Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.14
      1 /*	$NetBSD: if_sip.c,v 1.14 2000/08/12 07:38:40 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 #include <sys/queue.h>
     54 
     55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/if_inarp.h>
     69 #endif
     70 
     71 #ifdef NS
     72 #include <netns/ns.h>
     73 #include <netns/ns_if.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 #include <machine/endian.h>
     79 
     80 #include <dev/mii/miivar.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/pcidevs.h>
     85 
     86 #include <dev/pci/if_sipreg.h>
     87 
     88 /*
     89  * Devices supported by this driver.
     90  */
     91 const struct sip_product {
     92 	pci_vendor_id_t		sip_vendor;
     93 	pci_product_id_t	sip_product;
     94 	const char		*sip_name;
     95 } sip_products[] = {
     96 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
     97 	  "SiS 900 10/100 Ethernet" },
     98 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
     99 	  "SiS 7016 10/100 Ethernet" },
    100 
    101 	{ 0,			0,
    102 	  NULL },
    103 };
    104 
    105 /*
    106  * Transmit descriptor list size.  This is arbitrary, but allocate
    107  * enough descriptors for 64 pending transmissions, and 16 segments
    108  * per packet.  This MUST work out to a power of 2.
    109  */
    110 #define	SIP_NTXSEGS		16
    111 
    112 #define	SIP_TXQUEUELEN		64
    113 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    114 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    115 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    116 
    117 /*
    118  * Receive descriptor list size.  We have one Rx buffer per incoming
    119  * packet, so this logic is a little simpler.
    120  */
    121 #define	SIP_NRXDESC		64
    122 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    123 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    124 
    125 /*
    126  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    127  * a single clump that maps to a single DMA segment to make several things
    128  * easier.
    129  */
    130 struct sip_control_data {
    131 	/*
    132 	 * The transmit descriptors.
    133 	 */
    134 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    135 
    136 	/*
    137 	 * The receive descriptors.
    138 	 */
    139 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    140 };
    141 
    142 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    143 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    144 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    145 
    146 /*
    147  * Software state for transmit jobs.
    148  */
    149 struct sip_txsoft {
    150 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    151 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    152 	int txs_firstdesc;		/* first descriptor in packet */
    153 	int txs_lastdesc;		/* last descriptor in packet */
    154 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    155 };
    156 
    157 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    158 
    159 /*
    160  * Software state for receive jobs.
    161  */
    162 struct sip_rxsoft {
    163 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    164 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    165 };
    166 
    167 /*
    168  * Software state per device.
    169  */
    170 struct sip_softc {
    171 	struct device sc_dev;		/* generic device information */
    172 	bus_space_tag_t sc_st;		/* bus space tag */
    173 	bus_space_handle_t sc_sh;	/* bus space handle */
    174 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    175 	struct ethercom sc_ethercom;	/* ethernet common data */
    176 	void *sc_sdhook;		/* shutdown hook */
    177 	pci_product_id_t sc_model;	/* which model are we? */
    178 
    179 	void *sc_ih;			/* interrupt cookie */
    180 
    181 	struct mii_data sc_mii;		/* MII/media information */
    182 
    183 	struct callout sc_tick_ch;	/* tick callout */
    184 
    185 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    186 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    187 
    188 	/*
    189 	 * Software state for transmit and receive descriptors.
    190 	 */
    191 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    192 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    193 
    194 	/*
    195 	 * Control data structures.
    196 	 */
    197 	struct sip_control_data *sc_control_data;
    198 #define	sc_txdescs	sc_control_data->scd_txdescs
    199 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    200 
    201 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    202 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    203 	u_int32_t sc_imr;		/* prototype IMR register */
    204 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    205 
    206 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    207 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    208 
    209 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    210 
    211 	int	sc_flags;		/* misc. flags; see below */
    212 
    213 	int	sc_txfree;		/* number of free Tx descriptors */
    214 	int	sc_txnext;		/* next ready Tx descriptor */
    215 
    216 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    217 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    218 
    219 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    220 };
    221 
    222 /* sc_flags */
    223 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    224 
    225 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    226 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    227 
    228 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    229 do {									\
    230 	int __x, __n;							\
    231 									\
    232 	__x = (x);							\
    233 	__n = (n);							\
    234 									\
    235 	/* If it will wrap around, sync to the end of the ring. */	\
    236 	if ((__x + __n) > SIP_NTXDESC) {				\
    237 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    238 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    239 		    (SIP_NTXDESC - __x), (ops));			\
    240 		__n -= (SIP_NTXDESC - __x);				\
    241 		__x = 0;						\
    242 	}								\
    243 									\
    244 	/* Now sync whatever is left. */				\
    245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    246 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    247 } while (0)
    248 
    249 #define	SIP_CDRXSYNC(sc, x, ops)					\
    250 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    251 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    252 
    253 /*
    254  * Note we rely on MCLBYTES being a power of two below.
    255  */
    256 #define	SIP_INIT_RXDESC(sc, x)						\
    257 do {									\
    258 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    259 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    260 									\
    261 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));	\
    262 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);	\
    263 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    264 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
    265 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    266 } while (0)
    267 
    268 #define SIP_TIMEOUT 1000
    269 
    270 void	sip_start __P((struct ifnet *));
    271 void	sip_watchdog __P((struct ifnet *));
    272 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    273 
    274 void	sip_shutdown __P((void *));
    275 
    276 void	sip_reset __P((struct sip_softc *));
    277 int	sip_init __P((struct sip_softc *));
    278 void	sip_stop __P((struct sip_softc *, int));
    279 void	sip_rxdrain __P((struct sip_softc *));
    280 int	sip_add_rxbuf __P((struct sip_softc *, int));
    281 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    282 void	sip_set_filter __P((struct sip_softc *));
    283 void	sip_tick __P((void *));
    284 
    285 int	sip_intr __P((void *));
    286 void	sip_txintr __P((struct sip_softc *));
    287 void	sip_rxintr __P((struct sip_softc *));
    288 
    289 int	sip_mii_readreg __P((struct device *, int, int));
    290 void	sip_mii_writereg __P((struct device *, int, int, int));
    291 void	sip_mii_statchg __P((struct device *));
    292 
    293 int	sip_mediachange __P((struct ifnet *));
    294 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    295 
    296 int	sip_match __P((struct device *, struct cfdata *, void *));
    297 void	sip_attach __P((struct device *, struct device *, void *));
    298 
    299 int	sip_copy_small = 0;
    300 
    301 struct cfattach sip_ca = {
    302 	sizeof(struct sip_softc), sip_match, sip_attach,
    303 };
    304 
    305 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    306 
    307 const struct sip_product *
    308 sip_lookup(pa)
    309 	const struct pci_attach_args *pa;
    310 {
    311 	const struct sip_product *sip;
    312 
    313 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    314 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    315 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    316 			return (sip);
    317 	}
    318 	return (NULL);
    319 }
    320 
    321 int
    322 sip_match(parent, cf, aux)
    323 	struct device *parent;
    324 	struct cfdata *cf;
    325 	void *aux;
    326 {
    327 	struct pci_attach_args *pa = aux;
    328 
    329 	if (sip_lookup(pa) != NULL)
    330 		return (1);
    331 
    332 	return (0);
    333 }
    334 
    335 void
    336 sip_attach(parent, self, aux)
    337 	struct device *parent, *self;
    338 	void *aux;
    339 {
    340 	struct sip_softc *sc = (struct sip_softc *) self;
    341 	struct pci_attach_args *pa = aux;
    342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343 	pci_chipset_tag_t pc = pa->pa_pc;
    344 	pci_intr_handle_t ih;
    345 	const char *intrstr = NULL;
    346 	bus_space_tag_t iot, memt;
    347 	bus_space_handle_t ioh, memh;
    348 	bus_dma_segment_t seg;
    349 	int ioh_valid, memh_valid;
    350 	int i, rseg, error;
    351 	const struct sip_product *sip;
    352 	pcireg_t pmode;
    353 	u_int16_t myea[ETHER_ADDR_LEN / 2];
    354 	u_int8_t enaddr[ETHER_ADDR_LEN];
    355 	int pmreg;
    356 
    357 	callout_init(&sc->sc_tick_ch);
    358 
    359 	sip = sip_lookup(pa);
    360 	if (sip == NULL) {
    361 		printf("\n");
    362 		panic("sip_attach: impossible");
    363 	}
    364 
    365 	printf(": %s\n", sip->sip_name);
    366 
    367 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
    368 
    369 	/*
    370 	 * Map the device.
