if_sip.c revision 1.154 1 /* $NetBSD: if_sip.c,v 1.154 2012/07/22 14:33:03 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.154 2012/07/22 14:33:03 matt Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rnd.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA-621 */
741 { 0x1385, 0x621a },
742
743 /* SMC EZ Card */
744 { 0x10b8, 0x9462 },
745
746 { 0, 0}
747 };
748 pcireg_t subsys;
749 int i;
750
751 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
752
753 for (i = 0; card64[i].c64_vendor != 0; i++) {
754 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
755 PCI_PRODUCT(subsys) == card64[i].c64_product)
756 return (1);
757 }
758
759 return (0);
760 }
761
762 static int
763 sipcom_match(device_t parent, cfdata_t cf, void *aux)
764 {
765 struct pci_attach_args *pa = aux;
766
767 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
768 return 1;
769
770 return 0;
771 }
772
773 static void
774 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
775 {
776 u_int32_t reg;
777 int i;
778
779 /*
780 * Cause the chip to load configuration data from the EEPROM.
781 */
782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
783 for (i = 0; i < 10000; i++) {
784 delay(10);
785 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
786 PTSCR_EELOAD_EN) == 0)
787 break;
788 }
789 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 PTSCR_EELOAD_EN) {
791 printf("%s: timeout loading configuration from EEPROM\n",
792 device_xname(sc->sc_dev));
793 return;
794 }
795
796 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
797
798 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
799 if (reg & CFG_PCI64_DET) {
800 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
801 /*
802 * Check to see if this card is 64-bit. If so, enable 64-bit
803 * data transfers.
804 *
805 * We can't use the DATA64_EN bit in the EEPROM, because
806 * vendors of 32-bit cards fail to clear that bit in many
807 * cases (yet the card still detects that it's in a 64-bit
808 * slot; go figure).
809 */
810 if (sipcom_check_64bit(pa)) {
811 sc->sc_cfg |= CFG_DATA64_EN;
812 printf(", using 64-bit data transfers");
813 }
814 printf("\n");
815 }
816
817 /*
818 * XXX Need some PCI flags indicating support for
819 * XXX 64-bit addressing.
820 */
821 #if 0
822 if (reg & CFG_M64ADDR)
823 sc->sc_cfg |= CFG_M64ADDR;
824 if (reg & CFG_T64ADDR)
825 sc->sc_cfg |= CFG_T64ADDR;
826 #endif
827
828 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
829 const char *sep = "";
830 printf("%s: using ", device_xname(sc->sc_dev));
831 if (reg & CFG_EXT_125) {
832 sc->sc_cfg |= CFG_EXT_125;
833 printf("%s125MHz clock", sep);
834 sep = ", ";
835 }
836 if (reg & CFG_TBI_EN) {
837 sc->sc_cfg |= CFG_TBI_EN;
838 printf("%sten-bit interface", sep);
839 sep = ", ";
840 }
841 printf("\n");
842 }
843 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
844 (reg & CFG_MRM_DIS) != 0)
845 sc->sc_cfg |= CFG_MRM_DIS;
846 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
847 (reg & CFG_MWI_DIS) != 0)
848 sc->sc_cfg |= CFG_MWI_DIS;
849
850 /*
851 * Use the extended descriptor format on the DP83820. This
852 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
853 * checksumming.
854 */
855 sc->sc_cfg |= CFG_EXTSTS_EN;
856 }
857
858 static int
859 sipcom_detach(device_t self, int flags)
860 {
861 int s;
862
863 s = splnet();
864 sipcom_do_detach(self, SIP_ATTACH_FIN);
865 splx(s);
866
867 return 0;
868 }
869
870 static void
871 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
872 {
873 int i;
874 struct sip_softc *sc = device_private(self);
875 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
876
877 /*
878 * Free any resources we've allocated during attach.
879 * Do this in reverse order and fall through.
880 */
881 switch (stage) {
882 case SIP_ATTACH_FIN:
883 sipcom_stop(ifp, 1);
884 pmf_device_deregister(self);
885 #ifdef SIP_EVENT_COUNTERS
886 /*
887 * Attach event counters.
888 */
889 evcnt_detach(&sc->sc_ev_txforceintr);
890 evcnt_detach(&sc->sc_ev_txdstall);
891 evcnt_detach(&sc->sc_ev_txsstall);
892 evcnt_detach(&sc->sc_ev_hiberr);
893 evcnt_detach(&sc->sc_ev_rxintr);
894 evcnt_detach(&sc->sc_ev_txiintr);
895 evcnt_detach(&sc->sc_ev_txdintr);
896 if (!sc->sc_gigabit) {
897 evcnt_detach(&sc->sc_ev_rxpause);
898 } else {
899 evcnt_detach(&sc->sc_ev_txudpsum);
900 evcnt_detach(&sc->sc_ev_txtcpsum);
901 evcnt_detach(&sc->sc_ev_txipsum);
902 evcnt_detach(&sc->sc_ev_rxudpsum);
903 evcnt_detach(&sc->sc_ev_rxtcpsum);
904 evcnt_detach(&sc->sc_ev_rxipsum);
905 evcnt_detach(&sc->sc_ev_txpause);
906 evcnt_detach(&sc->sc_ev_rxpause);
907 }
908 #endif /* SIP_EVENT_COUNTERS */
909
910 rnd_detach_source(&sc->rnd_source);
911
912 ether_ifdetach(ifp);
913 if_detach(ifp);
914 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
915
916 /*FALLTHROUGH*/
917 case SIP_ATTACH_CREATE_RXMAP:
918 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
919 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->sc_rxsoft[i].rxs_dmamap);
922 }
923 /*FALLTHROUGH*/
924 case SIP_ATTACH_CREATE_TXMAP:
925 for (i = 0; i < SIP_TXQUEUELEN; i++) {
926 if (sc->sc_txsoft[i].txs_dmamap != NULL)
927 bus_dmamap_destroy(sc->sc_dmat,
928 sc->sc_txsoft[i].txs_dmamap);
929 }
930 /*FALLTHROUGH*/
931 case SIP_ATTACH_LOAD_MAP:
932 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_CREATE_MAP:
935 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_MAP_MEM:
938 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
939 sizeof(struct sip_control_data));
940 /*FALLTHROUGH*/
941 case SIP_ATTACH_ALLOC_MEM:
942 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
943 /* FALLTHROUGH*/
944 case SIP_ATTACH_INTR:
945 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_MAP:
948 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
949 break;
950 default:
951 break;
952 }
953 return;
954 }
955
956 static bool
957 sipcom_resume(device_t self, const pmf_qual_t *qual)
958 {
959 struct sip_softc *sc = device_private(self);
960
961 return sipcom_reset(sc);
962 }
963
964 static bool
965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
966 {
967 struct sip_softc *sc = device_private(self);
968
969 sipcom_rxdrain(sc);
970 return true;
971 }
972
973 static void
974 sipcom_attach(device_t parent, device_t self, void *aux)
975 {
976 struct sip_softc *sc = device_private(self);
977 struct pci_attach_args *pa = aux;
978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 pci_chipset_tag_t pc = pa->pa_pc;
980 pci_intr_handle_t ih;
981 const char *intrstr = NULL;
982 bus_space_tag_t iot, memt;
983 bus_space_handle_t ioh, memh;
984 bus_size_t iosz, memsz;
985 int ioh_valid, memh_valid;
986 int i, rseg, error;
987 const struct sip_product *sip;
988 u_int8_t enaddr[ETHER_ADDR_LEN];
989 pcireg_t csr;
990 pcireg_t memtype;
991 bus_size_t tx_dmamap_size;
992 int ntxsegs_alloc;
993 cfdata_t cf = device_cfdata(self);
994
995 callout_init(&sc->sc_tick_ch, 0);
996
997 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
998 if (sip == NULL) {
999 printf("\n");
1000 panic("%s: impossible", __func__);
1001 }
1002 sc->sc_dev = self;
1003 sc->sc_gigabit = sip->sip_gigabit;
1004 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1005 sc->sc_pc = pc;
1006
1007 if (sc->sc_gigabit) {
1008 sc->sc_rxintr = gsip_rxintr;
1009 sc->sc_parm = &gsip_parm;
1010 } else {
1011 sc->sc_rxintr = sip_rxintr;
1012 sc->sc_parm = &sip_parm;
1013 }
1014 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1015 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1016 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1017 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1018 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1019
1020 sc->sc_rev = PCI_REVISION(pa->pa_class);
1021
1022 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1023
1024 sc->sc_model = sip;
1025
1026 /*
1027 * XXX Work-around broken PXE firmware on some boards.
1028 *
1029 * The DP83815 shares an address decoder with the MEM BAR
1030 * and the ROM BAR. Make sure the ROM BAR is disabled,
1031 * so that memory mapped access works.
1032 */
1033 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1034 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1035 ~PCI_MAPREG_ROM_ENABLE);
1036
1037 /*
1038 * Map the device.
1039 */
1040 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1041 PCI_MAPREG_TYPE_IO, 0,
1042 &iot, &ioh, NULL, &iosz) == 0);
1043 if (sc->sc_gigabit) {
1044 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1045 switch (memtype) {
1046 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1047 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1048 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1049 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1050 break;
1051 default:
1052 memh_valid = 0;
1053 }
1054 } else {
1055 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1056 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1057 &memt, &memh, NULL, &memsz) == 0);
1058 }
1059
1060 if (memh_valid) {
1061 sc->sc_st = memt;
1062 sc->sc_sh = memh;
1063 sc->sc_sz = memsz;
1064 } else if (ioh_valid) {
1065 sc->sc_st = iot;
1066 sc->sc_sh = ioh;
1067 sc->sc_sz = iosz;
1068 } else {
1069 printf("%s: unable to map device registers\n",
1070 device_xname(sc->sc_dev));
1071 return;
1072 }
1073
1074 sc->sc_dmat = pa->pa_dmat;
1075
1076 /*
1077 * Make sure bus mastering is enabled. Also make sure
1078 * Write/Invalidate is enabled if we're allowed to use it.
1079 */
1080 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1081 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1082 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1083 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1084 csr | PCI_COMMAND_MASTER_ENABLE);
1085
1086 /* power up chip */
1087 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1088 if (error != 0 && error != EOPNOTSUPP) {
1089 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1090 return;
1091 }
1092
1093 /*
1094 * Map and establish our interrupt.
1095 */
1096 if (pci_intr_map(pa, &ih)) {
1097 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1098 return;
1099 }
1100 intrstr = pci_intr_string(pc, ih);
1101 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1102 if (sc->sc_ih == NULL) {
1103 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1104 if (intrstr != NULL)
1105 aprint_error(" at %s", intrstr);
1106 aprint_error("\n");
1107 sipcom_do_detach(self, SIP_ATTACH_MAP);
1108 return;
1109 }
1110 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1111
1112 SIMPLEQ_INIT(&sc->sc_txfreeq);
1113 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1114
1115 /*
1116 * Allocate the control data structures, and create and load the
1117 * DMA map for it.
