if_sip.c revision 1.147.2.2 1 /* $NetBSD: if_sip.c,v 1.147.2.2 2011/03/05 20:53:43 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.147.2.2 2011/03/05 20:53:43 rmind Exp $");
77
78 #include "rnd.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #if NRND > 0
93 #include <sys/rnd.h>
94 #endif
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100
101 #include <net/bpf.h>
102
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 #include <machine/endian.h>
106
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <dev/mii/mii_bitbang.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_sipreg.h>
116
117 /*
118 * Transmit descriptor list size. This is arbitrary, but allocate
119 * enough descriptors for 128 pending transmissions, and 8 segments
120 * per packet (64 for DP83820 for jumbo frames).
121 *
122 * This MUST work out to a power of 2.
123 */
124 #define GSIP_NTXSEGS_ALLOC 16
125 #define SIP_NTXSEGS_ALLOC 8
126
127 #define SIP_TXQUEUELEN 256
128 #define MAX_SIP_NTXDESC \
129 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
130
131 /*
132 * Receive descriptor list size. We have one Rx buffer per incoming
133 * packet, so this logic is a little simpler.
134 *
135 * Actually, on the DP83820, we allow the packet to consume more than
136 * one buffer, in order to support jumbo Ethernet frames. In that
137 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
138 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
139 * so we'd better be quick about handling receive interrupts.
140 */
141 #define GSIP_NRXDESC 256
142 #define SIP_NRXDESC 128
143
144 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
145
146 /*
147 * Control structures are DMA'd to the SiS900 chip. We allocate them in
148 * a single clump that maps to a single DMA segment to make several things
149 * easier.
150 */
151 struct sip_control_data {
152 /*
153 * The transmit descriptors.
154 */
155 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156
157 /*
158 * The receive descriptors.
159 */
160 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162
163 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
164 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
165 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
166
167 /*
168 * Software state for transmit jobs.
169 */
170 struct sip_txsoft {
171 struct mbuf *txs_mbuf; /* head of our mbuf chain */
172 bus_dmamap_t txs_dmamap; /* our DMA map */
173 int txs_firstdesc; /* first descriptor in packet */
174 int txs_lastdesc; /* last descriptor in packet */
175 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179
180 /*
181 * Software state for receive jobs.
182 */
183 struct sip_rxsoft {
184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t rxs_dmamap; /* our DMA map */
186 };
187
188 enum sip_attach_stage {
189 SIP_ATTACH_FIN = 0
190 , SIP_ATTACH_CREATE_RXMAP
191 , SIP_ATTACH_CREATE_TXMAP
192 , SIP_ATTACH_LOAD_MAP
193 , SIP_ATTACH_CREATE_MAP
194 , SIP_ATTACH_MAP_MEM
195 , SIP_ATTACH_ALLOC_MEM
196 , SIP_ATTACH_INTR
197 , SIP_ATTACH_MAP
198 };
199
200 /*
201 * Software state per device.
202 */
203 struct sip_softc {
204 device_t sc_dev; /* generic device information */
205 device_suspensor_t sc_suspensor;
206 pmf_qual_t sc_qual;
207
208 bus_space_tag_t sc_st; /* bus space tag */
209 bus_space_handle_t sc_sh; /* bus space handle */
210 bus_size_t sc_sz; /* bus space size */
211 bus_dma_tag_t sc_dmat; /* bus DMA tag */
212 pci_chipset_tag_t sc_pc;
213 bus_dma_segment_t sc_seg;
214 struct ethercom sc_ethercom; /* ethernet common data */
215
216 const struct sip_product *sc_model; /* which model are we? */
217 int sc_gigabit; /* 1: 83820, 0: other */
218 int sc_rev; /* chip revision */
219
220 void *sc_ih; /* interrupt cookie */
221
222 struct mii_data sc_mii; /* MII/media information */
223
224 callout_t sc_tick_ch; /* tick callout */
225
226 bus_dmamap_t sc_cddmamap; /* control data DMA map */
227 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
228
229 /*
230 * Software state for transmit and receive descriptors.
231 */
232 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
233 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
234
235 /*
236 * Control data structures.
237 */
238 struct sip_control_data *sc_control_data;
239 #define sc_txdescs sc_control_data->scd_txdescs
240 #define sc_rxdescs sc_control_data->scd_rxdescs
241
242 #ifdef SIP_EVENT_COUNTERS
243 /*
244 * Event counters.
245 */
246 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
247 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
248 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
249 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
250 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
251 struct evcnt sc_ev_rxintr; /* Rx interrupts */
252 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
253 struct evcnt sc_ev_rxpause; /* PAUSE received */
254 /* DP83820 only */
255 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
256 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
257 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
258 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
259 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
260 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
261 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
262 #endif /* SIP_EVENT_COUNTERS */
263
264 u_int32_t sc_txcfg; /* prototype TXCFG register */
265 u_int32_t sc_rxcfg; /* prototype RXCFG register */
266 u_int32_t sc_imr; /* prototype IMR register */
267 u_int32_t sc_rfcr; /* prototype RFCR register */
268
269 u_int32_t sc_cfg; /* prototype CFG register */
270
271 u_int32_t sc_gpior; /* prototype GPIOR register */
272
273 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
274 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
275
276 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
277
278 int sc_flowflags; /* 802.3x flow control flags */
279 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
280 int sc_paused; /* paused indication */
281
282 int sc_txfree; /* number of free Tx descriptors */
283 int sc_txnext; /* next ready Tx descriptor */
284 int sc_txwin; /* Tx descriptors since last intr */
285
286 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
287 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
288
289 /* values of interface state at last init */
290 struct {
291 /* if_capenable */
292 uint64_t if_capenable;
293 /* ec_capenable */
294 int ec_capenable;
295 /* VLAN_ATTACHED */
296 int is_vlan;
297 } sc_prev;
298
299 short sc_if_flags;
300
301 int sc_rxptr; /* next ready Rx descriptor/descsoft */
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307
308 int sc_ntxdesc;
309 int sc_ntxdesc_mask;
310
311 int sc_nrxdesc_mask;
312
313 const struct sip_parm {
314 const struct sip_regs {
315 int r_rxcfg;
316 int r_txcfg;
317 } p_regs;
318
319 const struct sip_bits {
320 uint32_t b_txcfg_mxdma_8;
321 uint32_t b_txcfg_mxdma_16;
322 uint32_t b_txcfg_mxdma_32;
323 uint32_t b_txcfg_mxdma_64;
324 uint32_t b_txcfg_mxdma_128;
325 uint32_t b_txcfg_mxdma_256;
326 uint32_t b_txcfg_mxdma_512;
327 uint32_t b_txcfg_flth_mask;
328 uint32_t b_txcfg_drth_mask;
329
330 uint32_t b_rxcfg_mxdma_8;
331 uint32_t b_rxcfg_mxdma_16;
332 uint32_t b_rxcfg_mxdma_32;
333 uint32_t b_rxcfg_mxdma_64;
334 uint32_t b_rxcfg_mxdma_128;
335 uint32_t b_rxcfg_mxdma_256;
336 uint32_t b_rxcfg_mxdma_512;
337
338 uint32_t b_isr_txrcmp;
339 uint32_t b_isr_rxrcmp;
340 uint32_t b_isr_dperr;
341 uint32_t b_isr_sserr;
342 uint32_t b_isr_rmabt;
343 uint32_t b_isr_rtabt;
344
345 uint32_t b_cmdsts_size_mask;
346 } p_bits;
347 int p_filtmem;
348 int p_rxbuf_len;
349 bus_size_t p_tx_dmamap_size;
350 int p_ntxsegs;
351 int p_ntxsegs_alloc;
352 int p_nrxdesc;
353 } *sc_parm;
354
355 void (*sc_rxintr)(struct sip_softc *);
356
357 #if NRND > 0
358 rndsource_element_t rnd_source; /* random source */
359 #endif
360 };
361
362 #define sc_bits sc_parm->p_bits
363 #define sc_regs sc_parm->p_regs
364
365 static const struct sip_parm sip_parm = {
366 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
367 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
368 , .p_tx_dmamap_size = MCLBYTES
369 , .p_ntxsegs = 16
370 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
371 , .p_nrxdesc = SIP_NRXDESC
372 , .p_bits = {
373 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
374 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
375 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
376 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
377 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
378 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
379 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
380 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
381 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
382
383 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
384 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
385 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
386 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
387 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
388 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
389 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
390
391 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
392 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
393 , .b_isr_dperr = 0x00800000 /* detected parity error */
394 , .b_isr_sserr = 0x00400000 /* signalled system error */
395 , .b_isr_rmabt = 0x00200000 /* received master abort */
396 , .b_isr_rtabt = 0x00100000 /* received target abort */
397 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
398 }
399 , .p_regs = {
400 .r_rxcfg = OTHER_SIP_RXCFG,
401 .r_txcfg = OTHER_SIP_TXCFG
402 }
403 }, gsip_parm = {
404 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
405 , .p_rxbuf_len = MCLBYTES - 8
406 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
407 , .p_ntxsegs = 64
408 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
409 , .p_nrxdesc = GSIP_NRXDESC
410 , .p_bits = {
411 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
412 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
413 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
414 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
415 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
416 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
417 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
418 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
419 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
420
421 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
422 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
423 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
424 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
425 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
426 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
427 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
428
429 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
430 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
431 , .b_isr_dperr = 0x00100000 /* detected parity error */
432 , .b_isr_sserr = 0x00080000 /* signalled system error */
433 , .b_isr_rmabt = 0x00040000 /* received master abort */
434 , .b_isr_rtabt = 0x00020000 /* received target abort */
435 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
436 }
437 , .p_regs = {
438 .r_rxcfg = DP83820_SIP_RXCFG,
439 .r_txcfg = DP83820_SIP_TXCFG
440 }
441 };
442
443 static inline int
444 sip_nexttx(const struct sip_softc *sc, int x)
445 {
446 return (x + 1) & sc->sc_ntxdesc_mask;
447 }
448
449 static inline int
450 sip_nextrx(const struct sip_softc *sc, int x)
451 {
452 return (x + 1) & sc->sc_nrxdesc_mask;
453 }
454
455 /* 83820 only */
456 static inline void
457 sip_rxchain_reset(struct sip_softc *sc)
458 {
459 sc->sc_rxtailp = &sc->sc_rxhead;
460 *sc->sc_rxtailp = NULL;
461 sc->sc_rxlen = 0;
462 }
463
464 /* 83820 only */
465 static inline void
466 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
467 {
468 *sc->sc_rxtailp = sc->sc_rxtail = m;
469 sc->sc_rxtailp = &m->m_next;
470 }
471
472 #ifdef SIP_EVENT_COUNTERS
473 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
474 #else
475 #define SIP_EVCNT_INCR(ev) /* nothing */
476 #endif
477
478 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
479 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
480
481 static inline void
482 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
483 {
484 int x, n;
485
486 x = x0;
487 n = n0;
488
489 /* If it will wrap around, sync to the end of the ring. */
490 if (x + n > sc->sc_ntxdesc) {
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
493 (sc->sc_ntxdesc - x), ops);
494 n -= (sc->sc_ntxdesc - x);
495 x = 0;
496 }
497
498 /* Now sync whatever is left. */
499 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
500 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
501 }
502
503 static inline void
504 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
505 {
506 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
507 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
508 }
509
510 #if 0
511 #ifdef DP83820
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 u_int32_t sipd_cmdsts; /* command/status word */
514 #else
515 u_int32_t sipd_cmdsts; /* command/status word */
516 u_int32_t sipd_bufptr; /* pointer to DMA segment */
517 #endif /* DP83820 */
518 #endif /* 0 */
519
520 static inline volatile uint32_t *
521 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
522 {
523 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
524 }
525
526 static inline volatile uint32_t *
527 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
528 {
529 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
530 }
531
532 static inline void
533 sip_init_rxdesc(struct sip_softc *sc, int x)
534 {
535 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
536 struct sip_desc *sipd = &sc->sc_rxdescs[x];
537
538 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
539 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
540 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
541 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
542 sipd->sipd_extsts = 0;
543 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
544 }
545
546 #define SIP_CHIP_VERS(sc, v, p, r) \
547 ((sc)->sc_model->sip_vendor == (v) && \
548 (sc)->sc_model->sip_product == (p) && \
549 (sc)->sc_rev == (r))
550
551 #define SIP_CHIP_MODEL(sc, v, p) \
552 ((sc)->sc_model->sip_vendor == (v) && \
553 (sc)->sc_model->sip_product == (p))
554
555 #define SIP_SIS900_REV(sc, rev) \
556 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
557
558 #define SIP_TIMEOUT 1000
559
560 static int sip_ifflags_cb(struct ethercom *);
561 static void sipcom_start(struct ifnet *);
562 static void sipcom_watchdog(struct ifnet *);
563 static int sipcom_ioctl(struct ifnet *, u_long, void *);
564 static int sipcom_init(struct ifnet *);
565 static void sipcom_stop(struct ifnet *, int);
566
567 static bool sipcom_reset(struct sip_softc *);
568 static void sipcom_rxdrain(struct sip_softc *);
569 static int sipcom_add_rxbuf(struct sip_softc *, int);
570 static void sipcom_read_eeprom(struct sip_softc *, int, int,
571 u_int16_t *);
572 static void sipcom_tick(void *);
573
574 static void sipcom_sis900_set_filter(struct sip_softc *);
575 static void sipcom_dp83815_set_filter(struct sip_softc *);
576
577 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
578 const struct pci_attach_args *, u_int8_t *);
579 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
580 static void sipcom_sis900_read_macaddr(struct sip_softc *,
581 const struct pci_attach_args *, u_int8_t *);
582 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
583 const struct pci_attach_args *, u_int8_t *);
584
585 static int sipcom_intr(void *);
586 static void sipcom_txintr(struct sip_softc *);
587 static void sip_rxintr(struct sip_softc *);
588 static void gsip_rxintr(struct sip_softc *);
589
590 static int sipcom_dp83820_mii_readreg(device_t, int, int);
591 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
592 static void sipcom_dp83820_mii_statchg(device_t);
593
594 static int sipcom_sis900_mii_readreg(device_t, int, int);
595 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
596 static void sipcom_sis900_mii_statchg(device_t);
597
598 static int sipcom_dp83815_mii_readreg(device_t, int, int);
599 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
600 static void sipcom_dp83815_mii_statchg(device_t);
601
602 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
603
604 static int sipcom_match(device_t, cfdata_t, void *);
605 static void sipcom_attach(device_t, device_t, void *);
606 static void sipcom_do_detach(device_t, enum sip_attach_stage);
607 static int sipcom_detach(device_t, int);
608 static bool sipcom_resume(device_t, const pmf_qual_t *);
609 static bool sipcom_suspend(device_t, const pmf_qual_t *);
610
611 int gsip_copy_small = 0;
612 int sip_copy_small = 0;
613
614 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
615 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
616 DVF_DETACH_SHUTDOWN);
617 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
618 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
619 DVF_DETACH_SHUTDOWN);
620
621 /*
622 * Descriptions of the variants of the SiS900.
