Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.154.2.2
      1 /*	$NetBSD: if_sip.c,v 1.154.2.2 2013/06/23 06:20:18 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.154.2.2 2013/06/23 06:20:18 tls Exp $");
     77 
     78 
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/callout.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/malloc.h>
     85 #include <sys/kernel.h>
     86 #include <sys/socket.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/errno.h>
     89 #include <sys/device.h>
     90 #include <sys/queue.h>
     91 
     92 #include <sys/rnd.h>
     93 
     94 #include <net/if.h>
     95 #include <net/if_dl.h>
     96 #include <net/if_media.h>
     97 #include <net/if_ether.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 #include <machine/endian.h>
    104 
    105 #include <dev/mii/mii.h>
    106 #include <dev/mii/miivar.h>
    107 #include <dev/mii/mii_bitbang.h>
    108 
    109 #include <dev/pci/pcireg.h>
    110 #include <dev/pci/pcivar.h>
    111 #include <dev/pci/pcidevs.h>
    112 
    113 #include <dev/pci/if_sipreg.h>
    114 
    115 /*
    116  * Transmit descriptor list size.  This is arbitrary, but allocate
    117  * enough descriptors for 128 pending transmissions, and 8 segments
    118  * per packet (64 for DP83820 for jumbo frames).
    119  *
    120  * This MUST work out to a power of 2.
    121  */
    122 #define	GSIP_NTXSEGS_ALLOC 16
    123 #define	SIP_NTXSEGS_ALLOC 8
    124 
    125 #define	SIP_TXQUEUELEN		256
    126 #define	MAX_SIP_NTXDESC	\
    127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    128 
    129 /*
    130  * Receive descriptor list size.  We have one Rx buffer per incoming
    131  * packet, so this logic is a little simpler.
    132  *
    133  * Actually, on the DP83820, we allow the packet to consume more than
    134  * one buffer, in order to support jumbo Ethernet frames.  In that
    135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    137  * so we'd better be quick about handling receive interrupts.
    138  */
    139 #define	GSIP_NRXDESC		256
    140 #define	SIP_NRXDESC		128
    141 
    142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    143 
    144 /*
    145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    146  * a single clump that maps to a single DMA segment to make several things
    147  * easier.
    148  */
    149 struct sip_control_data {
    150 	/*
    151 	 * The transmit descriptors.
    152 	 */
    153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    154 
    155 	/*
    156 	 * The receive descriptors.
    157 	 */
    158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    159 };
    160 
    161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    164 
    165 /*
    166  * Software state for transmit jobs.
    167  */
    168 struct sip_txsoft {
    169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    171 	int txs_firstdesc;		/* first descriptor in packet */
    172 	int txs_lastdesc;		/* last descriptor in packet */
    173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    174 };
    175 
    176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    177 
    178 /*
    179  * Software state for receive jobs.
    180  */
    181 struct sip_rxsoft {
    182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    184 };
    185 
    186 enum sip_attach_stage {
    187 	  SIP_ATTACH_FIN = 0
    188 	, SIP_ATTACH_CREATE_RXMAP
    189 	, SIP_ATTACH_CREATE_TXMAP
    190 	, SIP_ATTACH_LOAD_MAP
    191 	, SIP_ATTACH_CREATE_MAP
    192 	, SIP_ATTACH_MAP_MEM
    193 	, SIP_ATTACH_ALLOC_MEM
    194 	, SIP_ATTACH_INTR
    195 	, SIP_ATTACH_MAP
    196 };
    197 
    198 /*
    199  * Software state per device.
    200  */
    201 struct sip_softc {
    202 	device_t sc_dev;		/* generic device information */
    203 	device_suspensor_t		sc_suspensor;
    204 	pmf_qual_t			sc_qual;
    205 
    206 	bus_space_tag_t sc_st;		/* bus space tag */
    207 	bus_space_handle_t sc_sh;	/* bus space handle */
    208 	bus_size_t sc_sz;		/* bus space size */
    209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    210 	pci_chipset_tag_t sc_pc;
    211 	bus_dma_segment_t sc_seg;
    212 	struct ethercom sc_ethercom;	/* ethernet common data */
    213 
    214 	const struct sip_product *sc_model; /* which model are we? */
    215 	int sc_gigabit;			/* 1: 83820, 0: other */
    216 	int sc_rev;			/* chip revision */
    217 
    218 	void *sc_ih;			/* interrupt cookie */
    219 
    220 	struct mii_data sc_mii;		/* MII/media information */
    221 
    222 	callout_t sc_tick_ch;		/* tick callout */
    223 
    224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    226 
    227 	/*
    228 	 * Software state for transmit and receive descriptors.
    229 	 */
    230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    232 
    233 	/*
    234 	 * Control data structures.
    235 	 */
    236 	struct sip_control_data *sc_control_data;
    237 #define	sc_txdescs	sc_control_data->scd_txdescs
    238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    239 
    240 #ifdef SIP_EVENT_COUNTERS
    241 	/*
    242 	 * Event counters.
    243 	 */
    244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    252 	/* DP83820 only */
    253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    260 #endif /* SIP_EVENT_COUNTERS */
    261 
    262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    264 	u_int32_t sc_imr;		/* prototype IMR register */
    265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    266 
    267 	u_int32_t sc_cfg;		/* prototype CFG register */
    268 
    269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    270 
    271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    273 
    274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    275 
    276 	int	sc_flowflags;		/* 802.3x flow control flags */
    277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    278 	int	sc_paused;		/* paused indication */
    279 
    280 	int	sc_txfree;		/* number of free Tx descriptors */
    281 	int	sc_txnext;		/* next ready Tx descriptor */
    282 	int	sc_txwin;		/* Tx descriptors since last intr */
    283 
    284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    286 
    287 	/* values of interface state at last init */
    288 	struct {
    289 		/* if_capenable */
    290 		uint64_t	if_capenable;
    291 		/* ec_capenable */
    292 		int		ec_capenable;
    293 		/* VLAN_ATTACHED */
    294 		int		is_vlan;
    295 	}	sc_prev;
    296 
    297 	short	sc_if_flags;
    298 
    299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    300 	int	sc_rxdiscard;
    301 	int	sc_rxlen;
    302 	struct mbuf *sc_rxhead;
    303 	struct mbuf *sc_rxtail;
    304 	struct mbuf **sc_rxtailp;
    305 
    306 	int sc_ntxdesc;
    307 	int sc_ntxdesc_mask;
    308 
    309 	int sc_nrxdesc_mask;
    310 
    311 	const struct sip_parm {
    312 		const struct sip_regs {
    313 			int r_rxcfg;
    314 			int r_txcfg;
    315 		} p_regs;
    316 
    317 		const struct sip_bits {
    318 			uint32_t b_txcfg_mxdma_8;
    319 			uint32_t b_txcfg_mxdma_16;
    320 			uint32_t b_txcfg_mxdma_32;
    321 			uint32_t b_txcfg_mxdma_64;
    322 			uint32_t b_txcfg_mxdma_128;
    323 			uint32_t b_txcfg_mxdma_256;
    324 			uint32_t b_txcfg_mxdma_512;
    325 			uint32_t b_txcfg_flth_mask;
    326 			uint32_t b_txcfg_drth_mask;
    327 
    328 			uint32_t b_rxcfg_mxdma_8;
    329 			uint32_t b_rxcfg_mxdma_16;
    330 			uint32_t b_rxcfg_mxdma_32;
    331 			uint32_t b_rxcfg_mxdma_64;
    332 			uint32_t b_rxcfg_mxdma_128;
    333 			uint32_t b_rxcfg_mxdma_256;
    334 			uint32_t b_rxcfg_mxdma_512;
    335 
    336 			uint32_t b_isr_txrcmp;
    337 			uint32_t b_isr_rxrcmp;
    338 			uint32_t b_isr_dperr;
    339 			uint32_t b_isr_sserr;
    340 			uint32_t b_isr_rmabt;
    341 			uint32_t b_isr_rtabt;
    342 
    343 			uint32_t b_cmdsts_size_mask;
    344 		} p_bits;
    345 		int		p_filtmem;
    346 		int		p_rxbuf_len;
    347 		bus_size_t	p_tx_dmamap_size;
    348 		int		p_ntxsegs;
    349 		int		p_ntxsegs_alloc;
    350 		int		p_nrxdesc;
    351 	} *sc_parm;
    352 
    353 	void (*sc_rxintr)(struct sip_softc *);
    354 
    355 	krndsource_t rnd_source;	/* random source */
    356 };
    357 
    358 #define	sc_bits	sc_parm->p_bits
    359 #define	sc_regs	sc_parm->p_regs
    360 
    361 static const struct sip_parm sip_parm = {
    362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    364 	, .p_tx_dmamap_size = MCLBYTES
    365 	, .p_ntxsegs = 16
    366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    367 	, .p_nrxdesc = SIP_NRXDESC
    368 	, .p_bits = {
    369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    378 
    379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    386 
    387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    394 	}
    395 	, .p_regs = {
    396 		.r_rxcfg = OTHER_SIP_RXCFG,
    397 		.r_txcfg = OTHER_SIP_TXCFG
    398 	}
    399 }, gsip_parm = {
    400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    401 	, .p_rxbuf_len = MCLBYTES - 8
    402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    403 	, .p_ntxsegs = 64
    404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    405 	, .p_nrxdesc = GSIP_NRXDESC
    406 	, .p_bits = {
    407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    416 
    417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    424 
    425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    432 	}
    433 	, .p_regs = {
    434 		.r_rxcfg = DP83820_SIP_RXCFG,
    435 		.r_txcfg = DP83820_SIP_TXCFG
    436 	}
    437 };
    438 
    439 static inline int
    440 sip_nexttx(const struct sip_softc *sc, int x)
    441 {
    442 	return (x + 1) & sc->sc_ntxdesc_mask;
    443 }
    444 
    445 static inline int
    446 sip_nextrx(const struct sip_softc *sc, int x)
    447 {
    448 	return (x + 1) & sc->sc_nrxdesc_mask;
    449 }
    450 
    451 /* 83820 only */
    452 static inline void
    453 sip_rxchain_reset(struct sip_softc *sc)
    454 {
    455 	sc->sc_rxtailp = &sc->sc_rxhead;
    456 	*sc->sc_rxtailp = NULL;
    457 	sc->sc_rxlen = 0;
    458 }
    459 
    460 /* 83820 only */
    461 static inline void
    462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    463 {
    464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    465 	sc->sc_rxtailp = &m->m_next;
    466 }
    467 
    468 #ifdef SIP_EVENT_COUNTERS
    469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    470 #else
    471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    472 #endif
    473 
    474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    476 
    477 static inline void
    478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    479 {
    480 	int x, n;
    481 
    482 	x = x0;
    483 	n = n0;
    484 
    485 	/* If it will wrap around, sync to the end of the ring. */
    486 	if (x + n > sc->sc_ntxdesc) {
    487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    489 		    (sc->sc_ntxdesc - x), ops);
    490 		n -= (sc->sc_ntxdesc - x);
    491 		x = 0;
    492 	}
    493 
    494 	/* Now sync whatever is left. */
    495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    497 }
    498 
    499 static inline void
    500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    501 {
    502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    504 }
    505 
    506 #if 0
    507 #ifdef DP83820
    508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    509 	u_int32_t	sipd_cmdsts;	/* command/status word */
    510 #else
    511 	u_int32_t	sipd_cmdsts;	/* command/status word */
    512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    513 #endif /* DP83820 */
    514 #endif /* 0 */
    515 
    516 static inline volatile uint32_t *
    517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    518 {
    519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    520 }
    521 
    522 static inline volatile uint32_t *
    523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    524 {
    525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    526 }
    527 
    528 static inline void
    529 sip_init_rxdesc(struct sip_softc *sc, int x)
    530 {
    531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    533 
    534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    538 	sipd->sipd_extsts = 0;
    539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    540 }
    541 
    542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    543 	((sc)->sc_model->sip_vendor == (v) &&				\
    544 	 (sc)->sc_model->sip_product == (p) &&				\
    545 	 (sc)->sc_rev == (r))
    546 
    547 #define	SIP_CHIP_MODEL(sc, v, p)					\
    548 	((sc)->sc_model->sip_vendor == (v) &&				\
    549 	 (sc)->sc_model->sip_product == (p))
    550 
    551 #define	SIP_SIS900_REV(sc, rev)						\
    552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    553 
    554 #define SIP_TIMEOUT 1000
    555 
    556 static int	sip_ifflags_cb(struct ethercom *);
    557 static void	sipcom_start(struct ifnet *);
    558 static void	sipcom_watchdog(struct ifnet *);
    559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    560 static int	sipcom_init(struct ifnet *);
    561 static void	sipcom_stop(struct ifnet *, int);
    562 
    563 static bool	sipcom_reset(struct sip_softc *);
    564 static void	sipcom_rxdrain(struct sip_softc *);
    565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    567 				      u_int16_t *);
    568 static void	sipcom_tick(void *);
    569 
    570 static void	sipcom_sis900_set_filter(struct sip_softc *);
    571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    572 
    573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    574 		    const struct pci_attach_args *, u_int8_t *);
    575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    577 		    const struct pci_attach_args *, u_int8_t *);
    578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    579 		    const struct pci_attach_args *, u_int8_t *);
    580 
    581 static int	sipcom_intr(void *);
    582 static void	sipcom_txintr(struct sip_softc *);
    583 static void	sip_rxintr(struct sip_softc *);
    584 static void	gsip_rxintr(struct sip_softc *);
    585 
    586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
    587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
    588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
    589 
    590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
    591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
    592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
    593 
    594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
    595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
    596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
    597 
    598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    599 
    600 static int	sipcom_match(device_t, cfdata_t, void *);
    601 static void	sipcom_attach(device_t, device_t, void *);
    602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    603 static int	sipcom_detach(device_t, int);
    604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    606 
    607 int	gsip_copy_small = 0;
    608 int	sip_copy_small = 0;
    609 
    610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    612     DVF_DETACH_SHUTDOWN);
    613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    615     DVF_DETACH_SHUTDOWN);
    616 
    617 /*
    618  * Descriptions of the variants of the SiS900.
