Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.147.2.2
      1 /*	$NetBSD: if_sip.c,v 1.147.2.2 2011/03/05 20:53:43 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.147.2.2 2011/03/05 20:53:43 rmind Exp $");
     77 
     78 #include "rnd.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/callout.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/malloc.h>
     85 #include <sys/kernel.h>
     86 #include <sys/socket.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/errno.h>
     89 #include <sys/device.h>
     90 #include <sys/queue.h>
     91 
     92 #if NRND > 0
     93 #include <sys/rnd.h>
     94 #endif
     95 
     96 #include <net/if.h>
     97 #include <net/if_dl.h>
     98 #include <net/if_media.h>
     99 #include <net/if_ether.h>
    100 
    101 #include <net/bpf.h>
    102 
    103 #include <sys/bus.h>
    104 #include <sys/intr.h>
    105 #include <machine/endian.h>
    106 
    107 #include <dev/mii/mii.h>
    108 #include <dev/mii/miivar.h>
    109 #include <dev/mii/mii_bitbang.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_sipreg.h>
    116 
    117 /*
    118  * Transmit descriptor list size.  This is arbitrary, but allocate
    119  * enough descriptors for 128 pending transmissions, and 8 segments
    120  * per packet (64 for DP83820 for jumbo frames).
    121  *
    122  * This MUST work out to a power of 2.
    123  */
    124 #define	GSIP_NTXSEGS_ALLOC 16
    125 #define	SIP_NTXSEGS_ALLOC 8
    126 
    127 #define	SIP_TXQUEUELEN		256
    128 #define	MAX_SIP_NTXDESC	\
    129     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    130 
    131 /*
    132  * Receive descriptor list size.  We have one Rx buffer per incoming
    133  * packet, so this logic is a little simpler.
    134  *
    135  * Actually, on the DP83820, we allow the packet to consume more than
    136  * one buffer, in order to support jumbo Ethernet frames.  In that
    137  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    138  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    139  * so we'd better be quick about handling receive interrupts.
    140  */
    141 #define	GSIP_NRXDESC		256
    142 #define	SIP_NRXDESC		128
    143 
    144 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    145 
    146 /*
    147  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    148  * a single clump that maps to a single DMA segment to make several things
    149  * easier.
    150  */
    151 struct sip_control_data {
    152 	/*
    153 	 * The transmit descriptors.
    154 	 */
    155 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    156 
    157 	/*
    158 	 * The receive descriptors.
    159 	 */
    160 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    161 };
    162 
    163 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    164 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    165 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    166 
    167 /*
    168  * Software state for transmit jobs.
    169  */
    170 struct sip_txsoft {
    171 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    172 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    173 	int txs_firstdesc;		/* first descriptor in packet */
    174 	int txs_lastdesc;		/* last descriptor in packet */
    175 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    176 };
    177 
    178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    179 
    180 /*
    181  * Software state for receive jobs.
    182  */
    183 struct sip_rxsoft {
    184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    186 };
    187 
    188 enum sip_attach_stage {
    189 	  SIP_ATTACH_FIN = 0
    190 	, SIP_ATTACH_CREATE_RXMAP
    191 	, SIP_ATTACH_CREATE_TXMAP
    192 	, SIP_ATTACH_LOAD_MAP
    193 	, SIP_ATTACH_CREATE_MAP
    194 	, SIP_ATTACH_MAP_MEM
    195 	, SIP_ATTACH_ALLOC_MEM
    196 	, SIP_ATTACH_INTR
    197 	, SIP_ATTACH_MAP
    198 };
    199 
    200 /*
    201  * Software state per device.
    202  */
    203 struct sip_softc {
    204 	device_t sc_dev;		/* generic device information */
    205 	device_suspensor_t		sc_suspensor;
    206 	pmf_qual_t			sc_qual;
    207 
    208 	bus_space_tag_t sc_st;		/* bus space tag */
    209 	bus_space_handle_t sc_sh;	/* bus space handle */
    210 	bus_size_t sc_sz;		/* bus space size */
    211 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    212 	pci_chipset_tag_t sc_pc;
    213 	bus_dma_segment_t sc_seg;
    214 	struct ethercom sc_ethercom;	/* ethernet common data */
    215 
    216 	const struct sip_product *sc_model; /* which model are we? */
    217 	int sc_gigabit;			/* 1: 83820, 0: other */
    218 	int sc_rev;			/* chip revision */
    219 
    220 	void *sc_ih;			/* interrupt cookie */
    221 
    222 	struct mii_data sc_mii;		/* MII/media information */
    223 
    224 	callout_t sc_tick_ch;		/* tick callout */
    225 
    226 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    227 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    228 
    229 	/*
    230 	 * Software state for transmit and receive descriptors.
    231 	 */
    232 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    233 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    234 
    235 	/*
    236 	 * Control data structures.
    237 	 */
    238 	struct sip_control_data *sc_control_data;
    239 #define	sc_txdescs	sc_control_data->scd_txdescs
    240 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    241 
    242 #ifdef SIP_EVENT_COUNTERS
    243 	/*
    244 	 * Event counters.
    245 	 */
    246 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    247 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    248 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    249 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    250 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    252 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    253 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    254 	/* DP83820 only */
    255 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    256 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    257 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    258 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    259 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    260 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    261 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    262 #endif /* SIP_EVENT_COUNTERS */
    263 
    264 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    265 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    266 	u_int32_t sc_imr;		/* prototype IMR register */
    267 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    268 
    269 	u_int32_t sc_cfg;		/* prototype CFG register */
    270 
    271 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    272 
    273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    275 
    276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    277 
    278 	int	sc_flowflags;		/* 802.3x flow control flags */
    279 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    280 	int	sc_paused;		/* paused indication */
    281 
    282 	int	sc_txfree;		/* number of free Tx descriptors */
    283 	int	sc_txnext;		/* next ready Tx descriptor */
    284 	int	sc_txwin;		/* Tx descriptors since last intr */
    285 
    286 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    287 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    288 
    289 	/* values of interface state at last init */
    290 	struct {
    291 		/* if_capenable */
    292 		uint64_t	if_capenable;
    293 		/* ec_capenable */
    294 		int		ec_capenable;
    295 		/* VLAN_ATTACHED */
    296 		int		is_vlan;
    297 	}	sc_prev;
    298 
    299 	short	sc_if_flags;
    300 
    301 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 
    308 	int sc_ntxdesc;
    309 	int sc_ntxdesc_mask;
    310 
    311 	int sc_nrxdesc_mask;
    312 
    313 	const struct sip_parm {
    314 		const struct sip_regs {
    315 			int r_rxcfg;
    316 			int r_txcfg;
    317 		} p_regs;
    318 
    319 		const struct sip_bits {
    320 			uint32_t b_txcfg_mxdma_8;
    321 			uint32_t b_txcfg_mxdma_16;
    322 			uint32_t b_txcfg_mxdma_32;
    323 			uint32_t b_txcfg_mxdma_64;
    324 			uint32_t b_txcfg_mxdma_128;
    325 			uint32_t b_txcfg_mxdma_256;
    326 			uint32_t b_txcfg_mxdma_512;
    327 			uint32_t b_txcfg_flth_mask;
    328 			uint32_t b_txcfg_drth_mask;
    329 
    330 			uint32_t b_rxcfg_mxdma_8;
    331 			uint32_t b_rxcfg_mxdma_16;
    332 			uint32_t b_rxcfg_mxdma_32;
    333 			uint32_t b_rxcfg_mxdma_64;
    334 			uint32_t b_rxcfg_mxdma_128;
    335 			uint32_t b_rxcfg_mxdma_256;
    336 			uint32_t b_rxcfg_mxdma_512;
    337 
    338 			uint32_t b_isr_txrcmp;
    339 			uint32_t b_isr_rxrcmp;
    340 			uint32_t b_isr_dperr;
    341 			uint32_t b_isr_sserr;
    342 			uint32_t b_isr_rmabt;
    343 			uint32_t b_isr_rtabt;
    344 
    345 			uint32_t b_cmdsts_size_mask;
    346 		} p_bits;
    347 		int		p_filtmem;
    348 		int		p_rxbuf_len;
    349 		bus_size_t	p_tx_dmamap_size;
    350 		int		p_ntxsegs;
    351 		int		p_ntxsegs_alloc;
    352 		int		p_nrxdesc;
    353 	} *sc_parm;
    354 
    355 	void (*sc_rxintr)(struct sip_softc *);
    356 
    357 #if NRND > 0
    358 	rndsource_element_t rnd_source;	/* random source */
    359 #endif
    360 };
    361 
    362 #define	sc_bits	sc_parm->p_bits
    363 #define	sc_regs	sc_parm->p_regs
    364 
    365 static const struct sip_parm sip_parm = {
    366 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    367 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    368 	, .p_tx_dmamap_size = MCLBYTES
    369 	, .p_ntxsegs = 16
    370 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    371 	, .p_nrxdesc = SIP_NRXDESC
    372 	, .p_bits = {
    373 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    374 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    375 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    376 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    377 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    378 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    379 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    380 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    381 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    382 
    383 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    384 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    385 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    386 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    387 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    388 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    389 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    390 
    391 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    392 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    393 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    394 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    395 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    396 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    397 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    398 	}
    399 	, .p_regs = {
    400 		.r_rxcfg = OTHER_SIP_RXCFG,
    401 		.r_txcfg = OTHER_SIP_TXCFG
    402 	}
    403 }, gsip_parm = {
    404 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    405 	, .p_rxbuf_len = MCLBYTES - 8
    406 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    407 	, .p_ntxsegs = 64
    408 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    409 	, .p_nrxdesc = GSIP_NRXDESC
    410 	, .p_bits = {
    411 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    412 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    413 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    414 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    415 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    416 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    417 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    418 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    419 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    420 
    421 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    422 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    423 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    424 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    425 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    426 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    427 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    428 
    429 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    430 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    431 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    432 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    433 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    434 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    435 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    436 	}
    437 	, .p_regs = {
    438 		.r_rxcfg = DP83820_SIP_RXCFG,
    439 		.r_txcfg = DP83820_SIP_TXCFG
    440 	}
    441 };
    442 
    443 static inline int
    444 sip_nexttx(const struct sip_softc *sc, int x)
    445 {
    446 	return (x + 1) & sc->sc_ntxdesc_mask;
    447 }
    448 
    449 static inline int
    450 sip_nextrx(const struct sip_softc *sc, int x)
    451 {
    452 	return (x + 1) & sc->sc_nrxdesc_mask;
    453 }
    454 
    455 /* 83820 only */
    456 static inline void
    457 sip_rxchain_reset(struct sip_softc *sc)
    458 {
    459 	sc->sc_rxtailp = &sc->sc_rxhead;
    460 	*sc->sc_rxtailp = NULL;
    461 	sc->sc_rxlen = 0;
    462 }
    463 
    464 /* 83820 only */
    465 static inline void
    466 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    467 {
    468 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    469 	sc->sc_rxtailp = &m->m_next;
    470 }
    471 
    472 #ifdef SIP_EVENT_COUNTERS
    473 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    474 #else
    475 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    476 #endif
    477 
    478 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    479 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    480 
    481 static inline void
    482 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    483 {
    484 	int x, n;
    485 
    486 	x = x0;
    487 	n = n0;
    488 
    489 	/* If it will wrap around, sync to the end of the ring. */
    490 	if (x + n > sc->sc_ntxdesc) {
    491 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    492 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    493 		    (sc->sc_ntxdesc - x), ops);
    494 		n -= (sc->sc_ntxdesc - x);
    495 		x = 0;
    496 	}
    497 
    498 	/* Now sync whatever is left. */
    499 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    500 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    501 }
    502 
    503 static inline void
    504 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    505 {
    506 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    507 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    508 }
    509 
    510 #if 0
    511 #ifdef DP83820
    512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    513 	u_int32_t	sipd_cmdsts;	/* command/status word */
    514 #else
    515 	u_int32_t	sipd_cmdsts;	/* command/status word */
    516 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    517 #endif /* DP83820 */
    518 #endif /* 0 */
    519 
    520 static inline volatile uint32_t *
    521 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    522 {
    523 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    524 }
    525 
    526 static inline volatile uint32_t *
    527 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    528 {
    529 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    530 }
    531 
    532 static inline void
    533 sip_init_rxdesc(struct sip_softc *sc, int x)
    534 {
    535 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    536 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    537 
    538 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    539 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    540 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    541 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    542 	sipd->sipd_extsts = 0;
    543 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    544 }
    545 
    546 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    547 	((sc)->sc_model->sip_vendor == (v) &&				\
    548 	 (sc)->sc_model->sip_product == (p) &&				\
    549 	 (sc)->sc_rev == (r))
    550 
    551 #define	SIP_CHIP_MODEL(sc, v, p)					\
    552 	((sc)->sc_model->sip_vendor == (v) &&				\
    553 	 (sc)->sc_model->sip_product == (p))
    554 
    555 #define	SIP_SIS900_REV(sc, rev)						\
    556 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    557 
    558 #define SIP_TIMEOUT 1000
    559 
    560 static int	sip_ifflags_cb(struct ethercom *);
    561 static void	sipcom_start(struct ifnet *);
    562 static void	sipcom_watchdog(struct ifnet *);
    563 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    564 static int	sipcom_init(struct ifnet *);
    565 static void	sipcom_stop(struct ifnet *, int);
    566 
    567 static bool	sipcom_reset(struct sip_softc *);
    568 static void	sipcom_rxdrain(struct sip_softc *);
    569 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    570 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    571 				      u_int16_t *);
    572 static void	sipcom_tick(void *);
    573 
    574 static void	sipcom_sis900_set_filter(struct sip_softc *);
    575 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    576 
    577 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    578 		    const struct pci_attach_args *, u_int8_t *);
    579 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    580 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    581 		    const struct pci_attach_args *, u_int8_t *);
    582 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    583 		    const struct pci_attach_args *, u_int8_t *);
    584 
    585 static int	sipcom_intr(void *);
    586 static void	sipcom_txintr(struct sip_softc *);
    587 static void	sip_rxintr(struct sip_softc *);
    588 static void	gsip_rxintr(struct sip_softc *);
    589 
    590 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
    591 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
    592 static void	sipcom_dp83820_mii_statchg(device_t);
    593 
    594 static int	sipcom_sis900_mii_readreg(device_t, int, int);
    595 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
    596 static void	sipcom_sis900_mii_statchg(device_t);
    597 
    598 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
    599 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
    600 static void	sipcom_dp83815_mii_statchg(device_t);
    601 
    602 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    603 
    604 static int	sipcom_match(device_t, cfdata_t, void *);
    605 static void	sipcom_attach(device_t, device_t, void *);
    606 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    607 static int	sipcom_detach(device_t, int);
    608 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    609 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    610 
    611 int	gsip_copy_small = 0;
    612 int	sip_copy_small = 0;
    613 
    614 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    615     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    616     DVF_DETACH_SHUTDOWN);
    617 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    618     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    619     DVF_DETACH_SHUTDOWN);
    620 
    621 /*
    622  * Descriptions of the variants of the SiS900.
