if_sip.c revision 1.133 1 /* $NetBSD: if_sip.c,v 1.133 2008/04/28 20:23:55 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.133 2008/04/28 20:23:55 martin Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92
93 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
94
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/pci/if_sipreg.h>
121
122 /*
123 * Transmit descriptor list size. This is arbitrary, but allocate
124 * enough descriptors for 128 pending transmissions, and 8 segments
125 * per packet (64 for DP83820 for jumbo frames).
126 *
127 * This MUST work out to a power of 2.
128 */
129 #define GSIP_NTXSEGS_ALLOC 16
130 #define SIP_NTXSEGS_ALLOC 8
131
132 #define SIP_TXQUEUELEN 256
133 #define MAX_SIP_NTXDESC \
134 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135
136 /*
137 * Receive descriptor list size. We have one Rx buffer per incoming
138 * packet, so this logic is a little simpler.
139 *
140 * Actually, on the DP83820, we allow the packet to consume more than
141 * one buffer, in order to support jumbo Ethernet frames. In that
142 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
144 * so we'd better be quick about handling receive interrupts.
145 */
146 #define GSIP_NRXDESC 256
147 #define SIP_NRXDESC 128
148
149 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
150
151 /*
152 * Control structures are DMA'd to the SiS900 chip. We allocate them in
153 * a single clump that maps to a single DMA segment to make several things
154 * easier.
155 */
156 struct sip_control_data {
157 /*
158 * The transmit descriptors.
159 */
160 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161
162 /*
163 * The receive descriptors.
164 */
165 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167
168 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
169 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
170 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
171
172 /*
173 * Software state for transmit jobs.
174 */
175 struct sip_txsoft {
176 struct mbuf *txs_mbuf; /* head of our mbuf chain */
177 bus_dmamap_t txs_dmamap; /* our DMA map */
178 int txs_firstdesc; /* first descriptor in packet */
179 int txs_lastdesc; /* last descriptor in packet */
180 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184
185 /*
186 * Software state for receive jobs.
187 */
188 struct sip_rxsoft {
189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap; /* our DMA map */
191 };
192
193 enum sip_attach_stage {
194 SIP_ATTACH_FIN = 0
195 , SIP_ATTACH_CREATE_RXMAP
196 , SIP_ATTACH_CREATE_TXMAP
197 , SIP_ATTACH_LOAD_MAP
198 , SIP_ATTACH_CREATE_MAP
199 , SIP_ATTACH_MAP_MEM
200 , SIP_ATTACH_ALLOC_MEM
201 , SIP_ATTACH_INTR
202 , SIP_ATTACH_MAP
203 };
204
205 /*
206 * Software state per device.
207 */
208 struct sip_softc {
209 struct device sc_dev; /* generic device information */
210 bus_space_tag_t sc_st; /* bus space tag */
211 bus_space_handle_t sc_sh; /* bus space handle */
212 bus_size_t sc_sz; /* bus space size */
213 bus_dma_tag_t sc_dmat; /* bus DMA tag */
214 pci_chipset_tag_t sc_pc;
215 bus_dma_segment_t sc_seg;
216 struct ethercom sc_ethercom; /* ethernet common data */
217
218 const struct sip_product *sc_model; /* which model are we? */
219 int sc_gigabit; /* 1: 83820, 0: other */
220 int sc_rev; /* chip revision */
221
222 void *sc_ih; /* interrupt cookie */
223
224 struct mii_data sc_mii; /* MII/media information */
225
226 callout_t sc_tick_ch; /* tick callout */
227
228 bus_dmamap_t sc_cddmamap; /* control data DMA map */
229 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
230
231 /*
232 * Software state for transmit and receive descriptors.
233 */
234 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236
237 /*
238 * Control data structures.
239 */
240 struct sip_control_data *sc_control_data;
241 #define sc_txdescs sc_control_data->scd_txdescs
242 #define sc_rxdescs sc_control_data->scd_rxdescs
243
244 #ifdef SIP_EVENT_COUNTERS
245 /*
246 * Event counters.
247 */
248 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
249 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
250 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
251 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
252 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
253 struct evcnt sc_ev_rxintr; /* Rx interrupts */
254 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
255 struct evcnt sc_ev_rxpause; /* PAUSE received */
256 /* DP83820 only */
257 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
258 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
259 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
260 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
261 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
262 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
263 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265
266 u_int32_t sc_txcfg; /* prototype TXCFG register */
267 u_int32_t sc_rxcfg; /* prototype RXCFG register */
268 u_int32_t sc_imr; /* prototype IMR register */
269 u_int32_t sc_rfcr; /* prototype RFCR register */
270
271 u_int32_t sc_cfg; /* prototype CFG register */
272
273 u_int32_t sc_gpior; /* prototype GPIOR register */
274
275 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
276 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
277
278 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
279
280 int sc_flowflags; /* 802.3x flow control flags */
281 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
282 int sc_paused; /* paused indication */
283
284 int sc_txfree; /* number of free Tx descriptors */
285 int sc_txnext; /* next ready Tx descriptor */
286 int sc_txwin; /* Tx descriptors since last intr */
287
288 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
289 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
290
291 /* values of interface state at last init */
292 struct {
293 /* if_capenable */
294 uint64_t if_capenable;
295 /* ec_capenable */
296 int ec_capenable;
297 /* VLAN_ATTACHED */
298 int is_vlan;
299 } sc_prev;
300
301 short sc_if_flags;
302
303 int sc_rxptr; /* next ready Rx descriptor/descsoft */
304 int sc_rxdiscard;
305 int sc_rxlen;
306 struct mbuf *sc_rxhead;
307 struct mbuf *sc_rxtail;
308 struct mbuf **sc_rxtailp;
309
310 int sc_ntxdesc;
311 int sc_ntxdesc_mask;
312
313 int sc_nrxdesc_mask;
314
315 const struct sip_parm {
316 const struct sip_regs {
317 int r_rxcfg;
318 int r_txcfg;
319 } p_regs;
320
321 const struct sip_bits {
322 uint32_t b_txcfg_mxdma_8;
323 uint32_t b_txcfg_mxdma_16;
324 uint32_t b_txcfg_mxdma_32;
325 uint32_t b_txcfg_mxdma_64;
326 uint32_t b_txcfg_mxdma_128;
327 uint32_t b_txcfg_mxdma_256;
328 uint32_t b_txcfg_mxdma_512;
329 uint32_t b_txcfg_flth_mask;
330 uint32_t b_txcfg_drth_mask;
331
332 uint32_t b_rxcfg_mxdma_8;
333 uint32_t b_rxcfg_mxdma_16;
334 uint32_t b_rxcfg_mxdma_32;
335 uint32_t b_rxcfg_mxdma_64;
336 uint32_t b_rxcfg_mxdma_128;
337 uint32_t b_rxcfg_mxdma_256;
338 uint32_t b_rxcfg_mxdma_512;
339
340 uint32_t b_isr_txrcmp;
341 uint32_t b_isr_rxrcmp;
342 uint32_t b_isr_dperr;
343 uint32_t b_isr_sserr;
344 uint32_t b_isr_rmabt;
345 uint32_t b_isr_rtabt;
346
347 uint32_t b_cmdsts_size_mask;
348 } p_bits;
349 int p_filtmem;
350 int p_rxbuf_len;
351 bus_size_t p_tx_dmamap_size;
352 int p_ntxsegs;
353 int p_ntxsegs_alloc;
354 int p_nrxdesc;
355 } *sc_parm;
356
357 void (*sc_rxintr)(struct sip_softc *);
358
359 #if NRND > 0
360 rndsource_element_t rnd_source; /* random source */
361 #endif
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 int x, n;
487
488 x = x0;
489 n = n0;
490
491 /* If it will wrap around, sync to the end of the ring. */
492 if (x + n > sc->sc_ntxdesc) {
493 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 (sc->sc_ntxdesc - x), ops);
496 n -= (sc->sc_ntxdesc - x);
497 x = 0;
498 }
499
500 /* Now sync whatever is left. */
501 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511
512 #if 0
513 #ifdef DP83820
514 u_int32_t sipd_bufptr; /* pointer to DMA segment */
515 u_int32_t sipd_cmdsts; /* command/status word */
516 #else
517 u_int32_t sipd_cmdsts; /* command/status word */
518 u_int32_t sipd_bufptr; /* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 struct sip_desc *sipd = &sc->sc_rxdescs[x];
539
540 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 sipd->sipd_extsts = 0;
545 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547
548 #define SIP_CHIP_VERS(sc, v, p, r) \
549 ((sc)->sc_model->sip_vendor == (v) && \
550 (sc)->sc_model->sip_product == (p) && \
551 (sc)->sc_rev == (r))
552
553 #define SIP_CHIP_MODEL(sc, v, p) \
554 ((sc)->sc_model->sip_vendor == (v) && \
555 (sc)->sc_model->sip_product == (p))
556
557 #define SIP_SIS900_REV(sc, rev) \
558 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559
560 #define SIP_TIMEOUT 1000
561
562 static void sipcom_start(struct ifnet *);
563 static void sipcom_watchdog(struct ifnet *);
564 static int sipcom_ioctl(struct ifnet *, u_long, void *);
565 static int sipcom_init(struct ifnet *);
566 static void sipcom_stop(struct ifnet *, int);
567
568 static bool sipcom_reset(struct sip_softc *);
569 static void sipcom_rxdrain(struct sip_softc *);
570 static int sipcom_add_rxbuf(struct sip_softc *, int);
571 static void sipcom_read_eeprom(struct sip_softc *, int, int,
572 u_int16_t *);
573 static void sipcom_tick(void *);
574
575 static void sipcom_sis900_set_filter(struct sip_softc *);
576 static void sipcom_dp83815_set_filter(struct sip_softc *);
577
578 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
581 static void sipcom_sis900_read_macaddr(struct sip_softc *,
582 const struct pci_attach_args *, u_int8_t *);
583 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
584 const struct pci_attach_args *, u_int8_t *);
585
586 static int sipcom_intr(void *);
587 static void sipcom_txintr(struct sip_softc *);
588 static void sip_rxintr(struct sip_softc *);
589 static void gsip_rxintr(struct sip_softc *);
590
591 static int sipcom_dp83820_mii_readreg(device_t, int, int);
592 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
593 static void sipcom_dp83820_mii_statchg(device_t);
594
595 static int sipcom_sis900_mii_readreg(device_t, int, int);
596 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
597 static void sipcom_sis900_mii_statchg(device_t);
598
599 static int sipcom_dp83815_mii_readreg(device_t, int, int);
600 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
601 static void sipcom_dp83815_mii_statchg(device_t);
602
603 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
604
605 static int sipcom_match(device_t, struct cfdata *, void *);
606 static void sipcom_attach(device_t, device_t, void *);
607 static void sipcom_do_detach(device_t, enum sip_attach_stage);
608 static int sipcom_detach(device_t, int);
609 static bool sipcom_resume(device_t PMF_FN_PROTO);
610 static bool sipcom_suspend(device_t PMF_FN_PROTO);
611
612 int gsip_copy_small = 0;
613 int sip_copy_small = 0;
614
615 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
616 sipcom_match, sipcom_attach, sipcom_detach, NULL);
617 CFATTACH_DECL(sip, sizeof(struct sip_softc),
618 sipcom_match, sipcom_attach, sipcom_detach, NULL);
619
620 /*
621 * Descriptions of the variants of the SiS900.