    371 	 */
    372 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    373 	    PCI_MAPREG_TYPE_IO, 0,
    374 	    &iot, &ioh, NULL, NULL) == 0);
    375 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    376 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    377 	    &memt, &memh, NULL, NULL) == 0);
    378 
    379 	if (memh_valid) {
    380 		sc->sc_st = memt;
    381 		sc->sc_sh = memh;
    382 	} else if (ioh_valid) {
    383 		sc->sc_st = iot;
    384 		sc->sc_sh = ioh;
    385 	} else {
    386 		printf("%s: unable to map device registers\n",
    387 		    sc->sc_dev.dv_xname);
    388 		return;
    389 	}
    390 
    391 	sc->sc_dmat = pa->pa_dmat;
    392 
    393 	/* Enable bus mastering. */
    394 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    395 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    396 	    PCI_COMMAND_MASTER_ENABLE);
    397 
    398 	/* Get it out of power save mode if needed. */
    399 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    400 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    401 		if (pmode == 3) {
    402 			/*
    403 			 * The card has lost all configuration data in
    404 			 * this state, so punt.
    405 			 */
    406 			printf("%s: unable to wake up from power state D3\n",
    407 			    sc->sc_dev.dv_xname);
    408 			return;
    409 		}
    410 		if (pmode != 0) {
    411 			printf("%s: waking up from power state D%d\n",
    412 			    sc->sc_dev.dv_xname, pmode);
    413 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    414 		}
    415 	}
    416 
    417 	/*
    418 	 * Map and establish our interrupt.
    419 	 */
    420 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    421 	    pa->pa_intrline, &ih)) {
    422 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    423 		return;
    424 	}
    425 	intrstr = pci_intr_string(pc, ih);
    426 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    427 	if (sc->sc_ih == NULL) {
    428 		printf("%s: unable to establish interrupt",
    429 		    sc->sc_dev.dv_xname);
    430 		if (intrstr != NULL)
    431 			printf(" at %s", intrstr);
    432 		printf("\n");
    433 		return;
    434 	}
    435 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    436 
    437 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    438 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    439 
    440 	/*
    441 	 * Allocate the control data structures, and create and load the
    442 	 * DMA map for it.
    443 	 */
    444 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    445 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    446 	    0)) != 0) {
    447 		printf("%s: unable to allocate control data, error = %d\n",
    448 		    sc->sc_dev.dv_xname, error);
    449 		goto fail_0;
    450 	}
    451 
    452 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    453 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    454 	    BUS_DMA_COHERENT)) != 0) {
    455 		printf("%s: unable to map control data, error = %d\n",
    456 		    sc->sc_dev.dv_xname, error);
    457 		goto fail_1;
    458 	}
    459 
    460 	if ((error = bus_dmamap_create(sc->sc_dmat,
    461 	    sizeof(struct sip_control_data), 1,
    462 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    463 		printf("%s: unable to create control data DMA map, "
    464 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    465 		goto fail_2;
    466 	}
    467 
    468 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    469 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    470 	    0)) != 0) {
    471 		printf("%s: unable to load control data DMA map, error = %d\n",
    472 		    sc->sc_dev.dv_xname, error);
    473 		goto fail_3;
    474 	}
    475 
    476 	/*
    477 	 * Create the transmit buffer DMA maps.
    478 	 */
    479 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    480 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    481 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    482 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    483 			printf("%s: unable to create tx DMA map %d, "
    484 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    485 			goto fail_4;
    486 		}
    487 	}
    488 
    489 	/*
    490 	 * Create the receive buffer DMA maps.
    491 	 */
    492 	for (i = 0; i < SIP_NRXDESC; i++) {
    493 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    494 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    495 			printf("%s: unable to create rx DMA map %d, "
    496 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    497 			goto fail_5;
    498 		}
    499 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    500 	}
    501 
    502 	/*
    503 	 * Reset the chip to a known state.
    504 	 */
    505 	sip_reset(sc);
    506 
    507 	/*
    508 	 * Read the Ethernet address from the EEPROM.
    509 	 */
    510 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    511 	    sizeof(myea) / sizeof(myea[0]), myea);
    512 
    513 	enaddr[0] = myea[0] & 0xff;
    514 	enaddr[1] = myea[0] >> 8;
    515 	enaddr[2] = myea[1] & 0xff;
    516 	enaddr[3] = myea[1] >> 8;
    517 	enaddr[4] = myea[2] & 0xff;
    518 	enaddr[5] = myea[2] >> 8;
    519 
    520 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    521 	    ether_sprintf(enaddr));
    522 
    523 	/*
    524 	 * Initialize our media structures and probe the MII.
    525 	 */
    526 	sc->sc_mii.mii_ifp = ifp;
    527 	sc->sc_mii.mii_readreg = sip_mii_readreg;
    528 	sc->sc_mii.mii_writereg = sip_mii_writereg;
    529 	sc->sc_mii.mii_statchg = sip_mii_statchg;
    530 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    531 	    sip_mediastatus);
    532 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    533 	    MII_OFFSET_ANY, 0);
    534 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    535 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    536 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    537 	} else
    538 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    539 
    540 	ifp = &sc->sc_ethercom.ec_if;
    541 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    542 	ifp->if_softc = sc;
    543 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    544 	ifp->if_ioctl = sip_ioctl;
    545 	ifp->if_start = sip_start;
    546 	ifp->if_watchdog = sip_watchdog;
    547 
    548 	/*
    549 	 * Attach the interface.
    550 	 */
    551 	if_attach(ifp);
    552 	ether_ifattach(ifp, enaddr);
    553 #if NBPFILTER > 0
    554 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    555 	    sizeof(struct ether_header));
    556 #endif
    557 
    558 	/*
    559 	 * Make sure the interface is shutdown during reboot.
    560 	 */
    561 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    562 	if (sc->sc_sdhook == NULL)
    563 		printf("%s: WARNING: unable to establish shutdown hook\n",
    564 		    sc->sc_dev.dv_xname);
    565 	return;
    566 
    567 	/*
    568 	 * Free any resources we've allocated during the failed attach
    569 	 * attempt.  Do this in reverse order and fall through.
