if_sip.c revision 1.150.2.2 1 /* $NetBSD: if_sip.c,v 1.150.2.2 2012/10/30 17:21:31 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.150.2.2 2012/10/30 17:21:31 yamt Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rnd.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997
998 callout_init(&sc->sc_tick_ch, 0);
999
1000 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 if (sip == NULL) {
1002 printf("\n");
1003 panic("%s: impossible", __func__);
1004 }
1005 sc->sc_dev = self;
1006 sc->sc_gigabit = sip->sip_gigabit;
1007 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1008 sc->sc_pc = pc;
1009
1010 if (sc->sc_gigabit) {
1011 sc->sc_rxintr = gsip_rxintr;
1012 sc->sc_parm = &gsip_parm;
1013 } else {
1014 sc->sc_rxintr = sip_rxintr;
1015 sc->sc_parm = &sip_parm;
1016 }
1017 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1018 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1019 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1020 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1021 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1022
1023 sc->sc_rev = PCI_REVISION(pa->pa_class);
1024
1025 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1026
1027 sc->sc_model = sip;
1028
1029 /*
1030 * XXX Work-around broken PXE firmware on some boards.
1031 *
1032 * The DP83815 shares an address decoder with the MEM BAR
1033 * and the ROM BAR. Make sure the ROM BAR is disabled,
1034 * so that memory mapped access works.
1035 */
1036 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1037 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1038 ~PCI_MAPREG_ROM_ENABLE);
1039
1040 /*
1041 * Map the device.
1042 */
1043 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1044 PCI_MAPREG_TYPE_IO, 0,
1045 &iot, &ioh, NULL, &iosz) == 0);
1046 if (sc->sc_gigabit) {
1047 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1048 switch (memtype) {
1049 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1051 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1052 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1053 break;
1054 default:
1055 memh_valid = 0;
1056 }
1057 } else {
1058 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1059 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1060 &memt, &memh, NULL, &memsz) == 0);
1061 }
1062
1063 if (memh_valid) {
1064 sc->sc_st = memt;
1065 sc->sc_sh = memh;
1066 sc->sc_sz = memsz;
1067 } else if (ioh_valid) {
1068 sc->sc_st = iot;
1069 sc->sc_sh = ioh;
1070 sc->sc_sz = iosz;
1071 } else {
1072 printf("%s: unable to map device registers\n",
1073 device_xname(sc->sc_dev));
1074 return;
1075 }
1076
1077 sc->sc_dmat = pa->pa_dmat;
1078
1079 /*
1080 * Make sure bus mastering is enabled. Also make sure
1081 * Write/Invalidate is enabled if we're allowed to use it.
1082 */
1083 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1084 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1085 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1086 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1087 csr | PCI_COMMAND_MASTER_ENABLE);
1088
1089 /* power up chip */
1090 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1091 if (error != 0 && error != EOPNOTSUPP) {
1092 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1093 return;
1094 }
1095
1096 /*
1097 * Map and establish our interrupt.
1098 */
1099 if (pci_intr_map(pa, &ih)) {
1100 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1101 return;
1102 }
1103 intrstr = pci_intr_string(pc, ih);
1104 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1105 if (sc->sc_ih == NULL) {
1106 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1107 if (intrstr != NULL)
1108 aprint_error(" at %s", intrstr);
1109 aprint_error("\n");
1110 sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 return;
1112 }
1113 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1114
1115 SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117
1118 /*
1119 * Allocate the control data structures, and create and load the
1120 * DMA map for it.
1121 */
1122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 &rseg, 0)) != 0) {
1125 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1126 error);
1127 sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 return;
1129 }
1130
1131 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 BUS_DMA_COHERENT)) != 0) {
1134 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1135 error);
1136 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 }
1138
1139 if ((error = bus_dmamap_create(sc->sc_dmat,
1140 sizeof(struct sip_control_data), 1,
1141 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1143 "error = %d\n", error);
1144 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 }
1146
1147 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 0)) != 0) {
1150 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1151 error);
1152 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 }
1154
1155 /*
1156 * Create the transmit buffer DMA maps.
1157 */
1158 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1163 "error = %d\n", i, error);
1164 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 }
1166 }
1167
1168 /*
1169 * Create the receive buffer DMA maps.
1170 */
1171 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1175 "error = %d\n", i, error);
1176 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 }
1178 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 }
1180
1181 /*
1182 * Reset the chip to a known state.
1183 */
1184 sipcom_reset(sc);
1185
1186 /*
1187 * Read the Ethernet address from the EEPROM. This might
1188 * also fetch other stuff from the EEPROM and stash it
1189 * in the softc.
1190 */
1191 sc->sc_cfg = 0;
1192 if (!sc->sc_gigabit) {
1193 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1194 SIP_SIS900_REV(sc,SIS_REV_900B))
1195 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196
1197 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1198 SIP_SIS900_REV(sc,SIS_REV_960) ||
1199 SIP_SIS900_REV(sc,SIS_REV_900B))
1200 sc->sc_cfg |=
1201 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 CFG_EDBMASTEN);
1203 }
1204
1205 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206
1207 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1208 ether_sprintf(enaddr));
1209
1210 /*
1211 * Initialize the configuration register: aggressive PCI
1212 * bus request algorithm, default backoff, default OW timer,
1213 * default parity error detection.
1214 *
1215 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 * friends -- it affects packet data, not descriptors.
1217 */
1218 if (sc->sc_gigabit)
1219 sipcom_dp83820_attach(sc, pa);
1220
1221 /*
1222 * Initialize our media structures and probe the MII.
1223 */
1224 sc->sc_mii.mii_ifp = ifp;
1225 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 } else
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 ether_ifattach(ifp, enaddr);
1287 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1288 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1289 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1290 sc->sc_prev.if_capenable = ifp->if_capenable;
1291 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1292 RND_TYPE_NET, 0);
1293
1294 /*
1295 * The number of bytes that must be available in
1296 * the Tx FIFO before the bus master can DMA more
1297 * data into the FIFO.
1298 */
1299 sc->sc_tx_fill_thresh = 64 / 32;
1300
1301 /*
1302 * Start at a drain threshold of 512 bytes. We will
1303 * increase it if a DMA underrun occurs.
1304 *
1305 * XXX The minimum value of this variable should be
1306 * tuned. We may be able to improve performance
1307 * by starting with a lower value. That, however,
1308 * may trash the first few outgoing packets if the
1309 * PCI bus is saturated.
1310 */
1311 if (sc->sc_gigabit)
1312 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1313 else
1314 sc->sc_tx_drain_thresh = 1504 / 32;
1315
1316 /*
1317 * Initialize the Rx FIFO drain threshold.
1318 *
1319 * This is in units of 8 bytes.
1320 *
1321 * We should never set this value lower than 2; 14 bytes are
1322 * required to filter the packet.
1323 */
1324 sc->sc_rx_drain_thresh = 128 / 8;
1325
1326 #ifdef SIP_EVENT_COUNTERS
1327 /*
1328 * Attach event counters.
1329 */
1330 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1331 NULL, device_xname(sc->sc_dev), "txsstall");
1332 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1333 NULL, device_xname(sc->sc_dev), "txdstall");
1334 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1335 NULL, device_xname(sc->sc_dev), "txforceintr");
1336 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(sc->sc_dev), "txdintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(sc->sc_dev), "txiintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(sc->sc_dev), "rxintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(sc->sc_dev), "hiberr");
1344 if (!sc->sc_gigabit) {
1345 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1346 NULL, device_xname(sc->sc_dev), "rxpause");
1347 } else {
1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1349 NULL, device_xname(sc->sc_dev), "rxpause");
1350 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1351 NULL, device_xname(sc->sc_dev), "txpause");
1352 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1353 NULL, device_xname(sc->sc_dev), "rxipsum");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(sc->sc_dev), "rxudpsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(sc->sc_dev), "txipsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(sc->sc_dev), "txtcpsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(sc->sc_dev), "txudpsum");
1364 }
1365 #endif /* SIP_EVENT_COUNTERS */
1366
1367 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1368 pmf_class_network_register(self, ifp);
1369 else
1370 aprint_error_dev(self, "couldn't establish power handler\n");
1371 }
1372
1373 static inline void
1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1375 uint64_t capenable)
1376 {
1377 struct m_tag *mtag;
1378 u_int32_t extsts;
1379 #ifdef DEBUG
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 #endif
1382 /*
1383 * If VLANs are enabled and the packet has a VLAN tag, set
1384 * up the descriptor to encapsulate the packet for us.
1385 *
1386 * This apparently has to be on the last descriptor of
1387 * the packet.
1388 */
1389
1390 /*
1391 * Byte swapping is tricky. We need to provide the tag
1392 * in a network byte order. On a big-endian machine,
1393 * the byteorder is correct, but we need to swap it
1394 * anyway, because this will be undone by the outside
1395 * htole32(). That's why there must be an
1396 * unconditional swap instead of htons() inside.
1397 */
1398 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1399 sc->sc_txdescs[lasttx].sipd_extsts |=
1400 htole32(EXTSTS_VPKT |
1401 (bswap16(VLAN_TAG_VALUE(mtag)) &
1402 EXTSTS_VTCI));
1403 }
1404
1405 /*
1406 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1407 * checksumming, set up the descriptor to do this work
1408 * for us.
1409 *
1410 * This apparently has to be on the first descriptor of
1411 * the packet.
1412 *
1413 * Byte-swap constants so the compiler can optimize.
1414 */
1415 extsts = 0;
1416 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1417 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1418 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1419 extsts |= htole32(EXTSTS_IPPKT);
1420 }
1421 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1422 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1423 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1424 extsts |= htole32(EXTSTS_TCPPKT);
1425 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1426 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1427 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1428 extsts |= htole32(EXTSTS_UDPPKT);
1429 }
1430 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1431 }
1432
1433 /*
1434 * sip_start: [ifnet interface function]
1435 *
1436 * Start packet transmission on the interface.