622 */
623 struct sip_variant {
624 int (*sipv_mii_readreg)(device_t, int, int);
625 void (*sipv_mii_writereg)(device_t, int, int, int);
626 void (*sipv_mii_statchg)(device_t);
627 void (*sipv_set_filter)(struct sip_softc *);
628 void (*sipv_read_macaddr)(struct sip_softc *,
629 const struct pci_attach_args *, u_int8_t *);
630 };
631
632 static u_int32_t sipcom_mii_bitbang_read(device_t);
633 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
634
635 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
636 sipcom_mii_bitbang_read,
637 sipcom_mii_bitbang_write,
638 {
639 EROMAR_MDIO, /* MII_BIT_MDO */
640 EROMAR_MDIO, /* MII_BIT_MDI */
641 EROMAR_MDC, /* MII_BIT_MDC */
642 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
643 0, /* MII_BIT_DIR_PHY_HOST */
644 }
645 };
646
647 static const struct sip_variant sipcom_variant_dp83820 = {
648 sipcom_dp83820_mii_readreg,
649 sipcom_dp83820_mii_writereg,
650 sipcom_dp83820_mii_statchg,
651 sipcom_dp83815_set_filter,
652 sipcom_dp83820_read_macaddr,
653 };
654
655 static const struct sip_variant sipcom_variant_sis900 = {
656 sipcom_sis900_mii_readreg,
657 sipcom_sis900_mii_writereg,
658 sipcom_sis900_mii_statchg,
659 sipcom_sis900_set_filter,
660 sipcom_sis900_read_macaddr,
661 };
662
663 static const struct sip_variant sipcom_variant_dp83815 = {
664 sipcom_dp83815_mii_readreg,
665 sipcom_dp83815_mii_writereg,
666 sipcom_dp83815_mii_statchg,
667 sipcom_dp83815_set_filter,
668 sipcom_dp83815_read_macaddr,
669 };
670
671
672 /*
673 * Devices supported by this driver.
674 */
675 static const struct sip_product {
676 pci_vendor_id_t sip_vendor;
677 pci_product_id_t sip_product;
678 const char *sip_name;
679 const struct sip_variant *sip_variant;
680 int sip_gigabit;
681 } sipcom_products[] = {
682 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
683 "NatSemi DP83820 Gigabit Ethernet",
684 &sipcom_variant_dp83820, 1 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
686 "SiS 900 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
689 "SiS 7016 10/100 Ethernet",
690 &sipcom_variant_sis900, 0 },
691
692 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
693 "NatSemi DP83815 10/100 Ethernet",
694 &sipcom_variant_dp83815, 0 },
695
696 { 0, 0,
697 NULL,
698 NULL, 0 },
699 };
700
701 static const struct sip_product *
702 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
703 {
704 const struct sip_product *sip;
705
706 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
707 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
708 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
709 sip->sip_gigabit == gigabit)
710 return sip;
711 }
712 return NULL;
713 }
714
715 /*
716 * I really hate stupid hardware vendors. There's a bit in the EEPROM
717 * which indicates if the card can do 64-bit data transfers. Unfortunately,
718 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
719 * which means we try to use 64-bit data transfers on those cards if we
720 * happen to be plugged into a 32-bit slot.
721 *
722 * What we do is use this table of cards known to be 64-bit cards. If
723 * you have a 64-bit card who's subsystem ID is not listed in this table,
724 * send the output of "pcictl dump ..." of the device to me so that your
725 * card will use the 64-bit data path when plugged into a 64-bit slot.
726 *
727 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
728 * June 30, 2002
729 */
730 static int
731 sipcom_check_64bit(const struct pci_attach_args *pa)
732 {
733 static const struct {
734 pci_vendor_id_t c64_vendor;
735 pci_product_id_t c64_product;
736 } card64[] = {
737 /* Asante GigaNIX */
738 { 0x128a, 0x0002 },
739
740 /* Accton EN1407-T, Planex GN-1000TE */
741 { 0x1113, 0x1407 },
742
743 /* Netgear GA-621 */
744 { 0x1385, 0x621a },
745
746 /* SMC EZ Card */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(&sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(&sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 #if NRND > 0
914 rnd_detach_source(&sc->rnd_source);
915 #endif
916
917 ether_ifdetach(ifp);
918 if_detach(ifp);
919 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
920
921 /*FALLTHROUGH*/
922 case SIP_ATTACH_CREATE_RXMAP:
923 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
924 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
925 bus_dmamap_destroy(sc->sc_dmat,
926 sc->sc_rxsoft[i].rxs_dmamap);
927 }
928 /*FALLTHROUGH*/
929 case SIP_ATTACH_CREATE_TXMAP:
930 for (i = 0; i < SIP_TXQUEUELEN; i++) {
931 if (sc->sc_txsoft[i].txs_dmamap != NULL)
932 bus_dmamap_destroy(sc->sc_dmat,
933 sc->sc_txsoft[i].txs_dmamap);
934 }
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_LOAD_MAP:
937 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
938 /*FALLTHROUGH*/
939 case SIP_ATTACH_CREATE_MAP:
940 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_MAP_MEM:
943 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
944 sizeof(struct sip_control_data));
945 /*FALLTHROUGH*/
946 case SIP_ATTACH_ALLOC_MEM:
947 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
948 /* FALLTHROUGH*/
949 case SIP_ATTACH_INTR:
950 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
951 /* FALLTHROUGH*/
952 case SIP_ATTACH_MAP:
953 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
954 break;
955 default:
956 break;
957 }
958 return;
959 }
960
961 static bool
962 sipcom_resume(device_t self PMF_FN_ARGS)
963 {
964 struct sip_softc *sc = device_private(self);
965
966 return sipcom_reset(sc);
967 }
968
969 static bool
970 sipcom_suspend(device_t self PMF_FN_ARGS)
971 {
972 struct sip_softc *sc = device_private(self);
973
974 sipcom_rxdrain(sc);
975 return true;
976 }
977
978 static void
979 sipcom_attach(device_t parent, device_t self, void *aux)
980 {
981 struct sip_softc *sc = device_private(self);
982 struct pci_attach_args *pa = aux;
983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 pci_chipset_tag_t pc = pa->pa_pc;
985 pci_intr_handle_t ih;
986 const char *intrstr = NULL;
987 bus_space_tag_t iot, memt;
988 bus_space_handle_t ioh, memh;
989 bus_size_t iosz, memsz;
990 int ioh_valid, memh_valid;
991 int i, rseg, error;
992 const struct sip_product *sip;
993 u_int8_t enaddr[ETHER_ADDR_LEN];
994 pcireg_t pmreg;
995 pcireg_t memtype;
996 bus_size_t tx_dmamap_size;
997 int ntxsegs_alloc;
998 cfdata_t cf = device_cfdata(self);
999
1000 callout_init(&sc->sc_tick_ch, 0);
1001
1002 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1003 if (sip == NULL) {
1004 printf("\n");
1005 panic("%s: impossible", __func__);
1006 }
1007 sc->sc_gigabit = sip->sip_gigabit;
1008
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 printf("%s: unable to map device registers\n",
1074 device_xname(&sc->sc_dev));
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 pmreg | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
1092 error != EOPNOTSUPP) {
1093 aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
1094 error);
1095 return;
1096 }
1097
1098 /*
1099 * Map and establish our interrupt.
1100 */
1101 if (pci_intr_map(pa, &ih)) {
1102 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1103 return;
1104 }
1105 intrstr = pci_intr_string(pc, ih);
1106 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1107 if (sc->sc_ih == NULL) {
1108 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1109 if (intrstr != NULL)
1110 printf(" at %s", intrstr);
1111 printf("\n");
1112 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1113 }
1114 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1127 error);
1128 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 }
1130
1131 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1134 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1135 error);
1136 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 }
1138
1139 if ((error = bus_dmamap_create(sc->sc_dmat,
1140 sizeof(struct sip_control_data), 1,
1141 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1143 "error = %d\n", error);
1144 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 }
1146
1147 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 0)) != 0) {
1150 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1151 error);
1152 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 }
1154
1155 /*
1156 * Create the transmit buffer DMA maps.
1157 */
1158 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1163 "error = %d\n", i, error);
1164 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 }
1166 }
1167
1168 /*
1169 * Create the receive buffer DMA maps.
1170 */
1171 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1175 "error = %d\n", i, error);
1176 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 }
1178 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 }
1180
1181 /*
1182 * Reset the chip to a known state.
1183 */
1184 sipcom_reset(sc);
1185
1186 /*
1187 * Read the Ethernet address from the EEPROM. This might
1188 * also fetch other stuff from the EEPROM and stash it
1189 * in the softc.
1190 */
1191 sc->sc_cfg = 0;
1192 if (!sc->sc_gigabit) {
1193 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1194 SIP_SIS900_REV(sc,SIS_REV_900B))
1195 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196
1197 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1198 SIP_SIS900_REV(sc,SIS_REV_960) ||
1199 SIP_SIS900_REV(sc,SIS_REV_900B))
1200 sc->sc_cfg |=
1201 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 CFG_EDBMASTEN);
1203 }
1204
1205 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206
1207 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1208 ether_sprintf(enaddr));
1209
1210 /*
1211 * Initialize the configuration register: aggressive PCI
1212 * bus request algorithm, default backoff, default OW timer,
1213 * default parity error detection.
1214 *
1215 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 * friends -- it affects packet data, not descriptors.
1217 */
1218 if (sc->sc_gigabit)
1219 sipcom_dp83820_attach(sc, pa);
1220
1221 /*
1222 * Initialize our media structures and probe the MII.
1223 */
1224 sc->sc_mii.mii_ifp = ifp;
1225 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 } else
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 ether_ifattach(ifp, enaddr);
1287 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1288 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1289 sc->sc_prev.if_capenable = ifp->if_capenable;
1290 #if NRND > 0
1291 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1292 RND_TYPE_NET, 0);
1293 #endif
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(&sc->sc_dev), "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(&sc->sc_dev), "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(&sc->sc_dev), "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(&sc->sc_dev), "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(&sc->sc_dev), "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(&sc->sc_dev), "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(&sc->sc_dev), "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, device_xname(&sc->sc_dev), "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(&sc->sc_dev), "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(&sc->sc_dev), "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(&sc->sc_dev), "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(&sc->sc_dev), "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(&sc->sc_dev), "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(&sc->sc_dev), "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(&sc->sc_dev), "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 aprint_error_dev(self, "couldn't establish power handler\n");
1370 else
1371 pmf_class_network_register(self, ifp);
1372 }
1373
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376 uint64_t capenable)
1377 {
1378 struct m_tag *mtag;
1379 u_int32_t extsts;
1380 #ifdef DEBUG
1381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 /*
1384 * If VLANs are enabled and the packet has a VLAN tag, set
1385 * up the descriptor to encapsulate the packet for us.
1386 *
1387 * This apparently has to be on the last descriptor of
1388 * the packet.
1389 */
1390
1391 /*
1392 * Byte swapping is tricky. We need to provide the tag
1393 * in a network byte order. On a big-endian machine,
1394 * the byteorder is correct, but we need to swap it
1395 * anyway, because this will be undone by the outside
1396 * htole32(). That's why there must be an
1397 * unconditional swap instead of htons() inside.
1398 */
1399 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 sc->sc_txdescs[lasttx].sipd_extsts |=
1401 htole32(EXTSTS_VPKT |
1402 (bswap16(VLAN_TAG_VALUE(mtag)) &
1403 EXTSTS_VTCI));
1404 }
1405
1406 /*
1407 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 * checksumming, set up the descriptor to do this work
1409 * for us.
1410 *
1411 * This apparently has to be on the first descriptor of
1412 * the packet.
1413 *
1414 * Byte-swap constants so the compiler can optimize.
1415 */
1416 extsts = 0;
1417 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 extsts |= htole32(EXTSTS_IPPKT);
1421 }
1422 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 extsts |= htole32(EXTSTS_TCPPKT);
1426 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 extsts |= htole32(EXTSTS_UDPPKT);
1430 }
1431 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433
1434 /*
1435 * sip_start: [ifnet interface function]
1436 *
1437 * Start packet transmission on the interface.