623 */
624 struct sip_variant {
625 int (*sipv_mii_readreg)(device_t, int, int);
626 void (*sipv_mii_writereg)(device_t, int, int, int);
627 void (*sipv_mii_statchg)(device_t);
628 void (*sipv_set_filter)(struct sip_softc *);
629 void (*sipv_read_macaddr)(struct sip_softc *,
630 const struct pci_attach_args *, u_int8_t *);
631 };
632
633 static u_int32_t sipcom_mii_bitbang_read(device_t);
634 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
635
636 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
637 sipcom_mii_bitbang_read,
638 sipcom_mii_bitbang_write,
639 {
640 EROMAR_MDIO, /* MII_BIT_MDO */
641 EROMAR_MDIO, /* MII_BIT_MDI */
642 EROMAR_MDC, /* MII_BIT_MDC */
643 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
644 0, /* MII_BIT_DIR_PHY_HOST */
645 }
646 };
647
648 static const struct sip_variant sipcom_variant_dp83820 = {
649 sipcom_dp83820_mii_readreg,
650 sipcom_dp83820_mii_writereg,
651 sipcom_dp83820_mii_statchg,
652 sipcom_dp83815_set_filter,
653 sipcom_dp83820_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_sis900 = {
657 sipcom_sis900_mii_readreg,
658 sipcom_sis900_mii_writereg,
659 sipcom_sis900_mii_statchg,
660 sipcom_sis900_set_filter,
661 sipcom_sis900_read_macaddr,
662 };
663
664 static const struct sip_variant sipcom_variant_dp83815 = {
665 sipcom_dp83815_mii_readreg,
666 sipcom_dp83815_mii_writereg,
667 sipcom_dp83815_mii_statchg,
668 sipcom_dp83815_set_filter,
669 sipcom_dp83815_read_macaddr,
670 };
671
672
673 /*
674 * Devices supported by this driver.
675 */
676 static const struct sip_product {
677 pci_vendor_id_t sip_vendor;
678 pci_product_id_t sip_product;
679 const char *sip_name;
680 const struct sip_variant *sip_variant;
681 int sip_gigabit;
682 } sipcom_products[] = {
683 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
684 "NatSemi DP83820 Gigabit Ethernet",
685 &sipcom_variant_dp83820, 1 },
686 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
687 "SiS 900 10/100 Ethernet",
688 &sipcom_variant_sis900, 0 },
689 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
690 "SiS 7016 10/100 Ethernet",
691 &sipcom_variant_sis900, 0 },
692
693 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
694 "NatSemi DP83815 10/100 Ethernet",
695 &sipcom_variant_dp83815, 0 },
696
697 { 0, 0,
698 NULL,
699 NULL, 0 },
700 };
701
702 static const struct sip_product *
703 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
704 {
705 const struct sip_product *sip;
706
707 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
708 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
709 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
710 sip->sip_gigabit == gigabit)
711 return sip;
712 }
713 return NULL;
714 }
715
716 /*
717 * I really hate stupid hardware vendors. There's a bit in the EEPROM
718 * which indicates if the card can do 64-bit data transfers. Unfortunately,
719 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
720 * which means we try to use 64-bit data transfers on those cards if we
721 * happen to be plugged into a 32-bit slot.
722 *
723 * What we do is use this table of cards known to be 64-bit cards. If
724 * you have a 64-bit card who's subsystem ID is not listed in this table,
725 * send the output of "pcictl dump ..." of the device to me so that your
726 * card will use the 64-bit data path when plugged into a 64-bit slot.
727 *
728 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
729 * June 30, 2002
730 */
731 static int
732 sipcom_check_64bit(const struct pci_attach_args *pa)
733 {
734 static const struct {
735 pci_vendor_id_t c64_vendor;
736 pci_product_id_t c64_product;
737 } card64[] = {
738 /* Asante GigaNIX */
739 { 0x128a, 0x0002 },
740
741 /* Accton EN1407-T, Planex GN-1000TE */
742 { 0x1113, 0x1407 },
743
744 /* Netgear GA-621 */
745 { 0x1385, 0x621a },
746
747 /* SMC EZ Card */
748 { 0x10b8, 0x9462 },
749
750 { 0, 0}
751 };
752 pcireg_t subsys;
753 int i;
754
755 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
756
757 for (i = 0; card64[i].c64_vendor != 0; i++) {
758 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
759 PCI_PRODUCT(subsys) == card64[i].c64_product)
760 return (1);
761 }
762
763 return (0);
764 }
765
766 static int
767 sipcom_match(device_t parent, cfdata_t cf, void *aux)
768 {
769 struct pci_attach_args *pa = aux;
770
771 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
772 return 1;
773
774 return 0;
775 }
776
777 static void
778 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
779 {
780 u_int32_t reg;
781 int i;
782
783 /*
784 * Cause the chip to load configuration data from the EEPROM.
785 */
786 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
787 for (i = 0; i < 10000; i++) {
788 delay(10);
789 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 PTSCR_EELOAD_EN) == 0)
791 break;
792 }
793 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
794 PTSCR_EELOAD_EN) {
795 printf("%s: timeout loading configuration from EEPROM\n",
796 device_xname(sc->sc_dev));
797 return;
798 }
799
800 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
801
802 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
803 if (reg & CFG_PCI64_DET) {
804 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
805 /*
806 * Check to see if this card is 64-bit. If so, enable 64-bit
807 * data transfers.
808 *
809 * We can't use the DATA64_EN bit in the EEPROM, because
810 * vendors of 32-bit cards fail to clear that bit in many
811 * cases (yet the card still detects that it's in a 64-bit
812 * slot; go figure).
813 */
814 if (sipcom_check_64bit(pa)) {
815 sc->sc_cfg |= CFG_DATA64_EN;
816 printf(", using 64-bit data transfers");
817 }
818 printf("\n");
819 }
820
821 /*
822 * XXX Need some PCI flags indicating support for
823 * XXX 64-bit addressing.
824 */
825 #if 0
826 if (reg & CFG_M64ADDR)
827 sc->sc_cfg |= CFG_M64ADDR;
828 if (reg & CFG_T64ADDR)
829 sc->sc_cfg |= CFG_T64ADDR;
830 #endif
831
832 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
833 const char *sep = "";
834 printf("%s: using ", device_xname(sc->sc_dev));
835 if (reg & CFG_EXT_125) {
836 sc->sc_cfg |= CFG_EXT_125;
837 printf("%s125MHz clock", sep);
838 sep = ", ";
839 }
840 if (reg & CFG_TBI_EN) {
841 sc->sc_cfg |= CFG_TBI_EN;
842 printf("%sten-bit interface", sep);
843 sep = ", ";
844 }
845 printf("\n");
846 }
847 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
848 (reg & CFG_MRM_DIS) != 0)
849 sc->sc_cfg |= CFG_MRM_DIS;
850 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
851 (reg & CFG_MWI_DIS) != 0)
852 sc->sc_cfg |= CFG_MWI_DIS;
853
854 /*
855 * Use the extended descriptor format on the DP83820. This
856 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
857 * checksumming.
858 */
859 sc->sc_cfg |= CFG_EXTSTS_EN;
860 }
861
862 static int
863 sipcom_detach(device_t self, int flags)
864 {
865 int s;
866
867 s = splnet();
868 sipcom_do_detach(self, SIP_ATTACH_FIN);
869 splx(s);
870
871 return 0;
872 }
873
874 static void
875 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
876 {
877 int i;
878 struct sip_softc *sc = device_private(self);
879 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880
881 /*
882 * Free any resources we've allocated during attach.
883 * Do this in reverse order and fall through.
884 */
885 switch (stage) {
886 case SIP_ATTACH_FIN:
887 sipcom_stop(ifp, 1);
888 pmf_device_deregister(self);
889 #ifdef SIP_EVENT_COUNTERS
890 /*
891 * Attach event counters.
892 */
893 evcnt_detach(&sc->sc_ev_txforceintr);
894 evcnt_detach(&sc->sc_ev_txdstall);
895 evcnt_detach(&sc->sc_ev_txsstall);
896 evcnt_detach(&sc->sc_ev_hiberr);
897 evcnt_detach(&sc->sc_ev_rxintr);
898 evcnt_detach(&sc->sc_ev_txiintr);
899 evcnt_detach(&sc->sc_ev_txdintr);
900 if (!sc->sc_gigabit) {
901 evcnt_detach(&sc->sc_ev_rxpause);
902 } else {
903 evcnt_detach(&sc->sc_ev_txudpsum);
904 evcnt_detach(&sc->sc_ev_txtcpsum);
905 evcnt_detach(&sc->sc_ev_txipsum);
906 evcnt_detach(&sc->sc_ev_rxudpsum);
907 evcnt_detach(&sc->sc_ev_rxtcpsum);
908 evcnt_detach(&sc->sc_ev_rxipsum);
909 evcnt_detach(&sc->sc_ev_txpause);
910 evcnt_detach(&sc->sc_ev_rxpause);
911 }
912 #endif /* SIP_EVENT_COUNTERS */
913
914 #if NRND > 0
915 rnd_detach_source(&sc->rnd_source);
916 #endif
917
918 ether_ifdetach(ifp);
919 if_detach(ifp);
920 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
921
922 /*FALLTHROUGH*/
923 case SIP_ATTACH_CREATE_RXMAP:
924 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
925 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->sc_rxsoft[i].rxs_dmamap);
928 }
929 /*FALLTHROUGH*/
930 case SIP_ATTACH_CREATE_TXMAP:
931 for (i = 0; i < SIP_TXQUEUELEN; i++) {
932 if (sc->sc_txsoft[i].txs_dmamap != NULL)
933 bus_dmamap_destroy(sc->sc_dmat,
934 sc->sc_txsoft[i].txs_dmamap);
935 }
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_LOAD_MAP:
938 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_CREATE_MAP:
941 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
942 /*FALLTHROUGH*/
943 case SIP_ATTACH_MAP_MEM:
944 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
945 sizeof(struct sip_control_data));
946 /*FALLTHROUGH*/
947 case SIP_ATTACH_ALLOC_MEM:
948 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_INTR:
951 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
952 /* FALLTHROUGH*/
953 case SIP_ATTACH_MAP:
954 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
955 break;
956 default:
957 break;
958 }
959 return;
960 }
961
962 static bool
963 sipcom_resume(device_t self, const pmf_qual_t *qual)
964 {
965 struct sip_softc *sc = device_private(self);
966
967 return sipcom_reset(sc);
968 }
969
970 static bool
971 sipcom_suspend(device_t self, const pmf_qual_t *qual)
972 {
973 struct sip_softc *sc = device_private(self);
974
975 sipcom_rxdrain(sc);
976 return true;
977 }
978
979 static void
980 sipcom_attach(device_t parent, device_t self, void *aux)
981 {
982 struct sip_softc *sc = device_private(self);
983 struct pci_attach_args *pa = aux;
984 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
985 pci_chipset_tag_t pc = pa->pa_pc;
986 pci_intr_handle_t ih;
987 const char *intrstr = NULL;
988 bus_space_tag_t iot, memt;
989 bus_space_handle_t ioh, memh;
990 bus_size_t iosz, memsz;
991 int ioh_valid, memh_valid;
992 int i, rseg, error;
993 const struct sip_product *sip;
994 u_int8_t enaddr[ETHER_ADDR_LEN];
995 pcireg_t csr;
996 pcireg_t memtype;
997 bus_size_t tx_dmamap_size;
998 int ntxsegs_alloc;
999 cfdata_t cf = device_cfdata(self);
1000
1001 callout_init(&sc->sc_tick_ch, 0);
1002
1003 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1004 if (sip == NULL) {
1005 printf("\n");
1006 panic("%s: impossible", __func__);
1007 }
1008 sc->sc_dev = self;
1009 sc->sc_gigabit = sip->sip_gigabit;
1010 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1011 sc->sc_pc = pc;
1012
1013 if (sc->sc_gigabit) {
1014 sc->sc_rxintr = gsip_rxintr;
1015 sc->sc_parm = &gsip_parm;
1016 } else {
1017 sc->sc_rxintr = sip_rxintr;
1018 sc->sc_parm = &sip_parm;
1019 }
1020 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1021 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1022 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1023 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1024 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1025
1026 sc->sc_rev = PCI_REVISION(pa->pa_class);
1027
1028 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1029
1030 sc->sc_model = sip;
1031
1032 /*
1033 * XXX Work-around broken PXE firmware on some boards.