1437 */
1438 static void
1439 sipcom_start(struct ifnet *ifp)
1440 {
1441 struct sip_softc *sc = ifp->if_softc;
1442 struct mbuf *m0;
1443 struct mbuf *m;
1444 struct sip_txsoft *txs;
1445 bus_dmamap_t dmamap;
1446 int error, nexttx, lasttx, seg;
1447 int ofree = sc->sc_txfree;
1448 #if 0
1449 int firsttx = sc->sc_txnext;
1450 #endif
1451
1452 /*
1453 * If we've been told to pause, don't transmit any more packets.
1454 */
1455 if (!sc->sc_gigabit && sc->sc_paused)
1456 ifp->if_flags |= IFF_OACTIVE;
1457
1458 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1459 return;
1460
1461 /*
1462 * Loop through the send queue, setting up transmit descriptors
1463 * until we drain the queue, or use up all available transmit
1464 * descriptors.
1465 */
1466 for (;;) {
1467 /* Get a work queue entry. */
1468 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1469 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1470 break;
1471 }
1472
1473 /*
1474 * Grab a packet off the queue.
1475 */
1476 IFQ_POLL(&ifp->if_snd, m0);
1477 if (m0 == NULL)
1478 break;
1479 m = NULL;
1480
1481 dmamap = txs->txs_dmamap;
1482
1483 /*
1484 * Load the DMA map. If this fails, the packet either
1485 * didn't fit in the alloted number of segments, or we
1486 * were short on resources.
1487 */
1488 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1489 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1490 /* In the non-gigabit case, we'll copy and try again. */
1491 if (error != 0 && !sc->sc_gigabit) {
1492 MGETHDR(m, M_DONTWAIT, MT_DATA);
1493 if (m == NULL) {
1494 printf("%s: unable to allocate Tx mbuf\n",
1495 device_xname(sc->sc_dev));
1496 break;
1497 }
1498 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1499 if (m0->m_pkthdr.len > MHLEN) {
1500 MCLGET(m, M_DONTWAIT);
1501 if ((m->m_flags & M_EXT) == 0) {
1502 printf("%s: unable to allocate Tx "
1503 "cluster\n", device_xname(sc->sc_dev));
1504 m_freem(m);
1505 break;
1506 }
1507 }
1508 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1509 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1510 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1511 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1512 if (error) {
1513 printf("%s: unable to load Tx buffer, "
1514 "error = %d\n", device_xname(sc->sc_dev), error);
1515 break;
1516 }
1517 } else if (error == EFBIG) {
1518 /*
1519 * For the too-many-segments case, we simply
1520 * report an error and drop the packet,
1521 * since we can't sanely copy a jumbo packet
1522 * to a single buffer.
1523 */
1524 printf("%s: Tx packet consumes too many "
1525 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1526 IFQ_DEQUEUE(&ifp->if_snd, m0);
1527 m_freem(m0);
1528 continue;
1529 } else if (error != 0) {
1530 /*
1531 * Short on resources, just stop for now.
1532 */
1533 break;
1534 }
1535
1536 /*
1537 * Ensure we have enough descriptors free to describe
1538 * the packet. Note, we always reserve one descriptor
1539 * at the end of the ring as a termination point, to
1540 * prevent wrap-around.
1541 */
1542 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1543 /*
1544 * Not enough free descriptors to transmit this
1545 * packet. We haven't committed anything yet,
1546 * so just unload the DMA map, put the packet
1547 * back on the queue, and punt. Notify the upper
1548 * layer that there are not more slots left.
1549 *
1550 * XXX We could allocate an mbuf and copy, but
1551 * XXX is it worth it?
1552 */
1553 ifp->if_flags |= IFF_OACTIVE;
1554 bus_dmamap_unload(sc->sc_dmat, dmamap);
1555 if (m != NULL)
1556 m_freem(m);
1557 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1558 break;
1559 }
1560
1561 IFQ_DEQUEUE(&ifp->if_snd, m0);
1562 if (m != NULL) {
1563 m_freem(m0);
1564 m0 = m;
1565 }
1566
1567 /*
1568 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1569 */
1570
1571 /* Sync the DMA map. */
1572 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1573 BUS_DMASYNC_PREWRITE);
1574
1575 /*
1576 * Initialize the transmit descriptors.
1577 */
1578 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1579 seg < dmamap->dm_nsegs;
1580 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1581 /*
1582 * If this is the first descriptor we're
1583 * enqueueing, don't set the OWN bit just
1584 * yet. That could cause a race condition.
1585 * We'll do it below.
1586 */
1587 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1588 htole32(dmamap->dm_segs[seg].ds_addr);
1589 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1591 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1592 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1593 lasttx = nexttx;
1594 }
1595
1596 /* Clear the MORE bit on the last segment. */
1597 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1598 htole32(~CMDSTS_MORE);
1599
1600 /*
1601 * If we're in the interrupt delay window, delay the
1602 * interrupt.
1603 */
1604 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1605 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1606 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1607 htole32(CMDSTS_INTR);
1608 sc->sc_txwin = 0;
1609 }
1610
1611 if (sc->sc_gigabit)
1612 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1613
1614 /* Sync the descriptors we're using. */
1615 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1616 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1617
1618 /*
1619 * The entire packet is set up. Give the first descrptor
1620 * to the chip now.
1621 */
1622 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1623 htole32(CMDSTS_OWN);
1624 sip_cdtxsync(sc, sc->sc_txnext, 1,
1625 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1626
1627 /*
1628 * Store a pointer to the packet so we can free it later,
1629 * and remember what txdirty will be once the packet is
1630 * done.
1631 */
1632 txs->txs_mbuf = m0;
1633 txs->txs_firstdesc = sc->sc_txnext;
1634 txs->txs_lastdesc = lasttx;
1635
1636 /* Advance the tx pointer. */
1637 sc->sc_txfree -= dmamap->dm_nsegs;
1638 sc->sc_txnext = nexttx;
1639
1640 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1641 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1642
1643 /*
1644 * Pass the packet to any BPF listeners.
1645 */
1646 bpf_mtap(ifp, m0);
1647 }
1648
1649 if (txs == NULL || sc->sc_txfree == 0) {
1650 /* No more slots left; notify upper layer. */
1651 ifp->if_flags |= IFF_OACTIVE;
1652 }
1653
1654 if (sc->sc_txfree != ofree) {
1655 /*
1656 * Start the transmit process. Note, the manual says
1657 * that if there are no pending transmissions in the
1658 * chip's internal queue (indicated by TXE being clear),
1659 * then the driver software must set the TXDP to the
1660 * first descriptor to be transmitted. However, if we
1661 * do this, it causes serious performance degredation on
1662 * the DP83820 under load, not setting TXDP doesn't seem
1663 * to adversely affect the SiS 900 or DP83815.
1664 *
1665 * Well, I guess it wouldn't be the first time a manual
1666 * has lied -- and they could be speaking of the NULL-
1667 * terminated descriptor list case, rather than OWN-
1668 * terminated rings.
1669 */
1670 #if 0
1671 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1672 CR_TXE) == 0) {
1673 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1674 SIP_CDTXADDR(sc, firsttx));
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 }
1677 #else
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 #endif
1680
1681 /* Set a watchdog timer in case the chip flakes out. */
1682 /* Gigabit autonegotiation takes 5 seconds. */
1683 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1684 }
1685 }
1686
1687 /*
1688 * sip_watchdog: [ifnet interface function]
1689 *
1690 * Watchdog timer handler.
1691 */
1692 static void
1693 sipcom_watchdog(struct ifnet *ifp)
1694 {
1695 struct sip_softc *sc = ifp->if_softc;
1696
1697 /*
1698 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1699 * If we get a timeout, try and sweep up transmit descriptors.
1700 * If we manage to sweep them all up, ignore the lack of
1701 * interrupt.
1702 */
1703 sipcom_txintr(sc);
1704
1705 if (sc->sc_txfree != sc->sc_ntxdesc) {
1706 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1707 ifp->if_oerrors++;
1708
1709 /* Reset the interface. */
1710 (void) sipcom_init(ifp);
1711 } else if (ifp->if_flags & IFF_DEBUG)
1712 printf("%s: recovered from device timeout\n",
1713 device_xname(sc->sc_dev));
1714
1715 /* Try to get more packets going. */
1716 sipcom_start(ifp);
1717 }
1718
1719 /* If the interface is up and running, only modify the receive
1720 * filter when setting promiscuous or debug mode. Otherwise fall
1721 * through to ether_ioctl, which will reset the chip.
1722 */
1723 static int
1724 sip_ifflags_cb(struct ethercom *ec)
1725 {
1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1727 == (sc)->sc_ethercom.ec_capenable) \
1728 && ((sc)->sc_prev.is_vlan == \
1729 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1731 struct ifnet *ifp = &ec->ec_if;
1732 struct sip_softc *sc = ifp->if_softc;
1733 int change = ifp->if_flags ^ sc->sc_if_flags;
1734
1735 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1736 !COMPARE_IC(sc, ifp))
1737 return ENETRESET;
1738 /* Set up the receive filter. */
1739 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1740 return 0;
1741 }
1742
1743 /*
1744 * sip_ioctl: [ifnet interface function]
1745 *
1746 * Handle control requests from the operator.
1747 */
1748 static int
1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1750 {
1751 struct sip_softc *sc = ifp->if_softc;
1752 struct ifreq *ifr = (struct ifreq *)data;
1753 int s, error;
1754
1755 s = splnet();
1756
1757 switch (cmd) {
1758 case SIOCSIFMEDIA:
1759 /* Flow control requires full-duplex mode. */
1760 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1761 (ifr->ifr_media & IFM_FDX) == 0)
1762 ifr->ifr_media &= ~IFM_ETH_FMASK;
1763
1764 /* XXX */
1765 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1766 ifr->ifr_media &= ~IFM_ETH_FMASK;
1767 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1768 if (sc->sc_gigabit &&
1769 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1770 /* We can do both TXPAUSE and RXPAUSE. */
1771 ifr->ifr_media |=
1772 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1773 } else if (ifr->ifr_media & IFM_FLOW) {
1774 /*
1775 * Both TXPAUSE and RXPAUSE must be set.