1438 */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 struct sip_softc *sc = ifp->if_softc;
1443 struct mbuf *m0;
1444 struct mbuf *m;
1445 struct sip_txsoft *txs;
1446 bus_dmamap_t dmamap;
1447 int error, nexttx, lasttx, seg;
1448 int ofree = sc->sc_txfree;
1449 #if 0
1450 int firsttx = sc->sc_txnext;
1451 #endif
1452
1453 /*
1454 * If we've been told to pause, don't transmit any more packets.
1455 */
1456 if (!sc->sc_gigabit && sc->sc_paused)
1457 ifp->if_flags |= IFF_OACTIVE;
1458
1459 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 return;
1461
1462 /*
1463 * Loop through the send queue, setting up transmit descriptors
1464 * until we drain the queue, or use up all available transmit
1465 * descriptors.
1466 */
1467 for (;;) {
1468 /* Get a work queue entry. */
1469 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 break;
1472 }
1473
1474 /*
1475 * Grab a packet off the queue.
1476 */
1477 IFQ_POLL(&ifp->if_snd, m0);
1478 if (m0 == NULL)
1479 break;
1480 m = NULL;
1481
1482 dmamap = txs->txs_dmamap;
1483
1484 /*
1485 * Load the DMA map. If this fails, the packet either
1486 * didn't fit in the alloted number of segments, or we
1487 * were short on resources.
1488 */
1489 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 /* In the non-gigabit case, we'll copy and try again. */
1492 if (error != 0 && !sc->sc_gigabit) {
1493 MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 if (m == NULL) {
1495 printf("%s: unable to allocate Tx mbuf\n",
1496 device_xname(&sc->sc_dev));
1497 break;
1498 }
1499 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 if (m0->m_pkthdr.len > MHLEN) {
1501 MCLGET(m, M_DONTWAIT);
1502 if ((m->m_flags & M_EXT) == 0) {
1503 printf("%s: unable to allocate Tx "
1504 "cluster\n", device_xname(&sc->sc_dev));
1505 m_freem(m);
1506 break;
1507 }
1508 }
1509 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1510 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1511 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1512 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1513 if (error) {
1514 printf("%s: unable to load Tx buffer, "
1515 "error = %d\n", device_xname(&sc->sc_dev), error);
1516 break;
1517 }
1518 } else if (error == EFBIG) {
1519 /*
1520 * For the too-many-segments case, we simply
1521 * report an error and drop the packet,
1522 * since we can't sanely copy a jumbo packet
1523 * to a single buffer.
1524 */
1525 printf("%s: Tx packet consumes too many "
1526 "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1527 IFQ_DEQUEUE(&ifp->if_snd, m0);
1528 m_freem(m0);
1529 continue;
1530 } else if (error != 0) {
1531 /*
1532 * Short on resources, just stop for now.
1533 */
1534 break;
1535 }
1536
1537 /*
1538 * Ensure we have enough descriptors free to describe
1539 * the packet. Note, we always reserve one descriptor
1540 * at the end of the ring as a termination point, to
1541 * prevent wrap-around.
1542 */
1543 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1544 /*
1545 * Not enough free descriptors to transmit this
1546 * packet. We haven't committed anything yet,
1547 * so just unload the DMA map, put the packet
1548 * back on the queue, and punt. Notify the upper
1549 * layer that there are not more slots left.
1550 *
1551 * XXX We could allocate an mbuf and copy, but
1552 * XXX is it worth it?
1553 */
1554 ifp->if_flags |= IFF_OACTIVE;
1555 bus_dmamap_unload(sc->sc_dmat, dmamap);
1556 if (m != NULL)
1557 m_freem(m);
1558 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1559 break;
1560 }
1561
1562 IFQ_DEQUEUE(&ifp->if_snd, m0);
1563 if (m != NULL) {
1564 m_freem(m0);
1565 m0 = m;
1566 }
1567
1568 /*
1569 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1570 */
1571
1572 /* Sync the DMA map. */
1573 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1574 BUS_DMASYNC_PREWRITE);
1575
1576 /*
1577 * Initialize the transmit descriptors.
1578 */
1579 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1580 seg < dmamap->dm_nsegs;
1581 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1582 /*
1583 * If this is the first descriptor we're
1584 * enqueueing, don't set the OWN bit just
1585 * yet. That could cause a race condition.
1586 * We'll do it below.
1587 */
1588 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32(dmamap->dm_segs[seg].ds_addr);
1590 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1592 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1593 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1594 lasttx = nexttx;
1595 }
1596
1597 /* Clear the MORE bit on the last segment. */
1598 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1599 htole32(~CMDSTS_MORE);
1600
1601 /*
1602 * If we're in the interrupt delay window, delay the
1603 * interrupt.
1604 */
1605 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1606 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1607 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1608 htole32(CMDSTS_INTR);
1609 sc->sc_txwin = 0;
1610 }
1611
1612 if (sc->sc_gigabit)
1613 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1614
1615 /* Sync the descriptors we're using. */
1616 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1617 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1618
1619 /*
1620 * The entire packet is set up. Give the first descrptor
1621 * to the chip now.
1622 */
1623 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1624 htole32(CMDSTS_OWN);
1625 sip_cdtxsync(sc, sc->sc_txnext, 1,
1626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1627
1628 /*
1629 * Store a pointer to the packet so we can free it later,
1630 * and remember what txdirty will be once the packet is
1631 * done.
1632 */
1633 txs->txs_mbuf = m0;
1634 txs->txs_firstdesc = sc->sc_txnext;
1635 txs->txs_lastdesc = lasttx;
1636
1637 /* Advance the tx pointer. */
1638 sc->sc_txfree -= dmamap->dm_nsegs;
1639 sc->sc_txnext = nexttx;
1640
1641 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1642 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1643
1644 #if NBPFILTER > 0
1645 /*
1646 * Pass the packet to any BPF listeners.
1647 */
1648 if (ifp->if_bpf)
1649 bpf_mtap(ifp->if_bpf, m0);
1650 #endif /* NBPFILTER > 0 */
1651 }
1652
1653 if (txs == NULL || sc->sc_txfree == 0) {
1654 /* No more slots left; notify upper layer. */
1655 ifp->if_flags |= IFF_OACTIVE;
1656 }
1657
1658 if (sc->sc_txfree != ofree) {
1659 /*
1660 * Start the transmit process. Note, the manual says
1661 * that if there are no pending transmissions in the
1662 * chip's internal queue (indicated by TXE being clear),
1663 * then the driver software must set the TXDP to the
1664 * first descriptor to be transmitted. However, if we
1665 * do this, it causes serious performance degredation on
1666 * the DP83820 under load, not setting TXDP doesn't seem
1667 * to adversely affect the SiS 900 or DP83815.
1668 *
1669 * Well, I guess it wouldn't be the first time a manual
1670 * has lied -- and they could be speaking of the NULL-
1671 * terminated descriptor list case, rather than OWN-
1672 * terminated rings.
1673 */
1674 #if 0
1675 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1676 CR_TXE) == 0) {
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1678 SIP_CDTXADDR(sc, firsttx));
1679 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1680 }
1681 #else
1682 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1683 #endif
1684
1685 /* Set a watchdog timer in case the chip flakes out. */
1686 /* Gigabit autonegotiation takes 5 seconds. */
1687 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1688 }
1689 }
1690
1691 /*
1692 * sip_watchdog: [ifnet interface function]
1693 *
1694 * Watchdog timer handler.
1695 */
1696 static void
1697 sipcom_watchdog(struct ifnet *ifp)
1698 {
1699 struct sip_softc *sc = ifp->if_softc;
1700
1701 /*
1702 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1703 * If we get a timeout, try and sweep up transmit descriptors.
1704 * If we manage to sweep them all up, ignore the lack of
1705 * interrupt.
1706 */
1707 sipcom_txintr(sc);
1708
1709 if (sc->sc_txfree != sc->sc_ntxdesc) {
1710 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1711 ifp->if_oerrors++;
1712
1713 /* Reset the interface. */
1714 (void) sipcom_init(ifp);
1715 } else if (ifp->if_flags & IFF_DEBUG)
1716 printf("%s: recovered from device timeout\n",
1717 device_xname(&sc->sc_dev));
1718
1719 /* Try to get more packets going. */
1720 sipcom_start(ifp);
1721 }
1722
1723 /*
1724 * sip_ioctl: [ifnet interface function]
1725 *
1726 * Handle control requests from the operator.
1727 */
1728 static int
1729 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1730 {
1731 struct sip_softc *sc = ifp->if_softc;
1732 struct ifreq *ifr = (struct ifreq *)data;
1733 int s, error;
1734
1735 s = splnet();
1736
1737 switch (cmd) {
1738 case SIOCSIFMEDIA:
1739 /* Flow control requires full-duplex mode. */
1740 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1741 (ifr->ifr_media & IFM_FDX) == 0)
1742 ifr->ifr_media &= ~IFM_ETH_FMASK;
1743
1744 /* XXX */
1745 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1746 ifr->ifr_media &= ~IFM_ETH_FMASK;
1747 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1748 if (sc->sc_gigabit &&
1749 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1750 /* We can do both TXPAUSE and RXPAUSE. */
1751 ifr->ifr_media |=
1752 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1753 } else if (ifr->ifr_media & IFM_FLOW) {
1754 /*
1755 * Both TXPAUSE and RXPAUSE must be set.
1756 * (SiS900 and DP83815 don't have PAUSE_ASYM
1757 * feature.)
1758 *
1759 * XXX Can SiS900 and DP83815 send PAUSE?
1760 */
1761 ifr->ifr_media |=
1762 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1763 }
1764 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1765 }
1766 goto ethioctl;
1767 case SIOCSIFFLAGS:
1768 /* If the interface is up and running, only modify the receive
1769 * filter when setting promiscuous or debug mode. Otherwise
1770 * fall through to ether_ioctl, which will reset the chip.
1771 */
1772
1773 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1774 == (sc)->sc_ethercom.ec_capenable) \
1775 && ((sc)->sc_prev.is_vlan == \
1776 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1777
1778 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1779
1780 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1781 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1782 == (IFF_UP|IFF_RUNNING))
1783 && ((ifp->if_flags & (~RESETIGN))
1784 == (sc->sc_if_flags & (~RESETIGN)))
1785 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1786 /* Set up the receive filter. */
1787 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1788 error = 0;
1789 break;
1790 #undef RESETIGN
1791 }
1792 /* FALLTHROUGH */
1793 ethioctl:
1794 default:
1795 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1796 break;
1797
1798 error = 0;
1799
1800 if (cmd == SIOCSIFCAP)
1801 error = (*ifp->if_init)(ifp);
1802 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1803 ;
1804 else if (ifp->if_flags & IFF_RUNNING) {
1805 /*
1806 * Multicast list has changed; set the hardware filter
1807 * accordingly.
1808 */
1809 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 }
1811 break;
1812 }
1813
1814 /* Try to get more packets going. */
1815 sipcom_start(ifp);
1816
1817 sc->sc_if_flags = ifp->if_flags;
1818 splx(s);
1819 return (error);
1820 }
1821
1822 /*
1823 * sip_intr:
1824 *
1825 * Interrupt service routine.