1034 *
1035 * The DP83815 shares an address decoder with the MEM BAR
1036 * and the ROM BAR. Make sure the ROM BAR is disabled,
1037 * so that memory mapped access works.
1038 */
1039 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1040 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1041 ~PCI_MAPREG_ROM_ENABLE);
1042
1043 /*
1044 * Map the device.
1045 */
1046 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1047 PCI_MAPREG_TYPE_IO, 0,
1048 &iot, &ioh, NULL, &iosz) == 0);
1049 if (sc->sc_gigabit) {
1050 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1051 switch (memtype) {
1052 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1053 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1054 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1055 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1056 break;
1057 default:
1058 memh_valid = 0;
1059 }
1060 } else {
1061 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1062 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1063 &memt, &memh, NULL, &memsz) == 0);
1064 }
1065
1066 if (memh_valid) {
1067 sc->sc_st = memt;
1068 sc->sc_sh = memh;
1069 sc->sc_sz = memsz;
1070 } else if (ioh_valid) {
1071 sc->sc_st = iot;
1072 sc->sc_sh = ioh;
1073 sc->sc_sz = iosz;
1074 } else {
1075 printf("%s: unable to map device registers\n",
1076 device_xname(sc->sc_dev));
1077 return;
1078 }
1079
1080 sc->sc_dmat = pa->pa_dmat;
1081
1082 /*
1083 * Make sure bus mastering is enabled. Also make sure
1084 * Write/Invalidate is enabled if we're allowed to use it.
1085 */
1086 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1087 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1088 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1089 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1090 csr | PCI_COMMAND_MASTER_ENABLE);
1091
1092 /* power up chip */
1093 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1094 if (error != 0 && error != EOPNOTSUPP) {
1095 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1096 return;
1097 }
1098
1099 /*
1100 * Map and establish our interrupt.
1101 */
1102 if (pci_intr_map(pa, &ih)) {
1103 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1104 return;
1105 }
1106 intrstr = pci_intr_string(pc, ih);
1107 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1108 if (sc->sc_ih == NULL) {
1109 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1110 if (intrstr != NULL)
1111 aprint_error(" at %s", intrstr);
1112 aprint_error("\n");
1113 return sipcom_do_detach(self, SIP_ATTACH_MAP);
1114 }
1115 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1116
1117 SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119
1120 /*
1121 * Allocate the control data structures, and create and load the
1122 * DMA map for it.
1123 */
1124 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1125 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1126 &rseg, 0)) != 0) {
1127 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1128 error);
1129 return sipcom_do_detach(self, SIP_ATTACH_INTR);
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1135 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1136 error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1144 "error = %d\n", error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1152 error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1164 "error = %d\n", i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1176 "error = %d\n", i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 SIP_SIS900_REV(sc,SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1209 ether_sprintf(enaddr));
1210
1211 /*
1212 * Initialize the configuration register: aggressive PCI
1213 * bus request algorithm, default backoff, default OW timer,
1214 * default parity error detection.
1215 *
1216 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 * friends -- it affects packet data, not descriptors.
1218 */
1219 if (sc->sc_gigabit)
1220 sipcom_dp83820_attach(sc, pa);
1221
1222 /*
1223 * Initialize our media structures and probe the MII.
1224 */
1225 sc->sc_mii.mii_ifp = ifp;
1226 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 sipcom_mediastatus);
1232
1233 /*
1234 * XXX We cannot handle flow control on the DP83815.
1235 */
1236 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, 0);
1239 else
1240 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 } else
1246 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247
1248 ifp = &sc->sc_ethercom.ec_if;
1249 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 ifp->if_softc = sc;
1251 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 sc->sc_if_flags = ifp->if_flags;
1253 ifp->if_ioctl = sipcom_ioctl;
1254 ifp->if_start = sipcom_start;
1255 ifp->if_watchdog = sipcom_watchdog;
1256 ifp->if_init = sipcom_init;
1257 ifp->if_stop = sipcom_stop;
1258 IFQ_SET_READY(&ifp->if_snd);
1259
1260 /*
1261 * We can support 802.1Q VLAN-sized frames.
1262 */
1263 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264
1265 if (sc->sc_gigabit) {
1266 /*
1267 * And the DP83820 can do VLAN tagging in hardware, and
1268 * support the jumbo Ethernet MTU.
1269 */
1270 sc->sc_ethercom.ec_capabilities |=
1271 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272
1273 /*
1274 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 * in hardware.
1276 */
1277 ifp->if_capabilities |=
1278 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 }
1282
1283 /*
1284 * Attach the interface.
1285 */
1286 if_attach(ifp);
1287 ether_ifattach(ifp, enaddr);
1288 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 sc->sc_prev.if_capenable = ifp->if_capenable;
1292 #if NRND > 0
1293 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 RND_TYPE_NET, 0);
1295 #endif
1296
1297 /*
1298 * The number of bytes that must be available in
1299 * the Tx FIFO before the bus master can DMA more
1300 * data into the FIFO.
1301 */
1302 sc->sc_tx_fill_thresh = 64 / 32;
1303
1304 /*
1305 * Start at a drain threshold of 512 bytes. We will
1306 * increase it if a DMA underrun occurs.
1307 *
1308 * XXX The minimum value of this variable should be
1309 * tuned. We may be able to improve performance
1310 * by starting with a lower value. That, however,
1311 * may trash the first few outgoing packets if the
1312 * PCI bus is saturated.
1313 */
1314 if (sc->sc_gigabit)
1315 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1316 else
1317 sc->sc_tx_drain_thresh = 1504 / 32;
1318
1319 /*
1320 * Initialize the Rx FIFO drain threshold.
1321 *
1322 * This is in units of 8 bytes.
1323 *
1324 * We should never set this value lower than 2; 14 bytes are
1325 * required to filter the packet.
1326 */
1327 sc->sc_rx_drain_thresh = 128 / 8;
1328
1329 #ifdef SIP_EVENT_COUNTERS
1330 /*
1331 * Attach event counters.
1332 */
1333 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txsstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1336 NULL, device_xname(sc->sc_dev), "txdstall");
1337 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txforceintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txdintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "txiintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "rxintr");
1345 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1346 NULL, device_xname(sc->sc_dev), "hiberr");
1347 if (!sc->sc_gigabit) {
1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1349 NULL, device_xname(sc->sc_dev), "rxpause");
1350 } else {
1351 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "rxpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "txpause");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxipsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "rxudpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txipsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txtcpsum");
1365 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1366 NULL, device_xname(sc->sc_dev), "txudpsum");
1367 }
1368 #endif /* SIP_EVENT_COUNTERS */
1369
1370 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1371 pmf_class_network_register(self, ifp);
1372 else
1373 aprint_error_dev(self, "couldn't establish power handler\n");
1374 }
1375
1376 static inline void
1377 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1378 uint64_t capenable)
1379 {
1380 struct m_tag *mtag;
1381 u_int32_t extsts;
1382 #ifdef DEBUG
1383 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1384 #endif
1385 /*
1386 * If VLANs are enabled and the packet has a VLAN tag, set
1387 * up the descriptor to encapsulate the packet for us.
1388 *
1389 * This apparently has to be on the last descriptor of
1390 * the packet.
1391 */
1392
1393 /*
1394 * Byte swapping is tricky. We need to provide the tag
1395 * in a network byte order. On a big-endian machine,
1396 * the byteorder is correct, but we need to swap it
1397 * anyway, because this will be undone by the outside
1398 * htole32(). That's why there must be an
1399 * unconditional swap instead of htons() inside.
1400 */
1401 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1402 sc->sc_txdescs[lasttx].sipd_extsts |=
1403 htole32(EXTSTS_VPKT |
1404 (bswap16(VLAN_TAG_VALUE(mtag)) &
1405 EXTSTS_VTCI));
1406 }
1407
1408 /*
1409 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1410 * checksumming, set up the descriptor to do this work
1411 * for us.
1412 *
1413 * This apparently has to be on the first descriptor of
1414 * the packet.
1415 *
1416 * Byte-swap constants so the compiler can optimize.
1417 */
1418 extsts = 0;
1419 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1420 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1421 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1422 extsts |= htole32(EXTSTS_IPPKT);
1423 }
1424 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1427 extsts |= htole32(EXTSTS_TCPPKT);
1428 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1429 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1430 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1431 extsts |= htole32(EXTSTS_UDPPKT);
1432 }
1433 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1434 }
1435
1436 /*
1437 * sip_start: [ifnet interface function]
1438 *
1439 * Start packet transmission on the interface.
1440 */
1441 static void
1442 sipcom_start(struct ifnet *ifp)
1443 {
1444 struct sip_softc *sc = ifp->if_softc;
1445 struct mbuf *m0;
1446 struct mbuf *m;
1447 struct sip_txsoft *txs;
1448 bus_dmamap_t dmamap;
1449 int error, nexttx, lasttx, seg;
1450 int ofree = sc->sc_txfree;
1451 #if 0
1452 int firsttx = sc->sc_txnext;
1453 #endif
1454
1455 /*
1456 * If we've been told to pause, don't transmit any more packets.
1457 */
1458 if (!sc->sc_gigabit && sc->sc_paused)
1459 ifp->if_flags |= IFF_OACTIVE;
1460
1461 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1462 return;
1463
1464 /*
1465 * Loop through the send queue, setting up transmit descriptors
1466 * until we drain the queue, or use up all available transmit
1467 * descriptors.
1468 */
1469 for (;;) {
1470 /* Get a work queue entry. */
1471 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1472 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1473 break;
1474 }
1475
1476 /*
1477 * Grab a packet off the queue.
1478 */
1479 IFQ_POLL(&ifp->if_snd, m0);
1480 if (m0 == NULL)
1481 break;
1482 m = NULL;
1483
1484 dmamap = txs->txs_dmamap;
1485
1486 /*
1487 * Load the DMA map. If this fails, the packet either
1488 * didn't fit in the alloted number of segments, or we
1489 * were short on resources.
1490 */
1491 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1492 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1493 /* In the non-gigabit case, we'll copy and try again. */
1494 if (error != 0 && !sc->sc_gigabit) {
1495 MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 if (m == NULL) {
1497 printf("%s: unable to allocate Tx mbuf\n",
1498 device_xname(sc->sc_dev));
1499 break;
1500 }
1501 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1502 if (m0->m_pkthdr.len > MHLEN) {
1503 MCLGET(m, M_DONTWAIT);
1504 if ((m->m_flags & M_EXT) == 0) {
1505 printf("%s: unable to allocate Tx "
1506 "cluster\n", device_xname(sc->sc_dev));
1507 m_freem(m);
1508 break;
1509 }
1510 }
1511 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1512 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1513 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1514 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1515 if (error) {
1516 printf("%s: unable to load Tx buffer, "
1517 "error = %d\n", device_xname(sc->sc_dev), error);
1518 break;
1519 }
1520 } else if (error == EFBIG) {
1521 /*
1522 * For the too-many-segments case, we simply
1523 * report an error and drop the packet,
1524 * since we can't sanely copy a jumbo packet
1525 * to a single buffer.
1526 */
1527 printf("%s: Tx packet consumes too many "
1528 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1529 IFQ_DEQUEUE(&ifp->if_snd, m0);
1530 m_freem(m0);
1531 continue;
1532 } else if (error != 0) {
1533 /*
1534 * Short on resources, just stop for now.
1535 */
1536 break;
1537 }
1538
1539 /*
1540 * Ensure we have enough descriptors free to describe
1541 * the packet. Note, we always reserve one descriptor
1542 * at the end of the ring as a termination point, to
1543 * prevent wrap-around.
1544 */
1545 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1546 /*
1547 * Not enough free descriptors to transmit this
1548 * packet. We haven't committed anything yet,
1549 * so just unload the DMA map, put the packet
1550 * back on the queue, and punt. Notify the upper
1551 * layer that there are not more slots left.
1552 *
1553 * XXX We could allocate an mbuf and copy, but
1554 * XXX is it worth it?
1555 */
1556 ifp->if_flags |= IFF_OACTIVE;
1557 bus_dmamap_unload(sc->sc_dmat, dmamap);
1558 if (m != NULL)
1559 m_freem(m);
1560 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1561 break;
1562 }
1563
1564 IFQ_DEQUEUE(&ifp->if_snd, m0);
1565 if (m != NULL) {
1566 m_freem(m0);
1567 m0 = m;
1568 }
1569
1570 /*
1571 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1572 */
1573
1574 /* Sync the DMA map. */
1575 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1576 BUS_DMASYNC_PREWRITE);
1577
1578 /*
1579 * Initialize the transmit descriptors.