1776 * (SiS900 and DP83815 don't have PAUSE_ASYM
1777 * feature.)
1778 *
1779 * XXX Can SiS900 and DP83815 send PAUSE?
1780 */
1781 ifr->ifr_media |=
1782 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1783 }
1784 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1785 }
1786 /*FALLTHROUGH*/
1787 default:
1788 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1789 break;
1790
1791 error = 0;
1792
1793 if (cmd == SIOCSIFCAP)
1794 error = (*ifp->if_init)(ifp);
1795 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1796 ;
1797 else if (ifp->if_flags & IFF_RUNNING) {
1798 /*
1799 * Multicast list has changed; set the hardware filter
1800 * accordingly.
1801 */
1802 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1803 }
1804 break;
1805 }
1806
1807 /* Try to get more packets going. */
1808 sipcom_start(ifp);
1809
1810 sc->sc_if_flags = ifp->if_flags;
1811 splx(s);
1812 return (error);
1813 }
1814
1815 /*
1816 * sip_intr:
1817 *
1818 * Interrupt service routine.
1819 */
1820 static int
1821 sipcom_intr(void *arg)
1822 {
1823 struct sip_softc *sc = arg;
1824 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1825 u_int32_t isr;
1826 int handled = 0;
1827
1828 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1829 return 0;
1830
1831 /* Disable interrupts. */
1832 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1833
1834 for (;;) {
1835 /* Reading clears interrupt. */
1836 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1837 if ((isr & sc->sc_imr) == 0)
1838 break;
1839
1840 rnd_add_uint32(&sc->rnd_source, isr);
1841
1842 handled = 1;
1843
1844 if ((ifp->if_flags & IFF_RUNNING) == 0)
1845 break;
1846
1847 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1848 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1849
1850 /* Grab any new packets. */
1851 (*sc->sc_rxintr)(sc);
1852
1853 if (isr & ISR_RXORN) {
1854 printf("%s: receive FIFO overrun\n",
1855 device_xname(sc->sc_dev));
1856
1857 /* XXX adjust rx_drain_thresh? */
1858 }
1859
1860 if (isr & ISR_RXIDLE) {
1861 printf("%s: receive ring overrun\n",
1862 device_xname(sc->sc_dev));
1863
1864 /* Get the receive process going again. */
1865 bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1867 bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 SIP_CR, CR_RXE);
1869 }
1870 }
1871
1872 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1873 #ifdef SIP_EVENT_COUNTERS
1874 if (isr & ISR_TXDESC)
1875 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1876 else if (isr & ISR_TXIDLE)
1877 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1878 #endif
1879
1880 /* Sweep up transmit descriptors. */
1881 sipcom_txintr(sc);
1882
1883 if (isr & ISR_TXURN) {
1884 u_int32_t thresh;
1885 int txfifo_size = (sc->sc_gigabit)
1886 ? DP83820_SIP_TXFIFO_SIZE
1887 : OTHER_SIP_TXFIFO_SIZE;
1888
1889 printf("%s: transmit FIFO underrun",
1890 device_xname(sc->sc_dev));
1891 thresh = sc->sc_tx_drain_thresh + 1;
1892 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1893 && (thresh * 32) <= (txfifo_size -
1894 (sc->sc_tx_fill_thresh * 32))) {
1895 printf("; increasing Tx drain "
1896 "threshold to %u bytes\n",
1897 thresh * 32);
1898 sc->sc_tx_drain_thresh = thresh;
1899 (void) sipcom_init(ifp);
1900 } else {
1901 (void) sipcom_init(ifp);
1902 printf("\n");
1903 }
1904 }
1905 }
1906
1907 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1908 if (isr & ISR_PAUSE_ST) {
1909 sc->sc_paused = 1;
1910 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1911 ifp->if_flags |= IFF_OACTIVE;
1912 }
1913 if (isr & ISR_PAUSE_END) {
1914 sc->sc_paused = 0;
1915 ifp->if_flags &= ~IFF_OACTIVE;
1916 }
1917 }
1918
1919 if (isr & ISR_HIBERR) {
1920 int want_init = 0;
1921
1922 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1923
1924 #define PRINTERR(bit, str) \
1925 do { \
1926 if ((isr & (bit)) != 0) { \
1927 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1928 printf("%s: %s\n", \
1929 device_xname(sc->sc_dev), str); \
1930 want_init = 1; \
1931 } \
1932 } while (/*CONSTCOND*/0)
1933
1934 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1935 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1936 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1937 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1938 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1939 /*
1940 * Ignore:
1941 * Tx reset complete
1942 * Rx reset complete
1943 */
1944 if (want_init)
1945 (void) sipcom_init(ifp);
1946 #undef PRINTERR
1947 }
1948 }
1949
1950 /* Re-enable interrupts. */
1951 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1952
1953 /* Try to get more packets going. */
1954 sipcom_start(ifp);
1955
1956 return (handled);
1957 }
1958
1959 /*
1960 * sip_txintr:
1961 *
1962 * Helper; handle transmit interrupts.
1963 */
1964 static void
1965 sipcom_txintr(struct sip_softc *sc)
1966 {
1967 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1968 struct sip_txsoft *txs;
1969 u_int32_t cmdsts;
1970
1971 if (sc->sc_paused == 0)
1972 ifp->if_flags &= ~IFF_OACTIVE;
1973
1974 /*
1975 * Go through our Tx list and free mbufs for those
1976 * frames which have been transmitted.
1977 */
1978 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1979 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1980 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1981
1982 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1983 if (cmdsts & CMDSTS_OWN)
1984 break;
1985
1986 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1987
1988 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1989
1990 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1991 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1992 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1993 m_freem(txs->txs_mbuf);
1994 txs->txs_mbuf = NULL;
1995
1996 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1997
1998 /*
1999 * Check for errors and collisions.
2000 */
2001 if (cmdsts &
2002 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2003 ifp->if_oerrors++;
2004 if (cmdsts & CMDSTS_Tx_EC)
2005 ifp->if_collisions += 16;
2006 if (ifp->if_flags & IFF_DEBUG) {
2007 if (cmdsts & CMDSTS_Tx_ED)
2008 printf("%s: excessive deferral\n",
2009 device_xname(sc->sc_dev));
2010 if (cmdsts & CMDSTS_Tx_EC)
2011 printf("%s: excessive collisions\n",
2012 device_xname(sc->sc_dev));
2013 }
2014 } else {
2015 /* Packet was transmitted successfully. */
2016 ifp->if_opackets++;
2017 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2018 }
2019 }
2020
2021 /*
2022 * If there are no more pending transmissions, cancel the watchdog
2023 * timer.
2024 */
2025 if (txs == NULL) {
2026 ifp->if_timer = 0;
2027 sc->sc_txwin = 0;
2028 }
2029 }
2030
2031 /*
2032 * gsip_rxintr:
2033 *
2034 * Helper; handle receive interrupts on gigabit parts.
2035 */
2036 static void
2037 gsip_rxintr(struct sip_softc *sc)
2038 {
2039 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2040 struct sip_rxsoft *rxs;
2041 struct mbuf *m;
2042 u_int32_t cmdsts, extsts;
2043 int i, len;
2044
2045 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2046 rxs = &sc->sc_rxsoft[i];
2047
2048 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2049
2050 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2051 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2052 len = CMDSTS_SIZE(sc, cmdsts);
2053
2054 /*
2055 * NOTE: OWN is set if owned by _consumer_. We're the
2056 * consumer of the receive ring, so if the bit is clear,
2057 * we have processed all of the packets.
2058 */
2059 if ((cmdsts & CMDSTS_OWN) == 0) {
2060 /*
2061 * We have processed all of the receive buffers.
2062 */
2063 break;
2064 }
2065
2066 if (__predict_false(sc->sc_rxdiscard)) {
2067 sip_init_rxdesc(sc, i);
2068 if ((cmdsts & CMDSTS_MORE) == 0) {
2069 /* Reset our state. */
2070 sc->sc_rxdiscard = 0;
2071 }
2072 continue;
2073 }
2074
2075 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2076 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2077
2078 m = rxs->rxs_mbuf;
2079
2080 /*
2081 * Add a new receive buffer to the ring.
2082 */
2083 if (sipcom_add_rxbuf(sc, i) != 0) {
2084 /*
2085 * Failed, throw away what we've done so
2086 * far, and discard the rest of the packet.
2087 */
2088 ifp->if_ierrors++;
2089 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2090 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2091 sip_init_rxdesc(sc, i);
2092 if (cmdsts & CMDSTS_MORE)
2093 sc->sc_rxdiscard = 1;
2094 if (sc->sc_rxhead != NULL)
2095 m_freem(sc->sc_rxhead);
2096 sip_rxchain_reset(sc);
2097 continue;
2098 }
2099
2100 sip_rxchain_link(sc, m);
2101
2102 m->m_len = len;
2103
2104 /*
2105 * If this is not the end of the packet, keep
2106 * looking.
2107 */
2108 if (cmdsts & CMDSTS_MORE) {
2109 sc->sc_rxlen += len;
2110 continue;
2111 }
2112
2113 /*
2114 * Okay, we have the entire packet now. The chip includes
2115 * the FCS, so we need to trim it.
2116 */
2117 m->m_len -= ETHER_CRC_LEN;
2118
2119 *sc->sc_rxtailp = NULL;
2120 len = m->m_len + sc->sc_rxlen;
2121 m = sc->sc_rxhead;
2122
2123 sip_rxchain_reset(sc);
2124
2125 /*
2126 * If an error occurred, update stats and drop the packet.
2127 */
2128 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2129 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2130 ifp->if_ierrors++;
2131 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2132 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2133 /* Receive overrun handled elsewhere. */
2134 printf("%s: receive descriptor error\n",
2135 device_xname(sc->sc_dev));
2136 }
2137 #define PRINTERR(bit, str) \
2138 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2139 (cmdsts & (bit)) != 0) \
2140 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2141 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2142 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2143 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2144 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2145 #undef PRINTERR
2146 m_freem(m);
2147 continue;
2148 }
2149
2150 /*
2151 * If the packet is small enough to fit in a
2152 * single header mbuf, allocate one and copy
2153 * the data into it. This greatly reduces
2154 * memory consumption when we receive lots
2155 * of small packets.
