if_sip.c revision 1.145.2.1 1 /* $NetBSD: if_sip.c,v 1.145.2.1 2010/04/30 14:43:37 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.145.2.1 2010/04/30 14:43:37 uebayasi Exp $");
77
78 #include "rnd.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #include <net/bpf.h>
104
105 #include <sys/bus.h>
106 #include <sys/intr.h>
107 #include <machine/endian.h>
108
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111 #include <dev/mii/mii_bitbang.h>
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/pci/if_sipreg.h>
118
119 /*
120 * Transmit descriptor list size. This is arbitrary, but allocate
121 * enough descriptors for 128 pending transmissions, and 8 segments
122 * per packet (64 for DP83820 for jumbo frames).
123 *
124 * This MUST work out to a power of 2.
125 */
126 #define GSIP_NTXSEGS_ALLOC 16
127 #define SIP_NTXSEGS_ALLOC 8
128
129 #define SIP_TXQUEUELEN 256
130 #define MAX_SIP_NTXDESC \
131 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
132
133 /*
134 * Receive descriptor list size. We have one Rx buffer per incoming
135 * packet, so this logic is a little simpler.
136 *
137 * Actually, on the DP83820, we allow the packet to consume more than
138 * one buffer, in order to support jumbo Ethernet frames. In that
139 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
140 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
141 * so we'd better be quick about handling receive interrupts.
142 */
143 #define GSIP_NRXDESC 256
144 #define SIP_NRXDESC 128
145
146 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
147
148 /*
149 * Control structures are DMA'd to the SiS900 chip. We allocate them in
150 * a single clump that maps to a single DMA segment to make several things
151 * easier.
152 */
153 struct sip_control_data {
154 /*
155 * The transmit descriptors.
156 */
157 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
158
159 /*
160 * The receive descriptors.
161 */
162 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
163 };
164
165 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
166 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
167 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
168
169 /*
170 * Software state for transmit jobs.
171 */
172 struct sip_txsoft {
173 struct mbuf *txs_mbuf; /* head of our mbuf chain */
174 bus_dmamap_t txs_dmamap; /* our DMA map */
175 int txs_firstdesc; /* first descriptor in packet */
176 int txs_lastdesc; /* last descriptor in packet */
177 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
178 };
179
180 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
181
182 /*
183 * Software state for receive jobs.
184 */
185 struct sip_rxsoft {
186 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
187 bus_dmamap_t rxs_dmamap; /* our DMA map */
188 };
189
190 enum sip_attach_stage {
191 SIP_ATTACH_FIN = 0
192 , SIP_ATTACH_CREATE_RXMAP
193 , SIP_ATTACH_CREATE_TXMAP
194 , SIP_ATTACH_LOAD_MAP
195 , SIP_ATTACH_CREATE_MAP
196 , SIP_ATTACH_MAP_MEM
197 , SIP_ATTACH_ALLOC_MEM
198 , SIP_ATTACH_INTR
199 , SIP_ATTACH_MAP
200 };
201
202 /*
203 * Software state per device.
204 */
205 struct sip_softc {
206 device_t sc_dev; /* generic device information */
207 device_suspensor_t sc_suspensor;
208 pmf_qual_t sc_qual;
209
210 bus_space_tag_t sc_st; /* bus space tag */
211 bus_space_handle_t sc_sh; /* bus space handle */
212 bus_size_t sc_sz; /* bus space size */
213 bus_dma_tag_t sc_dmat; /* bus DMA tag */
214 pci_chipset_tag_t sc_pc;
215 bus_dma_segment_t sc_seg;
216 struct ethercom sc_ethercom; /* ethernet common data */
217
218 const struct sip_product *sc_model; /* which model are we? */
219 int sc_gigabit; /* 1: 83820, 0: other */
220 int sc_rev; /* chip revision */
221
222 void *sc_ih; /* interrupt cookie */
223
224 struct mii_data sc_mii; /* MII/media information */
225
226 callout_t sc_tick_ch; /* tick callout */
227
228 bus_dmamap_t sc_cddmamap; /* control data DMA map */
229 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
230
231 /*
232 * Software state for transmit and receive descriptors.
233 */
234 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236
237 /*
238 * Control data structures.
239 */
240 struct sip_control_data *sc_control_data;
241 #define sc_txdescs sc_control_data->scd_txdescs
242 #define sc_rxdescs sc_control_data->scd_rxdescs
243
244 #ifdef SIP_EVENT_COUNTERS
245 /*
246 * Event counters.
247 */
248 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
249 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
250 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
251 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
252 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
253 struct evcnt sc_ev_rxintr; /* Rx interrupts */
254 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
255 struct evcnt sc_ev_rxpause; /* PAUSE received */
256 /* DP83820 only */
257 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
258 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
259 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
260 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
261 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
262 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
263 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265
266 u_int32_t sc_txcfg; /* prototype TXCFG register */
267 u_int32_t sc_rxcfg; /* prototype RXCFG register */
268 u_int32_t sc_imr; /* prototype IMR register */
269 u_int32_t sc_rfcr; /* prototype RFCR register */
270
271 u_int32_t sc_cfg; /* prototype CFG register */
272
273 u_int32_t sc_gpior; /* prototype GPIOR register */
274
275 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
276 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
277
278 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
279
280 int sc_flowflags; /* 802.3x flow control flags */
281 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
282 int sc_paused; /* paused indication */
283
284 int sc_txfree; /* number of free Tx descriptors */
285 int sc_txnext; /* next ready Tx descriptor */
286 int sc_txwin; /* Tx descriptors since last intr */
287
288 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
289 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
290
291 /* values of interface state at last init */
292 struct {
293 /* if_capenable */
294 uint64_t if_capenable;
295 /* ec_capenable */
296 int ec_capenable;
297 /* VLAN_ATTACHED */
298 int is_vlan;
299 } sc_prev;
300
301 short sc_if_flags;
302
303 int sc_rxptr; /* next ready Rx descriptor/descsoft */
304 int sc_rxdiscard;
305 int sc_rxlen;
306 struct mbuf *sc_rxhead;
307 struct mbuf *sc_rxtail;
308 struct mbuf **sc_rxtailp;
309
310 int sc_ntxdesc;
311 int sc_ntxdesc_mask;
312
313 int sc_nrxdesc_mask;
314
315 const struct sip_parm {
316 const struct sip_regs {
317 int r_rxcfg;
318 int r_txcfg;
319 } p_regs;
320
321 const struct sip_bits {
322 uint32_t b_txcfg_mxdma_8;
323 uint32_t b_txcfg_mxdma_16;
324 uint32_t b_txcfg_mxdma_32;
325 uint32_t b_txcfg_mxdma_64;
326 uint32_t b_txcfg_mxdma_128;
327 uint32_t b_txcfg_mxdma_256;
328 uint32_t b_txcfg_mxdma_512;
329 uint32_t b_txcfg_flth_mask;
330 uint32_t b_txcfg_drth_mask;
331
332 uint32_t b_rxcfg_mxdma_8;
333 uint32_t b_rxcfg_mxdma_16;
334 uint32_t b_rxcfg_mxdma_32;
335 uint32_t b_rxcfg_mxdma_64;
336 uint32_t b_rxcfg_mxdma_128;
337 uint32_t b_rxcfg_mxdma_256;
338 uint32_t b_rxcfg_mxdma_512;
339
340 uint32_t b_isr_txrcmp;
341 uint32_t b_isr_rxrcmp;
342 uint32_t b_isr_dperr;
343 uint32_t b_isr_sserr;
344 uint32_t b_isr_rmabt;
345 uint32_t b_isr_rtabt;
346
347 uint32_t b_cmdsts_size_mask;
348 } p_bits;
349 int p_filtmem;
350 int p_rxbuf_len;
351 bus_size_t p_tx_dmamap_size;
352 int p_ntxsegs;
353 int p_ntxsegs_alloc;
354 int p_nrxdesc;
355 } *sc_parm;
356
357 void (*sc_rxintr)(struct sip_softc *);
358
359 #if NRND > 0
360 rndsource_element_t rnd_source; /* random source */
361 #endif
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 int x, n;
487
488 x = x0;
489 n = n0;
490
491 /* If it will wrap around, sync to the end of the ring. */
492 if (x + n > sc->sc_ntxdesc) {
493 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 (sc->sc_ntxdesc - x), ops);
496 n -= (sc->sc_ntxdesc - x);
497 x = 0;
498 }
499
500 /* Now sync whatever is left. */
501 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511
512 #if 0
513 #ifdef DP83820
514 u_int32_t sipd_bufptr; /* pointer to DMA segment */
515 u_int32_t sipd_cmdsts; /* command/status word */
516 #else
517 u_int32_t sipd_cmdsts; /* command/status word */
518 u_int32_t sipd_bufptr; /* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 struct sip_desc *sipd = &sc->sc_rxdescs[x];
539
540 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 sipd->sipd_extsts = 0;
545 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547
548 #define SIP_CHIP_VERS(sc, v, p, r) \
549 ((sc)->sc_model->sip_vendor == (v) && \
550 (sc)->sc_model->sip_product == (p) && \
551 (sc)->sc_rev == (r))
552
553 #define SIP_CHIP_MODEL(sc, v, p) \
554 ((sc)->sc_model->sip_vendor == (v) && \
555 (sc)->sc_model->sip_product == (p))
556
557 #define SIP_SIS900_REV(sc, rev) \
558 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559
560 #define SIP_TIMEOUT 1000
561
562 static int sip_ifflags_cb(struct ethercom *);
563 static void sipcom_start(struct ifnet *);
564 static void sipcom_watchdog(struct ifnet *);
565 static int sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int sipcom_init(struct ifnet *);
567 static void sipcom_stop(struct ifnet *, int);
568
569 static bool sipcom_reset(struct sip_softc *);
570 static void sipcom_rxdrain(struct sip_softc *);
571 static int sipcom_add_rxbuf(struct sip_softc *, int);
572 static void sipcom_read_eeprom(struct sip_softc *, int, int,
573 u_int16_t *);
574 static void sipcom_tick(void *);
575
576 static void sipcom_sis900_set_filter(struct sip_softc *);
577 static void sipcom_dp83815_set_filter(struct sip_softc *);
578
579 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
580 const struct pci_attach_args *, u_int8_t *);
581 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void sipcom_sis900_read_macaddr(struct sip_softc *,
583 const struct pci_attach_args *, u_int8_t *);
584 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
585 const struct pci_attach_args *, u_int8_t *);
586
587 static int sipcom_intr(void *);
588 static void sipcom_txintr(struct sip_softc *);
589 static void sip_rxintr(struct sip_softc *);
590 static void gsip_rxintr(struct sip_softc *);
591
592 static int sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void sipcom_dp83820_mii_statchg(device_t);
595
596 static int sipcom_sis900_mii_readreg(device_t, int, int);
597 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void sipcom_sis900_mii_statchg(device_t);
599
600 static int sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void sipcom_dp83815_mii_statchg(device_t);
603
604 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605
606 static int sipcom_match(device_t, cfdata_t, void *);
607 static void sipcom_attach(device_t, device_t, void *);
608 static void sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int sipcom_detach(device_t, int);
610 static bool sipcom_resume(device_t, const pmf_qual_t *);
611 static bool sipcom_suspend(device_t, const pmf_qual_t *);
612
613 int gsip_copy_small = 0;
614 int sip_copy_small = 0;
615
616 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
617 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
618 DVF_DETACH_SHUTDOWN);
619 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
620 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621 DVF_DETACH_SHUTDOWN);
622
623 /*
624 * Descriptions of the variants of the SiS900.
625 */
626 struct sip_variant {
627 int (*sipv_mii_readreg)(device_t, int, int);
628 void (*sipv_mii_writereg)(device_t, int, int, int);
629 void (*sipv_mii_statchg)(device_t);
630 void (*sipv_set_filter)(struct sip_softc *);
631 void (*sipv_read_macaddr)(struct sip_softc *,
632 const struct pci_attach_args *, u_int8_t *);
633 };
634
635 static u_int32_t sipcom_mii_bitbang_read(device_t);
636 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
637
638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
639 sipcom_mii_bitbang_read,
640 sipcom_mii_bitbang_write,
641 {
642 EROMAR_MDIO, /* MII_BIT_MDO */
643 EROMAR_MDIO, /* MII_BIT_MDI */
644 EROMAR_MDC, /* MII_BIT_MDC */
645 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
646 0, /* MII_BIT_DIR_PHY_HOST */
647 }
648 };
649
650 static const struct sip_variant sipcom_variant_dp83820 = {
651 sipcom_dp83820_mii_readreg,
652 sipcom_dp83820_mii_writereg,
653 sipcom_dp83820_mii_statchg,
654 sipcom_dp83815_set_filter,
655 sipcom_dp83820_read_macaddr,
656 };
657
658 static const struct sip_variant sipcom_variant_sis900 = {
659 sipcom_sis900_mii_readreg,
660 sipcom_sis900_mii_writereg,
661 sipcom_sis900_mii_statchg,
662 sipcom_sis900_set_filter,
663 sipcom_sis900_read_macaddr,
664 };
665
666 static const struct sip_variant sipcom_variant_dp83815 = {
667 sipcom_dp83815_mii_readreg,
668 sipcom_dp83815_mii_writereg,
669 sipcom_dp83815_mii_statchg,
670 sipcom_dp83815_set_filter,
671 sipcom_dp83815_read_macaddr,
672 };
673
674
675 /*
676 * Devices supported by this driver.
