Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.143
      1 /*	$NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.143 2009/11/26 15:17:10 njoly Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 #include <sys/queue.h>
     92 
     93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     94 
     95 #if NRND > 0
     96 #include <sys/rnd.h>
     97 #endif
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #if NBPFILTER > 0
    105 #include <net/bpf.h>
    106 #endif
    107 
    108 #include <sys/bus.h>
    109 #include <sys/intr.h>
    110 #include <machine/endian.h>
    111 
    112 #include <dev/mii/mii.h>
    113 #include <dev/mii/miivar.h>
    114 #include <dev/mii/mii_bitbang.h>
    115 
    116 #include <dev/pci/pcireg.h>
    117 #include <dev/pci/pcivar.h>
    118 #include <dev/pci/pcidevs.h>
    119 
    120 #include <dev/pci/if_sipreg.h>
    121 
    122 /*
    123  * Transmit descriptor list size.  This is arbitrary, but allocate
    124  * enough descriptors for 128 pending transmissions, and 8 segments
    125  * per packet (64 for DP83820 for jumbo frames).
    126  *
    127  * This MUST work out to a power of 2.
    128  */
    129 #define	GSIP_NTXSEGS_ALLOC 16
    130 #define	SIP_NTXSEGS_ALLOC 8
    131 
    132 #define	SIP_TXQUEUELEN		256
    133 #define	MAX_SIP_NTXDESC	\
    134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    135 
    136 /*
    137  * Receive descriptor list size.  We have one Rx buffer per incoming
    138  * packet, so this logic is a little simpler.
    139  *
    140  * Actually, on the DP83820, we allow the packet to consume more than
    141  * one buffer, in order to support jumbo Ethernet frames.  In that
    142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    144  * so we'd better be quick about handling receive interrupts.
    145  */
    146 #define	GSIP_NRXDESC		256
    147 #define	SIP_NRXDESC		128
    148 
    149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    150 
    151 /*
    152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    153  * a single clump that maps to a single DMA segment to make several things
    154  * easier.
    155  */
    156 struct sip_control_data {
    157 	/*
    158 	 * The transmit descriptors.
    159 	 */
    160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    161 
    162 	/*
    163 	 * The receive descriptors.
    164 	 */
    165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    166 };
    167 
    168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    171 
    172 /*
    173  * Software state for transmit jobs.
    174  */
    175 struct sip_txsoft {
    176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    178 	int txs_firstdesc;		/* first descriptor in packet */
    179 	int txs_lastdesc;		/* last descriptor in packet */
    180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    181 };
    182 
    183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    184 
    185 /*
    186  * Software state for receive jobs.
    187  */
    188 struct sip_rxsoft {
    189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    191 };
    192 
    193 enum sip_attach_stage {
    194 	  SIP_ATTACH_FIN = 0
    195 	, SIP_ATTACH_CREATE_RXMAP
    196 	, SIP_ATTACH_CREATE_TXMAP
    197 	, SIP_ATTACH_LOAD_MAP
    198 	, SIP_ATTACH_CREATE_MAP
    199 	, SIP_ATTACH_MAP_MEM
    200 	, SIP_ATTACH_ALLOC_MEM
    201 	, SIP_ATTACH_INTR
    202 	, SIP_ATTACH_MAP
    203 };
    204 
    205 /*
    206  * Software state per device.
    207  */
    208 struct sip_softc {
    209 	device_t sc_dev;		/* generic device information */
    210 	struct device_suspensor		sc_suspensor;
    211 	struct pmf_qual			sc_qual;
    212 
    213 	bus_space_tag_t sc_st;		/* bus space tag */
    214 	bus_space_handle_t sc_sh;	/* bus space handle */
    215 	bus_size_t sc_sz;		/* bus space size */
    216 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    217 	pci_chipset_tag_t sc_pc;
    218 	bus_dma_segment_t sc_seg;
    219 	struct ethercom sc_ethercom;	/* ethernet common data */
    220 
    221 	const struct sip_product *sc_model; /* which model are we? */
    222 	int sc_gigabit;			/* 1: 83820, 0: other */
    223 	int sc_rev;			/* chip revision */
    224 
    225 	void *sc_ih;			/* interrupt cookie */
    226 
    227 	struct mii_data sc_mii;		/* MII/media information */
    228 
    229 	callout_t sc_tick_ch;		/* tick callout */
    230 
    231 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    232 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    233 
    234 	/*
    235 	 * Software state for transmit and receive descriptors.
    236 	 */
    237 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    238 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    239 
    240 	/*
    241 	 * Control data structures.
    242 	 */
    243 	struct sip_control_data *sc_control_data;
    244 #define	sc_txdescs	sc_control_data->scd_txdescs
    245 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    246 
    247 #ifdef SIP_EVENT_COUNTERS
    248 	/*
    249 	 * Event counters.
    250 	 */
    251 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    252 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    253 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    254 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    255 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    256 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    257 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    258 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    259 	/* DP83820 only */
    260 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    261 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    262 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    263 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    264 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    265 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    266 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    267 #endif /* SIP_EVENT_COUNTERS */
    268 
    269 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    270 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    271 	u_int32_t sc_imr;		/* prototype IMR register */
    272 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    273 
    274 	u_int32_t sc_cfg;		/* prototype CFG register */
    275 
    276 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    277 
    278 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    279 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    280 
    281 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    282 
    283 	int	sc_flowflags;		/* 802.3x flow control flags */
    284 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    285 	int	sc_paused;		/* paused indication */
    286 
    287 	int	sc_txfree;		/* number of free Tx descriptors */
    288 	int	sc_txnext;		/* next ready Tx descriptor */
    289 	int	sc_txwin;		/* Tx descriptors since last intr */
    290 
    291 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    292 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    293 
    294 	/* values of interface state at last init */
    295 	struct {
    296 		/* if_capenable */
    297 		uint64_t	if_capenable;
    298 		/* ec_capenable */
    299 		int		ec_capenable;
    300 		/* VLAN_ATTACHED */
    301 		int		is_vlan;
    302 	}	sc_prev;
    303 
    304 	short	sc_if_flags;
    305 
    306 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    307 	int	sc_rxdiscard;
    308 	int	sc_rxlen;
    309 	struct mbuf *sc_rxhead;
    310 	struct mbuf *sc_rxtail;
    311 	struct mbuf **sc_rxtailp;
    312 
    313 	int sc_ntxdesc;
    314 	int sc_ntxdesc_mask;
    315 
    316 	int sc_nrxdesc_mask;
    317 
    318 	const struct sip_parm {
    319 		const struct sip_regs {
    320 			int r_rxcfg;
    321 			int r_txcfg;
    322 		} p_regs;
    323 
    324 		const struct sip_bits {
    325 			uint32_t b_txcfg_mxdma_8;
    326 			uint32_t b_txcfg_mxdma_16;
    327 			uint32_t b_txcfg_mxdma_32;
    328 			uint32_t b_txcfg_mxdma_64;
    329 			uint32_t b_txcfg_mxdma_128;
    330 			uint32_t b_txcfg_mxdma_256;
    331 			uint32_t b_txcfg_mxdma_512;
    332 			uint32_t b_txcfg_flth_mask;
    333 			uint32_t b_txcfg_drth_mask;
    334 
    335 			uint32_t b_rxcfg_mxdma_8;
    336 			uint32_t b_rxcfg_mxdma_16;
    337 			uint32_t b_rxcfg_mxdma_32;
    338 			uint32_t b_rxcfg_mxdma_64;
    339 			uint32_t b_rxcfg_mxdma_128;
    340 			uint32_t b_rxcfg_mxdma_256;
    341 			uint32_t b_rxcfg_mxdma_512;
    342 
    343 			uint32_t b_isr_txrcmp;
    344 			uint32_t b_isr_rxrcmp;
    345 			uint32_t b_isr_dperr;
    346 			uint32_t b_isr_sserr;
    347 			uint32_t b_isr_rmabt;
    348 			uint32_t b_isr_rtabt;
    349 
    350 			uint32_t b_cmdsts_size_mask;
    351 		} p_bits;
    352 		int		p_filtmem;
    353 		int		p_rxbuf_len;
    354 		bus_size_t	p_tx_dmamap_size;
    355 		int		p_ntxsegs;
    356 		int		p_ntxsegs_alloc;
    357 		int		p_nrxdesc;
    358 	} *sc_parm;
    359 
    360 	void (*sc_rxintr)(struct sip_softc *);
    361 
    362 #if NRND > 0
    363 	rndsource_element_t rnd_source;	/* random source */
    364 #endif
    365 };
    366 
    367 #define	sc_bits	sc_parm->p_bits
    368 #define	sc_regs	sc_parm->p_regs
    369 
    370 static const struct sip_parm sip_parm = {
    371 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    372 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    373 	, .p_tx_dmamap_size = MCLBYTES
    374 	, .p_ntxsegs = 16
    375 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    376 	, .p_nrxdesc = SIP_NRXDESC
    377 	, .p_bits = {
    378 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    379 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    380 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    381 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    382 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    383 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    384 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    385 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    386 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    387 
    388 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    389 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    390 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    391 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    392 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    393 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    394 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    395 
    396 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    397 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    398 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    399 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    400 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    401 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    402 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    403 	}
    404 	, .p_regs = {
    405 		.r_rxcfg = OTHER_SIP_RXCFG,
    406 		.r_txcfg = OTHER_SIP_TXCFG
    407 	}
    408 }, gsip_parm = {
    409 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    410 	, .p_rxbuf_len = MCLBYTES - 8
    411 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    412 	, .p_ntxsegs = 64
    413 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    414 	, .p_nrxdesc = GSIP_NRXDESC
    415 	, .p_bits = {
    416 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    417 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    418 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    419 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    420 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    421 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    422 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    423 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    424 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    425 
    426 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    427 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    428 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    429 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    430 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    431 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    432 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    433 
    434 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    435 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    436 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    437 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    438 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    439 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    440 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    441 	}
    442 	, .p_regs = {
    443 		.r_rxcfg = DP83820_SIP_RXCFG,
    444 		.r_txcfg = DP83820_SIP_TXCFG
    445 	}
    446 };
    447 
    448 static inline int
    449 sip_nexttx(const struct sip_softc *sc, int x)
    450 {
    451 	return (x + 1) & sc->sc_ntxdesc_mask;
    452 }
    453 
    454 static inline int
    455 sip_nextrx(const struct sip_softc *sc, int x)
    456 {
    457 	return (x + 1) & sc->sc_nrxdesc_mask;
    458 }
    459 
    460 /* 83820 only */
    461 static inline void
    462 sip_rxchain_reset(struct sip_softc *sc)
    463 {
    464 	sc->sc_rxtailp = &sc->sc_rxhead;
    465 	*sc->sc_rxtailp = NULL;
    466 	sc->sc_rxlen = 0;
    467 }
    468 
    469 /* 83820 only */
    470 static inline void
    471 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    472 {
    473 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    474 	sc->sc_rxtailp = &m->m_next;
    475 }
    476 
    477 #ifdef SIP_EVENT_COUNTERS
    478 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    479 #else
    480 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    481 #endif
    482 
    483 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    484 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    485 
    486 static inline void
    487 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    488 {
    489 	int x, n;
    490 
    491 	x = x0;
    492 	n = n0;
    493 
    494 	/* If it will wrap around, sync to the end of the ring. */
    495 	if (x + n > sc->sc_ntxdesc) {
    496 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    497 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    498 		    (sc->sc_ntxdesc - x), ops);
    499 		n -= (sc->sc_ntxdesc - x);
    500 		x = 0;
    501 	}
    502 
    503 	/* Now sync whatever is left. */
    504 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    505 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    506 }
    507 
    508 static inline void
    509 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    510 {
    511 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    512 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    513 }
    514 
    515 #if 0
    516 #ifdef DP83820
    517 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    518 	u_int32_t	sipd_cmdsts;	/* command/status word */
    519 #else
    520 	u_int32_t	sipd_cmdsts;	/* command/status word */
    521 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    522 #endif /* DP83820 */
    523 #endif /* 0 */
    524 
    525 static inline volatile uint32_t *
    526 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    527 {
    528 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    529 }
    530 
    531 static inline volatile uint32_t *
    532 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    533 {
    534 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    535 }
    536 
    537 static inline void
    538 sip_init_rxdesc(struct sip_softc *sc, int x)
    539 {
    540 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    541 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    542 
    543 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    544 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    545 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    546 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    547 	sipd->sipd_extsts = 0;
    548 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    549 }
    550 
    551 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    552 	((sc)->sc_model->sip_vendor == (v) &&				\
    553 	 (sc)->sc_model->sip_product == (p) &&				\
    554 	 (sc)->sc_rev == (r))
    555 
    556 #define	SIP_CHIP_MODEL(sc, v, p)					\
    557 	((sc)->sc_model->sip_vendor == (v) &&				\
    558 	 (sc)->sc_model->sip_product == (p))
    559 
    560 #define	SIP_SIS900_REV(sc, rev)						\
    561 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    562 
    563 #define SIP_TIMEOUT 1000
    564 
    565 static int	sip_ifflags_cb(struct ethercom *);
    566 static void	sipcom_start(struct ifnet *);
    567 static void	sipcom_watchdog(struct ifnet *);
    568 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    569 static int	sipcom_init(struct ifnet *);
    570 static void	sipcom_stop(struct ifnet *, int);
    571 
    572 static bool	sipcom_reset(struct sip_softc *);
    573 static void	sipcom_rxdrain(struct sip_softc *);
    574 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    575 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    576 				      u_int16_t *);
    577 static void	sipcom_tick(void *);
    578 
    579 static void	sipcom_sis900_set_filter(struct sip_softc *);
    580 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    581 
    582 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    583 		    const struct pci_attach_args *, u_int8_t *);
    584 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    585 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    586 		    const struct pci_attach_args *, u_int8_t *);
    587 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    588 		    const struct pci_attach_args *, u_int8_t *);
    589 
    590 static int	sipcom_intr(void *);
    591 static void	sipcom_txintr(struct sip_softc *);
    592 static void	sip_rxintr(struct sip_softc *);
    593 static void	gsip_rxintr(struct sip_softc *);
    594 
    595 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
    596 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
    597 static void	sipcom_dp83820_mii_statchg(device_t);
    598 
    599 static int	sipcom_sis900_mii_readreg(device_t, int, int);
    600 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
    601 static void	sipcom_sis900_mii_statchg(device_t);
    602 
    603 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
    604 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
    605 static void	sipcom_dp83815_mii_statchg(device_t);
    606 
    607 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    608 
    609 static int	sipcom_match(device_t, cfdata_t, void *);
    610 static void	sipcom_attach(device_t, device_t, void *);
    611 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    612 static int	sipcom_detach(device_t, int);
    613 static bool	sipcom_resume(device_t PMF_FN_PROTO);
    614 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
    615 
    616 int	gsip_copy_small = 0;
    617 int	sip_copy_small = 0;
    618 
    619 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    621     DVF_DETACH_SHUTDOWN);
    622 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    623     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    624     DVF_DETACH_SHUTDOWN);
    625 
    626 /*
    627  * Descriptions of the variants of the SiS900.