2156 */
2157 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2158 struct mbuf *nm;
2159 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2160 if (nm == NULL) {
2161 ifp->if_ierrors++;
2162 m_freem(m);
2163 continue;
2164 }
2165 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2166 nm->m_data += 2;
2167 nm->m_pkthdr.len = nm->m_len = len;
2168 m_copydata(m, 0, len, mtod(nm, void *));
2169 m_freem(m);
2170 m = nm;
2171 }
2172 #ifndef __NO_STRICT_ALIGNMENT
2173 else {
2174 /*
2175 * The DP83820's receive buffers must be 4-byte
2176 * aligned. But this means that the data after
2177 * the Ethernet header is misaligned. To compensate,
2178 * we have artificially shortened the buffer size
2179 * in the descriptor, and we do an overlapping copy
2180 * of the data two bytes further in (in the first
2181 * buffer of the chain only).
2182 */
2183 memmove(mtod(m, char *) + 2, mtod(m, void *),
2184 m->m_len);
2185 m->m_data += 2;
2186 }
2187 #endif /* ! __NO_STRICT_ALIGNMENT */
2188
2189 /*
2190 * If VLANs are enabled, VLAN packets have been unwrapped
2191 * for us. Associate the tag with the packet.
2192 */
2193
2194 /*
2195 * Again, byte swapping is tricky. Hardware provided
2196 * the tag in the network byte order, but extsts was
2197 * passed through le32toh() in the meantime. On a
2198 * big-endian machine, we need to swap it again. On a
2199 * little-endian machine, we need to convert from the
2200 * network to host byte order. This means that we must
2201 * swap it in any case, so unconditional swap instead
2202 * of htons() is used.
2203 */
2204 if ((extsts & EXTSTS_VPKT) != 0) {
2205 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2206 continue);
2207 }
2208
2209 /*
2210 * Set the incoming checksum information for the
2211 * packet.
2212 */
2213 if ((extsts & EXTSTS_IPPKT) != 0) {
2214 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2215 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2216 if (extsts & EXTSTS_Rx_IPERR)
2217 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2218 if (extsts & EXTSTS_TCPPKT) {
2219 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2220 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2221 if (extsts & EXTSTS_Rx_TCPERR)
2222 m->m_pkthdr.csum_flags |=
2223 M_CSUM_TCP_UDP_BAD;
2224 } else if (extsts & EXTSTS_UDPPKT) {
2225 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2226 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2227 if (extsts & EXTSTS_Rx_UDPERR)
2228 m->m_pkthdr.csum_flags |=
2229 M_CSUM_TCP_UDP_BAD;
2230 }
2231 }
2232
2233 ifp->if_ipackets++;
2234 m->m_pkthdr.rcvif = ifp;
2235 m->m_pkthdr.len = len;
2236
2237 /*
2238 * Pass this up to any BPF listeners, but only
2239 * pass if up the stack if it's for us.
2240 */
2241 bpf_mtap(ifp, m);
2242
2243 /* Pass it on. */
2244 (*ifp->if_input)(ifp, m);
2245 }
2246
2247 /* Update the receive pointer. */
2248 sc->sc_rxptr = i;
2249 }
2250
2251 /*
2252 * sip_rxintr:
2253 *
2254 * Helper; handle receive interrupts on 10/100 parts.
2255 */
2256 static void
2257 sip_rxintr(struct sip_softc *sc)
2258 {
2259 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2260 struct sip_rxsoft *rxs;
2261 struct mbuf *m;
2262 u_int32_t cmdsts;
2263 int i, len;
2264
2265 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2266 rxs = &sc->sc_rxsoft[i];
2267
2268 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2269
2270 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2271
2272 /*
2273 * NOTE: OWN is set if owned by _consumer_. We're the
2274 * consumer of the receive ring, so if the bit is clear,
2275 * we have processed all of the packets.
2276 */
2277 if ((cmdsts & CMDSTS_OWN) == 0) {
2278 /*
2279 * We have processed all of the receive buffers.
2280 */
2281 break;
2282 }
2283
2284 /*
2285 * If any collisions were seen on the wire, count one.
2286 */
2287 if (cmdsts & CMDSTS_Rx_COL)
2288 ifp->if_collisions++;
2289
2290 /*
2291 * If an error occurred, update stats, clear the status
2292 * word, and leave the packet buffer in place. It will
2293 * simply be reused the next time the ring comes around.
2294 */
2295 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2296 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2297 ifp->if_ierrors++;
2298 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2299 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2300 /* Receive overrun handled elsewhere. */
2301 printf("%s: receive descriptor error\n",
2302 device_xname(sc->sc_dev));
2303 }
2304 #define PRINTERR(bit, str) \
2305 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2306 (cmdsts & (bit)) != 0) \
2307 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2308 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2309 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2310 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2311 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2312 #undef PRINTERR
2313 sip_init_rxdesc(sc, i);
2314 continue;
2315 }
2316
2317 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2318 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2319
2320 /*
2321 * No errors; receive the packet. Note, the SiS 900
2322 * includes the CRC with every packet.
2323 */
2324 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2325
2326 #ifdef __NO_STRICT_ALIGNMENT
2327 /*
2328 * If the packet is small enough to fit in a
2329 * single header mbuf, allocate one and copy
2330 * the data into it. This greatly reduces
2331 * memory consumption when we receive lots
2332 * of small packets.
2333 *
2334 * Otherwise, we add a new buffer to the receive
2335 * chain. If this fails, we drop the packet and
2336 * recycle the old buffer.
2337 */
2338 if (sip_copy_small != 0 && len <= MHLEN) {
2339 MGETHDR(m, M_DONTWAIT, MT_DATA);
2340 if (m == NULL)
2341 goto dropit;
2342 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2343 memcpy(mtod(m, void *),
2344 mtod(rxs->rxs_mbuf, void *), len);
2345 sip_init_rxdesc(sc, i);
2346 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2347 rxs->rxs_dmamap->dm_mapsize,
2348 BUS_DMASYNC_PREREAD);
2349 } else {
2350 m = rxs->rxs_mbuf;
2351 if (sipcom_add_rxbuf(sc, i) != 0) {
2352 dropit:
2353 ifp->if_ierrors++;
2354 sip_init_rxdesc(sc, i);
2355 bus_dmamap_sync(sc->sc_dmat,
2356 rxs->rxs_dmamap, 0,
2357 rxs->rxs_dmamap->dm_mapsize,
2358 BUS_DMASYNC_PREREAD);
2359 continue;
2360 }
2361 }
2362 #else
2363 /*
2364 * The SiS 900's receive buffers must be 4-byte aligned.
2365 * But this means that the data after the Ethernet header
2366 * is misaligned. We must allocate a new buffer and
2367 * copy the data, shifted forward 2 bytes.
2368 */
2369 MGETHDR(m, M_DONTWAIT, MT_DATA);
2370 if (m == NULL) {
2371 dropit:
2372 ifp->if_ierrors++;
2373 sip_init_rxdesc(sc, i);
2374 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2375 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2376 continue;
2377 }
2378 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2379 if (len > (MHLEN - 2)) {
2380 MCLGET(m, M_DONTWAIT);
2381 if ((m->m_flags & M_EXT) == 0) {
2382 m_freem(m);
2383 goto dropit;
2384 }
2385 }
2386 m->m_data += 2;
2387
2388 /*
2389 * Note that we use clusters for incoming frames, so the
2390 * buffer is virtually contiguous.
2391 */
2392 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2393
2394 /* Allow the receive descriptor to continue using its mbuf. */
2395 sip_init_rxdesc(sc, i);
2396 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2397 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2398 #endif /* __NO_STRICT_ALIGNMENT */
2399
2400 ifp->if_ipackets++;
2401 m->m_pkthdr.rcvif = ifp;
2402 m->m_pkthdr.len = m->m_len = len;
2403
2404 /*
2405 * Pass this up to any BPF listeners, but only
2406 * pass if up the stack if it's for us.
2407 */
2408 bpf_mtap(ifp, m);
2409
2410 /* Pass it on. */
2411 (*ifp->if_input)(ifp, m);
2412 }
2413
2414 /* Update the receive pointer. */
2415 sc->sc_rxptr = i;
2416 }
2417
2418 /*
2419 * sip_tick:
2420 *
2421 * One second timer, used to tick the MII.
2422 */
2423 static void
2424 sipcom_tick(void *arg)
2425 {
2426 struct sip_softc *sc = arg;
2427 int s;
2428
2429 s = splnet();
2430 #ifdef SIP_EVENT_COUNTERS
2431 if (sc->sc_gigabit) {
2432 /* Read PAUSE related counts from MIB registers. */
2433 sc->sc_ev_rxpause.ev_count +=
2434 bus_space_read_4(sc->sc_st, sc->sc_sh,
2435 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2436 sc->sc_ev_txpause.ev_count +=
2437 bus_space_read_4(sc->sc_st, sc->sc_sh,
2438 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2439 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2440 }
2441 #endif /* SIP_EVENT_COUNTERS */
2442 mii_tick(&sc->sc_mii);
2443 splx(s);
2444
2445 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2446 }
2447
2448 /*
2449 * sip_reset:
2450 *
2451 * Perform a soft reset on the SiS 900.
2452 */
2453 static bool
2454 sipcom_reset(struct sip_softc *sc)
2455 {
2456 bus_space_tag_t st = sc->sc_st;
2457 bus_space_handle_t sh = sc->sc_sh;
2458 int i;
2459
2460 bus_space_write_4(st, sh, SIP_IER, 0);
2461 bus_space_write_4(st, sh, SIP_IMR, 0);
2462 bus_space_write_4(st, sh, SIP_RFCR, 0);
2463 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2464
2465 for (i = 0; i < SIP_TIMEOUT; i++) {
2466 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2467 break;
2468 delay(2);
2469 }
2470
2471 if (i == SIP_TIMEOUT) {
2472 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2473 return false;
2474 }
2475
2476 delay(1000);
2477
2478 if (sc->sc_gigabit) {
2479 /*
2480 * Set the general purpose I/O bits. Do it here in case we
2481 * need to have GPIO set up to talk to the media interface.
