 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2403 
   2404 		/* Allow the receive descriptor to continue using its mbuf. */
   2405 		sip_init_rxdesc(sc, i);
   2406 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2407 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2408 #endif /* __NO_STRICT_ALIGNMENT */
   2409 
   2410 		ifp->if_ipackets++;
   2411 		m->m_pkthdr.rcvif = ifp;
   2412 		m->m_pkthdr.len = m->m_len = len;
   2413 
   2414 		/*
   2415 		 * Pass this up to any BPF listeners, but only
   2416 		 * pass if up the stack if it's for us.
   2417 		 */
   2418 		if (ifp->if_bpf)
   2419 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   2420 
   2421 		/* Pass it on. */
   2422 		(*ifp->if_input)(ifp, m);
   2423 	}
   2424 
   2425 	/* Update the receive pointer. */
   2426 	sc->sc_rxptr = i;
   2427 }
   2428 
   2429 /*
   2430  * sip_tick:
   2431  *
   2432  *	One second timer, used to tick the MII.
   2433  */
   2434 static void
   2435 sipcom_tick(void *arg)
   2436 {
   2437 	struct sip_softc *sc = arg;
   2438 	int s;
   2439 
   2440 	s = splnet();
   2441 #ifdef SIP_EVENT_COUNTERS
   2442 	if (sc->sc_gigabit) {
   2443 		/* Read PAUSE related counts from MIB registers. */
   2444 		sc->sc_ev_rxpause.ev_count +=
   2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2446 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2447 		sc->sc_ev_txpause.ev_count +=
   2448 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2449 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2450 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2451 	}
   2452 #endif /* SIP_EVENT_COUNTERS */
   2453 	mii_tick(&sc->sc_mii);
   2454 	splx(s);
   2455 
   2456 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2457 }
   2458 
   2459 /*
   2460  * sip_reset:
   2461  *
   2462  *	Perform a soft reset on the SiS 900.
   2463  */
   2464 static bool
   2465 sipcom_reset(struct sip_softc *sc)
   2466 {
   2467 	bus_space_tag_t st = sc->sc_st;
   2468 	bus_space_handle_t sh = sc->sc_sh;
   2469 	int i;
   2470 
   2471 	bus_space_write_4(st, sh, SIP_IER, 0);
   2472 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2473 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2474 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2475 
   2476 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2477 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2478 			break;
   2479 		delay(2);
   2480 	}
   2481 
   2482 	if (i == SIP_TIMEOUT) {
   2483 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
   2484 		return false;
   2485 	}
   2486 
   2487 	delay(1000);
   2488 
   2489 	if (sc->sc_gigabit) {
   2490 		/*
   2491 		 * Set the general purpose I/O bits.  Do it here in case we
   2492 		 * need to have GPIO set up to talk to the media interface.
   2493 		 */
   2494 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2495 		delay(1000);
   2496 	}
   2497 	return true;
   2498 }
   2499 
   2500 static void
   2501 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2502 {
   2503 	u_int32_t reg;
   2504 	bus_space_tag_t st = sc->sc_st;
   2505 	bus_space_handle_t sh = sc->sc_sh;
   2506 	/*
   2507 	 * Initialize the VLAN/IP receive control register.
   2508 	 * We enable checksum computation on all incoming
   2509 	 * packets, and do not reject packets w/ bad checksums.
   2510 	 */
   2511 	reg = 0;
   2512 	if (capenable &
   2513 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2514 		reg |= VRCR_IPEN;
   2515 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2516 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2517 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2518 
   2519 	/*
   2520 	 * Initialize the VLAN/IP transmit control register.
   2521 	 * We enable outgoing checksum computation on a
   2522 	 * per-packet basis.
   2523 	 */
   2524 	reg = 0;
   2525 	if (capenable &
   2526 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2527 		reg |= VTCR_PPCHK;
   2528 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2529 		reg |= VTCR_VPPTI;
   2530 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2531 
   2532 	/*
   2533 	 * If we're using VLANs, initialize the VLAN data register.
   2534 	 * To understand why we bswap the VLAN Ethertype, see section
   2535 	 * 4.2.36 of the DP83820 manual.
   2536 	 */
   2537 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2538 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2539 }
   2540 
   2541 /*
   2542  * sip_init:		[ ifnet interface function ]
   2543  *
   2544  *	Initialize the interface.  Must be called at splnet().
   2545  */
   2546 static int
   2547 sipcom_init(struct ifnet *ifp)
   2548 {
   2549 	struct sip_softc *sc = ifp->if_softc;
   2550 	bus_space_tag_t st = sc->sc_st;
   2551 	bus_space_handle_t sh = sc->sc_sh;
   2552 	struct sip_txsoft *txs;
   2553 	struct sip_rxsoft *rxs;
   2554 	struct sip_desc *sipd;
   2555 	int i, error = 0;
   2556 
   2557 	if (device_is_active(sc->sc_dev)) {
   2558 		/*
   2559 		 * Cancel any pending I/O.
   2560 		 */
   2561 		sipcom_stop(ifp, 0);
   2562 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2563 	           !device_is_active(sc->sc_dev))
   2564 		return 0;
   2565 
   2566 	/*
   2567 	 * Reset the chip to a known state.
   2568 	 */
   2569 	if (!sipcom_reset(sc))
   2570 		return EBUSY;
   2571 
   2572 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2573 		/*
   2574 		 * DP83815 manual, page 78:
   2575 		 *    4.4 Recommended Registers Configuration
   2576 		 *    For optimum performance of the DP83815, version noted
   2577 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2578 		 *    modifications must be followed in sequence...