    628  */
    629 struct sip_variant {
    630 	int	(*sipv_mii_readreg)(device_t, int, int);
    631 	void	(*sipv_mii_writereg)(device_t, int, int, int);
    632 	void	(*sipv_mii_statchg)(device_t);
    633 	void	(*sipv_set_filter)(struct sip_softc *);
    634 	void	(*sipv_read_macaddr)(struct sip_softc *,
    635 		    const struct pci_attach_args *, u_int8_t *);
    636 };
    637 
    638 static u_int32_t sipcom_mii_bitbang_read(device_t);
    639 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
    640 
    641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    642 	sipcom_mii_bitbang_read,
    643 	sipcom_mii_bitbang_write,
    644 	{
    645 		EROMAR_MDIO,		/* MII_BIT_MDO */
    646 		EROMAR_MDIO,		/* MII_BIT_MDI */
    647 		EROMAR_MDC,		/* MII_BIT_MDC */
    648 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    649 		0,			/* MII_BIT_DIR_PHY_HOST */
    650 	}
    651 };
    652 
    653 static const struct sip_variant sipcom_variant_dp83820 = {
    654 	sipcom_dp83820_mii_readreg,
    655 	sipcom_dp83820_mii_writereg,
    656 	sipcom_dp83820_mii_statchg,
    657 	sipcom_dp83815_set_filter,
    658 	sipcom_dp83820_read_macaddr,
    659 };
    660 
    661 static const struct sip_variant sipcom_variant_sis900 = {
    662 	sipcom_sis900_mii_readreg,
    663 	sipcom_sis900_mii_writereg,
    664 	sipcom_sis900_mii_statchg,
    665 	sipcom_sis900_set_filter,
    666 	sipcom_sis900_read_macaddr,
    667 };
    668 
    669 static const struct sip_variant sipcom_variant_dp83815 = {
    670 	sipcom_dp83815_mii_readreg,
    671 	sipcom_dp83815_mii_writereg,
    672 	sipcom_dp83815_mii_statchg,
    673 	sipcom_dp83815_set_filter,
    674 	sipcom_dp83815_read_macaddr,
    675 };
    676 
    677 
    678 /*
    679  * Devices supported by this driver.
    680  */
    681 static const struct sip_product {
    682 	pci_vendor_id_t		sip_vendor;
    683 	pci_product_id_t	sip_product;
    684 	const char		*sip_name;
    685 	const struct sip_variant *sip_variant;
    686 	int			sip_gigabit;
    687 } sipcom_products[] = {
    688 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    689 	  "NatSemi DP83820 Gigabit Ethernet",
    690 	  &sipcom_variant_dp83820, 1 },
    691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    692 	  "SiS 900 10/100 Ethernet",
    693 	  &sipcom_variant_sis900, 0 },
    694 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    695 	  "SiS 7016 10/100 Ethernet",
    696 	  &sipcom_variant_sis900, 0 },
    697 
    698 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    699 	  "NatSemi DP83815 10/100 Ethernet",
    700 	  &sipcom_variant_dp83815, 0 },
    701 
    702 	{ 0,			0,
    703 	  NULL,
    704 	  NULL, 0 },
    705 };
    706 
    707 static const struct sip_product *
    708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    709 {
    710 	const struct sip_product *sip;
    711 
    712 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    713 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    714 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    715 		    sip->sip_gigabit == gigabit)
    716 			return sip;
    717 	}
    718 	return NULL;
    719 }
    720 
    721 /*
    722  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    723  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    724  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    725  * which means we try to use 64-bit data transfers on those cards if we
    726  * happen to be plugged into a 32-bit slot.
    727  *
    728  * What we do is use this table of cards known to be 64-bit cards.  If
    729  * you have a 64-bit card who's subsystem ID is not listed in this table,
    730  * send the output of "pcictl dump ..." of the device to me so that your
    731  * card will use the 64-bit data path when plugged into a 64-bit slot.
    732  *
    733  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    734  *	   June 30, 2002
    735  */
    736 static int
    737 sipcom_check_64bit(const struct pci_attach_args *pa)
    738 {
    739 	static const struct {
    740 		pci_vendor_id_t c64_vendor;
    741 		pci_product_id_t c64_product;
    742 	} card64[] = {
    743 		/* Asante GigaNIX */
    744 		{ 0x128a,	0x0002 },
    745 
    746 		/* Accton EN1407-T, Planex GN-1000TE */
    747 		{ 0x1113,	0x1407 },
    748 
    749 		/* Netgear GA-621 */
    750 		{ 0x1385,	0x621a },
    751 
    752 		/* SMC EZ Card */
    753 		{ 0x10b8,	0x9462 },
    754 
    755 		{ 0, 0}
    756 	};
    757 	pcireg_t subsys;
    758 	int i;
    759 
    760 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    761 
    762 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    763 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    764 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    765 			return (1);
    766 	}
    767 
    768 	return (0);
    769 }
    770 
    771 static int
    772 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    773 {
    774 	struct pci_attach_args *pa = aux;
    775 
    776 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    777 		return 1;
    778 
    779 	return 0;
    780 }
    781 
    782 static void
    783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    784 {
    785 	u_int32_t reg;
    786 	int i;
    787 
    788 	/*
    789 	 * Cause the chip to load configuration data from the EEPROM.
    790 	 */
    791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    792 	for (i = 0; i < 10000; i++) {
    793 		delay(10);
    794 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    795 		    PTSCR_EELOAD_EN) == 0)
    796 			break;
    797 	}
    798 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    799 	    PTSCR_EELOAD_EN) {
    800 		printf("%s: timeout loading configuration from EEPROM\n",
    801 		    device_xname(sc->sc_dev));
    802 		return;
    803 	}
    804 
    805 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    806 
    807 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    808 	if (reg & CFG_PCI64_DET) {
    809 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    810 		/*
    811 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    812 		 * data transfers.
    813 		 *
    814 		 * We can't use the DATA64_EN bit in the EEPROM, because
    815 		 * vendors of 32-bit cards fail to clear that bit in many
    816 		 * cases (yet the card still detects that it's in a 64-bit
    817 		 * slot; go figure).
    818 		 */
    819 		if (sipcom_check_64bit(pa)) {
    820 			sc->sc_cfg |= CFG_DATA64_EN;
    821 			printf(", using 64-bit data transfers");
    822 		}
    823 		printf("\n");
    824 	}
    825 
    826 	/*
    827 	 * XXX Need some PCI flags indicating support for
    828 	 * XXX 64-bit addressing.
    829 	 */
    830 #if 0
    831 	if (reg & CFG_M64ADDR)
    832 		sc->sc_cfg |= CFG_M64ADDR;
    833 	if (reg & CFG_T64ADDR)
    834 		sc->sc_cfg |= CFG_T64ADDR;
    835 #endif
    836 
    837 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    838 		const char *sep = "";
    839 		printf("%s: using ", device_xname(sc->sc_dev));
    840 		if (reg & CFG_EXT_125) {
    841 			sc->sc_cfg |= CFG_EXT_125;
    842 			printf("%s125MHz clock", sep);
    843 			sep = ", ";
    844 		}
    845 		if (reg & CFG_TBI_EN) {
    846 			sc->sc_cfg |= CFG_TBI_EN;
    847 			printf("%sten-bit interface", sep);
    848 			sep = ", ";
    849 		}
    850 		printf("\n");
    851 	}
    852 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    853 	    (reg & CFG_MRM_DIS) != 0)
    854 		sc->sc_cfg |= CFG_MRM_DIS;
    855 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    856 	    (reg & CFG_MWI_DIS) != 0)
    857 		sc->sc_cfg |= CFG_MWI_DIS;
    858 
    859 	/*
    860 	 * Use the extended descriptor format on the DP83820.  This
    861 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    862 	 * checksumming.
    863 	 */
    864 	sc->sc_cfg |= CFG_EXTSTS_EN;
    865 }
    866 
    867 static int
    868 sipcom_detach(device_t self, int flags)
    869 {
    870 	int s;
    871 
    872 	s = splnet();
    873 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    874 	splx(s);
    875 
    876 	return 0;
    877 }
    878 
    879 static void
    880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    881 {
    882 	int i;
    883 	struct sip_softc *sc = device_private(self);
    884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    885 
    886 	/*
    887 	 * Free any resources we've allocated during attach.
    888 	 * Do this in reverse order and fall through.
    889 	 */
    890 	switch (stage) {
    891 	case SIP_ATTACH_FIN:
    892 		sipcom_stop(ifp, 1);
    893 		pmf_device_deregister(self);
    894 #ifdef SIP_EVENT_COUNTERS
    895 		/*
    896 		 * Attach event counters.
    897 		 */
    898 		evcnt_detach(&sc->sc_ev_txforceintr);
    899 		evcnt_detach(&sc->sc_ev_txdstall);
    900 		evcnt_detach(&sc->sc_ev_txsstall);
    901 		evcnt_detach(&sc->sc_ev_hiberr);
    902 		evcnt_detach(&sc->sc_ev_rxintr);
    903 		evcnt_detach(&sc->sc_ev_txiintr);
    904 		evcnt_detach(&sc->sc_ev_txdintr);
    905 		if (!sc->sc_gigabit) {
    906 			evcnt_detach(&sc->sc_ev_rxpause);
    907 		} else {
    908 			evcnt_detach(&sc->sc_ev_txudpsum);
    909 			evcnt_detach(&sc->sc_ev_txtcpsum);
    910 			evcnt_detach(&sc->sc_ev_txipsum);
    911 			evcnt_detach(&sc->sc_ev_rxudpsum);
    912 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    913 			evcnt_detach(&sc->sc_ev_rxipsum);
    914 			evcnt_detach(&sc->sc_ev_txpause);
    915 			evcnt_detach(&sc->sc_ev_rxpause);
    916 		}
    917 #endif /* SIP_EVENT_COUNTERS */
    918 
    919 #if NRND > 0
    920 		rnd_detach_source(&sc->rnd_source);
    921 #endif
    922 
    923 		ether_ifdetach(ifp);
    924 		if_detach(ifp);
    925 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    926 
    927 		/*FALLTHROUGH*/
    928 	case SIP_ATTACH_CREATE_RXMAP:
    929 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    930 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    931 				bus_dmamap_destroy(sc->sc_dmat,
    932 				    sc->sc_rxsoft[i].rxs_dmamap);
    933 		}
    934 		/*FALLTHROUGH*/
    935 	case SIP_ATTACH_CREATE_TXMAP:
    936 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    937 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    938 				bus_dmamap_destroy(sc->sc_dmat,
    939 				    sc->sc_txsoft[i].txs_dmamap);
    940 		}
    941 		/*FALLTHROUGH*/
    942 	case SIP_ATTACH_LOAD_MAP:
    943 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    944 		/*FALLTHROUGH*/
    945 	case SIP_ATTACH_CREATE_MAP:
    946 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    947 		/*FALLTHROUGH*/
    948 	case SIP_ATTACH_MAP_MEM:
    949 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    950 		    sizeof(struct sip_control_data));
    951 		/*FALLTHROUGH*/
    952 	case SIP_ATTACH_ALLOC_MEM:
    953 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    954 		/* FALLTHROUGH*/
    955 	case SIP_ATTACH_INTR:
    956 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    957 		/* FALLTHROUGH*/
    958 	case SIP_ATTACH_MAP:
    959 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    960 		break;
    961 	default:
    962 		break;
    963 	}
    964 	return;
    965 }
    966 
    967 static bool
    968 sipcom_resume(device_t self PMF_FN_ARGS)
    969 {
    970 	struct sip_softc *sc = device_private(self);
    971 
    972 	return sipcom_reset(sc);
    973 }
    974 
    975 static bool
    976 sipcom_suspend(device_t self PMF_FN_ARGS)
    977 {
    978 	struct sip_softc *sc = device_private(self);
    979 
    980 	sipcom_rxdrain(sc);
    981 	return true;
    982 }
    983 
    984 static void
    985 sipcom_attach(device_t parent, device_t self, void *aux)
    986 {
    987 	struct sip_softc *sc = device_private(self);
    988 	struct pci_attach_args *pa = aux;
    989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    990 	pci_chipset_tag_t pc = pa->pa_pc;
    991 	pci_intr_handle_t ih;
    992 	const char *intrstr = NULL;
    993 	bus_space_tag_t iot, memt;
    994 	bus_space_handle_t ioh, memh;
    995 	bus_size_t iosz, memsz;
    996 	int ioh_valid, memh_valid;
    997 	int i, rseg, error;
    998 	const struct sip_product *sip;
    999 	u_int8_t enaddr[ETHER_ADDR_LEN];
   1000 	pcireg_t csr;
   1001 	pcireg_t memtype;
   1002 	bus_size_t tx_dmamap_size;
   1003 	int ntxsegs_alloc;
   1004 	cfdata_t cf = device_cfdata(self);
   1005 
   1006 	callout_init(&sc->sc_tick_ch, 0);
   1007 
   1008 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1009 	if (sip == NULL) {
   1010 		printf("\n");
   1011 		panic("%s: impossible", __func__);
   1012 	}
   1013 	sc->sc_dev = self;
   1014 	sc->sc_gigabit = sip->sip_gigabit;
   1015 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1016 	sc->sc_pc = pc;
   1017 
   1018 	if (sc->sc_gigabit) {
   1019 		sc->sc_rxintr = gsip_rxintr;
   1020 		sc->sc_parm = &gsip_parm;
   1021 	} else {
   1022 		sc->sc_rxintr = sip_rxintr;
   1023 		sc->sc_parm = &sip_parm;
   1024 	}
   1025 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1026 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1027 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1028 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1029 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1030 
   1031 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1032 
   1033 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1034 
   1035 	sc->sc_model = sip;
   1036 
   1037 	/*
   1038 	 * XXX Work-around broken PXE firmware on some boards.