    570 	 */
    571  fail_5:
    572 	for (i = 0; i < SIP_NRXDESC; i++) {
    573 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    574 			bus_dmamap_destroy(sc->sc_dmat,
    575 			    sc->sc_rxsoft[i].rxs_dmamap);
    576 	}
    577  fail_4:
    578 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    579 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    580 			bus_dmamap_destroy(sc->sc_dmat,
    581 			    sc->sc_txsoft[i].txs_dmamap);
    582 	}
    583 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    584  fail_3:
    585 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    586  fail_2:
    587 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    588 	    sizeof(struct sip_control_data));
    589  fail_1:
    590 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    591  fail_0:
    592 	return;
    593 }
    594 
    595 /*
    596  * sip_shutdown:
    597  *
    598  *	Make sure the interface is stopped at reboot time.
    599  */
    600 void
    601 sip_shutdown(arg)
    602 	void *arg;
    603 {
    604 	struct sip_softc *sc = arg;
    605 
    606 	sip_stop(sc, 1);
    607 }
    608 
    609 /*
    610  * sip_start:		[ifnet interface function]
    611  *
    612  *	Start packet transmission on the interface.
    613  */
    614 void
    615 sip_start(ifp)
    616 	struct ifnet *ifp;
    617 {
    618 	struct sip_softc *sc = ifp->if_softc;
    619 	struct mbuf *m0, *m;
    620 	struct sip_txsoft *txs;
    621 	bus_dmamap_t dmamap;
    622 	int error, firsttx, nexttx, lasttx, ofree, seg;
    623 
    624 	/*
    625 	 * If we've been told to pause, don't transmit any more packets.
    626 	 */
    627 	if (sc->sc_flags & SIPF_PAUSED)
    628 		ifp->if_flags |= IFF_OACTIVE;
    629 
    630 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    631 		return;
    632 
    633 	/*
    634 	 * Remember the previous number of free descriptors and
    635 	 * the first descriptor we'll use.
    636 	 */
    637 	ofree = sc->sc_txfree;
    638 	firsttx = sc->sc_txnext;
    639 
    640 	/*
    641 	 * Loop through the send queue, setting up transmit descriptors
    642 	 * until we drain the queue, or use up all available transmit
    643 	 * descriptors.
    644 	 */
    645 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    646 	       sc->sc_txfree != 0) {
    647 		/*
    648 		 * Grab a packet off the queue.
    649 		 */
    650 		IF_DEQUEUE(&ifp->if_snd, m0);
    651 		if (m0 == NULL)
    652 			break;
    653 
    654 		dmamap = txs->txs_dmamap;
    655 
    656 		/*
    657 		 * Load the DMA map.  If this fails, the packet either
    658 		 * didn't fit in the alloted number of segments, or we
    659 		 * were short on resources.  In this case, we'll copy
    660 		 * and try again.
    661 		 */
    662 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    663 		    BUS_DMA_NOWAIT) != 0) {
    664 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    665 			if (m == NULL) {
    666 				printf("%s: unable to allocate Tx mbuf\n",
    667 				    sc->sc_dev.dv_xname);
    668 				IF_PREPEND(&ifp->if_snd, m0);
    669 				break;
    670 			}
    671 			if (m0->m_pkthdr.len > MHLEN) {
    672 				MCLGET(m, M_DONTWAIT);
    673 				if ((m->m_flags & M_EXT) == 0) {
    674 					printf("%s: unable to allocate Tx "
    675 					    "cluster\n", sc->sc_dev.dv_xname);
    676 					m_freem(m);
    677 					IF_PREPEND(&ifp->if_snd, m0);
    678 					break;
    679 				}
    680 			}
    681 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    682 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    683 			m_freem(m0);
    684 			m0 = m;
    685 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    686 			    m0, BUS_DMA_NOWAIT);
    687 			if (error) {
    688 				printf("%s: unable to load Tx buffer, "
    689 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    690 				IF_PREPEND(&ifp->if_snd, m0);
    691 				break;
    692 			}
    693 		}
    694 
    695 		/*
    696 		 * Ensure we have enough descriptors free to describe
    697 		 * the packet.
    698 		 */
    699 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    700 			/*
    701 			 * Not enough free descriptors to transmit this
    702 			 * packet.  We haven't committed anything yet,
    703 			 * so just unload the DMA map, put the packet
    704 			 * back on the queue, and punt.  Notify the upper
    705 			 * layer that there are not more slots left.
    706 			 *
    707 			 * XXX We could allocate an mbuf and copy, but
    708 			 * XXX is it worth it?
    709 			 */
    710 			ifp->if_flags |= IFF_OACTIVE;
    711 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    712 			IF_PREPEND(&ifp->if_snd, m0);
    713 			break;
    714 		}
    715 
    716 		/*
    717 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    718 		 */
    719 
    720 		/* Sync the DMA map. */
    721 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    722 		    BUS_DMASYNC_PREWRITE);
    723 
    724 		/*
    725 		 * Initialize the transmit descriptors.
    726 		 */
    727 		for (nexttx = sc->sc_txnext, seg = 0;
    728 		     seg < dmamap->dm_nsegs;
    729 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    730 			/*
    731 			 * If this is the first descriptor we're
    732 			 * enqueueing, don't set the OWN bit just
    733 			 * yet.  That could cause a race condition.
    734 			 * We'll do it below.
    735 			 */
    736 			sc->sc_txdescs[nexttx].sipd_bufptr =
    737 			    htole32(dmamap->dm_segs[seg].ds_addr);
    738 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    739 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
    740 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
    741 			lasttx = nexttx;
    742 		}
    743 
    744 		/* Clear the MORE bit on the last segment. */
    745 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
    746 
    747 		/* Sync the descriptors we're using. */
    748 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    749 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    750 
    751 		/*
    752 		 * Store a pointer to the packet so we can free it later,
    753 		 * and remember what txdirty will be once the packet is
    754 		 * done.
    755 		 */
    756 		txs->txs_mbuf = m0;
    757 		txs->txs_firstdesc = sc->sc_txnext;
    758 		txs->txs_lastdesc = lasttx;
    759 
    760 		/* Advance the tx pointer. */
    761 		sc->sc_txfree -= dmamap->dm_nsegs;
    762 		sc->sc_txnext = nexttx;
    763 
    764 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    765 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    766 
    767 #if NBPFILTER > 0
    768 		/*
    769 		 * Pass the packet to any BPF listeners.
    770 		 */
    771 		if (ifp->if_bpf)
    772 			bpf_mtap(ifp->if_bpf, m0);
    773 #endif /* NBPFILTER > 0 */
    774 	}
    775 
    776 	if (txs == NULL || sc->sc_txfree == 0) {
    777 		/* No more slots left; notify upper layer. */
    778 		ifp->if_flags |= IFF_OACTIVE;
    779 	}
    780 
    781 	if (sc->sc_txfree != ofree) {
    782 		/*
    783 		 * Cause a descriptor interrupt to happen on the
    784 		 * last packet we enqueued.
    785 		 */
    786 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
    787 		SIP_CDTXSYNC(sc, lasttx, 1,
    788 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    789 
    790 		/*
    791 		 * The entire packet chain is set up.  Give the
    792 		 * first descrptor to the chip now.
    793 		 */
    794 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
    795 		SIP_CDTXSYNC(sc, firsttx, 1,
    796 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    797 
    798 		/* Start the transmit process. */
    799 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    800 		     CR_TXE) == 0) {
    801 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    802 			    SIP_CDTXADDR(sc, firsttx));
    803 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    804 		}
    805 
    806 		/* Set a watchdog timer in case the chip flakes out. */
    807 		ifp->if_timer = 5;
    808 	}
    809 }
    810 
    811 /*
    812  * sip_watchdog:	[ifnet interface function]
    813  *
    814  *	Watchdog timer handler.