   2579 		 *
   2580 		 * It's not clear if this should be 302h or 203h because that
   2581 		 * chip name is listed as SRR 302h in the description of the
   2582 		 * SRR register.  However, my revision 302h DP83815 on the
   2583 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2584 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2585 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2586 		 * this set or not.  [briggs -- 09 March 2001]
   2587 		 *
   2588 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2589 		 * and that this sets reserved bits in that register.
   2590 		 */
   2591 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2592 
   2593 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2594 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2595 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2596 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2597 
   2598 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2599 	}
   2600 
   2601 	/*
   2602 	 * Initialize the transmit descriptor ring.
   2603 	 */
   2604 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2605 		sipd = &sc->sc_txdescs[i];
   2606 		memset(sipd, 0, sizeof(struct sip_desc));
   2607 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2608 	}
   2609 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2610 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2611 	sc->sc_txfree = sc->sc_ntxdesc;
   2612 	sc->sc_txnext = 0;
   2613 	sc->sc_txwin = 0;
   2614 
   2615 	/*
   2616 	 * Initialize the transmit job descriptors.
   2617 	 */
   2618 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2619 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2620 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2621 		txs = &sc->sc_txsoft[i];
   2622 		txs->txs_mbuf = NULL;
   2623 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2624 	}
   2625 
   2626 	/*
   2627 	 * Initialize the receive descriptor and receive job
   2628 	 * descriptor rings.
   2629 	 */
   2630 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2631 		rxs = &sc->sc_rxsoft[i];
   2632 		if (rxs->rxs_mbuf == NULL) {
   2633 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2634 				printf("%s: unable to allocate or map rx "
   2635 				    "buffer %d, error = %d\n",
   2636 				    device_xname(sc->sc_dev), i, error);
   2637 				/*
   2638 				 * XXX Should attempt to run with fewer receive
   2639 				 * XXX buffers instead of just failing.
   2640 				 */
   2641 				sipcom_rxdrain(sc);
   2642 				goto out;
   2643 			}
   2644 		} else
   2645 			sip_init_rxdesc(sc, i);
   2646 	}
   2647 	sc->sc_rxptr = 0;
   2648 	sc->sc_rxdiscard = 0;
   2649 	sip_rxchain_reset(sc);
   2650 
   2651 	/*
   2652 	 * Set the configuration register; it's already initialized
   2653 	 * in sip_attach().
   2654 	 */
   2655 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2656 
   2657 	/*
   2658 	 * Initialize the prototype TXCFG register.
   2659 	 */
   2660 	if (sc->sc_gigabit) {
   2661 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2662 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2663 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2664 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2665 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2666 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2667 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2668 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2669 	} else {
   2670 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2671 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2672 	}
   2673 
   2674 	sc->sc_txcfg |= TXCFG_ATP |
   2675 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2676 	    sc->sc_tx_drain_thresh;
   2677 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2678 
   2679 	/*
   2680 	 * Initialize the receive drain threshold if we have never
   2681 	 * done so.
   2682 	 */
   2683 	if (sc->sc_rx_drain_thresh == 0) {
   2684 		/*
   2685 		 * XXX This value should be tuned.  This is set to the
   2686 		 * maximum of 248 bytes, and we may be able to improve
   2687 		 * performance by decreasing it (although we should never
   2688 		 * set this value lower than 2; 14 bytes are required to
   2689 		 * filter the packet).
   2690 		 */
   2691 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2692 	}
   2693 
   2694 	/*
   2695 	 * Initialize the prototype RXCFG register.
   2696 	 */
   2697 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2698 	/*
   2699 	 * Accept long packets (including FCS) so we can handle
   2700 	 * 802.1q-tagged frames and jumbo frames properly.
   2701 	 */
   2702 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2703 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2704 		sc->sc_rxcfg |= RXCFG_ALP;
   2705 
   2706 	/*
   2707 	 * Checksum offloading is disabled if the user selects an MTU
   2708 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2709 	 * evidence that >8109 does not work on some boards, such as the
   2710 	 * Planex GN-1000TE).
   2711 	 */
   2712 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2713 	    (ifp->if_capenable &
   2714 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2715 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2716 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2717 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2718 		       "disabled.\n", device_xname(sc->sc_dev));
   2719 		ifp->if_capenable &=
   2720 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2721 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2722 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2723 		ifp->if_csum_flags_tx = 0;
   2724 		ifp->if_csum_flags_rx = 0;
   2725 	}
   2726 
   2727 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2728 
   2729 	if (sc->sc_gigabit)
   2730 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2731 
   2732 	/*
   2733 	 * Give the transmit and receive rings to the chip.
   2734 	 */
   2735 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2736 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2737 
   2738 	/*
   2739 	 * Initialize the interrupt mask.
   2740 	 */
   2741 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2742 	             sc->sc_bits.b_isr_sserr |
   2743 		     sc->sc_bits.b_isr_rmabt |
   2744 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2745 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2746 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2747 
   2748 	/* Set up the receive filter. */
   2749 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2750 
   2751 	/*
   2752 	 * Tune sc_rx_flow_thresh.
   2753 	 * XXX "More than 8KB" is too short for jumbo frames.
   2754 	 * XXX TODO: Threshold value should be user-settable.
   2755 	 */
   2756 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2757 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2758 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2759 
   2760 	/*
   2761 	 * Set the current media.  Do this after initializing the prototype
   2762 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2763 	 * control.
   2764 	 */
   2765 	if ((error = ether_mediachange(ifp)) != 0)
   2766 		goto out;
   2767 
   2768 	/*
   2769 	 * Set the interrupt hold-off timer to 100us.
   2770 	 */
   2771 	if (sc->sc_gigabit)
   2772 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2773 
   2774 	/*
   2775 	 * Enable interrupts.