   1039 	 *
   1040 	 * The DP83815 shares an address decoder with the MEM BAR
   1041 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1042 	 * so that memory mapped access works.
   1043 	 */
   1044 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1045 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1046 	    ~PCI_MAPREG_ROM_ENABLE);
   1047 
   1048 	/*
   1049 	 * Map the device.
   1050 	 */
   1051 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1052 	    PCI_MAPREG_TYPE_IO, 0,
   1053 	    &iot, &ioh, NULL, &iosz) == 0);
   1054 	if (sc->sc_gigabit) {
   1055 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1056 		switch (memtype) {
   1057 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1058 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1059 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1060 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1061 			break;
   1062 		default:
   1063 			memh_valid = 0;
   1064 		}
   1065 	} else {
   1066 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1067 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1068 		    &memt, &memh, NULL, &memsz) == 0);
   1069 	}
   1070 
   1071 	if (memh_valid) {
   1072 		sc->sc_st = memt;
   1073 		sc->sc_sh = memh;
   1074 		sc->sc_sz = memsz;
   1075 	} else if (ioh_valid) {
   1076 		sc->sc_st = iot;
   1077 		sc->sc_sh = ioh;
   1078 		sc->sc_sz = iosz;
   1079 	} else {
   1080 		printf("%s: unable to map device registers\n",
   1081 		    device_xname(sc->sc_dev));
   1082 		return;
   1083 	}
   1084 
   1085 	sc->sc_dmat = pa->pa_dmat;
   1086 
   1087 	/*
   1088 	 * Make sure bus mastering is enabled.  Also make sure
   1089 	 * Write/Invalidate is enabled if we're allowed to use it.
   1090 	 */
   1091 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1092 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1093 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1094 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1095 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1096 
   1097 	/* power up chip */
   1098 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1099 	if (error != 0 && error != EOPNOTSUPP) {
   1100 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1101 		return;
   1102 	}
   1103 
   1104 	/*
   1105 	 * Map and establish our interrupt.
   1106 	 */
   1107 	if (pci_intr_map(pa, &ih)) {
   1108 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1109 		return;
   1110 	}
   1111 	intrstr = pci_intr_string(pc, ih);
   1112 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1113 	if (sc->sc_ih == NULL) {
   1114 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1115 		if (intrstr != NULL)
   1116 			aprint_error(" at %s", intrstr);
   1117 		aprint_error("\n");
   1118 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1119 	}
   1120 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1121 
   1122 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1123 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1124 
   1125 	/*
   1126 	 * Allocate the control data structures, and create and load the
   1127 	 * DMA map for it.
   1128 	 */
   1129 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1130 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1131 	    &rseg, 0)) != 0) {
   1132 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
   1133 		    error);
   1134 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1135 	}
   1136 
   1137 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1138 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1139 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1140 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
   1141 		    error);
   1142 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1143 	}
   1144 
   1145 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1146 	    sizeof(struct sip_control_data), 1,
   1147 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1148 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
   1149 		    "error = %d\n", error);
   1150 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1151 	}
   1152 
   1153 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1154 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1155 	    0)) != 0) {
   1156 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
   1157 		    error);
   1158 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1159 	}
   1160 
   1161 	/*
   1162 	 * Create the transmit buffer DMA maps.
   1163 	 */
   1164 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1165 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1166 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1167 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1168 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
   1169 			    "error = %d\n", i, error);
   1170 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1171 		}
   1172 	}
   1173 
   1174 	/*
   1175 	 * Create the receive buffer DMA maps.
   1176 	 */
   1177 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1178 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1179 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1180 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
   1181 			    "error = %d\n", i, error);
   1182 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1183 		}
   1184 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1185 	}
   1186 
   1187 	/*
   1188 	 * Reset the chip to a known state.
   1189 	 */
   1190 	sipcom_reset(sc);
   1191 
   1192 	/*
   1193 	 * Read the Ethernet address from the EEPROM.  This might
   1194 	 * also fetch other stuff from the EEPROM and stash it
   1195 	 * in the softc.
   1196 	 */
   1197 	sc->sc_cfg = 0;
   1198 	if (!sc->sc_gigabit) {
   1199 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1201 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1202 
   1203 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1204 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1205 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1206 			sc->sc_cfg |=
   1207 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1208 			     CFG_EDBMASTEN);
   1209 	}
   1210 
   1211 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1212 
   1213 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
   1214 	    ether_sprintf(enaddr));
   1215 
   1216 	/*
   1217 	 * Initialize the configuration register: aggressive PCI
   1218 	 * bus request algorithm, default backoff, default OW timer,
   1219 	 * default parity error detection.
   1220 	 *
   1221 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1222 	 * friends -- it affects packet data, not descriptors.
   1223 	 */
   1224 	if (sc->sc_gigabit)
   1225 		sipcom_dp83820_attach(sc, pa);
   1226 
   1227 	/*
   1228 	 * Initialize our media structures and probe the MII.
   1229 	 */
   1230 	sc->sc_mii.mii_ifp = ifp;
   1231 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1232 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1233 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1234 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1235 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1236 	    sipcom_mediastatus);
   1237 
   1238 	/*
   1239 	 * XXX We cannot handle flow control on the DP83815.
   1240 	 */
   1241 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1243 			   MII_OFFSET_ANY, 0);
   1244 	else
   1245 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1246 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1247 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1248 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1249 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1250 	} else
   1251 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1252 
   1253 	ifp = &sc->sc_ethercom.ec_if;
   1254 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1255 	ifp->if_softc = sc;
   1256 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1257 	sc->sc_if_flags = ifp->if_flags;
   1258 	ifp->if_ioctl = sipcom_ioctl;
   1259 	ifp->if_start = sipcom_start;
   1260 	ifp->if_watchdog = sipcom_watchdog;
   1261 	ifp->if_init = sipcom_init;
   1262 	ifp->if_stop = sipcom_stop;
   1263 	IFQ_SET_READY(&ifp->if_snd);
   1264 
   1265 	/*
   1266 	 * We can support 802.1Q VLAN-sized frames.
   1267 	 */
   1268 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1269 
   1270 	if (sc->sc_gigabit) {
   1271 		/*
   1272 		 * And the DP83820 can do VLAN tagging in hardware, and
   1273 		 * support the jumbo Ethernet MTU.
   1274 		 */
   1275 		sc->sc_ethercom.ec_capabilities |=
   1276 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1277 
   1278 		/*
   1279 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1280 		 * in hardware.
   1281 		 */
   1282 		ifp->if_capabilities |=
   1283 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1284 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1285 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1286 	}
   1287 
   1288 	/*
   1289 	 * Attach the interface.
   1290 	 */
   1291 	if_attach(ifp);
   1292 	ether_ifattach(ifp, enaddr);
   1293 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1294 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1295 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1296 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1297 #if NRND > 0
   1298 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1299 	    RND_TYPE_NET, 0);
   1300 #endif
   1301 
   1302 	/*
   1303 	 * The number of bytes that must be available in
   1304 	 * the Tx FIFO before the bus master can DMA more
   1305 	 * data into the FIFO.
   1306 	 */
   1307 	sc->sc_tx_fill_thresh = 64 / 32;
   1308 
   1309 	/*
   1310 	 * Start at a drain threshold of 512 bytes.  We will
   1311 	 * increase it if a DMA underrun occurs.
   1312 	 *
   1313 	 * XXX The minimum value of this variable should be
   1314 	 * tuned.  We may be able to improve performance
   1315 	 * by starting with a lower value.  That, however,
   1316 	 * may trash the first few outgoing packets if the
   1317 	 * PCI bus is saturated.
   1318 	 */
   1319 	if (sc->sc_gigabit)
   1320 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1321 	else
   1322 		sc->sc_tx_drain_thresh = 1504 / 32;
   1323 
   1324 	/*
   1325 	 * Initialize the Rx FIFO drain threshold.
   1326 	 *
   1327 	 * This is in units of 8 bytes.
   1328 	 *
   1329 	 * We should never set this value lower than 2; 14 bytes are
   1330 	 * required to filter the packet.
   1331 	 */
   1332 	sc->sc_rx_drain_thresh = 128 / 8;
   1333 
   1334 #ifdef SIP_EVENT_COUNTERS
   1335 	/*
   1336 	 * Attach event counters.
   1337 	 */
   1338 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1339 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1340 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1341 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1342 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1343 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1344 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1345 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1346 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1347 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1348 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1349 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1350 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1351 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1352 	if (!sc->sc_gigabit) {
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1355 	} else {
   1356 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1357 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1358 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1359 		    NULL, device_xname(sc->sc_dev), "txpause");
   1360 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1361 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1362 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1363 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1364 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1365 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1366 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1367 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1368 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1369 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1370 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1371 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1372 	}
   1373 #endif /* SIP_EVENT_COUNTERS */
   1374 
   1375 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1376 		pmf_class_network_register(self, ifp);
   1377 	else
   1378 		aprint_error_dev(self, "couldn't establish power handler\n");
   1379 }
   1380 
   1381 static inline void
   1382 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1383     uint64_t capenable)
   1384 {
   1385 	struct m_tag *mtag;
   1386 	u_int32_t extsts;
   1387 #ifdef DEBUG
   1388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1389 #endif
   1390 	/*
   1391 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1392 	 * up the descriptor to encapsulate the packet for us.
   1393 	 *
   1394 	 * This apparently has to be on the last descriptor of
   1395 	 * the packet.
   1396 	 */
   1397 
   1398 	/*
   1399 	 * Byte swapping is tricky. We need to provide the tag
   1400 	 * in a network byte order. On a big-endian machine,
   1401 	 * the byteorder is correct, but we need to swap it
   1402 	 * anyway, because this will be undone by the outside
   1403 	 * htole32(). That's why there must be an
   1404 	 * unconditional swap instead of htons() inside.
   1405 	 */
   1406 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1407 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1408 		    htole32(EXTSTS_VPKT |
   1409 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1410 				 EXTSTS_VTCI));
   1411 	}
   1412 
   1413 	/*
   1414 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1415 	 * checksumming, set up the descriptor to do this work
   1416 	 * for us.
   1417 	 *
   1418 	 * This apparently has to be on the first descriptor of
   1419 	 * the packet.
   1420 	 *
   1421 	 * Byte-swap constants so the compiler can optimize.
   1422 	 */
   1423 	extsts = 0;
   1424 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1426 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1427 		extsts |= htole32(EXTSTS_IPPKT);
   1428 	}
   1429 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1430 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1431 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1432 		extsts |= htole32(EXTSTS_TCPPKT);
   1433 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1434 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1435 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1436 		extsts |= htole32(EXTSTS_UDPPKT);
   1437 	}
   1438 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1439 }
   1440 
   1441 /*
   1442  * sip_start:		[ifnet interface function]
   1443  *
   1444  *	Start packet transmission on the interface.
   1445  */
   1446 static void
   1447 sipcom_start(struct ifnet *ifp)
   1448 {
   1449 	struct sip_softc *sc = ifp->if_softc;
   1450 	struct mbuf *m0;
   1451 	struct mbuf *m;
   1452 	struct sip_txsoft *txs;
   1453 	bus_dmamap_t dmamap;
   1454 	int error, nexttx, lasttx, seg;
   1455 	int ofree = sc->sc_txfree;
   1456 #if 0
   1457 	int firsttx = sc->sc_txnext;
   1458 #endif
   1459 
   1460 	/*
   1461 	 * If we've been told to pause, don't transmit any more packets.
   1462 	 */
   1463 	if (!sc->sc_gigabit && sc->sc_paused)
   1464 		ifp->if_flags |= IFF_OACTIVE;
   1465 
   1466 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1467 		return;
   1468 
   1469 	/*
   1470 	 * Loop through the send queue, setting up transmit descriptors
   1471 	 * until we drain the queue, or use up all available transmit
   1472 	 * descriptors.
   1473 	 */
   1474 	for (;;) {
   1475 		/* Get a work queue entry. */
   1476 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1477 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1478 			break;
   1479 		}
   1480 
   1481 		/*
   1482 		 * Grab a packet off the queue.
   1483 		 */
   1484 		IFQ_POLL(&ifp->if_snd, m0);
   1485 		if (m0 == NULL)
   1486 			break;
   1487 		m = NULL;
   1488 
   1489 		dmamap = txs->txs_dmamap;
   1490 
   1491 		/*
   1492 		 * Load the DMA map.  If this fails, the packet either
   1493 		 * didn't fit in the alloted number of segments, or we
   1494 		 * were short on resources.
   1495 		 */
   1496 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1497 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1498 		/* In the non-gigabit case, we'll copy and try again. */
   1499 		if (error != 0 && !sc->sc_gigabit) {
   1500 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1501 			if (m == NULL) {
   1502 				printf("%s: unable to allocate Tx mbuf\n",
   1503 				    device_xname(sc->sc_dev));
   1504 				break;
   1505 			}
   1506 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1507 			if (m0->m_pkthdr.len > MHLEN) {
   1508 				MCLGET(m, M_DONTWAIT);
   1509 				if ((m->m_flags & M_EXT) == 0) {
   1510 					printf("%s: unable to allocate Tx "
   1511 					    "cluster\n", device_xname(sc->sc_dev));
   1512 					m_freem(m);
   1513 					break;
   1514 				}
   1515 			}
   1516 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1517 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1518 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1519 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1520 			if (error) {
   1521 				printf("%s: unable to load Tx buffer, "
   1522 				    "error = %d\n", device_xname(sc->sc_dev), error);
   1523 				break;
   1524 			}
   1525 		} else if (error == EFBIG) {
   1526 			/*
   1527 			 * For the too-many-segments case, we simply
   1528 			 * report an error and drop the packet,
   1529 			 * since we can't sanely copy a jumbo packet
   1530 			 * to a single buffer.
   1531 			 */
   1532 			printf("%s: Tx packet consumes too many "
   1533 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
   1534 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1535 			m_freem(m0);
   1536 			continue;
   1537 		} else if (error != 0) {
   1538 			/*
   1539 			 * Short on resources, just stop for now.
   1540 			 */
   1541 			break;
   1542 		}
   1543 
   1544 		/*
   1545 		 * Ensure we have enough descriptors free to describe
   1546 		 * the packet.  Note, we always reserve one descriptor
   1547 		 * at the end of the ring as a termination point, to
   1548 		 * prevent wrap-around.