2482 */
2483 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2484 delay(1000);
2485 }
2486 return true;
2487 }
2488
2489 static void
2490 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2491 {
2492 u_int32_t reg;
2493 bus_space_tag_t st = sc->sc_st;
2494 bus_space_handle_t sh = sc->sc_sh;
2495 /*
2496 * Initialize the VLAN/IP receive control register.
2497 * We enable checksum computation on all incoming
2498 * packets, and do not reject packets w/ bad checksums.
2499 */
2500 reg = 0;
2501 if (capenable &
2502 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2503 reg |= VRCR_IPEN;
2504 if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 reg |= VRCR_VTDEN|VRCR_VTREN;
2506 bus_space_write_4(st, sh, SIP_VRCR, reg);
2507
2508 /*
2509 * Initialize the VLAN/IP transmit control register.
2510 * We enable outgoing checksum computation on a
2511 * per-packet basis.
2512 */
2513 reg = 0;
2514 if (capenable &
2515 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2516 reg |= VTCR_PPCHK;
2517 if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 reg |= VTCR_VPPTI;
2519 bus_space_write_4(st, sh, SIP_VTCR, reg);
2520
2521 /*
2522 * If we're using VLANs, initialize the VLAN data register.
2523 * To understand why we bswap the VLAN Ethertype, see section
2524 * 4.2.36 of the DP83820 manual.
2525 */
2526 if (VLAN_ATTACHED(&sc->sc_ethercom))
2527 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2528 }
2529
2530 /*
2531 * sip_init: [ ifnet interface function ]
2532 *
2533 * Initialize the interface. Must be called at splnet().
2534 */
2535 static int
2536 sipcom_init(struct ifnet *ifp)
2537 {
2538 struct sip_softc *sc = ifp->if_softc;
2539 bus_space_tag_t st = sc->sc_st;
2540 bus_space_handle_t sh = sc->sc_sh;
2541 struct sip_txsoft *txs;
2542 struct sip_rxsoft *rxs;
2543 struct sip_desc *sipd;
2544 int i, error = 0;
2545
2546 if (device_is_active(sc->sc_dev)) {
2547 /*
2548 * Cancel any pending I/O.
2549 */
2550 sipcom_stop(ifp, 0);
2551 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2552 !device_is_active(sc->sc_dev))
2553 return 0;
2554
2555 /*
2556 * Reset the chip to a known state.
2557 */
2558 if (!sipcom_reset(sc))
2559 return EBUSY;
2560
2561 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2562 /*
2563 * DP83815 manual, page 78:
2564 * 4.4 Recommended Registers Configuration
2565 * For optimum performance of the DP83815, version noted
2566 * as DP83815CVNG (SRR = 203h), the listed register
2567 * modifications must be followed in sequence...
2568 *
2569 * It's not clear if this should be 302h or 203h because that
2570 * chip name is listed as SRR 302h in the description of the
2571 * SRR register. However, my revision 302h DP83815 on the
2572 * Netgear FA311 purchased in 02/2001 needs these settings
2573 * to avoid tons of errors in AcceptPerfectMatch (non-
2574 * IFF_PROMISC) mode. I do not know if other revisions need
2575 * this set or not. [briggs -- 09 March 2001]
2576 *
2577 * Note that only the low-order 12 bits of 0xe4 are documented
2578 * and that this sets reserved bits in that register.
2579 */
2580 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2581
2582 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2583 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2584 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2585 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2586
2587 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2588 }
2589
2590 /*
2591 * Initialize the transmit descriptor ring.
2592 */
2593 for (i = 0; i < sc->sc_ntxdesc; i++) {
2594 sipd = &sc->sc_txdescs[i];
2595 memset(sipd, 0, sizeof(struct sip_desc));
2596 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2597 }
2598 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2599 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2600 sc->sc_txfree = sc->sc_ntxdesc;
2601 sc->sc_txnext = 0;
2602 sc->sc_txwin = 0;
2603
2604 /*
2605 * Initialize the transmit job descriptors.
2606 */
2607 SIMPLEQ_INIT(&sc->sc_txfreeq);
2608 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2609 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2610 txs = &sc->sc_txsoft[i];
2611 txs->txs_mbuf = NULL;
2612 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613 }
2614
2615 /*
2616 * Initialize the receive descriptor and receive job
2617 * descriptor rings.
2618 */
2619 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2620 rxs = &sc->sc_rxsoft[i];
2621 if (rxs->rxs_mbuf == NULL) {
2622 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2623 printf("%s: unable to allocate or map rx "
2624 "buffer %d, error = %d\n",
2625 device_xname(sc->sc_dev), i, error);
2626 /*
2627 * XXX Should attempt to run with fewer receive
2628 * XXX buffers instead of just failing.
2629 */
2630 sipcom_rxdrain(sc);
2631 goto out;
2632 }
2633 } else
2634 sip_init_rxdesc(sc, i);
2635 }
2636 sc->sc_rxptr = 0;
2637 sc->sc_rxdiscard = 0;
2638 sip_rxchain_reset(sc);
2639
2640 /*
2641 * Set the configuration register; it's already initialized
2642 * in sip_attach().
2643 */
2644 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2645
2646 /*
2647 * Initialize the prototype TXCFG register.
2648 */
2649 if (sc->sc_gigabit) {
2650 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2651 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2652 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2653 SIP_SIS900_REV(sc, SIS_REV_960) ||
2654 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2655 (sc->sc_cfg & CFG_EDBMASTEN)) {
2656 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2657 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2658 } else {
2659 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2660 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2661 }
2662
2663 sc->sc_txcfg |= TXCFG_ATP |
2664 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2665 sc->sc_tx_drain_thresh;
2666 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2667
2668 /*
2669 * Initialize the receive drain threshold if we have never
2670 * done so.
2671 */
2672 if (sc->sc_rx_drain_thresh == 0) {
2673 /*
2674 * XXX This value should be tuned. This is set to the
2675 * maximum of 248 bytes, and we may be able to improve
2676 * performance by decreasing it (although we should never
2677 * set this value lower than 2; 14 bytes are required to
2678 * filter the packet).
2679 */
2680 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2681 }
2682
2683 /*
2684 * Initialize the prototype RXCFG register.
2685 */
2686 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2687 /*
2688 * Accept long packets (including FCS) so we can handle
2689 * 802.1q-tagged frames and jumbo frames properly.
2690 */
2691 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2692 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2693 sc->sc_rxcfg |= RXCFG_ALP;
2694
2695 /*
2696 * Checksum offloading is disabled if the user selects an MTU
2697 * larger than 8109. (FreeBSD says 8152, but there is emperical
2698 * evidence that >8109 does not work on some boards, such as the
2699 * Planex GN-1000TE).
2700 */
2701 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2702 (ifp->if_capenable &
2703 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2704 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2705 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2706 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2707 "disabled.\n", device_xname(sc->sc_dev));
2708 ifp->if_capenable &=
2709 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2710 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2711 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2712 ifp->if_csum_flags_tx = 0;
2713 ifp->if_csum_flags_rx = 0;
2714 }
2715
2716 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2717
2718 if (sc->sc_gigabit)
2719 sipcom_dp83820_init(sc, ifp->if_capenable);
2720
2721 /*
2722 * Give the transmit and receive rings to the chip.
2723 */
2724 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2725 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2726
2727 /*
2728 * Initialize the interrupt mask.
2729 */
2730 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2731 sc->sc_bits.b_isr_sserr |
2732 sc->sc_bits.b_isr_rmabt |
2733 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2734 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2735 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2736
2737 /* Set up the receive filter. */
2738 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2739
2740 /*
2741 * Tune sc_rx_flow_thresh.
2742 * XXX "More than 8KB" is too short for jumbo frames.
2743 * XXX TODO: Threshold value should be user-settable.
2744 */
2745 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2746 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2747 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2748
2749 /*
2750 * Set the current media. Do this after initializing the prototype
2751 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2752 * control.
2753 */
2754 if ((error = ether_mediachange(ifp)) != 0)
2755 goto out;
2756
2757 /*
2758 * Set the interrupt hold-off timer to 100us.
2759 */
2760 if (sc->sc_gigabit)
2761 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2762
2763 /*
2764 * Enable interrupts.
2765 */
2766 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2767
2768 /*
2769 * Start the transmit and receive processes.
2770 */
2771 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2772
2773 /*
2774 * Start the one second MII clock.
2775 */
2776 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2777
2778 /*
2779 * ...all done!
2780 */
2781 ifp->if_flags |= IFF_RUNNING;
2782 ifp->if_flags &= ~IFF_OACTIVE;
2783 sc->sc_if_flags = ifp->if_flags;
2784 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2785 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2786 sc->sc_prev.if_capenable = ifp->if_capenable;
2787
2788 out:
2789 if (error)
2790 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2791 return (error);
2792 }
2793
2794 /*
2795 * sip_drain:
2796 *
2797 * Drain the receive queue.
2798 */
2799 static void
2800 sipcom_rxdrain(struct sip_softc *sc)
2801 {
2802 struct sip_rxsoft *rxs;
2803 int i;
2804
2805 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2806 rxs = &sc->sc_rxsoft[i];
2807 if (rxs->rxs_mbuf != NULL) {
2808 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2809 m_freem(rxs->rxs_mbuf);
2810 rxs->rxs_mbuf = NULL;
2811 }
2812 }
2813 }
2814
2815 /*
2816 * sip_stop: [ ifnet interface function ]
2817 *
2818 * Stop transmission on the interface.
2819 */
2820 static void
2821 sipcom_stop(struct ifnet *ifp, int disable)
2822 {
2823 struct sip_softc *sc = ifp->if_softc;
2824 bus_space_tag_t st = sc->sc_st;
2825 bus_space_handle_t sh = sc->sc_sh;
2826 struct sip_txsoft *txs;
2827 u_int32_t cmdsts = 0; /* DEBUG */
2828
2829 /*
2830 * Stop the one second clock.