1826 */
1827 static int
1828 sipcom_intr(void *arg)
1829 {
1830 struct sip_softc *sc = arg;
1831 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1832 u_int32_t isr;
1833 int handled = 0;
1834
1835 /* Disable interrupts. */
1836 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1837
1838 for (;;) {
1839 /* Reading clears interrupt. */
1840 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1841 if ((isr & sc->sc_imr) == 0)
1842 break;
1843
1844 #if NRND > 0
1845 if (RND_ENABLED(&sc->rnd_source))
1846 rnd_add_uint32(&sc->rnd_source, isr);
1847 #endif
1848
1849 handled = 1;
1850
1851 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1852 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1853
1854 /* Grab any new packets. */
1855 (*sc->sc_rxintr)(sc);
1856
1857 if (isr & ISR_RXORN) {
1858 printf("%s: receive FIFO overrun\n",
1859 device_xname(&sc->sc_dev));
1860
1861 /* XXX adjust rx_drain_thresh? */
1862 }
1863
1864 if (isr & ISR_RXIDLE) {
1865 printf("%s: receive ring overrun\n",
1866 device_xname(&sc->sc_dev));
1867
1868 /* Get the receive process going again. */
1869 bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1871 bus_space_write_4(sc->sc_st, sc->sc_sh,
1872 SIP_CR, CR_RXE);
1873 }
1874 }
1875
1876 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1877 #ifdef SIP_EVENT_COUNTERS
1878 if (isr & ISR_TXDESC)
1879 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1880 else if (isr & ISR_TXIDLE)
1881 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1882 #endif
1883
1884 /* Sweep up transmit descriptors. */
1885 sipcom_txintr(sc);
1886
1887 if (isr & ISR_TXURN) {
1888 u_int32_t thresh;
1889 int txfifo_size = (sc->sc_gigabit)
1890 ? DP83820_SIP_TXFIFO_SIZE
1891 : OTHER_SIP_TXFIFO_SIZE;
1892
1893 printf("%s: transmit FIFO underrun",
1894 device_xname(&sc->sc_dev));
1895 thresh = sc->sc_tx_drain_thresh + 1;
1896 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1897 && (thresh * 32) <= (txfifo_size -
1898 (sc->sc_tx_fill_thresh * 32))) {
1899 printf("; increasing Tx drain "
1900 "threshold to %u bytes\n",
1901 thresh * 32);
1902 sc->sc_tx_drain_thresh = thresh;
1903 (void) sipcom_init(ifp);
1904 } else {
1905 (void) sipcom_init(ifp);
1906 printf("\n");
1907 }
1908 }
1909 }
1910
1911 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1912 if (isr & ISR_PAUSE_ST) {
1913 sc->sc_paused = 1;
1914 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1915 ifp->if_flags |= IFF_OACTIVE;
1916 }
1917 if (isr & ISR_PAUSE_END) {
1918 sc->sc_paused = 0;
1919 ifp->if_flags &= ~IFF_OACTIVE;
1920 }
1921 }
1922
1923 if (isr & ISR_HIBERR) {
1924 int want_init = 0;
1925
1926 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1927
1928 #define PRINTERR(bit, str) \
1929 do { \
1930 if ((isr & (bit)) != 0) { \
1931 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1932 printf("%s: %s\n", \
1933 device_xname(&sc->sc_dev), str); \
1934 want_init = 1; \
1935 } \
1936 } while (/*CONSTCOND*/0)
1937
1938 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1939 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1940 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1941 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1942 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1943 /*
1944 * Ignore:
1945 * Tx reset complete
1946 * Rx reset complete
1947 */
1948 if (want_init)
1949 (void) sipcom_init(ifp);
1950 #undef PRINTERR
1951 }
1952 }
1953
1954 /* Re-enable interrupts. */
1955 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1956
1957 /* Try to get more packets going. */
1958 sipcom_start(ifp);
1959
1960 return (handled);
1961 }
1962
1963 /*
1964 * sip_txintr:
1965 *
1966 * Helper; handle transmit interrupts.
1967 */
1968 static void
1969 sipcom_txintr(struct sip_softc *sc)
1970 {
1971 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1972 struct sip_txsoft *txs;
1973 u_int32_t cmdsts;
1974
1975 if (sc->sc_paused == 0)
1976 ifp->if_flags &= ~IFF_OACTIVE;
1977
1978 /*
1979 * Go through our Tx list and free mbufs for those
1980 * frames which have been transmitted.
1981 */
1982 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1983 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1984 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1985
1986 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1987 if (cmdsts & CMDSTS_OWN)
1988 break;
1989
1990 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1991
1992 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1993
1994 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1995 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1996 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1997 m_freem(txs->txs_mbuf);
1998 txs->txs_mbuf = NULL;
1999
2000 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2001
2002 /*
2003 * Check for errors and collisions.
2004 */
2005 if (cmdsts &
2006 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2007 ifp->if_oerrors++;
2008 if (cmdsts & CMDSTS_Tx_EC)
2009 ifp->if_collisions += 16;
2010 if (ifp->if_flags & IFF_DEBUG) {
2011 if (cmdsts & CMDSTS_Tx_ED)
2012 printf("%s: excessive deferral\n",
2013 device_xname(&sc->sc_dev));
2014 if (cmdsts & CMDSTS_Tx_EC)
2015 printf("%s: excessive collisions\n",
2016 device_xname(&sc->sc_dev));
2017 }
2018 } else {
2019 /* Packet was transmitted successfully. */
2020 ifp->if_opackets++;
2021 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2022 }
2023 }
2024
2025 /*
2026 * If there are no more pending transmissions, cancel the watchdog
2027 * timer.
2028 */
2029 if (txs == NULL) {
2030 ifp->if_timer = 0;
2031 sc->sc_txwin = 0;
2032 }
2033 }
2034
2035 /*
2036 * gsip_rxintr:
2037 *
2038 * Helper; handle receive interrupts on gigabit parts.
2039 */
2040 static void
2041 gsip_rxintr(struct sip_softc *sc)
2042 {
2043 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2044 struct sip_rxsoft *rxs;
2045 struct mbuf *m;
2046 u_int32_t cmdsts, extsts;
2047 int i, len;
2048
2049 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2050 rxs = &sc->sc_rxsoft[i];
2051
2052 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2053
2054 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2055 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2056 len = CMDSTS_SIZE(sc, cmdsts);
2057
2058 /*
2059 * NOTE: OWN is set if owned by _consumer_. We're the
2060 * consumer of the receive ring, so if the bit is clear,
2061 * we have processed all of the packets.
2062 */
2063 if ((cmdsts & CMDSTS_OWN) == 0) {
2064 /*
2065 * We have processed all of the receive buffers.
2066 */
2067 break;
2068 }
2069
2070 if (__predict_false(sc->sc_rxdiscard)) {
2071 sip_init_rxdesc(sc, i);
2072 if ((cmdsts & CMDSTS_MORE) == 0) {
2073 /* Reset our state. */
2074 sc->sc_rxdiscard = 0;
2075 }
2076 continue;
2077 }
2078
2079 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2080 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2081
2082 m = rxs->rxs_mbuf;
2083
2084 /*
2085 * Add a new receive buffer to the ring.
2086 */
2087 if (sipcom_add_rxbuf(sc, i) != 0) {
2088 /*
2089 * Failed, throw away what we've done so
2090 * far, and discard the rest of the packet.
2091 */
2092 ifp->if_ierrors++;
2093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2095 sip_init_rxdesc(sc, i);
2096 if (cmdsts & CMDSTS_MORE)
2097 sc->sc_rxdiscard = 1;
2098 if (sc->sc_rxhead != NULL)
2099 m_freem(sc->sc_rxhead);
2100 sip_rxchain_reset(sc);
2101 continue;
2102 }
2103
2104 sip_rxchain_link(sc, m);
2105
2106 m->m_len = len;
2107
2108 /*
2109 * If this is not the end of the packet, keep
2110 * looking.
2111 */
2112 if (cmdsts & CMDSTS_MORE) {
2113 sc->sc_rxlen += len;
2114 continue;
2115 }
2116
2117 /*
2118 * Okay, we have the entire packet now. The chip includes
2119 * the FCS, so we need to trim it.
2120 */
2121 m->m_len -= ETHER_CRC_LEN;
2122
2123 *sc->sc_rxtailp = NULL;
2124 len = m->m_len + sc->sc_rxlen;
2125 m = sc->sc_rxhead;
2126
2127 sip_rxchain_reset(sc);
2128
2129 /*
2130 * If an error occurred, update stats and drop the packet.
2131 */
2132 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2133 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2134 ifp->if_ierrors++;
2135 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2136 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2137 /* Receive overrun handled elsewhere. */
2138 printf("%s: receive descriptor error\n",
2139 device_xname(&sc->sc_dev));
2140 }
2141 #define PRINTERR(bit, str) \
2142 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2143 (cmdsts & (bit)) != 0) \
2144 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2145 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2146 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2147 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2148 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2149 #undef PRINTERR
2150 m_freem(m);
2151 continue;
2152 }
2153
2154 /*
2155 * If the packet is small enough to fit in a
2156 * single header mbuf, allocate one and copy
2157 * the data into it. This greatly reduces
2158 * memory consumption when we receive lots
2159 * of small packets.
2160 */
2161 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2162 struct mbuf *nm;
2163 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2164 if (nm == NULL) {
2165 ifp->if_ierrors++;
2166 m_freem(m);
2167 continue;
2168 }
2169 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2170 nm->m_data += 2;
2171 nm->m_pkthdr.len = nm->m_len = len;
2172 m_copydata(m, 0, len, mtod(nm, void *));
2173 m_freem(m);
2174 m = nm;
2175 }
2176 #ifndef __NO_STRICT_ALIGNMENT
2177 else {
2178 /*
2179 * The DP83820's receive buffers must be 4-byte
2180 * aligned. But this means that the data after
2181 * the Ethernet header is misaligned. To compensate,
2182 * we have artificially shortened the buffer size
2183 * in the descriptor, and we do an overlapping copy
2184 * of the data two bytes further in (in the first
2185 * buffer of the chain only).
2186 */
2187 memmove(mtod(m, char *) + 2, mtod(m, void *),
2188 m->m_len);
2189 m->m_data += 2;
2190 }
2191 #endif /* ! __NO_STRICT_ALIGNMENT */
2192
2193 /*
2194 * If VLANs are enabled, VLAN packets have been unwrapped
2195 * for us. Associate the tag with the packet.
2196 */
2197
2198 /*
2199 * Again, byte swapping is tricky. Hardware provided
2200 * the tag in the network byte order, but extsts was
2201 * passed through le32toh() in the meantime. On a
2202 * big-endian machine, we need to swap it again. On a
2203 * little-endian machine, we need to convert from the
2204 * network to host byte order. This means that we must
2205 * swap it in any case, so unconditional swap instead
2206 * of htons() is used.
2207 */
2208 if ((extsts & EXTSTS_VPKT) != 0) {
2209 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2210 continue);
2211 }
2212
2213 /*
2214 * Set the incoming checksum information for the
2215 * packet.
2216 */
2217 if ((extsts & EXTSTS_IPPKT) != 0) {
2218 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2220 if (extsts & EXTSTS_Rx_IPERR)
2221 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2222 if (extsts & EXTSTS_TCPPKT) {
2223 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2224 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2225 if (extsts & EXTSTS_Rx_TCPERR)
2226 m->m_pkthdr.csum_flags |=
2227 M_CSUM_TCP_UDP_BAD;
2228 } else if (extsts & EXTSTS_UDPPKT) {
2229 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2230 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2231 if (extsts & EXTSTS_Rx_UDPERR)
2232 m->m_pkthdr.csum_flags |=
2233 M_CSUM_TCP_UDP_BAD;
2234 }
2235 }
2236
2237 ifp->if_ipackets++;
2238 m->m_pkthdr.rcvif = ifp;
2239 m->m_pkthdr.len = len;
2240
2241 #if NBPFILTER > 0
2242 /*
2243 * Pass this up to any BPF listeners, but only
2244 * pass if up the stack if it's for us.
2245 */
2246 if (ifp->if_bpf)
2247 bpf_mtap(ifp->if_bpf, m);
2248 #endif /* NBPFILTER > 0 */
2249
2250 /* Pass it on. */
2251 (*ifp->if_input)(ifp, m);
2252 }
2253
2254 /* Update the receive pointer. */
2255 sc->sc_rxptr = i;
2256 }
2257
2258 /*
2259 * sip_rxintr:
2260 *
2261 * Helper; handle receive interrupts on 10/100 parts.