    623  */
    624 struct sip_variant {
    625 	int	(*sipv_mii_readreg)(device_t, int, int);
    626 	void	(*sipv_mii_writereg)(device_t, int, int, int);
    627 	void	(*sipv_mii_statchg)(device_t);
    628 	void	(*sipv_set_filter)(struct sip_softc *);
    629 	void	(*sipv_read_macaddr)(struct sip_softc *,
    630 		    const struct pci_attach_args *, u_int8_t *);
    631 };
    632 
    633 static u_int32_t sipcom_mii_bitbang_read(device_t);
    634 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
    635 
    636 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    637 	sipcom_mii_bitbang_read,
    638 	sipcom_mii_bitbang_write,
    639 	{
    640 		EROMAR_MDIO,		/* MII_BIT_MDO */
    641 		EROMAR_MDIO,		/* MII_BIT_MDI */
    642 		EROMAR_MDC,		/* MII_BIT_MDC */
    643 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    644 		0,			/* MII_BIT_DIR_PHY_HOST */
    645 	}
    646 };
    647 
    648 static const struct sip_variant sipcom_variant_dp83820 = {
    649 	sipcom_dp83820_mii_readreg,
    650 	sipcom_dp83820_mii_writereg,
    651 	sipcom_dp83820_mii_statchg,
    652 	sipcom_dp83815_set_filter,
    653 	sipcom_dp83820_read_macaddr,
    654 };
    655 
    656 static const struct sip_variant sipcom_variant_sis900 = {
    657 	sipcom_sis900_mii_readreg,
    658 	sipcom_sis900_mii_writereg,
    659 	sipcom_sis900_mii_statchg,
    660 	sipcom_sis900_set_filter,
    661 	sipcom_sis900_read_macaddr,
    662 };
    663 
    664 static const struct sip_variant sipcom_variant_dp83815 = {
    665 	sipcom_dp83815_mii_readreg,
    666 	sipcom_dp83815_mii_writereg,
    667 	sipcom_dp83815_mii_statchg,
    668 	sipcom_dp83815_set_filter,
    669 	sipcom_dp83815_read_macaddr,
    670 };
    671 
    672 
    673 /*
    674  * Devices supported by this driver.
    675  */
    676 static const struct sip_product {
    677 	pci_vendor_id_t		sip_vendor;
    678 	pci_product_id_t	sip_product;
    679 	const char		*sip_name;
    680 	const struct sip_variant *sip_variant;
    681 	int			sip_gigabit;
    682 } sipcom_products[] = {
    683 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    684 	  "NatSemi DP83820 Gigabit Ethernet",
    685 	  &sipcom_variant_dp83820, 1 },
    686 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    687 	  "SiS 900 10/100 Ethernet",
    688 	  &sipcom_variant_sis900, 0 },
    689 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    690 	  "SiS 7016 10/100 Ethernet",
    691 	  &sipcom_variant_sis900, 0 },
    692 
    693 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    694 	  "NatSemi DP83815 10/100 Ethernet",
    695 	  &sipcom_variant_dp83815, 0 },
    696 
    697 	{ 0,			0,
    698 	  NULL,
    699 	  NULL, 0 },
    700 };
    701 
    702 static const struct sip_product *
    703 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    704 {
    705 	const struct sip_product *sip;
    706 
    707 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    708 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    709 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    710 		    sip->sip_gigabit == gigabit)
    711 			return sip;
    712 	}
    713 	return NULL;
    714 }
    715 
    716 /*
    717  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    718  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    719  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    720  * which means we try to use 64-bit data transfers on those cards if we
    721  * happen to be plugged into a 32-bit slot.
    722  *
    723  * What we do is use this table of cards known to be 64-bit cards.  If
    724  * you have a 64-bit card who's subsystem ID is not listed in this table,
    725  * send the output of "pcictl dump ..." of the device to me so that your
    726  * card will use the 64-bit data path when plugged into a 64-bit slot.
    727  *
    728  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    729  *	   June 30, 2002
    730  */
    731 static int
    732 sipcom_check_64bit(const struct pci_attach_args *pa)
    733 {
    734 	static const struct {
    735 		pci_vendor_id_t c64_vendor;
    736 		pci_product_id_t c64_product;
    737 	} card64[] = {
    738 		/* Asante GigaNIX */
    739 		{ 0x128a,	0x0002 },
    740 
    741 		/* Accton EN1407-T, Planex GN-1000TE */
    742 		{ 0x1113,	0x1407 },
    743 
    744 		/* Netgear GA-621 */
    745 		{ 0x1385,	0x621a },
    746 
    747 		/* SMC EZ Card */
    748 		{ 0x10b8,	0x9462 },
    749 
    750 		{ 0, 0}
    751 	};
    752 	pcireg_t subsys;
    753 	int i;
    754 
    755 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    756 
    757 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    758 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    759 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    760 			return (1);
    761 	}
    762 
    763 	return (0);
    764 }
    765 
    766 static int
    767 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    768 {
    769 	struct pci_attach_args *pa = aux;
    770 
    771 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    772 		return 1;
    773 
    774 	return 0;
    775 }
    776 
    777 static void
    778 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    779 {
    780 	u_int32_t reg;
    781 	int i;
    782 
    783 	/*
    784 	 * Cause the chip to load configuration data from the EEPROM.
    785 	 */
    786 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    787 	for (i = 0; i < 10000; i++) {
    788 		delay(10);
    789 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    790 		    PTSCR_EELOAD_EN) == 0)
    791 			break;
    792 	}
    793 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    794 	    PTSCR_EELOAD_EN) {
    795 		printf("%s: timeout loading configuration from EEPROM\n",
    796 		    device_xname(sc->sc_dev));
    797 		return;
    798 	}
    799 
    800 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    801 
    802 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    803 	if (reg & CFG_PCI64_DET) {
    804 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    805 		/*
    806 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    807 		 * data transfers.
    808 		 *
    809 		 * We can't use the DATA64_EN bit in the EEPROM, because
    810 		 * vendors of 32-bit cards fail to clear that bit in many
    811 		 * cases (yet the card still detects that it's in a 64-bit
    812 		 * slot; go figure).
    813 		 */
    814 		if (sipcom_check_64bit(pa)) {
    815 			sc->sc_cfg |= CFG_DATA64_EN;
    816 			printf(", using 64-bit data transfers");
    817 		}
    818 		printf("\n");
    819 	}
    820 
    821 	/*
    822 	 * XXX Need some PCI flags indicating support for
    823 	 * XXX 64-bit addressing.
    824 	 */
    825 #if 0
    826 	if (reg & CFG_M64ADDR)
    827 		sc->sc_cfg |= CFG_M64ADDR;
    828 	if (reg & CFG_T64ADDR)
    829 		sc->sc_cfg |= CFG_T64ADDR;
    830 #endif
    831 
    832 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    833 		const char *sep = "";
    834 		printf("%s: using ", device_xname(sc->sc_dev));
    835 		if (reg & CFG_EXT_125) {
    836 			sc->sc_cfg |= CFG_EXT_125;
    837 			printf("%s125MHz clock", sep);
    838 			sep = ", ";
    839 		}
    840 		if (reg & CFG_TBI_EN) {
    841 			sc->sc_cfg |= CFG_TBI_EN;
    842 			printf("%sten-bit interface", sep);
    843 			sep = ", ";
    844 		}
    845 		printf("\n");
    846 	}
    847 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    848 	    (reg & CFG_MRM_DIS) != 0)
    849 		sc->sc_cfg |= CFG_MRM_DIS;
    850 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    851 	    (reg & CFG_MWI_DIS) != 0)
    852 		sc->sc_cfg |= CFG_MWI_DIS;
    853 
    854 	/*
    855 	 * Use the extended descriptor format on the DP83820.  This
    856 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    857 	 * checksumming.
    858 	 */
    859 	sc->sc_cfg |= CFG_EXTSTS_EN;
    860 }
    861 
    862 static int
    863 sipcom_detach(device_t self, int flags)
    864 {
    865 	int s;
    866 
    867 	s = splnet();
    868 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    869 	splx(s);
    870 
    871 	return 0;
    872 }
    873 
    874 static void
    875 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    876 {
    877 	int i;
    878 	struct sip_softc *sc = device_private(self);
    879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    880 
    881 	/*
    882 	 * Free any resources we've allocated during attach.
    883 	 * Do this in reverse order and fall through.
    884 	 */
    885 	switch (stage) {
    886 	case SIP_ATTACH_FIN:
    887 		sipcom_stop(ifp, 1);
    888 		pmf_device_deregister(self);
    889 #ifdef SIP_EVENT_COUNTERS
    890 		/*
    891 		 * Attach event counters.
    892 		 */
    893 		evcnt_detach(&sc->sc_ev_txforceintr);
    894 		evcnt_detach(&sc->sc_ev_txdstall);
    895 		evcnt_detach(&sc->sc_ev_txsstall);
    896 		evcnt_detach(&sc->sc_ev_hiberr);
    897 		evcnt_detach(&sc->sc_ev_rxintr);
    898 		evcnt_detach(&sc->sc_ev_txiintr);
    899 		evcnt_detach(&sc->sc_ev_txdintr);
    900 		if (!sc->sc_gigabit) {
    901 			evcnt_detach(&sc->sc_ev_rxpause);
    902 		} else {
    903 			evcnt_detach(&sc->sc_ev_txudpsum);
    904 			evcnt_detach(&sc->sc_ev_txtcpsum);
    905 			evcnt_detach(&sc->sc_ev_txipsum);
    906 			evcnt_detach(&sc->sc_ev_rxudpsum);
    907 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    908 			evcnt_detach(&sc->sc_ev_rxipsum);
    909 			evcnt_detach(&sc->sc_ev_txpause);
    910 			evcnt_detach(&sc->sc_ev_rxpause);
    911 		}
    912 #endif /* SIP_EVENT_COUNTERS */
    913 
    914 #if NRND > 0
    915 		rnd_detach_source(&sc->rnd_source);
    916 #endif
    917 
    918 		ether_ifdetach(ifp);
    919 		if_detach(ifp);
    920 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    921 
    922 		/*FALLTHROUGH*/
    923 	case SIP_ATTACH_CREATE_RXMAP:
    924 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    925 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    926 				bus_dmamap_destroy(sc->sc_dmat,
    927 				    sc->sc_rxsoft[i].rxs_dmamap);
    928 		}
    929 		/*FALLTHROUGH*/
    930 	case SIP_ATTACH_CREATE_TXMAP:
    931 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    932 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    933 				bus_dmamap_destroy(sc->sc_dmat,
    934 				    sc->sc_txsoft[i].txs_dmamap);
    935 		}
    936 		/*FALLTHROUGH*/
    937 	case SIP_ATTACH_LOAD_MAP:
    938 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    939 		/*FALLTHROUGH*/
    940 	case SIP_ATTACH_CREATE_MAP:
    941 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    942 		/*FALLTHROUGH*/
    943 	case SIP_ATTACH_MAP_MEM:
    944 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    945 		    sizeof(struct sip_control_data));
    946 		/*FALLTHROUGH*/
    947 	case SIP_ATTACH_ALLOC_MEM:
    948 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    949 		/* FALLTHROUGH*/
    950 	case SIP_ATTACH_INTR:
    951 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    952 		/* FALLTHROUGH*/
    953 	case SIP_ATTACH_MAP:
    954 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    955 		break;
    956 	default:
    957 		break;
    958 	}
    959 	return;
    960 }
    961 
    962 static bool
    963 sipcom_resume(device_t self, const pmf_qual_t *qual)
    964 {
    965 	struct sip_softc *sc = device_private(self);
    966 
    967 	return sipcom_reset(sc);
    968 }
    969 
    970 static bool
    971 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    972 {
    973 	struct sip_softc *sc = device_private(self);
    974 
    975 	sipcom_rxdrain(sc);
    976 	return true;
    977 }
    978 
    979 static void
    980 sipcom_attach(device_t parent, device_t self, void *aux)
    981 {
    982 	struct sip_softc *sc = device_private(self);
    983 	struct pci_attach_args *pa = aux;
    984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    985 	pci_chipset_tag_t pc = pa->pa_pc;
    986 	pci_intr_handle_t ih;
    987 	const char *intrstr = NULL;
    988 	bus_space_tag_t iot, memt;
    989 	bus_space_handle_t ioh, memh;
    990 	bus_size_t iosz, memsz;
    991 	int ioh_valid, memh_valid;
    992 	int i, rseg, error;
    993 	const struct sip_product *sip;
    994 	u_int8_t enaddr[ETHER_ADDR_LEN];
    995 	pcireg_t csr;
    996 	pcireg_t memtype;
    997 	bus_size_t tx_dmamap_size;
    998 	int ntxsegs_alloc;
    999 	cfdata_t cf = device_cfdata(self);
   1000 
   1001 	callout_init(&sc->sc_tick_ch, 0);
   1002 
   1003 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1004 	if (sip == NULL) {
   1005 		printf("\n");
   1006 		panic("%s: impossible", __func__);
   1007 	}
   1008 	sc->sc_dev = self;
   1009 	sc->sc_gigabit = sip->sip_gigabit;
   1010 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1011 	sc->sc_pc = pc;
   1012 
   1013 	if (sc->sc_gigabit) {
   1014 		sc->sc_rxintr = gsip_rxintr;
   1015 		sc->sc_parm = &gsip_parm;
   1016 	} else {
   1017 		sc->sc_rxintr = sip_rxintr;
   1018 		sc->sc_parm = &sip_parm;
   1019 	}
   1020 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1021 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1022 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1023 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1024 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1025 
   1026 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1027 
   1028 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1029 
   1030 	sc->sc_model = sip;
   1031 
   1032 	/*
   1033 	 * XXX Work-around broken PXE firmware on some boards.