1580 */
1581 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1582 seg < dmamap->dm_nsegs;
1583 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1584 /*
1585 * If this is the first descriptor we're
1586 * enqueueing, don't set the OWN bit just
1587 * yet. That could cause a race condition.
1588 * We'll do it below.
1589 */
1590 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32(dmamap->dm_segs[seg].ds_addr);
1592 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1593 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1594 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1595 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1596 lasttx = nexttx;
1597 }
1598
1599 /* Clear the MORE bit on the last segment. */
1600 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1601 htole32(~CMDSTS_MORE);
1602
1603 /*
1604 * If we're in the interrupt delay window, delay the
1605 * interrupt.
1606 */
1607 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1608 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1609 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1610 htole32(CMDSTS_INTR);
1611 sc->sc_txwin = 0;
1612 }
1613
1614 if (sc->sc_gigabit)
1615 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1616
1617 /* Sync the descriptors we're using. */
1618 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1619 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1620
1621 /*
1622 * The entire packet is set up. Give the first descrptor
1623 * to the chip now.
1624 */
1625 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1626 htole32(CMDSTS_OWN);
1627 sip_cdtxsync(sc, sc->sc_txnext, 1,
1628 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629
1630 /*
1631 * Store a pointer to the packet so we can free it later,
1632 * and remember what txdirty will be once the packet is
1633 * done.
1634 */
1635 txs->txs_mbuf = m0;
1636 txs->txs_firstdesc = sc->sc_txnext;
1637 txs->txs_lastdesc = lasttx;
1638
1639 /* Advance the tx pointer. */
1640 sc->sc_txfree -= dmamap->dm_nsegs;
1641 sc->sc_txnext = nexttx;
1642
1643 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1644 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1645
1646 /*
1647 * Pass the packet to any BPF listeners.
1648 */
1649 bpf_mtap(ifp, m0);
1650 }
1651
1652 if (txs == NULL || sc->sc_txfree == 0) {
1653 /* No more slots left; notify upper layer. */
1654 ifp->if_flags |= IFF_OACTIVE;
1655 }
1656
1657 if (sc->sc_txfree != ofree) {
1658 /*
1659 * Start the transmit process. Note, the manual says
1660 * that if there are no pending transmissions in the
1661 * chip's internal queue (indicated by TXE being clear),
1662 * then the driver software must set the TXDP to the
1663 * first descriptor to be transmitted. However, if we
1664 * do this, it causes serious performance degredation on
1665 * the DP83820 under load, not setting TXDP doesn't seem
1666 * to adversely affect the SiS 900 or DP83815.
1667 *
1668 * Well, I guess it wouldn't be the first time a manual
1669 * has lied -- and they could be speaking of the NULL-
1670 * terminated descriptor list case, rather than OWN-
1671 * terminated rings.
1672 */
1673 #if 0
1674 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1675 CR_TXE) == 0) {
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1677 SIP_CDTXADDR(sc, firsttx));
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 }
1680 #else
1681 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 #endif
1683
1684 /* Set a watchdog timer in case the chip flakes out. */
1685 /* Gigabit autonegotiation takes 5 seconds. */
1686 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1687 }
1688 }
1689
1690 /*
1691 * sip_watchdog: [ifnet interface function]
1692 *
1693 * Watchdog timer handler.
1694 */
1695 static void
1696 sipcom_watchdog(struct ifnet *ifp)
1697 {
1698 struct sip_softc *sc = ifp->if_softc;
1699
1700 /*
1701 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1702 * If we get a timeout, try and sweep up transmit descriptors.
1703 * If we manage to sweep them all up, ignore the lack of
1704 * interrupt.
1705 */
1706 sipcom_txintr(sc);
1707
1708 if (sc->sc_txfree != sc->sc_ntxdesc) {
1709 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1710 ifp->if_oerrors++;
1711
1712 /* Reset the interface. */
1713 (void) sipcom_init(ifp);
1714 } else if (ifp->if_flags & IFF_DEBUG)
1715 printf("%s: recovered from device timeout\n",
1716 device_xname(sc->sc_dev));
1717
1718 /* Try to get more packets going. */
1719 sipcom_start(ifp);
1720 }
1721
1722 /* If the interface is up and running, only modify the receive
1723 * filter when setting promiscuous or debug mode. Otherwise fall
1724 * through to ether_ioctl, which will reset the chip.
1725 */
1726 static int
1727 sip_ifflags_cb(struct ethercom *ec)
1728 {
1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1730 == (sc)->sc_ethercom.ec_capenable) \
1731 && ((sc)->sc_prev.is_vlan == \
1732 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1734 struct ifnet *ifp = &ec->ec_if;
1735 struct sip_softc *sc = ifp->if_softc;
1736 int change = ifp->if_flags ^ sc->sc_if_flags;
1737
1738 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1739 !COMPARE_IC(sc, ifp))
1740 return ENETRESET;
1741 /* Set up the receive filter. */
1742 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1743 return 0;
1744 }
1745
1746 /*
1747 * sip_ioctl: [ifnet interface function]
1748 *
1749 * Handle control requests from the operator.
1750 */
1751 static int
1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1753 {
1754 struct sip_softc *sc = ifp->if_softc;
1755 struct ifreq *ifr = (struct ifreq *)data;
1756 int s, error;
1757
1758 s = splnet();
1759
1760 switch (cmd) {
1761 case SIOCSIFMEDIA:
1762 /* Flow control requires full-duplex mode. */
1763 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1764 (ifr->ifr_media & IFM_FDX) == 0)
1765 ifr->ifr_media &= ~IFM_ETH_FMASK;
1766
1767 /* XXX */
1768 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1769 ifr->ifr_media &= ~IFM_ETH_FMASK;
1770 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1771 if (sc->sc_gigabit &&
1772 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1773 /* We can do both TXPAUSE and RXPAUSE. */
1774 ifr->ifr_media |=
1775 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1776 } else if (ifr->ifr_media & IFM_FLOW) {
1777 /*
1778 * Both TXPAUSE and RXPAUSE must be set.
1779 * (SiS900 and DP83815 don't have PAUSE_ASYM
1780 * feature.)
1781 *
1782 * XXX Can SiS900 and DP83815 send PAUSE?
1783 */
1784 ifr->ifr_media |=
1785 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1786 }
1787 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1788 }
1789 /*FALLTHROUGH*/
1790 default:
1791 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1792 break;
1793
1794 error = 0;
1795
1796 if (cmd == SIOCSIFCAP)
1797 error = (*ifp->if_init)(ifp);
1798 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1799 ;
1800 else if (ifp->if_flags & IFF_RUNNING) {
1801 /*
1802 * Multicast list has changed; set the hardware filter
1803 * accordingly.
1804 */
1805 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1806 }
1807 break;
1808 }
1809
1810 /* Try to get more packets going. */
1811 sipcom_start(ifp);
1812
1813 sc->sc_if_flags = ifp->if_flags;
1814 splx(s);
1815 return (error);
1816 }
1817
1818 /*
1819 * sip_intr:
1820 *
1821 * Interrupt service routine.
1822 */
1823 static int
1824 sipcom_intr(void *arg)
1825 {
1826 struct sip_softc *sc = arg;
1827 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1828 u_int32_t isr;
1829 int handled = 0;
1830
1831 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1832 return 0;
1833
1834 /* Disable interrupts. */
1835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1836
1837 for (;;) {
1838 /* Reading clears interrupt. */
1839 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1840 if ((isr & sc->sc_imr) == 0)
1841 break;
1842
1843 #if NRND > 0
1844 if (RND_ENABLED(&sc->rnd_source))
1845 rnd_add_uint32(&sc->rnd_source, isr);
1846 #endif
1847
1848 handled = 1;
1849
1850 if ((ifp->if_flags & IFF_RUNNING) == 0)
1851 break;
1852
1853 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1854 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1855
1856 /* Grab any new packets. */
1857 (*sc->sc_rxintr)(sc);
1858
1859 if (isr & ISR_RXORN) {
1860 printf("%s: receive FIFO overrun\n",
1861 device_xname(sc->sc_dev));
1862
1863 /* XXX adjust rx_drain_thresh? */
1864 }
1865
1866 if (isr & ISR_RXIDLE) {
1867 printf("%s: receive ring overrun\n",
1868 device_xname(sc->sc_dev));
1869
1870 /* Get the receive process going again. */
1871 bus_space_write_4(sc->sc_st, sc->sc_sh,
1872 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1873 bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 SIP_CR, CR_RXE);
1875 }
1876 }
1877
1878 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1879 #ifdef SIP_EVENT_COUNTERS
1880 if (isr & ISR_TXDESC)
1881 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1882 else if (isr & ISR_TXIDLE)
1883 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1884 #endif
1885
1886 /* Sweep up transmit descriptors. */
1887 sipcom_txintr(sc);
1888
1889 if (isr & ISR_TXURN) {
1890 u_int32_t thresh;
1891 int txfifo_size = (sc->sc_gigabit)
1892 ? DP83820_SIP_TXFIFO_SIZE
1893 : OTHER_SIP_TXFIFO_SIZE;
1894
1895 printf("%s: transmit FIFO underrun",
1896 device_xname(sc->sc_dev));
1897 thresh = sc->sc_tx_drain_thresh + 1;
1898 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1899 && (thresh * 32) <= (txfifo_size -
1900 (sc->sc_tx_fill_thresh * 32))) {
1901 printf("; increasing Tx drain "
1902 "threshold to %u bytes\n",
1903 thresh * 32);
1904 sc->sc_tx_drain_thresh = thresh;
1905 (void) sipcom_init(ifp);
1906 } else {
1907 (void) sipcom_init(ifp);
1908 printf("\n");
1909 }
1910 }
1911 }
1912
1913 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1914 if (isr & ISR_PAUSE_ST) {
1915 sc->sc_paused = 1;
1916 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1917 ifp->if_flags |= IFF_OACTIVE;
1918 }
1919 if (isr & ISR_PAUSE_END) {
1920 sc->sc_paused = 0;
1921 ifp->if_flags &= ~IFF_OACTIVE;
1922 }
1923 }
1924
1925 if (isr & ISR_HIBERR) {
1926 int want_init = 0;
1927
1928 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1929
1930 #define PRINTERR(bit, str) \
1931 do { \
1932 if ((isr & (bit)) != 0) { \
1933 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1934 printf("%s: %s\n", \
1935 device_xname(sc->sc_dev), str); \
1936 want_init = 1; \
1937 } \
1938 } while (/*CONSTCOND*/0)
1939
1940 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1941 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1942 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1943 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1944 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1945 /*
1946 * Ignore:
1947 * Tx reset complete
1948 * Rx reset complete
1949 */
1950 if (want_init)
1951 (void) sipcom_init(ifp);
1952 #undef PRINTERR
1953 }
1954 }
1955
1956 /* Re-enable interrupts. */
1957 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1958
1959 /* Try to get more packets going. */
1960 sipcom_start(ifp);
1961
1962 return (handled);
1963 }
1964
1965 /*
1966 * sip_txintr:
1967 *
1968 * Helper; handle transmit interrupts.
1969 */
1970 static void
1971 sipcom_txintr(struct sip_softc *sc)
1972 {
1973 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1974 struct sip_txsoft *txs;
1975 u_int32_t cmdsts;
1976
1977 if (sc->sc_paused == 0)
1978 ifp->if_flags &= ~IFF_OACTIVE;
1979
1980 /*
1981 * Go through our Tx list and free mbufs for those
1982 * frames which have been transmitted.
1983 */
1984 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1985 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1986 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1987
1988 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1989 if (cmdsts & CMDSTS_OWN)
1990 break;
1991
1992 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1993
1994 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1995
1996 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1997 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1998 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1999 m_freem(txs->txs_mbuf);
2000 txs->txs_mbuf = NULL;
2001
2002 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2003
2004 /*
2005 * Check for errors and collisions.
2006 */
2007 if (cmdsts &
2008 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2009 ifp->if_oerrors++;
2010 if (cmdsts & CMDSTS_Tx_EC)
2011 ifp->if_collisions += 16;
2012 if (ifp->if_flags & IFF_DEBUG) {
2013 if (cmdsts & CMDSTS_Tx_ED)
2014 printf("%s: excessive deferral\n",
2015 device_xname(sc->sc_dev));
2016 if (cmdsts & CMDSTS_Tx_EC)
2017 printf("%s: excessive collisions\n",
2018 device_xname(sc->sc_dev));
2019 }
2020 } else {
2021 /* Packet was transmitted successfully. */
2022 ifp->if_opackets++;
2023 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2024 }
2025 }
2026
2027 /*
2028 * If there are no more pending transmissions, cancel the watchdog
2029 * timer.
2030 */
2031 if (txs == NULL) {
2032 ifp->if_timer = 0;
2033 sc->sc_txwin = 0;
2034 }
2035 }
2036
2037 /*
2038 * gsip_rxintr:
2039 *
2040 * Helper; handle receive interrupts on gigabit parts.