    619  */
    620 struct sip_variant {
    621 	int	(*sipv_mii_readreg)(device_t, int, int);
    622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
    623 	void	(*sipv_mii_statchg)(struct ifnet *);
    624 	void	(*sipv_set_filter)(struct sip_softc *);
    625 	void	(*sipv_read_macaddr)(struct sip_softc *,
    626 		    const struct pci_attach_args *, u_int8_t *);
    627 };
    628 
    629 static u_int32_t sipcom_mii_bitbang_read(device_t);
    630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
    631 
    632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    633 	sipcom_mii_bitbang_read,
    634 	sipcom_mii_bitbang_write,
    635 	{
    636 		EROMAR_MDIO,		/* MII_BIT_MDO */
    637 		EROMAR_MDIO,		/* MII_BIT_MDI */
    638 		EROMAR_MDC,		/* MII_BIT_MDC */
    639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    640 		0,			/* MII_BIT_DIR_PHY_HOST */
    641 	}
    642 };
    643 
    644 static const struct sip_variant sipcom_variant_dp83820 = {
    645 	sipcom_dp83820_mii_readreg,
    646 	sipcom_dp83820_mii_writereg,
    647 	sipcom_dp83820_mii_statchg,
    648 	sipcom_dp83815_set_filter,
    649 	sipcom_dp83820_read_macaddr,
    650 };
    651 
    652 static const struct sip_variant sipcom_variant_sis900 = {
    653 	sipcom_sis900_mii_readreg,
    654 	sipcom_sis900_mii_writereg,
    655 	sipcom_sis900_mii_statchg,
    656 	sipcom_sis900_set_filter,
    657 	sipcom_sis900_read_macaddr,
    658 };
    659 
    660 static const struct sip_variant sipcom_variant_dp83815 = {
    661 	sipcom_dp83815_mii_readreg,
    662 	sipcom_dp83815_mii_writereg,
    663 	sipcom_dp83815_mii_statchg,
    664 	sipcom_dp83815_set_filter,
    665 	sipcom_dp83815_read_macaddr,
    666 };
    667 
    668 
    669 /*
    670  * Devices supported by this driver.
    671  */
    672 static const struct sip_product {
    673 	pci_vendor_id_t		sip_vendor;
    674 	pci_product_id_t	sip_product;
    675 	const char		*sip_name;
    676 	const struct sip_variant *sip_variant;
    677 	int			sip_gigabit;
    678 } sipcom_products[] = {
    679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    680 	  "NatSemi DP83820 Gigabit Ethernet",
    681 	  &sipcom_variant_dp83820, 1 },
    682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    683 	  "SiS 900 10/100 Ethernet",
    684 	  &sipcom_variant_sis900, 0 },
    685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    686 	  "SiS 7016 10/100 Ethernet",
    687 	  &sipcom_variant_sis900, 0 },
    688 
    689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    690 	  "NatSemi DP83815 10/100 Ethernet",
    691 	  &sipcom_variant_dp83815, 0 },
    692 
    693 	{ 0,			0,
    694 	  NULL,
    695 	  NULL, 0 },
    696 };
    697 
    698 static const struct sip_product *
    699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    700 {
    701 	const struct sip_product *sip;
    702 
    703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    706 		    sip->sip_gigabit == gigabit)
    707 			return sip;
    708 	}
    709 	return NULL;
    710 }
    711 
    712 /*
    713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    716  * which means we try to use 64-bit data transfers on those cards if we
    717  * happen to be plugged into a 32-bit slot.
    718  *
    719  * What we do is use this table of cards known to be 64-bit cards.  If
    720  * you have a 64-bit card who's subsystem ID is not listed in this table,
    721  * send the output of "pcictl dump ..." of the device to me so that your
    722  * card will use the 64-bit data path when plugged into a 64-bit slot.
    723  *
    724  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    725  *	   June 30, 2002
    726  */
    727 static int
    728 sipcom_check_64bit(const struct pci_attach_args *pa)
    729 {
    730 	static const struct {
    731 		pci_vendor_id_t c64_vendor;
    732 		pci_product_id_t c64_product;
    733 	} card64[] = {
    734 		/* Asante GigaNIX */
    735 		{ 0x128a,	0x0002 },
    736 
    737 		/* Accton EN1407-T, Planex GN-1000TE */
    738 		{ 0x1113,	0x1407 },
    739 
    740 		/* Netgear GA621 */
    741 		{ 0x1385,	0x621a },
    742 
    743 		/* Netgear GA622 */
    744 		{ 0x1385,	0x622a },
    745 
    746 		/* SMC EZ Card 1000 (9462TX) */
    747 		{ 0x10b8,	0x9462 },
    748 
    749 		{ 0, 0}
    750 	};
    751 	pcireg_t subsys;
    752 	int i;
    753 
    754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    755 
    756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    759 			return (1);
    760 	}
    761 
    762 	return (0);
    763 }
    764 
    765 static int
    766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    767 {
    768 	struct pci_attach_args *pa = aux;
    769 
    770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    771 		return 1;
    772 
    773 	return 0;
    774 }
    775 
    776 static void
    777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    778 {
    779 	u_int32_t reg;
    780 	int i;
    781 
    782 	/*
    783 	 * Cause the chip to load configuration data from the EEPROM.
    784 	 */
    785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    786 	for (i = 0; i < 10000; i++) {
    787 		delay(10);
    788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    789 		    PTSCR_EELOAD_EN) == 0)
    790 			break;
    791 	}
    792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    793 	    PTSCR_EELOAD_EN) {
    794 		printf("%s: timeout loading configuration from EEPROM\n",
    795 		    device_xname(sc->sc_dev));
    796 		return;
    797 	}
    798 
    799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    800 
    801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    802 	if (reg & CFG_PCI64_DET) {
    803 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    804 		/*
    805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    806 		 * data transfers.
    807 		 *
    808 		 * We can't use the DATA64_EN bit in the EEPROM, because
    809 		 * vendors of 32-bit cards fail to clear that bit in many
    810 		 * cases (yet the card still detects that it's in a 64-bit
    811 		 * slot; go figure).
    812 		 */
    813 		if (sipcom_check_64bit(pa)) {
    814 			sc->sc_cfg |= CFG_DATA64_EN;
    815 			printf(", using 64-bit data transfers");
    816 		}
    817 		printf("\n");
    818 	}
    819 
    820 	/*
    821 	 * XXX Need some PCI flags indicating support for
    822 	 * XXX 64-bit addressing.
    823 	 */
    824 #if 0
    825 	if (reg & CFG_M64ADDR)
    826 		sc->sc_cfg |= CFG_M64ADDR;
    827 	if (reg & CFG_T64ADDR)
    828 		sc->sc_cfg |= CFG_T64ADDR;
    829 #endif
    830 
    831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    832 		const char *sep = "";
    833 		printf("%s: using ", device_xname(sc->sc_dev));
    834 		if (reg & CFG_EXT_125) {
    835 			sc->sc_cfg |= CFG_EXT_125;
    836 			printf("%s125MHz clock", sep);
    837 			sep = ", ";
    838 		}
    839 		if (reg & CFG_TBI_EN) {
    840 			sc->sc_cfg |= CFG_TBI_EN;
    841 			printf("%sten-bit interface", sep);
    842 			sep = ", ";
    843 		}
    844 		printf("\n");
    845 	}
    846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    847 	    (reg & CFG_MRM_DIS) != 0)
    848 		sc->sc_cfg |= CFG_MRM_DIS;
    849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    850 	    (reg & CFG_MWI_DIS) != 0)
    851 		sc->sc_cfg |= CFG_MWI_DIS;
    852 
    853 	/*
    854 	 * Use the extended descriptor format on the DP83820.  This
    855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    856 	 * checksumming.
    857 	 */
    858 	sc->sc_cfg |= CFG_EXTSTS_EN;
    859 }
    860 
    861 static int
    862 sipcom_detach(device_t self, int flags)
    863 {
    864 	int s;
    865 
    866 	s = splnet();
    867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    868 	splx(s);
    869 
    870 	return 0;
    871 }
    872 
    873 static void
    874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    875 {
    876 	int i;
    877 	struct sip_softc *sc = device_private(self);
    878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    879 
    880 	/*
    881 	 * Free any resources we've allocated during attach.
    882 	 * Do this in reverse order and fall through.
    883 	 */
    884 	switch (stage) {
    885 	case SIP_ATTACH_FIN:
    886 		sipcom_stop(ifp, 1);
    887 		pmf_device_deregister(self);
    888 #ifdef SIP_EVENT_COUNTERS
    889 		/*
    890 		 * Attach event counters.
    891 		 */
    892 		evcnt_detach(&sc->sc_ev_txforceintr);
    893 		evcnt_detach(&sc->sc_ev_txdstall);
    894 		evcnt_detach(&sc->sc_ev_txsstall);
    895 		evcnt_detach(&sc->sc_ev_hiberr);
    896 		evcnt_detach(&sc->sc_ev_rxintr);
    897 		evcnt_detach(&sc->sc_ev_txiintr);
    898 		evcnt_detach(&sc->sc_ev_txdintr);
    899 		if (!sc->sc_gigabit) {
    900 			evcnt_detach(&sc->sc_ev_rxpause);
    901 		} else {
    902 			evcnt_detach(&sc->sc_ev_txudpsum);
    903 			evcnt_detach(&sc->sc_ev_txtcpsum);
    904 			evcnt_detach(&sc->sc_ev_txipsum);
    905 			evcnt_detach(&sc->sc_ev_rxudpsum);
    906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    907 			evcnt_detach(&sc->sc_ev_rxipsum);
    908 			evcnt_detach(&sc->sc_ev_txpause);
    909 			evcnt_detach(&sc->sc_ev_rxpause);
    910 		}
    911 #endif /* SIP_EVENT_COUNTERS */
    912 
    913 		rnd_detach_source(&sc->rnd_source);
    914 
    915 		ether_ifdetach(ifp);
    916 		if_detach(ifp);
    917 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    918 
    919 		/*FALLTHROUGH*/
    920 	case SIP_ATTACH_CREATE_RXMAP:
    921 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    922 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    923 				bus_dmamap_destroy(sc->sc_dmat,
    924 				    sc->sc_rxsoft[i].rxs_dmamap);
    925 		}
    926 		/*FALLTHROUGH*/
    927 	case SIP_ATTACH_CREATE_TXMAP:
    928 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    929 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    930 				bus_dmamap_destroy(sc->sc_dmat,
    931 				    sc->sc_txsoft[i].txs_dmamap);
    932 		}
    933 		/*FALLTHROUGH*/
    934 	case SIP_ATTACH_LOAD_MAP:
    935 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    936 		/*FALLTHROUGH*/
    937 	case SIP_ATTACH_CREATE_MAP:
    938 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    939 		/*FALLTHROUGH*/
    940 	case SIP_ATTACH_MAP_MEM:
    941 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    942 		    sizeof(struct sip_control_data));
    943 		/*FALLTHROUGH*/
    944 	case SIP_ATTACH_ALLOC_MEM:
    945 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    946 		/* FALLTHROUGH*/
    947 	case SIP_ATTACH_INTR:
    948 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    949 		/* FALLTHROUGH*/
    950 	case SIP_ATTACH_MAP:
    951 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    952 		break;
    953 	default:
    954 		break;
    955 	}
    956 	return;
    957 }
    958 
    959 static bool
    960 sipcom_resume(device_t self, const pmf_qual_t *qual)
    961 {
    962 	struct sip_softc *sc = device_private(self);
    963 
    964 	return sipcom_reset(sc);
    965 }
    966 
    967 static bool
    968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    969 {
    970 	struct sip_softc *sc = device_private(self);
    971 
    972 	sipcom_rxdrain(sc);
    973 	return true;
    974 }
    975 
    976 static void
    977 sipcom_attach(device_t parent, device_t self, void *aux)
    978 {
    979 	struct sip_softc *sc = device_private(self);
    980 	struct pci_attach_args *pa = aux;
    981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    982 	pci_chipset_tag_t pc = pa->pa_pc;
    983 	pci_intr_handle_t ih;
    984 	const char *intrstr = NULL;
    985 	bus_space_tag_t iot, memt;
    986 	bus_space_handle_t ioh, memh;
    987 	bus_size_t iosz, memsz;
    988 	int ioh_valid, memh_valid;
    989 	int i, rseg, error;
    990 	const struct sip_product *sip;
    991 	u_int8_t enaddr[ETHER_ADDR_LEN];
    992 	pcireg_t csr;
    993 	pcireg_t memtype;
    994 	bus_size_t tx_dmamap_size;
    995 	int ntxsegs_alloc;
    996 	cfdata_t cf = device_cfdata(self);
    997 
    998 	callout_init(&sc->sc_tick_ch, 0);
    999 
   1000 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1001 	if (sip == NULL) {
   1002 		printf("\n");
   1003 		panic("%s: impossible", __func__);
   1004 	}
   1005 	sc->sc_dev = self;
   1006 	sc->sc_gigabit = sip->sip_gigabit;
   1007 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1008 	sc->sc_pc = pc;
   1009 
   1010 	if (sc->sc_gigabit) {
   1011 		sc->sc_rxintr = gsip_rxintr;
   1012 		sc->sc_parm = &gsip_parm;
   1013 	} else {
   1014 		sc->sc_rxintr = sip_rxintr;
   1015 		sc->sc_parm = &sip_parm;
   1016 	}
   1017 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1018 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1019 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1020 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1021 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1022 
   1023 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1024 
   1025 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1026 
   1027 	sc->sc_model = sip;
   1028 
   1029 	/*
   1030 	 * XXX Work-around broken PXE firmware on some boards.