1118 */
1119 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1120 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1121 &rseg, 0)) != 0) {
1122 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1123 error);
1124 sipcom_do_detach(self, SIP_ATTACH_INTR);
1125 return;
1126 }
1127
1128 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1129 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1130 BUS_DMA_COHERENT)) != 0) {
1131 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1132 error);
1133 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1134 }
1135
1136 if ((error = bus_dmamap_create(sc->sc_dmat,
1137 sizeof(struct sip_control_data), 1,
1138 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1139 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1140 "error = %d\n", error);
1141 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1142 }
1143
1144 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1145 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1146 0)) != 0) {
1147 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1148 error);
1149 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1150 }
1151
1152 /*
1153 * Create the transmit buffer DMA maps.
1154 */
1155 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1156 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1157 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1158 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1159 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1160 "error = %d\n", i, error);
1161 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1162 }
1163 }
1164
1165 /*
1166 * Create the receive buffer DMA maps.
1167 */
1168 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1169 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1170 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1171 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1172 "error = %d\n", i, error);
1173 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1174 }
1175 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1176 }
1177
1178 /*
1179 * Reset the chip to a known state.
1180 */
1181 sipcom_reset(sc);
1182
1183 /*
1184 * Read the Ethernet address from the EEPROM. This might
1185 * also fetch other stuff from the EEPROM and stash it
1186 * in the softc.
1187 */
1188 sc->sc_cfg = 0;
1189 if (!sc->sc_gigabit) {
1190 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1191 SIP_SIS900_REV(sc,SIS_REV_900B))
1192 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1193
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_960) ||
1196 SIP_SIS900_REV(sc,SIS_REV_900B))
1197 sc->sc_cfg |=
1198 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1199 CFG_EDBMASTEN);
1200 }
1201
1202 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1203
1204 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1205 ether_sprintf(enaddr));
1206
1207 /*
1208 * Initialize the configuration register: aggressive PCI
1209 * bus request algorithm, default backoff, default OW timer,
1210 * default parity error detection.
1211 *
1212 * NOTE: "Big endian mode" is useless on the SiS900 and
1213 * friends -- it affects packet data, not descriptors.
1214 */
1215 if (sc->sc_gigabit)
1216 sipcom_dp83820_attach(sc, pa);
1217
1218 /*
1219 * Initialize our media structures and probe the MII.
1220 */
1221 sc->sc_mii.mii_ifp = ifp;
1222 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1223 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1224 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1225 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1226 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1227 sipcom_mediastatus);
1228
1229 /*
1230 * XXX We cannot handle flow control on the DP83815.
1231 */
1232 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1233 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1234 MII_OFFSET_ANY, 0);
1235 else
1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, MIIF_DOPAUSE);
1238 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1239 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1240 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1241 } else
1242 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1243
1244 ifp = &sc->sc_ethercom.ec_if;
1245 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1246 ifp->if_softc = sc;
1247 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1248 sc->sc_if_flags = ifp->if_flags;
1249 ifp->if_ioctl = sipcom_ioctl;
1250 ifp->if_start = sipcom_start;
1251 ifp->if_watchdog = sipcom_watchdog;
1252 ifp->if_init = sipcom_init;
1253 ifp->if_stop = sipcom_stop;
1254 IFQ_SET_READY(&ifp->if_snd);
1255
1256 /*
1257 * We can support 802.1Q VLAN-sized frames.
1258 */
1259 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1260
1261 if (sc->sc_gigabit) {
1262 /*
1263 * And the DP83820 can do VLAN tagging in hardware, and
1264 * support the jumbo Ethernet MTU.
1265 */
1266 sc->sc_ethercom.ec_capabilities |=
1267 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1268
1269 /*
1270 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1271 * in hardware.
1272 */
1273 ifp->if_capabilities |=
1274 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1275 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1276 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1277 }
1278
1279 /*
1280 * Attach the interface.
1281 */
1282 if_attach(ifp);
1283 ether_ifattach(ifp, enaddr);
1284 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1285 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 sc->sc_prev.if_capenable = ifp->if_capenable;
1288 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1289 RND_TYPE_NET, 0);
1290
1291 /*
1292 * The number of bytes that must be available in
1293 * the Tx FIFO before the bus master can DMA more
1294 * data into the FIFO.
1295 */
1296 sc->sc_tx_fill_thresh = 64 / 32;
1297
1298 /*
1299 * Start at a drain threshold of 512 bytes. We will
1300 * increase it if a DMA underrun occurs.
1301 *
1302 * XXX The minimum value of this variable should be
1303 * tuned. We may be able to improve performance
1304 * by starting with a lower value. That, however,
1305 * may trash the first few outgoing packets if the
1306 * PCI bus is saturated.
1307 */
1308 if (sc->sc_gigabit)
1309 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1310 else
1311 sc->sc_tx_drain_thresh = 1504 / 32;
1312
1313 /*
1314 * Initialize the Rx FIFO drain threshold.
1315 *
1316 * This is in units of 8 bytes.
1317 *
1318 * We should never set this value lower than 2; 14 bytes are
1319 * required to filter the packet.
1320 */
1321 sc->sc_rx_drain_thresh = 128 / 8;
1322
1323 #ifdef SIP_EVENT_COUNTERS
1324 /*
1325 * Attach event counters.
1326 */
1327 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1328 NULL, device_xname(sc->sc_dev), "txsstall");
1329 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1330 NULL, device_xname(sc->sc_dev), "txdstall");
1331 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1332 NULL, device_xname(sc->sc_dev), "txforceintr");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1334 NULL, device_xname(sc->sc_dev), "txdintr");
1335 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txiintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "rxintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "hiberr");
1341 if (!sc->sc_gigabit) {
1342 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1343 NULL, device_xname(sc->sc_dev), "rxpause");
1344 } else {
1345 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1346 NULL, device_xname(sc->sc_dev), "rxpause");
1347 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1348 NULL, device_xname(sc->sc_dev), "txpause");
1349 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "rxipsum");
1351 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxudpsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "txipsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "txtcpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txudpsum");
1361 }
1362 #endif /* SIP_EVENT_COUNTERS */
1363
1364 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1365 pmf_class_network_register(self, ifp);
1366 else
1367 aprint_error_dev(self, "couldn't establish power handler\n");
1368 }
1369
1370 static inline void
1371 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1372 uint64_t capenable)
1373 {
1374 struct m_tag *mtag;
1375 u_int32_t extsts;
1376 #ifdef DEBUG
1377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1378 #endif
1379 /*
1380 * If VLANs are enabled and the packet has a VLAN tag, set
1381 * up the descriptor to encapsulate the packet for us.
1382 *
1383 * This apparently has to be on the last descriptor of
1384 * the packet.
1385 */
1386
1387 /*
1388 * Byte swapping is tricky. We need to provide the tag
1389 * in a network byte order. On a big-endian machine,
1390 * the byteorder is correct, but we need to swap it
1391 * anyway, because this will be undone by the outside
1392 * htole32(). That's why there must be an
1393 * unconditional swap instead of htons() inside.
1394 */
1395 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1396 sc->sc_txdescs[lasttx].sipd_extsts |=
1397 htole32(EXTSTS_VPKT |
1398 (bswap16(VLAN_TAG_VALUE(mtag)) &
1399 EXTSTS_VTCI));
1400 }
1401
1402 /*
1403 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1404 * checksumming, set up the descriptor to do this work
1405 * for us.
1406 *
1407 * This apparently has to be on the first descriptor of
1408 * the packet.
1409 *
1410 * Byte-swap constants so the compiler can optimize.
1411 */
1412 extsts = 0;
1413 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1414 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1415 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1416 extsts |= htole32(EXTSTS_IPPKT);
1417 }
1418 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1419 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1420 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1421 extsts |= htole32(EXTSTS_TCPPKT);
1422 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1425 extsts |= htole32(EXTSTS_UDPPKT);
1426 }
1427 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1428 }
1429
1430 /*
1431 * sip_start: [ifnet interface function]
1432 *
1433 * Start packet transmission on the interface.
1434 */
1435 static void
1436 sipcom_start(struct ifnet *ifp)
1437 {
1438 struct sip_softc *sc = ifp->if_softc;
1439 struct mbuf *m0;
1440 struct mbuf *m;
1441 struct sip_txsoft *txs;
1442 bus_dmamap_t dmamap;
1443 int error, nexttx, lasttx, seg;
1444 int ofree = sc->sc_txfree;
1445 #if 0
1446 int firsttx = sc->sc_txnext;
1447 #endif
1448
1449 /*
1450 * If we've been told to pause, don't transmit any more packets.
1451 */
1452 if (!sc->sc_gigabit && sc->sc_paused)
1453 ifp->if_flags |= IFF_OACTIVE;
1454
1455 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1456 return;
1457
1458 /*
1459 * Loop through the send queue, setting up transmit descriptors
1460 * until we drain the queue, or use up all available transmit
1461 * descriptors.
1462 */
1463 for (;;) {
1464 /* Get a work queue entry. */
1465 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1466 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1467 break;
1468 }
1469
1470 /*
1471 * Grab a packet off the queue.
1472 */
1473 IFQ_POLL(&ifp->if_snd, m0);
1474 if (m0 == NULL)
1475 break;
1476 m = NULL;
1477
1478 dmamap = txs->txs_dmamap;
1479
1480 /*
1481 * Load the DMA map. If this fails, the packet either
1482 * didn't fit in the alloted number of segments, or we
1483 * were short on resources.
1484 */
1485 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1486 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1487 /* In the non-gigabit case, we'll copy and try again. */
1488 if (error != 0 && !sc->sc_gigabit) {
1489 MGETHDR(m, M_DONTWAIT, MT_DATA);
1490 if (m == NULL) {
1491 printf("%s: unable to allocate Tx mbuf\n",
1492 device_xname(sc->sc_dev));
1493 break;
1494 }
1495 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1496 if (m0->m_pkthdr.len > MHLEN) {
1497 MCLGET(m, M_DONTWAIT);
1498 if ((m->m_flags & M_EXT) == 0) {
1499 printf("%s: unable to allocate Tx "
1500 "cluster\n", device_xname(sc->sc_dev));
1501 m_freem(m);
1502 break;
1503 }
1504 }
1505 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1506 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1507 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1508 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1509 if (error) {
1510 printf("%s: unable to load Tx buffer, "
1511 "error = %d\n", device_xname(sc->sc_dev), error);
1512 break;
1513 }
1514 } else if (error == EFBIG) {
1515 /*
1516 * For the too-many-segments case, we simply
1517 * report an error and drop the packet,
1518 * since we can't sanely copy a jumbo packet
1519 * to a single buffer.
1520 */
1521 printf("%s: Tx packet consumes too many "
1522 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1523 IFQ_DEQUEUE(&ifp->if_snd, m0);
1524 m_freem(m0);
1525 continue;
1526 } else if (error != 0) {
1527 /*
1528 * Short on resources, just stop for now.
1529 */
1530 break;
1531 }
1532
1533 /*
1534 * Ensure we have enough descriptors free to describe
1535 * the packet. Note, we always reserve one descriptor
1536 * at the end of the ring as a termination point, to
1537 * prevent wrap-around.
1538 */
1539 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1540 /*
1541 * Not enough free descriptors to transmit this
1542 * packet. We haven't committed anything yet,
1543 * so just unload the DMA map, put the packet
1544 * back on the queue, and punt. Notify the upper
1545 * layer that there are not more slots left.