2262 */
2263 static void
2264 sip_rxintr(struct sip_softc *sc)
2265 {
2266 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2267 struct sip_rxsoft *rxs;
2268 struct mbuf *m;
2269 u_int32_t cmdsts;
2270 int i, len;
2271
2272 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2273 rxs = &sc->sc_rxsoft[i];
2274
2275 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2276
2277 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2278
2279 /*
2280 * NOTE: OWN is set if owned by _consumer_. We're the
2281 * consumer of the receive ring, so if the bit is clear,
2282 * we have processed all of the packets.
2283 */
2284 if ((cmdsts & CMDSTS_OWN) == 0) {
2285 /*
2286 * We have processed all of the receive buffers.
2287 */
2288 break;
2289 }
2290
2291 /*
2292 * If any collisions were seen on the wire, count one.
2293 */
2294 if (cmdsts & CMDSTS_Rx_COL)
2295 ifp->if_collisions++;
2296
2297 /*
2298 * If an error occurred, update stats, clear the status
2299 * word, and leave the packet buffer in place. It will
2300 * simply be reused the next time the ring comes around.
2301 */
2302 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2303 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2304 ifp->if_ierrors++;
2305 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2306 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2307 /* Receive overrun handled elsewhere. */
2308 printf("%s: receive descriptor error\n",
2309 device_xname(&sc->sc_dev));
2310 }
2311 #define PRINTERR(bit, str) \
2312 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2313 (cmdsts & (bit)) != 0) \
2314 printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2315 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2316 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2317 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2318 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2319 #undef PRINTERR
2320 sip_init_rxdesc(sc, i);
2321 continue;
2322 }
2323
2324 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2325 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2326
2327 /*
2328 * No errors; receive the packet. Note, the SiS 900
2329 * includes the CRC with every packet.
2330 */
2331 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2332
2333 #ifdef __NO_STRICT_ALIGNMENT
2334 /*
2335 * If the packet is small enough to fit in a
2336 * single header mbuf, allocate one and copy
2337 * the data into it. This greatly reduces
2338 * memory consumption when we receive lots
2339 * of small packets.
2340 *
2341 * Otherwise, we add a new buffer to the receive
2342 * chain. If this fails, we drop the packet and
2343 * recycle the old buffer.
2344 */
2345 if (sip_copy_small != 0 && len <= MHLEN) {
2346 MGETHDR(m, M_DONTWAIT, MT_DATA);
2347 if (m == NULL)
2348 goto dropit;
2349 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2350 memcpy(mtod(m, void *),
2351 mtod(rxs->rxs_mbuf, void *), len);
2352 sip_init_rxdesc(sc, i);
2353 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2354 rxs->rxs_dmamap->dm_mapsize,
2355 BUS_DMASYNC_PREREAD);
2356 } else {
2357 m = rxs->rxs_mbuf;
2358 if (sipcom_add_rxbuf(sc, i) != 0) {
2359 dropit:
2360 ifp->if_ierrors++;
2361 sip_init_rxdesc(sc, i);
2362 bus_dmamap_sync(sc->sc_dmat,
2363 rxs->rxs_dmamap, 0,
2364 rxs->rxs_dmamap->dm_mapsize,
2365 BUS_DMASYNC_PREREAD);
2366 continue;
2367 }
2368 }
2369 #else
2370 /*
2371 * The SiS 900's receive buffers must be 4-byte aligned.
2372 * But this means that the data after the Ethernet header
2373 * is misaligned. We must allocate a new buffer and
2374 * copy the data, shifted forward 2 bytes.
2375 */
2376 MGETHDR(m, M_DONTWAIT, MT_DATA);
2377 if (m == NULL) {
2378 dropit:
2379 ifp->if_ierrors++;
2380 sip_init_rxdesc(sc, i);
2381 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2382 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2383 continue;
2384 }
2385 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2386 if (len > (MHLEN - 2)) {
2387 MCLGET(m, M_DONTWAIT);
2388 if ((m->m_flags & M_EXT) == 0) {
2389 m_freem(m);
2390 goto dropit;
2391 }
2392 }
2393 m->m_data += 2;
2394
2395 /*
2396 * Note that we use clusters for incoming frames, so the
2397 * buffer is virtually contiguous.
2398 */
2399 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2400
2401 /* Allow the receive descriptor to continue using its mbuf. */
2402 sip_init_rxdesc(sc, i);
2403 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2404 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2405 #endif /* __NO_STRICT_ALIGNMENT */
2406
2407 ifp->if_ipackets++;
2408 m->m_pkthdr.rcvif = ifp;
2409 m->m_pkthdr.len = m->m_len = len;
2410
2411 #if NBPFILTER > 0
2412 /*
2413 * Pass this up to any BPF listeners, but only
2414 * pass if up the stack if it's for us.
2415 */
2416 if (ifp->if_bpf)
2417 bpf_mtap(ifp->if_bpf, m);
2418 #endif /* NBPFILTER > 0 */
2419
2420 /* Pass it on. */
2421 (*ifp->if_input)(ifp, m);
2422 }
2423
2424 /* Update the receive pointer. */
2425 sc->sc_rxptr = i;
2426 }
2427
2428 /*
2429 * sip_tick:
2430 *
2431 * One second timer, used to tick the MII.
2432 */
2433 static void
2434 sipcom_tick(void *arg)
2435 {
2436 struct sip_softc *sc = arg;
2437 int s;
2438
2439 s = splnet();
2440 #ifdef SIP_EVENT_COUNTERS
2441 if (sc->sc_gigabit) {
2442 /* Read PAUSE related counts from MIB registers. */
2443 sc->sc_ev_rxpause.ev_count +=
2444 bus_space_read_4(sc->sc_st, sc->sc_sh,
2445 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2446 sc->sc_ev_txpause.ev_count +=
2447 bus_space_read_4(sc->sc_st, sc->sc_sh,
2448 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2449 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2450 }
2451 #endif /* SIP_EVENT_COUNTERS */
2452 mii_tick(&sc->sc_mii);
2453 splx(s);
2454
2455 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2456 }
2457
2458 /*
2459 * sip_reset:
2460 *
2461 * Perform a soft reset on the SiS 900.
2462 */
2463 static bool
2464 sipcom_reset(struct sip_softc *sc)
2465 {
2466 bus_space_tag_t st = sc->sc_st;
2467 bus_space_handle_t sh = sc->sc_sh;
2468 int i;
2469
2470 bus_space_write_4(st, sh, SIP_IER, 0);
2471 bus_space_write_4(st, sh, SIP_IMR, 0);
2472 bus_space_write_4(st, sh, SIP_RFCR, 0);
2473 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2474
2475 for (i = 0; i < SIP_TIMEOUT; i++) {
2476 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2477 break;
2478 delay(2);
2479 }
2480
2481 if (i == SIP_TIMEOUT) {
2482 printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2483 return false;
2484 }
2485
2486 delay(1000);
2487
2488 if (sc->sc_gigabit) {
2489 /*
2490 * Set the general purpose I/O bits. Do it here in case we
2491 * need to have GPIO set up to talk to the media interface.
2492 */
2493 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2494 delay(1000);
2495 }
2496 return true;
2497 }
2498
2499 static void
2500 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2501 {
2502 u_int32_t reg;
2503 bus_space_tag_t st = sc->sc_st;
2504 bus_space_handle_t sh = sc->sc_sh;
2505 /*
2506 * Initialize the VLAN/IP receive control register.
2507 * We enable checksum computation on all incoming
2508 * packets, and do not reject packets w/ bad checksums.
2509 */
2510 reg = 0;
2511 if (capenable &
2512 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2513 reg |= VRCR_IPEN;
2514 if (VLAN_ATTACHED(&sc->sc_ethercom))
2515 reg |= VRCR_VTDEN|VRCR_VTREN;
2516 bus_space_write_4(st, sh, SIP_VRCR, reg);
2517
2518 /*
2519 * Initialize the VLAN/IP transmit control register.
2520 * We enable outgoing checksum computation on a
2521 * per-packet basis.
2522 */
2523 reg = 0;
2524 if (capenable &
2525 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2526 reg |= VTCR_PPCHK;
2527 if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 reg |= VTCR_VPPTI;
2529 bus_space_write_4(st, sh, SIP_VTCR, reg);
2530
2531 /*
2532 * If we're using VLANs, initialize the VLAN data register.
2533 * To understand why we bswap the VLAN Ethertype, see section
2534 * 4.2.36 of the DP83820 manual.
2535 */
2536 if (VLAN_ATTACHED(&sc->sc_ethercom))
2537 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2538 }
2539
2540 /*
2541 * sip_init: [ ifnet interface function ]
2542 *
2543 * Initialize the interface. Must be called at splnet().
2544 */
2545 static int
2546 sipcom_init(struct ifnet *ifp)
2547 {
2548 struct sip_softc *sc = ifp->if_softc;
2549 bus_space_tag_t st = sc->sc_st;
2550 bus_space_handle_t sh = sc->sc_sh;
2551 struct sip_txsoft *txs;
2552 struct sip_rxsoft *rxs;
2553 struct sip_desc *sipd;
2554 int i, error = 0;
2555
2556 if (device_is_active(&sc->sc_dev)) {
2557 /*
2558 * Cancel any pending I/O.
2559 */
2560 sipcom_stop(ifp, 0);
2561 } else if (!pmf_device_resume_self(&sc->sc_dev))
2562 return 0;
2563
2564 /*
2565 * Reset the chip to a known state.
2566 */
2567 if (!sipcom_reset(sc))
2568 return EBUSY;
2569
2570 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2571 /*
2572 * DP83815 manual, page 78:
2573 * 4.4 Recommended Registers Configuration
2574 * For optimum performance of the DP83815, version noted
2575 * as DP83815CVNG (SRR = 203h), the listed register
2576 * modifications must be followed in sequence...
2577 *
2578 * It's not clear if this should be 302h or 203h because that
2579 * chip name is listed as SRR 302h in the description of the
2580 * SRR register. However, my revision 302h DP83815 on the
2581 * Netgear FA311 purchased in 02/2001 needs these settings
2582 * to avoid tons of errors in AcceptPerfectMatch (non-
2583 * IFF_PROMISC) mode. I do not know if other revisions need
2584 * this set or not. [briggs -- 09 March 2001]
2585 *
2586 * Note that only the low-order 12 bits of 0xe4 are documented
2587 * and that this sets reserved bits in that register.
2588 */
2589 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2590
2591 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2592 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2593 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2594 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2595
2596 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2597 }
2598
2599 /*
2600 * Initialize the transmit descriptor ring.
2601 */
2602 for (i = 0; i < sc->sc_ntxdesc; i++) {
2603 sipd = &sc->sc_txdescs[i];
2604 memset(sipd, 0, sizeof(struct sip_desc));
2605 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2606 }
2607 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2608 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2609 sc->sc_txfree = sc->sc_ntxdesc;
2610 sc->sc_txnext = 0;
2611 sc->sc_txwin = 0;
2612
2613 /*
2614 * Initialize the transmit job descriptors.
2615 */
2616 SIMPLEQ_INIT(&sc->sc_txfreeq);
2617 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2618 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2619 txs = &sc->sc_txsoft[i];
2620 txs->txs_mbuf = NULL;
2621 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2622 }
2623
2624 /*
2625 * Initialize the receive descriptor and receive job
2626 * descriptor rings.
2627 */
2628 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2629 rxs = &sc->sc_rxsoft[i];
2630 if (rxs->rxs_mbuf == NULL) {
2631 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2632 printf("%s: unable to allocate or map rx "
2633 "buffer %d, error = %d\n",
2634 device_xname(&sc->sc_dev), i, error);
2635 /*
2636 * XXX Should attempt to run with fewer receive
2637 * XXX buffers instead of just failing.