   2776 	 */
   2777 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2778 
   2779 	/*
   2780 	 * Start the transmit and receive processes.
   2781 	 */
   2782 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2783 
   2784 	/*
   2785 	 * Start the one second MII clock.
   2786 	 */
   2787 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2788 
   2789 	/*
   2790 	 * ...all done!
   2791 	 */
   2792 	ifp->if_flags |= IFF_RUNNING;
   2793 	ifp->if_flags &= ~IFF_OACTIVE;
   2794 	sc->sc_if_flags = ifp->if_flags;
   2795 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2796 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2797 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2798 
   2799  out:
   2800 	if (error)
   2801 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2802 	return (error);
   2803 }
   2804 
   2805 /*
   2806  * sip_drain:
   2807  *
   2808  *	Drain the receive queue.
   2809  */
   2810 static void
   2811 sipcom_rxdrain(struct sip_softc *sc)
   2812 {
   2813 	struct sip_rxsoft *rxs;
   2814 	int i;
   2815 
   2816 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2817 		rxs = &sc->sc_rxsoft[i];
   2818 		if (rxs->rxs_mbuf != NULL) {
   2819 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2820 			m_freem(rxs->rxs_mbuf);
   2821 			rxs->rxs_mbuf = NULL;
   2822 		}
   2823 	}
   2824 }
   2825 
   2826 /*
   2827  * sip_stop:		[ ifnet interface function ]
   2828  *
   2829  *	Stop transmission on the interface.
   2830  */
   2831 static void
   2832 sipcom_stop(struct ifnet *ifp, int disable)
   2833 {
   2834 	struct sip_softc *sc = ifp->if_softc;
   2835 	bus_space_tag_t st = sc->sc_st;
   2836 	bus_space_handle_t sh = sc->sc_sh;
   2837 	struct sip_txsoft *txs;
   2838 	u_int32_t cmdsts = 0;		/* DEBUG */
   2839 
   2840 	/*
   2841 	 * Stop the one second clock.
   2842 	 */
   2843 	callout_stop(&sc->sc_tick_ch);
   2844 
   2845 	/* Down the MII. */
   2846 	mii_down(&sc->sc_mii);
   2847 
   2848 	if (device_is_active(sc->sc_dev)) {
   2849 		/*
   2850 		 * Disable interrupts.
   2851 		 */
   2852 		bus_space_write_4(st, sh, SIP_IER, 0);
   2853 
   2854 		/*
   2855 		 * Stop receiver and transmitter.
   2856 		 */
   2857 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2858 	}
   2859 
   2860 	/*
   2861 	 * Release any queued transmit buffers.
   2862 	 */
   2863 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2864 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2865 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2866 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2867 		     CMDSTS_INTR) == 0)
   2868 			printf("%s: sip_stop: last descriptor does not "
   2869 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2870 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2871 #ifdef DIAGNOSTIC
   2872 		if (txs->txs_mbuf == NULL) {
   2873 			printf("%s: dirty txsoft with no mbuf chain\n",
   2874 			    device_xname(sc->sc_dev));
   2875 			panic("sip_stop");
   2876 		}
   2877 #endif
   2878 		cmdsts |=		/* DEBUG */
   2879 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2880 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2881 		m_freem(txs->txs_mbuf);
   2882 		txs->txs_mbuf = NULL;
   2883 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2884 	}
   2885 
   2886 	/*
   2887 	 * Mark the interface down and cancel the watchdog timer.
   2888 	 */
   2889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2890 	ifp->if_timer = 0;
   2891 
   2892 	if (disable)
   2893 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2894 
   2895 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2896 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2897 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2898 		    "descriptors\n", device_xname(sc->sc_dev));
   2899 }
   2900 
   2901 /*
   2902  * sip_read_eeprom:
   2903  *
   2904  *	Read data from the serial EEPROM.
   2905  */
   2906 static void
   2907 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2908     u_int16_t *data)
   2909 {
   2910 	bus_space_tag_t st = sc->sc_st;
   2911 	bus_space_handle_t sh = sc->sc_sh;
   2912 	u_int16_t reg;
   2913 	int i, x;
   2914 
   2915 	for (i = 0; i < wordcnt; i++) {
   2916 		/* Send CHIP SELECT. */
   2917 		reg = EROMAR_EECS;
   2918 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2919 
   2920 		/* Shift in the READ opcode. */
   2921 		for (x = 3; x > 0; x--) {
   2922 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2923 				reg |= EROMAR_EEDI;
   2924 			else
   2925 				reg &= ~EROMAR_EEDI;
   2926 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2927 			bus_space_write_4(st, sh, SIP_EROMAR,
   2928 			    reg | EROMAR_EESK);
   2929 			delay(4);
   2930 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2931 			delay(4);
   2932 		}
   2933 
   2934 		/* Shift in address. */
   2935 		for (x = 6; x > 0; x--) {
   2936 			if ((word + i) & (1 << (x - 1)))
   2937 				reg |= EROMAR_EEDI;
   2938 			else
   2939 				reg &= ~EROMAR_EEDI;
   2940 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2941 			bus_space_write_4(st, sh, SIP_EROMAR,
   2942 			    reg | EROMAR_EESK);
   2943 			delay(4);
   2944 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2945 			delay(4);
   2946 		}
   2947 
   2948 		/* Shift out data. */
   2949 		reg = EROMAR_EECS;
   2950 		data[i] = 0;
   2951 		for (x = 16; x > 0; x--) {
   2952 			bus_space_write_4(st, sh, SIP_EROMAR,
   2953 			    reg | EROMAR_EESK);
   2954 			delay(4);
   2955 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2956 				data[i] |= (1 << (x - 1));
   2957 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2958 			delay(4);
   2959 		}
   2960 
   2961 		/* Clear CHIP SELECT. */
   2962 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2963 		delay(4);
   2964 	}
   2965 }
   2966 
   2967 /*
   2968  * sipcom_add_rxbuf:
   2969  *
   2970  *	Add a receive buffer to the indicated descriptor.