   1031 	 *
   1032 	 * The DP83815 shares an address decoder with the MEM BAR
   1033 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1034 	 * so that memory mapped access works.
   1035 	 */
   1036 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1037 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1038 	    ~PCI_MAPREG_ROM_ENABLE);
   1039 
   1040 	/*
   1041 	 * Map the device.
   1042 	 */
   1043 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1044 	    PCI_MAPREG_TYPE_IO, 0,
   1045 	    &iot, &ioh, NULL, &iosz) == 0);
   1046 	if (sc->sc_gigabit) {
   1047 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1048 		switch (memtype) {
   1049 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1051 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1052 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1053 			break;
   1054 		default:
   1055 			memh_valid = 0;
   1056 		}
   1057 	} else {
   1058 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1059 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1060 		    &memt, &memh, NULL, &memsz) == 0);
   1061 	}
   1062 
   1063 	if (memh_valid) {
   1064 		sc->sc_st = memt;
   1065 		sc->sc_sh = memh;
   1066 		sc->sc_sz = memsz;
   1067 	} else if (ioh_valid) {
   1068 		sc->sc_st = iot;
   1069 		sc->sc_sh = ioh;
   1070 		sc->sc_sz = iosz;
   1071 	} else {
   1072 		printf("%s: unable to map device registers\n",
   1073 		    device_xname(sc->sc_dev));
   1074 		return;
   1075 	}
   1076 
   1077 	sc->sc_dmat = pa->pa_dmat;
   1078 
   1079 	/*
   1080 	 * Make sure bus mastering is enabled.  Also make sure
   1081 	 * Write/Invalidate is enabled if we're allowed to use it.
   1082 	 */
   1083 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1084 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1085 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1086 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1087 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1088 
   1089 	/* power up chip */
   1090 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1091 	if (error != 0 && error != EOPNOTSUPP) {
   1092 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1093 		return;
   1094 	}
   1095 
   1096 	/*
   1097 	 * Map and establish our interrupt.
   1098 	 */
   1099 	if (pci_intr_map(pa, &ih)) {
   1100 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1101 		return;
   1102 	}
   1103 	intrstr = pci_intr_string(pc, ih);
   1104 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
   1105 	if (sc->sc_ih == NULL) {
   1106 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1107 		if (intrstr != NULL)
   1108 			aprint_error(" at %s", intrstr);
   1109 		aprint_error("\n");
   1110 		sipcom_do_detach(self, SIP_ATTACH_MAP);
   1111 		return;
   1112 	}
   1113 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1114 
   1115 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1116 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1117 
   1118 	/*
   1119 	 * Allocate the control data structures, and create and load the
   1120 	 * DMA map for it.
   1121 	 */
   1122 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1123 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1124 	    &rseg, 0)) != 0) {
   1125 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
   1126 		    error);
   1127 		sipcom_do_detach(self, SIP_ATTACH_INTR);
   1128 		return;
   1129 	}
   1130 
   1131 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1132 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1133 	    BUS_DMA_COHERENT)) != 0) {
   1134 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
   1135 		    error);
   1136 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1137 	}
   1138 
   1139 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1140 	    sizeof(struct sip_control_data), 1,
   1141 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1142 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
   1143 		    "error = %d\n", error);
   1144 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1145 	}
   1146 
   1147 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1148 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1149 	    0)) != 0) {
   1150 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
   1151 		    error);
   1152 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1153 	}
   1154 
   1155 	/*
   1156 	 * Create the transmit buffer DMA maps.
   1157 	 */
   1158 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1159 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1160 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1161 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1162 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
   1163 			    "error = %d\n", i, error);
   1164 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1165 		}
   1166 	}
   1167 
   1168 	/*
   1169 	 * Create the receive buffer DMA maps.
   1170 	 */
   1171 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1172 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1173 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1174 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
   1175 			    "error = %d\n", i, error);
   1176 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1177 		}
   1178 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1179 	}
   1180 
   1181 	/*
   1182 	 * Reset the chip to a known state.
   1183 	 */
   1184 	sipcom_reset(sc);
   1185 
   1186 	/*
   1187 	 * Read the Ethernet address from the EEPROM.  This might
   1188 	 * also fetch other stuff from the EEPROM and stash it
   1189 	 * in the softc.
   1190 	 */
   1191 	sc->sc_cfg = 0;
   1192 	if (!sc->sc_gigabit) {
   1193 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1194 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1195 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1196 
   1197 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1198 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1199 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1200 			sc->sc_cfg |=
   1201 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1202 			     CFG_EDBMASTEN);
   1203 	}
   1204 
   1205 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1206 
   1207 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
   1208 	    ether_sprintf(enaddr));
   1209 
   1210 	/*
   1211 	 * Initialize the configuration register: aggressive PCI
   1212 	 * bus request algorithm, default backoff, default OW timer,
   1213 	 * default parity error detection.
   1214 	 *
   1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1216 	 * friends -- it affects packet data, not descriptors.
   1217 	 */
   1218 	if (sc->sc_gigabit)
   1219 		sipcom_dp83820_attach(sc, pa);
   1220 
   1221 	/*
   1222 	 * Initialize our media structures and probe the MII.
   1223 	 */
   1224 	sc->sc_mii.mii_ifp = ifp;
   1225 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1226 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1227 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1228 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1229 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1230 	    sipcom_mediastatus);
   1231 
   1232 	/*
   1233 	 * XXX We cannot handle flow control on the DP83815.
   1234 	 */
   1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1236 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1237 			   MII_OFFSET_ANY, 0);
   1238 	else
   1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1241 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1242 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1244 	} else
   1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1246 
   1247 	ifp = &sc->sc_ethercom.ec_if;
   1248 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1249 	ifp->if_softc = sc;
   1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1251 	sc->sc_if_flags = ifp->if_flags;
   1252 	ifp->if_ioctl = sipcom_ioctl;
   1253 	ifp->if_start = sipcom_start;
   1254 	ifp->if_watchdog = sipcom_watchdog;
   1255 	ifp->if_init = sipcom_init;
   1256 	ifp->if_stop = sipcom_stop;
   1257 	IFQ_SET_READY(&ifp->if_snd);
   1258 
   1259 	/*
   1260 	 * We can support 802.1Q VLAN-sized frames.
   1261 	 */
   1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1263 
   1264 	if (sc->sc_gigabit) {
   1265 		/*
   1266 		 * And the DP83820 can do VLAN tagging in hardware, and
   1267 		 * support the jumbo Ethernet MTU.
   1268 		 */
   1269 		sc->sc_ethercom.ec_capabilities |=
   1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1271 
   1272 		/*
   1273 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1274 		 * in hardware.
   1275 		 */
   1276 		ifp->if_capabilities |=
   1277 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1278 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1279 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1280 	}
   1281 
   1282 	/*
   1283 	 * Attach the interface.
   1284 	 */
   1285 	if_attach(ifp);
   1286 	ether_ifattach(ifp, enaddr);
   1287 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1288 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1289 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1290 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1291 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1292 	    RND_TYPE_NET, 0);
   1293 
   1294 	/*
   1295 	 * The number of bytes that must be available in
   1296 	 * the Tx FIFO before the bus master can DMA more
   1297 	 * data into the FIFO.
   1298 	 */
   1299 	sc->sc_tx_fill_thresh = 64 / 32;
   1300 
   1301 	/*
   1302 	 * Start at a drain threshold of 512 bytes.  We will
   1303 	 * increase it if a DMA underrun occurs.
   1304 	 *
   1305 	 * XXX The minimum value of this variable should be
   1306 	 * tuned.  We may be able to improve performance
   1307 	 * by starting with a lower value.  That, however,
   1308 	 * may trash the first few outgoing packets if the
   1309 	 * PCI bus is saturated.
   1310 	 */
   1311 	if (sc->sc_gigabit)
   1312 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1313 	else
   1314 		sc->sc_tx_drain_thresh = 1504 / 32;
   1315 
   1316 	/*
   1317 	 * Initialize the Rx FIFO drain threshold.
   1318 	 *
   1319 	 * This is in units of 8 bytes.
   1320 	 *
   1321 	 * We should never set this value lower than 2; 14 bytes are
   1322 	 * required to filter the packet.
   1323 	 */
   1324 	sc->sc_rx_drain_thresh = 128 / 8;
   1325 
   1326 #ifdef SIP_EVENT_COUNTERS
   1327 	/*
   1328 	 * Attach event counters.
   1329 	 */
   1330 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1331 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1332 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1333 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1334 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1335 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1336 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1337 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1338 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1339 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1340 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1341 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1342 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1343 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1344 	if (!sc->sc_gigabit) {
   1345 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1346 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1347 	} else {
   1348 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1349 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1350 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1351 		    NULL, device_xname(sc->sc_dev), "txpause");
   1352 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1353 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1354 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1355 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1356 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1357 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1358 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1359 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1360 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1361 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1362 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1363 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1364 	}
   1365 #endif /* SIP_EVENT_COUNTERS */
   1366 
   1367 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1368 		pmf_class_network_register(self, ifp);
   1369 	else
   1370 		aprint_error_dev(self, "couldn't establish power handler\n");
   1371 }
   1372 
   1373 static inline void
   1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1375     uint64_t capenable)
   1376 {
   1377 	struct m_tag *mtag;
   1378 	u_int32_t extsts;
   1379 #ifdef DEBUG
   1380 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1381 #endif
   1382 	/*
   1383 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1384 	 * up the descriptor to encapsulate the packet for us.
   1385 	 *
   1386 	 * This apparently has to be on the last descriptor of
   1387 	 * the packet.
   1388 	 */
   1389 
   1390 	/*
   1391 	 * Byte swapping is tricky. We need to provide the tag
   1392 	 * in a network byte order. On a big-endian machine,
   1393 	 * the byteorder is correct, but we need to swap it
   1394 	 * anyway, because this will be undone by the outside
   1395 	 * htole32(). That's why there must be an
   1396 	 * unconditional swap instead of htons() inside.
   1397 	 */
   1398 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1399 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1400 		    htole32(EXTSTS_VPKT |
   1401 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1402 				 EXTSTS_VTCI));
   1403 	}
   1404 
   1405 	/*
   1406 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1407 	 * checksumming, set up the descriptor to do this work
   1408 	 * for us.
   1409 	 *
   1410 	 * This apparently has to be on the first descriptor of
   1411 	 * the packet.
   1412 	 *
   1413 	 * Byte-swap constants so the compiler can optimize.