   1549 		 */
   1550 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1551 			/*
   1552 			 * Not enough free descriptors to transmit this
   1553 			 * packet.  We haven't committed anything yet,
   1554 			 * so just unload the DMA map, put the packet
   1555 			 * back on the queue, and punt.  Notify the upper
   1556 			 * layer that there are not more slots left.
   1557 			 *
   1558 			 * XXX We could allocate an mbuf and copy, but
   1559 			 * XXX is it worth it?
   1560 			 */
   1561 			ifp->if_flags |= IFF_OACTIVE;
   1562 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1563 			if (m != NULL)
   1564 				m_freem(m);
   1565 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1566 			break;
   1567 		}
   1568 
   1569 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1570 		if (m != NULL) {
   1571 			m_freem(m0);
   1572 			m0 = m;
   1573 		}
   1574 
   1575 		/*
   1576 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1577 		 */
   1578 
   1579 		/* Sync the DMA map. */
   1580 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1581 		    BUS_DMASYNC_PREWRITE);
   1582 
   1583 		/*
   1584 		 * Initialize the transmit descriptors.
   1585 		 */
   1586 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1587 		     seg < dmamap->dm_nsegs;
   1588 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1589 			/*
   1590 			 * If this is the first descriptor we're
   1591 			 * enqueueing, don't set the OWN bit just
   1592 			 * yet.  That could cause a race condition.
   1593 			 * We'll do it below.
   1594 			 */
   1595 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1596 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1597 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1598 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1599 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1600 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1601 			lasttx = nexttx;
   1602 		}
   1603 
   1604 		/* Clear the MORE bit on the last segment. */
   1605 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1606 		    htole32(~CMDSTS_MORE);
   1607 
   1608 		/*
   1609 		 * If we're in the interrupt delay window, delay the
   1610 		 * interrupt.
   1611 		 */
   1612 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1613 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1614 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1615 			    htole32(CMDSTS_INTR);
   1616 			sc->sc_txwin = 0;
   1617 		}
   1618 
   1619 		if (sc->sc_gigabit)
   1620 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1621 
   1622 		/* Sync the descriptors we're using. */
   1623 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1625 
   1626 		/*
   1627 		 * The entire packet is set up.  Give the first descrptor
   1628 		 * to the chip now.
   1629 		 */
   1630 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1631 		    htole32(CMDSTS_OWN);
   1632 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1633 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1634 
   1635 		/*
   1636 		 * Store a pointer to the packet so we can free it later,
   1637 		 * and remember what txdirty will be once the packet is
   1638 		 * done.
   1639 		 */
   1640 		txs->txs_mbuf = m0;
   1641 		txs->txs_firstdesc = sc->sc_txnext;
   1642 		txs->txs_lastdesc = lasttx;
   1643 
   1644 		/* Advance the tx pointer. */
   1645 		sc->sc_txfree -= dmamap->dm_nsegs;
   1646 		sc->sc_txnext = nexttx;
   1647 
   1648 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1650 
   1651 #if NBPFILTER > 0
   1652 		/*
   1653 		 * Pass the packet to any BPF listeners.
   1654 		 */
   1655 		if (ifp->if_bpf)
   1656 			bpf_mtap(ifp->if_bpf, m0);
   1657 #endif /* NBPFILTER > 0 */
   1658 	}
   1659 
   1660 	if (txs == NULL || sc->sc_txfree == 0) {
   1661 		/* No more slots left; notify upper layer. */
   1662 		ifp->if_flags |= IFF_OACTIVE;
   1663 	}
   1664 
   1665 	if (sc->sc_txfree != ofree) {
   1666 		/*
   1667 		 * Start the transmit process.  Note, the manual says
   1668 		 * that if there are no pending transmissions in the
   1669 		 * chip's internal queue (indicated by TXE being clear),
   1670 		 * then the driver software must set the TXDP to the
   1671 		 * first descriptor to be transmitted.  However, if we
   1672 		 * do this, it causes serious performance degredation on
   1673 		 * the DP83820 under load, not setting TXDP doesn't seem
   1674 		 * to adversely affect the SiS 900 or DP83815.
   1675 		 *
   1676 		 * Well, I guess it wouldn't be the first time a manual
   1677 		 * has lied -- and they could be speaking of the NULL-
   1678 		 * terminated descriptor list case, rather than OWN-
   1679 		 * terminated rings.
   1680 		 */
   1681 #if 0
   1682 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1683 		     CR_TXE) == 0) {
   1684 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1685 			    SIP_CDTXADDR(sc, firsttx));
   1686 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1687 		}
   1688 #else
   1689 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1690 #endif
   1691 
   1692 		/* Set a watchdog timer in case the chip flakes out. */
   1693 		/* Gigabit autonegotiation takes 5 seconds. */
   1694 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1695 	}
   1696 }
   1697 
   1698 /*
   1699  * sip_watchdog:	[ifnet interface function]
   1700  *
   1701  *	Watchdog timer handler.
   1702  */
   1703 static void
   1704 sipcom_watchdog(struct ifnet *ifp)
   1705 {
   1706 	struct sip_softc *sc = ifp->if_softc;
   1707 
   1708 	/*
   1709 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1710 	 * If we get a timeout, try and sweep up transmit descriptors.
   1711 	 * If we manage to sweep them all up, ignore the lack of
   1712 	 * interrupt.
   1713 	 */
   1714 	sipcom_txintr(sc);
   1715 
   1716 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1717 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1718 		ifp->if_oerrors++;
   1719 
   1720 		/* Reset the interface. */
   1721 		(void) sipcom_init(ifp);
   1722 	} else if (ifp->if_flags & IFF_DEBUG)
   1723 		printf("%s: recovered from device timeout\n",
   1724 		    device_xname(sc->sc_dev));
   1725 
   1726 	/* Try to get more packets going. */
   1727 	sipcom_start(ifp);
   1728 }
   1729 
   1730 /* If the interface is up and running, only modify the receive
   1731  * filter when setting promiscuous or debug mode.  Otherwise fall
   1732  * through to ether_ioctl, which will reset the chip.
   1733  */
   1734 static int
   1735 sip_ifflags_cb(struct ethercom *ec)
   1736 {
   1737 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1738 			 == (sc)->sc_ethercom.ec_capenable)		\
   1739 			&& ((sc)->sc_prev.is_vlan ==			\
   1740 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1741 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1742 	struct ifnet *ifp = &ec->ec_if;
   1743 	struct sip_softc *sc = ifp->if_softc;
   1744 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1745 
   1746 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1747 	    !COMPARE_IC(sc, ifp))
   1748 		return ENETRESET;
   1749 	/* Set up the receive filter. */
   1750 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1751 	return 0;
   1752 }
   1753 
   1754 /*
   1755  * sip_ioctl:		[ifnet interface function]
   1756  *
   1757  *	Handle control requests from the operator.
   1758  */
   1759 static int
   1760 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1761 {
   1762 	struct sip_softc *sc = ifp->if_softc;
   1763 	struct ifreq *ifr = (struct ifreq *)data;
   1764 	int s, error;
   1765 
   1766 	s = splnet();
   1767 
   1768 	switch (cmd) {
   1769 	case SIOCSIFMEDIA:
   1770 		/* Flow control requires full-duplex mode. */
   1771 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1772 		    (ifr->ifr_media & IFM_FDX) == 0)
   1773 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1774 
   1775 		/* XXX */
   1776 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1777 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1778 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1779 			if (sc->sc_gigabit &&
   1780 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1781 				/* We can do both TXPAUSE and RXPAUSE. */
   1782 				ifr->ifr_media |=
   1783 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1784 			} else if (ifr->ifr_media & IFM_FLOW) {
   1785 				/*
   1786 				 * Both TXPAUSE and RXPAUSE must be set.
   1787 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1788 				 * feature.)
   1789 				 *
   1790 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1791 				 */
   1792 				ifr->ifr_media |=
   1793 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1794 			}
   1795 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1796 		}
   1797 		/*FALLTHROUGH*/
   1798 	default:
   1799 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1800 			break;
   1801 
   1802 		error = 0;
   1803 
   1804 		if (cmd == SIOCSIFCAP)
   1805 			error = (*ifp->if_init)(ifp);
   1806 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1807 			;
   1808 		else if (ifp->if_flags & IFF_RUNNING) {
   1809 			/*
   1810 			 * Multicast list has changed; set the hardware filter
   1811 			 * accordingly.
   1812 			 */
   1813 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1814 		}
   1815 		break;
   1816 	}
   1817 
   1818 	/* Try to get more packets going. */
   1819 	sipcom_start(ifp);
   1820 
   1821 	sc->sc_if_flags = ifp->if_flags;
   1822 	splx(s);
   1823 	return (error);
   1824 }
   1825 
   1826 /*
   1827  * sip_intr:
   1828  *
   1829  *	Interrupt service routine.
   1830  */
   1831 static int
   1832 sipcom_intr(void *arg)
   1833 {
   1834 	struct sip_softc *sc = arg;
   1835 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1836 	u_int32_t isr;
   1837 	int handled = 0;
   1838 
   1839 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1840 		return 0;
   1841 
   1842 	/* Disable interrupts. */
   1843 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1844 
   1845 	for (;;) {
   1846 		/* Reading clears interrupt. */
   1847 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1848 		if ((isr & sc->sc_imr) == 0)
   1849 			break;
   1850 
   1851 #if NRND > 0
   1852 		if (RND_ENABLED(&sc->rnd_source))
   1853 			rnd_add_uint32(&sc->rnd_source, isr);
   1854 #endif
   1855 
   1856 		handled = 1;
   1857 
   1858 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1859 			break;
   1860 
   1861 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1862 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1863 
   1864 			/* Grab any new packets. */
   1865 			(*sc->sc_rxintr)(sc);
   1866 
   1867 			if (isr & ISR_RXORN) {
   1868 				printf("%s: receive FIFO overrun\n",
   1869 				    device_xname(sc->sc_dev));
   1870 
   1871 				/* XXX adjust rx_drain_thresh? */
   1872 			}
   1873 
   1874 			if (isr & ISR_RXIDLE) {
   1875 				printf("%s: receive ring overrun\n",
   1876 				    device_xname(sc->sc_dev));
   1877 
   1878 				/* Get the receive process going again. */
   1879 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1880 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1881 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1882 				    SIP_CR, CR_RXE);
   1883 			}
   1884 		}
   1885 
   1886 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1887 #ifdef SIP_EVENT_COUNTERS
   1888 			if (isr & ISR_TXDESC)
   1889 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1890 			else if (isr & ISR_TXIDLE)
   1891 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1892 #endif
   1893 
   1894 			/* Sweep up transmit descriptors. */
   1895 			sipcom_txintr(sc);
   1896 
   1897 			if (isr & ISR_TXURN) {
   1898 				u_int32_t thresh;
   1899 				int txfifo_size = (sc->sc_gigabit)
   1900 				    ? DP83820_SIP_TXFIFO_SIZE
   1901 				    : OTHER_SIP_TXFIFO_SIZE;
   1902 
   1903 				printf("%s: transmit FIFO underrun",
   1904 				    device_xname(sc->sc_dev));
   1905 				thresh = sc->sc_tx_drain_thresh + 1;
   1906 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1907 				&& (thresh * 32) <= (txfifo_size -
   1908 				     (sc->sc_tx_fill_thresh * 32))) {
   1909 					printf("; increasing Tx drain "
   1910 					    "threshold to %u bytes\n",
   1911 					    thresh * 32);
   1912 					sc->sc_tx_drain_thresh = thresh;
   1913 					(void) sipcom_init(ifp);
   1914 				} else {
   1915 					(void) sipcom_init(ifp);
   1916 					printf("\n");
   1917 				}
   1918 			}
   1919 		}
   1920 
   1921 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1922 			if (isr & ISR_PAUSE_ST) {
   1923 				sc->sc_paused = 1;
   1924 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1925 				ifp->if_flags |= IFF_OACTIVE;
   1926 			}
   1927 			if (isr & ISR_PAUSE_END) {
   1928 				sc->sc_paused = 0;
   1929 				ifp->if_flags &= ~IFF_OACTIVE;
   1930 			}
   1931 		}
   1932 
   1933 		if (isr & ISR_HIBERR) {
   1934 			int want_init = 0;
   1935 
   1936 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1937 
   1938 #define	PRINTERR(bit, str)						\
   1939 			do {						\
   1940 				if ((isr & (bit)) != 0) {		\
   1941 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1942 						printf("%s: %s\n",	\
   1943 						    device_xname(sc->sc_dev), str); \
   1944 					want_init = 1;			\
   1945 				}					\
   1946 			} while (/*CONSTCOND*/0)
   1947 
   1948 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1949 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1950 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1951 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1952 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1953 			/*
   1954 			 * Ignore:
   1955 			 *	Tx reset complete
   1956 			 *	Rx reset complete
   1957 			 */
   1958 			if (want_init)
   1959 				(void) sipcom_init(ifp);
   1960 #undef PRINTERR
   1961 		}
   1962 	}
   1963 
   1964 	/* Re-enable interrupts. */
   1965 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1966 
   1967 	/* Try to get more packets going. */
   1968 	sipcom_start(ifp);
   1969 
   1970 	return (handled);
   1971 }
   1972 
   1973 /*
   1974  * sip_txintr:
   1975  *
   1976  *	Helper; handle transmit interrupts.
   1977  */
   1978 static void
   1979 sipcom_txintr(struct sip_softc *sc)
   1980 {
   1981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1982 	struct sip_txsoft *txs;
   1983 	u_int32_t cmdsts;
   1984 
   1985 	if (sc->sc_paused == 0)
   1986 		ifp->if_flags &= ~IFF_OACTIVE;
   1987 
   1988 	/*
   1989 	 * Go through our Tx list and free mbufs for those
   1990 	 * frames which have been transmitted.
   1991 	 */
   1992 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1993 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1994 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1995 
   1996 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1997 		if (cmdsts & CMDSTS_OWN)
   1998 			break;
   1999 
   2000 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2001 
   2002 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   2003 
   2004 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2005 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2006 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2007 		m_freem(txs->txs_mbuf);
   2008 		txs->txs_mbuf = NULL;
   2009 
   2010 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2011 
   2012 		/*
   2013 		 * Check for errors and collisions.