677 */
678 static const struct sip_product {
679 pci_vendor_id_t sip_vendor;
680 pci_product_id_t sip_product;
681 const char *sip_name;
682 const struct sip_variant *sip_variant;
683 int sip_gigabit;
684 } sipcom_products[] = {
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
686 "NatSemi DP83820 Gigabit Ethernet",
687 &sipcom_variant_dp83820, 1 },
688 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
689 "SiS 900 10/100 Ethernet",
690 &sipcom_variant_sis900, 0 },
691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
692 "SiS 7016 10/100 Ethernet",
693 &sipcom_variant_sis900, 0 },
694
695 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
696 "NatSemi DP83815 10/100 Ethernet",
697 &sipcom_variant_dp83815, 0 },
698
699 { 0, 0,
700 NULL,
701 NULL, 0 },
702 };
703
704 static const struct sip_product *
705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
706 {
707 const struct sip_product *sip;
708
709 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
710 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
711 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
712 sip->sip_gigabit == gigabit)
713 return sip;
714 }
715 return NULL;
716 }
717
718 /*
719 * I really hate stupid hardware vendors. There's a bit in the EEPROM
720 * which indicates if the card can do 64-bit data transfers. Unfortunately,
721 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
722 * which means we try to use 64-bit data transfers on those cards if we
723 * happen to be plugged into a 32-bit slot.
724 *
725 * What we do is use this table of cards known to be 64-bit cards. If
726 * you have a 64-bit card who's subsystem ID is not listed in this table,
727 * send the output of "pcictl dump ..." of the device to me so that your
728 * card will use the 64-bit data path when plugged into a 64-bit slot.
729 *
730 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
731 * June 30, 2002
732 */
733 static int
734 sipcom_check_64bit(const struct pci_attach_args *pa)
735 {
736 static const struct {
737 pci_vendor_id_t c64_vendor;
738 pci_product_id_t c64_product;
739 } card64[] = {
740 /* Asante GigaNIX */
741 { 0x128a, 0x0002 },
742
743 /* Accton EN1407-T, Planex GN-1000TE */
744 { 0x1113, 0x1407 },
745
746 /* Netgear GA-621 */
747 { 0x1385, 0x621a },
748
749 /* SMC EZ Card */
750 { 0x10b8, 0x9462 },
751
752 { 0, 0}
753 };
754 pcireg_t subsys;
755 int i;
756
757 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
758
759 for (i = 0; card64[i].c64_vendor != 0; i++) {
760 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
761 PCI_PRODUCT(subsys) == card64[i].c64_product)
762 return (1);
763 }
764
765 return (0);
766 }
767
768 static int
769 sipcom_match(device_t parent, cfdata_t cf, void *aux)
770 {
771 struct pci_attach_args *pa = aux;
772
773 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
774 return 1;
775
776 return 0;
777 }
778
779 static void
780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
781 {
782 u_int32_t reg;
783 int i;
784
785 /*
786 * Cause the chip to load configuration data from the EEPROM.
787 */
788 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
789 for (i = 0; i < 10000; i++) {
790 delay(10);
791 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
792 PTSCR_EELOAD_EN) == 0)
793 break;
794 }
795 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 PTSCR_EELOAD_EN) {
797 printf("%s: timeout loading configuration from EEPROM\n",
798 device_xname(sc->sc_dev));
799 return;
800 }
801
802 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
803
804 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
805 if (reg & CFG_PCI64_DET) {
806 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
807 /*
808 * Check to see if this card is 64-bit. If so, enable 64-bit
809 * data transfers.
810 *
811 * We can't use the DATA64_EN bit in the EEPROM, because
812 * vendors of 32-bit cards fail to clear that bit in many
813 * cases (yet the card still detects that it's in a 64-bit
814 * slot; go figure).
815 */
816 if (sipcom_check_64bit(pa)) {
817 sc->sc_cfg |= CFG_DATA64_EN;
818 printf(", using 64-bit data transfers");
819 }
820 printf("\n");
821 }
822
823 /*
824 * XXX Need some PCI flags indicating support for
825 * XXX 64-bit addressing.
826 */
827 #if 0
828 if (reg & CFG_M64ADDR)
829 sc->sc_cfg |= CFG_M64ADDR;
830 if (reg & CFG_T64ADDR)
831 sc->sc_cfg |= CFG_T64ADDR;
832 #endif
833
834 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
835 const char *sep = "";
836 printf("%s: using ", device_xname(sc->sc_dev));
837 if (reg & CFG_EXT_125) {
838 sc->sc_cfg |= CFG_EXT_125;
839 printf("%s125MHz clock", sep);
840 sep = ", ";
841 }
842 if (reg & CFG_TBI_EN) {
843 sc->sc_cfg |= CFG_TBI_EN;
844 printf("%sten-bit interface", sep);
845 sep = ", ";
846 }
847 printf("\n");
848 }
849 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
850 (reg & CFG_MRM_DIS) != 0)
851 sc->sc_cfg |= CFG_MRM_DIS;
852 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
853 (reg & CFG_MWI_DIS) != 0)
854 sc->sc_cfg |= CFG_MWI_DIS;
855
856 /*
857 * Use the extended descriptor format on the DP83820. This
858 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
859 * checksumming.
860 */
861 sc->sc_cfg |= CFG_EXTSTS_EN;
862 }
863
864 static int
865 sipcom_detach(device_t self, int flags)
866 {
867 int s;
868
869 s = splnet();
870 sipcom_do_detach(self, SIP_ATTACH_FIN);
871 splx(s);
872
873 return 0;
874 }
875
876 static void
877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
878 {
879 int i;
880 struct sip_softc *sc = device_private(self);
881 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882
883 /*
884 * Free any resources we've allocated during attach.
885 * Do this in reverse order and fall through.
886 */
887 switch (stage) {
888 case SIP_ATTACH_FIN:
889 sipcom_stop(ifp, 1);
890 pmf_device_deregister(self);
891 #ifdef SIP_EVENT_COUNTERS
892 /*
893 * Attach event counters.
894 */
895 evcnt_detach(&sc->sc_ev_txforceintr);
896 evcnt_detach(&sc->sc_ev_txdstall);
897 evcnt_detach(&sc->sc_ev_txsstall);
898 evcnt_detach(&sc->sc_ev_hiberr);
899 evcnt_detach(&sc->sc_ev_rxintr);
900 evcnt_detach(&sc->sc_ev_txiintr);
901 evcnt_detach(&sc->sc_ev_txdintr);
902 if (!sc->sc_gigabit) {
903 evcnt_detach(&sc->sc_ev_rxpause);
904 } else {
905 evcnt_detach(&sc->sc_ev_txudpsum);
906 evcnt_detach(&sc->sc_ev_txtcpsum);
907 evcnt_detach(&sc->sc_ev_txipsum);
908 evcnt_detach(&sc->sc_ev_rxudpsum);
909 evcnt_detach(&sc->sc_ev_rxtcpsum);
910 evcnt_detach(&sc->sc_ev_rxipsum);
911 evcnt_detach(&sc->sc_ev_txpause);
912 evcnt_detach(&sc->sc_ev_rxpause);
913 }
914 #endif /* SIP_EVENT_COUNTERS */
915
916 #if NRND > 0
917 rnd_detach_source(&sc->rnd_source);
918 #endif
919
920 ether_ifdetach(ifp);
921 if_detach(ifp);
922 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
923
924 /*FALLTHROUGH*/
925 case SIP_ATTACH_CREATE_RXMAP:
926 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
927 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
928 bus_dmamap_destroy(sc->sc_dmat,
929 sc->sc_rxsoft[i].rxs_dmamap);
930 }
931 /*FALLTHROUGH*/
932 case SIP_ATTACH_CREATE_TXMAP:
933 for (i = 0; i < SIP_TXQUEUELEN; i++) {
934 if (sc->sc_txsoft[i].txs_dmamap != NULL)
935 bus_dmamap_destroy(sc->sc_dmat,
936 sc->sc_txsoft[i].txs_dmamap);
937 }
938 /*FALLTHROUGH*/
939 case SIP_ATTACH_LOAD_MAP:
940 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
941 /*FALLTHROUGH*/
942 case SIP_ATTACH_CREATE_MAP:
943 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
944 /*FALLTHROUGH*/
945 case SIP_ATTACH_MAP_MEM:
946 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
947 sizeof(struct sip_control_data));
948 /*FALLTHROUGH*/
949 case SIP_ATTACH_ALLOC_MEM:
950 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
951 /* FALLTHROUGH*/
952 case SIP_ATTACH_INTR:
953 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
954 /* FALLTHROUGH*/
955 case SIP_ATTACH_MAP:
956 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
957 break;
958 default:
959 break;
960 }
961 return;
962 }
963
964 static bool
965 sipcom_resume(device_t self, const pmf_qual_t *qual)
966 {
967 struct sip_softc *sc = device_private(self);
968
969 return sipcom_reset(sc);
970 }
971
972 static bool
973 sipcom_suspend(device_t self, const pmf_qual_t *qual)
974 {
975 struct sip_softc *sc = device_private(self);
976
977 sipcom_rxdrain(sc);
978 return true;
979 }
980
981 static void
982 sipcom_attach(device_t parent, device_t self, void *aux)
983 {
984 struct sip_softc *sc = device_private(self);
985 struct pci_attach_args *pa = aux;
986 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 pci_chipset_tag_t pc = pa->pa_pc;
988 pci_intr_handle_t ih;
989 const char *intrstr = NULL;
990 bus_space_tag_t iot, memt;
991 bus_space_handle_t ioh, memh;
992 bus_size_t iosz, memsz;
993 int ioh_valid, memh_valid;
994 int i, rseg, error;
995 const struct sip_product *sip;
996 u_int8_t enaddr[ETHER_ADDR_LEN];
997 pcireg_t csr;
998 pcireg_t memtype;
999 bus_size_t tx_dmamap_size;
1000 int ntxsegs_alloc;
1001 cfdata_t cf = device_cfdata(self);
1002
1003 callout_init(&sc->sc_tick_ch, 0);
1004
1005 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1006 if (sip == NULL) {
1007 printf("\n");
1008 panic("%s: impossible", __func__);
1009 }
1010 sc->sc_dev = self;
1011 sc->sc_gigabit = sip->sip_gigabit;
1012 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1013 sc->sc_pc = pc;
1014
1015 if (sc->sc_gigabit) {
1016 sc->sc_rxintr = gsip_rxintr;
1017 sc->sc_parm = &gsip_parm;
1018 } else {
1019 sc->sc_rxintr = sip_rxintr;
1020 sc->sc_parm = &sip_parm;
1021 }
1022 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1023 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1024 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1025 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1026 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1027
1028 sc->sc_rev = PCI_REVISION(pa->pa_class);
1029
1030 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1031
1032 sc->sc_model = sip;
1033
1034 /*
1035 * XXX Work-around broken PXE firmware on some boards.
1036 *
1037 * The DP83815 shares an address decoder with the MEM BAR
1038 * and the ROM BAR. Make sure the ROM BAR is disabled,
1039 * so that memory mapped access works.
1040 */
1041 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1042 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1043 ~PCI_MAPREG_ROM_ENABLE);
1044
1045 /*
1046 * Map the device.
1047 */
1048 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1049 PCI_MAPREG_TYPE_IO, 0,
1050 &iot, &ioh, NULL, &iosz) == 0);
1051 if (sc->sc_gigabit) {
1052 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1053 switch (memtype) {
1054 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1055 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1056 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1058 break;
1059 default:
1060 memh_valid = 0;
1061 }
1062 } else {
1063 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1064 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1065 &memt, &memh, NULL, &memsz) == 0);
1066 }
1067
1068 if (memh_valid) {
1069 sc->sc_st = memt;
1070 sc->sc_sh = memh;
1071 sc->sc_sz = memsz;
1072 } else if (ioh_valid) {
1073 sc->sc_st = iot;
1074 sc->sc_sh = ioh;
1075 sc->sc_sz = iosz;
1076 } else {
1077 printf("%s: unable to map device registers\n",
1078 device_xname(sc->sc_dev));
1079 return;
1080 }
1081
1082 sc->sc_dmat = pa->pa_dmat;
1083
1084 /*
1085 * Make sure bus mastering is enabled. Also make sure
1086 * Write/Invalidate is enabled if we're allowed to use it.
1087 */
1088 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1089 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1090 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1091 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1092 csr | PCI_COMMAND_MASTER_ENABLE);
1093
1094 /* power up chip */
1095 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1096 if (error != 0 && error != EOPNOTSUPP) {
1097 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1098 return;
1099 }
1100
1101 /*
1102 * Map and establish our interrupt.