   1034 	 *
   1035 	 * The DP83815 shares an address decoder with the MEM BAR
   1036 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1037 	 * so that memory mapped access works.
   1038 	 */
   1039 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1040 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1041 	    ~PCI_MAPREG_ROM_ENABLE);
   1042 
   1043 	/*
   1044 	 * Map the device.
   1045 	 */
   1046 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1047 	    PCI_MAPREG_TYPE_IO, 0,
   1048 	    &iot, &ioh, NULL, &iosz) == 0);
   1049 	if (sc->sc_gigabit) {
   1050 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1051 		switch (memtype) {
   1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1053 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1054 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1055 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1056 			break;
   1057 		default:
   1058 			memh_valid = 0;
   1059 		}
   1060 	} else {
   1061 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1062 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1063 		    &memt, &memh, NULL, &memsz) == 0);
   1064 	}
   1065 
   1066 	if (memh_valid) {
   1067 		sc->sc_st = memt;
   1068 		sc->sc_sh = memh;
   1069 		sc->sc_sz = memsz;
   1070 	} else if (ioh_valid) {
   1071 		sc->sc_st = iot;
   1072 		sc->sc_sh = ioh;
   1073 		sc->sc_sz = iosz;
   1074 	} else {
   1075 		printf("%s: unable to map device registers\n",
   1076 		    device_xname(sc->sc_dev));
   1077 		return;
   1078 	}
   1079 
   1080 	sc->sc_dmat = pa->pa_dmat;
   1081 
   1082 	/*
   1083 	 * Make sure bus mastering is enabled.  Also make sure
   1084 	 * Write/Invalidate is enabled if we're allowed to use it.
   1085 	 */
   1086 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1087 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1088 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1089 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1090 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1091 
   1092 	/* power up chip */
   1093 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1094 	if (error != 0 && error != EOPNOTSUPP) {
   1095 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1096 		return;
   1097 	}
   1098 
   1099 	/*
   1100 	 * Map and establish our interrupt.
   1101 	 */
   1102 	if (pci_intr_map(pa, &ih)) {
   1103 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1104 		return;
   1105 	}
   1106 	intrstr = pci_intr_string(pc, ih);
   1107 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1108 	if (sc->sc_ih == NULL) {
   1109 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1110 		if (intrstr != NULL)
   1111 			aprint_error(" at %s", intrstr);
   1112 		aprint_error("\n");
   1113 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
   1114 	}
   1115 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1116 
   1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1119 
   1120 	/*
   1121 	 * Allocate the control data structures, and create and load the
   1122 	 * DMA map for it.
   1123 	 */
   1124 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1125 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1126 	    &rseg, 0)) != 0) {
   1127 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
   1128 		    error);
   1129 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
   1130 	}
   1131 
   1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1134 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
   1135 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
   1136 		    error);
   1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1138 	}
   1139 
   1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1141 	    sizeof(struct sip_control_data), 1,
   1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1143 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
   1144 		    "error = %d\n", error);
   1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1146 	}
   1147 
   1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1150 	    0)) != 0) {
   1151 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
   1152 		    error);
   1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1154 	}
   1155 
   1156 	/*
   1157 	 * Create the transmit buffer DMA maps.
   1158 	 */
   1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1163 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
   1164 			    "error = %d\n", i, error);
   1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1166 		}
   1167 	}
   1168 
   1169 	/*
   1170 	 * Create the receive buffer DMA maps.
   1171 	 */
   1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1175 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
   1176 			    "error = %d\n", i, error);
   1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1178 		}
   1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1180 	}
   1181 
   1182 	/*
   1183 	 * Reset the chip to a known state.
   1184 	 */
   1185 	sipcom_reset(sc);
   1186 
   1187 	/*
   1188 	 * Read the Ethernet address from the EEPROM.  This might
   1189 	 * also fetch other stuff from the EEPROM and stash it
   1190 	 * in the softc.
   1191 	 */
   1192 	sc->sc_cfg = 0;
   1193 	if (!sc->sc_gigabit) {
   1194 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1195 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1197 
   1198 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1199 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1201 			sc->sc_cfg |=
   1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1203 			     CFG_EDBMASTEN);
   1204 	}
   1205 
   1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1207 
   1208 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
   1209 	    ether_sprintf(enaddr));
   1210 
   1211 	/*
   1212 	 * Initialize the configuration register: aggressive PCI
   1213 	 * bus request algorithm, default backoff, default OW timer,
   1214 	 * default parity error detection.
   1215 	 *
   1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1217 	 * friends -- it affects packet data, not descriptors.
   1218 	 */
   1219 	if (sc->sc_gigabit)
   1220 		sipcom_dp83820_attach(sc, pa);
   1221 
   1222 	/*
   1223 	 * Initialize our media structures and probe the MII.
   1224 	 */
   1225 	sc->sc_mii.mii_ifp = ifp;
   1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1229 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1230 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1231 	    sipcom_mediastatus);
   1232 
   1233 	/*
   1234 	 * XXX We cannot handle flow control on the DP83815.
   1235 	 */
   1236 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1237 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1238 			   MII_OFFSET_ANY, 0);
   1239 	else
   1240 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1241 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1245 	} else
   1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1247 
   1248 	ifp = &sc->sc_ethercom.ec_if;
   1249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1250 	ifp->if_softc = sc;
   1251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1252 	sc->sc_if_flags = ifp->if_flags;
   1253 	ifp->if_ioctl = sipcom_ioctl;
   1254 	ifp->if_start = sipcom_start;
   1255 	ifp->if_watchdog = sipcom_watchdog;
   1256 	ifp->if_init = sipcom_init;
   1257 	ifp->if_stop = sipcom_stop;
   1258 	IFQ_SET_READY(&ifp->if_snd);
   1259 
   1260 	/*
   1261 	 * We can support 802.1Q VLAN-sized frames.
   1262 	 */
   1263 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1264 
   1265 	if (sc->sc_gigabit) {
   1266 		/*
   1267 		 * And the DP83820 can do VLAN tagging in hardware, and
   1268 		 * support the jumbo Ethernet MTU.
   1269 		 */
   1270 		sc->sc_ethercom.ec_capabilities |=
   1271 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1272 
   1273 		/*
   1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1275 		 * in hardware.
   1276 		 */
   1277 		ifp->if_capabilities |=
   1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1281 	}
   1282 
   1283 	/*
   1284 	 * Attach the interface.
   1285 	 */
   1286 	if_attach(ifp);
   1287 	ether_ifattach(ifp, enaddr);
   1288 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1289 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1290 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1291 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1292 #if NRND > 0
   1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1294 	    RND_TYPE_NET, 0);
   1295 #endif
   1296 
   1297 	/*
   1298 	 * The number of bytes that must be available in
   1299 	 * the Tx FIFO before the bus master can DMA more
   1300 	 * data into the FIFO.
   1301 	 */
   1302 	sc->sc_tx_fill_thresh = 64 / 32;
   1303 
   1304 	/*
   1305 	 * Start at a drain threshold of 512 bytes.  We will
   1306 	 * increase it if a DMA underrun occurs.
   1307 	 *
   1308 	 * XXX The minimum value of this variable should be
   1309 	 * tuned.  We may be able to improve performance
   1310 	 * by starting with a lower value.  That, however,
   1311 	 * may trash the first few outgoing packets if the
   1312 	 * PCI bus is saturated.
   1313 	 */
   1314 	if (sc->sc_gigabit)
   1315 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1316 	else
   1317 		sc->sc_tx_drain_thresh = 1504 / 32;
   1318 
   1319 	/*
   1320 	 * Initialize the Rx FIFO drain threshold.
   1321 	 *
   1322 	 * This is in units of 8 bytes.
   1323 	 *
   1324 	 * We should never set this value lower than 2; 14 bytes are
   1325 	 * required to filter the packet.
   1326 	 */
   1327 	sc->sc_rx_drain_thresh = 128 / 8;
   1328 
   1329 #ifdef SIP_EVENT_COUNTERS
   1330 	/*
   1331 	 * Attach event counters.
   1332 	 */
   1333 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1334 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1336 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1338 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1340 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1342 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1343 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1344 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1345 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1346 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1347 	if (!sc->sc_gigabit) {
   1348 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1349 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1350 	} else {
   1351 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1352 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1353 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1354 		    NULL, device_xname(sc->sc_dev), "txpause");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1356 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1358 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1360 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1362 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1363 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1364 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1365 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1366 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1367 	}
   1368 #endif /* SIP_EVENT_COUNTERS */
   1369 
   1370 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1371 		pmf_class_network_register(self, ifp);
   1372 	else
   1373 		aprint_error_dev(self, "couldn't establish power handler\n");
   1374 }
   1375 
   1376 static inline void
   1377 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1378     uint64_t capenable)
   1379 {
   1380 	struct m_tag *mtag;
   1381 	u_int32_t extsts;
   1382 #ifdef DEBUG
   1383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1384 #endif
   1385 	/*
   1386 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1387 	 * up the descriptor to encapsulate the packet for us.
   1388 	 *
   1389 	 * This apparently has to be on the last descriptor of
   1390 	 * the packet.
   1391 	 */
   1392 
   1393 	/*
   1394 	 * Byte swapping is tricky. We need to provide the tag
   1395 	 * in a network byte order. On a big-endian machine,
   1396 	 * the byteorder is correct, but we need to swap it
   1397 	 * anyway, because this will be undone by the outside
   1398 	 * htole32(). That's why there must be an
   1399 	 * unconditional swap instead of htons() inside.
   1400 	 */
   1401 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1402 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1403 		    htole32(EXTSTS_VPKT |
   1404 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1405 				 EXTSTS_VTCI));
   1406 	}
   1407 
   1408 	/*
   1409 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1410 	 * checksumming, set up the descriptor to do this work
   1411 	 * for us.
   1412 	 *
   1413 	 * This apparently has to be on the first descriptor of
   1414 	 * the packet.
   1415 	 *
   1416 	 * Byte-swap constants so the compiler can optimize.
   1417 	 */
   1418 	extsts = 0;
   1419 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1420 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1421 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1422 		extsts |= htole32(EXTSTS_IPPKT);
   1423 	}
   1424 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1426 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1427 		extsts |= htole32(EXTSTS_TCPPKT);
   1428 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1429 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1430 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1431 		extsts |= htole32(EXTSTS_UDPPKT);
   1432 	}
   1433 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1434 }
   1435 
   1436 /*
   1437  * sip_start:		[ifnet interface function]
   1438  *
   1439  *	Start packet transmission on the interface.
   1440  */
   1441 static void
   1442 sipcom_start(struct ifnet *ifp)
   1443 {
   1444 	struct sip_softc *sc = ifp->if_softc;
   1445 	struct mbuf *m0;
   1446 	struct mbuf *m;
   1447 	struct sip_txsoft *txs;
   1448 	bus_dmamap_t dmamap;
   1449 	int error, nexttx, lasttx, seg;
   1450 	int ofree = sc->sc_txfree;
   1451 #if 0
   1452 	int firsttx = sc->sc_txnext;
   1453 #endif
   1454 
   1455 	/*
   1456 	 * If we've been told to pause, don't transmit any more packets.
   1457 	 */
   1458 	if (!sc->sc_gigabit && sc->sc_paused)
   1459 		ifp->if_flags |= IFF_OACTIVE;
   1460 
   1461 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1462 		return;
   1463 
   1464 	/*
   1465 	 * Loop through the send queue, setting up transmit descriptors
   1466 	 * until we drain the queue, or use up all available transmit
   1467 	 * descriptors.
   1468 	 */
   1469 	for (;;) {
   1470 		/* Get a work queue entry. */
   1471 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1472 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1473 			break;
   1474 		}
   1475 
   1476 		/*
   1477 		 * Grab a packet off the queue.
   1478 		 */
   1479 		IFQ_POLL(&ifp->if_snd, m0);
   1480 		if (m0 == NULL)
   1481 			break;
   1482 		m = NULL;
   1483 
   1484 		dmamap = txs->txs_dmamap;
   1485 
   1486 		/*
   1487 		 * Load the DMA map.  If this fails, the packet either
   1488 		 * didn't fit in the alloted number of segments, or we
   1489 		 * were short on resources.
   1490 		 */
   1491 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1492 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1493 		/* In the non-gigabit case, we'll copy and try again. */
   1494 		if (error != 0 && !sc->sc_gigabit) {
   1495 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1496 			if (m == NULL) {
   1497 				printf("%s: unable to allocate Tx mbuf\n",
   1498 				    device_xname(sc->sc_dev));
   1499 				break;
   1500 			}
   1501 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1502 			if (m0->m_pkthdr.len > MHLEN) {
   1503 				MCLGET(m, M_DONTWAIT);
   1504 				if ((m->m_flags & M_EXT) == 0) {
   1505 					printf("%s: unable to allocate Tx "
   1506 					    "cluster\n", device_xname(sc->sc_dev));
   1507 					m_freem(m);
   1508 					break;
   1509 				}
   1510 			}
   1511 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1512 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1513 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1514 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1515 			if (error) {
   1516 				printf("%s: unable to load Tx buffer, "
   1517 				    "error = %d\n", device_xname(sc->sc_dev), error);
   1518 				break;
   1519 			}
   1520 		} else if (error == EFBIG) {
   1521 			/*
   1522 			 * For the too-many-segments case, we simply
   1523 			 * report an error and drop the packet,
   1524 			 * since we can't sanely copy a jumbo packet
   1525 			 * to a single buffer.
   1526 			 */
   1527 			printf("%s: Tx packet consumes too many "
   1528 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
   1529 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1530 			m_freem(m0);
   1531 			continue;
   1532 		} else if (error != 0) {
   1533 			/*
   1534 			 * Short on resources, just stop for now.
   1535 			 */
   1536 			break;
   1537 		}
   1538 
   1539 		/*
   1540 		 * Ensure we have enough descriptors free to describe
   1541 		 * the packet.  Note, we always reserve one descriptor
   1542 		 * at the end of the ring as a termination point, to
   1543 		 * prevent wrap-around.