2041 */
2042 static void
2043 gsip_rxintr(struct sip_softc *sc)
2044 {
2045 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2046 struct sip_rxsoft *rxs;
2047 struct mbuf *m;
2048 u_int32_t cmdsts, extsts;
2049 int i, len;
2050
2051 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2052 rxs = &sc->sc_rxsoft[i];
2053
2054 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2055
2056 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2057 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2058 len = CMDSTS_SIZE(sc, cmdsts);
2059
2060 /*
2061 * NOTE: OWN is set if owned by _consumer_. We're the
2062 * consumer of the receive ring, so if the bit is clear,
2063 * we have processed all of the packets.
2064 */
2065 if ((cmdsts & CMDSTS_OWN) == 0) {
2066 /*
2067 * We have processed all of the receive buffers.
2068 */
2069 break;
2070 }
2071
2072 if (__predict_false(sc->sc_rxdiscard)) {
2073 sip_init_rxdesc(sc, i);
2074 if ((cmdsts & CMDSTS_MORE) == 0) {
2075 /* Reset our state. */
2076 sc->sc_rxdiscard = 0;
2077 }
2078 continue;
2079 }
2080
2081 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2082 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2083
2084 m = rxs->rxs_mbuf;
2085
2086 /*
2087 * Add a new receive buffer to the ring.
2088 */
2089 if (sipcom_add_rxbuf(sc, i) != 0) {
2090 /*
2091 * Failed, throw away what we've done so
2092 * far, and discard the rest of the packet.
2093 */
2094 ifp->if_ierrors++;
2095 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2096 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2097 sip_init_rxdesc(sc, i);
2098 if (cmdsts & CMDSTS_MORE)
2099 sc->sc_rxdiscard = 1;
2100 if (sc->sc_rxhead != NULL)
2101 m_freem(sc->sc_rxhead);
2102 sip_rxchain_reset(sc);
2103 continue;
2104 }
2105
2106 sip_rxchain_link(sc, m);
2107
2108 m->m_len = len;
2109
2110 /*
2111 * If this is not the end of the packet, keep
2112 * looking.
2113 */
2114 if (cmdsts & CMDSTS_MORE) {
2115 sc->sc_rxlen += len;
2116 continue;
2117 }
2118
2119 /*
2120 * Okay, we have the entire packet now. The chip includes
2121 * the FCS, so we need to trim it.
2122 */
2123 m->m_len -= ETHER_CRC_LEN;
2124
2125 *sc->sc_rxtailp = NULL;
2126 len = m->m_len + sc->sc_rxlen;
2127 m = sc->sc_rxhead;
2128
2129 sip_rxchain_reset(sc);
2130
2131 /*
2132 * If an error occurred, update stats and drop the packet.
2133 */
2134 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2135 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2136 ifp->if_ierrors++;
2137 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2138 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2139 /* Receive overrun handled elsewhere. */
2140 printf("%s: receive descriptor error\n",
2141 device_xname(sc->sc_dev));
2142 }
2143 #define PRINTERR(bit, str) \
2144 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2145 (cmdsts & (bit)) != 0) \
2146 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2147 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2148 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2149 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2150 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2151 #undef PRINTERR
2152 m_freem(m);
2153 continue;
2154 }
2155
2156 /*
2157 * If the packet is small enough to fit in a
2158 * single header mbuf, allocate one and copy
2159 * the data into it. This greatly reduces
2160 * memory consumption when we receive lots
2161 * of small packets.
2162 */
2163 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2164 struct mbuf *nm;
2165 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2166 if (nm == NULL) {
2167 ifp->if_ierrors++;
2168 m_freem(m);
2169 continue;
2170 }
2171 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2172 nm->m_data += 2;
2173 nm->m_pkthdr.len = nm->m_len = len;
2174 m_copydata(m, 0, len, mtod(nm, void *));
2175 m_freem(m);
2176 m = nm;
2177 }
2178 #ifndef __NO_STRICT_ALIGNMENT
2179 else {
2180 /*
2181 * The DP83820's receive buffers must be 4-byte
2182 * aligned. But this means that the data after
2183 * the Ethernet header is misaligned. To compensate,
2184 * we have artificially shortened the buffer size
2185 * in the descriptor, and we do an overlapping copy
2186 * of the data two bytes further in (in the first
2187 * buffer of the chain only).
2188 */
2189 memmove(mtod(m, char *) + 2, mtod(m, void *),
2190 m->m_len);
2191 m->m_data += 2;
2192 }
2193 #endif /* ! __NO_STRICT_ALIGNMENT */
2194
2195 /*
2196 * If VLANs are enabled, VLAN packets have been unwrapped
2197 * for us. Associate the tag with the packet.
2198 */
2199
2200 /*
2201 * Again, byte swapping is tricky. Hardware provided
2202 * the tag in the network byte order, but extsts was
2203 * passed through le32toh() in the meantime. On a
2204 * big-endian machine, we need to swap it again. On a
2205 * little-endian machine, we need to convert from the
2206 * network to host byte order. This means that we must
2207 * swap it in any case, so unconditional swap instead
2208 * of htons() is used.
2209 */
2210 if ((extsts & EXTSTS_VPKT) != 0) {
2211 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2212 continue);
2213 }
2214
2215 /*
2216 * Set the incoming checksum information for the
2217 * packet.
2218 */
2219 if ((extsts & EXTSTS_IPPKT) != 0) {
2220 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2221 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2222 if (extsts & EXTSTS_Rx_IPERR)
2223 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2224 if (extsts & EXTSTS_TCPPKT) {
2225 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2226 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2227 if (extsts & EXTSTS_Rx_TCPERR)
2228 m->m_pkthdr.csum_flags |=
2229 M_CSUM_TCP_UDP_BAD;
2230 } else if (extsts & EXTSTS_UDPPKT) {
2231 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2232 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2233 if (extsts & EXTSTS_Rx_UDPERR)
2234 m->m_pkthdr.csum_flags |=
2235 M_CSUM_TCP_UDP_BAD;
2236 }
2237 }
2238
2239 ifp->if_ipackets++;
2240 m->m_pkthdr.rcvif = ifp;
2241 m->m_pkthdr.len = len;
2242
2243 /*
2244 * Pass this up to any BPF listeners, but only
2245 * pass if up the stack if it's for us.
2246 */
2247 bpf_mtap(ifp, m);
2248
2249 /* Pass it on. */
2250 (*ifp->if_input)(ifp, m);
2251 }
2252
2253 /* Update the receive pointer. */
2254 sc->sc_rxptr = i;
2255 }
2256
2257 /*
2258 * sip_rxintr:
2259 *
2260 * Helper; handle receive interrupts on 10/100 parts.
2261 */
2262 static void
2263 sip_rxintr(struct sip_softc *sc)
2264 {
2265 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2266 struct sip_rxsoft *rxs;
2267 struct mbuf *m;
2268 u_int32_t cmdsts;
2269 int i, len;
2270
2271 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2272 rxs = &sc->sc_rxsoft[i];
2273
2274 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2275
2276 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2277
2278 /*
2279 * NOTE: OWN is set if owned by _consumer_. We're the
2280 * consumer of the receive ring, so if the bit is clear,
2281 * we have processed all of the packets.
2282 */
2283 if ((cmdsts & CMDSTS_OWN) == 0) {
2284 /*
2285 * We have processed all of the receive buffers.
2286 */
2287 break;
2288 }
2289
2290 /*
2291 * If any collisions were seen on the wire, count one.
2292 */
2293 if (cmdsts & CMDSTS_Rx_COL)
2294 ifp->if_collisions++;
2295
2296 /*
2297 * If an error occurred, update stats, clear the status
2298 * word, and leave the packet buffer in place. It will
2299 * simply be reused the next time the ring comes around.
2300 */
2301 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2302 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2303 ifp->if_ierrors++;
2304 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2305 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2306 /* Receive overrun handled elsewhere. */
2307 printf("%s: receive descriptor error\n",
2308 device_xname(sc->sc_dev));
2309 }
2310 #define PRINTERR(bit, str) \
2311 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2312 (cmdsts & (bit)) != 0) \
2313 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2314 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2315 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2316 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2317 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2318 #undef PRINTERR
2319 sip_init_rxdesc(sc, i);
2320 continue;
2321 }
2322
2323 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2324 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2325
2326 /*
2327 * No errors; receive the packet. Note, the SiS 900
2328 * includes the CRC with every packet.
2329 */
2330 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2331
2332 #ifdef __NO_STRICT_ALIGNMENT
2333 /*
2334 * If the packet is small enough to fit in a
2335 * single header mbuf, allocate one and copy
2336 * the data into it. This greatly reduces
2337 * memory consumption when we receive lots
2338 * of small packets.
2339 *
2340 * Otherwise, we add a new buffer to the receive
2341 * chain. If this fails, we drop the packet and
2342 * recycle the old buffer.
2343 */
2344 if (sip_copy_small != 0 && len <= MHLEN) {
2345 MGETHDR(m, M_DONTWAIT, MT_DATA);
2346 if (m == NULL)
2347 goto dropit;
2348 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2349 memcpy(mtod(m, void *),
2350 mtod(rxs->rxs_mbuf, void *), len);
2351 sip_init_rxdesc(sc, i);
2352 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2353 rxs->rxs_dmamap->dm_mapsize,
2354 BUS_DMASYNC_PREREAD);
2355 } else {
2356 m = rxs->rxs_mbuf;
2357 if (sipcom_add_rxbuf(sc, i) != 0) {
2358 dropit:
2359 ifp->if_ierrors++;
2360 sip_init_rxdesc(sc, i);
2361 bus_dmamap_sync(sc->sc_dmat,
2362 rxs->rxs_dmamap, 0,
2363 rxs->rxs_dmamap->dm_mapsize,
2364 BUS_DMASYNC_PREREAD);
2365 continue;
2366 }
2367 }
2368 #else
2369 /*
2370 * The SiS 900's receive buffers must be 4-byte aligned.
2371 * But this means that the data after the Ethernet header
2372 * is misaligned. We must allocate a new buffer and
2373 * copy the data, shifted forward 2 bytes.
2374 */
2375 MGETHDR(m, M_DONTWAIT, MT_DATA);
2376 if (m == NULL) {
2377 dropit:
2378 ifp->if_ierrors++;
2379 sip_init_rxdesc(sc, i);
2380 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2381 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2382 continue;
2383 }
2384 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2385 if (len > (MHLEN - 2)) {
2386 MCLGET(m, M_DONTWAIT);
2387 if ((m->m_flags & M_EXT) == 0) {
2388 m_freem(m);
2389 goto dropit;
2390 }
2391 }
2392 m->m_data += 2;
2393
2394 /*
2395 * Note that we use clusters for incoming frames, so the
2396 * buffer is virtually contiguous.
2397 */
2398 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2399
2400 /* Allow the receive descriptor to continue using its mbuf. */
2401 sip_init_rxdesc(sc, i);
2402 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2403 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2404 #endif /* __NO_STRICT_ALIGNMENT */
2405
2406 ifp->if_ipackets++;
2407 m->m_pkthdr.rcvif = ifp;
2408 m->m_pkthdr.len = m->m_len = len;
2409
2410 /*
2411 * Pass this up to any BPF listeners, but only
2412 * pass if up the stack if it's for us.
2413 */
2414 bpf_mtap(ifp, m);
2415
2416 /* Pass it on. */
2417 (*ifp->if_input)(ifp, m);
2418 }
2419
2420 /* Update the receive pointer. */
2421 sc->sc_rxptr = i;
2422 }
2423
2424 /*
2425 * sip_tick:
2426 *
2427 * One second timer, used to tick the MII.
2428 */
2429 static void
2430 sipcom_tick(void *arg)
2431 {
2432 struct sip_softc *sc = arg;
2433 int s;
2434
2435 s = splnet();
2436 #ifdef SIP_EVENT_COUNTERS
2437 if (sc->sc_gigabit) {
2438 /* Read PAUSE related counts from MIB registers. */
2439 sc->sc_ev_rxpause.ev_count +=
2440 bus_space_read_4(sc->sc_st, sc->sc_sh,
2441 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2442 sc->sc_ev_txpause.ev_count +=
2443 bus_space_read_4(sc->sc_st, sc->sc_sh,
2444 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2445 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2446 }
2447 #endif /* SIP_EVENT_COUNTERS */
2448 mii_tick(&sc->sc_mii);
2449 splx(s);
2450
2451 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2452 }
2453
2454 /*
2455 * sip_reset:
2456 *
2457 * Perform a soft reset on the SiS 900.
2458 */
2459 static bool
2460 sipcom_reset(struct sip_softc *sc)
2461 {
2462 bus_space_tag_t st = sc->sc_st;
2463 bus_space_handle_t sh = sc->sc_sh;
2464 int i;
2465
2466 bus_space_write_4(st, sh, SIP_IER, 0);
2467 bus_space_write_4(st, sh, SIP_IMR, 0);
2468 bus_space_write_4(st, sh, SIP_RFCR, 0);
2469 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2470
2471 for (i = 0; i < SIP_TIMEOUT; i++) {
2472 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2473 break;
2474 delay(2);
2475 }
2476
2477 if (i == SIP_TIMEOUT) {
2478 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2479 return false;
2480 }
2481
2482 delay(1000);
2483
2484 if (sc->sc_gigabit) {
2485 /*
2486 * Set the general purpose I/O bits. Do it here in case we
2487 * need to have GPIO set up to talk to the media interface.