2831 */
2832 callout_stop(&sc->sc_tick_ch);
2833
2834 /* Down the MII. */
2835 mii_down(&sc->sc_mii);
2836
2837 if (device_is_active(sc->sc_dev)) {
2838 /*
2839 * Disable interrupts.
2840 */
2841 bus_space_write_4(st, sh, SIP_IER, 0);
2842
2843 /*
2844 * Stop receiver and transmitter.
2845 */
2846 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2847 }
2848
2849 /*
2850 * Release any queued transmit buffers.
2851 */
2852 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2853 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2854 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2855 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2856 CMDSTS_INTR) == 0)
2857 printf("%s: sip_stop: last descriptor does not "
2858 "have INTR bit set\n", device_xname(sc->sc_dev));
2859 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2860 #ifdef DIAGNOSTIC
2861 if (txs->txs_mbuf == NULL) {
2862 printf("%s: dirty txsoft with no mbuf chain\n",
2863 device_xname(sc->sc_dev));
2864 panic("sip_stop");
2865 }
2866 #endif
2867 cmdsts |= /* DEBUG */
2868 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2869 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2870 m_freem(txs->txs_mbuf);
2871 txs->txs_mbuf = NULL;
2872 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2873 }
2874
2875 /*
2876 * Mark the interface down and cancel the watchdog timer.
2877 */
2878 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2879 ifp->if_timer = 0;
2880
2881 if (disable)
2882 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2883
2884 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2885 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2886 printf("%s: sip_stop: no INTR bits set in dirty tx "
2887 "descriptors\n", device_xname(sc->sc_dev));
2888 }
2889
2890 /*
2891 * sip_read_eeprom:
2892 *
2893 * Read data from the serial EEPROM.
2894 */
2895 static void
2896 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2897 u_int16_t *data)
2898 {
2899 bus_space_tag_t st = sc->sc_st;
2900 bus_space_handle_t sh = sc->sc_sh;
2901 u_int16_t reg;
2902 int i, x;
2903
2904 for (i = 0; i < wordcnt; i++) {
2905 /* Send CHIP SELECT. */
2906 reg = EROMAR_EECS;
2907 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2908
2909 /* Shift in the READ opcode. */
2910 for (x = 3; x > 0; x--) {
2911 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2912 reg |= EROMAR_EEDI;
2913 else
2914 reg &= ~EROMAR_EEDI;
2915 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916 bus_space_write_4(st, sh, SIP_EROMAR,
2917 reg | EROMAR_EESK);
2918 delay(4);
2919 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920 delay(4);
2921 }
2922
2923 /* Shift in address. */
2924 for (x = 6; x > 0; x--) {
2925 if ((word + i) & (1 << (x - 1)))
2926 reg |= EROMAR_EEDI;
2927 else
2928 reg &= ~EROMAR_EEDI;
2929 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2930 bus_space_write_4(st, sh, SIP_EROMAR,
2931 reg | EROMAR_EESK);
2932 delay(4);
2933 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 delay(4);
2935 }
2936
2937 /* Shift out data. */
2938 reg = EROMAR_EECS;
2939 data[i] = 0;
2940 for (x = 16; x > 0; x--) {
2941 bus_space_write_4(st, sh, SIP_EROMAR,
2942 reg | EROMAR_EESK);
2943 delay(4);
2944 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2945 data[i] |= (1 << (x - 1));
2946 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2947 delay(4);
2948 }
2949
2950 /* Clear CHIP SELECT. */
2951 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2952 delay(4);
2953 }
2954 }
2955
2956 /*
2957 * sipcom_add_rxbuf:
2958 *
2959 * Add a receive buffer to the indicated descriptor.
2960 */
2961 static int
2962 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2963 {
2964 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2965 struct mbuf *m;
2966 int error;
2967
2968 MGETHDR(m, M_DONTWAIT, MT_DATA);
2969 if (m == NULL)
2970 return (ENOBUFS);
2971 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2972
2973 MCLGET(m, M_DONTWAIT);
2974 if ((m->m_flags & M_EXT) == 0) {
2975 m_freem(m);
2976 return (ENOBUFS);
2977 }
2978
2979 /* XXX I don't believe this is necessary. --dyoung */
2980 if (sc->sc_gigabit)
2981 m->m_len = sc->sc_parm->p_rxbuf_len;
2982
2983 if (rxs->rxs_mbuf != NULL)
2984 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2985
2986 rxs->rxs_mbuf = m;
2987
2988 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2989 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2990 BUS_DMA_READ|BUS_DMA_NOWAIT);
2991 if (error) {
2992 printf("%s: can't load rx DMA map %d, error = %d\n",
2993 device_xname(sc->sc_dev), idx, error);
2994 panic("%s", __func__); /* XXX */
2995 }
2996
2997 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2998 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2999
3000 sip_init_rxdesc(sc, idx);
3001
3002 return (0);
3003 }
3004
3005 /*
3006 * sip_sis900_set_filter:
3007 *
3008 * Set up the receive filter.
3009 */
3010 static void
3011 sipcom_sis900_set_filter(struct sip_softc *sc)
3012 {
3013 bus_space_tag_t st = sc->sc_st;
3014 bus_space_handle_t sh = sc->sc_sh;
3015 struct ethercom *ec = &sc->sc_ethercom;
3016 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3017 struct ether_multi *enm;
3018 const u_int8_t *cp;
3019 struct ether_multistep step;
3020 u_int32_t crc, mchash[16];
3021
3022 /*
3023 * Initialize the prototype RFCR.
3024 */
3025 sc->sc_rfcr = RFCR_RFEN;
3026 if (ifp->if_flags & IFF_BROADCAST)
3027 sc->sc_rfcr |= RFCR_AAB;
3028 if (ifp->if_flags & IFF_PROMISC) {
3029 sc->sc_rfcr |= RFCR_AAP;
3030 goto allmulti;
3031 }
3032
3033 /*
3034 * Set up the multicast address filter by passing all multicast
3035 * addresses through a CRC generator, and then using the high-order
3036 * 6 bits as an index into the 128 bit multicast hash table (only
3037 * the lower 16 bits of each 32 bit multicast hash register are
3038 * valid). The high order bits select the register, while the
3039 * rest of the bits select the bit within the register.
3040 */
3041
3042 memset(mchash, 0, sizeof(mchash));
3043
3044 /*
3045 * SiS900 (at least SiS963) requires us to register the address of
3046 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3047 */
3048 crc = 0x0ed423f9;
3049
3050 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3051 SIP_SIS900_REV(sc, SIS_REV_960) ||
3052 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3053 /* Just want the 8 most significant bits. */
3054 crc >>= 24;
3055 } else {
3056 /* Just want the 7 most significant bits. */
3057 crc >>= 25;
3058 }
3059
3060 /* Set the corresponding bit in the hash table. */
3061 mchash[crc >> 4] |= 1 << (crc & 0xf);
3062
3063 ETHER_FIRST_MULTI(step, ec, enm);
3064 while (enm != NULL) {
3065 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3066 /*
3067 * We must listen to a range of multicast addresses.
3068 * For now, just accept all multicasts, rather than
3069 * trying to set only those filter bits needed to match
3070 * the range. (At this time, the only use of address
3071 * ranges is for IP multicast routing, for which the
3072 * range is big enough to require all bits set.)
3073 */
3074 goto allmulti;
3075 }
3076
3077 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3078
3079 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3080 SIP_SIS900_REV(sc, SIS_REV_960) ||
3081 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3082 /* Just want the 8 most significant bits. */
3083 crc >>= 24;
3084 } else {
3085 /* Just want the 7 most significant bits. */
3086 crc >>= 25;
3087 }
3088
3089 /* Set the corresponding bit in the hash table. */
3090 mchash[crc >> 4] |= 1 << (crc & 0xf);
3091
3092 ETHER_NEXT_MULTI(step, enm);
3093 }
3094
3095 ifp->if_flags &= ~IFF_ALLMULTI;
3096 goto setit;
3097
3098 allmulti:
3099 ifp->if_flags |= IFF_ALLMULTI;
3100 sc->sc_rfcr |= RFCR_AAM;
3101
3102 setit:
3103 #define FILTER_EMIT(addr, data) \
3104 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3105 delay(1); \
3106 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3107 delay(1)
3108
3109 /*
3110 * Disable receive filter, and program the node address.
3111 */
3112 cp = CLLADDR(ifp->if_sadl);
3113 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3114 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3115 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3116
3117 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3118 /*
3119 * Program the multicast hash table.
3120 */
3121 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3122 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3123 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3124 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3125 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3126 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3127 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3128 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3129 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3130 SIP_SIS900_REV(sc, SIS_REV_960) ||
3131 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3132 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3133 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3134 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3135 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3136 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3137 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3138 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3139 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3140 }
3141 }
3142 #undef FILTER_EMIT
3143
3144 /*
3145 * Re-enable the receiver filter.
3146 */
3147 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3148 }
3149
3150 /*
3151 * sip_dp83815_set_filter:
3152 *
3153 * Set up the receive filter.
3154 */
3155 static void
3156 sipcom_dp83815_set_filter(struct sip_softc *sc)
3157 {
3158 bus_space_tag_t st = sc->sc_st;
3159 bus_space_handle_t sh = sc->sc_sh;
3160 struct ethercom *ec = &sc->sc_ethercom;
3161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3162 struct ether_multi *enm;
3163 const u_int8_t *cp;
3164 struct ether_multistep step;
3165 u_int32_t crc, hash, slot, bit;
3166 #define MCHASH_NWORDS_83820 128
3167 #define MCHASH_NWORDS_83815 32
3168 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3169 u_int16_t mchash[MCHASH_NWORDS];
3170 int i;
3171
3172 /*
3173 * Initialize the prototype RFCR.
3174 * Enable the receive filter, and accept on
3175 * Perfect (destination address) Match
3176 * If IFF_BROADCAST, also accept all broadcast packets.
3177 * If IFF_PROMISC, accept all unicast packets (and later, set
3178 * IFF_ALLMULTI and accept all multicast, too).