   1414 	 */
   1415 	extsts = 0;
   1416 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1417 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1418 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1419 		extsts |= htole32(EXTSTS_IPPKT);
   1420 	}
   1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1423 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1424 		extsts |= htole32(EXTSTS_TCPPKT);
   1425 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1426 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1427 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1428 		extsts |= htole32(EXTSTS_UDPPKT);
   1429 	}
   1430 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1431 }
   1432 
   1433 /*
   1434  * sip_start:		[ifnet interface function]
   1435  *
   1436  *	Start packet transmission on the interface.
   1437  */
   1438 static void
   1439 sipcom_start(struct ifnet *ifp)
   1440 {
   1441 	struct sip_softc *sc = ifp->if_softc;
   1442 	struct mbuf *m0;
   1443 	struct mbuf *m;
   1444 	struct sip_txsoft *txs;
   1445 	bus_dmamap_t dmamap;
   1446 	int error, nexttx, lasttx, seg;
   1447 	int ofree = sc->sc_txfree;
   1448 #if 0
   1449 	int firsttx = sc->sc_txnext;
   1450 #endif
   1451 
   1452 	/*
   1453 	 * If we've been told to pause, don't transmit any more packets.
   1454 	 */
   1455 	if (!sc->sc_gigabit && sc->sc_paused)
   1456 		ifp->if_flags |= IFF_OACTIVE;
   1457 
   1458 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1459 		return;
   1460 
   1461 	/*
   1462 	 * Loop through the send queue, setting up transmit descriptors
   1463 	 * until we drain the queue, or use up all available transmit
   1464 	 * descriptors.
   1465 	 */
   1466 	for (;;) {
   1467 		/* Get a work queue entry. */
   1468 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1469 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1470 			break;
   1471 		}
   1472 
   1473 		/*
   1474 		 * Grab a packet off the queue.
   1475 		 */
   1476 		IFQ_POLL(&ifp->if_snd, m0);
   1477 		if (m0 == NULL)
   1478 			break;
   1479 		m = NULL;
   1480 
   1481 		dmamap = txs->txs_dmamap;
   1482 
   1483 		/*
   1484 		 * Load the DMA map.  If this fails, the packet either
   1485 		 * didn't fit in the alloted number of segments, or we
   1486 		 * were short on resources.
   1487 		 */
   1488 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1489 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1490 		/* In the non-gigabit case, we'll copy and try again. */
   1491 		if (error != 0 && !sc->sc_gigabit) {
   1492 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1493 			if (m == NULL) {
   1494 				printf("%s: unable to allocate Tx mbuf\n",
   1495 				    device_xname(sc->sc_dev));
   1496 				break;
   1497 			}
   1498 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1499 			if (m0->m_pkthdr.len > MHLEN) {
   1500 				MCLGET(m, M_DONTWAIT);
   1501 				if ((m->m_flags & M_EXT) == 0) {
   1502 					printf("%s: unable to allocate Tx "
   1503 					    "cluster\n", device_xname(sc->sc_dev));
   1504 					m_freem(m);
   1505 					break;
   1506 				}
   1507 			}
   1508 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1509 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1510 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1511 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1512 			if (error) {
   1513 				printf("%s: unable to load Tx buffer, "
   1514 				    "error = %d\n", device_xname(sc->sc_dev), error);
   1515 				break;
   1516 			}
   1517 		} else if (error == EFBIG) {
   1518 			/*
   1519 			 * For the too-many-segments case, we simply
   1520 			 * report an error and drop the packet,
   1521 			 * since we can't sanely copy a jumbo packet
   1522 			 * to a single buffer.
   1523 			 */
   1524 			printf("%s: Tx packet consumes too many "
   1525 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
   1526 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1527 			m_freem(m0);
   1528 			continue;
   1529 		} else if (error != 0) {
   1530 			/*
   1531 			 * Short on resources, just stop for now.
   1532 			 */
   1533 			break;
   1534 		}
   1535 
   1536 		/*
   1537 		 * Ensure we have enough descriptors free to describe
   1538 		 * the packet.  Note, we always reserve one descriptor
   1539 		 * at the end of the ring as a termination point, to
   1540 		 * prevent wrap-around.
   1541 		 */
   1542 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1543 			/*
   1544 			 * Not enough free descriptors to transmit this
   1545 			 * packet.  We haven't committed anything yet,
   1546 			 * so just unload the DMA map, put the packet
   1547 			 * back on the queue, and punt.  Notify the upper
   1548 			 * layer that there are not more slots left.
   1549 			 *
   1550 			 * XXX We could allocate an mbuf and copy, but
   1551 			 * XXX is it worth it?
   1552 			 */
   1553 			ifp->if_flags |= IFF_OACTIVE;
   1554 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1555 			if (m != NULL)
   1556 				m_freem(m);
   1557 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1558 			break;
   1559 		}
   1560 
   1561 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1562 		if (m != NULL) {
   1563 			m_freem(m0);
   1564 			m0 = m;
   1565 		}
   1566 
   1567 		/*
   1568 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1569 		 */
   1570 
   1571 		/* Sync the DMA map. */
   1572 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1573 		    BUS_DMASYNC_PREWRITE);
   1574 
   1575 		/*
   1576 		 * Initialize the transmit descriptors.
   1577 		 */
   1578 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1579 		     seg < dmamap->dm_nsegs;
   1580 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1581 			/*
   1582 			 * If this is the first descriptor we're
   1583 			 * enqueueing, don't set the OWN bit just
   1584 			 * yet.  That could cause a race condition.
   1585 			 * We'll do it below.
   1586 			 */
   1587 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1588 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1589 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1590 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1591 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1592 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1593 			lasttx = nexttx;
   1594 		}
   1595 
   1596 		/* Clear the MORE bit on the last segment. */
   1597 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1598 		    htole32(~CMDSTS_MORE);
   1599 
   1600 		/*
   1601 		 * If we're in the interrupt delay window, delay the
   1602 		 * interrupt.
   1603 		 */
   1604 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1605 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1606 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1607 			    htole32(CMDSTS_INTR);
   1608 			sc->sc_txwin = 0;
   1609 		}
   1610 
   1611 		if (sc->sc_gigabit)
   1612 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1613 
   1614 		/* Sync the descriptors we're using. */
   1615 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1616 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1617 
   1618 		/*
   1619 		 * The entire packet is set up.  Give the first descrptor
   1620 		 * to the chip now.
   1621 		 */
   1622 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1623 		    htole32(CMDSTS_OWN);
   1624 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1625 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1626 
   1627 		/*
   1628 		 * Store a pointer to the packet so we can free it later,
   1629 		 * and remember what txdirty will be once the packet is
   1630 		 * done.
   1631 		 */
   1632 		txs->txs_mbuf = m0;
   1633 		txs->txs_firstdesc = sc->sc_txnext;
   1634 		txs->txs_lastdesc = lasttx;
   1635 
   1636 		/* Advance the tx pointer. */
   1637 		sc->sc_txfree -= dmamap->dm_nsegs;
   1638 		sc->sc_txnext = nexttx;
   1639 
   1640 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1641 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1642 
   1643 		/*
   1644 		 * Pass the packet to any BPF listeners.
   1645 		 */
   1646 		bpf_mtap(ifp, m0);
   1647 	}
   1648 
   1649 	if (txs == NULL || sc->sc_txfree == 0) {
   1650 		/* No more slots left; notify upper layer. */
   1651 		ifp->if_flags |= IFF_OACTIVE;
   1652 	}
   1653 
   1654 	if (sc->sc_txfree != ofree) {
   1655 		/*
   1656 		 * Start the transmit process.  Note, the manual says
   1657 		 * that if there are no pending transmissions in the
   1658 		 * chip's internal queue (indicated by TXE being clear),
   1659 		 * then the driver software must set the TXDP to the
   1660 		 * first descriptor to be transmitted.  However, if we
   1661 		 * do this, it causes serious performance degredation on
   1662 		 * the DP83820 under load, not setting TXDP doesn't seem
   1663 		 * to adversely affect the SiS 900 or DP83815.
   1664 		 *
   1665 		 * Well, I guess it wouldn't be the first time a manual
   1666 		 * has lied -- and they could be speaking of the NULL-
   1667 		 * terminated descriptor list case, rather than OWN-
   1668 		 * terminated rings.
   1669 		 */
   1670 #if 0
   1671 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1672 		     CR_TXE) == 0) {
   1673 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1674 			    SIP_CDTXADDR(sc, firsttx));
   1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1676 		}
   1677 #else
   1678 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1679 #endif
   1680 
   1681 		/* Set a watchdog timer in case the chip flakes out. */
   1682 		/* Gigabit autonegotiation takes 5 seconds. */
   1683 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1684 	}
   1685 }
   1686 
   1687 /*
   1688  * sip_watchdog:	[ifnet interface function]
   1689  *
   1690  *	Watchdog timer handler.
   1691  */
   1692 static void
   1693 sipcom_watchdog(struct ifnet *ifp)
   1694 {
   1695 	struct sip_softc *sc = ifp->if_softc;
   1696 
   1697 	/*
   1698 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1699 	 * If we get a timeout, try and sweep up transmit descriptors.
   1700 	 * If we manage to sweep them all up, ignore the lack of
   1701 	 * interrupt.
   1702 	 */
   1703 	sipcom_txintr(sc);
   1704 
   1705 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1706 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1707 		ifp->if_oerrors++;
   1708 
   1709 		/* Reset the interface. */
   1710 		(void) sipcom_init(ifp);
   1711 	} else if (ifp->if_flags & IFF_DEBUG)
   1712 		printf("%s: recovered from device timeout\n",
   1713 		    device_xname(sc->sc_dev));
   1714 
   1715 	/* Try to get more packets going. */
   1716 	sipcom_start(ifp);
   1717 }
   1718 
   1719 /* If the interface is up and running, only modify the receive
   1720  * filter when setting promiscuous or debug mode.  Otherwise fall
   1721  * through to ether_ioctl, which will reset the chip.
   1722  */
   1723 static int
   1724 sip_ifflags_cb(struct ethercom *ec)
   1725 {
   1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1727 			 == (sc)->sc_ethercom.ec_capenable)		\
   1728 			&& ((sc)->sc_prev.is_vlan ==			\
   1729 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1731 	struct ifnet *ifp = &ec->ec_if;
   1732 	struct sip_softc *sc = ifp->if_softc;
   1733 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1734 
   1735 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1736 	    !COMPARE_IC(sc, ifp))
   1737 		return ENETRESET;
   1738 	/* Set up the receive filter. */
   1739 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1740 	return 0;
   1741 }
   1742 
   1743 /*
   1744  * sip_ioctl:		[ifnet interface function]
   1745  *
   1746  *	Handle control requests from the operator.
   1747  */
   1748 static int
   1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1750 {
   1751 	struct sip_softc *sc = ifp->if_softc;
   1752 	struct ifreq *ifr = (struct ifreq *)data;
   1753 	int s, error;
   1754 
   1755 	s = splnet();
   1756 
   1757 	switch (cmd) {
   1758 	case SIOCSIFMEDIA:
   1759 		/* Flow control requires full-duplex mode. */
   1760 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1761 		    (ifr->ifr_media & IFM_FDX) == 0)
   1762 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1763 
   1764 		/* XXX */
   1765 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1766 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1767 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1768 			if (sc->sc_gigabit &&
   1769 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1770 				/* We can do both TXPAUSE and RXPAUSE. */
   1771 				ifr->ifr_media |=
   1772 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1773 			} else if (ifr->ifr_media & IFM_FLOW) {
   1774 				/*
   1775 				 * Both TXPAUSE and RXPAUSE must be set.
   1776 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1777 				 * feature.)
   1778 				 *
   1779 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1780 				 */
   1781 				ifr->ifr_media |=
   1782 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1783 			}
   1784 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1785 		}
   1786 		/*FALLTHROUGH*/
   1787 	default:
   1788 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1789 			break;
   1790 
   1791 		error = 0;
   1792 
   1793 		if (cmd == SIOCSIFCAP)
   1794 			error = (*ifp->if_init)(ifp);
   1795 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1796 			;
   1797 		else if (ifp->if_flags & IFF_RUNNING) {
   1798 			/*
   1799 			 * Multicast list has changed; set the hardware filter
   1800 			 * accordingly.
   1801 			 */
   1802 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1803 		}
   1804 		break;
   1805 	}
   1806 
   1807 	/* Try to get more packets going. */
   1808 	sipcom_start(ifp);
   1809 
   1810 	sc->sc_if_flags = ifp->if_flags;
   1811 	splx(s);
   1812 	return (error);
   1813 }
   1814 
   1815 /*
   1816  * sip_intr:
   1817  *
   1818  *	Interrupt service routine.