1546 *
1547 * XXX We could allocate an mbuf and copy, but
1548 * XXX is it worth it?
1549 */
1550 ifp->if_flags |= IFF_OACTIVE;
1551 bus_dmamap_unload(sc->sc_dmat, dmamap);
1552 if (m != NULL)
1553 m_freem(m);
1554 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1555 break;
1556 }
1557
1558 IFQ_DEQUEUE(&ifp->if_snd, m0);
1559 if (m != NULL) {
1560 m_freem(m0);
1561 m0 = m;
1562 }
1563
1564 /*
1565 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1566 */
1567
1568 /* Sync the DMA map. */
1569 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1570 BUS_DMASYNC_PREWRITE);
1571
1572 /*
1573 * Initialize the transmit descriptors.
1574 */
1575 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1576 seg < dmamap->dm_nsegs;
1577 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1578 /*
1579 * If this is the first descriptor we're
1580 * enqueueing, don't set the OWN bit just
1581 * yet. That could cause a race condition.
1582 * We'll do it below.
1583 */
1584 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1585 htole32(dmamap->dm_segs[seg].ds_addr);
1586 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1587 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1588 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1589 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1590 lasttx = nexttx;
1591 }
1592
1593 /* Clear the MORE bit on the last segment. */
1594 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1595 htole32(~CMDSTS_MORE);
1596
1597 /*
1598 * If we're in the interrupt delay window, delay the
1599 * interrupt.
1600 */
1601 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1602 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1603 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1604 htole32(CMDSTS_INTR);
1605 sc->sc_txwin = 0;
1606 }
1607
1608 if (sc->sc_gigabit)
1609 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1610
1611 /* Sync the descriptors we're using. */
1612 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1613 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1614
1615 /*
1616 * The entire packet is set up. Give the first descrptor
1617 * to the chip now.
1618 */
1619 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1620 htole32(CMDSTS_OWN);
1621 sip_cdtxsync(sc, sc->sc_txnext, 1,
1622 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1623
1624 /*
1625 * Store a pointer to the packet so we can free it later,
1626 * and remember what txdirty will be once the packet is
1627 * done.
1628 */
1629 txs->txs_mbuf = m0;
1630 txs->txs_firstdesc = sc->sc_txnext;
1631 txs->txs_lastdesc = lasttx;
1632
1633 /* Advance the tx pointer. */
1634 sc->sc_txfree -= dmamap->dm_nsegs;
1635 sc->sc_txnext = nexttx;
1636
1637 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1638 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1639
1640 /*
1641 * Pass the packet to any BPF listeners.
1642 */
1643 bpf_mtap(ifp, m0);
1644 }
1645
1646 if (txs == NULL || sc->sc_txfree == 0) {
1647 /* No more slots left; notify upper layer. */
1648 ifp->if_flags |= IFF_OACTIVE;
1649 }
1650
1651 if (sc->sc_txfree != ofree) {
1652 /*
1653 * Start the transmit process. Note, the manual says
1654 * that if there are no pending transmissions in the
1655 * chip's internal queue (indicated by TXE being clear),
1656 * then the driver software must set the TXDP to the
1657 * first descriptor to be transmitted. However, if we
1658 * do this, it causes serious performance degredation on
1659 * the DP83820 under load, not setting TXDP doesn't seem
1660 * to adversely affect the SiS 900 or DP83815.
1661 *
1662 * Well, I guess it wouldn't be the first time a manual
1663 * has lied -- and they could be speaking of the NULL-
1664 * terminated descriptor list case, rather than OWN-
1665 * terminated rings.
1666 */
1667 #if 0
1668 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1669 CR_TXE) == 0) {
1670 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1671 SIP_CDTXADDR(sc, firsttx));
1672 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1673 }
1674 #else
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 #endif
1677
1678 /* Set a watchdog timer in case the chip flakes out. */
1679 /* Gigabit autonegotiation takes 5 seconds. */
1680 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1681 }
1682 }
1683
1684 /*
1685 * sip_watchdog: [ifnet interface function]
1686 *
1687 * Watchdog timer handler.
1688 */
1689 static void
1690 sipcom_watchdog(struct ifnet *ifp)
1691 {
1692 struct sip_softc *sc = ifp->if_softc;
1693
1694 /*
1695 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1696 * If we get a timeout, try and sweep up transmit descriptors.
1697 * If we manage to sweep them all up, ignore the lack of
1698 * interrupt.
1699 */
1700 sipcom_txintr(sc);
1701
1702 if (sc->sc_txfree != sc->sc_ntxdesc) {
1703 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1704 ifp->if_oerrors++;
1705
1706 /* Reset the interface. */
1707 (void) sipcom_init(ifp);
1708 } else if (ifp->if_flags & IFF_DEBUG)
1709 printf("%s: recovered from device timeout\n",
1710 device_xname(sc->sc_dev));
1711
1712 /* Try to get more packets going. */
1713 sipcom_start(ifp);
1714 }
1715
1716 /* If the interface is up and running, only modify the receive
1717 * filter when setting promiscuous or debug mode. Otherwise fall
1718 * through to ether_ioctl, which will reset the chip.
1719 */
1720 static int
1721 sip_ifflags_cb(struct ethercom *ec)
1722 {
1723 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1724 == (sc)->sc_ethercom.ec_capenable) \
1725 && ((sc)->sc_prev.is_vlan == \
1726 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1727 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1728 struct ifnet *ifp = &ec->ec_if;
1729 struct sip_softc *sc = ifp->if_softc;
1730 int change = ifp->if_flags ^ sc->sc_if_flags;
1731
1732 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1733 !COMPARE_IC(sc, ifp))
1734 return ENETRESET;
1735 /* Set up the receive filter. */
1736 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1737 return 0;
1738 }
1739
1740 /*
1741 * sip_ioctl: [ifnet interface function]
1742 *
1743 * Handle control requests from the operator.
1744 */
1745 static int
1746 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1747 {
1748 struct sip_softc *sc = ifp->if_softc;
1749 struct ifreq *ifr = (struct ifreq *)data;
1750 int s, error;
1751
1752 s = splnet();
1753
1754 switch (cmd) {
1755 case SIOCSIFMEDIA:
1756 /* Flow control requires full-duplex mode. */
1757 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1758 (ifr->ifr_media & IFM_FDX) == 0)
1759 ifr->ifr_media &= ~IFM_ETH_FMASK;
1760
1761 /* XXX */
1762 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1763 ifr->ifr_media &= ~IFM_ETH_FMASK;
1764 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1765 if (sc->sc_gigabit &&
1766 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1767 /* We can do both TXPAUSE and RXPAUSE. */
1768 ifr->ifr_media |=
1769 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 } else if (ifr->ifr_media & IFM_FLOW) {
1771 /*
1772 * Both TXPAUSE and RXPAUSE must be set.
1773 * (SiS900 and DP83815 don't have PAUSE_ASYM
1774 * feature.)
1775 *
1776 * XXX Can SiS900 and DP83815 send PAUSE?
1777 */
1778 ifr->ifr_media |=
1779 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 }
1781 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1782 }
1783 /*FALLTHROUGH*/
1784 default:
1785 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1786 break;
1787
1788 error = 0;
1789
1790 if (cmd == SIOCSIFCAP)
1791 error = (*ifp->if_init)(ifp);
1792 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1793 ;
1794 else if (ifp->if_flags & IFF_RUNNING) {
1795 /*
1796 * Multicast list has changed; set the hardware filter
1797 * accordingly.
1798 */
1799 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1800 }
1801 break;
1802 }
1803
1804 /* Try to get more packets going. */
1805 sipcom_start(ifp);
1806
1807 sc->sc_if_flags = ifp->if_flags;
1808 splx(s);
1809 return (error);
1810 }
1811
1812 /*
1813 * sip_intr:
1814 *
1815 * Interrupt service routine.
1816 */
1817 static int
1818 sipcom_intr(void *arg)
1819 {
1820 struct sip_softc *sc = arg;
1821 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1822 u_int32_t isr;
1823 int handled = 0;
1824
1825 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1826 return 0;
1827
1828 /* Disable interrupts. */
1829 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1830
1831 for (;;) {
1832 /* Reading clears interrupt. */
1833 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1834 if ((isr & sc->sc_imr) == 0)
1835 break;
1836
1837 rnd_add_uint32(&sc->rnd_source, isr);
1838
1839 handled = 1;
1840
1841 if ((ifp->if_flags & IFF_RUNNING) == 0)
1842 break;
1843
1844 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1845 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1846
1847 /* Grab any new packets. */
1848 (*sc->sc_rxintr)(sc);
1849
1850 if (isr & ISR_RXORN) {
1851 printf("%s: receive FIFO overrun\n",
1852 device_xname(sc->sc_dev));
1853
1854 /* XXX adjust rx_drain_thresh? */
1855 }
1856
1857 if (isr & ISR_RXIDLE) {
1858 printf("%s: receive ring overrun\n",
1859 device_xname(sc->sc_dev));
1860
1861 /* Get the receive process going again. */
1862 bus_space_write_4(sc->sc_st, sc->sc_sh,
1863 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1864 bus_space_write_4(sc->sc_st, sc->sc_sh,
1865 SIP_CR, CR_RXE);
1866 }
1867 }
1868
1869 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1870 #ifdef SIP_EVENT_COUNTERS
1871 if (isr & ISR_TXDESC)
1872 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1873 else if (isr & ISR_TXIDLE)
1874 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1875 #endif
1876
1877 /* Sweep up transmit descriptors. */
1878 sipcom_txintr(sc);
1879
1880 if (isr & ISR_TXURN) {
1881 u_int32_t thresh;
1882 int txfifo_size = (sc->sc_gigabit)
1883 ? DP83820_SIP_TXFIFO_SIZE
1884 : OTHER_SIP_TXFIFO_SIZE;
1885
1886 printf("%s: transmit FIFO underrun",
1887 device_xname(sc->sc_dev));
1888 thresh = sc->sc_tx_drain_thresh + 1;
1889 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1890 && (thresh * 32) <= (txfifo_size -
1891 (sc->sc_tx_fill_thresh * 32))) {
1892 printf("; increasing Tx drain "
1893 "threshold to %u bytes\n",
1894 thresh * 32);
1895 sc->sc_tx_drain_thresh = thresh;
1896 (void) sipcom_init(ifp);
1897 } else {
1898 (void) sipcom_init(ifp);
1899 printf("\n");
1900 }
1901 }
1902 }
1903
1904 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1905 if (isr & ISR_PAUSE_ST) {
1906 sc->sc_paused = 1;
1907 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1908 ifp->if_flags |= IFF_OACTIVE;
1909 }
1910 if (isr & ISR_PAUSE_END) {
1911 sc->sc_paused = 0;
1912 ifp->if_flags &= ~IFF_OACTIVE;
1913 }
1914 }
1915
1916 if (isr & ISR_HIBERR) {
1917 int want_init = 0;
1918
1919 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1920
1921 #define PRINTERR(bit, str) \
1922 do { \
1923 if ((isr & (bit)) != 0) { \
1924 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1925 printf("%s: %s\n", \
1926 device_xname(sc->sc_dev), str); \
1927 want_init = 1; \
1928 } \
1929 } while (/*CONSTCOND*/0)
1930
1931 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1932 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1933 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1934 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1935 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1936 /*
1937 * Ignore:
1938 * Tx reset complete
1939 * Rx reset complete
1940 */
1941 if (want_init)
1942 (void) sipcom_init(ifp);
1943 #undef PRINTERR
1944 }
1945 }
1946
1947 /* Re-enable interrupts. */
1948 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1949
1950 /* Try to get more packets going. */
1951 sipcom_start(ifp);
1952
1953 return (handled);
1954 }
1955
1956 /*
1957 * sip_txintr:
1958 *
1959 * Helper; handle transmit interrupts.