2488 */
2489 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2490 delay(1000);
2491 }
2492 return true;
2493 }
2494
2495 static void
2496 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2497 {
2498 u_int32_t reg;
2499 bus_space_tag_t st = sc->sc_st;
2500 bus_space_handle_t sh = sc->sc_sh;
2501 /*
2502 * Initialize the VLAN/IP receive control register.
2503 * We enable checksum computation on all incoming
2504 * packets, and do not reject packets w/ bad checksums.
2505 */
2506 reg = 0;
2507 if (capenable &
2508 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2509 reg |= VRCR_IPEN;
2510 if (VLAN_ATTACHED(&sc->sc_ethercom))
2511 reg |= VRCR_VTDEN|VRCR_VTREN;
2512 bus_space_write_4(st, sh, SIP_VRCR, reg);
2513
2514 /*
2515 * Initialize the VLAN/IP transmit control register.
2516 * We enable outgoing checksum computation on a
2517 * per-packet basis.
2518 */
2519 reg = 0;
2520 if (capenable &
2521 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2522 reg |= VTCR_PPCHK;
2523 if (VLAN_ATTACHED(&sc->sc_ethercom))
2524 reg |= VTCR_VPPTI;
2525 bus_space_write_4(st, sh, SIP_VTCR, reg);
2526
2527 /*
2528 * If we're using VLANs, initialize the VLAN data register.
2529 * To understand why we bswap the VLAN Ethertype, see section
2530 * 4.2.36 of the DP83820 manual.
2531 */
2532 if (VLAN_ATTACHED(&sc->sc_ethercom))
2533 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2534 }
2535
2536 /*
2537 * sip_init: [ ifnet interface function ]
2538 *
2539 * Initialize the interface. Must be called at splnet().
2540 */
2541 static int
2542 sipcom_init(struct ifnet *ifp)
2543 {
2544 struct sip_softc *sc = ifp->if_softc;
2545 bus_space_tag_t st = sc->sc_st;
2546 bus_space_handle_t sh = sc->sc_sh;
2547 struct sip_txsoft *txs;
2548 struct sip_rxsoft *rxs;
2549 struct sip_desc *sipd;
2550 int i, error = 0;
2551
2552 if (device_is_active(sc->sc_dev)) {
2553 /*
2554 * Cancel any pending I/O.
2555 */
2556 sipcom_stop(ifp, 0);
2557 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2558 !device_is_active(sc->sc_dev))
2559 return 0;
2560
2561 /*
2562 * Reset the chip to a known state.
2563 */
2564 if (!sipcom_reset(sc))
2565 return EBUSY;
2566
2567 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2568 /*
2569 * DP83815 manual, page 78:
2570 * 4.4 Recommended Registers Configuration
2571 * For optimum performance of the DP83815, version noted
2572 * as DP83815CVNG (SRR = 203h), the listed register
2573 * modifications must be followed in sequence...
2574 *
2575 * It's not clear if this should be 302h or 203h because that
2576 * chip name is listed as SRR 302h in the description of the
2577 * SRR register. However, my revision 302h DP83815 on the
2578 * Netgear FA311 purchased in 02/2001 needs these settings
2579 * to avoid tons of errors in AcceptPerfectMatch (non-
2580 * IFF_PROMISC) mode. I do not know if other revisions need
2581 * this set or not. [briggs -- 09 March 2001]
2582 *
2583 * Note that only the low-order 12 bits of 0xe4 are documented
2584 * and that this sets reserved bits in that register.
2585 */
2586 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2587
2588 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2589 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2590 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2591 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2592
2593 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2594 }
2595
2596 /*
2597 * Initialize the transmit descriptor ring.
2598 */
2599 for (i = 0; i < sc->sc_ntxdesc; i++) {
2600 sipd = &sc->sc_txdescs[i];
2601 memset(sipd, 0, sizeof(struct sip_desc));
2602 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2603 }
2604 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2605 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2606 sc->sc_txfree = sc->sc_ntxdesc;
2607 sc->sc_txnext = 0;
2608 sc->sc_txwin = 0;
2609
2610 /*
2611 * Initialize the transmit job descriptors.
2612 */
2613 SIMPLEQ_INIT(&sc->sc_txfreeq);
2614 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2615 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2616 txs = &sc->sc_txsoft[i];
2617 txs->txs_mbuf = NULL;
2618 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2619 }
2620
2621 /*
2622 * Initialize the receive descriptor and receive job
2623 * descriptor rings.
2624 */
2625 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2626 rxs = &sc->sc_rxsoft[i];
2627 if (rxs->rxs_mbuf == NULL) {
2628 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2629 printf("%s: unable to allocate or map rx "
2630 "buffer %d, error = %d\n",
2631 device_xname(sc->sc_dev), i, error);
2632 /*
2633 * XXX Should attempt to run with fewer receive
2634 * XXX buffers instead of just failing.
2635 */
2636 sipcom_rxdrain(sc);
2637 goto out;
2638 }
2639 } else
2640 sip_init_rxdesc(sc, i);
2641 }
2642 sc->sc_rxptr = 0;
2643 sc->sc_rxdiscard = 0;
2644 sip_rxchain_reset(sc);
2645
2646 /*
2647 * Set the configuration register; it's already initialized
2648 * in sip_attach().
2649 */
2650 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2651
2652 /*
2653 * Initialize the prototype TXCFG register.
2654 */
2655 if (sc->sc_gigabit) {
2656 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2657 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2658 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2659 SIP_SIS900_REV(sc, SIS_REV_960) ||
2660 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2661 (sc->sc_cfg & CFG_EDBMASTEN)) {
2662 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2663 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2664 } else {
2665 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2666 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2667 }
2668
2669 sc->sc_txcfg |= TXCFG_ATP |
2670 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2671 sc->sc_tx_drain_thresh;
2672 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2673
2674 /*
2675 * Initialize the receive drain threshold if we have never
2676 * done so.
2677 */
2678 if (sc->sc_rx_drain_thresh == 0) {
2679 /*
2680 * XXX This value should be tuned. This is set to the
2681 * maximum of 248 bytes, and we may be able to improve
2682 * performance by decreasing it (although we should never
2683 * set this value lower than 2; 14 bytes are required to
2684 * filter the packet).
2685 */
2686 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2687 }
2688
2689 /*
2690 * Initialize the prototype RXCFG register.
2691 */
2692 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2693 /*
2694 * Accept long packets (including FCS) so we can handle
2695 * 802.1q-tagged frames and jumbo frames properly.
2696 */
2697 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2698 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2699 sc->sc_rxcfg |= RXCFG_ALP;
2700
2701 /*
2702 * Checksum offloading is disabled if the user selects an MTU
2703 * larger than 8109. (FreeBSD says 8152, but there is emperical
2704 * evidence that >8109 does not work on some boards, such as the
2705 * Planex GN-1000TE).
2706 */
2707 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2708 (ifp->if_capenable &
2709 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2710 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2711 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2712 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2713 "disabled.\n", device_xname(sc->sc_dev));
2714 ifp->if_capenable &=
2715 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2716 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2717 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2718 ifp->if_csum_flags_tx = 0;
2719 ifp->if_csum_flags_rx = 0;
2720 }
2721
2722 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2723
2724 if (sc->sc_gigabit)
2725 sipcom_dp83820_init(sc, ifp->if_capenable);
2726
2727 /*
2728 * Give the transmit and receive rings to the chip.
2729 */
2730 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2731 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2732
2733 /*
2734 * Initialize the interrupt mask.
2735 */
2736 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2737 sc->sc_bits.b_isr_sserr |
2738 sc->sc_bits.b_isr_rmabt |
2739 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2740 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2741 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2742
2743 /* Set up the receive filter. */
2744 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2745
2746 /*
2747 * Tune sc_rx_flow_thresh.
2748 * XXX "More than 8KB" is too short for jumbo frames.
2749 * XXX TODO: Threshold value should be user-settable.
2750 */
2751 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2752 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2753 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2754
2755 /*
2756 * Set the current media. Do this after initializing the prototype
2757 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2758 * control.
2759 */
2760 if ((error = ether_mediachange(ifp)) != 0)
2761 goto out;
2762
2763 /*
2764 * Set the interrupt hold-off timer to 100us.
2765 */
2766 if (sc->sc_gigabit)
2767 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2768
2769 /*
2770 * Enable interrupts.
2771 */
2772 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2773
2774 /*
2775 * Start the transmit and receive processes.
2776 */
2777 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2778
2779 /*
2780 * Start the one second MII clock.
2781 */
2782 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2783
2784 /*
2785 * ...all done!
2786 */
2787 ifp->if_flags |= IFF_RUNNING;
2788 ifp->if_flags &= ~IFF_OACTIVE;
2789 sc->sc_if_flags = ifp->if_flags;
2790 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2791 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2792 sc->sc_prev.if_capenable = ifp->if_capenable;
2793
2794 out:
2795 if (error)
2796 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2797 return (error);
2798 }
2799
2800 /*
2801 * sip_drain:
2802 *
2803 * Drain the receive queue.
2804 */
2805 static void
2806 sipcom_rxdrain(struct sip_softc *sc)
2807 {
2808 struct sip_rxsoft *rxs;
2809 int i;
2810
2811 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2812 rxs = &sc->sc_rxsoft[i];
2813 if (rxs->rxs_mbuf != NULL) {
2814 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2815 m_freem(rxs->rxs_mbuf);
2816 rxs->rxs_mbuf = NULL;
2817 }
2818 }
2819 }
2820
2821 /*
2822 * sip_stop: [ ifnet interface function ]
2823 *
2824 * Stop transmission on the interface.
2825 */
2826 static void
2827 sipcom_stop(struct ifnet *ifp, int disable)
2828 {
2829 struct sip_softc *sc = ifp->if_softc;
2830 bus_space_tag_t st = sc->sc_st;
2831 bus_space_handle_t sh = sc->sc_sh;
2832 struct sip_txsoft *txs;
2833 u_int32_t cmdsts = 0; /* DEBUG */
2834
2835 /*
2836 * Stop the one second clock.
2837 */
2838 callout_stop(&sc->sc_tick_ch);
2839
2840 /* Down the MII. */
2841 mii_down(&sc->sc_mii);
2842
2843 if (device_is_active(sc->sc_dev)) {
2844 /*
2845 * Disable interrupts.
2846 */
2847 bus_space_write_4(st, sh, SIP_IER, 0);
2848
2849 /*
2850 * Stop receiver and transmitter.
2851 */
2852 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2853 }
2854
2855 /*
2856 * Release any queued transmit buffers.
2857 */
2858 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2859 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2860 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2861 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2862 CMDSTS_INTR) == 0)
2863 printf("%s: sip_stop: last descriptor does not "
2864 "have INTR bit set\n", device_xname(sc->sc_dev));
2865 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2866 #ifdef DIAGNOSTIC
2867 if (txs->txs_mbuf == NULL) {
2868 printf("%s: dirty txsoft with no mbuf chain\n",
2869 device_xname(sc->sc_dev));
2870 panic("sip_stop");
2871 }
2872 #endif
2873 cmdsts |= /* DEBUG */
2874 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2875 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2876 m_freem(txs->txs_mbuf);
2877 txs->txs_mbuf = NULL;
2878 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2879 }
2880
2881 /*
2882 * Mark the interface down and cancel the watchdog timer.
2883 */
2884 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2885 ifp->if_timer = 0;
2886
2887 if (disable)
2888 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2889
2890 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2891 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2892 printf("%s: sip_stop: no INTR bits set in dirty tx "
2893 "descriptors\n", device_xname(sc->sc_dev));
2894 }
2895
2896 /*
2897 * sip_read_eeprom:
2898 *
2899 * Read data from the serial EEPROM.
2900 */
2901 static void
2902 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2903 u_int16_t *data)
2904 {
2905 bus_space_tag_t st = sc->sc_st;
2906 bus_space_handle_t sh = sc->sc_sh;
2907 u_int16_t reg;
2908 int i, x;
2909
2910 for (i = 0; i < wordcnt; i++) {
2911 /* Send CHIP SELECT. */
2912 reg = EROMAR_EECS;
2913 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2914
2915 /* Shift in the READ opcode. */
2916 for (x = 3; x > 0; x--) {
2917 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2918 reg |= EROMAR_EEDI;
2919 else
2920 reg &= ~EROMAR_EEDI;
2921 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922 bus_space_write_4(st, sh, SIP_EROMAR,
2923 reg | EROMAR_EESK);
2924 delay(4);
2925 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2926 delay(4);
2927 }
2928
2929 /* Shift in address. */
2930 for (x = 6; x > 0; x--) {
2931 if ((word + i) & (1 << (x - 1)))
2932 reg |= EROMAR_EEDI;
2933 else
2934 reg &= ~EROMAR_EEDI;
2935 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2936 bus_space_write_4(st, sh, SIP_EROMAR,
2937 reg | EROMAR_EESK);
2938 delay(4);
2939 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2940 delay(4);
2941 }
2942
2943 /* Shift out data. */
2944 reg = EROMAR_EECS;
2945 data[i] = 0;
2946 for (x = 16; x > 0; x--) {
2947 bus_space_write_4(st, sh, SIP_EROMAR,
2948 reg | EROMAR_EESK);
2949 delay(4);
2950 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2951 data[i] |= (1 << (x - 1));
2952 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2953 delay(4);
2954 }
2955
2956 /* Clear CHIP SELECT. */
2957 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2958 delay(4);
2959 }
2960 }
2961
2962 /*
2963 * sipcom_add_rxbuf:
2964 *
2965 * Add a receive buffer to the indicated descriptor.