   2971  */
   2972 static int
   2973 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2974 {
   2975 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2976 	struct mbuf *m;
   2977 	int error;
   2978 
   2979 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2980 	if (m == NULL)
   2981 		return (ENOBUFS);
   2982 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2983 
   2984 	MCLGET(m, M_DONTWAIT);
   2985 	if ((m->m_flags & M_EXT) == 0) {
   2986 		m_freem(m);
   2987 		return (ENOBUFS);
   2988 	}
   2989 
   2990 	/* XXX I don't believe this is necessary. --dyoung */
   2991 	if (sc->sc_gigabit)
   2992 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2993 
   2994 	if (rxs->rxs_mbuf != NULL)
   2995 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2996 
   2997 	rxs->rxs_mbuf = m;
   2998 
   2999 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3000 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3001 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3002 	if (error) {
   3003 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3004 		    device_xname(sc->sc_dev), idx, error);
   3005 		panic("%s", __func__);		/* XXX */
   3006 	}
   3007 
   3008 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3009 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3010 
   3011 	sip_init_rxdesc(sc, idx);
   3012 
   3013 	return (0);
   3014 }
   3015 
   3016 /*
   3017  * sip_sis900_set_filter:
   3018  *
   3019  *	Set up the receive filter.
   3020  */
   3021 static void
   3022 sipcom_sis900_set_filter(struct sip_softc *sc)
   3023 {
   3024 	bus_space_tag_t st = sc->sc_st;
   3025 	bus_space_handle_t sh = sc->sc_sh;
   3026 	struct ethercom *ec = &sc->sc_ethercom;
   3027 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3028 	struct ether_multi *enm;
   3029 	const u_int8_t *cp;
   3030 	struct ether_multistep step;
   3031 	u_int32_t crc, mchash[16];
   3032 
   3033 	/*
   3034 	 * Initialize the prototype RFCR.
   3035 	 */
   3036 	sc->sc_rfcr = RFCR_RFEN;
   3037 	if (ifp->if_flags & IFF_BROADCAST)
   3038 		sc->sc_rfcr |= RFCR_AAB;
   3039 	if (ifp->if_flags & IFF_PROMISC) {
   3040 		sc->sc_rfcr |= RFCR_AAP;
   3041 		goto allmulti;
   3042 	}
   3043 
   3044 	/*
   3045 	 * Set up the multicast address filter by passing all multicast
   3046 	 * addresses through a CRC generator, and then using the high-order
   3047 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3048 	 * the lower 16 bits of each 32 bit multicast hash register are
   3049 	 * valid).  The high order bits select the register, while the
   3050 	 * rest of the bits select the bit within the register.
   3051 	 */
   3052 
   3053 	memset(mchash, 0, sizeof(mchash));
   3054 
   3055 	/*
   3056 	 * SiS900 (at least SiS963) requires us to register the address of
   3057 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3058 	 */
   3059 	crc = 0x0ed423f9;
   3060 
   3061 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3062 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3063 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3064 		/* Just want the 8 most significant bits. */
   3065 		crc >>= 24;
   3066 	} else {
   3067 		/* Just want the 7 most significant bits. */
   3068 		crc >>= 25;
   3069 	}
   3070 
   3071 	/* Set the corresponding bit in the hash table. */
   3072 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3073 
   3074 	ETHER_FIRST_MULTI(step, ec, enm);
   3075 	while (enm != NULL) {
   3076 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3077 			/*
   3078 			 * We must listen to a range of multicast addresses.
   3079 			 * For now, just accept all multicasts, rather than
   3080 			 * trying to set only those filter bits needed to match
   3081 			 * the range.  (At this time, the only use of address
   3082 			 * ranges is for IP multicast routing, for which the
   3083 			 * range is big enough to require all bits set.)
   3084 			 */
   3085 			goto allmulti;
   3086 		}
   3087 
   3088 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3089 
   3090 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3091 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3092 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3093 			/* Just want the 8 most significant bits. */
   3094 			crc >>= 24;
   3095 		} else {
   3096 			/* Just want the 7 most significant bits. */
   3097 			crc >>= 25;
   3098 		}
   3099 
   3100 		/* Set the corresponding bit in the hash table. */
   3101 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3102 
   3103 		ETHER_NEXT_MULTI(step, enm);
   3104 	}
   3105 
   3106 	ifp->if_flags &= ~IFF_ALLMULTI;
   3107 	goto setit;
   3108 
   3109  allmulti:
   3110 	ifp->if_flags |= IFF_ALLMULTI;
   3111 	sc->sc_rfcr |= RFCR_AAM;
   3112 
   3113  setit:
   3114 #define	FILTER_EMIT(addr, data)						\
   3115 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3116 	delay(1);							\
   3117 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3118 	delay(1)
   3119 
   3120 	/*
   3121 	 * Disable receive filter, and program the node address.
   3122 	 */
   3123 	cp = CLLADDR(ifp->if_sadl);
   3124 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3125 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3126 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3127 
   3128 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3129 		/*
   3130 		 * Program the multicast hash table.
   3131 		 */
   3132 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3133 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3134 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3135 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3136 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3137 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3138 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3139 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3140 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3141 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3142 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3143 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3144 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3145 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3146 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3147 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3148 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3149 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3150 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3151 		}
   3152 	}
   3153 #undef FILTER_EMIT
   3154 
   3155 	/*
   3156 	 * Re-enable the receiver filter.