   1544 		 */
   1545 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1546 			/*
   1547 			 * Not enough free descriptors to transmit this
   1548 			 * packet.  We haven't committed anything yet,
   1549 			 * so just unload the DMA map, put the packet
   1550 			 * back on the queue, and punt.  Notify the upper
   1551 			 * layer that there are not more slots left.
   1552 			 *
   1553 			 * XXX We could allocate an mbuf and copy, but
   1554 			 * XXX is it worth it?
   1555 			 */
   1556 			ifp->if_flags |= IFF_OACTIVE;
   1557 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1558 			if (m != NULL)
   1559 				m_freem(m);
   1560 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1561 			break;
   1562 		}
   1563 
   1564 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1565 		if (m != NULL) {
   1566 			m_freem(m0);
   1567 			m0 = m;
   1568 		}
   1569 
   1570 		/*
   1571 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1572 		 */
   1573 
   1574 		/* Sync the DMA map. */
   1575 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1576 		    BUS_DMASYNC_PREWRITE);
   1577 
   1578 		/*
   1579 		 * Initialize the transmit descriptors.
   1580 		 */
   1581 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1582 		     seg < dmamap->dm_nsegs;
   1583 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1584 			/*
   1585 			 * If this is the first descriptor we're
   1586 			 * enqueueing, don't set the OWN bit just
   1587 			 * yet.  That could cause a race condition.
   1588 			 * We'll do it below.
   1589 			 */
   1590 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1591 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1592 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1593 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1594 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1595 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1596 			lasttx = nexttx;
   1597 		}
   1598 
   1599 		/* Clear the MORE bit on the last segment. */
   1600 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1601 		    htole32(~CMDSTS_MORE);
   1602 
   1603 		/*
   1604 		 * If we're in the interrupt delay window, delay the
   1605 		 * interrupt.
   1606 		 */
   1607 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1608 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1609 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1610 			    htole32(CMDSTS_INTR);
   1611 			sc->sc_txwin = 0;
   1612 		}
   1613 
   1614 		if (sc->sc_gigabit)
   1615 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1616 
   1617 		/* Sync the descriptors we're using. */
   1618 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1619 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1620 
   1621 		/*
   1622 		 * The entire packet is set up.  Give the first descrptor
   1623 		 * to the chip now.
   1624 		 */
   1625 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1626 		    htole32(CMDSTS_OWN);
   1627 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1628 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1629 
   1630 		/*
   1631 		 * Store a pointer to the packet so we can free it later,
   1632 		 * and remember what txdirty will be once the packet is
   1633 		 * done.
   1634 		 */
   1635 		txs->txs_mbuf = m0;
   1636 		txs->txs_firstdesc = sc->sc_txnext;
   1637 		txs->txs_lastdesc = lasttx;
   1638 
   1639 		/* Advance the tx pointer. */
   1640 		sc->sc_txfree -= dmamap->dm_nsegs;
   1641 		sc->sc_txnext = nexttx;
   1642 
   1643 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1644 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1645 
   1646 		/*
   1647 		 * Pass the packet to any BPF listeners.
   1648 		 */
   1649 		bpf_mtap(ifp, m0);
   1650 	}
   1651 
   1652 	if (txs == NULL || sc->sc_txfree == 0) {
   1653 		/* No more slots left; notify upper layer. */
   1654 		ifp->if_flags |= IFF_OACTIVE;
   1655 	}
   1656 
   1657 	if (sc->sc_txfree != ofree) {
   1658 		/*
   1659 		 * Start the transmit process.  Note, the manual says
   1660 		 * that if there are no pending transmissions in the
   1661 		 * chip's internal queue (indicated by TXE being clear),
   1662 		 * then the driver software must set the TXDP to the
   1663 		 * first descriptor to be transmitted.  However, if we
   1664 		 * do this, it causes serious performance degredation on
   1665 		 * the DP83820 under load, not setting TXDP doesn't seem
   1666 		 * to adversely affect the SiS 900 or DP83815.
   1667 		 *
   1668 		 * Well, I guess it wouldn't be the first time a manual
   1669 		 * has lied -- and they could be speaking of the NULL-
   1670 		 * terminated descriptor list case, rather than OWN-
   1671 		 * terminated rings.
   1672 		 */
   1673 #if 0
   1674 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1675 		     CR_TXE) == 0) {
   1676 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1677 			    SIP_CDTXADDR(sc, firsttx));
   1678 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1679 		}
   1680 #else
   1681 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1682 #endif
   1683 
   1684 		/* Set a watchdog timer in case the chip flakes out. */
   1685 		/* Gigabit autonegotiation takes 5 seconds. */
   1686 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1687 	}
   1688 }
   1689 
   1690 /*
   1691  * sip_watchdog:	[ifnet interface function]
   1692  *
   1693  *	Watchdog timer handler.
   1694  */
   1695 static void
   1696 sipcom_watchdog(struct ifnet *ifp)
   1697 {
   1698 	struct sip_softc *sc = ifp->if_softc;
   1699 
   1700 	/*
   1701 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1702 	 * If we get a timeout, try and sweep up transmit descriptors.
   1703 	 * If we manage to sweep them all up, ignore the lack of
   1704 	 * interrupt.
   1705 	 */
   1706 	sipcom_txintr(sc);
   1707 
   1708 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1709 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1710 		ifp->if_oerrors++;
   1711 
   1712 		/* Reset the interface. */
   1713 		(void) sipcom_init(ifp);
   1714 	} else if (ifp->if_flags & IFF_DEBUG)
   1715 		printf("%s: recovered from device timeout\n",
   1716 		    device_xname(sc->sc_dev));
   1717 
   1718 	/* Try to get more packets going. */
   1719 	sipcom_start(ifp);
   1720 }
   1721 
   1722 /* If the interface is up and running, only modify the receive
   1723  * filter when setting promiscuous or debug mode.  Otherwise fall
   1724  * through to ether_ioctl, which will reset the chip.
   1725  */
   1726 static int
   1727 sip_ifflags_cb(struct ethercom *ec)
   1728 {
   1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1730 			 == (sc)->sc_ethercom.ec_capenable)		\
   1731 			&& ((sc)->sc_prev.is_vlan ==			\
   1732 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1734 	struct ifnet *ifp = &ec->ec_if;
   1735 	struct sip_softc *sc = ifp->if_softc;
   1736 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1737 
   1738 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1739 	    !COMPARE_IC(sc, ifp))
   1740 		return ENETRESET;
   1741 	/* Set up the receive filter. */
   1742 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1743 	return 0;
   1744 }
   1745 
   1746 /*
   1747  * sip_ioctl:		[ifnet interface function]
   1748  *
   1749  *	Handle control requests from the operator.
   1750  */
   1751 static int
   1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1753 {
   1754 	struct sip_softc *sc = ifp->if_softc;
   1755 	struct ifreq *ifr = (struct ifreq *)data;
   1756 	int s, error;
   1757 
   1758 	s = splnet();
   1759 
   1760 	switch (cmd) {
   1761 	case SIOCSIFMEDIA:
   1762 		/* Flow control requires full-duplex mode. */
   1763 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1764 		    (ifr->ifr_media & IFM_FDX) == 0)
   1765 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1766 
   1767 		/* XXX */
   1768 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1769 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1770 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1771 			if (sc->sc_gigabit &&
   1772 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1773 				/* We can do both TXPAUSE and RXPAUSE. */
   1774 				ifr->ifr_media |=
   1775 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1776 			} else if (ifr->ifr_media & IFM_FLOW) {
   1777 				/*
   1778 				 * Both TXPAUSE and RXPAUSE must be set.
   1779 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1780 				 * feature.)
   1781 				 *
   1782 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1783 				 */
   1784 				ifr->ifr_media |=
   1785 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1786 			}
   1787 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1788 		}
   1789 		/*FALLTHROUGH*/
   1790 	default:
   1791 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1792 			break;
   1793 
   1794 		error = 0;
   1795 
   1796 		if (cmd == SIOCSIFCAP)
   1797 			error = (*ifp->if_init)(ifp);
   1798 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1799 			;
   1800 		else if (ifp->if_flags & IFF_RUNNING) {
   1801 			/*
   1802 			 * Multicast list has changed; set the hardware filter
   1803 			 * accordingly.
   1804 			 */
   1805 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1806 		}
   1807 		break;
   1808 	}
   1809 
   1810 	/* Try to get more packets going. */
   1811 	sipcom_start(ifp);
   1812 
   1813 	sc->sc_if_flags = ifp->if_flags;
   1814 	splx(s);
   1815 	return (error);
   1816 }
   1817 
   1818 /*
   1819  * sip_intr:
   1820  *
   1821  *	Interrupt service routine.
   1822  */
   1823 static int
   1824 sipcom_intr(void *arg)
   1825 {
   1826 	struct sip_softc *sc = arg;
   1827 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1828 	u_int32_t isr;
   1829 	int handled = 0;
   1830 
   1831 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1832 		return 0;
   1833 
   1834 	/* Disable interrupts. */
   1835 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1836 
   1837 	for (;;) {
   1838 		/* Reading clears interrupt. */
   1839 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1840 		if ((isr & sc->sc_imr) == 0)
   1841 			break;
   1842 
   1843 #if NRND > 0
   1844 		if (RND_ENABLED(&sc->rnd_source))
   1845 			rnd_add_uint32(&sc->rnd_source, isr);
   1846 #endif
   1847 
   1848 		handled = 1;
   1849 
   1850 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1851 			break;
   1852 
   1853 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1854 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1855 
   1856 			/* Grab any new packets. */
   1857 			(*sc->sc_rxintr)(sc);
   1858 
   1859 			if (isr & ISR_RXORN) {
   1860 				printf("%s: receive FIFO overrun\n",
   1861 				    device_xname(sc->sc_dev));
   1862 
   1863 				/* XXX adjust rx_drain_thresh? */
   1864 			}
   1865 
   1866 			if (isr & ISR_RXIDLE) {
   1867 				printf("%s: receive ring overrun\n",
   1868 				    device_xname(sc->sc_dev));
   1869 
   1870 				/* Get the receive process going again. */
   1871 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1872 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1873 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1874 				    SIP_CR, CR_RXE);
   1875 			}
   1876 		}
   1877 
   1878 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1879 #ifdef SIP_EVENT_COUNTERS
   1880 			if (isr & ISR_TXDESC)
   1881 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1882 			else if (isr & ISR_TXIDLE)
   1883 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1884 #endif
   1885 
   1886 			/* Sweep up transmit descriptors. */
   1887 			sipcom_txintr(sc);
   1888 
   1889 			if (isr & ISR_TXURN) {
   1890 				u_int32_t thresh;
   1891 				int txfifo_size = (sc->sc_gigabit)
   1892 				    ? DP83820_SIP_TXFIFO_SIZE
   1893 				    : OTHER_SIP_TXFIFO_SIZE;
   1894 
   1895 				printf("%s: transmit FIFO underrun",
   1896 				    device_xname(sc->sc_dev));
   1897 				thresh = sc->sc_tx_drain_thresh + 1;
   1898 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1899 				&& (thresh * 32) <= (txfifo_size -
   1900 				     (sc->sc_tx_fill_thresh * 32))) {
   1901 					printf("; increasing Tx drain "
   1902 					    "threshold to %u bytes\n",
   1903 					    thresh * 32);
   1904 					sc->sc_tx_drain_thresh = thresh;
   1905 					(void) sipcom_init(ifp);
   1906 				} else {
   1907 					(void) sipcom_init(ifp);
   1908 					printf("\n");
   1909 				}
   1910 			}
   1911 		}
   1912 
   1913 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1914 			if (isr & ISR_PAUSE_ST) {
   1915 				sc->sc_paused = 1;
   1916 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1917 				ifp->if_flags |= IFF_OACTIVE;
   1918 			}
   1919 			if (isr & ISR_PAUSE_END) {
   1920 				sc->sc_paused = 0;
   1921 				ifp->if_flags &= ~IFF_OACTIVE;
   1922 			}
   1923 		}
   1924 
   1925 		if (isr & ISR_HIBERR) {
   1926 			int want_init = 0;
   1927 
   1928 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1929 
   1930 #define	PRINTERR(bit, str)						\
   1931 			do {						\
   1932 				if ((isr & (bit)) != 0) {		\
   1933 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1934 						printf("%s: %s\n",	\
   1935 						    device_xname(sc->sc_dev), str); \
   1936 					want_init = 1;			\
   1937 				}					\
   1938 			} while (/*CONSTCOND*/0)
   1939 
   1940 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1941 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1942 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1943 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1944 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1945 			/*
   1946 			 * Ignore:
   1947 			 *	Tx reset complete
   1948 			 *	Rx reset complete
   1949 			 */
   1950 			if (want_init)
   1951 				(void) sipcom_init(ifp);
   1952 #undef PRINTERR
   1953 		}
   1954 	}
   1955 
   1956 	/* Re-enable interrupts. */
   1957 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1958 
   1959 	/* Try to get more packets going. */
   1960 	sipcom_start(ifp);
   1961 
   1962 	return (handled);
   1963 }
   1964 
   1965 /*
   1966  * sip_txintr:
   1967  *
   1968  *	Helper; handle transmit interrupts.
   1969  */
   1970 static void
   1971 sipcom_txintr(struct sip_softc *sc)
   1972 {
   1973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1974 	struct sip_txsoft *txs;
   1975 	u_int32_t cmdsts;
   1976 
   1977 	if (sc->sc_paused == 0)
   1978 		ifp->if_flags &= ~IFF_OACTIVE;
   1979 
   1980 	/*
   1981 	 * Go through our Tx list and free mbufs for those
   1982 	 * frames which have been transmitted.
   1983 	 */
   1984 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1985 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1986 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1987 
   1988 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1989 		if (cmdsts & CMDSTS_OWN)
   1990 			break;
   1991 
   1992 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1993 
   1994 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1995 
   1996 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1997 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1998 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1999 		m_freem(txs->txs_mbuf);
   2000 		txs->txs_mbuf = NULL;
   2001 
   2002 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2003 
   2004 		/*
   2005 		 * Check for errors and collisions.