1960 */
1961 static void
1962 sipcom_txintr(struct sip_softc *sc)
1963 {
1964 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1965 struct sip_txsoft *txs;
1966 u_int32_t cmdsts;
1967
1968 if (sc->sc_paused == 0)
1969 ifp->if_flags &= ~IFF_OACTIVE;
1970
1971 /*
1972 * Go through our Tx list and free mbufs for those
1973 * frames which have been transmitted.
1974 */
1975 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1976 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1977 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1978
1979 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1980 if (cmdsts & CMDSTS_OWN)
1981 break;
1982
1983 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1984
1985 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1986
1987 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1988 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1989 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1990 m_freem(txs->txs_mbuf);
1991 txs->txs_mbuf = NULL;
1992
1993 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1994
1995 /*
1996 * Check for errors and collisions.
1997 */
1998 if (cmdsts &
1999 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2000 ifp->if_oerrors++;
2001 if (cmdsts & CMDSTS_Tx_EC)
2002 ifp->if_collisions += 16;
2003 if (ifp->if_flags & IFF_DEBUG) {
2004 if (cmdsts & CMDSTS_Tx_ED)
2005 printf("%s: excessive deferral\n",
2006 device_xname(sc->sc_dev));
2007 if (cmdsts & CMDSTS_Tx_EC)
2008 printf("%s: excessive collisions\n",
2009 device_xname(sc->sc_dev));
2010 }
2011 } else {
2012 /* Packet was transmitted successfully. */
2013 ifp->if_opackets++;
2014 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2015 }
2016 }
2017
2018 /*
2019 * If there are no more pending transmissions, cancel the watchdog
2020 * timer.
2021 */
2022 if (txs == NULL) {
2023 ifp->if_timer = 0;
2024 sc->sc_txwin = 0;
2025 }
2026 }
2027
2028 /*
2029 * gsip_rxintr:
2030 *
2031 * Helper; handle receive interrupts on gigabit parts.
2032 */
2033 static void
2034 gsip_rxintr(struct sip_softc *sc)
2035 {
2036 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2037 struct sip_rxsoft *rxs;
2038 struct mbuf *m;
2039 u_int32_t cmdsts, extsts;
2040 int i, len;
2041
2042 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2043 rxs = &sc->sc_rxsoft[i];
2044
2045 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2046
2047 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2048 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2049 len = CMDSTS_SIZE(sc, cmdsts);
2050
2051 /*
2052 * NOTE: OWN is set if owned by _consumer_. We're the
2053 * consumer of the receive ring, so if the bit is clear,
2054 * we have processed all of the packets.
2055 */
2056 if ((cmdsts & CMDSTS_OWN) == 0) {
2057 /*
2058 * We have processed all of the receive buffers.
2059 */
2060 break;
2061 }
2062
2063 if (__predict_false(sc->sc_rxdiscard)) {
2064 sip_init_rxdesc(sc, i);
2065 if ((cmdsts & CMDSTS_MORE) == 0) {
2066 /* Reset our state. */
2067 sc->sc_rxdiscard = 0;
2068 }
2069 continue;
2070 }
2071
2072 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2073 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074
2075 m = rxs->rxs_mbuf;
2076
2077 /*
2078 * Add a new receive buffer to the ring.
2079 */
2080 if (sipcom_add_rxbuf(sc, i) != 0) {
2081 /*
2082 * Failed, throw away what we've done so
2083 * far, and discard the rest of the packet.
2084 */
2085 ifp->if_ierrors++;
2086 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2088 sip_init_rxdesc(sc, i);
2089 if (cmdsts & CMDSTS_MORE)
2090 sc->sc_rxdiscard = 1;
2091 if (sc->sc_rxhead != NULL)
2092 m_freem(sc->sc_rxhead);
2093 sip_rxchain_reset(sc);
2094 continue;
2095 }
2096
2097 sip_rxchain_link(sc, m);
2098
2099 m->m_len = len;
2100
2101 /*
2102 * If this is not the end of the packet, keep
2103 * looking.
2104 */
2105 if (cmdsts & CMDSTS_MORE) {
2106 sc->sc_rxlen += len;
2107 continue;
2108 }
2109
2110 /*
2111 * Okay, we have the entire packet now. The chip includes
2112 * the FCS, so we need to trim it.
2113 */
2114 m->m_len -= ETHER_CRC_LEN;
2115
2116 *sc->sc_rxtailp = NULL;
2117 len = m->m_len + sc->sc_rxlen;
2118 m = sc->sc_rxhead;
2119
2120 sip_rxchain_reset(sc);
2121
2122 /*
2123 * If an error occurred, update stats and drop the packet.
2124 */
2125 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2126 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2127 ifp->if_ierrors++;
2128 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2129 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2130 /* Receive overrun handled elsewhere. */
2131 printf("%s: receive descriptor error\n",
2132 device_xname(sc->sc_dev));
2133 }
2134 #define PRINTERR(bit, str) \
2135 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2136 (cmdsts & (bit)) != 0) \
2137 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2138 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2139 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2140 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2141 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2142 #undef PRINTERR
2143 m_freem(m);
2144 continue;
2145 }
2146
2147 /*
2148 * If the packet is small enough to fit in a
2149 * single header mbuf, allocate one and copy
2150 * the data into it. This greatly reduces
2151 * memory consumption when we receive lots
2152 * of small packets.
2153 */
2154 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2155 struct mbuf *nm;
2156 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2157 if (nm == NULL) {
2158 ifp->if_ierrors++;
2159 m_freem(m);
2160 continue;
2161 }
2162 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2163 nm->m_data += 2;
2164 nm->m_pkthdr.len = nm->m_len = len;
2165 m_copydata(m, 0, len, mtod(nm, void *));
2166 m_freem(m);
2167 m = nm;
2168 }
2169 #ifndef __NO_STRICT_ALIGNMENT
2170 else {
2171 /*
2172 * The DP83820's receive buffers must be 4-byte
2173 * aligned. But this means that the data after
2174 * the Ethernet header is misaligned. To compensate,
2175 * we have artificially shortened the buffer size
2176 * in the descriptor, and we do an overlapping copy
2177 * of the data two bytes further in (in the first
2178 * buffer of the chain only).
2179 */
2180 memmove(mtod(m, char *) + 2, mtod(m, void *),
2181 m->m_len);
2182 m->m_data += 2;
2183 }
2184 #endif /* ! __NO_STRICT_ALIGNMENT */
2185
2186 /*
2187 * If VLANs are enabled, VLAN packets have been unwrapped
2188 * for us. Associate the tag with the packet.
2189 */
2190
2191 /*
2192 * Again, byte swapping is tricky. Hardware provided
2193 * the tag in the network byte order, but extsts was
2194 * passed through le32toh() in the meantime. On a
2195 * big-endian machine, we need to swap it again. On a
2196 * little-endian machine, we need to convert from the
2197 * network to host byte order. This means that we must
2198 * swap it in any case, so unconditional swap instead
2199 * of htons() is used.
2200 */
2201 if ((extsts & EXTSTS_VPKT) != 0) {
2202 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2203 continue);
2204 }
2205
2206 /*
2207 * Set the incoming checksum information for the
2208 * packet.
2209 */
2210 if ((extsts & EXTSTS_IPPKT) != 0) {
2211 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2212 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2213 if (extsts & EXTSTS_Rx_IPERR)
2214 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2215 if (extsts & EXTSTS_TCPPKT) {
2216 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2217 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2218 if (extsts & EXTSTS_Rx_TCPERR)
2219 m->m_pkthdr.csum_flags |=
2220 M_CSUM_TCP_UDP_BAD;
2221 } else if (extsts & EXTSTS_UDPPKT) {
2222 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2223 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2224 if (extsts & EXTSTS_Rx_UDPERR)
2225 m->m_pkthdr.csum_flags |=
2226 M_CSUM_TCP_UDP_BAD;
2227 }
2228 }
2229
2230 ifp->if_ipackets++;
2231 m->m_pkthdr.rcvif = ifp;
2232 m->m_pkthdr.len = len;
2233
2234 /*
2235 * Pass this up to any BPF listeners, but only
2236 * pass if up the stack if it's for us.
2237 */
2238 bpf_mtap(ifp, m);
2239
2240 /* Pass it on. */
2241 (*ifp->if_input)(ifp, m);
2242 }
2243
2244 /* Update the receive pointer. */
2245 sc->sc_rxptr = i;
2246 }
2247
2248 /*
2249 * sip_rxintr:
2250 *
2251 * Helper; handle receive interrupts on 10/100 parts.
2252 */
2253 static void
2254 sip_rxintr(struct sip_softc *sc)
2255 {
2256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2257 struct sip_rxsoft *rxs;
2258 struct mbuf *m;
2259 u_int32_t cmdsts;
2260 int i, len;
2261
2262 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2263 rxs = &sc->sc_rxsoft[i];
2264
2265 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2266
2267 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2268
2269 /*
2270 * NOTE: OWN is set if owned by _consumer_. We're the
2271 * consumer of the receive ring, so if the bit is clear,
2272 * we have processed all of the packets.
2273 */
2274 if ((cmdsts & CMDSTS_OWN) == 0) {
2275 /*
2276 * We have processed all of the receive buffers.
2277 */
2278 break;
2279 }
2280
2281 /*
2282 * If any collisions were seen on the wire, count one.
2283 */
2284 if (cmdsts & CMDSTS_Rx_COL)
2285 ifp->if_collisions++;
2286
2287 /*
2288 * If an error occurred, update stats, clear the status
2289 * word, and leave the packet buffer in place. It will
2290 * simply be reused the next time the ring comes around.
2291 */
2292 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2293 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2294 ifp->if_ierrors++;
2295 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2296 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2297 /* Receive overrun handled elsewhere. */
2298 printf("%s: receive descriptor error\n",
2299 device_xname(sc->sc_dev));
2300 }
2301 #define PRINTERR(bit, str) \
2302 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2303 (cmdsts & (bit)) != 0) \
2304 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2305 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2306 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2307 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2308 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2309 #undef PRINTERR
2310 sip_init_rxdesc(sc, i);
2311 continue;
2312 }
2313
2314 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2315 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2316
2317 /*
2318 * No errors; receive the packet. Note, the SiS 900
2319 * includes the CRC with every packet.
2320 */
2321 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2322
2323 #ifdef __NO_STRICT_ALIGNMENT
2324 /*
2325 * If the packet is small enough to fit in a
2326 * single header mbuf, allocate one and copy
2327 * the data into it. This greatly reduces
2328 * memory consumption when we receive lots
2329 * of small packets.