1103 */
1104 if (pci_intr_map(pa, &ih)) {
1105 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1106 return;
1107 }
1108 intrstr = pci_intr_string(pc, ih);
1109 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1110 if (sc->sc_ih == NULL) {
1111 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1112 if (intrstr != NULL)
1113 aprint_error(" at %s", intrstr);
1114 aprint_error("\n");
1115 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1116 }
1117 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1118
1119 SIMPLEQ_INIT(&sc->sc_txfreeq);
1120 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1121
1122 /*
1123 * Allocate the control data structures, and create and load the
1124 * DMA map for it.
1125 */
1126 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1127 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1128 &rseg, 0)) != 0) {
1129 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1130 error);
1131 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1132 }
1133
1134 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1135 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1136 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1137 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1138 error);
1139 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1140 }
1141
1142 if ((error = bus_dmamap_create(sc->sc_dmat,
1143 sizeof(struct sip_control_data), 1,
1144 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1145 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1146 "error = %d\n", error);
1147 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1148 }
1149
1150 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1151 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1152 0)) != 0) {
1153 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1154 error);
1155 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1156 }
1157
1158 /*
1159 * Create the transmit buffer DMA maps.
1160 */
1161 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1162 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1163 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1164 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1165 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1166 "error = %d\n", i, error);
1167 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1168 }
1169 }
1170
1171 /*
1172 * Create the receive buffer DMA maps.
1173 */
1174 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1175 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1176 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1177 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1178 "error = %d\n", i, error);
1179 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1180 }
1181 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1182 }
1183
1184 /*
1185 * Reset the chip to a known state.
1186 */
1187 sipcom_reset(sc);
1188
1189 /*
1190 * Read the Ethernet address from the EEPROM. This might
1191 * also fetch other stuff from the EEPROM and stash it
1192 * in the softc.
1193 */
1194 sc->sc_cfg = 0;
1195 if (!sc->sc_gigabit) {
1196 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 SIP_SIS900_REV(sc,SIS_REV_900B))
1198 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1199
1200 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 SIP_SIS900_REV(sc,SIS_REV_960) ||
1202 SIP_SIS900_REV(sc,SIS_REV_900B))
1203 sc->sc_cfg |=
1204 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1205 CFG_EDBMASTEN);
1206 }
1207
1208 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1209
1210 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1211 ether_sprintf(enaddr));
1212
1213 /*
1214 * Initialize the configuration register: aggressive PCI
1215 * bus request algorithm, default backoff, default OW timer,
1216 * default parity error detection.
1217 *
1218 * NOTE: "Big endian mode" is useless on the SiS900 and
1219 * friends -- it affects packet data, not descriptors.
1220 */
1221 if (sc->sc_gigabit)
1222 sipcom_dp83820_attach(sc, pa);
1223
1224 /*
1225 * Initialize our media structures and probe the MII.
1226 */
1227 sc->sc_mii.mii_ifp = ifp;
1228 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1229 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1230 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1231 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1232 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1233 sipcom_mediastatus);
1234
1235 /*
1236 * XXX We cannot handle flow control on the DP83815.
1237 */
1238 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, 0);
1241 else
1242 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 MII_OFFSET_ANY, MIIF_DOPAUSE);
1244 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1245 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1246 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1247 } else
1248 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249
1250 ifp = &sc->sc_ethercom.ec_if;
1251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1252 ifp->if_softc = sc;
1253 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254 sc->sc_if_flags = ifp->if_flags;
1255 ifp->if_ioctl = sipcom_ioctl;
1256 ifp->if_start = sipcom_start;
1257 ifp->if_watchdog = sipcom_watchdog;
1258 ifp->if_init = sipcom_init;
1259 ifp->if_stop = sipcom_stop;
1260 IFQ_SET_READY(&ifp->if_snd);
1261
1262 /*
1263 * We can support 802.1Q VLAN-sized frames.
1264 */
1265 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1266
1267 if (sc->sc_gigabit) {
1268 /*
1269 * And the DP83820 can do VLAN tagging in hardware, and
1270 * support the jumbo Ethernet MTU.
1271 */
1272 sc->sc_ethercom.ec_capabilities |=
1273 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1274
1275 /*
1276 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1277 * in hardware.
1278 */
1279 ifp->if_capabilities |=
1280 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1281 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1282 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1283 }
1284
1285 /*
1286 * Attach the interface.
1287 */
1288 if_attach(ifp);
1289 ether_ifattach(ifp, enaddr);
1290 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1291 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1292 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1293 sc->sc_prev.if_capenable = ifp->if_capenable;
1294 #if NRND > 0
1295 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1296 RND_TYPE_NET, 0);
1297 #endif
1298
1299 /*
1300 * The number of bytes that must be available in
1301 * the Tx FIFO before the bus master can DMA more
1302 * data into the FIFO.
1303 */
1304 sc->sc_tx_fill_thresh = 64 / 32;
1305
1306 /*
1307 * Start at a drain threshold of 512 bytes. We will
1308 * increase it if a DMA underrun occurs.
1309 *
1310 * XXX The minimum value of this variable should be
1311 * tuned. We may be able to improve performance
1312 * by starting with a lower value. That, however,
1313 * may trash the first few outgoing packets if the
1314 * PCI bus is saturated.
1315 */
1316 if (sc->sc_gigabit)
1317 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1318 else
1319 sc->sc_tx_drain_thresh = 1504 / 32;
1320
1321 /*
1322 * Initialize the Rx FIFO drain threshold.
1323 *
1324 * This is in units of 8 bytes.
1325 *
1326 * We should never set this value lower than 2; 14 bytes are
1327 * required to filter the packet.
1328 */
1329 sc->sc_rx_drain_thresh = 128 / 8;
1330
1331 #ifdef SIP_EVENT_COUNTERS
1332 /*
1333 * Attach event counters.
1334 */
1335 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1336 NULL, device_xname(sc->sc_dev), "txsstall");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1338 NULL, device_xname(sc->sc_dev), "txdstall");
1339 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txforceintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "txdintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "txiintr");
1345 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1346 NULL, device_xname(sc->sc_dev), "rxintr");
1347 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1348 NULL, device_xname(sc->sc_dev), "hiberr");
1349 if (!sc->sc_gigabit) {
1350 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1351 NULL, device_xname(sc->sc_dev), "rxpause");
1352 } else {
1353 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxpause");
1355 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "txpause");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxipsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "rxudpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txipsum");
1365 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1366 NULL, device_xname(sc->sc_dev), "txtcpsum");
1367 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1368 NULL, device_xname(sc->sc_dev), "txudpsum");
1369 }
1370 #endif /* SIP_EVENT_COUNTERS */
1371
1372 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1373 pmf_class_network_register(self, ifp);
1374 else
1375 aprint_error_dev(self, "couldn't establish power handler\n");
1376 }
1377
1378 static inline void
1379 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1380 uint64_t capenable)
1381 {
1382 struct m_tag *mtag;
1383 u_int32_t extsts;
1384 #ifdef DEBUG
1385 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1386 #endif
1387 /*
1388 * If VLANs are enabled and the packet has a VLAN tag, set
1389 * up the descriptor to encapsulate the packet for us.
1390 *
1391 * This apparently has to be on the last descriptor of
1392 * the packet.
1393 */
1394
1395 /*
1396 * Byte swapping is tricky. We need to provide the tag
1397 * in a network byte order. On a big-endian machine,
1398 * the byteorder is correct, but we need to swap it
1399 * anyway, because this will be undone by the outside
1400 * htole32(). That's why there must be an
1401 * unconditional swap instead of htons() inside.
1402 */
1403 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1404 sc->sc_txdescs[lasttx].sipd_extsts |=
1405 htole32(EXTSTS_VPKT |
1406 (bswap16(VLAN_TAG_VALUE(mtag)) &
1407 EXTSTS_VTCI));
1408 }
1409
1410 /*
1411 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1412 * checksumming, set up the descriptor to do this work
1413 * for us.
1414 *
1415 * This apparently has to be on the first descriptor of
1416 * the packet.
1417 *
1418 * Byte-swap constants so the compiler can optimize.
1419 */
1420 extsts = 0;
1421 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1422 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1423 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1424 extsts |= htole32(EXTSTS_IPPKT);
1425 }
1426 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1429 extsts |= htole32(EXTSTS_TCPPKT);
1430 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1431 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1432 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1433 extsts |= htole32(EXTSTS_UDPPKT);
1434 }
1435 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1436 }
1437
1438 /*
1439 * sip_start: [ifnet interface function]
1440 *
1441 * Start packet transmission on the interface.
1442 */
1443 static void
1444 sipcom_start(struct ifnet *ifp)
1445 {
1446 struct sip_softc *sc = ifp->if_softc;
1447 struct mbuf *m0;
1448 struct mbuf *m;
1449 struct sip_txsoft *txs;
1450 bus_dmamap_t dmamap;
1451 int error, nexttx, lasttx, seg;
1452 int ofree = sc->sc_txfree;
1453 #if 0
1454 int firsttx = sc->sc_txnext;
1455 #endif
1456
1457 /*
1458 * If we've been told to pause, don't transmit any more packets.
1459 */
1460 if (!sc->sc_gigabit && sc->sc_paused)
1461 ifp->if_flags |= IFF_OACTIVE;
1462
1463 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1464 return;
1465
1466 /*
1467 * Loop through the send queue, setting up transmit descriptors
1468 * until we drain the queue, or use up all available transmit
1469 * descriptors.
1470 */
1471 for (;;) {
1472 /* Get a work queue entry. */
1473 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1474 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1475 break;
1476 }
1477
1478 /*
1479 * Grab a packet off the queue.
1480 */
1481 IFQ_POLL(&ifp->if_snd, m0);
1482 if (m0 == NULL)
1483 break;
1484 m = NULL;
1485
1486 dmamap = txs->txs_dmamap;
1487
1488 /*
1489 * Load the DMA map. If this fails, the packet either
1490 * didn't fit in the alloted number of segments, or we
1491 * were short on resources.
1492 */
1493 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1494 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1495 /* In the non-gigabit case, we'll copy and try again. */
1496 if (error != 0 && !sc->sc_gigabit) {
1497 MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 if (m == NULL) {
1499 printf("%s: unable to allocate Tx mbuf\n",
1500 device_xname(sc->sc_dev));
1501 break;
1502 }
1503 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1504 if (m0->m_pkthdr.len > MHLEN) {
1505 MCLGET(m, M_DONTWAIT);
1506 if ((m->m_flags & M_EXT) == 0) {
1507 printf("%s: unable to allocate Tx "
1508 "cluster\n", device_xname(sc->sc_dev));
1509 m_freem(m);
1510 break;
1511 }
1512 }
1513 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1514 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1515 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1516 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1517 if (error) {
1518 printf("%s: unable to load Tx buffer, "
1519 "error = %d\n", device_xname(sc->sc_dev), error);
1520 break;
1521 }
1522 } else if (error == EFBIG) {
1523 /*
1524 * For the too-many-segments case, we simply
1525 * report an error and drop the packet,
1526 * since we can't sanely copy a jumbo packet
1527 * to a single buffer.
1528 */
1529 printf("%s: Tx packet consumes too many "
1530 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1531 IFQ_DEQUEUE(&ifp->if_snd, m0);
1532 m_freem(m0);
1533 continue;
1534 } else if (error != 0) {
1535 /*
1536 * Short on resources, just stop for now.
1537 */
1538 break;
1539 }
1540
1541 /*
1542 * Ensure we have enough descriptors free to describe
1543 * the packet. Note, we always reserve one descriptor
1544 * at the end of the ring as a termination point, to
1545 * prevent wrap-around.
1546 */
1547 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1548 /*
1549 * Not enough free descriptors to transmit this
1550 * packet. We haven't committed anything yet,
1551 * so just unload the DMA map, put the packet
1552 * back on the queue, and punt. Notify the upper
1553 * layer that there are not more slots left.
1554 *
1555 * XXX We could allocate an mbuf and copy, but
1556 * XXX is it worth it?
1557 */
1558 ifp->if_flags |= IFF_OACTIVE;
1559 bus_dmamap_unload(sc->sc_dmat, dmamap);
1560 if (m != NULL)
1561 m_freem(m);
1562 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1563 break;
1564 }
1565
1566 IFQ_DEQUEUE(&ifp->if_snd, m0);
1567 if (m != NULL) {
1568 m_freem(m0);
1569 m0 = m;
1570 }
1571
1572 /*
1573 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1574 */
1575
1576 /* Sync the DMA map. */
1577 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1578 BUS_DMASYNC_PREWRITE);
1579
1580 /*
1581 * Initialize the transmit descriptors.
1582 */
1583 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1584 seg < dmamap->dm_nsegs;
1585 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1586 /*
1587 * If this is the first descriptor we're
1588 * enqueueing, don't set the OWN bit just
1589 * yet. That could cause a race condition.
1590 * We'll do it below.
1591 */
1592 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1593 htole32(dmamap->dm_segs[seg].ds_addr);
1594 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1595 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1596 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1597 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1598 lasttx = nexttx;
1599 }
1600
1601 /* Clear the MORE bit on the last segment. */
1602 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1603 htole32(~CMDSTS_MORE);
1604
1605 /*
1606 * If we're in the interrupt delay window, delay the
1607 * interrupt.