2638 */
2639 sipcom_rxdrain(sc);
2640 goto out;
2641 }
2642 } else
2643 sip_init_rxdesc(sc, i);
2644 }
2645 sc->sc_rxptr = 0;
2646 sc->sc_rxdiscard = 0;
2647 sip_rxchain_reset(sc);
2648
2649 /*
2650 * Set the configuration register; it's already initialized
2651 * in sip_attach().
2652 */
2653 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2654
2655 /*
2656 * Initialize the prototype TXCFG register.
2657 */
2658 if (sc->sc_gigabit) {
2659 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2660 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2661 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2662 SIP_SIS900_REV(sc, SIS_REV_960) ||
2663 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2664 (sc->sc_cfg & CFG_EDBMASTEN)) {
2665 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2666 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2667 } else {
2668 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2669 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2670 }
2671
2672 sc->sc_txcfg |= TXCFG_ATP |
2673 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2674 sc->sc_tx_drain_thresh;
2675 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2676
2677 /*
2678 * Initialize the receive drain threshold if we have never
2679 * done so.
2680 */
2681 if (sc->sc_rx_drain_thresh == 0) {
2682 /*
2683 * XXX This value should be tuned. This is set to the
2684 * maximum of 248 bytes, and we may be able to improve
2685 * performance by decreasing it (although we should never
2686 * set this value lower than 2; 14 bytes are required to
2687 * filter the packet).
2688 */
2689 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2690 }
2691
2692 /*
2693 * Initialize the prototype RXCFG register.
2694 */
2695 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2696 /*
2697 * Accept long packets (including FCS) so we can handle
2698 * 802.1q-tagged frames and jumbo frames properly.
2699 */
2700 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2701 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2702 sc->sc_rxcfg |= RXCFG_ALP;
2703
2704 /*
2705 * Checksum offloading is disabled if the user selects an MTU
2706 * larger than 8109. (FreeBSD says 8152, but there is emperical
2707 * evidence that >8109 does not work on some boards, such as the
2708 * Planex GN-1000TE).
2709 */
2710 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2711 (ifp->if_capenable &
2712 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2713 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2714 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2715 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2716 "disabled.\n", device_xname(&sc->sc_dev));
2717 ifp->if_capenable &=
2718 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2719 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2720 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2721 ifp->if_csum_flags_tx = 0;
2722 ifp->if_csum_flags_rx = 0;
2723 }
2724
2725 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2726
2727 if (sc->sc_gigabit)
2728 sipcom_dp83820_init(sc, ifp->if_capenable);
2729
2730 /*
2731 * Give the transmit and receive rings to the chip.
2732 */
2733 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2734 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2735
2736 /*
2737 * Initialize the interrupt mask.
2738 */
2739 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2740 sc->sc_bits.b_isr_sserr |
2741 sc->sc_bits.b_isr_rmabt |
2742 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2743 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2744 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2745
2746 /* Set up the receive filter. */
2747 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2748
2749 /*
2750 * Tune sc_rx_flow_thresh.
2751 * XXX "More than 8KB" is too short for jumbo frames.
2752 * XXX TODO: Threshold value should be user-settable.
2753 */
2754 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2755 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2756 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2757
2758 /*
2759 * Set the current media. Do this after initializing the prototype
2760 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2761 * control.
2762 */
2763 if ((error = ether_mediachange(ifp)) != 0)
2764 goto out;
2765
2766 /*
2767 * Set the interrupt hold-off timer to 100us.
2768 */
2769 if (sc->sc_gigabit)
2770 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2771
2772 /*
2773 * Enable interrupts.
2774 */
2775 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2776
2777 /*
2778 * Start the transmit and receive processes.
2779 */
2780 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2781
2782 /*
2783 * Start the one second MII clock.
2784 */
2785 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2786
2787 /*
2788 * ...all done!
2789 */
2790 ifp->if_flags |= IFF_RUNNING;
2791 ifp->if_flags &= ~IFF_OACTIVE;
2792 sc->sc_if_flags = ifp->if_flags;
2793 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2794 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2795 sc->sc_prev.if_capenable = ifp->if_capenable;
2796
2797 out:
2798 if (error)
2799 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2800 return (error);
2801 }
2802
2803 /*
2804 * sip_drain:
2805 *
2806 * Drain the receive queue.
2807 */
2808 static void
2809 sipcom_rxdrain(struct sip_softc *sc)
2810 {
2811 struct sip_rxsoft *rxs;
2812 int i;
2813
2814 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2815 rxs = &sc->sc_rxsoft[i];
2816 if (rxs->rxs_mbuf != NULL) {
2817 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2818 m_freem(rxs->rxs_mbuf);
2819 rxs->rxs_mbuf = NULL;
2820 }
2821 }
2822 }
2823
2824 /*
2825 * sip_stop: [ ifnet interface function ]
2826 *
2827 * Stop transmission on the interface.
2828 */
2829 static void
2830 sipcom_stop(struct ifnet *ifp, int disable)
2831 {
2832 struct sip_softc *sc = ifp->if_softc;
2833 bus_space_tag_t st = sc->sc_st;
2834 bus_space_handle_t sh = sc->sc_sh;
2835 struct sip_txsoft *txs;
2836 u_int32_t cmdsts = 0; /* DEBUG */
2837
2838 /*
2839 * Stop the one second clock.
2840 */
2841 callout_stop(&sc->sc_tick_ch);
2842
2843 /* Down the MII. */
2844 mii_down(&sc->sc_mii);
2845
2846 /*
2847 * Disable interrupts.
2848 */
2849 bus_space_write_4(st, sh, SIP_IER, 0);
2850
2851 /*
2852 * Stop receiver and transmitter.
2853 */
2854 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2855
2856 /*
2857 * Release any queued transmit buffers.
2858 */
2859 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2860 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2861 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2862 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2863 CMDSTS_INTR) == 0)
2864 printf("%s: sip_stop: last descriptor does not "
2865 "have INTR bit set\n", device_xname(&sc->sc_dev));
2866 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2867 #ifdef DIAGNOSTIC
2868 if (txs->txs_mbuf == NULL) {
2869 printf("%s: dirty txsoft with no mbuf chain\n",
2870 device_xname(&sc->sc_dev));
2871 panic("sip_stop");
2872 }
2873 #endif
2874 cmdsts |= /* DEBUG */
2875 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2876 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2877 m_freem(txs->txs_mbuf);
2878 txs->txs_mbuf = NULL;
2879 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2880 }
2881
2882 /*
2883 * Mark the interface down and cancel the watchdog timer.
2884 */
2885 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2886 ifp->if_timer = 0;
2887
2888 if (disable)
2889 pmf_device_suspend_self(&sc->sc_dev);
2890
2891 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2892 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2893 printf("%s: sip_stop: no INTR bits set in dirty tx "
2894 "descriptors\n", device_xname(&sc->sc_dev));
2895 }
2896
2897 /*
2898 * sip_read_eeprom:
2899 *
2900 * Read data from the serial EEPROM.
2901 */
2902 static void
2903 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2904 u_int16_t *data)
2905 {
2906 bus_space_tag_t st = sc->sc_st;
2907 bus_space_handle_t sh = sc->sc_sh;
2908 u_int16_t reg;
2909 int i, x;
2910
2911 for (i = 0; i < wordcnt; i++) {
2912 /* Send CHIP SELECT. */
2913 reg = EROMAR_EECS;
2914 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2915
2916 /* Shift in the READ opcode. */
2917 for (x = 3; x > 0; x--) {
2918 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2919 reg |= EROMAR_EEDI;
2920 else
2921 reg &= ~EROMAR_EEDI;
2922 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2923 bus_space_write_4(st, sh, SIP_EROMAR,
2924 reg | EROMAR_EESK);
2925 delay(4);
2926 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2927 delay(4);
2928 }
2929
2930 /* Shift in address. */
2931 for (x = 6; x > 0; x--) {
2932 if ((word + i) & (1 << (x - 1)))
2933 reg |= EROMAR_EEDI;
2934 else
2935 reg &= ~EROMAR_EEDI;
2936 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 bus_space_write_4(st, sh, SIP_EROMAR,
2938 reg | EROMAR_EESK);
2939 delay(4);
2940 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2941 delay(4);
2942 }
2943
2944 /* Shift out data. */
2945 reg = EROMAR_EECS;
2946 data[i] = 0;
2947 for (x = 16; x > 0; x--) {
2948 bus_space_write_4(st, sh, SIP_EROMAR,
2949 reg | EROMAR_EESK);
2950 delay(4);
2951 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2952 data[i] |= (1 << (x - 1));
2953 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2954 delay(4);
2955 }
2956
2957 /* Clear CHIP SELECT. */
2958 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2959 delay(4);
2960 }
2961 }
2962
2963 /*
2964 * sipcom_add_rxbuf:
2965 *
2966 * Add a receive buffer to the indicated descriptor.
2967 */
2968 static int
2969 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2970 {
2971 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2972 struct mbuf *m;
2973 int error;
2974
2975 MGETHDR(m, M_DONTWAIT, MT_DATA);
2976 if (m == NULL)
2977 return (ENOBUFS);
2978 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2979
2980 MCLGET(m, M_DONTWAIT);
2981 if ((m->m_flags & M_EXT) == 0) {
2982 m_freem(m);
2983 return (ENOBUFS);
2984 }
2985
2986 /* XXX I don't believe this is necessary. --dyoung */
2987 if (sc->sc_gigabit)
2988 m->m_len = sc->sc_parm->p_rxbuf_len;
2989
2990 if (rxs->rxs_mbuf != NULL)
2991 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2992
2993 rxs->rxs_mbuf = m;
2994
2995 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2996 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2997 BUS_DMA_READ|BUS_DMA_NOWAIT);
2998 if (error) {
2999 printf("%s: can't load rx DMA map %d, error = %d\n",
3000 device_xname(&sc->sc_dev), idx, error);
3001 panic("%s", __func__); /* XXX */
3002 }
3003
3004 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3005 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3006
3007 sip_init_rxdesc(sc, idx);
3008
3009 return (0);
3010 }
3011
3012 /*
3013 * sip_sis900_set_filter:
3014 *
3015 * Set up the receive filter.
3016 */
3017 static void
3018 sipcom_sis900_set_filter(struct sip_softc *sc)
3019 {
3020 bus_space_tag_t st = sc->sc_st;
3021 bus_space_handle_t sh = sc->sc_sh;
3022 struct ethercom *ec = &sc->sc_ethercom;
3023 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3024 struct ether_multi *enm;
3025 const u_int8_t *cp;
3026 struct ether_multistep step;
3027 u_int32_t crc, mchash[16];
3028
3029 /*
3030 * Initialize the prototype RFCR.
3031 */
3032 sc->sc_rfcr = RFCR_RFEN;
3033 if (ifp->if_flags & IFF_BROADCAST)
3034 sc->sc_rfcr |= RFCR_AAB;
3035 if (ifp->if_flags & IFF_PROMISC) {
3036 sc->sc_rfcr |= RFCR_AAP;
3037 goto allmulti;
3038 }
3039
3040 /*
3041 * Set up the multicast address filter by passing all multicast
3042 * addresses through a CRC generator, and then using the high-order
3043 * 6 bits as an index into the 128 bit multicast hash table (only
3044 * the lower 16 bits of each 32 bit multicast hash register are
3045 * valid). The high order bits select the register, while the
3046 * rest of the bits select the bit within the register.