    815  */
    816 void
    817 sip_watchdog(ifp)
    818 	struct ifnet *ifp;
    819 {
    820 	struct sip_softc *sc = ifp->if_softc;
    821 
    822 	/*
    823 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    824 	 * If we get a timeout, try and sweep up transmit descriptors.
    825 	 * If we manage to sweep them all up, ignore the lack of
    826 	 * interrupt.
    827 	 */
    828 	sip_txintr(sc);
    829 
    830 	if (sc->sc_txfree != SIP_NTXDESC) {
    831 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    832 		ifp->if_oerrors++;
    833 
    834 		/* Reset the interface. */
    835 		(void) sip_init(sc);
    836 	} else if (ifp->if_flags & IFF_DEBUG)
    837 		printf("%s: recovered from device timeout\n",
    838 		    sc->sc_dev.dv_xname);
    839 
    840 	/* Try to get more packets going. */
    841 	sip_start(ifp);
    842 }
    843 
    844 /*
    845  * sip_ioctl:		[ifnet interface function]
    846  *
    847  *	Handle control requests from the operator.
    848  */
    849 int
    850 sip_ioctl(ifp, cmd, data)
    851 	struct ifnet *ifp;
    852 	u_long cmd;
    853 	caddr_t data;
    854 {
    855 	struct sip_softc *sc = ifp->if_softc;
    856 	struct ifreq *ifr = (struct ifreq *)data;
    857 	struct ifaddr *ifa = (struct ifaddr *)data;
    858 	int s, error = 0;
    859 
    860 	s = splnet();
    861 
    862 	switch (cmd) {
    863 	case SIOCSIFADDR:
    864 		ifp->if_flags |= IFF_UP;
    865 
    866 		switch (ifa->ifa_addr->sa_family) {
    867 #ifdef INET
    868 		case AF_INET:
    869 			if ((error = sip_init(sc)) != 0)
    870 				break;
    871 			arp_ifinit(ifp, ifa);
    872 			break;
    873 #endif /* INET */
    874 #ifdef NS
    875 		case AF_NS:
    876 		    {
    877 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    878 
    879 			if (ns_nullhost(*ina))
    880 				ina->x_host = *(union ns_host *)
    881 				    LLADDR(ifp->if_sadl);
    882 			else
    883 				memcpy(LLADDR(ifp->if_sadl),
    884 				    ina->x_host.c_host, ifp->if_addrlen);
    885 			error = sip_init(sc);
    886 			break;
    887 		    }
    888 #endif /* NS */
    889 		default:
    890 			error = sip_init(sc);
    891 			break;
    892 		}
    893 		break;
    894 
    895 	case SIOCSIFMTU:
    896 		if (ifr->ifr_mtu > ETHERMTU)
    897 			error = EINVAL;
    898 		else
    899 			ifp->if_mtu = ifr->ifr_mtu;
    900 		break;
    901 
    902 	case SIOCSIFFLAGS:
    903 		if ((ifp->if_flags & IFF_UP) == 0 &&
    904 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    905 			/*
    906 			 * If interface is marked down and it is running, then
    907 			 * stop it.
    908 			 */
    909 			sip_stop(sc, 1);
    910 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    911 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    912 			/*
    913 			 * If interfase it marked up and it is stopped, then
    914 			 * start it.
    915 			 */
    916 			error = sip_init(sc);
    917 		} else if ((ifp->if_flags & IFF_UP) != 0) {
    918 			/*
    919 			 * Reset the interface to pick up changes in any other
    920 			 * flags that affect the hardware state.
    921 			 */
    922 			error = sip_init(sc);
    923 		}
    924 		break;
    925 
    926 	case SIOCADDMULTI:
    927 	case SIOCDELMULTI:
    928 		error = (cmd == SIOCADDMULTI) ?
    929 		    ether_addmulti(ifr, &sc->sc_ethercom) :
    930 		    ether_delmulti(ifr, &sc->sc_ethercom);
    931 
    932 		if (error == ENETRESET) {
    933 			/*
    934 			 * Multicast list has changed; set the hardware filter
    935 			 * accordingly.
    936 			 */
    937 			sip_set_filter(sc);
    938 			error = 0;
    939 		}
    940 		break;
    941 
    942 	case SIOCSIFMEDIA:
    943 	case SIOCGIFMEDIA:
    944 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    945 		break;
    946 
    947 	default:
    948 		error = EINVAL;
    949 		break;
    950 	}
    951 
    952 	/* Try to get more packets going. */
    953 	sip_start(ifp);
    954 
    955 	splx(s);
    956 	return (error);
    957 }
    958 
    959 /*
    960  * sip_intr:
    961  *
    962  *	Interrupt service routine.
    963  */
    964 int
    965 sip_intr(arg)
    966 	void *arg;
    967 {
    968 	struct sip_softc *sc = arg;
    969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    970 	u_int32_t isr;
    971 	int handled = 0;
    972 
    973 	for (;;) {
    974 		/* Reading clears interrupt. */
    975 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    976 		if ((isr & sc->sc_imr) == 0)
    977 			break;
    978 
    979 		handled = 1;
    980 
    981 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    982 			/* Grab any new packets. */
    983 			sip_rxintr(sc);
    984 
    985 			if (isr & ISR_RXORN) {
    986 				printf("%s: receive FIFO overrun\n",
    987 				    sc->sc_dev.dv_xname);
    988 
    989 				/* XXX adjust rx_drain_thresh? */
    990 			}
    991 
    992 			if (isr & ISR_RXIDLE) {
    993 				printf("%s: receive ring overrun\n",
    994 				    sc->sc_dev.dv_xname);
    995 
    996 				/* Get the receive process going again. */
    997 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    998 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    999 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1000 				    SIP_CR, CR_RXE);
   1001 			}
   1002 		}
   1003 
   1004 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1005 			/* Sweep up transmit descriptors. */
   1006 			sip_txintr(sc);
   1007 
   1008 			if (isr & ISR_TXURN) {
   1009 				u_int32_t thresh;
   1010 
   1011 				printf("%s: transmit FIFO underrun",
   1012 				    sc->sc_dev.dv_xname);
   1013 
   1014 				thresh = sc->sc_tx_drain_thresh + 1;
   1015 				if (thresh <= TXCFG_DRTH &&
   1016 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1017 				     (sc->sc_tx_fill_thresh * 32))) {
   1018 					printf("; increasing Tx drain "
   1019 					    "threshold to %u bytes\n",
   1020 					    thresh * 32);
   1021 					sc->sc_tx_drain_thresh = thresh;
   1022 					(void) sip_init(sc);
   1023 				} else {
   1024 					(void) sip_init(sc);
   1025 					printf("\n");
   1026 				}
   1027 			}
   1028 		}
   1029 
   1030 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1031 			if (isr & ISR_PAUSE_ST) {
   1032 				sc->sc_flags |= SIPF_PAUSED;
   1033 				ifp->if_flags |= IFF_OACTIVE;
   1034 			}
   1035 			if (isr & ISR_PAUSE_END) {
   1036 				sc->sc_flags &= ~SIPF_PAUSED;
   1037 				ifp->if_flags &= ~IFF_OACTIVE;
   1038 			}
   1039 		}
   1040 
   1041 		if (isr & ISR_HIBERR) {
   1042 #define	PRINTERR(bit, str)						\
   1043 			if (isr & (bit))				\
   1044 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1045 			PRINTERR(ISR_DPERR, "parity error");
   1046 			PRINTERR(ISR_SSERR, "system error");
   1047 			PRINTERR(ISR_RMABT, "master abort");
   1048 			PRINTERR(ISR_RTABT, "target abort");
   1049 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1050 			(void) sip_init(sc);
   1051 #undef PRINTERR
   1052 		}
   1053 	}
   1054 
   1055 	/* Try to get more packets going. */
   1056 	sip_start(ifp);
   1057 
   1058 	return (handled);
   1059 }
   1060 
   1061 /*
   1062  * sip_txintr:
   1063  *
   1064  *	Helper; handle transmit interrupts.