2966 */
2967 static int
2968 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2969 {
2970 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2971 struct mbuf *m;
2972 int error;
2973
2974 MGETHDR(m, M_DONTWAIT, MT_DATA);
2975 if (m == NULL)
2976 return (ENOBUFS);
2977 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2978
2979 MCLGET(m, M_DONTWAIT);
2980 if ((m->m_flags & M_EXT) == 0) {
2981 m_freem(m);
2982 return (ENOBUFS);
2983 }
2984
2985 /* XXX I don't believe this is necessary. --dyoung */
2986 if (sc->sc_gigabit)
2987 m->m_len = sc->sc_parm->p_rxbuf_len;
2988
2989 if (rxs->rxs_mbuf != NULL)
2990 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2991
2992 rxs->rxs_mbuf = m;
2993
2994 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2995 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2996 BUS_DMA_READ|BUS_DMA_NOWAIT);
2997 if (error) {
2998 printf("%s: can't load rx DMA map %d, error = %d\n",
2999 device_xname(sc->sc_dev), idx, error);
3000 panic("%s", __func__); /* XXX */
3001 }
3002
3003 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3004 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3005
3006 sip_init_rxdesc(sc, idx);
3007
3008 return (0);
3009 }
3010
3011 /*
3012 * sip_sis900_set_filter:
3013 *
3014 * Set up the receive filter.
3015 */
3016 static void
3017 sipcom_sis900_set_filter(struct sip_softc *sc)
3018 {
3019 bus_space_tag_t st = sc->sc_st;
3020 bus_space_handle_t sh = sc->sc_sh;
3021 struct ethercom *ec = &sc->sc_ethercom;
3022 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3023 struct ether_multi *enm;
3024 const u_int8_t *cp;
3025 struct ether_multistep step;
3026 u_int32_t crc, mchash[16];
3027
3028 /*
3029 * Initialize the prototype RFCR.
3030 */
3031 sc->sc_rfcr = RFCR_RFEN;
3032 if (ifp->if_flags & IFF_BROADCAST)
3033 sc->sc_rfcr |= RFCR_AAB;
3034 if (ifp->if_flags & IFF_PROMISC) {
3035 sc->sc_rfcr |= RFCR_AAP;
3036 goto allmulti;
3037 }
3038
3039 /*
3040 * Set up the multicast address filter by passing all multicast
3041 * addresses through a CRC generator, and then using the high-order
3042 * 6 bits as an index into the 128 bit multicast hash table (only
3043 * the lower 16 bits of each 32 bit multicast hash register are
3044 * valid). The high order bits select the register, while the
3045 * rest of the bits select the bit within the register.
3046 */
3047
3048 memset(mchash, 0, sizeof(mchash));
3049
3050 /*
3051 * SiS900 (at least SiS963) requires us to register the address of
3052 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3053 */
3054 crc = 0x0ed423f9;
3055
3056 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3057 SIP_SIS900_REV(sc, SIS_REV_960) ||
3058 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3059 /* Just want the 8 most significant bits. */
3060 crc >>= 24;
3061 } else {
3062 /* Just want the 7 most significant bits. */
3063 crc >>= 25;
3064 }
3065
3066 /* Set the corresponding bit in the hash table. */
3067 mchash[crc >> 4] |= 1 << (crc & 0xf);
3068
3069 ETHER_FIRST_MULTI(step, ec, enm);
3070 while (enm != NULL) {
3071 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3072 /*
3073 * We must listen to a range of multicast addresses.
3074 * For now, just accept all multicasts, rather than
3075 * trying to set only those filter bits needed to match
3076 * the range. (At this time, the only use of address
3077 * ranges is for IP multicast routing, for which the
3078 * range is big enough to require all bits set.)
3079 */
3080 goto allmulti;
3081 }
3082
3083 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3084
3085 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3086 SIP_SIS900_REV(sc, SIS_REV_960) ||
3087 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3088 /* Just want the 8 most significant bits. */
3089 crc >>= 24;
3090 } else {
3091 /* Just want the 7 most significant bits. */
3092 crc >>= 25;
3093 }
3094
3095 /* Set the corresponding bit in the hash table. */
3096 mchash[crc >> 4] |= 1 << (crc & 0xf);
3097
3098 ETHER_NEXT_MULTI(step, enm);
3099 }
3100
3101 ifp->if_flags &= ~IFF_ALLMULTI;
3102 goto setit;
3103
3104 allmulti:
3105 ifp->if_flags |= IFF_ALLMULTI;
3106 sc->sc_rfcr |= RFCR_AAM;
3107
3108 setit:
3109 #define FILTER_EMIT(addr, data) \
3110 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3111 delay(1); \
3112 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3113 delay(1)
3114
3115 /*
3116 * Disable receive filter, and program the node address.
3117 */
3118 cp = CLLADDR(ifp->if_sadl);
3119 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3120 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3121 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3122
3123 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3124 /*
3125 * Program the multicast hash table.
3126 */
3127 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3128 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3129 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3130 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3131 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3132 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3133 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3134 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3135 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3136 SIP_SIS900_REV(sc, SIS_REV_960) ||
3137 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3138 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3139 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3140 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3141 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3142 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3143 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3144 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3145 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3146 }
3147 }
3148 #undef FILTER_EMIT
3149
3150 /*
3151 * Re-enable the receiver filter.
3152 */
3153 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3154 }
3155
3156 /*
3157 * sip_dp83815_set_filter:
3158 *
3159 * Set up the receive filter.
3160 */
3161 static void
3162 sipcom_dp83815_set_filter(struct sip_softc *sc)
3163 {
3164 bus_space_tag_t st = sc->sc_st;
3165 bus_space_handle_t sh = sc->sc_sh;
3166 struct ethercom *ec = &sc->sc_ethercom;
3167 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3168 struct ether_multi *enm;
3169 const u_int8_t *cp;
3170 struct ether_multistep step;
3171 u_int32_t crc, hash, slot, bit;
3172 #define MCHASH_NWORDS_83820 128
3173 #define MCHASH_NWORDS_83815 32
3174 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3175 u_int16_t mchash[MCHASH_NWORDS];
3176 int i;
3177
3178 /*
3179 * Initialize the prototype RFCR.
3180 * Enable the receive filter, and accept on
3181 * Perfect (destination address) Match
3182 * If IFF_BROADCAST, also accept all broadcast packets.
3183 * If IFF_PROMISC, accept all unicast packets (and later, set
3184 * IFF_ALLMULTI and accept all multicast, too).
3185 */
3186 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3187 if (ifp->if_flags & IFF_BROADCAST)
3188 sc->sc_rfcr |= RFCR_AAB;
3189 if (ifp->if_flags & IFF_PROMISC) {
3190 sc->sc_rfcr |= RFCR_AAP;
3191 goto allmulti;
3192 }
3193
3194 /*
3195 * Set up the DP83820/DP83815 multicast address filter by
3196 * passing all multicast addresses through a CRC generator,
3197 * and then using the high-order 11/9 bits as an index into
3198 * the 2048/512 bit multicast hash table. The high-order
3199 * 7/5 bits select the slot, while the low-order 4 bits
3200 * select the bit within the slot. Note that only the low
3201 * 16-bits of each filter word are used, and there are
3202 * 128/32 filter words.
3203 */
3204
3205 memset(mchash, 0, sizeof(mchash));
3206
3207 ifp->if_flags &= ~IFF_ALLMULTI;
3208 ETHER_FIRST_MULTI(step, ec, enm);
3209 if (enm == NULL)
3210 goto setit;
3211 while (enm != NULL) {
3212 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3213 /*
3214 * We must listen to a range of multicast addresses.
3215 * For now, just accept all multicasts, rather than
3216 * trying to set only those filter bits needed to match
3217 * the range. (At this time, the only use of address
3218 * ranges is for IP multicast routing, for which the
3219 * range is big enough to require all bits set.)
3220 */
3221 goto allmulti;
3222 }
3223
3224 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3225
3226 if (sc->sc_gigabit) {
3227 /* Just want the 11 most significant bits. */
3228 hash = crc >> 21;
3229 } else {
3230 /* Just want the 9 most significant bits. */
3231 hash = crc >> 23;
3232 }
3233
3234 slot = hash >> 4;
3235 bit = hash & 0xf;
3236
3237 /* Set the corresponding bit in the hash table. */
3238 mchash[slot] |= 1 << bit;
3239
3240 ETHER_NEXT_MULTI(step, enm);
3241 }
3242 sc->sc_rfcr |= RFCR_MHEN;
3243 goto setit;
3244
3245 allmulti:
3246 ifp->if_flags |= IFF_ALLMULTI;
3247 sc->sc_rfcr |= RFCR_AAM;
3248
3249 setit:
3250 #define FILTER_EMIT(addr, data) \
3251 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3252 delay(1); \
3253 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3254 delay(1)
3255
3256 /*
3257 * Disable receive filter, and program the node address.
3258 */
3259 cp = CLLADDR(ifp->if_sadl);
3260 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3261 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3262 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3263
3264 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3265 int nwords =
3266 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3267 /*
3268 * Program the multicast hash table.
3269 */
3270 for (i = 0; i < nwords; i++) {
3271 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3272 }
3273 }
3274 #undef FILTER_EMIT
3275 #undef MCHASH_NWORDS
3276 #undef MCHASH_NWORDS_83815
3277 #undef MCHASH_NWORDS_83820
3278
3279 /*
3280 * Re-enable the receiver filter.
3281 */
3282 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3283 }
3284
3285 /*
3286 * sip_dp83820_mii_readreg: [mii interface function]
3287 *
3288 * Read a PHY register on the MII of the DP83820.
3289 */
3290 static int
3291 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3292 {
3293 struct sip_softc *sc = device_private(self);
3294
3295 if (sc->sc_cfg & CFG_TBI_EN) {
3296 bus_addr_t tbireg;
3297 int rv;
3298
3299 if (phy != 0)
3300 return (0);
3301
3302 switch (reg) {
3303 case MII_BMCR: tbireg = SIP_TBICR; break;
3304 case MII_BMSR: tbireg = SIP_TBISR; break;
3305 case MII_ANAR: tbireg = SIP_TANAR; break;
3306 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3307 case MII_ANER: tbireg = SIP_TANER; break;
3308 case MII_EXTSR:
3309 /*
3310 * Don't even bother reading the TESR register.
3311 * The manual documents that the device has
3312 * 1000baseX full/half capability, but the
3313 * register itself seems read back 0 on some
3314 * boards. Just hard-code the result.
3315 */
3316 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3317
3318 default:
3319 return (0);
3320 }
3321
3322 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3323 if (tbireg == SIP_TBISR) {
3324 /* LINK and ACOMP are switched! */
3325 int val = rv;
3326
3327 rv = 0;
3328 if (val & TBISR_MR_LINK_STATUS)
3329 rv |= BMSR_LINK;
3330 if (val & TBISR_MR_AN_COMPLETE)
3331 rv |= BMSR_ACOMP;
3332
3333 /*
3334 * The manual claims this register reads back 0
3335 * on hard and soft reset. But we want to let
3336 * the gentbi driver know that we support auto-
3337 * negotiation, so hard-code this bit in the
3338 * result.
3339 */
3340 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3341 }
3342
3343 return (rv);
3344 }
3345
3346 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3347 }
3348
3349 /*
3350 * sip_dp83820_mii_writereg: [mii interface function]
3351 *
3352 * Write a PHY register on the MII of the DP83820.
3353 */
3354 static void
3355 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3356 {
3357 struct sip_softc *sc = device_private(self);
3358
3359 if (sc->sc_cfg & CFG_TBI_EN) {
3360 bus_addr_t tbireg;
3361
3362 if (phy != 0)
3363 return;
3364
3365 switch (reg) {
3366 case MII_BMCR: tbireg = SIP_TBICR; break;
3367 case MII_ANAR: tbireg = SIP_TANAR; break;
3368 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3369 default:
3370 return;
3371 }
3372
3373 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3374 return;
3375 }
3376
3377 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3378 }
3379
3380 /*
3381 * sip_dp83820_mii_statchg: [mii interface function]
3382 *
3383 * Callback from MII layer when media changes.
3384 */
3385 static void
3386 sipcom_dp83820_mii_statchg(device_t self)
3387 {
3388 struct sip_softc *sc = device_private(self);
3389 struct mii_data *mii = &sc->sc_mii;
3390 u_int32_t cfg, pcr;
3391
3392 /*
3393 * Get flow control negotiation result.
3394 */
3395 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3396 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3397 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3398 mii->mii_media_active &= ~IFM_ETH_FMASK;
3399 }
3400
3401 /*
3402 * Update TXCFG for full-duplex operation.
3403 */
3404 if ((mii->mii_media_active & IFM_FDX) != 0)
3405 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3406 else
3407 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3408
3409 /*
3410 * Update RXCFG for full-duplex or loopback.
3411 */
3412 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3413 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3414 sc->sc_rxcfg |= RXCFG_ATX;
3415 else
3416 sc->sc_rxcfg &= ~RXCFG_ATX;
3417
3418 /*
3419 * Update CFG for MII/GMII.