   2014 		 */
   2015 		if (cmdsts &
   2016 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2017 			ifp->if_oerrors++;
   2018 			if (cmdsts & CMDSTS_Tx_EC)
   2019 				ifp->if_collisions += 16;
   2020 			if (ifp->if_flags & IFF_DEBUG) {
   2021 				if (cmdsts & CMDSTS_Tx_ED)
   2022 					printf("%s: excessive deferral\n",
   2023 					    device_xname(sc->sc_dev));
   2024 				if (cmdsts & CMDSTS_Tx_EC)
   2025 					printf("%s: excessive collisions\n",
   2026 					    device_xname(sc->sc_dev));
   2027 			}
   2028 		} else {
   2029 			/* Packet was transmitted successfully. */
   2030 			ifp->if_opackets++;
   2031 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2032 		}
   2033 	}
   2034 
   2035 	/*
   2036 	 * If there are no more pending transmissions, cancel the watchdog
   2037 	 * timer.
   2038 	 */
   2039 	if (txs == NULL) {
   2040 		ifp->if_timer = 0;
   2041 		sc->sc_txwin = 0;
   2042 	}
   2043 }
   2044 
   2045 /*
   2046  * gsip_rxintr:
   2047  *
   2048  *	Helper; handle receive interrupts on gigabit parts.
   2049  */
   2050 static void
   2051 gsip_rxintr(struct sip_softc *sc)
   2052 {
   2053 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2054 	struct sip_rxsoft *rxs;
   2055 	struct mbuf *m;
   2056 	u_int32_t cmdsts, extsts;
   2057 	int i, len;
   2058 
   2059 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2060 		rxs = &sc->sc_rxsoft[i];
   2061 
   2062 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2063 
   2064 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2065 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2066 		len = CMDSTS_SIZE(sc, cmdsts);
   2067 
   2068 		/*
   2069 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2070 		 * consumer of the receive ring, so if the bit is clear,
   2071 		 * we have processed all of the packets.
   2072 		 */
   2073 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2074 			/*
   2075 			 * We have processed all of the receive buffers.
   2076 			 */
   2077 			break;
   2078 		}
   2079 
   2080 		if (__predict_false(sc->sc_rxdiscard)) {
   2081 			sip_init_rxdesc(sc, i);
   2082 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2083 				/* Reset our state. */
   2084 				sc->sc_rxdiscard = 0;
   2085 			}
   2086 			continue;
   2087 		}
   2088 
   2089 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2090 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2091 
   2092 		m = rxs->rxs_mbuf;
   2093 
   2094 		/*
   2095 		 * Add a new receive buffer to the ring.
   2096 		 */
   2097 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2098 			/*
   2099 			 * Failed, throw away what we've done so
   2100 			 * far, and discard the rest of the packet.
   2101 			 */
   2102 			ifp->if_ierrors++;
   2103 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2104 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2105 			sip_init_rxdesc(sc, i);
   2106 			if (cmdsts & CMDSTS_MORE)
   2107 				sc->sc_rxdiscard = 1;
   2108 			if (sc->sc_rxhead != NULL)
   2109 				m_freem(sc->sc_rxhead);
   2110 			sip_rxchain_reset(sc);
   2111 			continue;
   2112 		}
   2113 
   2114 		sip_rxchain_link(sc, m);
   2115 
   2116 		m->m_len = len;
   2117 
   2118 		/*
   2119 		 * If this is not the end of the packet, keep
   2120 		 * looking.
   2121 		 */
   2122 		if (cmdsts & CMDSTS_MORE) {
   2123 			sc->sc_rxlen += len;
   2124 			continue;
   2125 		}
   2126 
   2127 		/*
   2128 		 * Okay, we have the entire packet now.  The chip includes
   2129 		 * the FCS, so we need to trim it.
   2130 		 */
   2131 		m->m_len -= ETHER_CRC_LEN;
   2132 
   2133 		*sc->sc_rxtailp = NULL;
   2134 		len = m->m_len + sc->sc_rxlen;
   2135 		m = sc->sc_rxhead;
   2136 
   2137 		sip_rxchain_reset(sc);
   2138 
   2139 		/*
   2140 		 * If an error occurred, update stats and drop the packet.
   2141 		 */
   2142 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2143 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2144 			ifp->if_ierrors++;
   2145 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2146 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2147 				/* Receive overrun handled elsewhere. */
   2148 				printf("%s: receive descriptor error\n",
   2149 				    device_xname(sc->sc_dev));
   2150 			}
   2151 #define	PRINTERR(bit, str)						\
   2152 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2153 			    (cmdsts & (bit)) != 0)			\
   2154 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2155 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2156 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2157 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2158 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2159 #undef PRINTERR
   2160 			m_freem(m);
   2161 			continue;
   2162 		}
   2163 
   2164 		/*
   2165 		 * If the packet is small enough to fit in a
   2166 		 * single header mbuf, allocate one and copy
   2167 		 * the data into it.  This greatly reduces
   2168 		 * memory consumption when we receive lots
   2169 		 * of small packets.
   2170 		 */
   2171 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2172 			struct mbuf *nm;
   2173 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2174 			if (nm == NULL) {
   2175 				ifp->if_ierrors++;
   2176 				m_freem(m);
   2177 				continue;
   2178 			}
   2179 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2180 			nm->m_data += 2;
   2181 			nm->m_pkthdr.len = nm->m_len = len;
   2182 			m_copydata(m, 0, len, mtod(nm, void *));
   2183 			m_freem(m);
   2184 			m = nm;
   2185 		}
   2186 #ifndef __NO_STRICT_ALIGNMENT
   2187 		else {
   2188 			/*
   2189 			 * The DP83820's receive buffers must be 4-byte
   2190 			 * aligned.  But this means that the data after
   2191 			 * the Ethernet header is misaligned.  To compensate,
   2192 			 * we have artificially shortened the buffer size
   2193 			 * in the descriptor, and we do an overlapping copy
   2194 			 * of the data two bytes further in (in the first
   2195 			 * buffer of the chain only).
   2196 			 */
   2197 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2198 			    m->m_len);
   2199 			m->m_data += 2;
   2200 		}
   2201 #endif /* ! __NO_STRICT_ALIGNMENT */
   2202 
   2203 		/*
   2204 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2205 		 * for us.  Associate the tag with the packet.
   2206 		 */
   2207 
   2208 		/*
   2209 		 * Again, byte swapping is tricky. Hardware provided
   2210 		 * the tag in the network byte order, but extsts was
   2211 		 * passed through le32toh() in the meantime. On a
   2212 		 * big-endian machine, we need to swap it again. On a
   2213 		 * little-endian machine, we need to convert from the
   2214 		 * network to host byte order. This means that we must
   2215 		 * swap it in any case, so unconditional swap instead
   2216 		 * of htons() is used.
   2217 		 */
   2218 		if ((extsts & EXTSTS_VPKT) != 0) {
   2219 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2220 			    continue);
   2221 		}
   2222 
   2223 		/*
   2224 		 * Set the incoming checksum information for the
   2225 		 * packet.
   2226 		 */
   2227 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2228 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2229 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2230 			if (extsts & EXTSTS_Rx_IPERR)
   2231 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2232 			if (extsts & EXTSTS_TCPPKT) {
   2233 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2234 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2235 				if (extsts & EXTSTS_Rx_TCPERR)
   2236 					m->m_pkthdr.csum_flags |=
   2237 					    M_CSUM_TCP_UDP_BAD;
   2238 			} else if (extsts & EXTSTS_UDPPKT) {
   2239 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2240 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2241 				if (extsts & EXTSTS_Rx_UDPERR)
   2242 					m->m_pkthdr.csum_flags |=
   2243 					    M_CSUM_TCP_UDP_BAD;
   2244 			}
   2245 		}
   2246 
   2247 		ifp->if_ipackets++;
   2248 		m->m_pkthdr.rcvif = ifp;
   2249 		m->m_pkthdr.len = len;
   2250 
   2251 #if NBPFILTER > 0
   2252 		/*
   2253 		 * Pass this up to any BPF listeners, but only
   2254 		 * pass if up the stack if it's for us.
   2255 		 */
   2256 		if (ifp->if_bpf)
   2257 			bpf_mtap(ifp->if_bpf, m);
   2258 #endif /* NBPFILTER > 0 */
   2259 
   2260 		/* Pass it on. */
   2261 		(*ifp->if_input)(ifp, m);
   2262 	}
   2263 
   2264 	/* Update the receive pointer. */
   2265 	sc->sc_rxptr = i;
   2266 }
   2267 
   2268 /*
   2269  * sip_rxintr:
   2270  *
   2271  *	Helper; handle receive interrupts on 10/100 parts.
   2272  */
   2273 static void
   2274 sip_rxintr(struct sip_softc *sc)
   2275 {
   2276 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2277 	struct sip_rxsoft *rxs;
   2278 	struct mbuf *m;
   2279 	u_int32_t cmdsts;
   2280 	int i, len;
   2281 
   2282 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2283 		rxs = &sc->sc_rxsoft[i];
   2284 
   2285 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2286 
   2287 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2288 
   2289 		/*
   2290 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2291 		 * consumer of the receive ring, so if the bit is clear,
   2292 		 * we have processed all of the packets.
   2293 		 */
   2294 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2295 			/*
   2296 			 * We have processed all of the receive buffers.
   2297 			 */
   2298 			break;
   2299 		}
   2300 
   2301 		/*
   2302 		 * If any collisions were seen on the wire, count one.
   2303 		 */
   2304 		if (cmdsts & CMDSTS_Rx_COL)
   2305 			ifp->if_collisions++;
   2306 
   2307 		/*
   2308 		 * If an error occurred, update stats, clear the status
   2309 		 * word, and leave the packet buffer in place.  It will
   2310 		 * simply be reused the next time the ring comes around.
   2311 		 */
   2312 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2313 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2314 			ifp->if_ierrors++;
   2315 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2316 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2317 				/* Receive overrun handled elsewhere. */
   2318 				printf("%s: receive descriptor error\n",
   2319 				    device_xname(sc->sc_dev));
   2320 			}
   2321 #define	PRINTERR(bit, str)						\
   2322 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2323 			    (cmdsts & (bit)) != 0)			\
   2324 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2325 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2326 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2327 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2328 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2329 #undef PRINTERR
   2330 			sip_init_rxdesc(sc, i);
   2331 			continue;
   2332 		}
   2333 
   2334 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2335 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2336 
   2337 		/*
   2338 		 * No errors; receive the packet.  Note, the SiS 900
   2339 		 * includes the CRC with every packet.
   2340 		 */
   2341 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2342 
   2343 #ifdef __NO_STRICT_ALIGNMENT
   2344 		/*
   2345 		 * If the packet is small enough to fit in a
   2346 		 * single header mbuf, allocate one and copy
   2347 		 * the data into it.  This greatly reduces
   2348 		 * memory consumption when we receive lots
   2349 		 * of small packets.
   2350 		 *
   2351 		 * Otherwise, we add a new buffer to the receive
   2352 		 * chain.  If this fails, we drop the packet and
   2353 		 * recycle the old buffer.
   2354 		 */
   2355 		if (sip_copy_small != 0 && len <= MHLEN) {
   2356 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2357 			if (m == NULL)
   2358 				goto dropit;
   2359 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2360 			memcpy(mtod(m, void *),
   2361 			    mtod(rxs->rxs_mbuf, void *), len);
   2362 			sip_init_rxdesc(sc, i);
   2363 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2364 			    rxs->rxs_dmamap->dm_mapsize,
   2365 			    BUS_DMASYNC_PREREAD);
   2366 		} else {
   2367 			m = rxs->rxs_mbuf;
   2368 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2369  dropit:
   2370 				ifp->if_ierrors++;
   2371 				sip_init_rxdesc(sc, i);
   2372 				bus_dmamap_sync(sc->sc_dmat,
   2373 				    rxs->rxs_dmamap, 0,
   2374 				    rxs->rxs_dmamap->dm_mapsize,
   2375 				    BUS_DMASYNC_PREREAD);
   2376 				continue;
   2377 			}
   2378 		}
   2379 #else
   2380 		/*
   2381 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2382 		 * But this means that the data after the Ethernet header
   2383 		 * is misaligned.  We must allocate a new buffer and
   2384 		 * copy the data, shifted forward 2 bytes.
   2385 		 */
   2386 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2387 		if (m == NULL) {
   2388  dropit:
   2389 			ifp->if_ierrors++;
   2390 			sip_init_rxdesc(sc, i);
   2391 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2392 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2393 			continue;
   2394 		}
   2395 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2396 		if (len > (MHLEN - 2)) {
   2397 			MCLGET(m, M_DONTWAIT);
   2398 			if ((m->m_flags & M_EXT) == 0) {
   2399 				m_freem(m);
   2400 				goto dropit;
   2401 			}
   2402 		}
   2403 		m->m_data += 2;
   2404 
   2405 		/*
   2406 		 * Note that we use clusters for incoming frames, so the
   2407 		 * buffer is virtually contiguous.
   2408 		 */
   2409 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2410 
   2411 		/* Allow the receive descriptor to continue using its mbuf. */
   2412 		sip_init_rxdesc(sc, i);
   2413 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2414 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2415 #endif /* __NO_STRICT_ALIGNMENT */
   2416 
   2417 		ifp->if_ipackets++;
   2418 		m->m_pkthdr.rcvif = ifp;
   2419 		m->m_pkthdr.len = m->m_len = len;
   2420 
   2421 #if NBPFILTER > 0
   2422 		/*
   2423 		 * Pass this up to any BPF listeners, but only
   2424 		 * pass if up the stack if it's for us.
   2425 		 */
   2426 		if (ifp->if_bpf)
   2427 			bpf_mtap(ifp->if_bpf, m);
   2428 #endif /* NBPFILTER > 0 */
   2429 
   2430 		/* Pass it on. */
   2431 		(*ifp->if_input)(ifp, m);
   2432 	}
   2433 
   2434 	/* Update the receive pointer. */
   2435 	sc->sc_rxptr = i;
   2436 }
   2437 
   2438 /*
   2439  * sip_tick:
   2440  *
   2441  *	One second timer, used to tick the MII.