   1065  */
   1066 void
   1067 sip_txintr(sc)
   1068 	struct sip_softc *sc;
   1069 {
   1070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1071 	struct sip_txsoft *txs;
   1072 	u_int32_t cmdsts;
   1073 
   1074 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1075 		ifp->if_flags &= ~IFF_OACTIVE;
   1076 
   1077 	/*
   1078 	 * Go through our Tx list and free mbufs for those
   1079 	 * frames which have been transmitted.
   1080 	 */
   1081 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1082 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1083 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1084 
   1085 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1086 		if (cmdsts & CMDSTS_OWN)
   1087 			break;
   1088 
   1089 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1090 
   1091 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1092 
   1093 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1094 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1095 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1096 		m_freem(txs->txs_mbuf);
   1097 		txs->txs_mbuf = NULL;
   1098 
   1099 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1100 
   1101 		/*
   1102 		 * Check for errors and collisions.
   1103 		 */
   1104 		if (cmdsts &
   1105 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1106 			if (ifp->if_flags & IFF_DEBUG) {
   1107 				if (CMDSTS_Tx_ED)
   1108 					printf("%s: excessive deferral\n",
   1109 					    sc->sc_dev.dv_xname);
   1110 				if (CMDSTS_Tx_EC) {
   1111 					printf("%s: excessive collisions\n",
   1112 					    sc->sc_dev.dv_xname);
   1113 					ifp->if_collisions += 16;
   1114 				}
   1115 			}
   1116 		} else {
   1117 			/* Packet was transmitted successfully. */
   1118 			ifp->if_opackets++;
   1119 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1120 		}
   1121 	}
   1122 
   1123 	/*
   1124 	 * If there are no more pending transmissions, cancel the watchdog
   1125 	 * timer.
   1126 	 */
   1127 	if (txs == NULL)
   1128 		ifp->if_timer = 0;
   1129 }
   1130 
   1131 /*
   1132  * sip_rxintr:
   1133  *
   1134  *	Helper; handle receive interrupts.
   1135  */
   1136 void
   1137 sip_rxintr(sc)
   1138 	struct sip_softc *sc;
   1139 {
   1140 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1141 	struct ether_header *eh;
   1142 	struct sip_rxsoft *rxs;
   1143 	struct mbuf *m;
   1144 	u_int32_t cmdsts;
   1145 	int i, len;
   1146 
   1147 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1148 		rxs = &sc->sc_rxsoft[i];
   1149 
   1150 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1151 
   1152 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1153 
   1154 		/*
   1155 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1156 		 * consumer of the receive ring, so if the bit is clear,
   1157 		 * we have processed all of the packets.
   1158 		 */
   1159 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1160 			/*
   1161 			 * We have processed all of the receive buffers.
   1162 			 */
   1163 			break;
   1164 		}
   1165 
   1166 		/*
   1167 		 * If any collisions were seen on the wire, count one.
   1168 		 */
   1169 		if (cmdsts & CMDSTS_Rx_COL)
   1170 			ifp->if_collisions++;
   1171 
   1172 		/*
   1173 		 * If an error occurred, update stats, clear the status
   1174 		 * word, and leave the packet buffer in place.  It will
   1175 		 * simply be reused the next time the ring comes around.
   1176 		 */
   1177 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1178 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1179 			ifp->if_ierrors++;
   1180 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1181 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1182 				/* Receive overrun handled elsewhere. */
   1183 				printf("%s: receive descriptor error\n",
   1184 				    sc->sc_dev.dv_xname);
   1185 			}
   1186 #define	PRINTERR(bit, str)						\
   1187 			if (cmdsts & (bit))				\
   1188 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1189 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1190 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1191 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1192 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1193 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1194 #undef PRINTERR
   1195 			SIP_INIT_RXDESC(sc, i);
   1196 			continue;
   1197 		}
   1198 
   1199 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1200 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1201 
   1202 		/*
   1203 		 * No errors; receive the packet.  Note, the SiS 900
   1204 		 * includes the CRC with every packet; trim it.
   1205 		 */
   1206 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   1207 
   1208 #ifdef __NO_STRICT_ALIGNMENT
   1209 		/*
   1210 		 * If the packet is small enough to fit in a
   1211 		 * single header mbuf, allocate one and copy
   1212 		 * the data into it.  This greatly reduces
   1213 		 * memory consumption when we receive lots
   1214 		 * of small packets.
   1215 		 *
   1216 		 * Otherwise, we add a new buffer to the receive
   1217 		 * chain.  If this fails, we drop the packet and
   1218 		 * recycle the old buffer.
   1219 		 */
   1220 		if (sip_copy_small != 0 && len <= MHLEN) {
   1221 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1222 			if (m == NULL)
   1223 				goto dropit;
   1224 			memcpy(mtod(m, caddr_t),
   1225 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1226 			SIP_INIT_RXDESC(sc, i);
   1227 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1228 			    rxs->rxs_dmamap->dm_mapsize,
   1229 			    BUS_DMASYNC_PREREAD);
   1230 		} else {
   1231 			m = rxs->rxs_mbuf;
   1232 			if (sip_add_rxbuf(sc, i) != 0) {
   1233  dropit:
   1234 				ifp->if_ierrors++;
   1235 				SIP_INIT_RXDESC(sc, i);
   1236 				bus_dmamap_sync(sc->sc_dmat,
   1237 				    rxs->rxs_dmamap, 0,
   1238 				    rxs->rxs_dmamap->dm_mapsize,
   1239 				    BUS_DMASYNC_PREREAD);
   1240 				continue;
   1241 			}
   1242 		}
   1243 #else
   1244 		/*
   1245 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1246 		 * But this means that the data after the Ethernet header
   1247 		 * is misaligned.  We must allocate a new buffer and
   1248 		 * copy the data, shifted forward 2 bytes.
   1249 		 */
   1250 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1251 		if (m == NULL) {
   1252  dropit:
   1253 			ifp->if_ierrors++;
   1254 			SIP_INIT_RXDESC(sc, i);
   1255 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1256 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1257 			continue;
   1258 		}
   1259 		if (len > (MHLEN - 2)) {
   1260 			MCLGET(m, M_DONTWAIT);
   1261 			if ((m->m_flags & M_EXT) == 0) {
   1262 				m_freem(m);
   1263 				goto dropit;
   1264 			}
   1265 		}
   1266 		m->m_data += 2;
   1267 
   1268 		/*
   1269 		 * Note that we use clusters for incoming frames, so the
   1270 		 * buffer is virtually contiguous.