1608 */
1609 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1610 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1611 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1612 htole32(CMDSTS_INTR);
1613 sc->sc_txwin = 0;
1614 }
1615
1616 if (sc->sc_gigabit)
1617 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1618
1619 /* Sync the descriptors we're using. */
1620 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1621 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1622
1623 /*
1624 * The entire packet is set up. Give the first descrptor
1625 * to the chip now.
1626 */
1627 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1628 htole32(CMDSTS_OWN);
1629 sip_cdtxsync(sc, sc->sc_txnext, 1,
1630 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631
1632 /*
1633 * Store a pointer to the packet so we can free it later,
1634 * and remember what txdirty will be once the packet is
1635 * done.
1636 */
1637 txs->txs_mbuf = m0;
1638 txs->txs_firstdesc = sc->sc_txnext;
1639 txs->txs_lastdesc = lasttx;
1640
1641 /* Advance the tx pointer. */
1642 sc->sc_txfree -= dmamap->dm_nsegs;
1643 sc->sc_txnext = nexttx;
1644
1645 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1646 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1647
1648 /*
1649 * Pass the packet to any BPF listeners.
1650 */
1651 bpf_mtap(ifp, m0);
1652 }
1653
1654 if (txs == NULL || sc->sc_txfree == 0) {
1655 /* No more slots left; notify upper layer. */
1656 ifp->if_flags |= IFF_OACTIVE;
1657 }
1658
1659 if (sc->sc_txfree != ofree) {
1660 /*
1661 * Start the transmit process. Note, the manual says
1662 * that if there are no pending transmissions in the
1663 * chip's internal queue (indicated by TXE being clear),
1664 * then the driver software must set the TXDP to the
1665 * first descriptor to be transmitted. However, if we
1666 * do this, it causes serious performance degredation on
1667 * the DP83820 under load, not setting TXDP doesn't seem
1668 * to adversely affect the SiS 900 or DP83815.
1669 *
1670 * Well, I guess it wouldn't be the first time a manual
1671 * has lied -- and they could be speaking of the NULL-
1672 * terminated descriptor list case, rather than OWN-
1673 * terminated rings.
1674 */
1675 #if 0
1676 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1677 CR_TXE) == 0) {
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1679 SIP_CDTXADDR(sc, firsttx));
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 }
1682 #else
1683 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1684 #endif
1685
1686 /* Set a watchdog timer in case the chip flakes out. */
1687 /* Gigabit autonegotiation takes 5 seconds. */
1688 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1689 }
1690 }
1691
1692 /*
1693 * sip_watchdog: [ifnet interface function]
1694 *
1695 * Watchdog timer handler.
1696 */
1697 static void
1698 sipcom_watchdog(struct ifnet *ifp)
1699 {
1700 struct sip_softc *sc = ifp->if_softc;
1701
1702 /*
1703 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1704 * If we get a timeout, try and sweep up transmit descriptors.
1705 * If we manage to sweep them all up, ignore the lack of
1706 * interrupt.
1707 */
1708 sipcom_txintr(sc);
1709
1710 if (sc->sc_txfree != sc->sc_ntxdesc) {
1711 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1712 ifp->if_oerrors++;
1713
1714 /* Reset the interface. */
1715 (void) sipcom_init(ifp);
1716 } else if (ifp->if_flags & IFF_DEBUG)
1717 printf("%s: recovered from device timeout\n",
1718 device_xname(sc->sc_dev));
1719
1720 /* Try to get more packets going. */
1721 sipcom_start(ifp);
1722 }
1723
1724 /* If the interface is up and running, only modify the receive
1725 * filter when setting promiscuous or debug mode. Otherwise fall
1726 * through to ether_ioctl, which will reset the chip.
1727 */
1728 static int
1729 sip_ifflags_cb(struct ethercom *ec)
1730 {
1731 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1732 == (sc)->sc_ethercom.ec_capenable) \
1733 && ((sc)->sc_prev.is_vlan == \
1734 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1735 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1736 struct ifnet *ifp = &ec->ec_if;
1737 struct sip_softc *sc = ifp->if_softc;
1738 int change = ifp->if_flags ^ sc->sc_if_flags;
1739
1740 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1741 !COMPARE_IC(sc, ifp))
1742 return ENETRESET;
1743 /* Set up the receive filter. */
1744 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1745 return 0;
1746 }
1747
1748 /*
1749 * sip_ioctl: [ifnet interface function]
1750 *
1751 * Handle control requests from the operator.
1752 */
1753 static int
1754 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1755 {
1756 struct sip_softc *sc = ifp->if_softc;
1757 struct ifreq *ifr = (struct ifreq *)data;
1758 int s, error;
1759
1760 s = splnet();
1761
1762 switch (cmd) {
1763 case SIOCSIFMEDIA:
1764 /* Flow control requires full-duplex mode. */
1765 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1766 (ifr->ifr_media & IFM_FDX) == 0)
1767 ifr->ifr_media &= ~IFM_ETH_FMASK;
1768
1769 /* XXX */
1770 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1771 ifr->ifr_media &= ~IFM_ETH_FMASK;
1772 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1773 if (sc->sc_gigabit &&
1774 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1775 /* We can do both TXPAUSE and RXPAUSE. */
1776 ifr->ifr_media |=
1777 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1778 } else if (ifr->ifr_media & IFM_FLOW) {
1779 /*
1780 * Both TXPAUSE and RXPAUSE must be set.
1781 * (SiS900 and DP83815 don't have PAUSE_ASYM
1782 * feature.)
1783 *
1784 * XXX Can SiS900 and DP83815 send PAUSE?
1785 */
1786 ifr->ifr_media |=
1787 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1788 }
1789 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1790 }
1791 /*FALLTHROUGH*/
1792 default:
1793 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1794 break;
1795
1796 error = 0;
1797
1798 if (cmd == SIOCSIFCAP)
1799 error = (*ifp->if_init)(ifp);
1800 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1801 ;
1802 else if (ifp->if_flags & IFF_RUNNING) {
1803 /*
1804 * Multicast list has changed; set the hardware filter
1805 * accordingly.
1806 */
1807 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1808 }
1809 break;
1810 }
1811
1812 /* Try to get more packets going. */
1813 sipcom_start(ifp);
1814
1815 sc->sc_if_flags = ifp->if_flags;
1816 splx(s);
1817 return (error);
1818 }
1819
1820 /*
1821 * sip_intr:
1822 *
1823 * Interrupt service routine.
1824 */
1825 static int
1826 sipcom_intr(void *arg)
1827 {
1828 struct sip_softc *sc = arg;
1829 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 u_int32_t isr;
1831 int handled = 0;
1832
1833 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1834 return 0;
1835
1836 /* Disable interrupts. */
1837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1838
1839 for (;;) {
1840 /* Reading clears interrupt. */
1841 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1842 if ((isr & sc->sc_imr) == 0)
1843 break;
1844
1845 #if NRND > 0
1846 if (RND_ENABLED(&sc->rnd_source))
1847 rnd_add_uint32(&sc->rnd_source, isr);
1848 #endif
1849
1850 handled = 1;
1851
1852 if ((ifp->if_flags & IFF_RUNNING) == 0)
1853 break;
1854
1855 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1856 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1857
1858 /* Grab any new packets. */
1859 (*sc->sc_rxintr)(sc);
1860
1861 if (isr & ISR_RXORN) {
1862 printf("%s: receive FIFO overrun\n",
1863 device_xname(sc->sc_dev));
1864
1865 /* XXX adjust rx_drain_thresh? */
1866 }
1867
1868 if (isr & ISR_RXIDLE) {
1869 printf("%s: receive ring overrun\n",
1870 device_xname(sc->sc_dev));
1871
1872 /* Get the receive process going again. */
1873 bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1875 bus_space_write_4(sc->sc_st, sc->sc_sh,
1876 SIP_CR, CR_RXE);
1877 }
1878 }
1879
1880 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1881 #ifdef SIP_EVENT_COUNTERS
1882 if (isr & ISR_TXDESC)
1883 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1884 else if (isr & ISR_TXIDLE)
1885 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1886 #endif
1887
1888 /* Sweep up transmit descriptors. */
1889 sipcom_txintr(sc);
1890
1891 if (isr & ISR_TXURN) {
1892 u_int32_t thresh;
1893 int txfifo_size = (sc->sc_gigabit)
1894 ? DP83820_SIP_TXFIFO_SIZE
1895 : OTHER_SIP_TXFIFO_SIZE;
1896
1897 printf("%s: transmit FIFO underrun",
1898 device_xname(sc->sc_dev));
1899 thresh = sc->sc_tx_drain_thresh + 1;
1900 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1901 && (thresh * 32) <= (txfifo_size -
1902 (sc->sc_tx_fill_thresh * 32))) {
1903 printf("; increasing Tx drain "
1904 "threshold to %u bytes\n",
1905 thresh * 32);
1906 sc->sc_tx_drain_thresh = thresh;
1907 (void) sipcom_init(ifp);
1908 } else {
1909 (void) sipcom_init(ifp);
1910 printf("\n");
1911 }
1912 }
1913 }
1914
1915 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1916 if (isr & ISR_PAUSE_ST) {
1917 sc->sc_paused = 1;
1918 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1919 ifp->if_flags |= IFF_OACTIVE;
1920 }
1921 if (isr & ISR_PAUSE_END) {
1922 sc->sc_paused = 0;
1923 ifp->if_flags &= ~IFF_OACTIVE;
1924 }
1925 }
1926
1927 if (isr & ISR_HIBERR) {
1928 int want_init = 0;
1929
1930 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1931
1932 #define PRINTERR(bit, str) \
1933 do { \
1934 if ((isr & (bit)) != 0) { \
1935 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1936 printf("%s: %s\n", \
1937 device_xname(sc->sc_dev), str); \
1938 want_init = 1; \
1939 } \
1940 } while (/*CONSTCOND*/0)
1941
1942 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1943 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1944 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1945 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1946 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1947 /*
1948 * Ignore:
1949 * Tx reset complete
1950 * Rx reset complete
1951 */
1952 if (want_init)
1953 (void) sipcom_init(ifp);
1954 #undef PRINTERR
1955 }
1956 }
1957
1958 /* Re-enable interrupts. */
1959 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1960
1961 /* Try to get more packets going. */
1962 sipcom_start(ifp);
1963
1964 return (handled);
1965 }
1966
1967 /*
1968 * sip_txintr:
1969 *
1970 * Helper; handle transmit interrupts.
1971 */
1972 static void
1973 sipcom_txintr(struct sip_softc *sc)
1974 {
1975 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1976 struct sip_txsoft *txs;
1977 u_int32_t cmdsts;
1978
1979 if (sc->sc_paused == 0)
1980 ifp->if_flags &= ~IFF_OACTIVE;
1981
1982 /*
1983 * Go through our Tx list and free mbufs for those
1984 * frames which have been transmitted.
1985 */
1986 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1987 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1988 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1989
1990 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1991 if (cmdsts & CMDSTS_OWN)
1992 break;
1993
1994 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1995
1996 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1997
1998 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1999 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2000 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2001 m_freem(txs->txs_mbuf);
2002 txs->txs_mbuf = NULL;
2003
2004 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2005
2006 /*
2007 * Check for errors and collisions.
2008 */
2009 if (cmdsts &
2010 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2011 ifp->if_oerrors++;
2012 if (cmdsts & CMDSTS_Tx_EC)
2013 ifp->if_collisions += 16;
2014 if (ifp->if_flags & IFF_DEBUG) {
2015 if (cmdsts & CMDSTS_Tx_ED)
2016 printf("%s: excessive deferral\n",
2017 device_xname(sc->sc_dev));
2018 if (cmdsts & CMDSTS_Tx_EC)
2019 printf("%s: excessive collisions\n",
2020 device_xname(sc->sc_dev));
2021 }
2022 } else {
2023 /* Packet was transmitted successfully. */
2024 ifp->if_opackets++;
2025 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2026 }
2027 }
2028
2029 /*
2030 * If there are no more pending transmissions, cancel the watchdog
2031 * timer.
2032 */
2033 if (txs == NULL) {
2034 ifp->if_timer = 0;
2035 sc->sc_txwin = 0;
2036 }
2037 }
2038
2039 /*
2040 * gsip_rxintr:
2041 *
2042 * Helper; handle receive interrupts on gigabit parts.
2043 */
2044 static void
2045 gsip_rxintr(struct sip_softc *sc)
2046 {
2047 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2048 struct sip_rxsoft *rxs;
2049 struct mbuf *m;
2050 u_int32_t cmdsts, extsts;
2051 int i, len;
2052
2053 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2054 rxs = &sc->sc_rxsoft[i];
2055
2056 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2057
2058 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2059 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2060 len = CMDSTS_SIZE(sc, cmdsts);
2061
2062 /*
2063 * NOTE: OWN is set if owned by _consumer_. We're the
2064 * consumer of the receive ring, so if the bit is clear,
2065 * we have processed all of the packets.
2066 */
2067 if ((cmdsts & CMDSTS_OWN) == 0) {
2068 /*
2069 * We have processed all of the receive buffers.