2330 *
2331 * Otherwise, we add a new buffer to the receive
2332 * chain. If this fails, we drop the packet and
2333 * recycle the old buffer.
2334 */
2335 if (sip_copy_small != 0 && len <= MHLEN) {
2336 MGETHDR(m, M_DONTWAIT, MT_DATA);
2337 if (m == NULL)
2338 goto dropit;
2339 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2340 memcpy(mtod(m, void *),
2341 mtod(rxs->rxs_mbuf, void *), len);
2342 sip_init_rxdesc(sc, i);
2343 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2344 rxs->rxs_dmamap->dm_mapsize,
2345 BUS_DMASYNC_PREREAD);
2346 } else {
2347 m = rxs->rxs_mbuf;
2348 if (sipcom_add_rxbuf(sc, i) != 0) {
2349 dropit:
2350 ifp->if_ierrors++;
2351 sip_init_rxdesc(sc, i);
2352 bus_dmamap_sync(sc->sc_dmat,
2353 rxs->rxs_dmamap, 0,
2354 rxs->rxs_dmamap->dm_mapsize,
2355 BUS_DMASYNC_PREREAD);
2356 continue;
2357 }
2358 }
2359 #else
2360 /*
2361 * The SiS 900's receive buffers must be 4-byte aligned.
2362 * But this means that the data after the Ethernet header
2363 * is misaligned. We must allocate a new buffer and
2364 * copy the data, shifted forward 2 bytes.
2365 */
2366 MGETHDR(m, M_DONTWAIT, MT_DATA);
2367 if (m == NULL) {
2368 dropit:
2369 ifp->if_ierrors++;
2370 sip_init_rxdesc(sc, i);
2371 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2372 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2373 continue;
2374 }
2375 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2376 if (len > (MHLEN - 2)) {
2377 MCLGET(m, M_DONTWAIT);
2378 if ((m->m_flags & M_EXT) == 0) {
2379 m_freem(m);
2380 goto dropit;
2381 }
2382 }
2383 m->m_data += 2;
2384
2385 /*
2386 * Note that we use clusters for incoming frames, so the
2387 * buffer is virtually contiguous.
2388 */
2389 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2390
2391 /* Allow the receive descriptor to continue using its mbuf. */
2392 sip_init_rxdesc(sc, i);
2393 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2394 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2395 #endif /* __NO_STRICT_ALIGNMENT */
2396
2397 ifp->if_ipackets++;
2398 m->m_pkthdr.rcvif = ifp;
2399 m->m_pkthdr.len = m->m_len = len;
2400
2401 /*
2402 * Pass this up to any BPF listeners, but only
2403 * pass if up the stack if it's for us.
2404 */
2405 bpf_mtap(ifp, m);
2406
2407 /* Pass it on. */
2408 (*ifp->if_input)(ifp, m);
2409 }
2410
2411 /* Update the receive pointer. */
2412 sc->sc_rxptr = i;
2413 }
2414
2415 /*
2416 * sip_tick:
2417 *
2418 * One second timer, used to tick the MII.
2419 */
2420 static void
2421 sipcom_tick(void *arg)
2422 {
2423 struct sip_softc *sc = arg;
2424 int s;
2425
2426 s = splnet();
2427 #ifdef SIP_EVENT_COUNTERS
2428 if (sc->sc_gigabit) {
2429 /* Read PAUSE related counts from MIB registers. */
2430 sc->sc_ev_rxpause.ev_count +=
2431 bus_space_read_4(sc->sc_st, sc->sc_sh,
2432 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2433 sc->sc_ev_txpause.ev_count +=
2434 bus_space_read_4(sc->sc_st, sc->sc_sh,
2435 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2436 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2437 }
2438 #endif /* SIP_EVENT_COUNTERS */
2439 mii_tick(&sc->sc_mii);
2440 splx(s);
2441
2442 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2443 }
2444
2445 /*
2446 * sip_reset:
2447 *
2448 * Perform a soft reset on the SiS 900.
2449 */
2450 static bool
2451 sipcom_reset(struct sip_softc *sc)
2452 {
2453 bus_space_tag_t st = sc->sc_st;
2454 bus_space_handle_t sh = sc->sc_sh;
2455 int i;
2456
2457 bus_space_write_4(st, sh, SIP_IER, 0);
2458 bus_space_write_4(st, sh, SIP_IMR, 0);
2459 bus_space_write_4(st, sh, SIP_RFCR, 0);
2460 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2461
2462 for (i = 0; i < SIP_TIMEOUT; i++) {
2463 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2464 break;
2465 delay(2);
2466 }
2467
2468 if (i == SIP_TIMEOUT) {
2469 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2470 return false;
2471 }
2472
2473 delay(1000);
2474
2475 if (sc->sc_gigabit) {
2476 /*
2477 * Set the general purpose I/O bits. Do it here in case we
2478 * need to have GPIO set up to talk to the media interface.
2479 */
2480 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2481 delay(1000);
2482 }
2483 return true;
2484 }
2485
2486 static void
2487 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2488 {
2489 u_int32_t reg;
2490 bus_space_tag_t st = sc->sc_st;
2491 bus_space_handle_t sh = sc->sc_sh;
2492 /*
2493 * Initialize the VLAN/IP receive control register.
2494 * We enable checksum computation on all incoming
2495 * packets, and do not reject packets w/ bad checksums.
2496 */
2497 reg = 0;
2498 if (capenable &
2499 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2500 reg |= VRCR_IPEN;
2501 if (VLAN_ATTACHED(&sc->sc_ethercom))
2502 reg |= VRCR_VTDEN|VRCR_VTREN;
2503 bus_space_write_4(st, sh, SIP_VRCR, reg);
2504
2505 /*
2506 * Initialize the VLAN/IP transmit control register.
2507 * We enable outgoing checksum computation on a
2508 * per-packet basis.
2509 */
2510 reg = 0;
2511 if (capenable &
2512 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2513 reg |= VTCR_PPCHK;
2514 if (VLAN_ATTACHED(&sc->sc_ethercom))
2515 reg |= VTCR_VPPTI;
2516 bus_space_write_4(st, sh, SIP_VTCR, reg);
2517
2518 /*
2519 * If we're using VLANs, initialize the VLAN data register.
2520 * To understand why we bswap the VLAN Ethertype, see section
2521 * 4.2.36 of the DP83820 manual.
2522 */
2523 if (VLAN_ATTACHED(&sc->sc_ethercom))
2524 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2525 }
2526
2527 /*
2528 * sip_init: [ ifnet interface function ]
2529 *
2530 * Initialize the interface. Must be called at splnet().
2531 */
2532 static int
2533 sipcom_init(struct ifnet *ifp)
2534 {
2535 struct sip_softc *sc = ifp->if_softc;
2536 bus_space_tag_t st = sc->sc_st;
2537 bus_space_handle_t sh = sc->sc_sh;
2538 struct sip_txsoft *txs;
2539 struct sip_rxsoft *rxs;
2540 struct sip_desc *sipd;
2541 int i, error = 0;
2542
2543 if (device_is_active(sc->sc_dev)) {
2544 /*
2545 * Cancel any pending I/O.
2546 */
2547 sipcom_stop(ifp, 0);
2548 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2549 !device_is_active(sc->sc_dev))
2550 return 0;
2551
2552 /*
2553 * Reset the chip to a known state.
2554 */
2555 if (!sipcom_reset(sc))
2556 return EBUSY;
2557
2558 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2559 /*
2560 * DP83815 manual, page 78:
2561 * 4.4 Recommended Registers Configuration
2562 * For optimum performance of the DP83815, version noted
2563 * as DP83815CVNG (SRR = 203h), the listed register
2564 * modifications must be followed in sequence...
2565 *
2566 * It's not clear if this should be 302h or 203h because that
2567 * chip name is listed as SRR 302h in the description of the
2568 * SRR register. However, my revision 302h DP83815 on the
2569 * Netgear FA311 purchased in 02/2001 needs these settings
2570 * to avoid tons of errors in AcceptPerfectMatch (non-
2571 * IFF_PROMISC) mode. I do not know if other revisions need
2572 * this set or not. [briggs -- 09 March 2001]
2573 *
2574 * Note that only the low-order 12 bits of 0xe4 are documented
2575 * and that this sets reserved bits in that register.
2576 */
2577 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2578
2579 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2580 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2581 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2582 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2583
2584 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2585 }
2586
2587 /*
2588 * Initialize the transmit descriptor ring.
2589 */
2590 for (i = 0; i < sc->sc_ntxdesc; i++) {
2591 sipd = &sc->sc_txdescs[i];
2592 memset(sipd, 0, sizeof(struct sip_desc));
2593 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2594 }
2595 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2596 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2597 sc->sc_txfree = sc->sc_ntxdesc;
2598 sc->sc_txnext = 0;
2599 sc->sc_txwin = 0;
2600
2601 /*
2602 * Initialize the transmit job descriptors.
2603 */
2604 SIMPLEQ_INIT(&sc->sc_txfreeq);
2605 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2606 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2607 txs = &sc->sc_txsoft[i];
2608 txs->txs_mbuf = NULL;
2609 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2610 }
2611
2612 /*
2613 * Initialize the receive descriptor and receive job
2614 * descriptor rings.
2615 */
2616 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2617 rxs = &sc->sc_rxsoft[i];
2618 if (rxs->rxs_mbuf == NULL) {
2619 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2620 printf("%s: unable to allocate or map rx "
2621 "buffer %d, error = %d\n",
2622 device_xname(sc->sc_dev), i, error);
2623 /*
2624 * XXX Should attempt to run with fewer receive
2625 * XXX buffers instead of just failing.
2626 */
2627 sipcom_rxdrain(sc);
2628 goto out;
2629 }
2630 } else
2631 sip_init_rxdesc(sc, i);
2632 }
2633 sc->sc_rxptr = 0;
2634 sc->sc_rxdiscard = 0;
2635 sip_rxchain_reset(sc);
2636
2637 /*
2638 * Set the configuration register; it's already initialized
2639 * in sip_attach().
2640 */
2641 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2642
2643 /*
2644 * Initialize the prototype TXCFG register.
2645 */
2646 if (sc->sc_gigabit) {
2647 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2648 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2649 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2650 SIP_SIS900_REV(sc, SIS_REV_960) ||
2651 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2652 (sc->sc_cfg & CFG_EDBMASTEN)) {
2653 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2654 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2655 } else {
2656 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2657 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2658 }
2659
2660 sc->sc_txcfg |= TXCFG_ATP |
2661 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2662 sc->sc_tx_drain_thresh;
2663 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2664
2665 /*
2666 * Initialize the receive drain threshold if we have never
2667 * done so.
2668 */
2669 if (sc->sc_rx_drain_thresh == 0) {
2670 /*
2671 * XXX This value should be tuned. This is set to the
2672 * maximum of 248 bytes, and we may be able to improve
2673 * performance by decreasing it (although we should never
2674 * set this value lower than 2; 14 bytes are required to
2675 * filter the packet).
2676 */
2677 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2678 }
2679
2680 /*
2681 * Initialize the prototype RXCFG register.
2682 */
2683 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2684 /*
2685 * Accept long packets (including FCS) so we can handle
2686 * 802.1q-tagged frames and jumbo frames properly.