   2006 		 */
   2007 		if (cmdsts &
   2008 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2009 			ifp->if_oerrors++;
   2010 			if (cmdsts & CMDSTS_Tx_EC)
   2011 				ifp->if_collisions += 16;
   2012 			if (ifp->if_flags & IFF_DEBUG) {
   2013 				if (cmdsts & CMDSTS_Tx_ED)
   2014 					printf("%s: excessive deferral\n",
   2015 					    device_xname(sc->sc_dev));
   2016 				if (cmdsts & CMDSTS_Tx_EC)
   2017 					printf("%s: excessive collisions\n",
   2018 					    device_xname(sc->sc_dev));
   2019 			}
   2020 		} else {
   2021 			/* Packet was transmitted successfully. */
   2022 			ifp->if_opackets++;
   2023 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2024 		}
   2025 	}
   2026 
   2027 	/*
   2028 	 * If there are no more pending transmissions, cancel the watchdog
   2029 	 * timer.
   2030 	 */
   2031 	if (txs == NULL) {
   2032 		ifp->if_timer = 0;
   2033 		sc->sc_txwin = 0;
   2034 	}
   2035 }
   2036 
   2037 /*
   2038  * gsip_rxintr:
   2039  *
   2040  *	Helper; handle receive interrupts on gigabit parts.
   2041  */
   2042 static void
   2043 gsip_rxintr(struct sip_softc *sc)
   2044 {
   2045 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2046 	struct sip_rxsoft *rxs;
   2047 	struct mbuf *m;
   2048 	u_int32_t cmdsts, extsts;
   2049 	int i, len;
   2050 
   2051 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2052 		rxs = &sc->sc_rxsoft[i];
   2053 
   2054 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2055 
   2056 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2057 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2058 		len = CMDSTS_SIZE(sc, cmdsts);
   2059 
   2060 		/*
   2061 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2062 		 * consumer of the receive ring, so if the bit is clear,
   2063 		 * we have processed all of the packets.
   2064 		 */
   2065 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2066 			/*
   2067 			 * We have processed all of the receive buffers.
   2068 			 */
   2069 			break;
   2070 		}
   2071 
   2072 		if (__predict_false(sc->sc_rxdiscard)) {
   2073 			sip_init_rxdesc(sc, i);
   2074 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2075 				/* Reset our state. */
   2076 				sc->sc_rxdiscard = 0;
   2077 			}
   2078 			continue;
   2079 		}
   2080 
   2081 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2082 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2083 
   2084 		m = rxs->rxs_mbuf;
   2085 
   2086 		/*
   2087 		 * Add a new receive buffer to the ring.
   2088 		 */
   2089 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2090 			/*
   2091 			 * Failed, throw away what we've done so
   2092 			 * far, and discard the rest of the packet.
   2093 			 */
   2094 			ifp->if_ierrors++;
   2095 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2096 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2097 			sip_init_rxdesc(sc, i);
   2098 			if (cmdsts & CMDSTS_MORE)
   2099 				sc->sc_rxdiscard = 1;
   2100 			if (sc->sc_rxhead != NULL)
   2101 				m_freem(sc->sc_rxhead);
   2102 			sip_rxchain_reset(sc);
   2103 			continue;
   2104 		}
   2105 
   2106 		sip_rxchain_link(sc, m);
   2107 
   2108 		m->m_len = len;
   2109 
   2110 		/*
   2111 		 * If this is not the end of the packet, keep
   2112 		 * looking.
   2113 		 */
   2114 		if (cmdsts & CMDSTS_MORE) {
   2115 			sc->sc_rxlen += len;
   2116 			continue;
   2117 		}
   2118 
   2119 		/*
   2120 		 * Okay, we have the entire packet now.  The chip includes
   2121 		 * the FCS, so we need to trim it.
   2122 		 */
   2123 		m->m_len -= ETHER_CRC_LEN;
   2124 
   2125 		*sc->sc_rxtailp = NULL;
   2126 		len = m->m_len + sc->sc_rxlen;
   2127 		m = sc->sc_rxhead;
   2128 
   2129 		sip_rxchain_reset(sc);
   2130 
   2131 		/*
   2132 		 * If an error occurred, update stats and drop the packet.
   2133 		 */
   2134 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2135 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2136 			ifp->if_ierrors++;
   2137 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2138 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2139 				/* Receive overrun handled elsewhere. */
   2140 				printf("%s: receive descriptor error\n",
   2141 				    device_xname(sc->sc_dev));
   2142 			}
   2143 #define	PRINTERR(bit, str)						\
   2144 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2145 			    (cmdsts & (bit)) != 0)			\
   2146 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2147 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2148 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2149 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2150 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2151 #undef PRINTERR
   2152 			m_freem(m);
   2153 			continue;
   2154 		}
   2155 
   2156 		/*
   2157 		 * If the packet is small enough to fit in a
   2158 		 * single header mbuf, allocate one and copy
   2159 		 * the data into it.  This greatly reduces
   2160 		 * memory consumption when we receive lots
   2161 		 * of small packets.
   2162 		 */
   2163 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2164 			struct mbuf *nm;
   2165 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2166 			if (nm == NULL) {
   2167 				ifp->if_ierrors++;
   2168 				m_freem(m);
   2169 				continue;
   2170 			}
   2171 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2172 			nm->m_data += 2;
   2173 			nm->m_pkthdr.len = nm->m_len = len;
   2174 			m_copydata(m, 0, len, mtod(nm, void *));
   2175 			m_freem(m);
   2176 			m = nm;
   2177 		}
   2178 #ifndef __NO_STRICT_ALIGNMENT
   2179 		else {
   2180 			/*
   2181 			 * The DP83820's receive buffers must be 4-byte
   2182 			 * aligned.  But this means that the data after
   2183 			 * the Ethernet header is misaligned.  To compensate,
   2184 			 * we have artificially shortened the buffer size
   2185 			 * in the descriptor, and we do an overlapping copy
   2186 			 * of the data two bytes further in (in the first
   2187 			 * buffer of the chain only).
   2188 			 */
   2189 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2190 			    m->m_len);
   2191 			m->m_data += 2;
   2192 		}
   2193 #endif /* ! __NO_STRICT_ALIGNMENT */
   2194 
   2195 		/*
   2196 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2197 		 * for us.  Associate the tag with the packet.
   2198 		 */
   2199 
   2200 		/*
   2201 		 * Again, byte swapping is tricky. Hardware provided
   2202 		 * the tag in the network byte order, but extsts was
   2203 		 * passed through le32toh() in the meantime. On a
   2204 		 * big-endian machine, we need to swap it again. On a
   2205 		 * little-endian machine, we need to convert from the
   2206 		 * network to host byte order. This means that we must
   2207 		 * swap it in any case, so unconditional swap instead
   2208 		 * of htons() is used.
   2209 		 */
   2210 		if ((extsts & EXTSTS_VPKT) != 0) {
   2211 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2212 			    continue);
   2213 		}
   2214 
   2215 		/*
   2216 		 * Set the incoming checksum information for the
   2217 		 * packet.
   2218 		 */
   2219 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2220 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2221 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2222 			if (extsts & EXTSTS_Rx_IPERR)
   2223 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2224 			if (extsts & EXTSTS_TCPPKT) {
   2225 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2226 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2227 				if (extsts & EXTSTS_Rx_TCPERR)
   2228 					m->m_pkthdr.csum_flags |=
   2229 					    M_CSUM_TCP_UDP_BAD;
   2230 			} else if (extsts & EXTSTS_UDPPKT) {
   2231 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2232 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2233 				if (extsts & EXTSTS_Rx_UDPERR)
   2234 					m->m_pkthdr.csum_flags |=
   2235 					    M_CSUM_TCP_UDP_BAD;
   2236 			}
   2237 		}
   2238 
   2239 		ifp->if_ipackets++;
   2240 		m->m_pkthdr.rcvif = ifp;
   2241 		m->m_pkthdr.len = len;
   2242 
   2243 		/*
   2244 		 * Pass this up to any BPF listeners, but only
   2245 		 * pass if up the stack if it's for us.
   2246 		 */
   2247 		bpf_mtap(ifp, m);
   2248 
   2249 		/* Pass it on. */
   2250 		(*ifp->if_input)(ifp, m);
   2251 	}
   2252 
   2253 	/* Update the receive pointer. */
   2254 	sc->sc_rxptr = i;
   2255 }
   2256 
   2257 /*
   2258  * sip_rxintr:
   2259  *
   2260  *	Helper; handle receive interrupts on 10/100 parts.
   2261  */
   2262 static void
   2263 sip_rxintr(struct sip_softc *sc)
   2264 {
   2265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2266 	struct sip_rxsoft *rxs;
   2267 	struct mbuf *m;
   2268 	u_int32_t cmdsts;
   2269 	int i, len;
   2270 
   2271 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2272 		rxs = &sc->sc_rxsoft[i];
   2273 
   2274 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2275 
   2276 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2277 
   2278 		/*
   2279 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2280 		 * consumer of the receive ring, so if the bit is clear,
   2281 		 * we have processed all of the packets.
   2282 		 */
   2283 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2284 			/*
   2285 			 * We have processed all of the receive buffers.
   2286 			 */
   2287 			break;
   2288 		}
   2289 
   2290 		/*
   2291 		 * If any collisions were seen on the wire, count one.
   2292 		 */
   2293 		if (cmdsts & CMDSTS_Rx_COL)
   2294 			ifp->if_collisions++;
   2295 
   2296 		/*
   2297 		 * If an error occurred, update stats, clear the status
   2298 		 * word, and leave the packet buffer in place.  It will
   2299 		 * simply be reused the next time the ring comes around.
   2300 		 */
   2301 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2302 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2303 			ifp->if_ierrors++;
   2304 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2305 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2306 				/* Receive overrun handled elsewhere. */
   2307 				printf("%s: receive descriptor error\n",
   2308 				    device_xname(sc->sc_dev));
   2309 			}
   2310 #define	PRINTERR(bit, str)						\
   2311 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2312 			    (cmdsts & (bit)) != 0)			\
   2313 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2314 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2315 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2316 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2317 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2318 #undef PRINTERR
   2319 			sip_init_rxdesc(sc, i);
   2320 			continue;
   2321 		}
   2322 
   2323 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2324 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2325 
   2326 		/*
   2327 		 * No errors; receive the packet.  Note, the SiS 900
   2328 		 * includes the CRC with every packet.
   2329 		 */
   2330 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2331 
   2332 #ifdef __NO_STRICT_ALIGNMENT
   2333 		/*
   2334 		 * If the packet is small enough to fit in a
   2335 		 * single header mbuf, allocate one and copy
   2336 		 * the data into it.  This greatly reduces
   2337 		 * memory consumption when we receive lots
   2338 		 * of small packets.
   2339 		 *
   2340 		 * Otherwise, we add a new buffer to the receive
   2341 		 * chain.  If this fails, we drop the packet and
   2342 		 * recycle the old buffer.
   2343 		 */
   2344 		if (sip_copy_small != 0 && len <= MHLEN) {
   2345 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2346 			if (m == NULL)
   2347 				goto dropit;
   2348 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2349 			memcpy(mtod(m, void *),
   2350 			    mtod(rxs->rxs_mbuf, void *), len);
   2351 			sip_init_rxdesc(sc, i);
   2352 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2353 			    rxs->rxs_dmamap->dm_mapsize,
   2354 			    BUS_DMASYNC_PREREAD);
   2355 		} else {
   2356 			m = rxs->rxs_mbuf;
   2357 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2358  dropit:
   2359 				ifp->if_ierrors++;
   2360 				sip_init_rxdesc(sc, i);
   2361 				bus_dmamap_sync(sc->sc_dmat,
   2362 				    rxs->rxs_dmamap, 0,
   2363 				    rxs->rxs_dmamap->dm_mapsize,
   2364 				    BUS_DMASYNC_PREREAD);
   2365 				continue;
   2366 			}
   2367 		}
   2368 #else
   2369 		/*
   2370 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2371 		 * But this means that the data after the Ethernet header
   2372 		 * is misaligned.  We must allocate a new buffer and
   2373 		 * copy the data, shifted forward 2 bytes.
   2374 		 */
   2375 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2376 		if (m == NULL) {
   2377  dropit:
   2378 			ifp->if_ierrors++;
   2379 			sip_init_rxdesc(sc, i);
   2380 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2381 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2382 			continue;
   2383 		}
   2384 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2385 		if (len > (MHLEN - 2)) {
   2386 			MCLGET(m, M_DONTWAIT);
   2387 			if ((m->m_flags & M_EXT) == 0) {
   2388 				m_freem(m);
   2389 				goto dropit;
   2390 			}
   2391 		}
   2392 		m->m_data += 2;
   2393 
   2394 		/*
   2395 		 * Note that we use clusters for incoming frames, so the
   2396 		 * buffer is virtually contiguous.
   2397 		 */
   2398 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2399 
   2400 		/* Allow the receive descriptor to continue using its mbuf. */
   2401 		sip_init_rxdesc(sc, i);
   2402 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2403 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2404 #endif /* __NO_STRICT_ALIGNMENT */
   2405 
   2406 		ifp->if_ipackets++;
   2407 		m->m_pkthdr.rcvif = ifp;
   2408 		m->m_pkthdr.len = m->m_len = len;
   2409 
   2410 		/*
   2411 		 * Pass this up to any BPF listeners, but only
   2412 		 * pass if up the stack if it's for us.
   2413 		 */
   2414 		bpf_mtap(ifp, m);
   2415 
   2416 		/* Pass it on. */
   2417 		(*ifp->if_input)(ifp, m);
   2418 	}
   2419 
   2420 	/* Update the receive pointer. */
   2421 	sc->sc_rxptr = i;
   2422 }
   2423 
   2424 /*
   2425  * sip_tick:
   2426  *
   2427  *	One second timer, used to tick the MII.
   2428  */
   2429 static void
   2430 sipcom_tick(void *arg)
   2431 {
   2432 	struct sip_softc *sc = arg;
   2433 	int s;
   2434 
   2435 	s = splnet();
   2436 #ifdef SIP_EVENT_COUNTERS
   2437 	if (sc->sc_gigabit) {
   2438 		/* Read PAUSE related counts from MIB registers. */
   2439 		sc->sc_ev_rxpause.ev_count +=
   2440 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2441 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2442 		sc->sc_ev_txpause.ev_count +=
   2443 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2444 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2445 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2446 	}
   2447 #endif /* SIP_EVENT_COUNTERS */
   2448 	mii_tick(&sc->sc_mii);
   2449 	splx(s);
   2450 
   2451 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2452 }
   2453 
   2454 /*
   2455  * sip_reset:
   2456  *
   2457  *	Perform a soft reset on the SiS 900.