   3157 	 */
   3158 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3159 }
   3160 
   3161 /*
   3162  * sip_dp83815_set_filter:
   3163  *
   3164  *	Set up the receive filter.
   3165  */
   3166 static void
   3167 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3168 {
   3169 	bus_space_tag_t st = sc->sc_st;
   3170 	bus_space_handle_t sh = sc->sc_sh;
   3171 	struct ethercom *ec = &sc->sc_ethercom;
   3172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3173 	struct ether_multi *enm;
   3174 	const u_int8_t *cp;
   3175 	struct ether_multistep step;
   3176 	u_int32_t crc, hash, slot, bit;
   3177 #define	MCHASH_NWORDS_83820	128
   3178 #define	MCHASH_NWORDS_83815	32
   3179 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3180 	u_int16_t mchash[MCHASH_NWORDS];
   3181 	int i;
   3182 
   3183 	/*
   3184 	 * Initialize the prototype RFCR.
   3185 	 * Enable the receive filter, and accept on
   3186 	 *    Perfect (destination address) Match
   3187 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3188 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3189 	 *    IFF_ALLMULTI and accept all multicast, too).
   3190 	 */
   3191 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3192 	if (ifp->if_flags & IFF_BROADCAST)
   3193 		sc->sc_rfcr |= RFCR_AAB;
   3194 	if (ifp->if_flags & IFF_PROMISC) {
   3195 		sc->sc_rfcr |= RFCR_AAP;
   3196 		goto allmulti;
   3197 	}
   3198 
   3199 	/*
   3200          * Set up the DP83820/DP83815 multicast address filter by
   3201          * passing all multicast addresses through a CRC generator,
   3202          * and then using the high-order 11/9 bits as an index into
   3203          * the 2048/512 bit multicast hash table.  The high-order
   3204          * 7/5 bits select the slot, while the low-order 4 bits
   3205          * select the bit within the slot.  Note that only the low
   3206          * 16-bits of each filter word are used, and there are
   3207          * 128/32 filter words.
   3208 	 */
   3209 
   3210 	memset(mchash, 0, sizeof(mchash));
   3211 
   3212 	ifp->if_flags &= ~IFF_ALLMULTI;
   3213 	ETHER_FIRST_MULTI(step, ec, enm);
   3214 	if (enm == NULL)
   3215 		goto setit;
   3216 	while (enm != NULL) {
   3217 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3218 			/*
   3219 			 * We must listen to a range of multicast addresses.
   3220 			 * For now, just accept all multicasts, rather than
   3221 			 * trying to set only those filter bits needed to match
   3222 			 * the range.  (At this time, the only use of address
   3223 			 * ranges is for IP multicast routing, for which the
   3224 			 * range is big enough to require all bits set.)
   3225 			 */
   3226 			goto allmulti;
   3227 		}
   3228 
   3229 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3230 
   3231 		if (sc->sc_gigabit) {
   3232 			/* Just want the 11 most significant bits. */
   3233 			hash = crc >> 21;
   3234 		} else {
   3235 			/* Just want the 9 most significant bits. */
   3236 			hash = crc >> 23;
   3237 		}
   3238 
   3239 		slot = hash >> 4;
   3240 		bit = hash & 0xf;
   3241 
   3242 		/* Set the corresponding bit in the hash table. */
   3243 		mchash[slot] |= 1 << bit;
   3244 
   3245 		ETHER_NEXT_MULTI(step, enm);
   3246 	}
   3247 	sc->sc_rfcr |= RFCR_MHEN;
   3248 	goto setit;
   3249 
   3250  allmulti:
   3251 	ifp->if_flags |= IFF_ALLMULTI;
   3252 	sc->sc_rfcr |= RFCR_AAM;
   3253 
   3254  setit:
   3255 #define	FILTER_EMIT(addr, data)						\
   3256 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3257 	delay(1);							\
   3258 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3259 	delay(1)
   3260 
   3261 	/*
   3262 	 * Disable receive filter, and program the node address.
   3263 	 */
   3264 	cp = CLLADDR(ifp->if_sadl);
   3265 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3266 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3267 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3268 
   3269 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3270 		int nwords =
   3271 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3272 		/*
   3273 		 * Program the multicast hash table.
   3274 		 */
   3275 		for (i = 0; i < nwords; i++) {
   3276 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3277 		}
   3278 	}
   3279 #undef FILTER_EMIT
   3280 #undef MCHASH_NWORDS
   3281 #undef MCHASH_NWORDS_83815
   3282 #undef MCHASH_NWORDS_83820
   3283 
   3284 	/*
   3285 	 * Re-enable the receiver filter.
   3286 	 */
   3287 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3288 }
   3289 
   3290 /*
   3291  * sip_dp83820_mii_readreg:	[mii interface function]
   3292  *
   3293  *	Read a PHY register on the MII of the DP83820.
   3294  */
   3295 static int
   3296 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
   3297 {
   3298 	struct sip_softc *sc = device_private(self);
   3299 
   3300 	if (sc->sc_cfg & CFG_TBI_EN) {
   3301 		bus_addr_t tbireg;
   3302 		int rv;
   3303 
   3304 		if (phy != 0)
   3305 			return (0);
   3306 
   3307 		switch (reg) {
   3308 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3309 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3310 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3311 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3312 		case MII_ANER:		tbireg = SIP_TANER; break;
   3313 		case MII_EXTSR:
   3314 			/*
   3315 			 * Don't even bother reading the TESR register.