2687 */
2688 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2689 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2690 sc->sc_rxcfg |= RXCFG_ALP;
2691
2692 /*
2693 * Checksum offloading is disabled if the user selects an MTU
2694 * larger than 8109. (FreeBSD says 8152, but there is emperical
2695 * evidence that >8109 does not work on some boards, such as the
2696 * Planex GN-1000TE).
2697 */
2698 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2699 (ifp->if_capenable &
2700 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2701 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2702 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2703 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2704 "disabled.\n", device_xname(sc->sc_dev));
2705 ifp->if_capenable &=
2706 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2707 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2708 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2709 ifp->if_csum_flags_tx = 0;
2710 ifp->if_csum_flags_rx = 0;
2711 }
2712
2713 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2714
2715 if (sc->sc_gigabit)
2716 sipcom_dp83820_init(sc, ifp->if_capenable);
2717
2718 /*
2719 * Give the transmit and receive rings to the chip.
2720 */
2721 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2722 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2723
2724 /*
2725 * Initialize the interrupt mask.
2726 */
2727 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2728 sc->sc_bits.b_isr_sserr |
2729 sc->sc_bits.b_isr_rmabt |
2730 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2731 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2732 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2733
2734 /* Set up the receive filter. */
2735 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2736
2737 /*
2738 * Tune sc_rx_flow_thresh.
2739 * XXX "More than 8KB" is too short for jumbo frames.
2740 * XXX TODO: Threshold value should be user-settable.
2741 */
2742 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2743 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2744 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2745
2746 /*
2747 * Set the current media. Do this after initializing the prototype
2748 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2749 * control.
2750 */
2751 if ((error = ether_mediachange(ifp)) != 0)
2752 goto out;
2753
2754 /*
2755 * Set the interrupt hold-off timer to 100us.
2756 */
2757 if (sc->sc_gigabit)
2758 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2759
2760 /*
2761 * Enable interrupts.
2762 */
2763 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2764
2765 /*
2766 * Start the transmit and receive processes.
2767 */
2768 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2769
2770 /*
2771 * Start the one second MII clock.
2772 */
2773 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2774
2775 /*
2776 * ...all done!
2777 */
2778 ifp->if_flags |= IFF_RUNNING;
2779 ifp->if_flags &= ~IFF_OACTIVE;
2780 sc->sc_if_flags = ifp->if_flags;
2781 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2782 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2783 sc->sc_prev.if_capenable = ifp->if_capenable;
2784
2785 out:
2786 if (error)
2787 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2788 return (error);
2789 }
2790
2791 /*
2792 * sip_drain:
2793 *
2794 * Drain the receive queue.
2795 */
2796 static void
2797 sipcom_rxdrain(struct sip_softc *sc)
2798 {
2799 struct sip_rxsoft *rxs;
2800 int i;
2801
2802 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2803 rxs = &sc->sc_rxsoft[i];
2804 if (rxs->rxs_mbuf != NULL) {
2805 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2806 m_freem(rxs->rxs_mbuf);
2807 rxs->rxs_mbuf = NULL;
2808 }
2809 }
2810 }
2811
2812 /*
2813 * sip_stop: [ ifnet interface function ]
2814 *
2815 * Stop transmission on the interface.
2816 */
2817 static void
2818 sipcom_stop(struct ifnet *ifp, int disable)
2819 {
2820 struct sip_softc *sc = ifp->if_softc;
2821 bus_space_tag_t st = sc->sc_st;
2822 bus_space_handle_t sh = sc->sc_sh;
2823 struct sip_txsoft *txs;
2824 u_int32_t cmdsts = 0; /* DEBUG */
2825
2826 /*
2827 * Stop the one second clock.
2828 */
2829 callout_stop(&sc->sc_tick_ch);
2830
2831 /* Down the MII. */
2832 mii_down(&sc->sc_mii);
2833
2834 if (device_is_active(sc->sc_dev)) {
2835 /*
2836 * Disable interrupts.
2837 */
2838 bus_space_write_4(st, sh, SIP_IER, 0);
2839
2840 /*
2841 * Stop receiver and transmitter.
2842 */
2843 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2844 }
2845
2846 /*
2847 * Release any queued transmit buffers.
2848 */
2849 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2850 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2851 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2852 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2853 CMDSTS_INTR) == 0)
2854 printf("%s: sip_stop: last descriptor does not "
2855 "have INTR bit set\n", device_xname(sc->sc_dev));
2856 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2857 #ifdef DIAGNOSTIC
2858 if (txs->txs_mbuf == NULL) {
2859 printf("%s: dirty txsoft with no mbuf chain\n",
2860 device_xname(sc->sc_dev));
2861 panic("sip_stop");
2862 }
2863 #endif
2864 cmdsts |= /* DEBUG */
2865 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2866 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2867 m_freem(txs->txs_mbuf);
2868 txs->txs_mbuf = NULL;
2869 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2870 }
2871
2872 /*
2873 * Mark the interface down and cancel the watchdog timer.
2874 */
2875 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2876 ifp->if_timer = 0;
2877
2878 if (disable)
2879 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2880
2881 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2882 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2883 printf("%s: sip_stop: no INTR bits set in dirty tx "
2884 "descriptors\n", device_xname(sc->sc_dev));
2885 }
2886
2887 /*
2888 * sip_read_eeprom:
2889 *
2890 * Read data from the serial EEPROM.
2891 */
2892 static void
2893 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2894 u_int16_t *data)
2895 {
2896 bus_space_tag_t st = sc->sc_st;
2897 bus_space_handle_t sh = sc->sc_sh;
2898 u_int16_t reg;
2899 int i, x;
2900
2901 for (i = 0; i < wordcnt; i++) {
2902 /* Send CHIP SELECT. */
2903 reg = EROMAR_EECS;
2904 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2905
2906 /* Shift in the READ opcode. */
2907 for (x = 3; x > 0; x--) {
2908 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2909 reg |= EROMAR_EEDI;
2910 else
2911 reg &= ~EROMAR_EEDI;
2912 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2913 bus_space_write_4(st, sh, SIP_EROMAR,
2914 reg | EROMAR_EESK);
2915 delay(4);
2916 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 delay(4);
2918 }
2919
2920 /* Shift in address. */
2921 for (x = 6; x > 0; x--) {
2922 if ((word + i) & (1 << (x - 1)))
2923 reg |= EROMAR_EEDI;
2924 else
2925 reg &= ~EROMAR_EEDI;
2926 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2927 bus_space_write_4(st, sh, SIP_EROMAR,
2928 reg | EROMAR_EESK);
2929 delay(4);
2930 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 delay(4);
2932 }
2933
2934 /* Shift out data. */
2935 reg = EROMAR_EECS;
2936 data[i] = 0;
2937 for (x = 16; x > 0; x--) {
2938 bus_space_write_4(st, sh, SIP_EROMAR,
2939 reg | EROMAR_EESK);
2940 delay(4);
2941 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2942 data[i] |= (1 << (x - 1));
2943 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2944 delay(4);
2945 }
2946
2947 /* Clear CHIP SELECT. */
2948 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2949 delay(4);
2950 }
2951 }
2952
2953 /*
2954 * sipcom_add_rxbuf:
2955 *
2956 * Add a receive buffer to the indicated descriptor.
2957 */
2958 static int
2959 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2960 {
2961 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2962 struct mbuf *m;
2963 int error;
2964
2965 MGETHDR(m, M_DONTWAIT, MT_DATA);
2966 if (m == NULL)
2967 return (ENOBUFS);
2968 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2969
2970 MCLGET(m, M_DONTWAIT);
2971 if ((m->m_flags & M_EXT) == 0) {
2972 m_freem(m);
2973 return (ENOBUFS);
2974 }
2975
2976 /* XXX I don't believe this is necessary. --dyoung */
2977 if (sc->sc_gigabit)
2978 m->m_len = sc->sc_parm->p_rxbuf_len;
2979
2980 if (rxs->rxs_mbuf != NULL)
2981 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2982
2983 rxs->rxs_mbuf = m;
2984
2985 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2986 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2987 BUS_DMA_READ|BUS_DMA_NOWAIT);
2988 if (error) {
2989 printf("%s: can't load rx DMA map %d, error = %d\n",
2990 device_xname(sc->sc_dev), idx, error);
2991 panic("%s", __func__); /* XXX */
2992 }
2993
2994 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2995 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2996
2997 sip_init_rxdesc(sc, idx);
2998
2999 return (0);
3000 }
3001
3002 /*
3003 * sip_sis900_set_filter:
3004 *
3005 * Set up the receive filter.
3006 */
3007 static void
3008 sipcom_sis900_set_filter(struct sip_softc *sc)
3009 {
3010 bus_space_tag_t st = sc->sc_st;
3011 bus_space_handle_t sh = sc->sc_sh;
3012 struct ethercom *ec = &sc->sc_ethercom;
3013 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3014 struct ether_multi *enm;
3015 const u_int8_t *cp;
3016 struct ether_multistep step;
3017 u_int32_t crc, mchash[16];
3018
3019 /*
3020 * Initialize the prototype RFCR.
3021 */
3022 sc->sc_rfcr = RFCR_RFEN;
3023 if (ifp->if_flags & IFF_BROADCAST)
3024 sc->sc_rfcr |= RFCR_AAB;
3025 if (ifp->if_flags & IFF_PROMISC) {
3026 sc->sc_rfcr |= RFCR_AAP;
3027 goto allmulti;
3028 }
3029
3030 /*
3031 * Set up the multicast address filter by passing all multicast
3032 * addresses through a CRC generator, and then using the high-order
3033 * 6 bits as an index into the 128 bit multicast hash table (only
3034 * the lower 16 bits of each 32 bit multicast hash register are
3035 * valid). The high order bits select the register, while the
3036 * rest of the bits select the bit within the register.
3037 */
3038
3039 memset(mchash, 0, sizeof(mchash));
3040
3041 /*
3042 * SiS900 (at least SiS963) requires us to register the address of
3043 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3044 */
3045 crc = 0x0ed423f9;
3046
3047 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3048 SIP_SIS900_REV(sc, SIS_REV_960) ||
3049 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3050 /* Just want the 8 most significant bits. */
3051 crc >>= 24;
3052 } else {
3053 /* Just want the 7 most significant bits. */
3054 crc >>= 25;
3055 }
3056
3057 /* Set the corresponding bit in the hash table. */
3058 mchash[crc >> 4] |= 1 << (crc & 0xf);
3059
3060 ETHER_FIRST_MULTI(step, ec, enm);
3061 while (enm != NULL) {
3062 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3063 /*
3064 * We must listen to a range of multicast addresses.
3065 * For now, just accept all multicasts, rather than
3066 * trying to set only those filter bits needed to match
3067 * the range. (At this time, the only use of address
3068 * ranges is for IP multicast routing, for which the
3069 * range is big enough to require all bits set.)