3420 */
3421 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3422 cfg = sc->sc_cfg | CFG_MODE_1000;
3423 else
3424 cfg = sc->sc_cfg;
3425
3426 /*
3427 * 802.3x flow control.
3428 */
3429 pcr = 0;
3430 if (sc->sc_flowflags & IFM_FLOW) {
3431 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3432 pcr |= sc->sc_rx_flow_thresh;
3433 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3434 pcr |= PCR_PSEN | PCR_PS_MCAST;
3435 }
3436
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3438 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3439 sc->sc_txcfg);
3440 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3441 sc->sc_rxcfg);
3442 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3443 }
3444
3445 /*
3446 * sip_mii_bitbang_read: [mii bit-bang interface function]
3447 *
3448 * Read the MII serial port for the MII bit-bang module.
3449 */
3450 static u_int32_t
3451 sipcom_mii_bitbang_read(device_t self)
3452 {
3453 struct sip_softc *sc = device_private(self);
3454
3455 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3456 }
3457
3458 /*
3459 * sip_mii_bitbang_write: [mii big-bang interface function]
3460 *
3461 * Write the MII serial port for the MII bit-bang module.
3462 */
3463 static void
3464 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3465 {
3466 struct sip_softc *sc = device_private(self);
3467
3468 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3469 }
3470
3471 /*
3472 * sip_sis900_mii_readreg: [mii interface function]
3473 *
3474 * Read a PHY register on the MII.
3475 */
3476 static int
3477 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3478 {
3479 struct sip_softc *sc = device_private(self);
3480 u_int32_t enphy;
3481
3482 /*
3483 * The PHY of recent SiS chipsets is accessed through bitbang
3484 * operations.
3485 */
3486 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3487 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3488 phy, reg);
3489
3490 #ifndef SIS900_MII_RESTRICT
3491 /*
3492 * The SiS 900 has only an internal PHY on the MII. Only allow
3493 * MII address 0.
3494 */
3495 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3496 return (0);
3497 #endif
3498
3499 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3500 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3501 ENPHY_RWCMD | ENPHY_ACCESS);
3502 do {
3503 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3504 } while (enphy & ENPHY_ACCESS);
3505 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3506 }
3507
3508 /*
3509 * sip_sis900_mii_writereg: [mii interface function]
3510 *
3511 * Write a PHY register on the MII.
3512 */
3513 static void
3514 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3515 {
3516 struct sip_softc *sc = device_private(self);
3517 u_int32_t enphy;
3518
3519 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3520 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3521 phy, reg, val);
3522 return;
3523 }
3524
3525 #ifndef SIS900_MII_RESTRICT
3526 /*
3527 * The SiS 900 has only an internal PHY on the MII. Only allow
3528 * MII address 0.
3529 */
3530 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3531 return;
3532 #endif
3533
3534 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3535 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3536 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3537 do {
3538 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3539 } while (enphy & ENPHY_ACCESS);
3540 }
3541
3542 /*
3543 * sip_sis900_mii_statchg: [mii interface function]
3544 *
3545 * Callback from MII layer when media changes.
3546 */
3547 static void
3548 sipcom_sis900_mii_statchg(device_t self)
3549 {
3550 struct sip_softc *sc = device_private(self);
3551 struct mii_data *mii = &sc->sc_mii;
3552 u_int32_t flowctl;
3553
3554 /*
3555 * Get flow control negotiation result.
3556 */
3557 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3558 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3559 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3560 mii->mii_media_active &= ~IFM_ETH_FMASK;
3561 }
3562
3563 /*
3564 * Update TXCFG for full-duplex operation.
3565 */
3566 if ((mii->mii_media_active & IFM_FDX) != 0)
3567 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3568 else
3569 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3570
3571 /*
3572 * Update RXCFG for full-duplex or loopback.
3573 */
3574 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3575 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3576 sc->sc_rxcfg |= RXCFG_ATX;
3577 else
3578 sc->sc_rxcfg &= ~RXCFG_ATX;
3579
3580 /*
3581 * Update IMR for use of 802.3x flow control.
3582 */
3583 if (sc->sc_flowflags & IFM_FLOW) {
3584 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3585 flowctl = FLOWCTL_FLOWEN;
3586 } else {
3587 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3588 flowctl = 0;
3589 }
3590
3591 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3592 sc->sc_txcfg);
3593 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3594 sc->sc_rxcfg);
3595 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3596 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3597 }
3598
3599 /*
3600 * sip_dp83815_mii_readreg: [mii interface function]
3601 *
3602 * Read a PHY register on the MII.
3603 */
3604 static int
3605 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3606 {
3607 struct sip_softc *sc = device_private(self);
3608 u_int32_t val;
3609
3610 /*
3611 * The DP83815 only has an internal PHY. Only allow
3612 * MII address 0.
3613 */
3614 if (phy != 0)
3615 return (0);
3616
3617 /*
3618 * Apparently, after a reset, the DP83815 can take a while
3619 * to respond. During this recovery period, the BMSR returns
3620 * a value of 0. Catch this -- it's not supposed to happen
3621 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3622 * PHY to come back to life.
3623 *
3624 * This works out because the BMSR is the first register
3625 * read during the PHY probe process.
3626 */
3627 do {
3628 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3629 } while (reg == MII_BMSR && val == 0);
3630
3631 return (val & 0xffff);
3632 }
3633
3634 /*
3635 * sip_dp83815_mii_writereg: [mii interface function]
3636 *
3637 * Write a PHY register to the MII.
3638 */
3639 static void
3640 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3641 {
3642 struct sip_softc *sc = device_private(self);
3643
3644 /*
3645 * The DP83815 only has an internal PHY. Only allow
3646 * MII address 0.
3647 */
3648 if (phy != 0)
3649 return;
3650
3651 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3652 }
3653
3654 /*
3655 * sip_dp83815_mii_statchg: [mii interface function]
3656 *
3657 * Callback from MII layer when media changes.
3658 */
3659 static void
3660 sipcom_dp83815_mii_statchg(device_t self)
3661 {
3662 struct sip_softc *sc = device_private(self);
3663
3664 /*
3665 * Update TXCFG for full-duplex operation.
3666 */
3667 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3668 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3669 else
3670 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3671
3672 /*
3673 * Update RXCFG for full-duplex or loopback.
3674 */
3675 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3676 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3677 sc->sc_rxcfg |= RXCFG_ATX;
3678 else
3679 sc->sc_rxcfg &= ~RXCFG_ATX;
3680
3681 /*
3682 * XXX 802.3x flow control.
3683 */
3684
3685 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3686 sc->sc_txcfg);
3687 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3688 sc->sc_rxcfg);
3689
3690 /*
3691 * Some DP83815s experience problems when used with short
3692 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3693 * sequence adjusts the DSP's signal attenuation to fix the
3694 * problem.
3695 */
3696 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3697 uint32_t reg;
3698
3699 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3700
3701 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3702 reg &= 0x0fff;
3703 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3704 delay(100);
3705 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3706 reg &= 0x00ff;
3707 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3708 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3709 0x00e8);
3710 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3711 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3712 reg | 0x20);
3713 }
3714
3715 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3716 }
3717 }
3718
3719 static void
3720 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3721 const struct pci_attach_args *pa, u_int8_t *enaddr)
3722 {
3723 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3724 u_int8_t cksum, *e, match;
3725 int i;
3726
3727 /*
3728 * EEPROM data format for the DP83820 can be found in
3729 * the DP83820 manual, section 4.2.4.
3730 */
3731
3732 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3733
3734 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3735 match = ~(match - 1);
3736
3737 cksum = 0x55;
3738 e = (u_int8_t *) eeprom_data;
3739 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3740 cksum += *e++;
3741
3742 if (cksum != match)
3743 printf("%s: Checksum (%x) mismatch (%x)",
3744 device_xname(sc->sc_dev), cksum, match);
3745
3746 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3747 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3748 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3749 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3750 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3751 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3752 }
3753
3754 static void
3755 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3756 {
3757 int i;
3758
3759 /*
3760 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3761 * a reason, but I don't know it.
3762 */
3763 for (i = 0; i < 10; i++)
3764 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3765 }
3766
3767 static void
3768 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3769 const struct pci_attach_args *pa, u_int8_t *enaddr)
3770 {
3771 u_int16_t myea[ETHER_ADDR_LEN / 2];
3772
3773 switch (sc->sc_rev) {
3774 case SIS_REV_630S:
3775 case SIS_REV_630E:
3776 case SIS_REV_630EA1:
3777 case SIS_REV_630ET:
3778 case SIS_REV_635:
3779 /*
3780 * The MAC address for the on-board Ethernet of
3781 * the SiS 630 chipset is in the NVRAM. Kick
3782 * the chip into re-loading it from NVRAM, and
3783 * read the MAC address out of the filter registers.
3784 */
3785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3786
3787 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3788 RFCR_RFADDR_NODE0);
3789 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3790 0xffff;
3791
3792 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 RFCR_RFADDR_NODE2);
3794 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 0xffff;
3796
3797 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3798 RFCR_RFADDR_NODE4);
3799 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3800 0xffff;
3801 break;
3802
3803 case SIS_REV_960:
3804 {
3805 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3806 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3807
3808 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3809 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3810
3811 int waittime, i;
3812
3813 /* Allow to read EEPROM from LAN. It is shared
3814 * between a 1394 controller and the NIC and each
3815 * time we access it, we need to set SIS_EECMD_REQ.
3816 */
3817 SIS_SET_EROMAR(sc, EROMAR_REQ);
3818
3819 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3820 /* Force EEPROM to idle state. */
3821
3822 /*
3823 * XXX-cube This is ugly. I'll look for docs about it.
3824 */
3825 SIS_SET_EROMAR(sc, EROMAR_EECS);
3826 sipcom_sis900_eeprom_delay(sc);
3827 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3828 SIS_SET_EROMAR(sc, EROMAR_EESK);
3829 sipcom_sis900_eeprom_delay(sc);
3830 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3831 sipcom_sis900_eeprom_delay(sc);
3832 }
3833 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3834 sipcom_sis900_eeprom_delay(sc);
3835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3836
3837 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3838 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3839 sizeof(myea) / sizeof(myea[0]), myea);
3840 break;
3841 }
3842 DELAY(1);
3843 }
3844
3845 /*
3846 * Set SIS_EECTL_CLK to high, so a other master
3847 * can operate on the i2c bus.
3848 */
3849 SIS_SET_EROMAR(sc, EROMAR_EESK);
3850
3851 /* Refuse EEPROM access by LAN */
3852 SIS_SET_EROMAR(sc, EROMAR_DONE);
3853 } break;
3854
3855 default:
3856 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3857 sizeof(myea) / sizeof(myea[0]), myea);
3858 }
3859
3860 enaddr[0] = myea[0] & 0xff;
3861 enaddr[1] = myea[0] >> 8;
3862 enaddr[2] = myea[1] & 0xff;
3863 enaddr[3] = myea[1] >> 8;
3864 enaddr[4] = myea[2] & 0xff;
3865 enaddr[5] = myea[2] >> 8;
3866 }
3867
3868 /* Table and macro to bit-reverse an octet. */
3869 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3870 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3871
3872 static void
3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3874 const struct pci_attach_args *pa, u_int8_t *enaddr)
3875 {
3876 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3877 u_int8_t cksum, *e, match;
3878 int i;
3879
3880 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3881 sizeof(eeprom_data[0]), eeprom_data);
3882
3883 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3884 match = ~(match - 1);
3885
3886 cksum = 0x55;
3887 e = (u_int8_t *) eeprom_data;
3888 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3889 cksum += *e++;
3890 }
3891 if (cksum != match) {
3892 printf("%s: Checksum (%x) mismatch (%x)",
3893 device_xname(sc->sc_dev), cksum, match);
3894 }
3895
3896 /*
3897 * Unrolled because it makes slightly more sense this way.
3898 * The DP83815 stores the MAC address in bit 0 of word 6
3899 * through bit 15 of word 8.
3900 */
3901 ea = &eeprom_data[6];
3902 enaddr[0] = ((*ea & 0x1) << 7);
3903 ea++;
3904 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3905 enaddr[1] = ((*ea & 0x1FE) >> 1);
3906 enaddr[2] = ((*ea & 0x1) << 7);
3907 ea++;
3908 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3909 enaddr[3] = ((*ea & 0x1FE) >> 1);
3910 enaddr[4] = ((*ea & 0x1) << 7);
3911 ea++;
3912 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3913 enaddr[5] = ((*ea & 0x1FE) >> 1);
3914
3915 /*
3916 * In case that's not weird enough, we also need to reverse
3917 * the bits in each byte. This all actually makes more sense
3918 * if you think about the EEPROM storage as an array of bits
3919 * being shifted into bytes, but that's not how we're looking
3920 * at it here...
3921 */
3922 for (i = 0; i < 6 ;i++)
3923 enaddr[i] = bbr(enaddr[i]);
3924 }
3925
3926 /*
3927 * sip_mediastatus: [ifmedia interface function]
3928 *
3929 * Get the current interface media status.
3930 */
3931 static void
3932 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3933 {
3934 struct sip_softc *sc = ifp->if_softc;
3935
3936 if (!device_is_active(sc->sc_dev)) {
3937 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3938 ifmr->ifm_status = 0;
3939 return;
3940 }
3941 ether_mediastatus(ifp, ifmr);
3942 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3943 sc->sc_flowflags;
3944 }
3945