3179 */
3180 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3181 if (ifp->if_flags & IFF_BROADCAST)
3182 sc->sc_rfcr |= RFCR_AAB;
3183 if (ifp->if_flags & IFF_PROMISC) {
3184 sc->sc_rfcr |= RFCR_AAP;
3185 goto allmulti;
3186 }
3187
3188 /*
3189 * Set up the DP83820/DP83815 multicast address filter by
3190 * passing all multicast addresses through a CRC generator,
3191 * and then using the high-order 11/9 bits as an index into
3192 * the 2048/512 bit multicast hash table. The high-order
3193 * 7/5 bits select the slot, while the low-order 4 bits
3194 * select the bit within the slot. Note that only the low
3195 * 16-bits of each filter word are used, and there are
3196 * 128/32 filter words.
3197 */
3198
3199 memset(mchash, 0, sizeof(mchash));
3200
3201 ifp->if_flags &= ~IFF_ALLMULTI;
3202 ETHER_FIRST_MULTI(step, ec, enm);
3203 if (enm == NULL)
3204 goto setit;
3205 while (enm != NULL) {
3206 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3207 /*
3208 * We must listen to a range of multicast addresses.
3209 * For now, just accept all multicasts, rather than
3210 * trying to set only those filter bits needed to match
3211 * the range. (At this time, the only use of address
3212 * ranges is for IP multicast routing, for which the
3213 * range is big enough to require all bits set.)
3214 */
3215 goto allmulti;
3216 }
3217
3218 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3219
3220 if (sc->sc_gigabit) {
3221 /* Just want the 11 most significant bits. */
3222 hash = crc >> 21;
3223 } else {
3224 /* Just want the 9 most significant bits. */
3225 hash = crc >> 23;
3226 }
3227
3228 slot = hash >> 4;
3229 bit = hash & 0xf;
3230
3231 /* Set the corresponding bit in the hash table. */
3232 mchash[slot] |= 1 << bit;
3233
3234 ETHER_NEXT_MULTI(step, enm);
3235 }
3236 sc->sc_rfcr |= RFCR_MHEN;
3237 goto setit;
3238
3239 allmulti:
3240 ifp->if_flags |= IFF_ALLMULTI;
3241 sc->sc_rfcr |= RFCR_AAM;
3242
3243 setit:
3244 #define FILTER_EMIT(addr, data) \
3245 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3246 delay(1); \
3247 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3248 delay(1)
3249
3250 /*
3251 * Disable receive filter, and program the node address.
3252 */
3253 cp = CLLADDR(ifp->if_sadl);
3254 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3255 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3256 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3257
3258 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3259 int nwords =
3260 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3261 /*
3262 * Program the multicast hash table.
3263 */
3264 for (i = 0; i < nwords; i++) {
3265 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3266 }
3267 }
3268 #undef FILTER_EMIT
3269 #undef MCHASH_NWORDS
3270 #undef MCHASH_NWORDS_83815
3271 #undef MCHASH_NWORDS_83820
3272
3273 /*
3274 * Re-enable the receiver filter.
3275 */
3276 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3277 }
3278
3279 /*
3280 * sip_dp83820_mii_readreg: [mii interface function]
3281 *
3282 * Read a PHY register on the MII of the DP83820.
3283 */
3284 static int
3285 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3286 {
3287 struct sip_softc *sc = device_private(self);
3288
3289 if (sc->sc_cfg & CFG_TBI_EN) {
3290 bus_addr_t tbireg;
3291 int rv;
3292
3293 if (phy != 0)
3294 return (0);
3295
3296 switch (reg) {
3297 case MII_BMCR: tbireg = SIP_TBICR; break;
3298 case MII_BMSR: tbireg = SIP_TBISR; break;
3299 case MII_ANAR: tbireg = SIP_TANAR; break;
3300 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3301 case MII_ANER: tbireg = SIP_TANER; break;
3302 case MII_EXTSR:
3303 /*
3304 * Don't even bother reading the TESR register.
3305 * The manual documents that the device has
3306 * 1000baseX full/half capability, but the
3307 * register itself seems read back 0 on some
3308 * boards. Just hard-code the result.
3309 */
3310 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3311
3312 default:
3313 return (0);
3314 }
3315
3316 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3317 if (tbireg == SIP_TBISR) {
3318 /* LINK and ACOMP are switched! */
3319 int val = rv;
3320
3321 rv = 0;
3322 if (val & TBISR_MR_LINK_STATUS)
3323 rv |= BMSR_LINK;
3324 if (val & TBISR_MR_AN_COMPLETE)
3325 rv |= BMSR_ACOMP;
3326
3327 /*
3328 * The manual claims this register reads back 0
3329 * on hard and soft reset. But we want to let
3330 * the gentbi driver know that we support auto-
3331 * negotiation, so hard-code this bit in the
3332 * result.
3333 */
3334 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3335 }
3336
3337 return (rv);
3338 }
3339
3340 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3341 }
3342
3343 /*
3344 * sip_dp83820_mii_writereg: [mii interface function]
3345 *
3346 * Write a PHY register on the MII of the DP83820.
3347 */
3348 static void
3349 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3350 {
3351 struct sip_softc *sc = device_private(self);
3352
3353 if (sc->sc_cfg & CFG_TBI_EN) {
3354 bus_addr_t tbireg;
3355
3356 if (phy != 0)
3357 return;
3358
3359 switch (reg) {
3360 case MII_BMCR: tbireg = SIP_TBICR; break;
3361 case MII_ANAR: tbireg = SIP_TANAR; break;
3362 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3363 default:
3364 return;
3365 }
3366
3367 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3368 return;
3369 }
3370
3371 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3372 }
3373
3374 /*
3375 * sip_dp83820_mii_statchg: [mii interface function]
3376 *
3377 * Callback from MII layer when media changes.
3378 */
3379 static void
3380 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3381 {
3382 struct sip_softc *sc = ifp->if_softc;
3383 struct mii_data *mii = &sc->sc_mii;
3384 u_int32_t cfg, pcr;
3385
3386 /*
3387 * Get flow control negotiation result.
3388 */
3389 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3390 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3391 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3392 mii->mii_media_active &= ~IFM_ETH_FMASK;
3393 }
3394
3395 /*
3396 * Update TXCFG for full-duplex operation.
3397 */
3398 if ((mii->mii_media_active & IFM_FDX) != 0)
3399 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3400 else
3401 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3402
3403 /*
3404 * Update RXCFG for full-duplex or loopback.
3405 */
3406 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3407 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3408 sc->sc_rxcfg |= RXCFG_ATX;
3409 else
3410 sc->sc_rxcfg &= ~RXCFG_ATX;
3411
3412 /*
3413 * Update CFG for MII/GMII.
3414 */
3415 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3416 cfg = sc->sc_cfg | CFG_MODE_1000;
3417 else
3418 cfg = sc->sc_cfg;
3419
3420 /*
3421 * 802.3x flow control.
3422 */
3423 pcr = 0;
3424 if (sc->sc_flowflags & IFM_FLOW) {
3425 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3426 pcr |= sc->sc_rx_flow_thresh;
3427 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3428 pcr |= PCR_PSEN | PCR_PS_MCAST;
3429 }
3430
3431 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3432 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3433 sc->sc_txcfg);
3434 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3435 sc->sc_rxcfg);
3436 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3437 }
3438
3439 /*
3440 * sip_mii_bitbang_read: [mii bit-bang interface function]
3441 *
3442 * Read the MII serial port for the MII bit-bang module.
3443 */
3444 static u_int32_t
3445 sipcom_mii_bitbang_read(device_t self)
3446 {
3447 struct sip_softc *sc = device_private(self);
3448
3449 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3450 }
3451
3452 /*
3453 * sip_mii_bitbang_write: [mii big-bang interface function]
3454 *
3455 * Write the MII serial port for the MII bit-bang module.
3456 */
3457 static void
3458 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3459 {
3460 struct sip_softc *sc = device_private(self);
3461
3462 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3463 }
3464
3465 /*
3466 * sip_sis900_mii_readreg: [mii interface function]
3467 *
3468 * Read a PHY register on the MII.
3469 */
3470 static int
3471 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3472 {
3473 struct sip_softc *sc = device_private(self);
3474 u_int32_t enphy;
3475
3476 /*
3477 * The PHY of recent SiS chipsets is accessed through bitbang
3478 * operations.
3479 */
3480 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3481 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3482 phy, reg);
3483
3484 #ifndef SIS900_MII_RESTRICT
3485 /*
3486 * The SiS 900 has only an internal PHY on the MII. Only allow
3487 * MII address 0.
3488 */
3489 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3490 return (0);
3491 #endif
3492
3493 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3494 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3495 ENPHY_RWCMD | ENPHY_ACCESS);
3496 do {
3497 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3498 } while (enphy & ENPHY_ACCESS);
3499 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3500 }
3501
3502 /*
3503 * sip_sis900_mii_writereg: [mii interface function]
3504 *
3505 * Write a PHY register on the MII.
3506 */
3507 static void
3508 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3509 {
3510 struct sip_softc *sc = device_private(self);
3511 u_int32_t enphy;
3512
3513 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3514 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3515 phy, reg, val);
3516 return;
3517 }
3518
3519 #ifndef SIS900_MII_RESTRICT
3520 /*
3521 * The SiS 900 has only an internal PHY on the MII. Only allow
3522 * MII address 0.
3523 */
3524 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3525 return;
3526 #endif
3527
3528 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3529 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3530 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3531 do {
3532 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3533 } while (enphy & ENPHY_ACCESS);
3534 }
3535
3536 /*
3537 * sip_sis900_mii_statchg: [mii interface function]
3538 *
3539 * Callback from MII layer when media changes.
3540 */
3541 static void
3542 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3543 {
3544 struct sip_softc *sc = ifp->if_softc;
3545 struct mii_data *mii = &sc->sc_mii;
3546 u_int32_t flowctl;
3547
3548 /*
3549 * Get flow control negotiation result.