2070 */
2071 break;
2072 }
2073
2074 if (__predict_false(sc->sc_rxdiscard)) {
2075 sip_init_rxdesc(sc, i);
2076 if ((cmdsts & CMDSTS_MORE) == 0) {
2077 /* Reset our state. */
2078 sc->sc_rxdiscard = 0;
2079 }
2080 continue;
2081 }
2082
2083 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2084 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2085
2086 m = rxs->rxs_mbuf;
2087
2088 /*
2089 * Add a new receive buffer to the ring.
2090 */
2091 if (sipcom_add_rxbuf(sc, i) != 0) {
2092 /*
2093 * Failed, throw away what we've done so
2094 * far, and discard the rest of the packet.
2095 */
2096 ifp->if_ierrors++;
2097 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2098 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2099 sip_init_rxdesc(sc, i);
2100 if (cmdsts & CMDSTS_MORE)
2101 sc->sc_rxdiscard = 1;
2102 if (sc->sc_rxhead != NULL)
2103 m_freem(sc->sc_rxhead);
2104 sip_rxchain_reset(sc);
2105 continue;
2106 }
2107
2108 sip_rxchain_link(sc, m);
2109
2110 m->m_len = len;
2111
2112 /*
2113 * If this is not the end of the packet, keep
2114 * looking.
2115 */
2116 if (cmdsts & CMDSTS_MORE) {
2117 sc->sc_rxlen += len;
2118 continue;
2119 }
2120
2121 /*
2122 * Okay, we have the entire packet now. The chip includes
2123 * the FCS, so we need to trim it.
2124 */
2125 m->m_len -= ETHER_CRC_LEN;
2126
2127 *sc->sc_rxtailp = NULL;
2128 len = m->m_len + sc->sc_rxlen;
2129 m = sc->sc_rxhead;
2130
2131 sip_rxchain_reset(sc);
2132
2133 /*
2134 * If an error occurred, update stats and drop the packet.
2135 */
2136 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2137 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2138 ifp->if_ierrors++;
2139 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2140 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2141 /* Receive overrun handled elsewhere. */
2142 printf("%s: receive descriptor error\n",
2143 device_xname(sc->sc_dev));
2144 }
2145 #define PRINTERR(bit, str) \
2146 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2147 (cmdsts & (bit)) != 0) \
2148 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2149 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2150 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2151 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2152 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2153 #undef PRINTERR
2154 m_freem(m);
2155 continue;
2156 }
2157
2158 /*
2159 * If the packet is small enough to fit in a
2160 * single header mbuf, allocate one and copy
2161 * the data into it. This greatly reduces
2162 * memory consumption when we receive lots
2163 * of small packets.
2164 */
2165 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2166 struct mbuf *nm;
2167 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2168 if (nm == NULL) {
2169 ifp->if_ierrors++;
2170 m_freem(m);
2171 continue;
2172 }
2173 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2174 nm->m_data += 2;
2175 nm->m_pkthdr.len = nm->m_len = len;
2176 m_copydata(m, 0, len, mtod(nm, void *));
2177 m_freem(m);
2178 m = nm;
2179 }
2180 #ifndef __NO_STRICT_ALIGNMENT
2181 else {
2182 /*
2183 * The DP83820's receive buffers must be 4-byte
2184 * aligned. But this means that the data after
2185 * the Ethernet header is misaligned. To compensate,
2186 * we have artificially shortened the buffer size
2187 * in the descriptor, and we do an overlapping copy
2188 * of the data two bytes further in (in the first
2189 * buffer of the chain only).
2190 */
2191 memmove(mtod(m, char *) + 2, mtod(m, void *),
2192 m->m_len);
2193 m->m_data += 2;
2194 }
2195 #endif /* ! __NO_STRICT_ALIGNMENT */
2196
2197 /*
2198 * If VLANs are enabled, VLAN packets have been unwrapped
2199 * for us. Associate the tag with the packet.
2200 */
2201
2202 /*
2203 * Again, byte swapping is tricky. Hardware provided
2204 * the tag in the network byte order, but extsts was
2205 * passed through le32toh() in the meantime. On a
2206 * big-endian machine, we need to swap it again. On a
2207 * little-endian machine, we need to convert from the
2208 * network to host byte order. This means that we must
2209 * swap it in any case, so unconditional swap instead
2210 * of htons() is used.
2211 */
2212 if ((extsts & EXTSTS_VPKT) != 0) {
2213 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2214 continue);
2215 }
2216
2217 /*
2218 * Set the incoming checksum information for the
2219 * packet.
2220 */
2221 if ((extsts & EXTSTS_IPPKT) != 0) {
2222 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2223 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2224 if (extsts & EXTSTS_Rx_IPERR)
2225 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2226 if (extsts & EXTSTS_TCPPKT) {
2227 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2228 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2229 if (extsts & EXTSTS_Rx_TCPERR)
2230 m->m_pkthdr.csum_flags |=
2231 M_CSUM_TCP_UDP_BAD;
2232 } else if (extsts & EXTSTS_UDPPKT) {
2233 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2234 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2235 if (extsts & EXTSTS_Rx_UDPERR)
2236 m->m_pkthdr.csum_flags |=
2237 M_CSUM_TCP_UDP_BAD;
2238 }
2239 }
2240
2241 ifp->if_ipackets++;
2242 m->m_pkthdr.rcvif = ifp;
2243 m->m_pkthdr.len = len;
2244
2245 /*
2246 * Pass this up to any BPF listeners, but only
2247 * pass if up the stack if it's for us.
2248 */
2249 bpf_mtap(ifp, m);
2250
2251 /* Pass it on. */
2252 (*ifp->if_input)(ifp, m);
2253 }
2254
2255 /* Update the receive pointer. */
2256 sc->sc_rxptr = i;
2257 }
2258
2259 /*
2260 * sip_rxintr:
2261 *
2262 * Helper; handle receive interrupts on 10/100 parts.
2263 */
2264 static void
2265 sip_rxintr(struct sip_softc *sc)
2266 {
2267 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2268 struct sip_rxsoft *rxs;
2269 struct mbuf *m;
2270 u_int32_t cmdsts;
2271 int i, len;
2272
2273 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2274 rxs = &sc->sc_rxsoft[i];
2275
2276 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2277
2278 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2279
2280 /*
2281 * NOTE: OWN is set if owned by _consumer_. We're the
2282 * consumer of the receive ring, so if the bit is clear,
2283 * we have processed all of the packets.
2284 */
2285 if ((cmdsts & CMDSTS_OWN) == 0) {
2286 /*
2287 * We have processed all of the receive buffers.
2288 */
2289 break;
2290 }
2291
2292 /*
2293 * If any collisions were seen on the wire, count one.
2294 */
2295 if (cmdsts & CMDSTS_Rx_COL)
2296 ifp->if_collisions++;
2297
2298 /*
2299 * If an error occurred, update stats, clear the status
2300 * word, and leave the packet buffer in place. It will
2301 * simply be reused the next time the ring comes around.
2302 */
2303 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2304 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2305 ifp->if_ierrors++;
2306 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2307 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2308 /* Receive overrun handled elsewhere. */
2309 printf("%s: receive descriptor error\n",
2310 device_xname(sc->sc_dev));
2311 }
2312 #define PRINTERR(bit, str) \
2313 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2314 (cmdsts & (bit)) != 0) \
2315 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2316 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2317 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2318 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2319 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2320 #undef PRINTERR
2321 sip_init_rxdesc(sc, i);
2322 continue;
2323 }
2324
2325 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2326 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2327
2328 /*
2329 * No errors; receive the packet. Note, the SiS 900
2330 * includes the CRC with every packet.
2331 */
2332 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2333
2334 #ifdef __NO_STRICT_ALIGNMENT
2335 /*
2336 * If the packet is small enough to fit in a
2337 * single header mbuf, allocate one and copy
2338 * the data into it. This greatly reduces
2339 * memory consumption when we receive lots
2340 * of small packets.
2341 *
2342 * Otherwise, we add a new buffer to the receive
2343 * chain. If this fails, we drop the packet and
2344 * recycle the old buffer.
2345 */
2346 if (sip_copy_small != 0 && len <= MHLEN) {
2347 MGETHDR(m, M_DONTWAIT, MT_DATA);
2348 if (m == NULL)
2349 goto dropit;
2350 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2351 memcpy(mtod(m, void *),
2352 mtod(rxs->rxs_mbuf, void *), len);
2353 sip_init_rxdesc(sc, i);
2354 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2355 rxs->rxs_dmamap->dm_mapsize,
2356 BUS_DMASYNC_PREREAD);
2357 } else {
2358 m = rxs->rxs_mbuf;
2359 if (sipcom_add_rxbuf(sc, i) != 0) {
2360 dropit:
2361 ifp->if_ierrors++;
2362 sip_init_rxdesc(sc, i);
2363 bus_dmamap_sync(sc->sc_dmat,
2364 rxs->rxs_dmamap, 0,
2365 rxs->rxs_dmamap->dm_mapsize,
2366 BUS_DMASYNC_PREREAD);
2367 continue;
2368 }
2369 }
2370 #else
2371 /*
2372 * The SiS 900's receive buffers must be 4-byte aligned.
2373 * But this means that the data after the Ethernet header
2374 * is misaligned. We must allocate a new buffer and
2375 * copy the data, shifted forward 2 bytes.
2376 */
2377 MGETHDR(m, M_DONTWAIT, MT_DATA);
2378 if (m == NULL) {
2379 dropit:
2380 ifp->if_ierrors++;
2381 sip_init_rxdesc(sc, i);
2382 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2383 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2384 continue;
2385 }
2386 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2387 if (len > (MHLEN - 2)) {
2388 MCLGET(m, M_DONTWAIT);
2389 if ((m->m_flags & M_EXT) == 0) {
2390 m_freem(m);
2391 goto dropit;
2392 }
2393 }
2394 m->m_data += 2;
2395
2396 /*
2397 * Note that we use clusters for incoming frames, so the
2398 * buffer is virtually contiguous.
2399 */
2400 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2401
2402 /* Allow the receive descriptor to continue using its mbuf. */
2403 sip_init_rxdesc(sc, i);
2404 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2405 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2406 #endif /* __NO_STRICT_ALIGNMENT */
2407
2408 ifp->if_ipackets++;
2409 m->m_pkthdr.rcvif = ifp;
2410 m->m_pkthdr.len = m->m_len = len;
2411
2412 /*
2413 * Pass this up to any BPF listeners, but only
2414 * pass if up the stack if it's for us.
2415 */
2416 bpf_mtap(ifp, m);
2417
2418 /* Pass it on. */
2419 (*ifp->if_input)(ifp, m);
2420 }
2421
2422 /* Update the receive pointer. */
2423 sc->sc_rxptr = i;
2424 }
2425
2426 /*
2427 * sip_tick:
2428 *
2429 * One second timer, used to tick the MII.
2430 */
2431 static void
2432 sipcom_tick(void *arg)
2433 {
2434 struct sip_softc *sc = arg;
2435 int s;
2436
2437 s = splnet();
2438 #ifdef SIP_EVENT_COUNTERS
2439 if (sc->sc_gigabit) {
2440 /* Read PAUSE related counts from MIB registers. */
2441 sc->sc_ev_rxpause.ev_count +=
2442 bus_space_read_4(sc->sc_st, sc->sc_sh,
2443 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2444 sc->sc_ev_txpause.ev_count +=
2445 bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2447 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2448 }
2449 #endif /* SIP_EVENT_COUNTERS */
2450 mii_tick(&sc->sc_mii);
2451 splx(s);
2452
2453 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2454 }
2455
2456 /*
2457 * sip_reset:
2458 *
2459 * Perform a soft reset on the SiS 900.
2460 */
2461 static bool
2462 sipcom_reset(struct sip_softc *sc)
2463 {
2464 bus_space_tag_t st = sc->sc_st;
2465 bus_space_handle_t sh = sc->sc_sh;
2466 int i;
2467
2468 bus_space_write_4(st, sh, SIP_IER, 0);
2469 bus_space_write_4(st, sh, SIP_IMR, 0);
2470 bus_space_write_4(st, sh, SIP_RFCR, 0);
2471 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2472
2473 for (i = 0; i < SIP_TIMEOUT; i++) {
2474 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2475 break;
2476 delay(2);
2477 }
2478
2479 if (i == SIP_TIMEOUT) {
2480 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2481 return false;
2482 }
2483
2484 delay(1000);
2485
2486 if (sc->sc_gigabit) {
2487 /*
2488 * Set the general purpose I/O bits. Do it here in case we
2489 * need to have GPIO set up to talk to the media interface.
2490 */
2491 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2492 delay(1000);
2493 }
2494 return true;
2495 }
2496
2497 static void
2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2499 {
2500 u_int32_t reg;
2501 bus_space_tag_t st = sc->sc_st;
2502 bus_space_handle_t sh = sc->sc_sh;
2503 /*
2504 * Initialize the VLAN/IP receive control register.
2505 * We enable checksum computation on all incoming
2506 * packets, and do not reject packets w/ bad checksums.