   1271 		 */
   1272 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1273 
   1274 		/* Allow the receive descriptor to continue using its mbuf. */
   1275 		SIP_INIT_RXDESC(sc, i);
   1276 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1277 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1278 #endif /* __NO_STRICT_ALIGNMENT */
   1279 
   1280 		ifp->if_ipackets++;
   1281 		eh = mtod(m, struct ether_header *);
   1282 		m->m_pkthdr.rcvif = ifp;
   1283 		m->m_pkthdr.len = m->m_len = len;
   1284 
   1285 #if NBPFILTER > 0
   1286 		/*
   1287 		 * Pass this up to any BPF listeners, but only
   1288 		 * pass if up the stack if it's for us.
   1289 		 */
   1290 		if (ifp->if_bpf) {
   1291 			bpf_mtap(ifp->if_bpf, m);
   1292 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1293 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
   1294 				m_freem(m);
   1295 				continue;
   1296 			}
   1297 		}
   1298 #endif /* NBPFILTER > 0 */
   1299 
   1300 		/* Pass it on. */
   1301 		(*ifp->if_input)(ifp, m);
   1302 	}
   1303 
   1304 	/* Update the receive pointer. */
   1305 	sc->sc_rxptr = i;
   1306 }
   1307 
   1308 /*
   1309  * sip_tick:
   1310  *
   1311  *	One second timer, used to tick the MII.
   1312  */
   1313 void
   1314 sip_tick(arg)
   1315 	void *arg;
   1316 {
   1317 	struct sip_softc *sc = arg;
   1318 	int s;
   1319 
   1320 	s = splnet();
   1321 	mii_tick(&sc->sc_mii);
   1322 	splx(s);
   1323 
   1324 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1325 }
   1326 
   1327 /*
   1328  * sip_reset:
   1329  *
   1330  *	Perform a soft reset on the SiS 900.
   1331  */
   1332 void
   1333 sip_reset(sc)
   1334 	struct sip_softc *sc;
   1335 {
   1336 	bus_space_tag_t st = sc->sc_st;
   1337 	bus_space_handle_t sh = sc->sc_sh;
   1338 	int i;
   1339 
   1340 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1341 
   1342 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1343 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1344 			break;
   1345 		delay(2);
   1346 	}
   1347 
   1348 	if (i == SIP_TIMEOUT)
   1349 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1350 
   1351 	delay(1000);
   1352 }
   1353 
   1354 /*
   1355  * sip_init:
   1356  *
   1357  *	Initialize the interface.  Must be called at splnet().
   1358  */
   1359 int
   1360 sip_init(sc)
   1361 	struct sip_softc *sc;
   1362 {
   1363 	bus_space_tag_t st = sc->sc_st;
   1364 	bus_space_handle_t sh = sc->sc_sh;
   1365 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1366 	struct sip_txsoft *txs;
   1367 	struct sip_rxsoft *rxs;
   1368 	struct sip_desc *sipd;
   1369 	u_int32_t cfg;
   1370 	int i, error = 0;
   1371 
   1372 	/*
   1373 	 * Cancel any pending I/O.
   1374 	 */
   1375 	sip_stop(sc, 0);
   1376 
   1377 	/*
   1378 	 * Reset the chip to a known state.
   1379 	 */
   1380 	sip_reset(sc);
   1381 
   1382 	/*
   1383 	 * Initialize the transmit descriptor ring.
   1384 	 */
   1385 	for (i = 0; i < SIP_NTXDESC; i++) {
   1386 		sipd = &sc->sc_txdescs[i];
   1387 		memset(sipd, 0, sizeof(struct sip_desc));
   1388 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   1389 	}
   1390 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1391 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1392 	sc->sc_txfree = SIP_NTXDESC;
   1393 	sc->sc_txnext = 0;
   1394 
   1395 	/*
   1396 	 * Initialize the transmit job descriptors.
   1397 	 */
   1398 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1399 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1400 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1401 		txs = &sc->sc_txsoft[i];
   1402 		txs->txs_mbuf = NULL;
   1403 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1404 	}
   1405 
   1406 	/*
   1407 	 * Initialize the receive descriptor and receive job
   1408 	 * descriptor rings.
   1409 	 */
   1410 	for (i = 0; i < SIP_NRXDESC; i++) {
   1411 		rxs = &sc->sc_rxsoft[i];
   1412 		if (rxs->rxs_mbuf == NULL) {
   1413 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1414 				printf("%s: unable to allocate or map rx "
   1415 				    "buffer %d, error = %d\n",
   1416 				    sc->sc_dev.dv_xname, i, error);
   1417 				/*
   1418 				 * XXX Should attempt to run with fewer receive
   1419 				 * XXX buffers instead of just failing.
   1420 				 */
   1421 				sip_rxdrain(sc);
   1422 				goto out;
   1423 			}
   1424 		}
   1425 	}
   1426 	sc->sc_rxptr = 0;
   1427 
   1428 	/*
   1429 	 * Initialize the configuration register: aggressive PCI
   1430 	 * bus request algorithm, default backoff, default OW timer,
   1431 	 * default parity error detection.
   1432 	 */
   1433 	cfg = 0;
   1434 #if BYTE_ORDER == BIG_ENDIAN
   1435 	/*
   1436 	 * ...descriptors in big-endian mode.
   1437 	 */
   1438 #if 0
   1439 	/* "Big endian mode" does not work properly. */
   1440 	cfg |= CFG_BEM;
   1441 #endif
   1442 #endif
   1443 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1444 
   1445 	/*
   1446 	 * Initialize the transmit fill and drain thresholds if
   1447 	 * we have never done so.
   1448 	 */
   1449 	if (sc->sc_tx_fill_thresh == 0) {
   1450 		/*
   1451 		 * XXX This value should be tuned.  This is the
   1452 		 * minimum (32 bytes), and we may be able to
   1453 		 * improve performance by increasing it.
   1454 		 */
   1455 		sc->sc_tx_fill_thresh = 1;
   1456 	}
   1457 	if (sc->sc_tx_drain_thresh == 0) {
   1458 		/*
   1459 		 * Start at a drain threshold of 128 bytes.  We will
   1460 		 * increase it if a DMA underrun occurs.
   1461 		 *
   1462 		 * XXX The minimum value of this variable should be
   1463 		 * tuned.  We may be able to improve performance
   1464 		 * by starting with a lower value.  That, however,
   1465 		 * may trash the first few outgoing packets if the
   1466 		 * PCI bus is saturated.
   1467 		 */
   1468 		sc->sc_tx_drain_thresh = 4;
   1469 	}
   1470 
   1471 	/*
   1472 	 * Initialize the prototype TXCFG register.
   1473 	 */
   1474 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1475 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1476 	    sc->sc_tx_drain_thresh;
   1477 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1478 
   1479 	/*
   1480 	 * Initialize the receive drain threshold if we have never
   1481 	 * done so.
   1482 	 */
   1483 	if (sc->sc_rx_drain_thresh == 0) {
   1484 		/*
   1485 		 * XXX This value should be tuned.  This is set to the
   1486 		 * maximum of 248 bytes, and we may be able to improve
   1487 		 * performance by decreasing it (although we should never
   1488 		 * set this value lower than 2; 14 bytes are required to
   1489 		 * filter the packet).
   1490 		 */
   1491 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1492 	}
   1493 
   1494 	/*
   1495 	 * Initialize the prototype RXCFG register.
   1496 	 */
   1497 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1498 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1499 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1500 
   1501 	/* Set up the receive filter. */
   1502 	sip_set_filter(sc);
   1503 
   1504 	/*
   1505 	 * Give the transmit and receive rings to the chip.