3550 */
3551 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3552 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3553 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3554 mii->mii_media_active &= ~IFM_ETH_FMASK;
3555 }
3556
3557 /*
3558 * Update TXCFG for full-duplex operation.
3559 */
3560 if ((mii->mii_media_active & IFM_FDX) != 0)
3561 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3562 else
3563 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3564
3565 /*
3566 * Update RXCFG for full-duplex or loopback.
3567 */
3568 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3569 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3570 sc->sc_rxcfg |= RXCFG_ATX;
3571 else
3572 sc->sc_rxcfg &= ~RXCFG_ATX;
3573
3574 /*
3575 * Update IMR for use of 802.3x flow control.
3576 */
3577 if (sc->sc_flowflags & IFM_FLOW) {
3578 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3579 flowctl = FLOWCTL_FLOWEN;
3580 } else {
3581 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3582 flowctl = 0;
3583 }
3584
3585 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3586 sc->sc_txcfg);
3587 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3588 sc->sc_rxcfg);
3589 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3590 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3591 }
3592
3593 /*
3594 * sip_dp83815_mii_readreg: [mii interface function]
3595 *
3596 * Read a PHY register on the MII.
3597 */
3598 static int
3599 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3600 {
3601 struct sip_softc *sc = device_private(self);
3602 u_int32_t val;
3603
3604 /*
3605 * The DP83815 only has an internal PHY. Only allow
3606 * MII address 0.
3607 */
3608 if (phy != 0)
3609 return (0);
3610
3611 /*
3612 * Apparently, after a reset, the DP83815 can take a while
3613 * to respond. During this recovery period, the BMSR returns
3614 * a value of 0. Catch this -- it's not supposed to happen
3615 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3616 * PHY to come back to life.
3617 *
3618 * This works out because the BMSR is the first register
3619 * read during the PHY probe process.
3620 */
3621 do {
3622 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3623 } while (reg == MII_BMSR && val == 0);
3624
3625 return (val & 0xffff);
3626 }
3627
3628 /*
3629 * sip_dp83815_mii_writereg: [mii interface function]
3630 *
3631 * Write a PHY register to the MII.
3632 */
3633 static void
3634 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3635 {
3636 struct sip_softc *sc = device_private(self);
3637
3638 /*
3639 * The DP83815 only has an internal PHY. Only allow
3640 * MII address 0.
3641 */
3642 if (phy != 0)
3643 return;
3644
3645 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3646 }
3647
3648 /*
3649 * sip_dp83815_mii_statchg: [mii interface function]
3650 *
3651 * Callback from MII layer when media changes.
3652 */
3653 static void
3654 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3655 {
3656 struct sip_softc *sc = ifp->if_softc;
3657
3658 /*
3659 * Update TXCFG for full-duplex operation.
3660 */
3661 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3662 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3663 else
3664 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3665
3666 /*
3667 * Update RXCFG for full-duplex or loopback.
3668 */
3669 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3670 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3671 sc->sc_rxcfg |= RXCFG_ATX;
3672 else
3673 sc->sc_rxcfg &= ~RXCFG_ATX;
3674
3675 /*
3676 * XXX 802.3x flow control.
3677 */
3678
3679 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3680 sc->sc_txcfg);
3681 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3682 sc->sc_rxcfg);
3683
3684 /*
3685 * Some DP83815s experience problems when used with short
3686 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3687 * sequence adjusts the DSP's signal attenuation to fix the
3688 * problem.
3689 */
3690 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3691 uint32_t reg;
3692
3693 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3694
3695 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3696 reg &= 0x0fff;
3697 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3698 delay(100);
3699 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3700 reg &= 0x00ff;
3701 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3703 0x00e8);
3704 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3705 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3706 reg | 0x20);
3707 }
3708
3709 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3710 }
3711 }
3712
3713 static void
3714 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3715 const struct pci_attach_args *pa, u_int8_t *enaddr)
3716 {
3717 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3718 u_int8_t cksum, *e, match;
3719 int i;
3720
3721 /*
3722 * EEPROM data format for the DP83820 can be found in
3723 * the DP83820 manual, section 4.2.4.
3724 */
3725
3726 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3727
3728 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3729 match = ~(match - 1);
3730
3731 cksum = 0x55;
3732 e = (u_int8_t *) eeprom_data;
3733 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3734 cksum += *e++;
3735
3736 if (cksum != match)
3737 printf("%s: Checksum (%x) mismatch (%x)",
3738 device_xname(sc->sc_dev), cksum, match);
3739
3740 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3741 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3742 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3743 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3744 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3745 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3746 }
3747
3748 static void
3749 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3750 {
3751 int i;
3752
3753 /*
3754 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3755 * a reason, but I don't know it.
3756 */
3757 for (i = 0; i < 10; i++)
3758 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3759 }
3760
3761 static void
3762 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3763 const struct pci_attach_args *pa, u_int8_t *enaddr)
3764 {
3765 u_int16_t myea[ETHER_ADDR_LEN / 2];
3766
3767 switch (sc->sc_rev) {
3768 case SIS_REV_630S:
3769 case SIS_REV_630E:
3770 case SIS_REV_630EA1:
3771 case SIS_REV_630ET:
3772 case SIS_REV_635:
3773 /*
3774 * The MAC address for the on-board Ethernet of
3775 * the SiS 630 chipset is in the NVRAM. Kick
3776 * the chip into re-loading it from NVRAM, and
3777 * read the MAC address out of the filter registers.
3778 */
3779 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3780
3781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3782 RFCR_RFADDR_NODE0);
3783 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3784 0xffff;
3785
3786 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3787 RFCR_RFADDR_NODE2);
3788 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3789 0xffff;
3790
3791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3792 RFCR_RFADDR_NODE4);
3793 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3794 0xffff;
3795 break;
3796
3797 case SIS_REV_960:
3798 {
3799 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3800 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3801
3802 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3803 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3804
3805 int waittime, i;
3806
3807 /* Allow to read EEPROM from LAN. It is shared
3808 * between a 1394 controller and the NIC and each
3809 * time we access it, we need to set SIS_EECMD_REQ.
3810 */
3811 SIS_SET_EROMAR(sc, EROMAR_REQ);
3812
3813 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3814 /* Force EEPROM to idle state. */
3815
3816 /*
3817 * XXX-cube This is ugly. I'll look for docs about it.
3818 */
3819 SIS_SET_EROMAR(sc, EROMAR_EECS);
3820 sipcom_sis900_eeprom_delay(sc);
3821 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3822 SIS_SET_EROMAR(sc, EROMAR_EESK);
3823 sipcom_sis900_eeprom_delay(sc);
3824 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3825 sipcom_sis900_eeprom_delay(sc);
3826 }
3827 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3828 sipcom_sis900_eeprom_delay(sc);
3829 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3830
3831 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3832 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3833 sizeof(myea) / sizeof(myea[0]), myea);
3834 break;
3835 }
3836 DELAY(1);
3837 }
3838
3839 /*
3840 * Set SIS_EECTL_CLK to high, so a other master
3841 * can operate on the i2c bus.
3842 */
3843 SIS_SET_EROMAR(sc, EROMAR_EESK);
3844
3845 /* Refuse EEPROM access by LAN */
3846 SIS_SET_EROMAR(sc, EROMAR_DONE);
3847 } break;
3848
3849 default:
3850 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3851 sizeof(myea) / sizeof(myea[0]), myea);
3852 }
3853
3854 enaddr[0] = myea[0] & 0xff;
3855 enaddr[1] = myea[0] >> 8;
3856 enaddr[2] = myea[1] & 0xff;
3857 enaddr[3] = myea[1] >> 8;
3858 enaddr[4] = myea[2] & 0xff;
3859 enaddr[5] = myea[2] >> 8;
3860 }
3861
3862 /* Table and macro to bit-reverse an octet. */
3863 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3864 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3865
3866 static void
3867 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3868 const struct pci_attach_args *pa, u_int8_t *enaddr)
3869 {
3870 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3871 u_int8_t cksum, *e, match;
3872 int i;
3873
3874 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3875 sizeof(eeprom_data[0]), eeprom_data);
3876
3877 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3878 match = ~(match - 1);
3879
3880 cksum = 0x55;
3881 e = (u_int8_t *) eeprom_data;
3882 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3883 cksum += *e++;
3884 }
3885 if (cksum != match) {
3886 printf("%s: Checksum (%x) mismatch (%x)",
3887 device_xname(sc->sc_dev), cksum, match);
3888 }
3889
3890 /*
3891 * Unrolled because it makes slightly more sense this way.
3892 * The DP83815 stores the MAC address in bit 0 of word 6
3893 * through bit 15 of word 8.
3894 */
3895 ea = &eeprom_data[6];
3896 enaddr[0] = ((*ea & 0x1) << 7);
3897 ea++;
3898 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3899 enaddr[1] = ((*ea & 0x1FE) >> 1);
3900 enaddr[2] = ((*ea & 0x1) << 7);
3901 ea++;
3902 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3903 enaddr[3] = ((*ea & 0x1FE) >> 1);
3904 enaddr[4] = ((*ea & 0x1) << 7);
3905 ea++;
3906 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3907 enaddr[5] = ((*ea & 0x1FE) >> 1);
3908
3909 /*
3910 * In case that's not weird enough, we also need to reverse
3911 * the bits in each byte. This all actually makes more sense
3912 * if you think about the EEPROM storage as an array of bits
3913 * being shifted into bytes, but that's not how we're looking
3914 * at it here...
3915 */
3916 for (i = 0; i < 6 ;i++)
3917 enaddr[i] = bbr(enaddr[i]);
3918 }
3919
3920 /*
3921 * sip_mediastatus: [ifmedia interface function]
3922 *
3923 * Get the current interface media status.
3924 */
3925 static void
3926 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3927 {
3928 struct sip_softc *sc = ifp->if_softc;
3929
3930 if (!device_is_active(sc->sc_dev)) {
3931 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3932 ifmr->ifm_status = 0;
3933 return;
3934 }
3935 ether_mediastatus(ifp, ifmr);
3936 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3937 sc->sc_flowflags;
3938 }
3939