2507 */
2508 reg = 0;
2509 if (capenable &
2510 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2511 reg |= VRCR_IPEN;
2512 if (VLAN_ATTACHED(&sc->sc_ethercom))
2513 reg |= VRCR_VTDEN|VRCR_VTREN;
2514 bus_space_write_4(st, sh, SIP_VRCR, reg);
2515
2516 /*
2517 * Initialize the VLAN/IP transmit control register.
2518 * We enable outgoing checksum computation on a
2519 * per-packet basis.
2520 */
2521 reg = 0;
2522 if (capenable &
2523 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2524 reg |= VTCR_PPCHK;
2525 if (VLAN_ATTACHED(&sc->sc_ethercom))
2526 reg |= VTCR_VPPTI;
2527 bus_space_write_4(st, sh, SIP_VTCR, reg);
2528
2529 /*
2530 * If we're using VLANs, initialize the VLAN data register.
2531 * To understand why we bswap the VLAN Ethertype, see section
2532 * 4.2.36 of the DP83820 manual.
2533 */
2534 if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2536 }
2537
2538 /*
2539 * sip_init: [ ifnet interface function ]
2540 *
2541 * Initialize the interface. Must be called at splnet().
2542 */
2543 static int
2544 sipcom_init(struct ifnet *ifp)
2545 {
2546 struct sip_softc *sc = ifp->if_softc;
2547 bus_space_tag_t st = sc->sc_st;
2548 bus_space_handle_t sh = sc->sc_sh;
2549 struct sip_txsoft *txs;
2550 struct sip_rxsoft *rxs;
2551 struct sip_desc *sipd;
2552 int i, error = 0;
2553
2554 if (device_is_active(sc->sc_dev)) {
2555 /*
2556 * Cancel any pending I/O.
2557 */
2558 sipcom_stop(ifp, 0);
2559 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2560 !device_is_active(sc->sc_dev))
2561 return 0;
2562
2563 /*
2564 * Reset the chip to a known state.
2565 */
2566 if (!sipcom_reset(sc))
2567 return EBUSY;
2568
2569 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2570 /*
2571 * DP83815 manual, page 78:
2572 * 4.4 Recommended Registers Configuration
2573 * For optimum performance of the DP83815, version noted
2574 * as DP83815CVNG (SRR = 203h), the listed register
2575 * modifications must be followed in sequence...
2576 *
2577 * It's not clear if this should be 302h or 203h because that
2578 * chip name is listed as SRR 302h in the description of the
2579 * SRR register. However, my revision 302h DP83815 on the
2580 * Netgear FA311 purchased in 02/2001 needs these settings
2581 * to avoid tons of errors in AcceptPerfectMatch (non-
2582 * IFF_PROMISC) mode. I do not know if other revisions need
2583 * this set or not. [briggs -- 09 March 2001]
2584 *
2585 * Note that only the low-order 12 bits of 0xe4 are documented
2586 * and that this sets reserved bits in that register.
2587 */
2588 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2589
2590 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2591 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2592 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2593 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2594
2595 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2596 }
2597
2598 /*
2599 * Initialize the transmit descriptor ring.
2600 */
2601 for (i = 0; i < sc->sc_ntxdesc; i++) {
2602 sipd = &sc->sc_txdescs[i];
2603 memset(sipd, 0, sizeof(struct sip_desc));
2604 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2605 }
2606 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2607 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2608 sc->sc_txfree = sc->sc_ntxdesc;
2609 sc->sc_txnext = 0;
2610 sc->sc_txwin = 0;
2611
2612 /*
2613 * Initialize the transmit job descriptors.
2614 */
2615 SIMPLEQ_INIT(&sc->sc_txfreeq);
2616 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2617 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2618 txs = &sc->sc_txsoft[i];
2619 txs->txs_mbuf = NULL;
2620 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2621 }
2622
2623 /*
2624 * Initialize the receive descriptor and receive job
2625 * descriptor rings.
2626 */
2627 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2628 rxs = &sc->sc_rxsoft[i];
2629 if (rxs->rxs_mbuf == NULL) {
2630 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2631 printf("%s: unable to allocate or map rx "
2632 "buffer %d, error = %d\n",
2633 device_xname(sc->sc_dev), i, error);
2634 /*
2635 * XXX Should attempt to run with fewer receive
2636 * XXX buffers instead of just failing.
2637 */
2638 sipcom_rxdrain(sc);
2639 goto out;
2640 }
2641 } else
2642 sip_init_rxdesc(sc, i);
2643 }
2644 sc->sc_rxptr = 0;
2645 sc->sc_rxdiscard = 0;
2646 sip_rxchain_reset(sc);
2647
2648 /*
2649 * Set the configuration register; it's already initialized
2650 * in sip_attach().
2651 */
2652 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2653
2654 /*
2655 * Initialize the prototype TXCFG register.
2656 */
2657 if (sc->sc_gigabit) {
2658 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2659 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2660 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2661 SIP_SIS900_REV(sc, SIS_REV_960) ||
2662 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2663 (sc->sc_cfg & CFG_EDBMASTEN)) {
2664 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2665 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2666 } else {
2667 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2668 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2669 }
2670
2671 sc->sc_txcfg |= TXCFG_ATP |
2672 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2673 sc->sc_tx_drain_thresh;
2674 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2675
2676 /*
2677 * Initialize the receive drain threshold if we have never
2678 * done so.
2679 */
2680 if (sc->sc_rx_drain_thresh == 0) {
2681 /*
2682 * XXX This value should be tuned. This is set to the
2683 * maximum of 248 bytes, and we may be able to improve
2684 * performance by decreasing it (although we should never
2685 * set this value lower than 2; 14 bytes are required to
2686 * filter the packet).
2687 */
2688 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2689 }
2690
2691 /*
2692 * Initialize the prototype RXCFG register.
2693 */
2694 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2695 /*
2696 * Accept long packets (including FCS) so we can handle
2697 * 802.1q-tagged frames and jumbo frames properly.
2698 */
2699 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2700 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2701 sc->sc_rxcfg |= RXCFG_ALP;
2702
2703 /*
2704 * Checksum offloading is disabled if the user selects an MTU
2705 * larger than 8109. (FreeBSD says 8152, but there is emperical
2706 * evidence that >8109 does not work on some boards, such as the
2707 * Planex GN-1000TE).
2708 */
2709 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2710 (ifp->if_capenable &
2711 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2712 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2713 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2714 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2715 "disabled.\n", device_xname(sc->sc_dev));
2716 ifp->if_capenable &=
2717 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2718 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2719 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2720 ifp->if_csum_flags_tx = 0;
2721 ifp->if_csum_flags_rx = 0;
2722 }
2723
2724 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2725
2726 if (sc->sc_gigabit)
2727 sipcom_dp83820_init(sc, ifp->if_capenable);
2728
2729 /*
2730 * Give the transmit and receive rings to the chip.
2731 */
2732 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2733 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2734
2735 /*
2736 * Initialize the interrupt mask.
2737 */
2738 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2739 sc->sc_bits.b_isr_sserr |
2740 sc->sc_bits.b_isr_rmabt |
2741 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2742 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2743 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2744
2745 /* Set up the receive filter. */
2746 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2747
2748 /*
2749 * Tune sc_rx_flow_thresh.
2750 * XXX "More than 8KB" is too short for jumbo frames.
2751 * XXX TODO: Threshold value should be user-settable.
2752 */
2753 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2754 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2755 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2756
2757 /*
2758 * Set the current media. Do this after initializing the prototype
2759 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2760 * control.
2761 */
2762 if ((error = ether_mediachange(ifp)) != 0)
2763 goto out;
2764
2765 /*
2766 * Set the interrupt hold-off timer to 100us.
2767 */
2768 if (sc->sc_gigabit)
2769 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2770
2771 /*
2772 * Enable interrupts.
2773 */
2774 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2775
2776 /*
2777 * Start the transmit and receive processes.
2778 */
2779 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2780
2781 /*
2782 * Start the one second MII clock.
2783 */
2784 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2785
2786 /*
2787 * ...all done!
2788 */
2789 ifp->if_flags |= IFF_RUNNING;
2790 ifp->if_flags &= ~IFF_OACTIVE;
2791 sc->sc_if_flags = ifp->if_flags;
2792 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2793 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2794 sc->sc_prev.if_capenable = ifp->if_capenable;
2795
2796 out:
2797 if (error)
2798 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2799 return (error);
2800 }
2801
2802 /*
2803 * sip_drain:
2804 *
2805 * Drain the receive queue.
2806 */
2807 static void
2808 sipcom_rxdrain(struct sip_softc *sc)
2809 {
2810 struct sip_rxsoft *rxs;
2811 int i;
2812
2813 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2814 rxs = &sc->sc_rxsoft[i];
2815 if (rxs->rxs_mbuf != NULL) {
2816 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2817 m_freem(rxs->rxs_mbuf);
2818 rxs->rxs_mbuf = NULL;
2819 }
2820 }
2821 }
2822
2823 /*
2824 * sip_stop: [ ifnet interface function ]
2825 *
2826 * Stop transmission on the interface.
2827 */
2828 static void
2829 sipcom_stop(struct ifnet *ifp, int disable)
2830 {
2831 struct sip_softc *sc = ifp->if_softc;
2832 bus_space_tag_t st = sc->sc_st;
2833 bus_space_handle_t sh = sc->sc_sh;
2834 struct sip_txsoft *txs;
2835 u_int32_t cmdsts = 0; /* DEBUG */
2836
2837 /*
2838 * Stop the one second clock.
2839 */
2840 callout_stop(&sc->sc_tick_ch);
2841
2842 /* Down the MII. */
2843 mii_down(&sc->sc_mii);
2844
2845 if (device_is_active(sc->sc_dev)) {
2846 /*
2847 * Disable interrupts.
2848 */
2849 bus_space_write_4(st, sh, SIP_IER, 0);
2850
2851 /*
2852 * Stop receiver and transmitter.
2853 */
2854 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2855 }
2856
2857 /*
2858 * Release any queued transmit buffers.
2859 */
2860 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2861 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2862 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2863 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2864 CMDSTS_INTR) == 0)
2865 printf("%s: sip_stop: last descriptor does not "
2866 "have INTR bit set\n", device_xname(sc->sc_dev));
2867 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2868 #ifdef DIAGNOSTIC
2869 if (txs->txs_mbuf == NULL) {
2870 printf("%s: dirty txsoft with no mbuf chain\n",
2871 device_xname(sc->sc_dev));
2872 panic("sip_stop");
2873 }
2874 #endif
2875 cmdsts |= /* DEBUG */
2876 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2877 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2878 m_freem(txs->txs_mbuf);
2879 txs->txs_mbuf = NULL;
2880 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2881 }
2882
2883 /*
2884 * Mark the interface down and cancel the watchdog timer.
2885 */
2886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887 ifp->if_timer = 0;
2888
2889 if (disable)
2890 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2891
2892 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2893 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2894 printf("%s: sip_stop: no INTR bits set in dirty tx "
2895 "descriptors\n", device_xname(sc->sc_dev));
2896 }
2897
2898 /*
2899 * sip_read_eeprom:
2900 *
2901 * Read data from the serial EEPROM.
2902 */
2903 static void
2904 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2905 u_int16_t *data)
2906 {
2907 bus_space_tag_t st = sc->sc_st;
2908 bus_space_handle_t sh = sc->sc_sh;
2909 u_int16_t reg;
2910 int i, x;
2911
2912 for (i = 0; i < wordcnt; i++) {
2913 /* Send CHIP SELECT. */
2914 reg = EROMAR_EECS;
2915 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916
2917 /* Shift in the READ opcode. */
2918 for (x = 3; x > 0; x--) {
2919 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2920 reg |= EROMAR_EEDI;
2921 else
2922 reg &= ~EROMAR_EEDI;
2923 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 bus_space_write_4(st, sh, SIP_EROMAR,
2925 reg | EROMAR_EESK);
2926 delay(4);
2927 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 delay(4);
2929 }
2930
2931 /* Shift in address. */
2932 for (x = 6; x > 0; x--) {
2933 if ((word + i) & (1 << (x - 1)))
2934 reg |= EROMAR_EEDI;
2935 else
2936 reg &= ~EROMAR_EEDI;
2937 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2938 bus_space_write_4(st, sh, SIP_EROMAR,
2939 reg | EROMAR_EESK);
2940 delay(4);
2941 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2942 delay(4);
2943 }
2944
2945 /* Shift out data. */
2946 reg = EROMAR_EECS;
2947 data[i] = 0;
2948 for (x = 16; x > 0; x--) {
2949 bus_space_write_4(st, sh, SIP_EROMAR,
2950 reg | EROMAR_EESK);
2951 delay(4);
2952 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2953 data[i] |= (1 << (x - 1));
2954 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2955 delay(4);
2956 }
2957
2958 /* Clear CHIP SELECT. */
2959 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2960 delay(4);
2961 }
2962 }
2963
2964 /*
2965 * sipcom_add_rxbuf:
2966 *
2967 * Add a receive buffer to the indicated descriptor.