3070 */
3071 goto allmulti;
3072 }
3073
3074 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3075
3076 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3077 SIP_SIS900_REV(sc, SIS_REV_960) ||
3078 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3079 /* Just want the 8 most significant bits. */
3080 crc >>= 24;
3081 } else {
3082 /* Just want the 7 most significant bits. */
3083 crc >>= 25;
3084 }
3085
3086 /* Set the corresponding bit in the hash table. */
3087 mchash[crc >> 4] |= 1 << (crc & 0xf);
3088
3089 ETHER_NEXT_MULTI(step, enm);
3090 }
3091
3092 ifp->if_flags &= ~IFF_ALLMULTI;
3093 goto setit;
3094
3095 allmulti:
3096 ifp->if_flags |= IFF_ALLMULTI;
3097 sc->sc_rfcr |= RFCR_AAM;
3098
3099 setit:
3100 #define FILTER_EMIT(addr, data) \
3101 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3102 delay(1); \
3103 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3104 delay(1)
3105
3106 /*
3107 * Disable receive filter, and program the node address.
3108 */
3109 cp = CLLADDR(ifp->if_sadl);
3110 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3111 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3112 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3113
3114 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3115 /*
3116 * Program the multicast hash table.
3117 */
3118 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3119 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3120 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3121 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3122 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3123 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3124 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3125 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3126 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3127 SIP_SIS900_REV(sc, SIS_REV_960) ||
3128 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3129 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3130 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3131 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3132 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3133 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3134 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3135 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3136 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3137 }
3138 }
3139 #undef FILTER_EMIT
3140
3141 /*
3142 * Re-enable the receiver filter.
3143 */
3144 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3145 }
3146
3147 /*
3148 * sip_dp83815_set_filter:
3149 *
3150 * Set up the receive filter.
3151 */
3152 static void
3153 sipcom_dp83815_set_filter(struct sip_softc *sc)
3154 {
3155 bus_space_tag_t st = sc->sc_st;
3156 bus_space_handle_t sh = sc->sc_sh;
3157 struct ethercom *ec = &sc->sc_ethercom;
3158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3159 struct ether_multi *enm;
3160 const u_int8_t *cp;
3161 struct ether_multistep step;
3162 u_int32_t crc, hash, slot, bit;
3163 #define MCHASH_NWORDS_83820 128
3164 #define MCHASH_NWORDS_83815 32
3165 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3166 u_int16_t mchash[MCHASH_NWORDS];
3167 int i;
3168
3169 /*
3170 * Initialize the prototype RFCR.
3171 * Enable the receive filter, and accept on
3172 * Perfect (destination address) Match
3173 * If IFF_BROADCAST, also accept all broadcast packets.
3174 * If IFF_PROMISC, accept all unicast packets (and later, set
3175 * IFF_ALLMULTI and accept all multicast, too).
3176 */
3177 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3178 if (ifp->if_flags & IFF_BROADCAST)
3179 sc->sc_rfcr |= RFCR_AAB;
3180 if (ifp->if_flags & IFF_PROMISC) {
3181 sc->sc_rfcr |= RFCR_AAP;
3182 goto allmulti;
3183 }
3184
3185 /*
3186 * Set up the DP83820/DP83815 multicast address filter by
3187 * passing all multicast addresses through a CRC generator,
3188 * and then using the high-order 11/9 bits as an index into
3189 * the 2048/512 bit multicast hash table. The high-order
3190 * 7/5 bits select the slot, while the low-order 4 bits
3191 * select the bit within the slot. Note that only the low
3192 * 16-bits of each filter word are used, and there are
3193 * 128/32 filter words.
3194 */
3195
3196 memset(mchash, 0, sizeof(mchash));
3197
3198 ifp->if_flags &= ~IFF_ALLMULTI;
3199 ETHER_FIRST_MULTI(step, ec, enm);
3200 if (enm == NULL)
3201 goto setit;
3202 while (enm != NULL) {
3203 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3204 /*
3205 * We must listen to a range of multicast addresses.
3206 * For now, just accept all multicasts, rather than
3207 * trying to set only those filter bits needed to match
3208 * the range. (At this time, the only use of address
3209 * ranges is for IP multicast routing, for which the
3210 * range is big enough to require all bits set.)
3211 */
3212 goto allmulti;
3213 }
3214
3215 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3216
3217 if (sc->sc_gigabit) {
3218 /* Just want the 11 most significant bits. */
3219 hash = crc >> 21;
3220 } else {
3221 /* Just want the 9 most significant bits. */
3222 hash = crc >> 23;
3223 }
3224
3225 slot = hash >> 4;
3226 bit = hash & 0xf;
3227
3228 /* Set the corresponding bit in the hash table. */
3229 mchash[slot] |= 1 << bit;
3230
3231 ETHER_NEXT_MULTI(step, enm);
3232 }
3233 sc->sc_rfcr |= RFCR_MHEN;
3234 goto setit;
3235
3236 allmulti:
3237 ifp->if_flags |= IFF_ALLMULTI;
3238 sc->sc_rfcr |= RFCR_AAM;
3239
3240 setit:
3241 #define FILTER_EMIT(addr, data) \
3242 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3243 delay(1); \
3244 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3245 delay(1)
3246
3247 /*
3248 * Disable receive filter, and program the node address.
3249 */
3250 cp = CLLADDR(ifp->if_sadl);
3251 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3252 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3253 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3254
3255 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3256 int nwords =
3257 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3258 /*
3259 * Program the multicast hash table.
3260 */
3261 for (i = 0; i < nwords; i++) {
3262 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3263 }
3264 }
3265 #undef FILTER_EMIT
3266 #undef MCHASH_NWORDS
3267 #undef MCHASH_NWORDS_83815
3268 #undef MCHASH_NWORDS_83820
3269
3270 /*
3271 * Re-enable the receiver filter.
3272 */
3273 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3274 }
3275
3276 /*
3277 * sip_dp83820_mii_readreg: [mii interface function]
3278 *
3279 * Read a PHY register on the MII of the DP83820.
3280 */
3281 static int
3282 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3283 {
3284 struct sip_softc *sc = device_private(self);
3285
3286 if (sc->sc_cfg & CFG_TBI_EN) {
3287 bus_addr_t tbireg;
3288 int rv;
3289
3290 if (phy != 0)
3291 return (0);
3292
3293 switch (reg) {
3294 case MII_BMCR: tbireg = SIP_TBICR; break;
3295 case MII_BMSR: tbireg = SIP_TBISR; break;
3296 case MII_ANAR: tbireg = SIP_TANAR; break;
3297 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3298 case MII_ANER: tbireg = SIP_TANER; break;
3299 case MII_EXTSR:
3300 /*
3301 * Don't even bother reading the TESR register.
3302 * The manual documents that the device has
3303 * 1000baseX full/half capability, but the
3304 * register itself seems read back 0 on some
3305 * boards. Just hard-code the result.
3306 */
3307 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3308
3309 default:
3310 return (0);
3311 }
3312
3313 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3314 if (tbireg == SIP_TBISR) {
3315 /* LINK and ACOMP are switched! */
3316 int val = rv;
3317
3318 rv = 0;
3319 if (val & TBISR_MR_LINK_STATUS)
3320 rv |= BMSR_LINK;
3321 if (val & TBISR_MR_AN_COMPLETE)
3322 rv |= BMSR_ACOMP;
3323
3324 /*
3325 * The manual claims this register reads back 0
3326 * on hard and soft reset. But we want to let
3327 * the gentbi driver know that we support auto-
3328 * negotiation, so hard-code this bit in the
3329 * result.
3330 */
3331 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3332 }
3333
3334 return (rv);
3335 }
3336
3337 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3338 }
3339
3340 /*
3341 * sip_dp83820_mii_writereg: [mii interface function]
3342 *
3343 * Write a PHY register on the MII of the DP83820.
3344 */
3345 static void
3346 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3347 {
3348 struct sip_softc *sc = device_private(self);
3349
3350 if (sc->sc_cfg & CFG_TBI_EN) {
3351 bus_addr_t tbireg;
3352
3353 if (phy != 0)
3354 return;
3355
3356 switch (reg) {
3357 case MII_BMCR: tbireg = SIP_TBICR; break;
3358 case MII_ANAR: tbireg = SIP_TANAR; break;
3359 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3360 default:
3361 return;
3362 }
3363
3364 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3365 return;
3366 }
3367
3368 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3369 }
3370
3371 /*
3372 * sip_dp83820_mii_statchg: [mii interface function]
3373 *
3374 * Callback from MII layer when media changes.
3375 */
3376 static void
3377 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3378 {
3379 struct sip_softc *sc = ifp->if_softc;
3380 struct mii_data *mii = &sc->sc_mii;
3381 u_int32_t cfg, pcr;
3382
3383 /*
3384 * Get flow control negotiation result.
3385 */
3386 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3387 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3388 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3389 mii->mii_media_active &= ~IFM_ETH_FMASK;
3390 }
3391
3392 /*
3393 * Update TXCFG for full-duplex operation.
3394 */
3395 if ((mii->mii_media_active & IFM_FDX) != 0)
3396 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3397 else
3398 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3399
3400 /*
3401 * Update RXCFG for full-duplex or loopback.
3402 */
3403 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3404 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3405 sc->sc_rxcfg |= RXCFG_ATX;
3406 else
3407 sc->sc_rxcfg &= ~RXCFG_ATX;
3408
3409 /*
3410 * Update CFG for MII/GMII.
3411 */
3412 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3413 cfg = sc->sc_cfg | CFG_MODE_1000;
3414 else
3415 cfg = sc->sc_cfg;
3416
3417 /*
3418 * 802.3x flow control.
3419 */
3420 pcr = 0;
3421 if (sc->sc_flowflags & IFM_FLOW) {
3422 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3423 pcr |= sc->sc_rx_flow_thresh;
3424 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3425 pcr |= PCR_PSEN | PCR_PS_MCAST;
3426 }
3427
3428 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3429 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3430 sc->sc_txcfg);
3431 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3432 sc->sc_rxcfg);
3433 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3434 }
3435
3436 /*
3437 * sip_mii_bitbang_read: [mii bit-bang interface function]
3438 *
3439 * Read the MII serial port for the MII bit-bang module.
3440 */
3441 static u_int32_t
3442 sipcom_mii_bitbang_read(device_t self)
3443 {
3444 struct sip_softc *sc = device_private(self);
3445
3446 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3447 }
3448
3449 /*
3450 * sip_mii_bitbang_write: [mii big-bang interface function]
3451 *
3452 * Write the MII serial port for the MII bit-bang module.
3453 */
3454 static void
3455 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3456 {
3457 struct sip_softc *sc = device_private(self);
3458
3459 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3460 }
3461
3462 /*
3463 * sip_sis900_mii_readreg: [mii interface function]
3464 *
3465 * Read a PHY register on the MII.
3466 */
3467 static int
3468 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3469 {
3470 struct sip_softc *sc = device_private(self);
3471 u_int32_t enphy;
3472
3473 /*
3474 * The PHY of recent SiS chipsets is accessed through bitbang
3475 * operations.
3476 */
3477 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3478 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3479 phy, reg);
3480
3481 #ifndef SIS900_MII_RESTRICT
3482 /*
3483 * The SiS 900 has only an internal PHY on the MII. Only allow
3484 * MII address 0.
3485 */
3486 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3487 return (0);
3488 #endif
3489
3490 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3491 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3492 ENPHY_RWCMD | ENPHY_ACCESS);
3493 do {
3494 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3495 } while (enphy & ENPHY_ACCESS);
3496 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3497 }
3498
3499 /*
3500 * sip_sis900_mii_writereg: [mii interface function]
3501 *
3502 * Write a PHY register on the MII.