   1819  */
   1820 static int
   1821 sipcom_intr(void *arg)
   1822 {
   1823 	struct sip_softc *sc = arg;
   1824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1825 	u_int32_t isr;
   1826 	int handled = 0;
   1827 
   1828 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1829 		return 0;
   1830 
   1831 	/* Disable interrupts. */
   1832 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1833 
   1834 	for (;;) {
   1835 		/* Reading clears interrupt. */
   1836 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1837 		if ((isr & sc->sc_imr) == 0)
   1838 			break;
   1839 
   1840 		rnd_add_uint32(&sc->rnd_source, isr);
   1841 
   1842 		handled = 1;
   1843 
   1844 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1845 			break;
   1846 
   1847 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1848 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1849 
   1850 			/* Grab any new packets. */
   1851 			(*sc->sc_rxintr)(sc);
   1852 
   1853 			if (isr & ISR_RXORN) {
   1854 				printf("%s: receive FIFO overrun\n",
   1855 				    device_xname(sc->sc_dev));
   1856 
   1857 				/* XXX adjust rx_drain_thresh? */
   1858 			}
   1859 
   1860 			if (isr & ISR_RXIDLE) {
   1861 				printf("%s: receive ring overrun\n",
   1862 				    device_xname(sc->sc_dev));
   1863 
   1864 				/* Get the receive process going again. */
   1865 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1866 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1868 				    SIP_CR, CR_RXE);
   1869 			}
   1870 		}
   1871 
   1872 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1873 #ifdef SIP_EVENT_COUNTERS
   1874 			if (isr & ISR_TXDESC)
   1875 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1876 			else if (isr & ISR_TXIDLE)
   1877 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1878 #endif
   1879 
   1880 			/* Sweep up transmit descriptors. */
   1881 			sipcom_txintr(sc);
   1882 
   1883 			if (isr & ISR_TXURN) {
   1884 				u_int32_t thresh;
   1885 				int txfifo_size = (sc->sc_gigabit)
   1886 				    ? DP83820_SIP_TXFIFO_SIZE
   1887 				    : OTHER_SIP_TXFIFO_SIZE;
   1888 
   1889 				printf("%s: transmit FIFO underrun",
   1890 				    device_xname(sc->sc_dev));
   1891 				thresh = sc->sc_tx_drain_thresh + 1;
   1892 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1893 				&& (thresh * 32) <= (txfifo_size -
   1894 				     (sc->sc_tx_fill_thresh * 32))) {
   1895 					printf("; increasing Tx drain "
   1896 					    "threshold to %u bytes\n",
   1897 					    thresh * 32);
   1898 					sc->sc_tx_drain_thresh = thresh;
   1899 					(void) sipcom_init(ifp);
   1900 				} else {
   1901 					(void) sipcom_init(ifp);
   1902 					printf("\n");
   1903 				}
   1904 			}
   1905 		}
   1906 
   1907 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1908 			if (isr & ISR_PAUSE_ST) {
   1909 				sc->sc_paused = 1;
   1910 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1911 				ifp->if_flags |= IFF_OACTIVE;
   1912 			}
   1913 			if (isr & ISR_PAUSE_END) {
   1914 				sc->sc_paused = 0;
   1915 				ifp->if_flags &= ~IFF_OACTIVE;
   1916 			}
   1917 		}
   1918 
   1919 		if (isr & ISR_HIBERR) {
   1920 			int want_init = 0;
   1921 
   1922 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1923 
   1924 #define	PRINTERR(bit, str)						\
   1925 			do {						\
   1926 				if ((isr & (bit)) != 0) {		\
   1927 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1928 						printf("%s: %s\n",	\
   1929 						    device_xname(sc->sc_dev), str); \
   1930 					want_init = 1;			\
   1931 				}					\
   1932 			} while (/*CONSTCOND*/0)
   1933 
   1934 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1935 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1936 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1937 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1938 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1939 			/*
   1940 			 * Ignore:
   1941 			 *	Tx reset complete
   1942 			 *	Rx reset complete
   1943 			 */
   1944 			if (want_init)
   1945 				(void) sipcom_init(ifp);
   1946 #undef PRINTERR
   1947 		}
   1948 	}
   1949 
   1950 	/* Re-enable interrupts. */
   1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1952 
   1953 	/* Try to get more packets going. */
   1954 	sipcom_start(ifp);
   1955 
   1956 	return (handled);
   1957 }
   1958 
   1959 /*
   1960  * sip_txintr:
   1961  *
   1962  *	Helper; handle transmit interrupts.
   1963  */
   1964 static void
   1965 sipcom_txintr(struct sip_softc *sc)
   1966 {
   1967 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1968 	struct sip_txsoft *txs;
   1969 	u_int32_t cmdsts;
   1970 
   1971 	if (sc->sc_paused == 0)
   1972 		ifp->if_flags &= ~IFF_OACTIVE;
   1973 
   1974 	/*
   1975 	 * Go through our Tx list and free mbufs for those
   1976 	 * frames which have been transmitted.
   1977 	 */
   1978 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1979 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1980 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1981 
   1982 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   1983 		if (cmdsts & CMDSTS_OWN)
   1984 			break;
   1985 
   1986 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1987 
   1988 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1989 
   1990 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1991 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1992 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1993 		m_freem(txs->txs_mbuf);
   1994 		txs->txs_mbuf = NULL;
   1995 
   1996 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1997 
   1998 		/*
   1999 		 * Check for errors and collisions.
   2000 		 */
   2001 		if (cmdsts &
   2002 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2003 			ifp->if_oerrors++;
   2004 			if (cmdsts & CMDSTS_Tx_EC)
   2005 				ifp->if_collisions += 16;
   2006 			if (ifp->if_flags & IFF_DEBUG) {
   2007 				if (cmdsts & CMDSTS_Tx_ED)
   2008 					printf("%s: excessive deferral\n",
   2009 					    device_xname(sc->sc_dev));
   2010 				if (cmdsts & CMDSTS_Tx_EC)
   2011 					printf("%s: excessive collisions\n",
   2012 					    device_xname(sc->sc_dev));
   2013 			}
   2014 		} else {
   2015 			/* Packet was transmitted successfully. */
   2016 			ifp->if_opackets++;
   2017 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2018 		}
   2019 	}
   2020 
   2021 	/*
   2022 	 * If there are no more pending transmissions, cancel the watchdog
   2023 	 * timer.
   2024 	 */
   2025 	if (txs == NULL) {
   2026 		ifp->if_timer = 0;
   2027 		sc->sc_txwin = 0;
   2028 	}
   2029 }
   2030 
   2031 /*
   2032  * gsip_rxintr:
   2033  *
   2034  *	Helper; handle receive interrupts on gigabit parts.
   2035  */
   2036 static void
   2037 gsip_rxintr(struct sip_softc *sc)
   2038 {
   2039 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2040 	struct sip_rxsoft *rxs;
   2041 	struct mbuf *m;
   2042 	u_int32_t cmdsts, extsts;
   2043 	int i, len;
   2044 
   2045 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2046 		rxs = &sc->sc_rxsoft[i];
   2047 
   2048 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2049 
   2050 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2051 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2052 		len = CMDSTS_SIZE(sc, cmdsts);
   2053 
   2054 		/*
   2055 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2056 		 * consumer of the receive ring, so if the bit is clear,
   2057 		 * we have processed all of the packets.
   2058 		 */
   2059 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2060 			/*
   2061 			 * We have processed all of the receive buffers.
   2062 			 */
   2063 			break;
   2064 		}
   2065 
   2066 		if (__predict_false(sc->sc_rxdiscard)) {
   2067 			sip_init_rxdesc(sc, i);
   2068 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2069 				/* Reset our state. */
   2070 				sc->sc_rxdiscard = 0;
   2071 			}
   2072 			continue;
   2073 		}
   2074 
   2075 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2076 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2077 
   2078 		m = rxs->rxs_mbuf;
   2079 
   2080 		/*
   2081 		 * Add a new receive buffer to the ring.
   2082 		 */
   2083 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2084 			/*
   2085 			 * Failed, throw away what we've done so
   2086 			 * far, and discard the rest of the packet.
   2087 			 */
   2088 			ifp->if_ierrors++;
   2089 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2090 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2091 			sip_init_rxdesc(sc, i);
   2092 			if (cmdsts & CMDSTS_MORE)
   2093 				sc->sc_rxdiscard = 1;
   2094 			if (sc->sc_rxhead != NULL)
   2095 				m_freem(sc->sc_rxhead);
   2096 			sip_rxchain_reset(sc);
   2097 			continue;
   2098 		}
   2099 
   2100 		sip_rxchain_link(sc, m);
   2101 
   2102 		m->m_len = len;
   2103 
   2104 		/*
   2105 		 * If this is not the end of the packet, keep
   2106 		 * looking.
   2107 		 */
   2108 		if (cmdsts & CMDSTS_MORE) {
   2109 			sc->sc_rxlen += len;
   2110 			continue;
   2111 		}
   2112 
   2113 		/*
   2114 		 * Okay, we have the entire packet now.  The chip includes
   2115 		 * the FCS, so we need to trim it.
   2116 		 */
   2117 		m->m_len -= ETHER_CRC_LEN;
   2118 
   2119 		*sc->sc_rxtailp = NULL;
   2120 		len = m->m_len + sc->sc_rxlen;
   2121 		m = sc->sc_rxhead;
   2122 
   2123 		sip_rxchain_reset(sc);
   2124 
   2125 		/*
   2126 		 * If an error occurred, update stats and drop the packet.
   2127 		 */
   2128 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2129 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2130 			ifp->if_ierrors++;
   2131 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2132 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2133 				/* Receive overrun handled elsewhere. */
   2134 				printf("%s: receive descriptor error\n",
   2135 				    device_xname(sc->sc_dev));
   2136 			}
   2137 #define	PRINTERR(bit, str)						\
   2138 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2139 			    (cmdsts & (bit)) != 0)			\
   2140 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2141 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2142 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2143 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2144 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2145 #undef PRINTERR
   2146 			m_freem(m);
   2147 			continue;
   2148 		}
   2149 
   2150 		/*
   2151 		 * If the packet is small enough to fit in a
   2152 		 * single header mbuf, allocate one and copy
   2153 		 * the data into it.  This greatly reduces
   2154 		 * memory consumption when we receive lots
   2155 		 * of small packets.
   2156 		 */
   2157 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2158 			struct mbuf *nm;
   2159 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2160 			if (nm == NULL) {
   2161 				ifp->if_ierrors++;
   2162 				m_freem(m);
   2163 				continue;
   2164 			}
   2165 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2166 			nm->m_data += 2;
   2167 			nm->m_pkthdr.len = nm->m_len = len;
   2168 			m_copydata(m, 0, len, mtod(nm, void *));
   2169 			m_freem(m);
   2170 			m = nm;
   2171 		}
   2172 #ifndef __NO_STRICT_ALIGNMENT
   2173 		else {
   2174 			/*
   2175 			 * The DP83820's receive buffers must be 4-byte
   2176 			 * aligned.  But this means that the data after
   2177 			 * the Ethernet header is misaligned.  To compensate,
   2178 			 * we have artificially shortened the buffer size
   2179 			 * in the descriptor, and we do an overlapping copy
   2180 			 * of the data two bytes further in (in the first
   2181 			 * buffer of the chain only).
   2182 			 */
   2183 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2184 			    m->m_len);
   2185 			m->m_data += 2;
   2186 		}
   2187 #endif /* ! __NO_STRICT_ALIGNMENT */
   2188 
   2189 		/*
   2190 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2191 		 * for us.  Associate the tag with the packet.
   2192 		 */
   2193 
   2194 		/*
   2195 		 * Again, byte swapping is tricky. Hardware provided
   2196 		 * the tag in the network byte order, but extsts was
   2197 		 * passed through le32toh() in the meantime. On a
   2198 		 * big-endian machine, we need to swap it again. On a
   2199 		 * little-endian machine, we need to convert from the
   2200 		 * network to host byte order. This means that we must
   2201 		 * swap it in any case, so unconditional swap instead
   2202 		 * of htons() is used.
   2203 		 */
   2204 		if ((extsts & EXTSTS_VPKT) != 0) {
   2205 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2206 			    continue);
   2207 		}
   2208 
   2209 		/*
   2210 		 * Set the incoming checksum information for the
   2211 		 * packet.