   2442  */
   2443 static void
   2444 sipcom_tick(void *arg)
   2445 {
   2446 	struct sip_softc *sc = arg;
   2447 	int s;
   2448 
   2449 	s = splnet();
   2450 #ifdef SIP_EVENT_COUNTERS
   2451 	if (sc->sc_gigabit) {
   2452 		/* Read PAUSE related counts from MIB registers. */
   2453 		sc->sc_ev_rxpause.ev_count +=
   2454 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2455 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2456 		sc->sc_ev_txpause.ev_count +=
   2457 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2458 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2459 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2460 	}
   2461 #endif /* SIP_EVENT_COUNTERS */
   2462 	mii_tick(&sc->sc_mii);
   2463 	splx(s);
   2464 
   2465 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2466 }
   2467 
   2468 /*
   2469  * sip_reset:
   2470  *
   2471  *	Perform a soft reset on the SiS 900.
   2472  */
   2473 static bool
   2474 sipcom_reset(struct sip_softc *sc)
   2475 {
   2476 	bus_space_tag_t st = sc->sc_st;
   2477 	bus_space_handle_t sh = sc->sc_sh;
   2478 	int i;
   2479 
   2480 	bus_space_write_4(st, sh, SIP_IER, 0);
   2481 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2482 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2483 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2484 
   2485 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2486 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2487 			break;
   2488 		delay(2);
   2489 	}
   2490 
   2491 	if (i == SIP_TIMEOUT) {
   2492 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
   2493 		return false;
   2494 	}
   2495 
   2496 	delay(1000);
   2497 
   2498 	if (sc->sc_gigabit) {
   2499 		/*
   2500 		 * Set the general purpose I/O bits.  Do it here in case we
   2501 		 * need to have GPIO set up to talk to the media interface.
   2502 		 */
   2503 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2504 		delay(1000);
   2505 	}
   2506 	return true;
   2507 }
   2508 
   2509 static void
   2510 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2511 {
   2512 	u_int32_t reg;
   2513 	bus_space_tag_t st = sc->sc_st;
   2514 	bus_space_handle_t sh = sc->sc_sh;
   2515 	/*
   2516 	 * Initialize the VLAN/IP receive control register.
   2517 	 * We enable checksum computation on all incoming
   2518 	 * packets, and do not reject packets w/ bad checksums.
   2519 	 */
   2520 	reg = 0;
   2521 	if (capenable &
   2522 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2523 		reg |= VRCR_IPEN;
   2524 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2525 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2526 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2527 
   2528 	/*
   2529 	 * Initialize the VLAN/IP transmit control register.
   2530 	 * We enable outgoing checksum computation on a
   2531 	 * per-packet basis.
   2532 	 */
   2533 	reg = 0;
   2534 	if (capenable &
   2535 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2536 		reg |= VTCR_PPCHK;
   2537 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2538 		reg |= VTCR_VPPTI;
   2539 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2540 
   2541 	/*
   2542 	 * If we're using VLANs, initialize the VLAN data register.
   2543 	 * To understand why we bswap the VLAN Ethertype, see section
   2544 	 * 4.2.36 of the DP83820 manual.
   2545 	 */
   2546 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2547 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2548 }
   2549 
   2550 /*
   2551  * sip_init:		[ ifnet interface function ]
   2552  *
   2553  *	Initialize the interface.  Must be called at splnet().
   2554  */
   2555 static int
   2556 sipcom_init(struct ifnet *ifp)
   2557 {
   2558 	struct sip_softc *sc = ifp->if_softc;
   2559 	bus_space_tag_t st = sc->sc_st;
   2560 	bus_space_handle_t sh = sc->sc_sh;
   2561 	struct sip_txsoft *txs;
   2562 	struct sip_rxsoft *rxs;
   2563 	struct sip_desc *sipd;
   2564 	int i, error = 0;
   2565 
   2566 	if (device_is_active(sc->sc_dev)) {
   2567 		/*
   2568 		 * Cancel any pending I/O.
   2569 		 */
   2570 		sipcom_stop(ifp, 0);
   2571 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2572 	           !device_is_active(sc->sc_dev))
   2573 		return 0;
   2574 
   2575 	/*
   2576 	 * Reset the chip to a known state.
   2577 	 */
   2578 	if (!sipcom_reset(sc))
   2579 		return EBUSY;
   2580 
   2581 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2582 		/*
   2583 		 * DP83815 manual, page 78:
   2584 		 *    4.4 Recommended Registers Configuration
   2585 		 *    For optimum performance of the DP83815, version noted
   2586 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2587 		 *    modifications must be followed in sequence...
   2588 		 *
   2589 		 * It's not clear if this should be 302h or 203h because that
   2590 		 * chip name is listed as SRR 302h in the description of the
   2591 		 * SRR register.  However, my revision 302h DP83815 on the
   2592 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2593 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2594 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2595 		 * this set or not.  [briggs -- 09 March 2001]
   2596 		 *
   2597 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2598 		 * and that this sets reserved bits in that register.
   2599 		 */
   2600 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2601 
   2602 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2603 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2604 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2605 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2606 
   2607 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2608 	}
   2609 
   2610 	/*
   2611 	 * Initialize the transmit descriptor ring.
   2612 	 */
   2613 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2614 		sipd = &sc->sc_txdescs[i];
   2615 		memset(sipd, 0, sizeof(struct sip_desc));
   2616 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2617 	}
   2618 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2619 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2620 	sc->sc_txfree = sc->sc_ntxdesc;
   2621 	sc->sc_txnext = 0;
   2622 	sc->sc_txwin = 0;
   2623 
   2624 	/*
   2625 	 * Initialize the transmit job descriptors.
   2626 	 */
   2627 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2628 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2629 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2630 		txs = &sc->sc_txsoft[i];
   2631 		txs->txs_mbuf = NULL;
   2632 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2633 	}
   2634 
   2635 	/*
   2636 	 * Initialize the receive descriptor and receive job
   2637 	 * descriptor rings.
   2638 	 */
   2639 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2640 		rxs = &sc->sc_rxsoft[i];
   2641 		if (rxs->rxs_mbuf == NULL) {
   2642 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2643 				printf("%s: unable to allocate or map rx "
   2644 				    "buffer %d, error = %d\n",
   2645 				    device_xname(sc->sc_dev), i, error);
   2646 				/*
   2647 				 * XXX Should attempt to run with fewer receive
   2648 				 * XXX buffers instead of just failing.
   2649 				 */
   2650 				sipcom_rxdrain(sc);
   2651 				goto out;
   2652 			}
   2653 		} else
   2654 			sip_init_rxdesc(sc, i);
   2655 	}
   2656 	sc->sc_rxptr = 0;
   2657 	sc->sc_rxdiscard = 0;
   2658 	sip_rxchain_reset(sc);
   2659 
   2660 	/*
   2661 	 * Set the configuration register; it's already initialized
   2662 	 * in sip_attach().
   2663 	 */
   2664 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2665 
   2666 	/*
   2667 	 * Initialize the prototype TXCFG register.
   2668 	 */
   2669 	if (sc->sc_gigabit) {
   2670 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2671 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2672 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2673 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2674 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2675 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2676 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2677 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2678 	} else {
   2679 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2680 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2681 	}
   2682 
   2683 	sc->sc_txcfg |= TXCFG_ATP |
   2684 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2685 	    sc->sc_tx_drain_thresh;
   2686 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2687 
   2688 	/*
   2689 	 * Initialize the receive drain threshold if we have never
   2690 	 * done so.
   2691 	 */
   2692 	if (sc->sc_rx_drain_thresh == 0) {
   2693 		/*
   2694 		 * XXX This value should be tuned.  This is set to the
   2695 		 * maximum of 248 bytes, and we may be able to improve
   2696 		 * performance by decreasing it (although we should never
   2697 		 * set this value lower than 2; 14 bytes are required to
   2698 		 * filter the packet).
   2699 		 */
   2700 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2701 	}
   2702 
   2703 	/*
   2704 	 * Initialize the prototype RXCFG register.
   2705 	 */
   2706 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2707 	/*
   2708 	 * Accept long packets (including FCS) so we can handle
   2709 	 * 802.1q-tagged frames and jumbo frames properly.
   2710 	 */
   2711 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2712 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2713 		sc->sc_rxcfg |= RXCFG_ALP;
   2714 
   2715 	/*
   2716 	 * Checksum offloading is disabled if the user selects an MTU
   2717 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2718 	 * evidence that >8109 does not work on some boards, such as the
   2719 	 * Planex GN-1000TE).
   2720 	 */
   2721 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2722 	    (ifp->if_capenable &
   2723 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2724 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2725 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2726 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2727 		       "disabled.\n", device_xname(sc->sc_dev));
   2728 		ifp->if_capenable &=
   2729 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2730 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2731 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2732 		ifp->if_csum_flags_tx = 0;
   2733 		ifp->if_csum_flags_rx = 0;
   2734 	}
   2735 
   2736 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2737 
   2738 	if (sc->sc_gigabit)
   2739 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2740 
   2741 	/*
   2742 	 * Give the transmit and receive rings to the chip.
   2743 	 */
   2744 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2745 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2746 
   2747 	/*
   2748 	 * Initialize the interrupt mask.
   2749 	 */
   2750 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2751 	             sc->sc_bits.b_isr_sserr |
   2752 		     sc->sc_bits.b_isr_rmabt |
   2753 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2754 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2755 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2756 
   2757 	/* Set up the receive filter. */
   2758 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2759 
   2760 	/*
   2761 	 * Tune sc_rx_flow_thresh.
   2762 	 * XXX "More than 8KB" is too short for jumbo frames.
   2763 	 * XXX TODO: Threshold value should be user-settable.
   2764 	 */
   2765 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2766 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2767 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2768 
   2769 	/*
   2770 	 * Set the current media.  Do this after initializing the prototype
   2771 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2772 	 * control.
   2773 	 */
   2774 	if ((error = ether_mediachange(ifp)) != 0)
   2775 		goto out;
   2776 
   2777 	/*
   2778 	 * Set the interrupt hold-off timer to 100us.
   2779 	 */
   2780 	if (sc->sc_gigabit)
   2781 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2782 
   2783 	/*
   2784 	 * Enable interrupts.
   2785 	 */
   2786 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2787 
   2788 	/*
   2789 	 * Start the transmit and receive processes.
   2790 	 */
   2791 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2792 
   2793 	/*
   2794 	 * Start the one second MII clock.
   2795 	 */
   2796 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2797 
   2798 	/*
   2799 	 * ...all done!
   2800 	 */
   2801 	ifp->if_flags |= IFF_RUNNING;
   2802 	ifp->if_flags &= ~IFF_OACTIVE;
   2803 	sc->sc_if_flags = ifp->if_flags;
   2804 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2805 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2806 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2807 
   2808  out:
   2809 	if (error)
   2810 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2811 	return (error);
   2812 }
   2813 
   2814 /*
   2815  * sip_drain:
   2816  *
   2817  *	Drain the receive queue.
   2818  */
   2819 static void
   2820 sipcom_rxdrain(struct sip_softc *sc)
   2821 {
   2822 	struct sip_rxsoft *rxs;
   2823 	int i;
   2824 
   2825 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2826 		rxs = &sc->sc_rxsoft[i];
   2827 		if (rxs->rxs_mbuf != NULL) {
   2828 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2829 			m_freem(rxs->rxs_mbuf);
   2830 			rxs->rxs_mbuf = NULL;
   2831 		}
   2832 	}
   2833 }
   2834 
   2835 /*
   2836  * sip_stop:		[ ifnet interface function ]
   2837  *
   2838  *	Stop transmission on the interface.
   2839  */
   2840 static void
   2841 sipcom_stop(struct ifnet *ifp, int disable)
   2842 {
   2843 	struct sip_softc *sc = ifp->if_softc;
   2844 	bus_space_tag_t st = sc->sc_st;
   2845 	bus_space_handle_t sh = sc->sc_sh;
   2846 	struct sip_txsoft *txs;
   2847 	u_int32_t cmdsts = 0;		/* DEBUG */
   2848 
   2849 	/*
   2850 	 * Stop the one second clock.
   2851 	 */
   2852 	callout_stop(&sc->sc_tick_ch);
   2853 
   2854 	/* Down the MII. */
   2855 	mii_down(&sc->sc_mii);
   2856 
   2857 	if (device_is_active(sc->sc_dev)) {
   2858 		/*
   2859 		 * Disable interrupts.
   2860 		 */
   2861 		bus_space_write_4(st, sh, SIP_IER, 0);
   2862 
   2863 		/*
   2864 		 * Stop receiver and transmitter.
   2865 		 */
   2866 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2867 	}
   2868 
   2869 	/*
   2870 	 * Release any queued transmit buffers.
   2871 	 */
   2872 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2873 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2874 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2875 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2876 		     CMDSTS_INTR) == 0)
   2877 			printf("%s: sip_stop: last descriptor does not "
   2878 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2879 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2880 #ifdef DIAGNOSTIC
   2881 		if (txs->txs_mbuf == NULL) {
   2882 			printf("%s: dirty txsoft with no mbuf chain\n",
   2883 			    device_xname(sc->sc_dev));
   2884 			panic("sip_stop");
   2885 		}
   2886 #endif
   2887 		cmdsts |=		/* DEBUG */
   2888 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2889 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2890 		m_freem(txs->txs_mbuf);
   2891 		txs->txs_mbuf = NULL;
   2892 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2893 	}
   2894 
   2895 	/*
   2896 	 * Mark the interface down and cancel the watchdog timer.
   2897 	 */
   2898 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2899 	ifp->if_timer = 0;
   2900 
   2901 	if (disable)
   2902 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2903 
   2904 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2905 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2906 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2907 		    "descriptors\n", device_xname(sc->sc_dev));
   2908 }
   2909 
   2910 /*
   2911  * sip_read_eeprom:
   2912  *
   2913  *	Read data from the serial EEPROM.