   2458  */
   2459 static bool
   2460 sipcom_reset(struct sip_softc *sc)
   2461 {
   2462 	bus_space_tag_t st = sc->sc_st;
   2463 	bus_space_handle_t sh = sc->sc_sh;
   2464 	int i;
   2465 
   2466 	bus_space_write_4(st, sh, SIP_IER, 0);
   2467 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2468 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2469 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2470 
   2471 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2472 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2473 			break;
   2474 		delay(2);
   2475 	}
   2476 
   2477 	if (i == SIP_TIMEOUT) {
   2478 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
   2479 		return false;
   2480 	}
   2481 
   2482 	delay(1000);
   2483 
   2484 	if (sc->sc_gigabit) {
   2485 		/*
   2486 		 * Set the general purpose I/O bits.  Do it here in case we
   2487 		 * need to have GPIO set up to talk to the media interface.
   2488 		 */
   2489 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2490 		delay(1000);
   2491 	}
   2492 	return true;
   2493 }
   2494 
   2495 static void
   2496 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2497 {
   2498 	u_int32_t reg;
   2499 	bus_space_tag_t st = sc->sc_st;
   2500 	bus_space_handle_t sh = sc->sc_sh;
   2501 	/*
   2502 	 * Initialize the VLAN/IP receive control register.
   2503 	 * We enable checksum computation on all incoming
   2504 	 * packets, and do not reject packets w/ bad checksums.
   2505 	 */
   2506 	reg = 0;
   2507 	if (capenable &
   2508 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2509 		reg |= VRCR_IPEN;
   2510 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2511 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2512 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2513 
   2514 	/*
   2515 	 * Initialize the VLAN/IP transmit control register.
   2516 	 * We enable outgoing checksum computation on a
   2517 	 * per-packet basis.
   2518 	 */
   2519 	reg = 0;
   2520 	if (capenable &
   2521 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2522 		reg |= VTCR_PPCHK;
   2523 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2524 		reg |= VTCR_VPPTI;
   2525 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2526 
   2527 	/*
   2528 	 * If we're using VLANs, initialize the VLAN data register.
   2529 	 * To understand why we bswap the VLAN Ethertype, see section
   2530 	 * 4.2.36 of the DP83820 manual.
   2531 	 */
   2532 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2533 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2534 }
   2535 
   2536 /*
   2537  * sip_init:		[ ifnet interface function ]
   2538  *
   2539  *	Initialize the interface.  Must be called at splnet().
   2540  */
   2541 static int
   2542 sipcom_init(struct ifnet *ifp)
   2543 {
   2544 	struct sip_softc *sc = ifp->if_softc;
   2545 	bus_space_tag_t st = sc->sc_st;
   2546 	bus_space_handle_t sh = sc->sc_sh;
   2547 	struct sip_txsoft *txs;
   2548 	struct sip_rxsoft *rxs;
   2549 	struct sip_desc *sipd;
   2550 	int i, error = 0;
   2551 
   2552 	if (device_is_active(sc->sc_dev)) {
   2553 		/*
   2554 		 * Cancel any pending I/O.
   2555 		 */
   2556 		sipcom_stop(ifp, 0);
   2557 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2558 	           !device_is_active(sc->sc_dev))
   2559 		return 0;
   2560 
   2561 	/*
   2562 	 * Reset the chip to a known state.
   2563 	 */
   2564 	if (!sipcom_reset(sc))
   2565 		return EBUSY;
   2566 
   2567 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2568 		/*
   2569 		 * DP83815 manual, page 78:
   2570 		 *    4.4 Recommended Registers Configuration
   2571 		 *    For optimum performance of the DP83815, version noted
   2572 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2573 		 *    modifications must be followed in sequence...
   2574 		 *
   2575 		 * It's not clear if this should be 302h or 203h because that
   2576 		 * chip name is listed as SRR 302h in the description of the
   2577 		 * SRR register.  However, my revision 302h DP83815 on the
   2578 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2579 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2580 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2581 		 * this set or not.  [briggs -- 09 March 2001]
   2582 		 *
   2583 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2584 		 * and that this sets reserved bits in that register.
   2585 		 */
   2586 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2587 
   2588 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2589 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2590 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2591 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2592 
   2593 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2594 	}
   2595 
   2596 	/*
   2597 	 * Initialize the transmit descriptor ring.
   2598 	 */
   2599 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2600 		sipd = &sc->sc_txdescs[i];
   2601 		memset(sipd, 0, sizeof(struct sip_desc));
   2602 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2603 	}
   2604 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2605 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2606 	sc->sc_txfree = sc->sc_ntxdesc;
   2607 	sc->sc_txnext = 0;
   2608 	sc->sc_txwin = 0;
   2609 
   2610 	/*
   2611 	 * Initialize the transmit job descriptors.
   2612 	 */
   2613 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2614 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2615 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2616 		txs = &sc->sc_txsoft[i];
   2617 		txs->txs_mbuf = NULL;
   2618 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2619 	}
   2620 
   2621 	/*
   2622 	 * Initialize the receive descriptor and receive job
   2623 	 * descriptor rings.
   2624 	 */
   2625 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2626 		rxs = &sc->sc_rxsoft[i];
   2627 		if (rxs->rxs_mbuf == NULL) {
   2628 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2629 				printf("%s: unable to allocate or map rx "
   2630 				    "buffer %d, error = %d\n",
   2631 				    device_xname(sc->sc_dev), i, error);
   2632 				/*
   2633 				 * XXX Should attempt to run with fewer receive
   2634 				 * XXX buffers instead of just failing.
   2635 				 */
   2636 				sipcom_rxdrain(sc);
   2637 				goto out;
   2638 			}
   2639 		} else
   2640 			sip_init_rxdesc(sc, i);
   2641 	}
   2642 	sc->sc_rxptr = 0;
   2643 	sc->sc_rxdiscard = 0;
   2644 	sip_rxchain_reset(sc);
   2645 
   2646 	/*
   2647 	 * Set the configuration register; it's already initialized
   2648 	 * in sip_attach().
   2649 	 */
   2650 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2651 
   2652 	/*
   2653 	 * Initialize the prototype TXCFG register.
   2654 	 */
   2655 	if (sc->sc_gigabit) {
   2656 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2657 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2658 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2659 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2660 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2661 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2662 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2663 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2664 	} else {
   2665 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2666 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2667 	}
   2668 
   2669 	sc->sc_txcfg |= TXCFG_ATP |
   2670 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2671 	    sc->sc_tx_drain_thresh;
   2672 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2673 
   2674 	/*
   2675 	 * Initialize the receive drain threshold if we have never
   2676 	 * done so.
   2677 	 */
   2678 	if (sc->sc_rx_drain_thresh == 0) {
   2679 		/*
   2680 		 * XXX This value should be tuned.  This is set to the
   2681 		 * maximum of 248 bytes, and we may be able to improve
   2682 		 * performance by decreasing it (although we should never
   2683 		 * set this value lower than 2; 14 bytes are required to
   2684 		 * filter the packet).
   2685 		 */
   2686 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2687 	}
   2688 
   2689 	/*
   2690 	 * Initialize the prototype RXCFG register.
   2691 	 */
   2692 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2693 	/*
   2694 	 * Accept long packets (including FCS) so we can handle
   2695 	 * 802.1q-tagged frames and jumbo frames properly.
   2696 	 */
   2697 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2698 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2699 		sc->sc_rxcfg |= RXCFG_ALP;
   2700 
   2701 	/*
   2702 	 * Checksum offloading is disabled if the user selects an MTU
   2703 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2704 	 * evidence that >8109 does not work on some boards, such as the
   2705 	 * Planex GN-1000TE).
   2706 	 */
   2707 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2708 	    (ifp->if_capenable &
   2709 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2710 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2711 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2712 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2713 		       "disabled.\n", device_xname(sc->sc_dev));
   2714 		ifp->if_capenable &=
   2715 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2716 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2717 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2718 		ifp->if_csum_flags_tx = 0;
   2719 		ifp->if_csum_flags_rx = 0;
   2720 	}
   2721 
   2722 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2723 
   2724 	if (sc->sc_gigabit)
   2725 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2726 
   2727 	/*
   2728 	 * Give the transmit and receive rings to the chip.
   2729 	 */
   2730 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2731 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2732 
   2733 	/*
   2734 	 * Initialize the interrupt mask.
   2735 	 */
   2736 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2737 	             sc->sc_bits.b_isr_sserr |
   2738 		     sc->sc_bits.b_isr_rmabt |
   2739 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2740 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2741 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2742 
   2743 	/* Set up the receive filter. */
   2744 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2745 
   2746 	/*
   2747 	 * Tune sc_rx_flow_thresh.
   2748 	 * XXX "More than 8KB" is too short for jumbo frames.
   2749 	 * XXX TODO: Threshold value should be user-settable.
   2750 	 */
   2751 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2752 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2753 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2754 
   2755 	/*
   2756 	 * Set the current media.  Do this after initializing the prototype
   2757 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2758 	 * control.
   2759 	 */
   2760 	if ((error = ether_mediachange(ifp)) != 0)
   2761 		goto out;
   2762 
   2763 	/*
   2764 	 * Set the interrupt hold-off timer to 100us.
   2765 	 */
   2766 	if (sc->sc_gigabit)
   2767 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2768 
   2769 	/*
   2770 	 * Enable interrupts.
   2771 	 */
   2772 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2773 
   2774 	/*
   2775 	 * Start the transmit and receive processes.
   2776 	 */
   2777 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2778 
   2779 	/*
   2780 	 * Start the one second MII clock.
   2781 	 */
   2782 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2783 
   2784 	/*
   2785 	 * ...all done!
   2786 	 */
   2787 	ifp->if_flags |= IFF_RUNNING;
   2788 	ifp->if_flags &= ~IFF_OACTIVE;
   2789 	sc->sc_if_flags = ifp->if_flags;
   2790 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2791 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2792 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2793 
   2794  out:
   2795 	if (error)
   2796 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2797 	return (error);
   2798 }
   2799 
   2800 /*
   2801  * sip_drain:
   2802  *
   2803  *	Drain the receive queue.
   2804  */
   2805 static void
   2806 sipcom_rxdrain(struct sip_softc *sc)
   2807 {
   2808 	struct sip_rxsoft *rxs;
   2809 	int i;
   2810 
   2811 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2812 		rxs = &sc->sc_rxsoft[i];
   2813 		if (rxs->rxs_mbuf != NULL) {
   2814 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2815 			m_freem(rxs->rxs_mbuf);
   2816 			rxs->rxs_mbuf = NULL;
   2817 		}
   2818 	}
   2819 }
   2820 
   2821 /*
   2822  * sip_stop:		[ ifnet interface function ]
   2823  *
   2824  *	Stop transmission on the interface.
   2825  */
   2826 static void
   2827 sipcom_stop(struct ifnet *ifp, int disable)
   2828 {
   2829 	struct sip_softc *sc = ifp->if_softc;
   2830 	bus_space_tag_t st = sc->sc_st;
   2831 	bus_space_handle_t sh = sc->sc_sh;
   2832 	struct sip_txsoft *txs;
   2833 	u_int32_t cmdsts = 0;		/* DEBUG */
   2834 
   2835 	/*
   2836 	 * Stop the one second clock.
   2837 	 */
   2838 	callout_stop(&sc->sc_tick_ch);
   2839 
   2840 	/* Down the MII. */
   2841 	mii_down(&sc->sc_mii);
   2842 
   2843 	if (device_is_active(sc->sc_dev)) {
   2844 		/*
   2845 		 * Disable interrupts.
   2846 		 */
   2847 		bus_space_write_4(st, sh, SIP_IER, 0);
   2848 
   2849 		/*
   2850 		 * Stop receiver and transmitter.
   2851 		 */
   2852 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2853 	}
   2854 
   2855 	/*
   2856 	 * Release any queued transmit buffers.
   2857 	 */
   2858 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2859 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2860 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2861 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2862 		     CMDSTS_INTR) == 0)
   2863 			printf("%s: sip_stop: last descriptor does not "
   2864 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2865 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2866 #ifdef DIAGNOSTIC
   2867 		if (txs->txs_mbuf == NULL) {
   2868 			printf("%s: dirty txsoft with no mbuf chain\n",
   2869 			    device_xname(sc->sc_dev));
   2870 			panic("sip_stop");
   2871 		}
   2872 #endif
   2873 		cmdsts |=		/* DEBUG */
   2874 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2875 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2876 		m_freem(txs->txs_mbuf);
   2877 		txs->txs_mbuf = NULL;
   2878 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2879 	}
   2880 
   2881 	/*
   2882 	 * Mark the interface down and cancel the watchdog timer.
   2883 	 */
   2884 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2885 	ifp->if_timer = 0;
   2886 
   2887 	if (disable)
   2888 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2889 
   2890 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2891 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2892 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2893 		    "descriptors\n", device_xname(sc->sc_dev));
   2894 }
   2895 
   2896 /*
   2897  * sip_read_eeprom:
   2898  *
   2899  *	Read data from the serial EEPROM.