3047 */
3048
3049 memset(mchash, 0, sizeof(mchash));
3050
3051 /*
3052 * SiS900 (at least SiS963) requires us to register the address of
3053 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3054 */
3055 crc = 0x0ed423f9;
3056
3057 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3058 SIP_SIS900_REV(sc, SIS_REV_960) ||
3059 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3060 /* Just want the 8 most significant bits. */
3061 crc >>= 24;
3062 } else {
3063 /* Just want the 7 most significant bits. */
3064 crc >>= 25;
3065 }
3066
3067 /* Set the corresponding bit in the hash table. */
3068 mchash[crc >> 4] |= 1 << (crc & 0xf);
3069
3070 ETHER_FIRST_MULTI(step, ec, enm);
3071 while (enm != NULL) {
3072 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3073 /*
3074 * We must listen to a range of multicast addresses.
3075 * For now, just accept all multicasts, rather than
3076 * trying to set only those filter bits needed to match
3077 * the range. (At this time, the only use of address
3078 * ranges is for IP multicast routing, for which the
3079 * range is big enough to require all bits set.)
3080 */
3081 goto allmulti;
3082 }
3083
3084 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3085
3086 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3087 SIP_SIS900_REV(sc, SIS_REV_960) ||
3088 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3089 /* Just want the 8 most significant bits. */
3090 crc >>= 24;
3091 } else {
3092 /* Just want the 7 most significant bits. */
3093 crc >>= 25;
3094 }
3095
3096 /* Set the corresponding bit in the hash table. */
3097 mchash[crc >> 4] |= 1 << (crc & 0xf);
3098
3099 ETHER_NEXT_MULTI(step, enm);
3100 }
3101
3102 ifp->if_flags &= ~IFF_ALLMULTI;
3103 goto setit;
3104
3105 allmulti:
3106 ifp->if_flags |= IFF_ALLMULTI;
3107 sc->sc_rfcr |= RFCR_AAM;
3108
3109 setit:
3110 #define FILTER_EMIT(addr, data) \
3111 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3112 delay(1); \
3113 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3114 delay(1)
3115
3116 /*
3117 * Disable receive filter, and program the node address.
3118 */
3119 cp = CLLADDR(ifp->if_sadl);
3120 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3121 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3122 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3123
3124 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3125 /*
3126 * Program the multicast hash table.
3127 */
3128 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3129 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3130 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3131 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3132 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3133 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3134 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3135 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3136 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3137 SIP_SIS900_REV(sc, SIS_REV_960) ||
3138 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3139 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3140 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3141 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3142 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3143 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3144 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3145 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3146 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3147 }
3148 }
3149 #undef FILTER_EMIT
3150
3151 /*
3152 * Re-enable the receiver filter.
3153 */
3154 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3155 }
3156
3157 /*
3158 * sip_dp83815_set_filter:
3159 *
3160 * Set up the receive filter.
3161 */
3162 static void
3163 sipcom_dp83815_set_filter(struct sip_softc *sc)
3164 {
3165 bus_space_tag_t st = sc->sc_st;
3166 bus_space_handle_t sh = sc->sc_sh;
3167 struct ethercom *ec = &sc->sc_ethercom;
3168 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3169 struct ether_multi *enm;
3170 const u_int8_t *cp;
3171 struct ether_multistep step;
3172 u_int32_t crc, hash, slot, bit;
3173 #define MCHASH_NWORDS_83820 128
3174 #define MCHASH_NWORDS_83815 32
3175 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3176 u_int16_t mchash[MCHASH_NWORDS];
3177 int i;
3178
3179 /*
3180 * Initialize the prototype RFCR.
3181 * Enable the receive filter, and accept on
3182 * Perfect (destination address) Match
3183 * If IFF_BROADCAST, also accept all broadcast packets.
3184 * If IFF_PROMISC, accept all unicast packets (and later, set
3185 * IFF_ALLMULTI and accept all multicast, too).
3186 */
3187 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3188 if (ifp->if_flags & IFF_BROADCAST)
3189 sc->sc_rfcr |= RFCR_AAB;
3190 if (ifp->if_flags & IFF_PROMISC) {
3191 sc->sc_rfcr |= RFCR_AAP;
3192 goto allmulti;
3193 }
3194
3195 /*
3196 * Set up the DP83820/DP83815 multicast address filter by
3197 * passing all multicast addresses through a CRC generator,
3198 * and then using the high-order 11/9 bits as an index into
3199 * the 2048/512 bit multicast hash table. The high-order
3200 * 7/5 bits select the slot, while the low-order 4 bits
3201 * select the bit within the slot. Note that only the low
3202 * 16-bits of each filter word are used, and there are
3203 * 128/32 filter words.
3204 */
3205
3206 memset(mchash, 0, sizeof(mchash));
3207
3208 ifp->if_flags &= ~IFF_ALLMULTI;
3209 ETHER_FIRST_MULTI(step, ec, enm);
3210 if (enm == NULL)
3211 goto setit;
3212 while (enm != NULL) {
3213 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3214 /*
3215 * We must listen to a range of multicast addresses.
3216 * For now, just accept all multicasts, rather than
3217 * trying to set only those filter bits needed to match
3218 * the range. (At this time, the only use of address
3219 * ranges is for IP multicast routing, for which the
3220 * range is big enough to require all bits set.)
3221 */
3222 goto allmulti;
3223 }
3224
3225 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3226
3227 if (sc->sc_gigabit) {
3228 /* Just want the 11 most significant bits. */
3229 hash = crc >> 21;
3230 } else {
3231 /* Just want the 9 most significant bits. */
3232 hash = crc >> 23;
3233 }
3234
3235 slot = hash >> 4;
3236 bit = hash & 0xf;
3237
3238 /* Set the corresponding bit in the hash table. */
3239 mchash[slot] |= 1 << bit;
3240
3241 ETHER_NEXT_MULTI(step, enm);
3242 }
3243 sc->sc_rfcr |= RFCR_MHEN;
3244 goto setit;
3245
3246 allmulti:
3247 ifp->if_flags |= IFF_ALLMULTI;
3248 sc->sc_rfcr |= RFCR_AAM;
3249
3250 setit:
3251 #define FILTER_EMIT(addr, data) \
3252 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3253 delay(1); \
3254 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3255 delay(1)
3256
3257 /*
3258 * Disable receive filter, and program the node address.
3259 */
3260 cp = CLLADDR(ifp->if_sadl);
3261 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3262 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3263 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3264
3265 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3266 int nwords =
3267 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3268 /*
3269 * Program the multicast hash table.
3270 */
3271 for (i = 0; i < nwords; i++) {
3272 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3273 }
3274 }
3275 #undef FILTER_EMIT
3276 #undef MCHASH_NWORDS
3277 #undef MCHASH_NWORDS_83815
3278 #undef MCHASH_NWORDS_83820
3279
3280 /*
3281 * Re-enable the receiver filter.
3282 */
3283 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3284 }
3285
3286 /*
3287 * sip_dp83820_mii_readreg: [mii interface function]
3288 *
3289 * Read a PHY register on the MII of the DP83820.
3290 */
3291 static int
3292 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3293 {
3294 struct sip_softc *sc = device_private(self);
3295
3296 if (sc->sc_cfg & CFG_TBI_EN) {
3297 bus_addr_t tbireg;
3298 int rv;
3299
3300 if (phy != 0)
3301 return (0);
3302
3303 switch (reg) {
3304 case MII_BMCR: tbireg = SIP_TBICR; break;
3305 case MII_BMSR: tbireg = SIP_TBISR; break;
3306 case MII_ANAR: tbireg = SIP_TANAR; break;
3307 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3308 case MII_ANER: tbireg = SIP_TANER; break;
3309 case MII_EXTSR:
3310 /*
3311 * Don't even bother reading the TESR register.
3312 * The manual documents that the device has
3313 * 1000baseX full/half capability, but the
3314 * register itself seems read back 0 on some
3315 * boards. Just hard-code the result.
3316 */
3317 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3318
3319 default:
3320 return (0);
3321 }
3322
3323 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3324 if (tbireg == SIP_TBISR) {
3325 /* LINK and ACOMP are switched! */
3326 int val = rv;
3327
3328 rv = 0;
3329 if (val & TBISR_MR_LINK_STATUS)
3330 rv |= BMSR_LINK;
3331 if (val & TBISR_MR_AN_COMPLETE)
3332 rv |= BMSR_ACOMP;
3333
3334 /*
3335 * The manual claims this register reads back 0
3336 * on hard and soft reset. But we want to let
3337 * the gentbi driver know that we support auto-
3338 * negotiation, so hard-code this bit in the
3339 * result.
3340 */
3341 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3342 }
3343
3344 return (rv);
3345 }
3346
3347 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3348 }
3349
3350 /*
3351 * sip_dp83820_mii_writereg: [mii interface function]
3352 *
3353 * Write a PHY register on the MII of the DP83820.
3354 */
3355 static void
3356 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3357 {
3358 struct sip_softc *sc = device_private(self);
3359
3360 if (sc->sc_cfg & CFG_TBI_EN) {
3361 bus_addr_t tbireg;
3362
3363 if (phy != 0)
3364 return;
3365
3366 switch (reg) {
3367 case MII_BMCR: tbireg = SIP_TBICR; break;
3368 case MII_ANAR: tbireg = SIP_TANAR; break;
3369 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3370 default:
3371 return;
3372 }
3373
3374 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3375 return;
3376 }
3377
3378 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3379 }
3380
3381 /*
3382 * sip_dp83820_mii_statchg: [mii interface function]
3383 *
3384 * Callback from MII layer when media changes.
3385 */
3386 static void
3387 sipcom_dp83820_mii_statchg(device_t self)
3388 {
3389 struct sip_softc *sc = device_private(self);
3390 struct mii_data *mii = &sc->sc_mii;
3391 u_int32_t cfg, pcr;
3392
3393 /*
3394 * Get flow control negotiation result.
3395 */
3396 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3397 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3398 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3399 mii->mii_media_active &= ~IFM_ETH_FMASK;
3400 }
3401
3402 /*
3403 * Update TXCFG for full-duplex operation.
3404 */
3405 if ((mii->mii_media_active & IFM_FDX) != 0)
3406 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3407 else
3408 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3409
3410 /*
3411 * Update RXCFG for full-duplex or loopback.
3412 */
3413 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3414 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3415 sc->sc_rxcfg |= RXCFG_ATX;
3416 else
3417 sc->sc_rxcfg &= ~RXCFG_ATX;
3418
3419 /*
3420 * Update CFG for MII/GMII.
3421 */
3422 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3423 cfg = sc->sc_cfg | CFG_MODE_1000;
3424 else
3425 cfg = sc->sc_cfg;
3426
3427 /*
3428 * 802.3x flow control.
3429 */
3430 pcr = 0;
3431 if (sc->sc_flowflags & IFM_FLOW) {
3432 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3433 pcr |= sc->sc_rx_flow_thresh;
3434 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3435 pcr |= PCR_PSEN | PCR_PS_MCAST;
3436 }
3437
3438 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3439 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3440 sc->sc_txcfg);
3441 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3442 sc->sc_rxcfg);
3443 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3444 }
3445
3446 /*
3447 * sip_mii_bitbang_read: [mii bit-bang interface function]
3448 *
3449 * Read the MII serial port for the MII bit-bang module.
3450 */
3451 static u_int32_t
3452 sipcom_mii_bitbang_read(device_t self)
3453 {
3454 struct sip_softc *sc = device_private(self);
3455
3456 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3457 }
3458
3459 /*
3460 * sip_mii_bitbang_write: [mii big-bang interface function]
3461 *
3462 * Write the MII serial port for the MII bit-bang module.
3463 */
3464 static void
3465 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3466 {
3467 struct sip_softc *sc = device_private(self);
3468
3469 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3470 }
3471
3472 /*
3473 * sip_sis900_mii_readreg: [mii interface function]
3474 *
3475 * Read a PHY register on the MII.