   2212 		 */
   2213 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2214 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2215 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2216 			if (extsts & EXTSTS_Rx_IPERR)
   2217 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2218 			if (extsts & EXTSTS_TCPPKT) {
   2219 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2220 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2221 				if (extsts & EXTSTS_Rx_TCPERR)
   2222 					m->m_pkthdr.csum_flags |=
   2223 					    M_CSUM_TCP_UDP_BAD;
   2224 			} else if (extsts & EXTSTS_UDPPKT) {
   2225 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2226 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2227 				if (extsts & EXTSTS_Rx_UDPERR)
   2228 					m->m_pkthdr.csum_flags |=
   2229 					    M_CSUM_TCP_UDP_BAD;
   2230 			}
   2231 		}
   2232 
   2233 		ifp->if_ipackets++;
   2234 		m->m_pkthdr.rcvif = ifp;
   2235 		m->m_pkthdr.len = len;
   2236 
   2237 		/*
   2238 		 * Pass this up to any BPF listeners, but only
   2239 		 * pass if up the stack if it's for us.
   2240 		 */
   2241 		bpf_mtap(ifp, m);
   2242 
   2243 		/* Pass it on. */
   2244 		(*ifp->if_input)(ifp, m);
   2245 	}
   2246 
   2247 	/* Update the receive pointer. */
   2248 	sc->sc_rxptr = i;
   2249 }
   2250 
   2251 /*
   2252  * sip_rxintr:
   2253  *
   2254  *	Helper; handle receive interrupts on 10/100 parts.
   2255  */
   2256 static void
   2257 sip_rxintr(struct sip_softc *sc)
   2258 {
   2259 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2260 	struct sip_rxsoft *rxs;
   2261 	struct mbuf *m;
   2262 	u_int32_t cmdsts;
   2263 	int i, len;
   2264 
   2265 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2266 		rxs = &sc->sc_rxsoft[i];
   2267 
   2268 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2269 
   2270 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2271 
   2272 		/*
   2273 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2274 		 * consumer of the receive ring, so if the bit is clear,
   2275 		 * we have processed all of the packets.
   2276 		 */
   2277 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2278 			/*
   2279 			 * We have processed all of the receive buffers.
   2280 			 */
   2281 			break;
   2282 		}
   2283 
   2284 		/*
   2285 		 * If any collisions were seen on the wire, count one.
   2286 		 */
   2287 		if (cmdsts & CMDSTS_Rx_COL)
   2288 			ifp->if_collisions++;
   2289 
   2290 		/*
   2291 		 * If an error occurred, update stats, clear the status
   2292 		 * word, and leave the packet buffer in place.  It will
   2293 		 * simply be reused the next time the ring comes around.
   2294 		 */
   2295 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2296 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2297 			ifp->if_ierrors++;
   2298 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2299 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2300 				/* Receive overrun handled elsewhere. */
   2301 				printf("%s: receive descriptor error\n",
   2302 				    device_xname(sc->sc_dev));
   2303 			}
   2304 #define	PRINTERR(bit, str)						\
   2305 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2306 			    (cmdsts & (bit)) != 0)			\
   2307 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2308 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2309 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2310 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2311 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2312 #undef PRINTERR
   2313 			sip_init_rxdesc(sc, i);
   2314 			continue;
   2315 		}
   2316 
   2317 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2318 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2319 
   2320 		/*
   2321 		 * No errors; receive the packet.  Note, the SiS 900
   2322 		 * includes the CRC with every packet.
   2323 		 */
   2324 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2325 
   2326 #ifdef __NO_STRICT_ALIGNMENT
   2327 		/*
   2328 		 * If the packet is small enough to fit in a
   2329 		 * single header mbuf, allocate one and copy
   2330 		 * the data into it.  This greatly reduces
   2331 		 * memory consumption when we receive lots
   2332 		 * of small packets.
   2333 		 *
   2334 		 * Otherwise, we add a new buffer to the receive
   2335 		 * chain.  If this fails, we drop the packet and
   2336 		 * recycle the old buffer.
   2337 		 */
   2338 		if (sip_copy_small != 0 && len <= MHLEN) {
   2339 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2340 			if (m == NULL)
   2341 				goto dropit;
   2342 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2343 			memcpy(mtod(m, void *),
   2344 			    mtod(rxs->rxs_mbuf, void *), len);
   2345 			sip_init_rxdesc(sc, i);
   2346 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2347 			    rxs->rxs_dmamap->dm_mapsize,
   2348 			    BUS_DMASYNC_PREREAD);
   2349 		} else {
   2350 			m = rxs->rxs_mbuf;
   2351 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2352  dropit:
   2353 				ifp->if_ierrors++;
   2354 				sip_init_rxdesc(sc, i);
   2355 				bus_dmamap_sync(sc->sc_dmat,
   2356 				    rxs->rxs_dmamap, 0,
   2357 				    rxs->rxs_dmamap->dm_mapsize,
   2358 				    BUS_DMASYNC_PREREAD);
   2359 				continue;
   2360 			}
   2361 		}
   2362 #else
   2363 		/*
   2364 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2365 		 * But this means that the data after the Ethernet header
   2366 		 * is misaligned.  We must allocate a new buffer and
   2367 		 * copy the data, shifted forward 2 bytes.
   2368 		 */
   2369 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2370 		if (m == NULL) {
   2371  dropit:
   2372 			ifp->if_ierrors++;
   2373 			sip_init_rxdesc(sc, i);
   2374 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2375 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2376 			continue;
   2377 		}
   2378 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2379 		if (len > (MHLEN - 2)) {
   2380 			MCLGET(m, M_DONTWAIT);
   2381 			if ((m->m_flags & M_EXT) == 0) {
   2382 				m_freem(m);
   2383 				goto dropit;
   2384 			}
   2385 		}
   2386 		m->m_data += 2;
   2387 
   2388 		/*
   2389 		 * Note that we use clusters for incoming frames, so the
   2390 		 * buffer is virtually contiguous.
   2391 		 */
   2392 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2393 
   2394 		/* Allow the receive descriptor to continue using its mbuf. */
   2395 		sip_init_rxdesc(sc, i);
   2396 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2397 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2398 #endif /* __NO_STRICT_ALIGNMENT */
   2399 
   2400 		ifp->if_ipackets++;
   2401 		m->m_pkthdr.rcvif = ifp;
   2402 		m->m_pkthdr.len = m->m_len = len;
   2403 
   2404 		/*
   2405 		 * Pass this up to any BPF listeners, but only
   2406 		 * pass if up the stack if it's for us.
   2407 		 */
   2408 		bpf_mtap(ifp, m);
   2409 
   2410 		/* Pass it on. */
   2411 		(*ifp->if_input)(ifp, m);
   2412 	}
   2413 
   2414 	/* Update the receive pointer. */
   2415 	sc->sc_rxptr = i;
   2416 }
   2417 
   2418 /*
   2419  * sip_tick:
   2420  *
   2421  *	One second timer, used to tick the MII.
   2422  */
   2423 static void
   2424 sipcom_tick(void *arg)
   2425 {
   2426 	struct sip_softc *sc = arg;
   2427 	int s;
   2428 
   2429 	s = splnet();
   2430 #ifdef SIP_EVENT_COUNTERS
   2431 	if (sc->sc_gigabit) {
   2432 		/* Read PAUSE related counts from MIB registers. */
   2433 		sc->sc_ev_rxpause.ev_count +=
   2434 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2435 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2436 		sc->sc_ev_txpause.ev_count +=
   2437 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2438 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2439 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2440 	}
   2441 #endif /* SIP_EVENT_COUNTERS */
   2442 	mii_tick(&sc->sc_mii);
   2443 	splx(s);
   2444 
   2445 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2446 }
   2447 
   2448 /*
   2449  * sip_reset:
   2450  *
   2451  *	Perform a soft reset on the SiS 900.
   2452  */
   2453 static bool
   2454 sipcom_reset(struct sip_softc *sc)
   2455 {
   2456 	bus_space_tag_t st = sc->sc_st;
   2457 	bus_space_handle_t sh = sc->sc_sh;
   2458 	int i;
   2459 
   2460 	bus_space_write_4(st, sh, SIP_IER, 0);
   2461 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2462 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2463 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2464 
   2465 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2466 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2467 			break;
   2468 		delay(2);
   2469 	}
   2470 
   2471 	if (i == SIP_TIMEOUT) {
   2472 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
   2473 		return false;
   2474 	}
   2475 
   2476 	delay(1000);
   2477 
   2478 	if (sc->sc_gigabit) {
   2479 		/*
   2480 		 * Set the general purpose I/O bits.  Do it here in case we
   2481 		 * need to have GPIO set up to talk to the media interface.
   2482 		 */
   2483 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2484 		delay(1000);
   2485 	}
   2486 	return true;
   2487 }
   2488 
   2489 static void
   2490 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2491 {
   2492 	u_int32_t reg;
   2493 	bus_space_tag_t st = sc->sc_st;
   2494 	bus_space_handle_t sh = sc->sc_sh;
   2495 	/*
   2496 	 * Initialize the VLAN/IP receive control register.
   2497 	 * We enable checksum computation on all incoming
   2498 	 * packets, and do not reject packets w/ bad checksums.
   2499 	 */
   2500 	reg = 0;
   2501 	if (capenable &
   2502 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2503 		reg |= VRCR_IPEN;
   2504 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2505 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2506 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2507 
   2508 	/*
   2509 	 * Initialize the VLAN/IP transmit control register.
   2510 	 * We enable outgoing checksum computation on a
   2511 	 * per-packet basis.
   2512 	 */
   2513 	reg = 0;
   2514 	if (capenable &
   2515 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2516 		reg |= VTCR_PPCHK;
   2517 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2518 		reg |= VTCR_VPPTI;
   2519 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2520 
   2521 	/*
   2522 	 * If we're using VLANs, initialize the VLAN data register.
   2523 	 * To understand why we bswap the VLAN Ethertype, see section
   2524 	 * 4.2.36 of the DP83820 manual.
   2525 	 */
   2526 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2527 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2528 }
   2529 
   2530 /*
   2531  * sip_init:		[ ifnet interface function ]
   2532  *
   2533  *	Initialize the interface.  Must be called at splnet().
   2534  */
   2535 static int
   2536 sipcom_init(struct ifnet *ifp)
   2537 {
   2538 	struct sip_softc *sc = ifp->if_softc;
   2539 	bus_space_tag_t st = sc->sc_st;
   2540 	bus_space_handle_t sh = sc->sc_sh;
   2541 	struct sip_txsoft *txs;
   2542 	struct sip_rxsoft *rxs;
   2543 	struct sip_desc *sipd;
   2544 	int i, error = 0;
   2545 
   2546 	if (device_is_active(sc->sc_dev)) {
   2547 		/*
   2548 		 * Cancel any pending I/O.
   2549 		 */
   2550 		sipcom_stop(ifp, 0);
   2551 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2552 	           !device_is_active(sc->sc_dev))
   2553 		return 0;
   2554 
   2555 	/*
   2556 	 * Reset the chip to a known state.
   2557 	 */
   2558 	if (!sipcom_reset(sc))
   2559 		return EBUSY;
   2560 
   2561 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2562 		/*
   2563 		 * DP83815 manual, page 78:
   2564 		 *    4.4 Recommended Registers Configuration
   2565 		 *    For optimum performance of the DP83815, version noted
   2566 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2567 		 *    modifications must be followed in sequence...
   2568 		 *
   2569 		 * It's not clear if this should be 302h or 203h because that
   2570 		 * chip name is listed as SRR 302h in the description of the
   2571 		 * SRR register.  However, my revision 302h DP83815 on the
   2572 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2573 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2574 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2575 		 * this set or not.  [briggs -- 09 March 2001]
   2576 		 *
   2577 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2578 		 * and that this sets reserved bits in that register.
   2579 		 */
   2580 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2581 
   2582 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2583 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2584 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2585 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2586 
   2587 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2588 	}
   2589 
   2590 	/*
   2591 	 * Initialize the transmit descriptor ring.
   2592 	 */
   2593 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2594 		sipd = &sc->sc_txdescs[i];
   2595 		memset(sipd, 0, sizeof(struct sip_desc));
   2596 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2597 	}
   2598 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2599 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2600 	sc->sc_txfree = sc->sc_ntxdesc;
   2601 	sc->sc_txnext = 0;
   2602 	sc->sc_txwin = 0;
   2603 
   2604 	/*
   2605 	 * Initialize the transmit job descriptors.
   2606 	 */
   2607 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2608 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2609 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2610 		txs = &sc->sc_txsoft[i];
   2611 		txs->txs_mbuf = NULL;
   2612 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2613 	}
   2614 
   2615 	/*
   2616 	 * Initialize the receive descriptor and receive job
   2617 	 * descriptor rings.
   2618 	 */
   2619 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2620 		rxs = &sc->sc_rxsoft[i];
   2621 		if (rxs->rxs_mbuf == NULL) {
   2622 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2623 				printf("%s: unable to allocate or map rx "
   2624 				    "buffer %d, error = %d\n",
   2625 				    device_xname(sc->sc_dev), i, error);
   2626 				/*
   2627 				 * XXX Should attempt to run with fewer receive
   2628 				 * XXX buffers instead of just failing.