   3316 			 * The manual documents that the device has
   3317 			 * 1000baseX full/half capability, but the
   3318 			 * register itself seems read back 0 on some
   3319 			 * boards.  Just hard-code the result.
   3320 			 */
   3321 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3322 
   3323 		default:
   3324 			return (0);
   3325 		}
   3326 
   3327 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3328 		if (tbireg == SIP_TBISR) {
   3329 			/* LINK and ACOMP are switched! */
   3330 			int val = rv;
   3331 
   3332 			rv = 0;
   3333 			if (val & TBISR_MR_LINK_STATUS)
   3334 				rv |= BMSR_LINK;
   3335 			if (val & TBISR_MR_AN_COMPLETE)
   3336 				rv |= BMSR_ACOMP;
   3337 
   3338 			/*
   3339 			 * The manual claims this register reads back 0
   3340 			 * on hard and soft reset.  But we want to let
   3341 			 * the gentbi driver know that we support auto-
   3342 			 * negotiation, so hard-code this bit in the
   3343 			 * result.
   3344 			 */
   3345 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3346 		}
   3347 
   3348 		return (rv);
   3349 	}
   3350 
   3351 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3352 }
   3353 
   3354 /*
   3355  * sip_dp83820_mii_writereg:	[mii interface function]
   3356  *
   3357  *	Write a PHY register on the MII of the DP83820.
   3358  */
   3359 static void
   3360 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
   3361 {
   3362 	struct sip_softc *sc = device_private(self);
   3363 
   3364 	if (sc->sc_cfg & CFG_TBI_EN) {
   3365 		bus_addr_t tbireg;
   3366 
   3367 		if (phy != 0)
   3368 			return;
   3369 
   3370 		switch (reg) {
   3371 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3372 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3373 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3374 		default:
   3375 			return;
   3376 		}
   3377 
   3378 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3379 		return;
   3380 	}
   3381 
   3382 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3383 }
   3384 
   3385 /*
   3386  * sip_dp83820_mii_statchg:	[mii interface function]
   3387  *
   3388  *	Callback from MII layer when media changes.
   3389  */
   3390 static void
   3391 sipcom_dp83820_mii_statchg(device_t self)
   3392 {
   3393 	struct sip_softc *sc = device_private(self);
   3394 	struct mii_data *mii = &sc->sc_mii;
   3395 	u_int32_t cfg, pcr;
   3396 
   3397 	/*
   3398 	 * Get flow control negotiation result.
   3399 	 */
   3400 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3401 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3402 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3403 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3404 	}
   3405 
   3406 	/*
   3407 	 * Update TXCFG for full-duplex operation.
   3408 	 */
   3409 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3410 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3411 	else
   3412 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3413 
   3414 	/*
   3415 	 * Update RXCFG for full-duplex or loopback.
   3416 	 */
   3417 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3418 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3419 		sc->sc_rxcfg |= RXCFG_ATX;
   3420 	else
   3421 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3422 
   3423 	/*
   3424 	 * Update CFG for MII/GMII.
   3425 	 */
   3426 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3427 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3428 	else
   3429 		cfg = sc->sc_cfg;
   3430 
   3431 	/*
   3432 	 * 802.3x flow control.
   3433 	 */
   3434 	pcr = 0;
   3435 	if (sc->sc_flowflags & IFM_FLOW) {
   3436 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3437 			pcr |= sc->sc_rx_flow_thresh;
   3438 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3439 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3440 	}
   3441 
   3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3443 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3444 	    sc->sc_txcfg);
   3445 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3446 	    sc->sc_rxcfg);
   3447 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3448 }
   3449 
   3450 /*
   3451  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3452  *
   3453  *	Read the MII serial port for the MII bit-bang module.
   3454  */
   3455 static u_int32_t
   3456 sipcom_mii_bitbang_read(device_t self)
   3457 {
   3458 	struct sip_softc *sc = device_private(self);
   3459 
   3460 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3461 }
   3462 
   3463 /*
   3464  * sip_mii_bitbang_write: [mii big-bang interface function]
   3465  *
   3466  *	Write the MII serial port for the MII bit-bang module.
   3467  */
   3468 static void
   3469 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
   3470 {
   3471 	struct sip_softc *sc = device_private(self);
   3472 
   3473 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3474 }
   3475 
   3476 /*
   3477  * sip_sis900_mii_readreg:	[mii interface function]
   3478  *
   3479  *	Read a PHY register on the MII.
   3480  */
   3481 static int
   3482 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
   3483 {
   3484 	struct sip_softc *sc = device_private(self);
   3485 	u_int32_t enphy;
   3486 
   3487 	/*
   3488 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3489 	 * operations.
   3490 	 */
   3491 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3492 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3493 		    phy, reg);
   3494 
   3495 #ifndef SIS900_MII_RESTRICT
   3496 	/*
   3497 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3498 	 * MII address 0.
   3499 	 */
   3500 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3501 		return (0);
   3502 #endif
   3503 
   3504 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3505 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3506 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3507 	do {
   3508 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3509 	} while (enphy & ENPHY_ACCESS);
   3510 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3511 }
   3512 
   3513 /*
   3514  * sip_sis900_mii_writereg:	[mii interface function]
   3515  *
   3516  *	Write a PHY register on the MII.
   3517  */
   3518 static void
   3519 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
   3520 {
   3521 	struct sip_softc *sc = device_private(self);
   3522 	u_int32_t enphy;
   3523 
   3524 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3525 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3526 		    phy, reg, val);
   3527 		return;
   3528 	}
   3529 
   3530 #ifndef SIS900_MII_RESTRICT
   3531 	/*
   3532 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3533 	 * MII address 0.