   1506 	 */
   1507 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1508 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1509 
   1510 	/*
   1511 	 * Initialize the interrupt mask.
   1512 	 */
   1513 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1514 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1515 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1516 
   1517 	/*
   1518 	 * Set the current media.  Do this after initializing the prototype
   1519 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1520 	 * control.
   1521 	 */
   1522 	mii_mediachg(&sc->sc_mii);
   1523 
   1524 	/*
   1525 	 * Enable interrupts.
   1526 	 */
   1527 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1528 
   1529 	/*
   1530 	 * Start the transmit and receive processes.
   1531 	 */
   1532 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1533 
   1534 	/*
   1535 	 * Start the one second MII clock.
   1536 	 */
   1537 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1538 
   1539 	/*
   1540 	 * ...all done!
   1541 	 */
   1542 	ifp->if_flags |= IFF_RUNNING;
   1543 	ifp->if_flags &= ~IFF_OACTIVE;
   1544 
   1545  out:
   1546 	if (error)
   1547 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1548 	return (error);
   1549 }
   1550 
   1551 /*
   1552  * sip_drain:
   1553  *
   1554  *	Drain the receive queue.
   1555  */
   1556 void
   1557 sip_rxdrain(sc)
   1558 	struct sip_softc *sc;
   1559 {
   1560 	struct sip_rxsoft *rxs;
   1561 	int i;
   1562 
   1563 	for (i = 0; i < SIP_NRXDESC; i++) {
   1564 		rxs = &sc->sc_rxsoft[i];
   1565 		if (rxs->rxs_mbuf != NULL) {
   1566 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1567 			m_freem(rxs->rxs_mbuf);
   1568 			rxs->rxs_mbuf = NULL;
   1569 		}
   1570 	}
   1571 }
   1572 
   1573 /*
   1574  * sip_stop:
   1575  *
   1576  *	Stop transmission on the interface.
   1577  */
   1578 void
   1579 sip_stop(sc, drain)
   1580 	struct sip_softc *sc;
   1581 {
   1582 	bus_space_tag_t st = sc->sc_st;
   1583 	bus_space_handle_t sh = sc->sc_sh;
   1584 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1585 	struct sip_txsoft *txs;
   1586 	u_int32_t cmdsts = 0;		/* DEBUG */
   1587 
   1588 	/*
   1589 	 * Stop the one second clock.
   1590 	 */
   1591 	callout_stop(&sc->sc_tick_ch);
   1592 
   1593 	/* Down the MII. */
   1594 	mii_down(&sc->sc_mii);
   1595 
   1596 	/*
   1597 	 * Disable interrupts.
   1598 	 */
   1599 	bus_space_write_4(st, sh, SIP_IER, 0);
   1600 
   1601 	/*
   1602 	 * Stop receiver and transmitter.
   1603 	 */
   1604 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1605 
   1606 	/*
   1607 	 * Release any queued transmit buffers.
   1608 	 */
   1609 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1610 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1611 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1612 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   1613 		     CMDSTS_INTR) == 0)
   1614 			printf("%s: sip_stop: last descriptor does not "
   1615 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1616 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1617 #ifdef DIAGNOSTIC
   1618 		if (txs->txs_mbuf == NULL) {
   1619 			printf("%s: dirty txsoft with no mbuf chain\n",
   1620 			    sc->sc_dev.dv_xname);
   1621 			panic("sip_stop");
   1622 		}
   1623 #endif
   1624 		cmdsts |=		/* DEBUG */
   1625 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1626 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1627 		m_freem(txs->txs_mbuf);
   1628 		txs->txs_mbuf = NULL;
   1629 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1630 	}
   1631 
   1632 	if (drain) {
   1633 		/*
   1634 		 * Release the receive buffers.
   1635 		 */
   1636 		sip_rxdrain(sc);
   1637 	}
   1638 
   1639 	/*
   1640 	 * Mark the interface down and cancel the watchdog timer.
   1641 	 */
   1642 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1643 	ifp->if_timer = 0;
   1644 
   1645 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1646 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1647 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1648 		    "descriptors\n", sc->sc_dev.dv_xname);
   1649 }
   1650 
   1651 /*
   1652  * sip_read_eeprom:
   1653  *
   1654  *	Read data from the serial EEPROM.
   1655  */
   1656 void
   1657 sip_read_eeprom(sc, word, wordcnt, data)
   1658 	struct sip_softc *sc;
   1659 	int word, wordcnt;
   1660 	u_int16_t *data;
   1661 {
   1662 	bus_space_tag_t st = sc->sc_st;
   1663 	bus_space_handle_t sh = sc->sc_sh;
   1664 	u_int16_t reg;
   1665 	int i, x;
   1666 
   1667 	for (i = 0; i < wordcnt; i++) {
   1668 		/* Send CHIP SELECT. */
   1669 		reg = EROMAR_EECS;
   1670 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1671 
   1672 		/* Shift in the READ opcode. */
   1673 		for (x = 3; x > 0; x--) {
   1674 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1675 				reg |= EROMAR_EEDI;
   1676 			else
   1677 				reg &= ~EROMAR_EEDI;
   1678 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1679 			bus_space_write_4(st, sh, SIP_EROMAR,
   1680 			    reg | EROMAR_EESK);
   1681 			delay(4);
   1682 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1683 			delay(4);
   1684 		}
   1685 
   1686 		/* Shift in address. */
   1687 		for (x = 6; x > 0; x--) {
   1688 			if ((word + i) & (1 << (x - 1)))
   1689 				reg |= EROMAR_EEDI;
   1690 			else
   1691 				reg &= ~EROMAR_EEDI;
   1692 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1693 			bus_space_write_4(st, sh, SIP_EROMAR,
   1694 			    reg | EROMAR_EESK);
   1695 			delay(4);
   1696 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1697 			delay(4);
   1698 		}
   1699 
   1700 		/* Shift out data. */
   1701 		reg = EROMAR_EECS;
   1702 		data[i] = 0;
   1703 		for (x = 16; x > 0; x--) {
   1704 			bus_space_write_4(st, sh, SIP_EROMAR,
   1705 			    reg | EROMAR_EESK);
   1706 			delay(4);
   1707 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1708 				data[i] |= (1 << (x - 1));
   1709 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1710 			delay(4);
   1711 		}
   1712 
   1713 		/* Clear CHIP SELECT. */
   1714 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1715 		delay(4);
   1716 	}
   1717 }
   1718 
   1719 /*
   1720  * sip_add_rxbuf:
   1721  *
   1722  *	Add a receive buffer to the indicated descriptor.
   1723  */
   1724 int
   1725 sip_add_rxbuf(sc, idx)
   1726 	struct sip_softc *sc;
   1727 	int idx;
   1728 {
   1729 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1730 	struct mbuf *m;
   1731 	int error;
   1732 
   1733 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1734 	if (m == NULL)
   1735 		return (ENOBUFS);
   1736 
   1737 	MCLGET(m, M_DONTWAIT);
   1738 	if ((m->m_flags & M_EXT) == 0) {
   1739 		m_freem(m);
   1740 		return (ENOBUFS);
   1741 	}
   1742 
   1743 	if (rxs->rxs_mbuf != NULL)
   1744 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1745 
   1746 	rxs->rxs_mbuf = m;
   1747 
   1748 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1749 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1750 	if (error) {
   1751 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1752 		    sc->sc_dev.dv_xname, idx, error);
   1753 		panic("sip_add_rxbuf");		/* XXX */
   1754 	}
   1755 
   1756 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1757 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1758 
   1759 	SIP_INIT_RXDESC(sc, idx);
   1760 
   1761 	return (0);
   1762 }
   1763 
   1764 /*
   1765  * sip_set_filter:
   1766  *
   1767  *	Set up the receive filter.