   2629 				 */
   2630 				sipcom_rxdrain(sc);
   2631 				goto out;
   2632 			}
   2633 		} else
   2634 			sip_init_rxdesc(sc, i);
   2635 	}
   2636 	sc->sc_rxptr = 0;
   2637 	sc->sc_rxdiscard = 0;
   2638 	sip_rxchain_reset(sc);
   2639 
   2640 	/*
   2641 	 * Set the configuration register; it's already initialized
   2642 	 * in sip_attach().
   2643 	 */
   2644 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2645 
   2646 	/*
   2647 	 * Initialize the prototype TXCFG register.
   2648 	 */
   2649 	if (sc->sc_gigabit) {
   2650 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2651 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2652 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2653 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2654 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2655 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2656 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2657 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2658 	} else {
   2659 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2660 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2661 	}
   2662 
   2663 	sc->sc_txcfg |= TXCFG_ATP |
   2664 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2665 	    sc->sc_tx_drain_thresh;
   2666 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2667 
   2668 	/*
   2669 	 * Initialize the receive drain threshold if we have never
   2670 	 * done so.
   2671 	 */
   2672 	if (sc->sc_rx_drain_thresh == 0) {
   2673 		/*
   2674 		 * XXX This value should be tuned.  This is set to the
   2675 		 * maximum of 248 bytes, and we may be able to improve
   2676 		 * performance by decreasing it (although we should never
   2677 		 * set this value lower than 2; 14 bytes are required to
   2678 		 * filter the packet).
   2679 		 */
   2680 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2681 	}
   2682 
   2683 	/*
   2684 	 * Initialize the prototype RXCFG register.
   2685 	 */
   2686 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2687 	/*
   2688 	 * Accept long packets (including FCS) so we can handle
   2689 	 * 802.1q-tagged frames and jumbo frames properly.
   2690 	 */
   2691 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2692 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2693 		sc->sc_rxcfg |= RXCFG_ALP;
   2694 
   2695 	/*
   2696 	 * Checksum offloading is disabled if the user selects an MTU
   2697 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2698 	 * evidence that >8109 does not work on some boards, such as the
   2699 	 * Planex GN-1000TE).
   2700 	 */
   2701 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2702 	    (ifp->if_capenable &
   2703 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2704 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2705 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2706 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2707 		       "disabled.\n", device_xname(sc->sc_dev));
   2708 		ifp->if_capenable &=
   2709 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2710 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2711 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2712 		ifp->if_csum_flags_tx = 0;
   2713 		ifp->if_csum_flags_rx = 0;
   2714 	}
   2715 
   2716 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2717 
   2718 	if (sc->sc_gigabit)
   2719 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2720 
   2721 	/*
   2722 	 * Give the transmit and receive rings to the chip.
   2723 	 */
   2724 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2725 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2726 
   2727 	/*
   2728 	 * Initialize the interrupt mask.
   2729 	 */
   2730 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2731 	             sc->sc_bits.b_isr_sserr |
   2732 		     sc->sc_bits.b_isr_rmabt |
   2733 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2734 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2735 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2736 
   2737 	/* Set up the receive filter. */
   2738 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2739 
   2740 	/*
   2741 	 * Tune sc_rx_flow_thresh.
   2742 	 * XXX "More than 8KB" is too short for jumbo frames.
   2743 	 * XXX TODO: Threshold value should be user-settable.
   2744 	 */
   2745 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2746 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2747 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2748 
   2749 	/*
   2750 	 * Set the current media.  Do this after initializing the prototype
   2751 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2752 	 * control.
   2753 	 */
   2754 	if ((error = ether_mediachange(ifp)) != 0)
   2755 		goto out;
   2756 
   2757 	/*
   2758 	 * Set the interrupt hold-off timer to 100us.
   2759 	 */
   2760 	if (sc->sc_gigabit)
   2761 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2762 
   2763 	/*
   2764 	 * Enable interrupts.
   2765 	 */
   2766 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2767 
   2768 	/*
   2769 	 * Start the transmit and receive processes.
   2770 	 */
   2771 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2772 
   2773 	/*
   2774 	 * Start the one second MII clock.
   2775 	 */
   2776 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2777 
   2778 	/*
   2779 	 * ...all done!
   2780 	 */
   2781 	ifp->if_flags |= IFF_RUNNING;
   2782 	ifp->if_flags &= ~IFF_OACTIVE;
   2783 	sc->sc_if_flags = ifp->if_flags;
   2784 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2785 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2786 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2787 
   2788  out:
   2789 	if (error)
   2790 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2791 	return (error);
   2792 }
   2793 
   2794 /*
   2795  * sip_drain:
   2796  *
   2797  *	Drain the receive queue.
   2798  */
   2799 static void
   2800 sipcom_rxdrain(struct sip_softc *sc)
   2801 {
   2802 	struct sip_rxsoft *rxs;
   2803 	int i;
   2804 
   2805 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2806 		rxs = &sc->sc_rxsoft[i];
   2807 		if (rxs->rxs_mbuf != NULL) {
   2808 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2809 			m_freem(rxs->rxs_mbuf);
   2810 			rxs->rxs_mbuf = NULL;
   2811 		}
   2812 	}
   2813 }
   2814 
   2815 /*
   2816  * sip_stop:		[ ifnet interface function ]
   2817  *
   2818  *	Stop transmission on the interface.
   2819  */
   2820 static void
   2821 sipcom_stop(struct ifnet *ifp, int disable)
   2822 {
   2823 	struct sip_softc *sc = ifp->if_softc;
   2824 	bus_space_tag_t st = sc->sc_st;
   2825 	bus_space_handle_t sh = sc->sc_sh;
   2826 	struct sip_txsoft *txs;
   2827 	u_int32_t cmdsts = 0;		/* DEBUG */
   2828 
   2829 	/*
   2830 	 * Stop the one second clock.
   2831 	 */
   2832 	callout_stop(&sc->sc_tick_ch);
   2833 
   2834 	/* Down the MII. */
   2835 	mii_down(&sc->sc_mii);
   2836 
   2837 	if (device_is_active(sc->sc_dev)) {
   2838 		/*
   2839 		 * Disable interrupts.
   2840 		 */
   2841 		bus_space_write_4(st, sh, SIP_IER, 0);
   2842 
   2843 		/*
   2844 		 * Stop receiver and transmitter.
   2845 		 */
   2846 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2847 	}
   2848 
   2849 	/*
   2850 	 * Release any queued transmit buffers.
   2851 	 */
   2852 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2853 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2854 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2855 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2856 		     CMDSTS_INTR) == 0)
   2857 			printf("%s: sip_stop: last descriptor does not "
   2858 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2859 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2860 #ifdef DIAGNOSTIC
   2861 		if (txs->txs_mbuf == NULL) {
   2862 			printf("%s: dirty txsoft with no mbuf chain\n",
   2863 			    device_xname(sc->sc_dev));
   2864 			panic("sip_stop");
   2865 		}
   2866 #endif
   2867 		cmdsts |=		/* DEBUG */
   2868 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2869 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2870 		m_freem(txs->txs_mbuf);
   2871 		txs->txs_mbuf = NULL;
   2872 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2873 	}
   2874 
   2875 	/*
   2876 	 * Mark the interface down and cancel the watchdog timer.
   2877 	 */
   2878 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2879 	ifp->if_timer = 0;
   2880 
   2881 	if (disable)
   2882 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2883 
   2884 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2885 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2886 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2887 		    "descriptors\n", device_xname(sc->sc_dev));
   2888 }
   2889 
   2890 /*
   2891  * sip_read_eeprom:
   2892  *
   2893  *	Read data from the serial EEPROM.
   2894  */
   2895 static void
   2896 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2897     u_int16_t *data)
   2898 {
   2899 	bus_space_tag_t st = sc->sc_st;
   2900 	bus_space_handle_t sh = sc->sc_sh;
   2901 	u_int16_t reg;
   2902 	int i, x;
   2903 
   2904 	for (i = 0; i < wordcnt; i++) {
   2905 		/* Send CHIP SELECT. */
   2906 		reg = EROMAR_EECS;
   2907 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2908 
   2909 		/* Shift in the READ opcode. */
   2910 		for (x = 3; x > 0; x--) {
   2911 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2912 				reg |= EROMAR_EEDI;
   2913 			else
   2914 				reg &= ~EROMAR_EEDI;
   2915 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2916 			bus_space_write_4(st, sh, SIP_EROMAR,
   2917 			    reg | EROMAR_EESK);
   2918 			delay(4);
   2919 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2920 			delay(4);
   2921 		}
   2922 
   2923 		/* Shift in address. */
   2924 		for (x = 6; x > 0; x--) {
   2925 			if ((word + i) & (1 << (x - 1)))
   2926 				reg |= EROMAR_EEDI;
   2927 			else
   2928 				reg &= ~EROMAR_EEDI;
   2929 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2930 			bus_space_write_4(st, sh, SIP_EROMAR,
   2931 			    reg | EROMAR_EESK);
   2932 			delay(4);
   2933 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2934 			delay(4);
   2935 		}
   2936 
   2937 		/* Shift out data. */
   2938 		reg = EROMAR_EECS;
   2939 		data[i] = 0;
   2940 		for (x = 16; x > 0; x--) {
   2941 			bus_space_write_4(st, sh, SIP_EROMAR,
   2942 			    reg | EROMAR_EESK);
   2943 			delay(4);
   2944 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2945 				data[i] |= (1 << (x - 1));
   2946 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2947 			delay(4);
   2948 		}
   2949 
   2950 		/* Clear CHIP SELECT. */
   2951 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2952 		delay(4);
   2953 	}
   2954 }
   2955 
   2956 /*
   2957  * sipcom_add_rxbuf:
   2958  *
   2959  *	Add a receive buffer to the indicated descriptor.
   2960  */
   2961 static int
   2962 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2963 {
   2964 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2965 	struct mbuf *m;
   2966 	int error;
   2967 
   2968 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2969 	if (m == NULL)
   2970 		return (ENOBUFS);
   2971 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2972 
   2973 	MCLGET(m, M_DONTWAIT);
   2974 	if ((m->m_flags & M_EXT) == 0) {
   2975 		m_freem(m);
   2976 		return (ENOBUFS);
   2977 	}
   2978 
   2979 	/* XXX I don't believe this is necessary. --dyoung */
   2980 	if (sc->sc_gigabit)
   2981 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2982 
   2983 	if (rxs->rxs_mbuf != NULL)
   2984 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2985 
   2986 	rxs->rxs_mbuf = m;
   2987 
   2988 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2989 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2990 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2991 	if (error) {
   2992 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2993 		    device_xname(sc->sc_dev), idx, error);
   2994 		panic("%s", __func__);		/* XXX */
   2995 	}
   2996 
   2997 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2998 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2999 
   3000 	sip_init_rxdesc(sc, idx);
   3001 
   3002 	return (0);
   3003 }
   3004 
   3005 /*
   3006  * sip_sis900_set_filter:
   3007  *
   3008  *	Set up the receive filter.
   3009  */
   3010 static void
   3011 sipcom_sis900_set_filter(struct sip_softc *sc)
   3012 {
   3013 	bus_space_tag_t st = sc->sc_st;
   3014 	bus_space_handle_t sh = sc->sc_sh;
   3015 	struct ethercom *ec = &sc->sc_ethercom;
   3016 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3017 	struct ether_multi *enm;
   3018 	const u_int8_t *cp;
   3019 	struct ether_multistep step;
   3020 	u_int32_t crc, mchash[16];
   3021 
   3022 	/*
   3023 	 * Initialize the prototype RFCR.
   3024 	 */
   3025 	sc->sc_rfcr = RFCR_RFEN;
   3026 	if (ifp->if_flags & IFF_BROADCAST)
   3027 		sc->sc_rfcr |= RFCR_AAB;
   3028 	if (ifp->if_flags & IFF_PROMISC) {
   3029 		sc->sc_rfcr |= RFCR_AAP;
   3030 		goto allmulti;
   3031 	}
   3032 
   3033 	/*
   3034 	 * Set up the multicast address filter by passing all multicast
   3035 	 * addresses through a CRC generator, and then using the high-order
   3036 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3037 	 * the lower 16 bits of each 32 bit multicast hash register are
   3038 	 * valid).  The high order bits select the register, while the
   3039 	 * rest of the bits select the bit within the register.