3476 */
3477 static int
3478 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3479 {
3480 struct sip_softc *sc = device_private(self);
3481 u_int32_t enphy;
3482
3483 /*
3484 * The PHY of recent SiS chipsets is accessed through bitbang
3485 * operations.
3486 */
3487 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3488 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3489 phy, reg);
3490
3491 #ifndef SIS900_MII_RESTRICT
3492 /*
3493 * The SiS 900 has only an internal PHY on the MII. Only allow
3494 * MII address 0.
3495 */
3496 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3497 return (0);
3498 #endif
3499
3500 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3501 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3502 ENPHY_RWCMD | ENPHY_ACCESS);
3503 do {
3504 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3505 } while (enphy & ENPHY_ACCESS);
3506 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3507 }
3508
3509 /*
3510 * sip_sis900_mii_writereg: [mii interface function]
3511 *
3512 * Write a PHY register on the MII.
3513 */
3514 static void
3515 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3516 {
3517 struct sip_softc *sc = device_private(self);
3518 u_int32_t enphy;
3519
3520 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3521 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3522 phy, reg, val);
3523 return;
3524 }
3525
3526 #ifndef SIS900_MII_RESTRICT
3527 /*
3528 * The SiS 900 has only an internal PHY on the MII. Only allow
3529 * MII address 0.
3530 */
3531 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3532 return;
3533 #endif
3534
3535 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3536 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3537 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3538 do {
3539 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3540 } while (enphy & ENPHY_ACCESS);
3541 }
3542
3543 /*
3544 * sip_sis900_mii_statchg: [mii interface function]
3545 *
3546 * Callback from MII layer when media changes.
3547 */
3548 static void
3549 sipcom_sis900_mii_statchg(device_t self)
3550 {
3551 struct sip_softc *sc = device_private(self);
3552 struct mii_data *mii = &sc->sc_mii;
3553 u_int32_t flowctl;
3554
3555 /*
3556 * Get flow control negotiation result.
3557 */
3558 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3559 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3560 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3561 mii->mii_media_active &= ~IFM_ETH_FMASK;
3562 }
3563
3564 /*
3565 * Update TXCFG for full-duplex operation.
3566 */
3567 if ((mii->mii_media_active & IFM_FDX) != 0)
3568 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3569 else
3570 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3571
3572 /*
3573 * Update RXCFG for full-duplex or loopback.
3574 */
3575 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3576 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3577 sc->sc_rxcfg |= RXCFG_ATX;
3578 else
3579 sc->sc_rxcfg &= ~RXCFG_ATX;
3580
3581 /*
3582 * Update IMR for use of 802.3x flow control.
3583 */
3584 if (sc->sc_flowflags & IFM_FLOW) {
3585 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3586 flowctl = FLOWCTL_FLOWEN;
3587 } else {
3588 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3589 flowctl = 0;
3590 }
3591
3592 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3593 sc->sc_txcfg);
3594 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3595 sc->sc_rxcfg);
3596 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3597 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3598 }
3599
3600 /*
3601 * sip_dp83815_mii_readreg: [mii interface function]
3602 *
3603 * Read a PHY register on the MII.
3604 */
3605 static int
3606 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3607 {
3608 struct sip_softc *sc = device_private(self);
3609 u_int32_t val;
3610
3611 /*
3612 * The DP83815 only has an internal PHY. Only allow
3613 * MII address 0.
3614 */
3615 if (phy != 0)
3616 return (0);
3617
3618 /*
3619 * Apparently, after a reset, the DP83815 can take a while
3620 * to respond. During this recovery period, the BMSR returns
3621 * a value of 0. Catch this -- it's not supposed to happen
3622 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3623 * PHY to come back to life.
3624 *
3625 * This works out because the BMSR is the first register
3626 * read during the PHY probe process.
3627 */
3628 do {
3629 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3630 } while (reg == MII_BMSR && val == 0);
3631
3632 return (val & 0xffff);
3633 }
3634
3635 /*
3636 * sip_dp83815_mii_writereg: [mii interface function]
3637 *
3638 * Write a PHY register to the MII.
3639 */
3640 static void
3641 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3642 {
3643 struct sip_softc *sc = device_private(self);
3644
3645 /*
3646 * The DP83815 only has an internal PHY. Only allow
3647 * MII address 0.
3648 */
3649 if (phy != 0)
3650 return;
3651
3652 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3653 }
3654
3655 /*
3656 * sip_dp83815_mii_statchg: [mii interface function]
3657 *
3658 * Callback from MII layer when media changes.
3659 */
3660 static void
3661 sipcom_dp83815_mii_statchg(device_t self)
3662 {
3663 struct sip_softc *sc = device_private(self);
3664
3665 /*
3666 * Update TXCFG for full-duplex operation.
3667 */
3668 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3669 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3670 else
3671 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3672
3673 /*
3674 * Update RXCFG for full-duplex or loopback.
3675 */
3676 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3677 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3678 sc->sc_rxcfg |= RXCFG_ATX;
3679 else
3680 sc->sc_rxcfg &= ~RXCFG_ATX;
3681
3682 /*
3683 * XXX 802.3x flow control.
3684 */
3685
3686 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3687 sc->sc_txcfg);
3688 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3689 sc->sc_rxcfg);
3690
3691 /*
3692 * Some DP83815s experience problems when used with short
3693 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3694 * sequence adjusts the DSP's signal attenuation to fix the
3695 * problem.
3696 */
3697 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3698 uint32_t reg;
3699
3700 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3701
3702 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3703 reg &= 0x0fff;
3704 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3705 delay(100);
3706 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3707 reg &= 0x00ff;
3708 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3709 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3710 0x00e8);
3711 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3712 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3713 reg | 0x20);
3714 }
3715
3716 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3717 }
3718 }
3719
3720 static void
3721 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3722 const struct pci_attach_args *pa, u_int8_t *enaddr)
3723 {
3724 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3725 u_int8_t cksum, *e, match;
3726 int i;
3727
3728 /*
3729 * EEPROM data format for the DP83820 can be found in
3730 * the DP83820 manual, section 4.2.4.
3731 */
3732
3733 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3734
3735 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3736 match = ~(match - 1);
3737
3738 cksum = 0x55;
3739 e = (u_int8_t *) eeprom_data;
3740 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3741 cksum += *e++;
3742
3743 if (cksum != match)
3744 printf("%s: Checksum (%x) mismatch (%x)",
3745 device_xname(&sc->sc_dev), cksum, match);
3746
3747 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3748 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3749 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3750 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3751 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3752 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3753 }
3754
3755 static void
3756 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3757 {
3758 int i;
3759
3760 /*
3761 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3762 * a reason, but I don't know it.
3763 */
3764 for (i = 0; i < 10; i++)
3765 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3766 }
3767
3768 static void
3769 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3770 const struct pci_attach_args *pa, u_int8_t *enaddr)
3771 {
3772 u_int16_t myea[ETHER_ADDR_LEN / 2];
3773
3774 switch (sc->sc_rev) {
3775 case SIS_REV_630S:
3776 case SIS_REV_630E:
3777 case SIS_REV_630EA1:
3778 case SIS_REV_630ET:
3779 case SIS_REV_635:
3780 /*
3781 * The MAC address for the on-board Ethernet of
3782 * the SiS 630 chipset is in the NVRAM. Kick
3783 * the chip into re-loading it from NVRAM, and
3784 * read the MAC address out of the filter registers.
3785 */
3786 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3787
3788 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3789 RFCR_RFADDR_NODE0);
3790 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3791 0xffff;
3792
3793 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3794 RFCR_RFADDR_NODE2);
3795 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3796 0xffff;
3797
3798 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3799 RFCR_RFADDR_NODE4);
3800 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3801 0xffff;
3802 break;
3803
3804 case SIS_REV_960:
3805 {
3806 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3807 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3808
3809 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3810 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3811
3812 int waittime, i;
3813
3814 /* Allow to read EEPROM from LAN. It is shared
3815 * between a 1394 controller and the NIC and each
3816 * time we access it, we need to set SIS_EECMD_REQ.
3817 */
3818 SIS_SET_EROMAR(sc, EROMAR_REQ);
3819
3820 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3821 /* Force EEPROM to idle state. */
3822
3823 /*
3824 * XXX-cube This is ugly. I'll look for docs about it.
3825 */
3826 SIS_SET_EROMAR(sc, EROMAR_EECS);
3827 sipcom_sis900_eeprom_delay(sc);
3828 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3829 SIS_SET_EROMAR(sc, EROMAR_EESK);
3830 sipcom_sis900_eeprom_delay(sc);
3831 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3832 sipcom_sis900_eeprom_delay(sc);
3833 }
3834 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3835 sipcom_sis900_eeprom_delay(sc);
3836 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3837
3838 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3839 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3840 sizeof(myea) / sizeof(myea[0]), myea);
3841 break;
3842 }
3843 DELAY(1);
3844 }
3845
3846 /*
3847 * Set SIS_EECTL_CLK to high, so a other master
3848 * can operate on the i2c bus.
3849 */
3850 SIS_SET_EROMAR(sc, EROMAR_EESK);
3851
3852 /* Refuse EEPROM access by LAN */
3853 SIS_SET_EROMAR(sc, EROMAR_DONE);
3854 } break;
3855
3856 default:
3857 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3858 sizeof(myea) / sizeof(myea[0]), myea);
3859 }
3860
3861 enaddr[0] = myea[0] & 0xff;
3862 enaddr[1] = myea[0] >> 8;
3863 enaddr[2] = myea[1] & 0xff;
3864 enaddr[3] = myea[1] >> 8;
3865 enaddr[4] = myea[2] & 0xff;
3866 enaddr[5] = myea[2] >> 8;
3867 }
3868
3869 /* Table and macro to bit-reverse an octet. */
3870 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3871 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3872
3873 static void
3874 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3875 const struct pci_attach_args *pa, u_int8_t *enaddr)
3876 {
3877 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3878 u_int8_t cksum, *e, match;
3879 int i;
3880
3881 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3882 sizeof(eeprom_data[0]), eeprom_data);
3883
3884 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3885 match = ~(match - 1);
3886
3887 cksum = 0x55;
3888 e = (u_int8_t *) eeprom_data;
3889 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3890 cksum += *e++;
3891 }
3892 if (cksum != match) {
3893 printf("%s: Checksum (%x) mismatch (%x)",
3894 device_xname(&sc->sc_dev), cksum, match);
3895 }
3896
3897 /*
3898 * Unrolled because it makes slightly more sense this way.
3899 * The DP83815 stores the MAC address in bit 0 of word 6
3900 * through bit 15 of word 8.
3901 */
3902 ea = &eeprom_data[6];
3903 enaddr[0] = ((*ea & 0x1) << 7);
3904 ea++;
3905 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3906 enaddr[1] = ((*ea & 0x1FE) >> 1);
3907 enaddr[2] = ((*ea & 0x1) << 7);
3908 ea++;
3909 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3910 enaddr[3] = ((*ea & 0x1FE) >> 1);
3911 enaddr[4] = ((*ea & 0x1) << 7);
3912 ea++;
3913 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3914 enaddr[5] = ((*ea & 0x1FE) >> 1);
3915
3916 /*
3917 * In case that's not weird enough, we also need to reverse
3918 * the bits in each byte. This all actually makes more sense
3919 * if you think about the EEPROM storage as an array of bits
3920 * being shifted into bytes, but that's not how we're looking
3921 * at it here...
3922 */
3923 for (i = 0; i < 6 ;i++)
3924 enaddr[i] = bbr(enaddr[i]);
3925 }
3926
3927 /*
3928 * sip_mediastatus: [ifmedia interface function]
3929 *
3930 * Get the current interface media status.
3931 */
3932 static void
3933 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3934 {
3935 struct sip_softc *sc = ifp->if_softc;
3936
3937 ether_mediastatus(ifp, ifmr);
3938 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3939 sc->sc_flowflags;
3940 }
3941