   2914  */
   2915 static void
   2916 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2917     u_int16_t *data)
   2918 {
   2919 	bus_space_tag_t st = sc->sc_st;
   2920 	bus_space_handle_t sh = sc->sc_sh;
   2921 	u_int16_t reg;
   2922 	int i, x;
   2923 
   2924 	for (i = 0; i < wordcnt; i++) {
   2925 		/* Send CHIP SELECT. */
   2926 		reg = EROMAR_EECS;
   2927 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2928 
   2929 		/* Shift in the READ opcode. */
   2930 		for (x = 3; x > 0; x--) {
   2931 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2932 				reg |= EROMAR_EEDI;
   2933 			else
   2934 				reg &= ~EROMAR_EEDI;
   2935 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2936 			bus_space_write_4(st, sh, SIP_EROMAR,
   2937 			    reg | EROMAR_EESK);
   2938 			delay(4);
   2939 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2940 			delay(4);
   2941 		}
   2942 
   2943 		/* Shift in address. */
   2944 		for (x = 6; x > 0; x--) {
   2945 			if ((word + i) & (1 << (x - 1)))
   2946 				reg |= EROMAR_EEDI;
   2947 			else
   2948 				reg &= ~EROMAR_EEDI;
   2949 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2950 			bus_space_write_4(st, sh, SIP_EROMAR,
   2951 			    reg | EROMAR_EESK);
   2952 			delay(4);
   2953 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2954 			delay(4);
   2955 		}
   2956 
   2957 		/* Shift out data. */
   2958 		reg = EROMAR_EECS;
   2959 		data[i] = 0;
   2960 		for (x = 16; x > 0; x--) {
   2961 			bus_space_write_4(st, sh, SIP_EROMAR,
   2962 			    reg | EROMAR_EESK);
   2963 			delay(4);
   2964 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2965 				data[i] |= (1 << (x - 1));
   2966 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2967 			delay(4);
   2968 		}
   2969 
   2970 		/* Clear CHIP SELECT. */
   2971 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2972 		delay(4);
   2973 	}
   2974 }
   2975 
   2976 /*
   2977  * sipcom_add_rxbuf:
   2978  *
   2979  *	Add a receive buffer to the indicated descriptor.
   2980  */
   2981 static int
   2982 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2983 {
   2984 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2985 	struct mbuf *m;
   2986 	int error;
   2987 
   2988 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2989 	if (m == NULL)
   2990 		return (ENOBUFS);
   2991 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2992 
   2993 	MCLGET(m, M_DONTWAIT);
   2994 	if ((m->m_flags & M_EXT) == 0) {
   2995 		m_freem(m);
   2996 		return (ENOBUFS);
   2997 	}
   2998 
   2999 	/* XXX I don't believe this is necessary. --dyoung */
   3000 	if (sc->sc_gigabit)
   3001 		m->m_len = sc->sc_parm->p_rxbuf_len;
   3002 
   3003 	if (rxs->rxs_mbuf != NULL)
   3004 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3005 
   3006 	rxs->rxs_mbuf = m;
   3007 
   3008 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3009 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3010 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   3011 	if (error) {
   3012 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3013 		    device_xname(sc->sc_dev), idx, error);
   3014 		panic("%s", __func__);		/* XXX */
   3015 	}
   3016 
   3017 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3018 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3019 
   3020 	sip_init_rxdesc(sc, idx);
   3021 
   3022 	return (0);
   3023 }
   3024 
   3025 /*
   3026  * sip_sis900_set_filter:
   3027  *
   3028  *	Set up the receive filter.
   3029  */
   3030 static void
   3031 sipcom_sis900_set_filter(struct sip_softc *sc)
   3032 {
   3033 	bus_space_tag_t st = sc->sc_st;
   3034 	bus_space_handle_t sh = sc->sc_sh;
   3035 	struct ethercom *ec = &sc->sc_ethercom;
   3036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3037 	struct ether_multi *enm;
   3038 	const u_int8_t *cp;
   3039 	struct ether_multistep step;
   3040 	u_int32_t crc, mchash[16];
   3041 
   3042 	/*
   3043 	 * Initialize the prototype RFCR.
   3044 	 */
   3045 	sc->sc_rfcr = RFCR_RFEN;
   3046 	if (ifp->if_flags & IFF_BROADCAST)
   3047 		sc->sc_rfcr |= RFCR_AAB;
   3048 	if (ifp->if_flags & IFF_PROMISC) {
   3049 		sc->sc_rfcr |= RFCR_AAP;
   3050 		goto allmulti;
   3051 	}
   3052 
   3053 	/*
   3054 	 * Set up the multicast address filter by passing all multicast
   3055 	 * addresses through a CRC generator, and then using the high-order
   3056 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3057 	 * the lower 16 bits of each 32 bit multicast hash register are
   3058 	 * valid).  The high order bits select the register, while the
   3059 	 * rest of the bits select the bit within the register.
   3060 	 */
   3061 
   3062 	memset(mchash, 0, sizeof(mchash));
   3063 
   3064 	/*
   3065 	 * SiS900 (at least SiS963) requires us to register the address of
   3066 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3067 	 */
   3068 	crc = 0x0ed423f9;
   3069 
   3070 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3071 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3072 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3073 		/* Just want the 8 most significant bits. */
   3074 		crc >>= 24;
   3075 	} else {
   3076 		/* Just want the 7 most significant bits. */
   3077 		crc >>= 25;
   3078 	}
   3079 
   3080 	/* Set the corresponding bit in the hash table. */
   3081 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3082 
   3083 	ETHER_FIRST_MULTI(step, ec, enm);
   3084 	while (enm != NULL) {
   3085 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3086 			/*
   3087 			 * We must listen to a range of multicast addresses.
   3088 			 * For now, just accept all multicasts, rather than
   3089 			 * trying to set only those filter bits needed to match
   3090 			 * the range.  (At this time, the only use of address
   3091 			 * ranges is for IP multicast routing, for which the
   3092 			 * range is big enough to require all bits set.)
   3093 			 */
   3094 			goto allmulti;
   3095 		}
   3096 
   3097 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3098 
   3099 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3100 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3101 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3102 			/* Just want the 8 most significant bits. */
   3103 			crc >>= 24;
   3104 		} else {
   3105 			/* Just want the 7 most significant bits. */
   3106 			crc >>= 25;
   3107 		}
   3108 
   3109 		/* Set the corresponding bit in the hash table. */
   3110 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3111 
   3112 		ETHER_NEXT_MULTI(step, enm);
   3113 	}
   3114 
   3115 	ifp->if_flags &= ~IFF_ALLMULTI;
   3116 	goto setit;
   3117 
   3118  allmulti:
   3119 	ifp->if_flags |= IFF_ALLMULTI;
   3120 	sc->sc_rfcr |= RFCR_AAM;
   3121 
   3122  setit:
   3123 #define	FILTER_EMIT(addr, data)						\
   3124 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3125 	delay(1);							\
   3126 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3127 	delay(1)
   3128 
   3129 	/*
   3130 	 * Disable receive filter, and program the node address.
   3131 	 */
   3132 	cp = CLLADDR(ifp->if_sadl);
   3133 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3134 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3135 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3136 
   3137 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3138 		/*
   3139 		 * Program the multicast hash table.
   3140 		 */
   3141 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3142 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3143 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3144 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3145 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3146 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3147 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3148 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3149 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3150 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3151 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3152 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3153 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3154 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3155 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3156 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3157 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3158 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3159 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3160 		}
   3161 	}
   3162 #undef FILTER_EMIT
   3163 
   3164 	/*
   3165 	 * Re-enable the receiver filter.
   3166 	 */
   3167 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3168 }
   3169 
   3170 /*
   3171  * sip_dp83815_set_filter:
   3172  *
   3173  *	Set up the receive filter.
   3174  */
   3175 static void
   3176 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3177 {
   3178 	bus_space_tag_t st = sc->sc_st;
   3179 	bus_space_handle_t sh = sc->sc_sh;
   3180 	struct ethercom *ec = &sc->sc_ethercom;
   3181 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3182 	struct ether_multi *enm;
   3183 	const u_int8_t *cp;
   3184 	struct ether_multistep step;
   3185 	u_int32_t crc, hash, slot, bit;
   3186 #define	MCHASH_NWORDS_83820	128
   3187 #define	MCHASH_NWORDS_83815	32
   3188 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3189 	u_int16_t mchash[MCHASH_NWORDS];
   3190 	int i;
   3191 
   3192 	/*
   3193 	 * Initialize the prototype RFCR.
   3194 	 * Enable the receive filter, and accept on
   3195 	 *    Perfect (destination address) Match
   3196 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3197 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3198 	 *    IFF_ALLMULTI and accept all multicast, too).
   3199 	 */
   3200 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3201 	if (ifp->if_flags & IFF_BROADCAST)
   3202 		sc->sc_rfcr |= RFCR_AAB;
   3203 	if (ifp->if_flags & IFF_PROMISC) {
   3204 		sc->sc_rfcr |= RFCR_AAP;
   3205 		goto allmulti;
   3206 	}
   3207 
   3208 	/*
   3209          * Set up the DP83820/DP83815 multicast address filter by
   3210          * passing all multicast addresses through a CRC generator,
   3211          * and then using the high-order 11/9 bits as an index into
   3212          * the 2048/512 bit multicast hash table.  The high-order
   3213          * 7/5 bits select the slot, while the low-order 4 bits
   3214          * select the bit within the slot.  Note that only the low
   3215          * 16-bits of each filter word are used, and there are
   3216          * 128/32 filter words.
   3217 	 */
   3218 
   3219 	memset(mchash, 0, sizeof(mchash));
   3220 
   3221 	ifp->if_flags &= ~IFF_ALLMULTI;
   3222 	ETHER_FIRST_MULTI(step, ec, enm);
   3223 	if (enm == NULL)
   3224 		goto setit;
   3225 	while (enm != NULL) {
   3226 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3227 			/*
   3228 			 * We must listen to a range of multicast addresses.
   3229 			 * For now, just accept all multicasts, rather than
   3230 			 * trying to set only those filter bits needed to match
   3231 			 * the range.  (At this time, the only use of address
   3232 			 * ranges is for IP multicast routing, for which the
   3233 			 * range is big enough to require all bits set.)
   3234 			 */
   3235 			goto allmulti;
   3236 		}
   3237 
   3238 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3239 
   3240 		if (sc->sc_gigabit) {
   3241 			/* Just want the 11 most significant bits. */
   3242 			hash = crc >> 21;
   3243 		} else {
   3244 			/* Just want the 9 most significant bits. */
   3245 			hash = crc >> 23;
   3246 		}
   3247 
   3248 		slot = hash >> 4;
   3249 		bit = hash & 0xf;
   3250 
   3251 		/* Set the corresponding bit in the hash table. */
   3252 		mchash[slot] |= 1 << bit;
   3253 
   3254 		ETHER_NEXT_MULTI(step, enm);
   3255 	}
   3256 	sc->sc_rfcr |= RFCR_MHEN;
   3257 	goto setit;
   3258 
   3259  allmulti:
   3260 	ifp->if_flags |= IFF_ALLMULTI;
   3261 	sc->sc_rfcr |= RFCR_AAM;
   3262 
   3263  setit:
   3264 #define	FILTER_EMIT(addr, data)						\
   3265 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3266 	delay(1);							\
   3267 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3268 	delay(1)
   3269 
   3270 	/*
   3271 	 * Disable receive filter, and program the node address.
   3272 	 */
   3273 	cp = CLLADDR(ifp->if_sadl);
   3274 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3275 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3276 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3277 
   3278 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3279 		int nwords =
   3280 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3281 		/*
   3282 		 * Program the multicast hash table.
   3283 		 */
   3284 		for (i = 0; i < nwords; i++) {
   3285 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3286 		}
   3287 	}
   3288 #undef FILTER_EMIT
   3289 #undef MCHASH_NWORDS
   3290 #undef MCHASH_NWORDS_83815
   3291 #undef MCHASH_NWORDS_83820
   3292 
   3293 	/*
   3294 	 * Re-enable the receiver filter.
   3295 	 */
   3296 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3297 }
   3298 
   3299 /*
   3300  * sip_dp83820_mii_readreg:	[mii interface function]
   3301  *
   3302  *	Read a PHY register on the MII of the DP83820.
   3303  */
   3304 static int
   3305 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
   3306 {
   3307 	struct sip_softc *sc = device_private(self);
   3308 
   3309 	if (sc->sc_cfg & CFG_TBI_EN) {
   3310 		bus_addr_t tbireg;
   3311 		int rv;
   3312 
   3313 		if (phy != 0)
   3314 			return (0);
   3315 
   3316 		switch (reg) {
   3317 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3318 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3319 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3320 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3321 		case MII_ANER:		tbireg = SIP_TANER; break;
   3322 		case MII_EXTSR:
   3323 			/*
   3324 			 * Don't even bother reading the TESR register.
   3325 			 * The manual documents that the device has
   3326 			 * 1000baseX full/half capability, but the
   3327 			 * register itself seems read back 0 on some
   3328 			 * boards.  Just hard-code the result.
   3329 			 */
   3330 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3331 
   3332 		default:
   3333 			return (0);
   3334 		}
   3335 
   3336 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3337 		if (tbireg == SIP_TBISR) {
   3338 			/* LINK and ACOMP are switched! */
   3339 			int val = rv;
   3340 
   3341 			rv = 0;
   3342 			if (val & TBISR_MR_LINK_STATUS)
   3343 				rv |= BMSR_LINK;
   3344 			if (val & TBISR_MR_AN_COMPLETE)
   3345 				rv |= BMSR_ACOMP;
   3346 
   3347 			/*
   3348 			 * The manual claims this register reads back 0
   3349 			 * on hard and soft reset.  But we want to let
   3350 			 * the gentbi driver know that we support auto-
   3351 			 * negotiation, so hard-code this bit in the
   3352 			 * result.
   3353 			 */
   3354 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3355 		}
   3356 
   3357 		return (rv);
   3358 	}
   3359 
   3360 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3361 }
   3362 
   3363 /*
   3364  * sip_dp83820_mii_writereg:	[mii interface function]
   3365  *
   3366  *	Write a PHY register on the MII of the DP83820.
   3367  */
   3368 static void
   3369 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
   3370 {
   3371 	struct sip_softc *sc = device_private(self);
   3372 
   3373 	if (sc->sc_cfg & CFG_TBI_EN) {
   3374 		bus_addr_t tbireg;
   3375 
   3376 		if (phy != 0)
   3377 			return;
   3378 
   3379 		switch (reg) {
   3380 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3381 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3382 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3383 		default:
   3384 			return;
   3385 		}
   3386 
   3387 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3388 		return;
   3389 	}
   3390 
   3391 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3392 }
   3393 
   3394 /*
   3395  * sip_dp83820_mii_statchg:	[mii interface function]
   3396  *
   3397  *	Callback from MII layer when media changes.
   3398  */
   3399 static void
   3400 sipcom_dp83820_mii_statchg(device_t self)
   3401 {
   3402 	struct sip_softc *sc = device_private(self);
   3403 	struct mii_data *mii = &sc->sc_mii;
   3404 	u_int32_t cfg, pcr;
   3405 
   3406 	/*
   3407 	 * Get flow control negotiation result.