   2900  */
   2901 static void
   2902 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2903     u_int16_t *data)
   2904 {
   2905 	bus_space_tag_t st = sc->sc_st;
   2906 	bus_space_handle_t sh = sc->sc_sh;
   2907 	u_int16_t reg;
   2908 	int i, x;
   2909 
   2910 	for (i = 0; i < wordcnt; i++) {
   2911 		/* Send CHIP SELECT. */
   2912 		reg = EROMAR_EECS;
   2913 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2914 
   2915 		/* Shift in the READ opcode. */
   2916 		for (x = 3; x > 0; x--) {
   2917 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2918 				reg |= EROMAR_EEDI;
   2919 			else
   2920 				reg &= ~EROMAR_EEDI;
   2921 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2922 			bus_space_write_4(st, sh, SIP_EROMAR,
   2923 			    reg | EROMAR_EESK);
   2924 			delay(4);
   2925 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2926 			delay(4);
   2927 		}
   2928 
   2929 		/* Shift in address. */
   2930 		for (x = 6; x > 0; x--) {
   2931 			if ((word + i) & (1 << (x - 1)))
   2932 				reg |= EROMAR_EEDI;
   2933 			else
   2934 				reg &= ~EROMAR_EEDI;
   2935 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2936 			bus_space_write_4(st, sh, SIP_EROMAR,
   2937 			    reg | EROMAR_EESK);
   2938 			delay(4);
   2939 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2940 			delay(4);
   2941 		}
   2942 
   2943 		/* Shift out data. */
   2944 		reg = EROMAR_EECS;
   2945 		data[i] = 0;
   2946 		for (x = 16; x > 0; x--) {
   2947 			bus_space_write_4(st, sh, SIP_EROMAR,
   2948 			    reg | EROMAR_EESK);
   2949 			delay(4);
   2950 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2951 				data[i] |= (1 << (x - 1));
   2952 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2953 			delay(4);
   2954 		}
   2955 
   2956 		/* Clear CHIP SELECT. */
   2957 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2958 		delay(4);
   2959 	}
   2960 }
   2961 
   2962 /*
   2963  * sipcom_add_rxbuf:
   2964  *
   2965  *	Add a receive buffer to the indicated descriptor.
   2966  */
   2967 static int
   2968 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2969 {
   2970 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2971 	struct mbuf *m;
   2972 	int error;
   2973 
   2974 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2975 	if (m == NULL)
   2976 		return (ENOBUFS);
   2977 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2978 
   2979 	MCLGET(m, M_DONTWAIT);
   2980 	if ((m->m_flags & M_EXT) == 0) {
   2981 		m_freem(m);
   2982 		return (ENOBUFS);
   2983 	}
   2984 
   2985 	/* XXX I don't believe this is necessary. --dyoung */
   2986 	if (sc->sc_gigabit)
   2987 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2988 
   2989 	if (rxs->rxs_mbuf != NULL)
   2990 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2991 
   2992 	rxs->rxs_mbuf = m;
   2993 
   2994 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2995 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2996 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2997 	if (error) {
   2998 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2999 		    device_xname(sc->sc_dev), idx, error);
   3000 		panic("%s", __func__);		/* XXX */
   3001 	}
   3002 
   3003 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3004 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3005 
   3006 	sip_init_rxdesc(sc, idx);
   3007 
   3008 	return (0);
   3009 }
   3010 
   3011 /*
   3012  * sip_sis900_set_filter:
   3013  *
   3014  *	Set up the receive filter.
   3015  */
   3016 static void
   3017 sipcom_sis900_set_filter(struct sip_softc *sc)
   3018 {
   3019 	bus_space_tag_t st = sc->sc_st;
   3020 	bus_space_handle_t sh = sc->sc_sh;
   3021 	struct ethercom *ec = &sc->sc_ethercom;
   3022 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3023 	struct ether_multi *enm;
   3024 	const u_int8_t *cp;
   3025 	struct ether_multistep step;
   3026 	u_int32_t crc, mchash[16];
   3027 
   3028 	/*
   3029 	 * Initialize the prototype RFCR.
   3030 	 */
   3031 	sc->sc_rfcr = RFCR_RFEN;
   3032 	if (ifp->if_flags & IFF_BROADCAST)
   3033 		sc->sc_rfcr |= RFCR_AAB;
   3034 	if (ifp->if_flags & IFF_PROMISC) {
   3035 		sc->sc_rfcr |= RFCR_AAP;
   3036 		goto allmulti;
   3037 	}
   3038 
   3039 	/*
   3040 	 * Set up the multicast address filter by passing all multicast
   3041 	 * addresses through a CRC generator, and then using the high-order
   3042 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3043 	 * the lower 16 bits of each 32 bit multicast hash register are
   3044 	 * valid).  The high order bits select the register, while the
   3045 	 * rest of the bits select the bit within the register.
   3046 	 */
   3047 
   3048 	memset(mchash, 0, sizeof(mchash));
   3049 
   3050 	/*
   3051 	 * SiS900 (at least SiS963) requires us to register the address of
   3052 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3053 	 */
   3054 	crc = 0x0ed423f9;
   3055 
   3056 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3057 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3058 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3059 		/* Just want the 8 most significant bits. */
   3060 		crc >>= 24;
   3061 	} else {
   3062 		/* Just want the 7 most significant bits. */
   3063 		crc >>= 25;
   3064 	}
   3065 
   3066 	/* Set the corresponding bit in the hash table. */
   3067 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3068 
   3069 	ETHER_FIRST_MULTI(step, ec, enm);
   3070 	while (enm != NULL) {
   3071 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3072 			/*
   3073 			 * We must listen to a range of multicast addresses.
   3074 			 * For now, just accept all multicasts, rather than
   3075 			 * trying to set only those filter bits needed to match
   3076 			 * the range.  (At this time, the only use of address
   3077 			 * ranges is for IP multicast routing, for which the
   3078 			 * range is big enough to require all bits set.)
   3079 			 */
   3080 			goto allmulti;
   3081 		}
   3082 
   3083 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3084 
   3085 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3086 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3087 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3088 			/* Just want the 8 most significant bits. */
   3089 			crc >>= 24;
   3090 		} else {
   3091 			/* Just want the 7 most significant bits. */
   3092 			crc >>= 25;
   3093 		}
   3094 
   3095 		/* Set the corresponding bit in the hash table. */
   3096 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3097 
   3098 		ETHER_NEXT_MULTI(step, enm);
   3099 	}
   3100 
   3101 	ifp->if_flags &= ~IFF_ALLMULTI;
   3102 	goto setit;
   3103 
   3104  allmulti:
   3105 	ifp->if_flags |= IFF_ALLMULTI;
   3106 	sc->sc_rfcr |= RFCR_AAM;
   3107 
   3108  setit:
   3109 #define	FILTER_EMIT(addr, data)						\
   3110 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3111 	delay(1);							\
   3112 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3113 	delay(1)
   3114 
   3115 	/*
   3116 	 * Disable receive filter, and program the node address.
   3117 	 */
   3118 	cp = CLLADDR(ifp->if_sadl);
   3119 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3120 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3121 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3122 
   3123 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3124 		/*
   3125 		 * Program the multicast hash table.
   3126 		 */
   3127 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3128 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3129 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3130 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3131 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3132 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3133 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3134 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3135 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3136 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3137 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3138 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3139 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3140 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3141 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3142 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3143 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3144 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3145 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3146 		}
   3147 	}
   3148 #undef FILTER_EMIT
   3149 
   3150 	/*
   3151 	 * Re-enable the receiver filter.
   3152 	 */
   3153 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3154 }
   3155 
   3156 /*
   3157  * sip_dp83815_set_filter:
   3158  *
   3159  *	Set up the receive filter.
   3160  */
   3161 static void
   3162 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3163 {
   3164 	bus_space_tag_t st = sc->sc_st;
   3165 	bus_space_handle_t sh = sc->sc_sh;
   3166 	struct ethercom *ec = &sc->sc_ethercom;
   3167 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3168 	struct ether_multi *enm;
   3169 	const u_int8_t *cp;
   3170 	struct ether_multistep step;
   3171 	u_int32_t crc, hash, slot, bit;
   3172 #define	MCHASH_NWORDS_83820	128
   3173 #define	MCHASH_NWORDS_83815	32
   3174 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3175 	u_int16_t mchash[MCHASH_NWORDS];
   3176 	int i;
   3177 
   3178 	/*
   3179 	 * Initialize the prototype RFCR.
   3180 	 * Enable the receive filter, and accept on
   3181 	 *    Perfect (destination address) Match
   3182 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3183 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3184 	 *    IFF_ALLMULTI and accept all multicast, too).
   3185 	 */
   3186 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3187 	if (ifp->if_flags & IFF_BROADCAST)
   3188 		sc->sc_rfcr |= RFCR_AAB;
   3189 	if (ifp->if_flags & IFF_PROMISC) {
   3190 		sc->sc_rfcr |= RFCR_AAP;
   3191 		goto allmulti;
   3192 	}
   3193 
   3194 	/*
   3195          * Set up the DP83820/DP83815 multicast address filter by
   3196          * passing all multicast addresses through a CRC generator,
   3197          * and then using the high-order 11/9 bits as an index into
   3198          * the 2048/512 bit multicast hash table.  The high-order
   3199          * 7/5 bits select the slot, while the low-order 4 bits
   3200          * select the bit within the slot.  Note that only the low
   3201          * 16-bits of each filter word are used, and there are
   3202          * 128/32 filter words.
   3203 	 */
   3204 
   3205 	memset(mchash, 0, sizeof(mchash));
   3206 
   3207 	ifp->if_flags &= ~IFF_ALLMULTI;
   3208 	ETHER_FIRST_MULTI(step, ec, enm);
   3209 	if (enm == NULL)
   3210 		goto setit;
   3211 	while (enm != NULL) {
   3212 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3213 			/*
   3214 			 * We must listen to a range of multicast addresses.
   3215 			 * For now, just accept all multicasts, rather than
   3216 			 * trying to set only those filter bits needed to match
   3217 			 * the range.  (At this time, the only use of address
   3218 			 * ranges is for IP multicast routing, for which the
   3219 			 * range is big enough to require all bits set.)
   3220 			 */
   3221 			goto allmulti;
   3222 		}
   3223 
   3224 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3225 
   3226 		if (sc->sc_gigabit) {
   3227 			/* Just want the 11 most significant bits. */
   3228 			hash = crc >> 21;
   3229 		} else {
   3230 			/* Just want the 9 most significant bits. */
   3231 			hash = crc >> 23;
   3232 		}
   3233 
   3234 		slot = hash >> 4;
   3235 		bit = hash & 0xf;
   3236 
   3237 		/* Set the corresponding bit in the hash table. */
   3238 		mchash[slot] |= 1 << bit;
   3239 
   3240 		ETHER_NEXT_MULTI(step, enm);
   3241 	}
   3242 	sc->sc_rfcr |= RFCR_MHEN;
   3243 	goto setit;
   3244 
   3245  allmulti:
   3246 	ifp->if_flags |= IFF_ALLMULTI;
   3247 	sc->sc_rfcr |= RFCR_AAM;
   3248 
   3249  setit:
   3250 #define	FILTER_EMIT(addr, data)						\
   3251 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3252 	delay(1);							\
   3253 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3254 	delay(1)
   3255 
   3256 	/*
   3257 	 * Disable receive filter, and program the node address.
   3258 	 */
   3259 	cp = CLLADDR(ifp->if_sadl);
   3260 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3261 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3262 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3263 
   3264 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3265 		int nwords =
   3266 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3267 		/*
   3268 		 * Program the multicast hash table.
   3269 		 */
   3270 		for (i = 0; i < nwords; i++) {
   3271 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3272 		}
   3273 	}
   3274 #undef FILTER_EMIT
   3275 #undef MCHASH_NWORDS
   3276 #undef MCHASH_NWORDS_83815
   3277 #undef MCHASH_NWORDS_83820
   3278 
   3279 	/*
   3280 	 * Re-enable the receiver filter.
   3281 	 */
   3282 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3283 }
   3284 
   3285 /*
   3286  * sip_dp83820_mii_readreg:	[mii interface function]
   3287  *
   3288  *	Read a PHY register on the MII of the DP83820.
   3289  */
   3290 static int
   3291 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
   3292 {
   3293 	struct sip_softc *sc = device_private(self);
   3294 
   3295 	if (sc->sc_cfg & CFG_TBI_EN) {
   3296 		bus_addr_t tbireg;
   3297 		int rv;
   3298 
   3299 		if (phy != 0)
   3300 			return (0);
   3301 
   3302 		switch (reg) {
   3303 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3304 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3305 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3306 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3307 		case MII_ANER:		tbireg = SIP_TANER; break;
   3308 		case MII_EXTSR:
   3309 			/*
   3310 			 * Don't even bother reading the TESR register.
   3311 			 * The manual documents that the device has
   3312 			 * 1000baseX full/half capability, but the
   3313 			 * register itself seems read back 0 on some
   3314 			 * boards.  Just hard-code the result.
   3315 			 */
   3316 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3317 
   3318 		default:
   3319 			return (0);
   3320 		}
   3321 
   3322 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3323 		if (tbireg == SIP_TBISR) {
   3324 			/* LINK and ACOMP are switched! */
   3325 			int val = rv;
   3326 
   3327 			rv = 0;
   3328 			if (val & TBISR_MR_LINK_STATUS)
   3329 				rv |= BMSR_LINK;
   3330 			if (val & TBISR_MR_AN_COMPLETE)
   3331 				rv |= BMSR_ACOMP;
   3332 
   3333 			/*
   3334 			 * The manual claims this register reads back 0
   3335 			 * on hard and soft reset.  But we want to let
   3336 			 * the gentbi driver know that we support auto-
   3337 			 * negotiation, so hard-code this bit in the
   3338 			 * result.
   3339 			 */
   3340 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3341 		}
   3342 
   3343 		return (rv);
   3344 	}
   3345 
   3346 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3347 }
   3348 
   3349 /*
   3350  * sip_dp83820_mii_writereg:	[mii interface function]
   3351  *
   3352  *	Write a PHY register on the MII of the DP83820.
   3353  */
   3354 static void
   3355 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
   3356 {
   3357 	struct sip_softc *sc = device_private(self);
   3358 
   3359 	if (sc->sc_cfg & CFG_TBI_EN) {
   3360 		bus_addr_t tbireg;
   3361 
   3362 		if (phy != 0)
   3363 			return;
   3364 
   3365 		switch (reg) {
   3366 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3367 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3368 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3369 		default:
   3370 			return;
   3371 		}
   3372 
   3373 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3374 		return;
   3375 	}
   3376 
   3377 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3378 }
   3379 
   3380 /*
   3381  * sip_dp83820_mii_statchg:	[mii interface function]
   3382  *
   3383  *	Callback from MII layer when media changes.
   3384  */
   3385 static void
   3386 sipcom_dp83820_mii_statchg(device_t self)
   3387 {
   3388 	struct sip_softc *sc = device_private(self);
   3389 	struct mii_data *mii = &sc->sc_mii;
   3390 	u_int32_t cfg, pcr;
   3391 
   3392 	/*
   3393 	 * Get flow control negotiation result.