   1768  */
   1769 void
   1770 sip_set_filter(sc)
   1771 	struct sip_softc *sc;
   1772 {
   1773 	bus_space_tag_t st = sc->sc_st;
   1774 	bus_space_handle_t sh = sc->sc_sh;
   1775 	struct ethercom *ec = &sc->sc_ethercom;
   1776 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1777 	struct ether_multi *enm;
   1778 	u_int8_t *cp;
   1779 	struct ether_multistep step;
   1780 	u_int32_t crc, mchash[8];
   1781 
   1782 	/*
   1783 	 * Initialize the prototype RFCR.
   1784 	 */
   1785 	sc->sc_rfcr = RFCR_RFEN;
   1786 	if (ifp->if_flags & IFF_BROADCAST)
   1787 		sc->sc_rfcr |= RFCR_AAB;
   1788 	if (ifp->if_flags & IFF_PROMISC) {
   1789 		sc->sc_rfcr |= RFCR_AAP;
   1790 		goto allmulti;
   1791 	}
   1792 
   1793 	/*
   1794 	 * Set up the multicast address filter by passing all multicast
   1795 	 * addresses through a CRC generator, and then using the high-order
   1796 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1797 	 * the lower 16 bits of each 32 bit multicast hash register are
   1798 	 * valid).  The high order bits select the register, while the
   1799 	 * rest of the bits select the bit within the register.
   1800 	 */
   1801 
   1802 	memset(mchash, 0, sizeof(mchash));
   1803 
   1804 	ETHER_FIRST_MULTI(step, ec, enm);
   1805 	while (enm != NULL) {
   1806 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1807 			/*
   1808 			 * We must listen to a range of multicast addresses.
   1809 			 * For now, just accept all multicasts, rather than
   1810 			 * trying to set only those filter bits needed to match
   1811 			 * the range.  (At this time, the only use of address
   1812 			 * ranges is for IP multicast routing, for which the
   1813 			 * range is big enough to require all bits set.)
   1814 			 */
   1815 			goto allmulti;
   1816 		}
   1817 
   1818 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1819 
   1820 		/* Just want the 7 most significant bits. */
   1821 		crc >>= 25;
   1822 
   1823 		/* Set the corresponding bit in the hash table. */
   1824 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1825 
   1826 		ETHER_NEXT_MULTI(step, enm);
   1827 	}
   1828 
   1829 	ifp->if_flags &= ~IFF_ALLMULTI;
   1830 	goto setit;
   1831 
   1832  allmulti:
   1833 	ifp->if_flags |= IFF_ALLMULTI;
   1834 	sc->sc_rfcr |= RFCR_AAM;
   1835 
   1836  setit:
   1837 #define	FILTER_EMIT(addr, data)						\
   1838 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1839 	delay(1);							\
   1840 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   1841 	delay(1)
   1842 
   1843 	/*
   1844 	 * Disable receive filter, and program the node address.
   1845 	 */
   1846 	cp = LLADDR(ifp->if_sadl);
   1847 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1848 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1849 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1850 
   1851 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1852 		/*
   1853 		 * Program the multicast hash table.
   1854 		 */
   1855 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1856 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1857 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1858 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1859 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1860 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1861 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1862 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1863 	}
   1864 #undef FILTER_EMIT
   1865 
   1866 	/*
   1867 	 * Re-enable the receiver filter.
   1868 	 */
   1869 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1870 }
   1871 
   1872 /*
   1873  * sip_mii_readreg:	[mii interface function]
   1874  *
   1875  *	Read a PHY register on the MII.
   1876  */
   1877 int
   1878 sip_mii_readreg(self, phy, reg)
   1879 	struct device *self;
   1880 	int phy, reg;
   1881 {
   1882 	struct sip_softc *sc = (struct sip_softc *) self;
   1883 	u_int32_t enphy;
   1884 
   1885 	/*
   1886 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1887 	 * MII address 0.
   1888 	 */
   1889 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1890 		return (0);
   1891 
   1892 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1893 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1894 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1895 	do {
   1896 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1897 	} while (enphy & ENPHY_ACCESS);
   1898 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1899 }
   1900 
   1901 /*
   1902  * sip_mii_writereg:	[mii interface function]
   1903  *
   1904  *	Write a PHY register on the MII.
   1905  */
   1906 void
   1907 sip_mii_writereg(self, phy, reg, val)
   1908 	struct device *self;
   1909 	int phy, reg, val;
   1910 {
   1911 	struct sip_softc *sc = (struct sip_softc *) self;
   1912 	u_int32_t enphy;
   1913 
   1914 	/*
   1915 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1916 	 * MII address 0.
   1917 	 */
   1918 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1919 		return;
   1920 
   1921 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1922 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1923 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1924 	do {
   1925 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1926 	} while (enphy & ENPHY_ACCESS);
   1927 }
   1928 
   1929 /*
   1930  * sip_mii_statchg:	[mii interface function]
   1931  *
   1932  *	Callback from MII layer when media changes.
   1933  */
   1934 void
   1935 sip_mii_statchg(self)
   1936 	struct device *self;
   1937 {
   1938 	struct sip_softc *sc = (struct sip_softc *) self;
   1939 	u_int32_t flowctl;
   1940 
   1941 	/*
   1942 	 * Update TXCFG for full-duplex operation.
   1943 	 */
   1944 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   1945 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   1946 	else
   1947 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   1948 
   1949 	/*
   1950 	 * Update RXCFG for full-duplex or loopback.
   1951 	 */
   1952 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   1953 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   1954 		sc->sc_rxcfg |= RXCFG_ATX;
   1955 	else
   1956 		sc->sc_rxcfg &= ~RXCFG_ATX;
   1957 
   1958 	/*
   1959 	 * Update IMR for use of 802.3x flow control.
   1960 	 */
   1961 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   1962 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   1963 		flowctl = FLOWCTL_FLOWEN;
   1964 	} else {
   1965 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   1966 		flowctl = 0;
   1967 	}
   1968 
   1969 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   1970 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   1971 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   1972 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   1973 }
   1974 
   1975 /*
   1976  * sip_mediastatus:	[ifmedia interface function]
   1977  *
   1978  *	Get the current interface media status.
   1979  */
   1980 void
   1981 sip_mediastatus(ifp, ifmr)
   1982 	struct ifnet *ifp;
   1983 	struct ifmediareq *ifmr;
   1984 {
   1985 	struct sip_softc *sc = ifp->if_softc;
   1986 
   1987 	mii_pollstat(&sc->sc_mii);
   1988 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1989 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1990 }
   1991 
   1992 /*
   1993  * sip_mediachange:	[ifmedia interface function]
   1994  *
   1995  *	Set hardware to newly-selected media.
   1996  */
   1997 int
   1998 sip_mediachange(ifp)
   1999 	struct ifnet *ifp;
   2000 {
   2001 	struct sip_softc *sc = ifp->if_softc;
   2002 
   2003 	if (ifp->if_flags & IFF_UP)
   2004 		mii_mediachg(&sc->sc_mii);
   2005 	return (0);
   2006 }
   2007