   3408 	 */
   3409 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3410 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3411 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3412 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3413 	}
   3414 
   3415 	/*
   3416 	 * Update TXCFG for full-duplex operation.
   3417 	 */
   3418 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3419 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3420 	else
   3421 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3422 
   3423 	/*
   3424 	 * Update RXCFG for full-duplex or loopback.
   3425 	 */
   3426 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3427 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3428 		sc->sc_rxcfg |= RXCFG_ATX;
   3429 	else
   3430 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3431 
   3432 	/*
   3433 	 * Update CFG for MII/GMII.
   3434 	 */
   3435 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3436 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3437 	else
   3438 		cfg = sc->sc_cfg;
   3439 
   3440 	/*
   3441 	 * 802.3x flow control.
   3442 	 */
   3443 	pcr = 0;
   3444 	if (sc->sc_flowflags & IFM_FLOW) {
   3445 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3446 			pcr |= sc->sc_rx_flow_thresh;
   3447 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3448 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3449 	}
   3450 
   3451 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3452 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3453 	    sc->sc_txcfg);
   3454 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3455 	    sc->sc_rxcfg);
   3456 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3457 }
   3458 
   3459 /*
   3460  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3461  *
   3462  *	Read the MII serial port for the MII bit-bang module.
   3463  */
   3464 static u_int32_t
   3465 sipcom_mii_bitbang_read(device_t self)
   3466 {
   3467 	struct sip_softc *sc = device_private(self);
   3468 
   3469 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3470 }
   3471 
   3472 /*
   3473  * sip_mii_bitbang_write: [mii big-bang interface function]
   3474  *
   3475  *	Write the MII serial port for the MII bit-bang module.
   3476  */
   3477 static void
   3478 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
   3479 {
   3480 	struct sip_softc *sc = device_private(self);
   3481 
   3482 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3483 }
   3484 
   3485 /*
   3486  * sip_sis900_mii_readreg:	[mii interface function]
   3487  *
   3488  *	Read a PHY register on the MII.
   3489  */
   3490 static int
   3491 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
   3492 {
   3493 	struct sip_softc *sc = device_private(self);
   3494 	u_int32_t enphy;
   3495 
   3496 	/*
   3497 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3498 	 * operations.
   3499 	 */
   3500 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3501 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3502 		    phy, reg);
   3503 
   3504 #ifndef SIS900_MII_RESTRICT
   3505 	/*
   3506 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3507 	 * MII address 0.
   3508 	 */
   3509 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3510 		return (0);
   3511 #endif
   3512 
   3513 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3514 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3515 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3516 	do {
   3517 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3518 	} while (enphy & ENPHY_ACCESS);
   3519 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3520 }
   3521 
   3522 /*
   3523  * sip_sis900_mii_writereg:	[mii interface function]
   3524  *
   3525  *	Write a PHY register on the MII.
   3526  */
   3527 static void
   3528 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
   3529 {
   3530 	struct sip_softc *sc = device_private(self);
   3531 	u_int32_t enphy;
   3532 
   3533 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3534 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3535 		    phy, reg, val);
   3536 		return;
   3537 	}
   3538 
   3539 #ifndef SIS900_MII_RESTRICT
   3540 	/*
   3541 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3542 	 * MII address 0.
   3543 	 */
   3544 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3545 		return;
   3546 #endif
   3547 
   3548 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3549 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3550 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3551 	do {
   3552 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3553 	} while (enphy & ENPHY_ACCESS);
   3554 }
   3555 
   3556 /*
   3557  * sip_sis900_mii_statchg:	[mii interface function]
   3558  *
   3559  *	Callback from MII layer when media changes.
   3560  */
   3561 static void
   3562 sipcom_sis900_mii_statchg(device_t self)
   3563 {
   3564 	struct sip_softc *sc = device_private(self);
   3565 	struct mii_data *mii = &sc->sc_mii;
   3566 	u_int32_t flowctl;
   3567 
   3568 	/*
   3569 	 * Get flow control negotiation result.
   3570 	 */
   3571 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3572 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3573 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3574 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3575 	}
   3576 
   3577 	/*
   3578 	 * Update TXCFG for full-duplex operation.
   3579 	 */
   3580 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3581 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3582 	else
   3583 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3584 
   3585 	/*
   3586 	 * Update RXCFG for full-duplex or loopback.
   3587 	 */
   3588 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3589 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3590 		sc->sc_rxcfg |= RXCFG_ATX;
   3591 	else
   3592 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3593 
   3594 	/*
   3595 	 * Update IMR for use of 802.3x flow control.
   3596 	 */
   3597 	if (sc->sc_flowflags & IFM_FLOW) {
   3598 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3599 		flowctl = FLOWCTL_FLOWEN;
   3600 	} else {
   3601 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3602 		flowctl = 0;
   3603 	}
   3604 
   3605 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3606 	    sc->sc_txcfg);
   3607 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3608 	    sc->sc_rxcfg);
   3609 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3610 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3611 }
   3612 
   3613 /*
   3614  * sip_dp83815_mii_readreg:	[mii interface function]
   3615  *
   3616  *	Read a PHY register on the MII.
   3617  */
   3618 static int
   3619 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
   3620 {
   3621 	struct sip_softc *sc = device_private(self);
   3622 	u_int32_t val;
   3623 
   3624 	/*
   3625 	 * The DP83815 only has an internal PHY.  Only allow
   3626 	 * MII address 0.
   3627 	 */
   3628 	if (phy != 0)
   3629 		return (0);
   3630 
   3631 	/*
   3632 	 * Apparently, after a reset, the DP83815 can take a while
   3633 	 * to respond.  During this recovery period, the BMSR returns
   3634 	 * a value of 0.  Catch this -- it's not supposed to happen
   3635 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3636 	 * PHY to come back to life.
   3637 	 *
   3638 	 * This works out because the BMSR is the first register
   3639 	 * read during the PHY probe process.
   3640 	 */
   3641 	do {
   3642 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3643 	} while (reg == MII_BMSR && val == 0);
   3644 
   3645 	return (val & 0xffff);
   3646 }
   3647 
   3648 /*
   3649  * sip_dp83815_mii_writereg:	[mii interface function]
   3650  *
   3651  *	Write a PHY register to the MII.
   3652  */
   3653 static void
   3654 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
   3655 {
   3656 	struct sip_softc *sc = device_private(self);
   3657 
   3658 	/*
   3659 	 * The DP83815 only has an internal PHY.  Only allow
   3660 	 * MII address 0.
   3661 	 */
   3662 	if (phy != 0)
   3663 		return;
   3664 
   3665 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3666 }
   3667 
   3668 /*
   3669  * sip_dp83815_mii_statchg:	[mii interface function]
   3670  *
   3671  *	Callback from MII layer when media changes.
   3672  */
   3673 static void
   3674 sipcom_dp83815_mii_statchg(device_t self)
   3675 {
   3676 	struct sip_softc *sc = device_private(self);
   3677 
   3678 	/*
   3679 	 * Update TXCFG for full-duplex operation.
   3680 	 */
   3681 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3682 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3683 	else
   3684 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3685 
   3686 	/*
   3687 	 * Update RXCFG for full-duplex or loopback.
   3688 	 */
   3689 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3690 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3691 		sc->sc_rxcfg |= RXCFG_ATX;
   3692 	else
   3693 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3694 
   3695 	/*
   3696 	 * XXX 802.3x flow control.
   3697 	 */
   3698 
   3699 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3700 	    sc->sc_txcfg);
   3701 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3702 	    sc->sc_rxcfg);
   3703 
   3704 	/*
   3705 	 * Some DP83815s experience problems when used with short
   3706 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3707 	 * sequence adjusts the DSP's signal attenuation to fix the
   3708 	 * problem.
   3709 	 */
   3710 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3711 		uint32_t reg;
   3712 
   3713 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3714 
   3715 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3716 		reg &= 0x0fff;
   3717 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3718 		delay(100);
   3719 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3720 		reg &= 0x00ff;
   3721 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3722 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3723 			    0x00e8);
   3724 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3725 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3726 			    reg | 0x20);
   3727 		}
   3728 
   3729 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3730 	}
   3731 }
   3732 
   3733 static void
   3734 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3735     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3736 {
   3737 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3738 	u_int8_t cksum, *e, match;
   3739 	int i;
   3740 
   3741 	/*
   3742 	 * EEPROM data format for the DP83820 can be found in
   3743 	 * the DP83820 manual, section 4.2.4.
   3744 	 */
   3745 
   3746 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3747 
   3748 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3749 	match = ~(match - 1);
   3750 
   3751 	cksum = 0x55;
   3752 	e = (u_int8_t *) eeprom_data;
   3753 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3754 		cksum += *e++;
   3755 
   3756 	if (cksum != match)
   3757 		printf("%s: Checksum (%x) mismatch (%x)",
   3758 		    device_xname(sc->sc_dev), cksum, match);
   3759 
   3760 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3761 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3762 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3763 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3764 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3765 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3766 }
   3767 
   3768 static void
   3769 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3770 {
   3771 	int i;
   3772 
   3773 	/*
   3774 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3775 	 * a reason, but I don't know it.
   3776 	 */
   3777 	for (i = 0; i < 10; i++)
   3778 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3779 }
   3780 
   3781 static void
   3782 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3783     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3784 {
   3785 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3786 
   3787 	switch (sc->sc_rev) {
   3788 	case SIS_REV_630S:
   3789 	case SIS_REV_630E:
   3790 	case SIS_REV_630EA1:
   3791 	case SIS_REV_630ET:
   3792 	case SIS_REV_635:
   3793 		/*
   3794 		 * The MAC address for the on-board Ethernet of
   3795 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3796 		 * the chip into re-loading it from NVRAM, and
   3797 		 * read the MAC address out of the filter registers.
   3798 		 */
   3799 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3800 
   3801 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3802 		    RFCR_RFADDR_NODE0);
   3803 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3804 		    0xffff;
   3805 
   3806 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3807 		    RFCR_RFADDR_NODE2);
   3808 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3809 		    0xffff;
   3810 
   3811 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3812 		    RFCR_RFADDR_NODE4);
   3813 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3814 		    0xffff;
   3815 		break;
   3816 
   3817 	case SIS_REV_960:
   3818 		{
   3819 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3820 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3821 
   3822 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3823 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3824 
   3825 			int waittime, i;
   3826 
   3827 			/* Allow to read EEPROM from LAN. It is shared
   3828 			 * between a 1394 controller and the NIC and each
   3829 			 * time we access it, we need to set SIS_EECMD_REQ.
   3830 			 */
   3831 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3832 
   3833 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3834 				/* Force EEPROM to idle state. */
   3835 
   3836 				/*
   3837 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3838 				 */
   3839 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3840 				sipcom_sis900_eeprom_delay(sc);
   3841 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3842 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3843 					sipcom_sis900_eeprom_delay(sc);
   3844 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3845 					sipcom_sis900_eeprom_delay(sc);
   3846 				}
   3847 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3848 				sipcom_sis900_eeprom_delay(sc);
   3849 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3850 
   3851 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3852 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3853 					    sizeof(myea) / sizeof(myea[0]), myea);
   3854 					break;
   3855 				}
   3856 				DELAY(1);
   3857 			}
   3858 
   3859 			/*
   3860 			 * Set SIS_EECTL_CLK to high, so a other master
   3861 			 * can operate on the i2c bus.
   3862 			 */
   3863 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3864 
   3865 			/* Refuse EEPROM access by LAN */
   3866 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3867 		} break;
   3868 
   3869 	default:
   3870 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3871 		    sizeof(myea) / sizeof(myea[0]), myea);
   3872 	}
   3873 
   3874 	enaddr[0] = myea[0] & 0xff;
   3875 	enaddr[1] = myea[0] >> 8;
   3876 	enaddr[2] = myea[1] & 0xff;
   3877 	enaddr[3] = myea[1] >> 8;
   3878 	enaddr[4] = myea[2] & 0xff;
   3879 	enaddr[5] = myea[2] >> 8;
   3880 }
   3881 
   3882 /* Table and macro to bit-reverse an octet. */
   3883 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3884 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3885 
   3886 static void
   3887 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3888     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3889 {
   3890 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3891 	u_int8_t cksum, *e, match;
   3892 	int i;
   3893 
   3894 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3895 	    sizeof(eeprom_data[0]), eeprom_data);
   3896 
   3897 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3898 	match = ~(match - 1);
   3899 
   3900 	cksum = 0x55;
   3901 	e = (u_int8_t *) eeprom_data;
   3902 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3903 		cksum += *e++;
   3904 	}
   3905 	if (cksum != match) {
   3906 		printf("%s: Checksum (%x) mismatch (%x)",
   3907 		    device_xname(sc->sc_dev), cksum, match);
   3908 	}
   3909 
   3910 	/*
   3911 	 * Unrolled because it makes slightly more sense this way.
   3912 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3913 	 * through bit 15 of word 8.
   3914 	 */
   3915 	ea = &eeprom_data[6];
   3916 	enaddr[0] = ((*ea & 0x1) << 7);
   3917 	ea++;
   3918 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3919 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3920 	enaddr[2] = ((*ea & 0x1) << 7);
   3921 	ea++;
   3922 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3923 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3924 	enaddr[4] = ((*ea & 0x1) << 7);
   3925 	ea++;
   3926 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3927 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3928 
   3929 	/*
   3930 	 * In case that's not weird enough, we also need to reverse
   3931 	 * the bits in each byte.  This all actually makes more sense
   3932 	 * if you think about the EEPROM storage as an array of bits
   3933 	 * being shifted into bytes, but that's not how we're looking
   3934 	 * at it here...
   3935 	 */
   3936 	for (i = 0; i < 6 ;i++)
   3937 		enaddr[i] = bbr(enaddr[i]);
   3938 }
   3939 
   3940 /*
   3941  * sip_mediastatus:	[ifmedia interface function]
   3942  *
   3943  *	Get the current interface media status.
   3944  */
   3945 static void
   3946 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3947 {
   3948 	struct sip_softc *sc = ifp->if_softc;
   3949 
   3950 	if (!device_is_active(sc->sc_dev)) {
   3951 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3952 		ifmr->ifm_status = 0;
   3953 		return;
   3954 	}
   3955 	ether_mediastatus(ifp, ifmr);
   3956 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3957 			   sc->sc_flowflags;
   3958 }
   3959