2968 */
2969 static int
2970 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2971 {
2972 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2973 struct mbuf *m;
2974 int error;
2975
2976 MGETHDR(m, M_DONTWAIT, MT_DATA);
2977 if (m == NULL)
2978 return (ENOBUFS);
2979 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2980
2981 MCLGET(m, M_DONTWAIT);
2982 if ((m->m_flags & M_EXT) == 0) {
2983 m_freem(m);
2984 return (ENOBUFS);
2985 }
2986
2987 /* XXX I don't believe this is necessary. --dyoung */
2988 if (sc->sc_gigabit)
2989 m->m_len = sc->sc_parm->p_rxbuf_len;
2990
2991 if (rxs->rxs_mbuf != NULL)
2992 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2993
2994 rxs->rxs_mbuf = m;
2995
2996 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2997 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2998 BUS_DMA_READ|BUS_DMA_NOWAIT);
2999 if (error) {
3000 printf("%s: can't load rx DMA map %d, error = %d\n",
3001 device_xname(sc->sc_dev), idx, error);
3002 panic("%s", __func__); /* XXX */
3003 }
3004
3005 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3006 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3007
3008 sip_init_rxdesc(sc, idx);
3009
3010 return (0);
3011 }
3012
3013 /*
3014 * sip_sis900_set_filter:
3015 *
3016 * Set up the receive filter.
3017 */
3018 static void
3019 sipcom_sis900_set_filter(struct sip_softc *sc)
3020 {
3021 bus_space_tag_t st = sc->sc_st;
3022 bus_space_handle_t sh = sc->sc_sh;
3023 struct ethercom *ec = &sc->sc_ethercom;
3024 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3025 struct ether_multi *enm;
3026 const u_int8_t *cp;
3027 struct ether_multistep step;
3028 u_int32_t crc, mchash[16];
3029
3030 /*
3031 * Initialize the prototype RFCR.
3032 */
3033 sc->sc_rfcr = RFCR_RFEN;
3034 if (ifp->if_flags & IFF_BROADCAST)
3035 sc->sc_rfcr |= RFCR_AAB;
3036 if (ifp->if_flags & IFF_PROMISC) {
3037 sc->sc_rfcr |= RFCR_AAP;
3038 goto allmulti;
3039 }
3040
3041 /*
3042 * Set up the multicast address filter by passing all multicast
3043 * addresses through a CRC generator, and then using the high-order
3044 * 6 bits as an index into the 128 bit multicast hash table (only
3045 * the lower 16 bits of each 32 bit multicast hash register are
3046 * valid). The high order bits select the register, while the
3047 * rest of the bits select the bit within the register.
3048 */
3049
3050 memset(mchash, 0, sizeof(mchash));
3051
3052 /*
3053 * SiS900 (at least SiS963) requires us to register the address of
3054 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3055 */
3056 crc = 0x0ed423f9;
3057
3058 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3059 SIP_SIS900_REV(sc, SIS_REV_960) ||
3060 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3061 /* Just want the 8 most significant bits. */
3062 crc >>= 24;
3063 } else {
3064 /* Just want the 7 most significant bits. */
3065 crc >>= 25;
3066 }
3067
3068 /* Set the corresponding bit in the hash table. */
3069 mchash[crc >> 4] |= 1 << (crc & 0xf);
3070
3071 ETHER_FIRST_MULTI(step, ec, enm);
3072 while (enm != NULL) {
3073 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3074 /*
3075 * We must listen to a range of multicast addresses.
3076 * For now, just accept all multicasts, rather than
3077 * trying to set only those filter bits needed to match
3078 * the range. (At this time, the only use of address
3079 * ranges is for IP multicast routing, for which the
3080 * range is big enough to require all bits set.)
3081 */
3082 goto allmulti;
3083 }
3084
3085 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3086
3087 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3088 SIP_SIS900_REV(sc, SIS_REV_960) ||
3089 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3090 /* Just want the 8 most significant bits. */
3091 crc >>= 24;
3092 } else {
3093 /* Just want the 7 most significant bits. */
3094 crc >>= 25;
3095 }
3096
3097 /* Set the corresponding bit in the hash table. */
3098 mchash[crc >> 4] |= 1 << (crc & 0xf);
3099
3100 ETHER_NEXT_MULTI(step, enm);
3101 }
3102
3103 ifp->if_flags &= ~IFF_ALLMULTI;
3104 goto setit;
3105
3106 allmulti:
3107 ifp->if_flags |= IFF_ALLMULTI;
3108 sc->sc_rfcr |= RFCR_AAM;
3109
3110 setit:
3111 #define FILTER_EMIT(addr, data) \
3112 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3113 delay(1); \
3114 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3115 delay(1)
3116
3117 /*
3118 * Disable receive filter, and program the node address.
3119 */
3120 cp = CLLADDR(ifp->if_sadl);
3121 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3122 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3123 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3124
3125 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3126 /*
3127 * Program the multicast hash table.
3128 */
3129 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3130 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3131 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3132 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3133 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3134 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3135 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3136 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3137 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3138 SIP_SIS900_REV(sc, SIS_REV_960) ||
3139 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3140 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3141 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3142 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3143 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3144 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3145 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3146 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3147 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3148 }
3149 }
3150 #undef FILTER_EMIT
3151
3152 /*
3153 * Re-enable the receiver filter.
3154 */
3155 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3156 }
3157
3158 /*
3159 * sip_dp83815_set_filter:
3160 *
3161 * Set up the receive filter.
3162 */
3163 static void
3164 sipcom_dp83815_set_filter(struct sip_softc *sc)
3165 {
3166 bus_space_tag_t st = sc->sc_st;
3167 bus_space_handle_t sh = sc->sc_sh;
3168 struct ethercom *ec = &sc->sc_ethercom;
3169 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3170 struct ether_multi *enm;
3171 const u_int8_t *cp;
3172 struct ether_multistep step;
3173 u_int32_t crc, hash, slot, bit;
3174 #define MCHASH_NWORDS_83820 128
3175 #define MCHASH_NWORDS_83815 32
3176 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3177 u_int16_t mchash[MCHASH_NWORDS];
3178 int i;
3179
3180 /*
3181 * Initialize the prototype RFCR.
3182 * Enable the receive filter, and accept on
3183 * Perfect (destination address) Match
3184 * If IFF_BROADCAST, also accept all broadcast packets.
3185 * If IFF_PROMISC, accept all unicast packets (and later, set
3186 * IFF_ALLMULTI and accept all multicast, too).
3187 */
3188 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3189 if (ifp->if_flags & IFF_BROADCAST)
3190 sc->sc_rfcr |= RFCR_AAB;
3191 if (ifp->if_flags & IFF_PROMISC) {
3192 sc->sc_rfcr |= RFCR_AAP;
3193 goto allmulti;
3194 }
3195
3196 /*
3197 * Set up the DP83820/DP83815 multicast address filter by
3198 * passing all multicast addresses through a CRC generator,
3199 * and then using the high-order 11/9 bits as an index into
3200 * the 2048/512 bit multicast hash table. The high-order
3201 * 7/5 bits select the slot, while the low-order 4 bits
3202 * select the bit within the slot. Note that only the low
3203 * 16-bits of each filter word are used, and there are
3204 * 128/32 filter words.
3205 */
3206
3207 memset(mchash, 0, sizeof(mchash));
3208
3209 ifp->if_flags &= ~IFF_ALLMULTI;
3210 ETHER_FIRST_MULTI(step, ec, enm);
3211 if (enm == NULL)
3212 goto setit;
3213 while (enm != NULL) {
3214 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3215 /*
3216 * We must listen to a range of multicast addresses.
3217 * For now, just accept all multicasts, rather than
3218 * trying to set only those filter bits needed to match
3219 * the range. (At this time, the only use of address
3220 * ranges is for IP multicast routing, for which the
3221 * range is big enough to require all bits set.)
3222 */
3223 goto allmulti;
3224 }
3225
3226 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3227
3228 if (sc->sc_gigabit) {
3229 /* Just want the 11 most significant bits. */
3230 hash = crc >> 21;
3231 } else {
3232 /* Just want the 9 most significant bits. */
3233 hash = crc >> 23;
3234 }
3235
3236 slot = hash >> 4;
3237 bit = hash & 0xf;
3238
3239 /* Set the corresponding bit in the hash table. */
3240 mchash[slot] |= 1 << bit;
3241
3242 ETHER_NEXT_MULTI(step, enm);
3243 }
3244 sc->sc_rfcr |= RFCR_MHEN;
3245 goto setit;
3246
3247 allmulti:
3248 ifp->if_flags |= IFF_ALLMULTI;
3249 sc->sc_rfcr |= RFCR_AAM;
3250
3251 setit:
3252 #define FILTER_EMIT(addr, data) \
3253 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3254 delay(1); \
3255 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3256 delay(1)
3257
3258 /*
3259 * Disable receive filter, and program the node address.
3260 */
3261 cp = CLLADDR(ifp->if_sadl);
3262 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3263 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3264 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3265
3266 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3267 int nwords =
3268 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3269 /*
3270 * Program the multicast hash table.
3271 */
3272 for (i = 0; i < nwords; i++) {
3273 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3274 }
3275 }
3276 #undef FILTER_EMIT
3277 #undef MCHASH_NWORDS
3278 #undef MCHASH_NWORDS_83815
3279 #undef MCHASH_NWORDS_83820
3280
3281 /*
3282 * Re-enable the receiver filter.
3283 */
3284 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3285 }
3286
3287 /*
3288 * sip_dp83820_mii_readreg: [mii interface function]
3289 *
3290 * Read a PHY register on the MII of the DP83820.
3291 */
3292 static int
3293 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3294 {
3295 struct sip_softc *sc = device_private(self);
3296
3297 if (sc->sc_cfg & CFG_TBI_EN) {
3298 bus_addr_t tbireg;
3299 int rv;
3300
3301 if (phy != 0)
3302 return (0);
3303
3304 switch (reg) {
3305 case MII_BMCR: tbireg = SIP_TBICR; break;
3306 case MII_BMSR: tbireg = SIP_TBISR; break;
3307 case MII_ANAR: tbireg = SIP_TANAR; break;
3308 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3309 case MII_ANER: tbireg = SIP_TANER; break;
3310 case MII_EXTSR:
3311 /*
3312 * Don't even bother reading the TESR register.
3313 * The manual documents that the device has
3314 * 1000baseX full/half capability, but the
3315 * register itself seems read back 0 on some
3316 * boards. Just hard-code the result.
3317 */
3318 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3319
3320 default:
3321 return (0);
3322 }
3323
3324 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3325 if (tbireg == SIP_TBISR) {
3326 /* LINK and ACOMP are switched! */
3327 int val = rv;
3328
3329 rv = 0;
3330 if (val & TBISR_MR_LINK_STATUS)
3331 rv |= BMSR_LINK;
3332 if (val & TBISR_MR_AN_COMPLETE)
3333 rv |= BMSR_ACOMP;
3334
3335 /*
3336 * The manual claims this register reads back 0
3337 * on hard and soft reset. But we want to let
3338 * the gentbi driver know that we support auto-
3339 * negotiation, so hard-code this bit in the
3340 * result.
3341 */
3342 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3343 }
3344
3345 return (rv);
3346 }
3347
3348 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3349 }
3350
3351 /*
3352 * sip_dp83820_mii_writereg: [mii interface function]
3353 *
3354 * Write a PHY register on the MII of the DP83820.
3355 */
3356 static void
3357 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3358 {
3359 struct sip_softc *sc = device_private(self);
3360
3361 if (sc->sc_cfg & CFG_TBI_EN) {
3362 bus_addr_t tbireg;
3363
3364 if (phy != 0)
3365 return;
3366
3367 switch (reg) {
3368 case MII_BMCR: tbireg = SIP_TBICR; break;
3369 case MII_ANAR: tbireg = SIP_TANAR; break;
3370 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3371 default:
3372 return;
3373 }
3374
3375 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3376 return;
3377 }
3378
3379 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3380 }
3381
3382 /*
3383 * sip_dp83820_mii_statchg: [mii interface function]
3384 *
3385 * Callback from MII layer when media changes.
3386 */
3387 static void
3388 sipcom_dp83820_mii_statchg(device_t self)
3389 {
3390 struct sip_softc *sc = device_private(self);
3391 struct mii_data *mii = &sc->sc_mii;
3392 u_int32_t cfg, pcr;
3393
3394 /*
3395 * Get flow control negotiation result.
3396 */
3397 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3398 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3399 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3400 mii->mii_media_active &= ~IFM_ETH_FMASK;
3401 }
3402
3403 /*
3404 * Update TXCFG for full-duplex operation.
3405 */
3406 if ((mii->mii_media_active & IFM_FDX) != 0)
3407 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3408 else
3409 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3410
3411 /*
3412 * Update RXCFG for full-duplex or loopback.
3413 */
3414 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3415 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3416 sc->sc_rxcfg |= RXCFG_ATX;
3417 else
3418 sc->sc_rxcfg &= ~RXCFG_ATX;
3419
3420 /*
3421 * Update CFG for MII/GMII.
3422 */
3423 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3424 cfg = sc->sc_cfg | CFG_MODE_1000;
3425 else
3426 cfg = sc->sc_cfg;
3427
3428 /*
3429 * 802.3x flow control.