   3394 	 */
   3395 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3396 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3397 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3398 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3399 	}
   3400 
   3401 	/*
   3402 	 * Update TXCFG for full-duplex operation.
   3403 	 */
   3404 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3405 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3406 	else
   3407 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3408 
   3409 	/*
   3410 	 * Update RXCFG for full-duplex or loopback.
   3411 	 */
   3412 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3413 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3414 		sc->sc_rxcfg |= RXCFG_ATX;
   3415 	else
   3416 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3417 
   3418 	/*
   3419 	 * Update CFG for MII/GMII.
   3420 	 */
   3421 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3422 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3423 	else
   3424 		cfg = sc->sc_cfg;
   3425 
   3426 	/*
   3427 	 * 802.3x flow control.
   3428 	 */
   3429 	pcr = 0;
   3430 	if (sc->sc_flowflags & IFM_FLOW) {
   3431 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3432 			pcr |= sc->sc_rx_flow_thresh;
   3433 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3434 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3435 	}
   3436 
   3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3438 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3439 	    sc->sc_txcfg);
   3440 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3441 	    sc->sc_rxcfg);
   3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3443 }
   3444 
   3445 /*
   3446  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3447  *
   3448  *	Read the MII serial port for the MII bit-bang module.
   3449  */
   3450 static u_int32_t
   3451 sipcom_mii_bitbang_read(device_t self)
   3452 {
   3453 	struct sip_softc *sc = device_private(self);
   3454 
   3455 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3456 }
   3457 
   3458 /*
   3459  * sip_mii_bitbang_write: [mii big-bang interface function]
   3460  *
   3461  *	Write the MII serial port for the MII bit-bang module.
   3462  */
   3463 static void
   3464 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
   3465 {
   3466 	struct sip_softc *sc = device_private(self);
   3467 
   3468 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3469 }
   3470 
   3471 /*
   3472  * sip_sis900_mii_readreg:	[mii interface function]
   3473  *
   3474  *	Read a PHY register on the MII.
   3475  */
   3476 static int
   3477 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
   3478 {
   3479 	struct sip_softc *sc = device_private(self);
   3480 	u_int32_t enphy;
   3481 
   3482 	/*
   3483 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3484 	 * operations.
   3485 	 */
   3486 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3487 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3488 		    phy, reg);
   3489 
   3490 #ifndef SIS900_MII_RESTRICT
   3491 	/*
   3492 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3493 	 * MII address 0.
   3494 	 */
   3495 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3496 		return (0);
   3497 #endif
   3498 
   3499 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3500 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3501 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3502 	do {
   3503 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3504 	} while (enphy & ENPHY_ACCESS);
   3505 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3506 }
   3507 
   3508 /*
   3509  * sip_sis900_mii_writereg:	[mii interface function]
   3510  *
   3511  *	Write a PHY register on the MII.
   3512  */
   3513 static void
   3514 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
   3515 {
   3516 	struct sip_softc *sc = device_private(self);
   3517 	u_int32_t enphy;
   3518 
   3519 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3520 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3521 		    phy, reg, val);
   3522 		return;
   3523 	}
   3524 
   3525 #ifndef SIS900_MII_RESTRICT
   3526 	/*
   3527 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3528 	 * MII address 0.
   3529 	 */
   3530 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3531 		return;
   3532 #endif
   3533 
   3534 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3535 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3536 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3537 	do {
   3538 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3539 	} while (enphy & ENPHY_ACCESS);
   3540 }
   3541 
   3542 /*
   3543  * sip_sis900_mii_statchg:	[mii interface function]
   3544  *
   3545  *	Callback from MII layer when media changes.
   3546  */
   3547 static void
   3548 sipcom_sis900_mii_statchg(device_t self)
   3549 {
   3550 	struct sip_softc *sc = device_private(self);
   3551 	struct mii_data *mii = &sc->sc_mii;
   3552 	u_int32_t flowctl;
   3553 
   3554 	/*
   3555 	 * Get flow control negotiation result.
   3556 	 */
   3557 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3558 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3559 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3560 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3561 	}
   3562 
   3563 	/*
   3564 	 * Update TXCFG for full-duplex operation.
   3565 	 */
   3566 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3567 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3568 	else
   3569 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3570 
   3571 	/*
   3572 	 * Update RXCFG for full-duplex or loopback.
   3573 	 */
   3574 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3575 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3576 		sc->sc_rxcfg |= RXCFG_ATX;
   3577 	else
   3578 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3579 
   3580 	/*
   3581 	 * Update IMR for use of 802.3x flow control.
   3582 	 */
   3583 	if (sc->sc_flowflags & IFM_FLOW) {
   3584 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3585 		flowctl = FLOWCTL_FLOWEN;
   3586 	} else {
   3587 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3588 		flowctl = 0;
   3589 	}
   3590 
   3591 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3592 	    sc->sc_txcfg);
   3593 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3594 	    sc->sc_rxcfg);
   3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3596 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3597 }
   3598 
   3599 /*
   3600  * sip_dp83815_mii_readreg:	[mii interface function]
   3601  *
   3602  *	Read a PHY register on the MII.
   3603  */
   3604 static int
   3605 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
   3606 {
   3607 	struct sip_softc *sc = device_private(self);
   3608 	u_int32_t val;
   3609 
   3610 	/*
   3611 	 * The DP83815 only has an internal PHY.  Only allow
   3612 	 * MII address 0.
   3613 	 */
   3614 	if (phy != 0)
   3615 		return (0);
   3616 
   3617 	/*
   3618 	 * Apparently, after a reset, the DP83815 can take a while
   3619 	 * to respond.  During this recovery period, the BMSR returns
   3620 	 * a value of 0.  Catch this -- it's not supposed to happen
   3621 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3622 	 * PHY to come back to life.
   3623 	 *
   3624 	 * This works out because the BMSR is the first register
   3625 	 * read during the PHY probe process.
   3626 	 */
   3627 	do {
   3628 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3629 	} while (reg == MII_BMSR && val == 0);
   3630 
   3631 	return (val & 0xffff);
   3632 }
   3633 
   3634 /*
   3635  * sip_dp83815_mii_writereg:	[mii interface function]
   3636  *
   3637  *	Write a PHY register to the MII.
   3638  */
   3639 static void
   3640 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
   3641 {
   3642 	struct sip_softc *sc = device_private(self);
   3643 
   3644 	/*
   3645 	 * The DP83815 only has an internal PHY.  Only allow
   3646 	 * MII address 0.
   3647 	 */
   3648 	if (phy != 0)
   3649 		return;
   3650 
   3651 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3652 }
   3653 
   3654 /*
   3655  * sip_dp83815_mii_statchg:	[mii interface function]
   3656  *
   3657  *	Callback from MII layer when media changes.
   3658  */
   3659 static void
   3660 sipcom_dp83815_mii_statchg(device_t self)
   3661 {
   3662 	struct sip_softc *sc = device_private(self);
   3663 
   3664 	/*
   3665 	 * Update TXCFG for full-duplex operation.
   3666 	 */
   3667 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3668 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3669 	else
   3670 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3671 
   3672 	/*
   3673 	 * Update RXCFG for full-duplex or loopback.
   3674 	 */
   3675 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3676 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3677 		sc->sc_rxcfg |= RXCFG_ATX;
   3678 	else
   3679 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3680 
   3681 	/*
   3682 	 * XXX 802.3x flow control.
   3683 	 */
   3684 
   3685 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3686 	    sc->sc_txcfg);
   3687 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3688 	    sc->sc_rxcfg);
   3689 
   3690 	/*
   3691 	 * Some DP83815s experience problems when used with short
   3692 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3693 	 * sequence adjusts the DSP's signal attenuation to fix the
   3694 	 * problem.
   3695 	 */
   3696 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3697 		uint32_t reg;
   3698 
   3699 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3700 
   3701 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3702 		reg &= 0x0fff;
   3703 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3704 		delay(100);
   3705 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3706 		reg &= 0x00ff;
   3707 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3708 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3709 			    0x00e8);
   3710 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3711 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3712 			    reg | 0x20);
   3713 		}
   3714 
   3715 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3716 	}
   3717 }
   3718 
   3719 static void
   3720 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3721     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3722 {
   3723 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3724 	u_int8_t cksum, *e, match;
   3725 	int i;
   3726 
   3727 	/*
   3728 	 * EEPROM data format for the DP83820 can be found in
   3729 	 * the DP83820 manual, section 4.2.4.
   3730 	 */
   3731 
   3732 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3733 
   3734 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3735 	match = ~(match - 1);
   3736 
   3737 	cksum = 0x55;
   3738 	e = (u_int8_t *) eeprom_data;
   3739 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3740 		cksum += *e++;
   3741 
   3742 	if (cksum != match)
   3743 		printf("%s: Checksum (%x) mismatch (%x)",
   3744 		    device_xname(sc->sc_dev), cksum, match);
   3745 
   3746 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3747 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3748 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3749 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3750 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3751 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3752 }
   3753 
   3754 static void
   3755 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3756 {
   3757 	int i;
   3758 
   3759 	/*
   3760 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3761 	 * a reason, but I don't know it.
   3762 	 */
   3763 	for (i = 0; i < 10; i++)
   3764 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3765 }
   3766 
   3767 static void
   3768 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3769     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3770 {
   3771 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3772 
   3773 	switch (sc->sc_rev) {
   3774 	case SIS_REV_630S:
   3775 	case SIS_REV_630E:
   3776 	case SIS_REV_630EA1:
   3777 	case SIS_REV_630ET:
   3778 	case SIS_REV_635:
   3779 		/*
   3780 		 * The MAC address for the on-board Ethernet of
   3781 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3782 		 * the chip into re-loading it from NVRAM, and
   3783 		 * read the MAC address out of the filter registers.
   3784 		 */
   3785 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3786 
   3787 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3788 		    RFCR_RFADDR_NODE0);
   3789 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3790 		    0xffff;
   3791 
   3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3793 		    RFCR_RFADDR_NODE2);
   3794 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3795 		    0xffff;
   3796 
   3797 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3798 		    RFCR_RFADDR_NODE4);
   3799 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3800 		    0xffff;
   3801 		break;
   3802 
   3803 	case SIS_REV_960:
   3804 		{
   3805 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3806 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3807 
   3808 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3809 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3810 
   3811 			int waittime, i;
   3812 
   3813 			/* Allow to read EEPROM from LAN. It is shared
   3814 			 * between a 1394 controller and the NIC and each
   3815 			 * time we access it, we need to set SIS_EECMD_REQ.
   3816 			 */
   3817 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3818 
   3819 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3820 				/* Force EEPROM to idle state. */
   3821 
   3822 				/*
   3823 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3824 				 */
   3825 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3826 				sipcom_sis900_eeprom_delay(sc);
   3827 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3828 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3829 					sipcom_sis900_eeprom_delay(sc);
   3830 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3831 					sipcom_sis900_eeprom_delay(sc);
   3832 				}
   3833 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3834 				sipcom_sis900_eeprom_delay(sc);
   3835 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3836 
   3837 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3838 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3839 					    sizeof(myea) / sizeof(myea[0]), myea);
   3840 					break;
   3841 				}
   3842 				DELAY(1);
   3843 			}
   3844 
   3845 			/*
   3846 			 * Set SIS_EECTL_CLK to high, so a other master
   3847 			 * can operate on the i2c bus.
   3848 			 */
   3849 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3850 
   3851 			/* Refuse EEPROM access by LAN */
   3852 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3853 		} break;
   3854 
   3855 	default:
   3856 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3857 		    sizeof(myea) / sizeof(myea[0]), myea);
   3858 	}
   3859 
   3860 	enaddr[0] = myea[0] & 0xff;
   3861 	enaddr[1] = myea[0] >> 8;
   3862 	enaddr[2] = myea[1] & 0xff;
   3863 	enaddr[3] = myea[1] >> 8;
   3864 	enaddr[4] = myea[2] & 0xff;
   3865 	enaddr[5] = myea[2] >> 8;
   3866 }
   3867 
   3868 /* Table and macro to bit-reverse an octet. */
   3869 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3870 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3871 
   3872 static void
   3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3874     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3875 {
   3876 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3877 	u_int8_t cksum, *e, match;
   3878 	int i;
   3879 
   3880 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3881 	    sizeof(eeprom_data[0]), eeprom_data);
   3882 
   3883 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3884 	match = ~(match - 1);
   3885 
   3886 	cksum = 0x55;
   3887 	e = (u_int8_t *) eeprom_data;
   3888 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3889 		cksum += *e++;
   3890 	}
   3891 	if (cksum != match) {
   3892 		printf("%s: Checksum (%x) mismatch (%x)",
   3893 		    device_xname(sc->sc_dev), cksum, match);
   3894 	}
   3895 
   3896 	/*
   3897 	 * Unrolled because it makes slightly more sense this way.
   3898 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3899 	 * through bit 15 of word 8.
   3900 	 */
   3901 	ea = &eeprom_data[6];
   3902 	enaddr[0] = ((*ea & 0x1) << 7);
   3903 	ea++;
   3904 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3905 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3906 	enaddr[2] = ((*ea & 0x1) << 7);
   3907 	ea++;
   3908 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3909 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3910 	enaddr[4] = ((*ea & 0x1) << 7);
   3911 	ea++;
   3912 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3913 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3914 
   3915 	/*
   3916 	 * In case that's not weird enough, we also need to reverse
   3917 	 * the bits in each byte.  This all actually makes more sense
   3918 	 * if you think about the EEPROM storage as an array of bits
   3919 	 * being shifted into bytes, but that's not how we're looking
   3920 	 * at it here...
   3921 	 */
   3922 	for (i = 0; i < 6 ;i++)
   3923 		enaddr[i] = bbr(enaddr[i]);
   3924 }
   3925 
   3926 /*
   3927  * sip_mediastatus:	[ifmedia interface function]
   3928  *
   3929  *	Get the current interface media status.
   3930  */
   3931 static void
   3932 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3933 {
   3934 	struct sip_softc *sc = ifp->if_softc;
   3935 
   3936 	if (!device_is_active(sc->sc_dev)) {
   3937 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3938 		ifmr->ifm_status = 0;
   3939 		return;
   3940 	}
   3941 	ether_mediastatus(ifp, ifmr);
   3942 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3943 			   sc->sc_flowflags;
   3944 }
   3945