   3534 	 */
   3535 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3536 		return;
   3537 #endif
   3538 
   3539 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3540 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3541 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3542 	do {
   3543 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3544 	} while (enphy & ENPHY_ACCESS);
   3545 }
   3546 
   3547 /*
   3548  * sip_sis900_mii_statchg:	[mii interface function]
   3549  *
   3550  *	Callback from MII layer when media changes.
   3551  */
   3552 static void
   3553 sipcom_sis900_mii_statchg(device_t self)
   3554 {
   3555 	struct sip_softc *sc = device_private(self);
   3556 	struct mii_data *mii = &sc->sc_mii;
   3557 	u_int32_t flowctl;
   3558 
   3559 	/*
   3560 	 * Get flow control negotiation result.
   3561 	 */
   3562 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3563 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3564 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3565 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3566 	}
   3567 
   3568 	/*
   3569 	 * Update TXCFG for full-duplex operation.
   3570 	 */
   3571 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3572 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3573 	else
   3574 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3575 
   3576 	/*
   3577 	 * Update RXCFG for full-duplex or loopback.
   3578 	 */
   3579 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3580 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3581 		sc->sc_rxcfg |= RXCFG_ATX;
   3582 	else
   3583 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3584 
   3585 	/*
   3586 	 * Update IMR for use of 802.3x flow control.
   3587 	 */
   3588 	if (sc->sc_flowflags & IFM_FLOW) {
   3589 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3590 		flowctl = FLOWCTL_FLOWEN;
   3591 	} else {
   3592 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3593 		flowctl = 0;
   3594 	}
   3595 
   3596 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3597 	    sc->sc_txcfg);
   3598 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3599 	    sc->sc_rxcfg);
   3600 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3601 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3602 }
   3603 
   3604 /*
   3605  * sip_dp83815_mii_readreg:	[mii interface function]
   3606  *
   3607  *	Read a PHY register on the MII.
   3608  */
   3609 static int
   3610 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
   3611 {
   3612 	struct sip_softc *sc = device_private(self);
   3613 	u_int32_t val;
   3614 
   3615 	/*
   3616 	 * The DP83815 only has an internal PHY.  Only allow
   3617 	 * MII address 0.
   3618 	 */
   3619 	if (phy != 0)
   3620 		return (0);
   3621 
   3622 	/*
   3623 	 * Apparently, after a reset, the DP83815 can take a while
   3624 	 * to respond.  During this recovery period, the BMSR returns
   3625 	 * a value of 0.  Catch this -- it's not supposed to happen
   3626 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3627 	 * PHY to come back to life.
   3628 	 *
   3629 	 * This works out because the BMSR is the first register
   3630 	 * read during the PHY probe process.
   3631 	 */
   3632 	do {
   3633 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3634 	} while (reg == MII_BMSR && val == 0);
   3635 
   3636 	return (val & 0xffff);
   3637 }
   3638 
   3639 /*
   3640  * sip_dp83815_mii_writereg:	[mii interface function]
   3641  *
   3642  *	Write a PHY register to the MII.
   3643  */
   3644 static void
   3645 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
   3646 {
   3647 	struct sip_softc *sc = device_private(self);
   3648 
   3649 	/*
   3650 	 * The DP83815 only has an internal PHY.  Only allow
   3651 	 * MII address 0.
   3652 	 */
   3653 	if (phy != 0)
   3654 		return;
   3655 
   3656 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3657 }
   3658 
   3659 /*
   3660  * sip_dp83815_mii_statchg:	[mii interface function]
   3661  *
   3662  *	Callback from MII layer when media changes.
   3663  */
   3664 static void
   3665 sipcom_dp83815_mii_statchg(device_t self)
   3666 {
   3667 	struct sip_softc *sc = device_private(self);
   3668 
   3669 	/*
   3670 	 * Update TXCFG for full-duplex operation.
   3671 	 */
   3672 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3673 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3674 	else
   3675 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3676 
   3677 	/*
   3678 	 * Update RXCFG for full-duplex or loopback.
   3679 	 */
   3680 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3681 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3682 		sc->sc_rxcfg |= RXCFG_ATX;
   3683 	else
   3684 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3685 
   3686 	/*
   3687 	 * XXX 802.3x flow control.
   3688 	 */
   3689 
   3690 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3691 	    sc->sc_txcfg);
   3692 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3693 	    sc->sc_rxcfg);
   3694 
   3695 	/*
   3696 	 * Some DP83815s experience problems when used with short
   3697 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3698 	 * sequence adjusts the DSP's signal attenuation to fix the
   3699 	 * problem.
   3700 	 */
   3701 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3702 		uint32_t reg;
   3703 
   3704 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3705 
   3706 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3707 		reg &= 0x0fff;
   3708 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3709 		delay(100);
   3710 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3711 		reg &= 0x00ff;
   3712 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3713 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3714 			    0x00e8);
   3715 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3716 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3717 			    reg | 0x20);
   3718 		}
   3719 
   3720 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3721 	}
   3722 }
   3723 
   3724 static void
   3725 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3726     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3727 {
   3728 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3729 	u_int8_t cksum, *e, match;
   3730 	int i;
   3731 
   3732 	/*
   3733 	 * EEPROM data format for the DP83820 can be found in
   3734 	 * the DP83820 manual, section 4.2.4.
   3735 	 */
   3736 
   3737 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3738 
   3739 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3740 	match = ~(match - 1);
   3741 
   3742 	cksum = 0x55;
   3743 	e = (u_int8_t *) eeprom_data;
   3744 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3745 		cksum += *e++;
   3746 
   3747 	if (cksum != match)
   3748 		printf("%s: Checksum (%x) mismatch (%x)",
   3749 		    device_xname(sc->sc_dev), cksum, match);
   3750 
   3751 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3752 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3753 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3754 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3755 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3756 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3757 }
   3758 
   3759 static void
   3760 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3761 {
   3762 	int i;
   3763 
   3764 	/*
   3765 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3766 	 * a reason, but I don't know it.