3503 */
3504 static void
3505 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3506 {
3507 struct sip_softc *sc = device_private(self);
3508 u_int32_t enphy;
3509
3510 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3511 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3512 phy, reg, val);
3513 return;
3514 }
3515
3516 #ifndef SIS900_MII_RESTRICT
3517 /*
3518 * The SiS 900 has only an internal PHY on the MII. Only allow
3519 * MII address 0.
3520 */
3521 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3522 return;
3523 #endif
3524
3525 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3526 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3527 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3528 do {
3529 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3530 } while (enphy & ENPHY_ACCESS);
3531 }
3532
3533 /*
3534 * sip_sis900_mii_statchg: [mii interface function]
3535 *
3536 * Callback from MII layer when media changes.
3537 */
3538 static void
3539 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3540 {
3541 struct sip_softc *sc = ifp->if_softc;
3542 struct mii_data *mii = &sc->sc_mii;
3543 u_int32_t flowctl;
3544
3545 /*
3546 * Get flow control negotiation result.
3547 */
3548 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3549 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3550 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3551 mii->mii_media_active &= ~IFM_ETH_FMASK;
3552 }
3553
3554 /*
3555 * Update TXCFG for full-duplex operation.
3556 */
3557 if ((mii->mii_media_active & IFM_FDX) != 0)
3558 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3559 else
3560 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3561
3562 /*
3563 * Update RXCFG for full-duplex or loopback.
3564 */
3565 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3566 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3567 sc->sc_rxcfg |= RXCFG_ATX;
3568 else
3569 sc->sc_rxcfg &= ~RXCFG_ATX;
3570
3571 /*
3572 * Update IMR for use of 802.3x flow control.
3573 */
3574 if (sc->sc_flowflags & IFM_FLOW) {
3575 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3576 flowctl = FLOWCTL_FLOWEN;
3577 } else {
3578 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3579 flowctl = 0;
3580 }
3581
3582 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3583 sc->sc_txcfg);
3584 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3585 sc->sc_rxcfg);
3586 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3587 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3588 }
3589
3590 /*
3591 * sip_dp83815_mii_readreg: [mii interface function]
3592 *
3593 * Read a PHY register on the MII.
3594 */
3595 static int
3596 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3597 {
3598 struct sip_softc *sc = device_private(self);
3599 u_int32_t val;
3600
3601 /*
3602 * The DP83815 only has an internal PHY. Only allow
3603 * MII address 0.
3604 */
3605 if (phy != 0)
3606 return (0);
3607
3608 /*
3609 * Apparently, after a reset, the DP83815 can take a while
3610 * to respond. During this recovery period, the BMSR returns
3611 * a value of 0. Catch this -- it's not supposed to happen
3612 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3613 * PHY to come back to life.
3614 *
3615 * This works out because the BMSR is the first register
3616 * read during the PHY probe process.
3617 */
3618 do {
3619 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3620 } while (reg == MII_BMSR && val == 0);
3621
3622 return (val & 0xffff);
3623 }
3624
3625 /*
3626 * sip_dp83815_mii_writereg: [mii interface function]
3627 *
3628 * Write a PHY register to the MII.
3629 */
3630 static void
3631 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3632 {
3633 struct sip_softc *sc = device_private(self);
3634
3635 /*
3636 * The DP83815 only has an internal PHY. Only allow
3637 * MII address 0.
3638 */
3639 if (phy != 0)
3640 return;
3641
3642 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3643 }
3644
3645 /*
3646 * sip_dp83815_mii_statchg: [mii interface function]
3647 *
3648 * Callback from MII layer when media changes.
3649 */
3650 static void
3651 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3652 {
3653 struct sip_softc *sc = ifp->if_softc;
3654
3655 /*
3656 * Update TXCFG for full-duplex operation.
3657 */
3658 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3659 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3660 else
3661 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3662
3663 /*
3664 * Update RXCFG for full-duplex or loopback.
3665 */
3666 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3667 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3668 sc->sc_rxcfg |= RXCFG_ATX;
3669 else
3670 sc->sc_rxcfg &= ~RXCFG_ATX;
3671
3672 /*
3673 * XXX 802.3x flow control.
3674 */
3675
3676 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3677 sc->sc_txcfg);
3678 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3679 sc->sc_rxcfg);
3680
3681 /*
3682 * Some DP83815s experience problems when used with short
3683 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3684 * sequence adjusts the DSP's signal attenuation to fix the
3685 * problem.
3686 */
3687 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3688 uint32_t reg;
3689
3690 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3691
3692 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3693 reg &= 0x0fff;
3694 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3695 delay(100);
3696 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3697 reg &= 0x00ff;
3698 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3699 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3700 0x00e8);
3701 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3703 reg | 0x20);
3704 }
3705
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3707 }
3708 }
3709
3710 static void
3711 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3712 const struct pci_attach_args *pa, u_int8_t *enaddr)
3713 {
3714 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3715 u_int8_t cksum, *e, match;
3716 int i;
3717
3718 /*
3719 * EEPROM data format for the DP83820 can be found in
3720 * the DP83820 manual, section 4.2.4.
3721 */
3722
3723 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3724
3725 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3726 match = ~(match - 1);
3727
3728 cksum = 0x55;
3729 e = (u_int8_t *) eeprom_data;
3730 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3731 cksum += *e++;
3732
3733 if (cksum != match)
3734 printf("%s: Checksum (%x) mismatch (%x)",
3735 device_xname(sc->sc_dev), cksum, match);
3736
3737 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3738 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3739 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3740 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3741 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3742 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3743 }
3744
3745 static void
3746 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3747 {
3748 int i;
3749
3750 /*
3751 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3752 * a reason, but I don't know it.
3753 */
3754 for (i = 0; i < 10; i++)
3755 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3756 }
3757
3758 static void
3759 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3760 const struct pci_attach_args *pa, u_int8_t *enaddr)
3761 {
3762 u_int16_t myea[ETHER_ADDR_LEN / 2];
3763
3764 switch (sc->sc_rev) {
3765 case SIS_REV_630S:
3766 case SIS_REV_630E:
3767 case SIS_REV_630EA1:
3768 case SIS_REV_630ET:
3769 case SIS_REV_635:
3770 /*
3771 * The MAC address for the on-board Ethernet of
3772 * the SiS 630 chipset is in the NVRAM. Kick
3773 * the chip into re-loading it from NVRAM, and
3774 * read the MAC address out of the filter registers.
3775 */
3776 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3777
3778 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3779 RFCR_RFADDR_NODE0);
3780 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3781 0xffff;
3782
3783 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3784 RFCR_RFADDR_NODE2);
3785 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3786 0xffff;
3787
3788 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3789 RFCR_RFADDR_NODE4);
3790 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3791 0xffff;
3792 break;
3793
3794 case SIS_REV_960:
3795 {
3796 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3797 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3798
3799 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3800 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3801
3802 int waittime, i;
3803
3804 /* Allow to read EEPROM from LAN. It is shared
3805 * between a 1394 controller and the NIC and each
3806 * time we access it, we need to set SIS_EECMD_REQ.
3807 */
3808 SIS_SET_EROMAR(sc, EROMAR_REQ);
3809
3810 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3811 /* Force EEPROM to idle state. */
3812
3813 /*
3814 * XXX-cube This is ugly. I'll look for docs about it.
3815 */
3816 SIS_SET_EROMAR(sc, EROMAR_EECS);
3817 sipcom_sis900_eeprom_delay(sc);
3818 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3819 SIS_SET_EROMAR(sc, EROMAR_EESK);
3820 sipcom_sis900_eeprom_delay(sc);
3821 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3822 sipcom_sis900_eeprom_delay(sc);
3823 }
3824 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3825 sipcom_sis900_eeprom_delay(sc);
3826 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3827
3828 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3829 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3830 sizeof(myea) / sizeof(myea[0]), myea);
3831 break;
3832 }
3833 DELAY(1);
3834 }
3835
3836 /*
3837 * Set SIS_EECTL_CLK to high, so a other master
3838 * can operate on the i2c bus.
3839 */
3840 SIS_SET_EROMAR(sc, EROMAR_EESK);
3841
3842 /* Refuse EEPROM access by LAN */
3843 SIS_SET_EROMAR(sc, EROMAR_DONE);
3844 } break;
3845
3846 default:
3847 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3848 sizeof(myea) / sizeof(myea[0]), myea);
3849 }
3850
3851 enaddr[0] = myea[0] & 0xff;
3852 enaddr[1] = myea[0] >> 8;
3853 enaddr[2] = myea[1] & 0xff;
3854 enaddr[3] = myea[1] >> 8;
3855 enaddr[4] = myea[2] & 0xff;
3856 enaddr[5] = myea[2] >> 8;
3857 }
3858
3859 /* Table and macro to bit-reverse an octet. */
3860 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3861 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3862
3863 static void
3864 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3865 const struct pci_attach_args *pa, u_int8_t *enaddr)
3866 {
3867 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3868 u_int8_t cksum, *e, match;
3869 int i;
3870
3871 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3872 sizeof(eeprom_data[0]), eeprom_data);
3873
3874 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3875 match = ~(match - 1);
3876
3877 cksum = 0x55;
3878 e = (u_int8_t *) eeprom_data;
3879 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3880 cksum += *e++;
3881 }
3882 if (cksum != match) {
3883 printf("%s: Checksum (%x) mismatch (%x)",
3884 device_xname(sc->sc_dev), cksum, match);
3885 }
3886
3887 /*
3888 * Unrolled because it makes slightly more sense this way.
3889 * The DP83815 stores the MAC address in bit 0 of word 6
3890 * through bit 15 of word 8.
3891 */
3892 ea = &eeprom_data[6];
3893 enaddr[0] = ((*ea & 0x1) << 7);
3894 ea++;
3895 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3896 enaddr[1] = ((*ea & 0x1FE) >> 1);
3897 enaddr[2] = ((*ea & 0x1) << 7);
3898 ea++;
3899 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3900 enaddr[3] = ((*ea & 0x1FE) >> 1);
3901 enaddr[4] = ((*ea & 0x1) << 7);
3902 ea++;
3903 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3904 enaddr[5] = ((*ea & 0x1FE) >> 1);
3905
3906 /*
3907 * In case that's not weird enough, we also need to reverse
3908 * the bits in each byte. This all actually makes more sense
3909 * if you think about the EEPROM storage as an array of bits
3910 * being shifted into bytes, but that's not how we're looking
3911 * at it here...
3912 */
3913 for (i = 0; i < 6 ;i++)
3914 enaddr[i] = bbr(enaddr[i]);
3915 }
3916
3917 /*
3918 * sip_mediastatus: [ifmedia interface function]
3919 *
3920 * Get the current interface media status.
3921 */
3922 static void
3923 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3924 {
3925 struct sip_softc *sc = ifp->if_softc;
3926
3927 if (!device_is_active(sc->sc_dev)) {
3928 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3929 ifmr->ifm_status = 0;
3930 return;
3931 }
3932 ether_mediastatus(ifp, ifmr);
3933 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3934 sc->sc_flowflags;
3935 }
3936