3430 */
3431 pcr = 0;
3432 if (sc->sc_flowflags & IFM_FLOW) {
3433 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3434 pcr |= sc->sc_rx_flow_thresh;
3435 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3436 pcr |= PCR_PSEN | PCR_PS_MCAST;
3437 }
3438
3439 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3440 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3441 sc->sc_txcfg);
3442 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3443 sc->sc_rxcfg);
3444 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3445 }
3446
3447 /*
3448 * sip_mii_bitbang_read: [mii bit-bang interface function]
3449 *
3450 * Read the MII serial port for the MII bit-bang module.
3451 */
3452 static u_int32_t
3453 sipcom_mii_bitbang_read(device_t self)
3454 {
3455 struct sip_softc *sc = device_private(self);
3456
3457 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3458 }
3459
3460 /*
3461 * sip_mii_bitbang_write: [mii big-bang interface function]
3462 *
3463 * Write the MII serial port for the MII bit-bang module.
3464 */
3465 static void
3466 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3467 {
3468 struct sip_softc *sc = device_private(self);
3469
3470 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3471 }
3472
3473 /*
3474 * sip_sis900_mii_readreg: [mii interface function]
3475 *
3476 * Read a PHY register on the MII.
3477 */
3478 static int
3479 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3480 {
3481 struct sip_softc *sc = device_private(self);
3482 u_int32_t enphy;
3483
3484 /*
3485 * The PHY of recent SiS chipsets is accessed through bitbang
3486 * operations.
3487 */
3488 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3489 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3490 phy, reg);
3491
3492 #ifndef SIS900_MII_RESTRICT
3493 /*
3494 * The SiS 900 has only an internal PHY on the MII. Only allow
3495 * MII address 0.
3496 */
3497 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3498 return (0);
3499 #endif
3500
3501 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3502 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3503 ENPHY_RWCMD | ENPHY_ACCESS);
3504 do {
3505 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3506 } while (enphy & ENPHY_ACCESS);
3507 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3508 }
3509
3510 /*
3511 * sip_sis900_mii_writereg: [mii interface function]
3512 *
3513 * Write a PHY register on the MII.
3514 */
3515 static void
3516 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3517 {
3518 struct sip_softc *sc = device_private(self);
3519 u_int32_t enphy;
3520
3521 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3522 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3523 phy, reg, val);
3524 return;
3525 }
3526
3527 #ifndef SIS900_MII_RESTRICT
3528 /*
3529 * The SiS 900 has only an internal PHY on the MII. Only allow
3530 * MII address 0.
3531 */
3532 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3533 return;
3534 #endif
3535
3536 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3537 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3538 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3539 do {
3540 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3541 } while (enphy & ENPHY_ACCESS);
3542 }
3543
3544 /*
3545 * sip_sis900_mii_statchg: [mii interface function]
3546 *
3547 * Callback from MII layer when media changes.
3548 */
3549 static void
3550 sipcom_sis900_mii_statchg(device_t self)
3551 {
3552 struct sip_softc *sc = device_private(self);
3553 struct mii_data *mii = &sc->sc_mii;
3554 u_int32_t flowctl;
3555
3556 /*
3557 * Get flow control negotiation result.
3558 */
3559 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3560 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3561 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3562 mii->mii_media_active &= ~IFM_ETH_FMASK;
3563 }
3564
3565 /*
3566 * Update TXCFG for full-duplex operation.
3567 */
3568 if ((mii->mii_media_active & IFM_FDX) != 0)
3569 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3570 else
3571 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3572
3573 /*
3574 * Update RXCFG for full-duplex or loopback.
3575 */
3576 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3577 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3578 sc->sc_rxcfg |= RXCFG_ATX;
3579 else
3580 sc->sc_rxcfg &= ~RXCFG_ATX;
3581
3582 /*
3583 * Update IMR for use of 802.3x flow control.
3584 */
3585 if (sc->sc_flowflags & IFM_FLOW) {
3586 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3587 flowctl = FLOWCTL_FLOWEN;
3588 } else {
3589 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3590 flowctl = 0;
3591 }
3592
3593 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3594 sc->sc_txcfg);
3595 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3596 sc->sc_rxcfg);
3597 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3598 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3599 }
3600
3601 /*
3602 * sip_dp83815_mii_readreg: [mii interface function]
3603 *
3604 * Read a PHY register on the MII.
3605 */
3606 static int
3607 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3608 {
3609 struct sip_softc *sc = device_private(self);
3610 u_int32_t val;
3611
3612 /*
3613 * The DP83815 only has an internal PHY. Only allow
3614 * MII address 0.
3615 */
3616 if (phy != 0)
3617 return (0);
3618
3619 /*
3620 * Apparently, after a reset, the DP83815 can take a while
3621 * to respond. During this recovery period, the BMSR returns
3622 * a value of 0. Catch this -- it's not supposed to happen
3623 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3624 * PHY to come back to life.
3625 *
3626 * This works out because the BMSR is the first register
3627 * read during the PHY probe process.
3628 */
3629 do {
3630 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3631 } while (reg == MII_BMSR && val == 0);
3632
3633 return (val & 0xffff);
3634 }
3635
3636 /*
3637 * sip_dp83815_mii_writereg: [mii interface function]
3638 *
3639 * Write a PHY register to the MII.
3640 */
3641 static void
3642 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3643 {
3644 struct sip_softc *sc = device_private(self);
3645
3646 /*
3647 * The DP83815 only has an internal PHY. Only allow
3648 * MII address 0.
3649 */
3650 if (phy != 0)
3651 return;
3652
3653 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3654 }
3655
3656 /*
3657 * sip_dp83815_mii_statchg: [mii interface function]
3658 *
3659 * Callback from MII layer when media changes.
3660 */
3661 static void
3662 sipcom_dp83815_mii_statchg(device_t self)
3663 {
3664 struct sip_softc *sc = device_private(self);
3665
3666 /*
3667 * Update TXCFG for full-duplex operation.
3668 */
3669 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3670 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3671 else
3672 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3673
3674 /*
3675 * Update RXCFG for full-duplex or loopback.
3676 */
3677 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3678 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3679 sc->sc_rxcfg |= RXCFG_ATX;
3680 else
3681 sc->sc_rxcfg &= ~RXCFG_ATX;
3682
3683 /*
3684 * XXX 802.3x flow control.
3685 */
3686
3687 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3688 sc->sc_txcfg);
3689 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3690 sc->sc_rxcfg);
3691
3692 /*
3693 * Some DP83815s experience problems when used with short
3694 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3695 * sequence adjusts the DSP's signal attenuation to fix the
3696 * problem.
3697 */
3698 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3699 uint32_t reg;
3700
3701 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3702
3703 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3704 reg &= 0x0fff;
3705 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3706 delay(100);
3707 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3708 reg &= 0x00ff;
3709 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3710 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3711 0x00e8);
3712 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3713 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3714 reg | 0x20);
3715 }
3716
3717 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3718 }
3719 }
3720
3721 static void
3722 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3723 const struct pci_attach_args *pa, u_int8_t *enaddr)
3724 {
3725 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3726 u_int8_t cksum, *e, match;
3727 int i;
3728
3729 /*
3730 * EEPROM data format for the DP83820 can be found in
3731 * the DP83820 manual, section 4.2.4.
3732 */
3733
3734 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3735
3736 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3737 match = ~(match - 1);
3738
3739 cksum = 0x55;
3740 e = (u_int8_t *) eeprom_data;
3741 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3742 cksum += *e++;
3743
3744 if (cksum != match)
3745 printf("%s: Checksum (%x) mismatch (%x)",
3746 device_xname(sc->sc_dev), cksum, match);
3747
3748 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3749 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3750 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3751 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3752 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3753 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3754 }
3755
3756 static void
3757 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3758 {
3759 int i;
3760
3761 /*
3762 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3763 * a reason, but I don't know it.
3764 */
3765 for (i = 0; i < 10; i++)
3766 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3767 }
3768
3769 static void
3770 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3771 const struct pci_attach_args *pa, u_int8_t *enaddr)
3772 {
3773 u_int16_t myea[ETHER_ADDR_LEN / 2];
3774
3775 switch (sc->sc_rev) {
3776 case SIS_REV_630S:
3777 case SIS_REV_630E:
3778 case SIS_REV_630EA1:
3779 case SIS_REV_630ET:
3780 case SIS_REV_635:
3781 /*
3782 * The MAC address for the on-board Ethernet of
3783 * the SiS 630 chipset is in the NVRAM. Kick
3784 * the chip into re-loading it from NVRAM, and
3785 * read the MAC address out of the filter registers.
3786 */
3787 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3788
3789 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3790 RFCR_RFADDR_NODE0);
3791 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3792 0xffff;
3793
3794 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3795 RFCR_RFADDR_NODE2);
3796 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3797 0xffff;
3798
3799 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3800 RFCR_RFADDR_NODE4);
3801 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3802 0xffff;
3803 break;
3804
3805 case SIS_REV_960:
3806 {
3807 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3808 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3809
3810 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3811 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3812
3813 int waittime, i;
3814
3815 /* Allow to read EEPROM from LAN. It is shared
3816 * between a 1394 controller and the NIC and each
3817 * time we access it, we need to set SIS_EECMD_REQ.
3818 */
3819 SIS_SET_EROMAR(sc, EROMAR_REQ);
3820
3821 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3822 /* Force EEPROM to idle state. */
3823
3824 /*
3825 * XXX-cube This is ugly. I'll look for docs about it.
3826 */
3827 SIS_SET_EROMAR(sc, EROMAR_EECS);
3828 sipcom_sis900_eeprom_delay(sc);
3829 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3830 SIS_SET_EROMAR(sc, EROMAR_EESK);
3831 sipcom_sis900_eeprom_delay(sc);
3832 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3833 sipcom_sis900_eeprom_delay(sc);
3834 }
3835 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3836 sipcom_sis900_eeprom_delay(sc);
3837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3838
3839 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3840 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3841 sizeof(myea) / sizeof(myea[0]), myea);
3842 break;
3843 }
3844 DELAY(1);
3845 }
3846
3847 /*
3848 * Set SIS_EECTL_CLK to high, so a other master
3849 * can operate on the i2c bus.
3850 */
3851 SIS_SET_EROMAR(sc, EROMAR_EESK);
3852
3853 /* Refuse EEPROM access by LAN */
3854 SIS_SET_EROMAR(sc, EROMAR_DONE);
3855 } break;
3856
3857 default:
3858 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3859 sizeof(myea) / sizeof(myea[0]), myea);
3860 }
3861
3862 enaddr[0] = myea[0] & 0xff;
3863 enaddr[1] = myea[0] >> 8;
3864 enaddr[2] = myea[1] & 0xff;
3865 enaddr[3] = myea[1] >> 8;
3866 enaddr[4] = myea[2] & 0xff;
3867 enaddr[5] = myea[2] >> 8;
3868 }
3869
3870 /* Table and macro to bit-reverse an octet. */
3871 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3872 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3873
3874 static void
3875 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3876 const struct pci_attach_args *pa, u_int8_t *enaddr)
3877 {
3878 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3879 u_int8_t cksum, *e, match;
3880 int i;
3881
3882 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3883 sizeof(eeprom_data[0]), eeprom_data);
3884
3885 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3886 match = ~(match - 1);
3887
3888 cksum = 0x55;
3889 e = (u_int8_t *) eeprom_data;
3890 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3891 cksum += *e++;
3892 }
3893 if (cksum != match) {
3894 printf("%s: Checksum (%x) mismatch (%x)",
3895 device_xname(sc->sc_dev), cksum, match);
3896 }
3897
3898 /*
3899 * Unrolled because it makes slightly more sense this way.
3900 * The DP83815 stores the MAC address in bit 0 of word 6
3901 * through bit 15 of word 8.
3902 */
3903 ea = &eeprom_data[6];
3904 enaddr[0] = ((*ea & 0x1) << 7);
3905 ea++;
3906 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3907 enaddr[1] = ((*ea & 0x1FE) >> 1);
3908 enaddr[2] = ((*ea & 0x1) << 7);
3909 ea++;
3910 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3911 enaddr[3] = ((*ea & 0x1FE) >> 1);
3912 enaddr[4] = ((*ea & 0x1) << 7);
3913 ea++;
3914 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3915 enaddr[5] = ((*ea & 0x1FE) >> 1);
3916
3917 /*
3918 * In case that's not weird enough, we also need to reverse
3919 * the bits in each byte. This all actually makes more sense
3920 * if you think about the EEPROM storage as an array of bits
3921 * being shifted into bytes, but that's not how we're looking
3922 * at it here...
3923 */
3924 for (i = 0; i < 6 ;i++)
3925 enaddr[i] = bbr(enaddr[i]);
3926 }
3927
3928 /*
3929 * sip_mediastatus: [ifmedia interface function]
3930 *
3931 * Get the current interface media status.
3932 */
3933 static void
3934 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3935 {
3936 struct sip_softc *sc = ifp->if_softc;
3937
3938 if (!device_is_active(sc->sc_dev)) {
3939 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3940 ifmr->ifm_status = 0;
3941 return;
3942 }
3943 ether_mediastatus(ifp, ifmr);
3944 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3945 sc->sc_flowflags;
3946 }
3947