   3767 	 */
   3768 	for (i = 0; i < 10; i++)
   3769 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3770 }
   3771 
   3772 static void
   3773 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3774     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3775 {
   3776 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3777 
   3778 	switch (sc->sc_rev) {
   3779 	case SIS_REV_630S:
   3780 	case SIS_REV_630E:
   3781 	case SIS_REV_630EA1:
   3782 	case SIS_REV_630ET:
   3783 	case SIS_REV_635:
   3784 		/*
   3785 		 * The MAC address for the on-board Ethernet of
   3786 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3787 		 * the chip into re-loading it from NVRAM, and
   3788 		 * read the MAC address out of the filter registers.
   3789 		 */
   3790 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3791 
   3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3793 		    RFCR_RFADDR_NODE0);
   3794 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3795 		    0xffff;
   3796 
   3797 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3798 		    RFCR_RFADDR_NODE2);
   3799 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3800 		    0xffff;
   3801 
   3802 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3803 		    RFCR_RFADDR_NODE4);
   3804 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3805 		    0xffff;
   3806 		break;
   3807 
   3808 	case SIS_REV_960:
   3809 		{
   3810 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3811 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3812 
   3813 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3814 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3815 
   3816 			int waittime, i;
   3817 
   3818 			/* Allow to read EEPROM from LAN. It is shared
   3819 			 * between a 1394 controller and the NIC and each
   3820 			 * time we access it, we need to set SIS_EECMD_REQ.
   3821 			 */
   3822 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3823 
   3824 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3825 				/* Force EEPROM to idle state. */
   3826 
   3827 				/*
   3828 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3829 				 */
   3830 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3831 				sipcom_sis900_eeprom_delay(sc);
   3832 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3833 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3834 					sipcom_sis900_eeprom_delay(sc);
   3835 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3836 					sipcom_sis900_eeprom_delay(sc);
   3837 				}
   3838 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3839 				sipcom_sis900_eeprom_delay(sc);
   3840 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3841 
   3842 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3843 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3844 					    sizeof(myea) / sizeof(myea[0]), myea);
   3845 					break;
   3846 				}
   3847 				DELAY(1);
   3848 			}
   3849 
   3850 			/*
   3851 			 * Set SIS_EECTL_CLK to high, so a other master
   3852 			 * can operate on the i2c bus.
   3853 			 */
   3854 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3855 
   3856 			/* Refuse EEPROM access by LAN */
   3857 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3858 		} break;
   3859 
   3860 	default:
   3861 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3862 		    sizeof(myea) / sizeof(myea[0]), myea);
   3863 	}
   3864 
   3865 	enaddr[0] = myea[0] & 0xff;
   3866 	enaddr[1] = myea[0] >> 8;
   3867 	enaddr[2] = myea[1] & 0xff;
   3868 	enaddr[3] = myea[1] >> 8;
   3869 	enaddr[4] = myea[2] & 0xff;
   3870 	enaddr[5] = myea[2] >> 8;
   3871 }
   3872 
   3873 /* Table and macro to bit-reverse an octet. */
   3874 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3875 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3876 
   3877 static void
   3878 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3879     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3880 {
   3881 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3882 	u_int8_t cksum, *e, match;
   3883 	int i;
   3884 
   3885 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3886 	    sizeof(eeprom_data[0]), eeprom_data);
   3887 
   3888 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3889 	match = ~(match - 1);
   3890 
   3891 	cksum = 0x55;
   3892 	e = (u_int8_t *) eeprom_data;
   3893 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3894 		cksum += *e++;
   3895 	}
   3896 	if (cksum != match) {
   3897 		printf("%s: Checksum (%x) mismatch (%x)",
   3898 		    device_xname(sc->sc_dev), cksum, match);
   3899 	}
   3900 
   3901 	/*
   3902 	 * Unrolled because it makes slightly more sense this way.
   3903 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3904 	 * through bit 15 of word 8.
   3905 	 */
   3906 	ea = &eeprom_data[6];
   3907 	enaddr[0] = ((*ea & 0x1) << 7);
   3908 	ea++;
   3909 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3910 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3911 	enaddr[2] = ((*ea & 0x1) << 7);
   3912 	ea++;
   3913 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3914 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3915 	enaddr[4] = ((*ea & 0x1) << 7);
   3916 	ea++;
   3917 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3918 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3919 
   3920 	/*
   3921 	 * In case that's not weird enough, we also need to reverse
   3922 	 * the bits in each byte.  This all actually makes more sense
   3923 	 * if you think about the EEPROM storage as an array of bits
   3924 	 * being shifted into bytes, but that's not how we're looking
   3925 	 * at it here...
   3926 	 */
   3927 	for (i = 0; i < 6 ;i++)
   3928 		enaddr[i] = bbr(enaddr[i]);
   3929 }
   3930 
   3931 /*
   3932  * sip_mediastatus:	[ifmedia interface function]
   3933  *
   3934  *	Get the current interface media status.
   3935  */
   3936 static void
   3937 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3938 {
   3939 	struct sip_softc *sc = ifp->if_softc;
   3940 
   3941 	if (!device_is_active(sc->sc_dev)) {
   3942 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3943 		ifmr->ifm_status = 0;
   3944 		return;
   3945 	}
   3946 	ether_mediastatus(ifp, ifmr);
   3947 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3948 			   sc->sc_flowflags;
   3949 }
   3950