   3040 	 */
   3041 
   3042 	memset(mchash, 0, sizeof(mchash));
   3043 
   3044 	/*
   3045 	 * SiS900 (at least SiS963) requires us to register the address of
   3046 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3047 	 */
   3048 	crc = 0x0ed423f9;
   3049 
   3050 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3051 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3052 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3053 		/* Just want the 8 most significant bits. */
   3054 		crc >>= 24;
   3055 	} else {
   3056 		/* Just want the 7 most significant bits. */
   3057 		crc >>= 25;
   3058 	}
   3059 
   3060 	/* Set the corresponding bit in the hash table. */
   3061 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3062 
   3063 	ETHER_FIRST_MULTI(step, ec, enm);
   3064 	while (enm != NULL) {
   3065 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3066 			/*
   3067 			 * We must listen to a range of multicast addresses.
   3068 			 * For now, just accept all multicasts, rather than
   3069 			 * trying to set only those filter bits needed to match
   3070 			 * the range.  (At this time, the only use of address
   3071 			 * ranges is for IP multicast routing, for which the
   3072 			 * range is big enough to require all bits set.)
   3073 			 */
   3074 			goto allmulti;
   3075 		}
   3076 
   3077 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3078 
   3079 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3080 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3081 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3082 			/* Just want the 8 most significant bits. */
   3083 			crc >>= 24;
   3084 		} else {
   3085 			/* Just want the 7 most significant bits. */
   3086 			crc >>= 25;
   3087 		}
   3088 
   3089 		/* Set the corresponding bit in the hash table. */
   3090 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3091 
   3092 		ETHER_NEXT_MULTI(step, enm);
   3093 	}
   3094 
   3095 	ifp->if_flags &= ~IFF_ALLMULTI;
   3096 	goto setit;
   3097 
   3098  allmulti:
   3099 	ifp->if_flags |= IFF_ALLMULTI;
   3100 	sc->sc_rfcr |= RFCR_AAM;
   3101 
   3102  setit:
   3103 #define	FILTER_EMIT(addr, data)						\
   3104 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3105 	delay(1);							\
   3106 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3107 	delay(1)
   3108 
   3109 	/*
   3110 	 * Disable receive filter, and program the node address.
   3111 	 */
   3112 	cp = CLLADDR(ifp->if_sadl);
   3113 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3114 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3115 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3116 
   3117 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3118 		/*
   3119 		 * Program the multicast hash table.
   3120 		 */
   3121 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3122 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3123 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3124 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3125 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3126 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3127 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3128 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3129 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3130 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3131 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3132 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3133 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3134 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3135 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3136 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3137 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3138 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3139 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3140 		}
   3141 	}
   3142 #undef FILTER_EMIT
   3143 
   3144 	/*
   3145 	 * Re-enable the receiver filter.
   3146 	 */
   3147 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3148 }
   3149 
   3150 /*
   3151  * sip_dp83815_set_filter:
   3152  *
   3153  *	Set up the receive filter.
   3154  */
   3155 static void
   3156 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3157 {
   3158 	bus_space_tag_t st = sc->sc_st;
   3159 	bus_space_handle_t sh = sc->sc_sh;
   3160 	struct ethercom *ec = &sc->sc_ethercom;
   3161 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3162 	struct ether_multi *enm;
   3163 	const u_int8_t *cp;
   3164 	struct ether_multistep step;
   3165 	u_int32_t crc, hash, slot, bit;
   3166 #define	MCHASH_NWORDS_83820	128
   3167 #define	MCHASH_NWORDS_83815	32
   3168 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3169 	u_int16_t mchash[MCHASH_NWORDS];
   3170 	int i;
   3171 
   3172 	/*
   3173 	 * Initialize the prototype RFCR.
   3174 	 * Enable the receive filter, and accept on
   3175 	 *    Perfect (destination address) Match
   3176 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3177 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3178 	 *    IFF_ALLMULTI and accept all multicast, too).
   3179 	 */
   3180 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3181 	if (ifp->if_flags & IFF_BROADCAST)
   3182 		sc->sc_rfcr |= RFCR_AAB;
   3183 	if (ifp->if_flags & IFF_PROMISC) {
   3184 		sc->sc_rfcr |= RFCR_AAP;
   3185 		goto allmulti;
   3186 	}
   3187 
   3188 	/*
   3189          * Set up the DP83820/DP83815 multicast address filter by
   3190          * passing all multicast addresses through a CRC generator,
   3191          * and then using the high-order 11/9 bits as an index into
   3192          * the 2048/512 bit multicast hash table.  The high-order
   3193          * 7/5 bits select the slot, while the low-order 4 bits
   3194          * select the bit within the slot.  Note that only the low
   3195          * 16-bits of each filter word are used, and there are
   3196          * 128/32 filter words.
   3197 	 */
   3198 
   3199 	memset(mchash, 0, sizeof(mchash));
   3200 
   3201 	ifp->if_flags &= ~IFF_ALLMULTI;
   3202 	ETHER_FIRST_MULTI(step, ec, enm);
   3203 	if (enm == NULL)
   3204 		goto setit;
   3205 	while (enm != NULL) {
   3206 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3207 			/*
   3208 			 * We must listen to a range of multicast addresses.
   3209 			 * For now, just accept all multicasts, rather than
   3210 			 * trying to set only those filter bits needed to match
   3211 			 * the range.  (At this time, the only use of address
   3212 			 * ranges is for IP multicast routing, for which the
   3213 			 * range is big enough to require all bits set.)
   3214 			 */
   3215 			goto allmulti;
   3216 		}
   3217 
   3218 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3219 
   3220 		if (sc->sc_gigabit) {
   3221 			/* Just want the 11 most significant bits. */
   3222 			hash = crc >> 21;
   3223 		} else {
   3224 			/* Just want the 9 most significant bits. */
   3225 			hash = crc >> 23;
   3226 		}
   3227 
   3228 		slot = hash >> 4;
   3229 		bit = hash & 0xf;
   3230 
   3231 		/* Set the corresponding bit in the hash table. */
   3232 		mchash[slot] |= 1 << bit;
   3233 
   3234 		ETHER_NEXT_MULTI(step, enm);
   3235 	}
   3236 	sc->sc_rfcr |= RFCR_MHEN;
   3237 	goto setit;
   3238 
   3239  allmulti:
   3240 	ifp->if_flags |= IFF_ALLMULTI;
   3241 	sc->sc_rfcr |= RFCR_AAM;
   3242 
   3243  setit:
   3244 #define	FILTER_EMIT(addr, data)						\
   3245 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3246 	delay(1);							\
   3247 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3248 	delay(1)
   3249 
   3250 	/*
   3251 	 * Disable receive filter, and program the node address.
   3252 	 */
   3253 	cp = CLLADDR(ifp->if_sadl);
   3254 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3255 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3256 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3257 
   3258 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3259 		int nwords =
   3260 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3261 		/*
   3262 		 * Program the multicast hash table.
   3263 		 */
   3264 		for (i = 0; i < nwords; i++) {
   3265 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3266 		}
   3267 	}
   3268 #undef FILTER_EMIT
   3269 #undef MCHASH_NWORDS
   3270 #undef MCHASH_NWORDS_83815
   3271 #undef MCHASH_NWORDS_83820
   3272 
   3273 	/*
   3274 	 * Re-enable the receiver filter.
   3275 	 */
   3276 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3277 }
   3278 
   3279 /*
   3280  * sip_dp83820_mii_readreg:	[mii interface function]
   3281  *
   3282  *	Read a PHY register on the MII of the DP83820.
   3283  */
   3284 static int
   3285 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
   3286 {
   3287 	struct sip_softc *sc = device_private(self);
   3288 
   3289 	if (sc->sc_cfg & CFG_TBI_EN) {
   3290 		bus_addr_t tbireg;
   3291 		int rv;
   3292 
   3293 		if (phy != 0)
   3294 			return (0);
   3295 
   3296 		switch (reg) {
   3297 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3298 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3299 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3300 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3301 		case MII_ANER:		tbireg = SIP_TANER; break;
   3302 		case MII_EXTSR:
   3303 			/*
   3304 			 * Don't even bother reading the TESR register.
   3305 			 * The manual documents that the device has
   3306 			 * 1000baseX full/half capability, but the
   3307 			 * register itself seems read back 0 on some
   3308 			 * boards.  Just hard-code the result.
   3309 			 */
   3310 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3311 
   3312 		default:
   3313 			return (0);
   3314 		}
   3315 
   3316 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3317 		if (tbireg == SIP_TBISR) {
   3318 			/* LINK and ACOMP are switched! */
   3319 			int val = rv;
   3320 
   3321 			rv = 0;
   3322 			if (val & TBISR_MR_LINK_STATUS)
   3323 				rv |= BMSR_LINK;
   3324 			if (val & TBISR_MR_AN_COMPLETE)
   3325 				rv |= BMSR_ACOMP;
   3326 
   3327 			/*
   3328 			 * The manual claims this register reads back 0
   3329 			 * on hard and soft reset.  But we want to let
   3330 			 * the gentbi driver know that we support auto-
   3331 			 * negotiation, so hard-code this bit in the
   3332 			 * result.
   3333 			 */
   3334 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3335 		}
   3336 
   3337 		return (rv);
   3338 	}
   3339 
   3340 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3341 }
   3342 
   3343 /*
   3344  * sip_dp83820_mii_writereg:	[mii interface function]
   3345  *
   3346  *	Write a PHY register on the MII of the DP83820.
   3347  */
   3348 static void
   3349 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
   3350 {
   3351 	struct sip_softc *sc = device_private(self);
   3352 
   3353 	if (sc->sc_cfg & CFG_TBI_EN) {
   3354 		bus_addr_t tbireg;
   3355 
   3356 		if (phy != 0)
   3357 			return;
   3358 
   3359 		switch (reg) {
   3360 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3361 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3362 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3363 		default:
   3364 			return;
   3365 		}
   3366 
   3367 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3368 		return;
   3369 	}
   3370 
   3371 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3372 }
   3373 
   3374 /*
   3375  * sip_dp83820_mii_statchg:	[mii interface function]
   3376  *
   3377  *	Callback from MII layer when media changes.
   3378  */
   3379 static void
   3380 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
   3381 {
   3382 	struct sip_softc *sc = ifp->if_softc;
   3383 	struct mii_data *mii = &sc->sc_mii;
   3384 	u_int32_t cfg, pcr;
   3385 
   3386 	/*
   3387 	 * Get flow control negotiation result.
   3388 	 */
   3389 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3390 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3391 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3392 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3393 	}
   3394 
   3395 	/*
   3396 	 * Update TXCFG for full-duplex operation.
   3397 	 */
   3398 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3399 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3400 	else
   3401 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3402 
   3403 	/*
   3404 	 * Update RXCFG for full-duplex or loopback.
   3405 	 */
   3406 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3407 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3408 		sc->sc_rxcfg |= RXCFG_ATX;
   3409 	else
   3410 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3411 
   3412 	/*
   3413 	 * Update CFG for MII/GMII.
   3414 	 */
   3415 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3416 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3417 	else
   3418 		cfg = sc->sc_cfg;
   3419 
   3420 	/*
   3421 	 * 802.3x flow control.
   3422 	 */
   3423 	pcr = 0;
   3424 	if (sc->sc_flowflags & IFM_FLOW) {
   3425 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3426 			pcr |= sc->sc_rx_flow_thresh;
   3427 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3428 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3429 	}
   3430 
   3431 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3432 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3433 	    sc->sc_txcfg);
   3434 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3435 	    sc->sc_rxcfg);
   3436 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3437 }
   3438 
   3439 /*
   3440  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3441  *
   3442  *	Read the MII serial port for the MII bit-bang module.
   3443  */
   3444 static u_int32_t
   3445 sipcom_mii_bitbang_read(device_t self)
   3446 {
   3447 	struct sip_softc *sc = device_private(self);
   3448 
   3449 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3450 }
   3451 
   3452 /*
   3453  * sip_mii_bitbang_write: [mii big-bang interface function]
   3454  *
   3455  *	Write the MII serial port for the MII bit-bang module.
   3456  */
   3457 static void
   3458 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
   3459 {
   3460 	struct sip_softc *sc = device_private(self);
   3461 
   3462 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3463 }
   3464 
   3465 /*
   3466  * sip_sis900_mii_readreg:	[mii interface function]
   3467  *
   3468  *	Read a PHY register on the MII.
   3469  */
   3470 static int
   3471 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
   3472 {
   3473 	struct sip_softc *sc = device_private(self);
   3474 	u_int32_t enphy;
   3475 
   3476 	/*
   3477 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3478 	 * operations.
   3479 	 */
   3480 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3481 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3482 		    phy, reg);
   3483 
   3484 #ifndef SIS900_MII_RESTRICT
   3485 	/*
   3486 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3487 	 * MII address 0.
   3488 	 */
   3489 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3490 		return (0);
   3491 #endif
   3492 
   3493 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3494 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3495 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3496 	do {
   3497 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3498 	} while (enphy & ENPHY_ACCESS);
   3499 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3500 }
   3501 
   3502 /*
   3503  * sip_sis900_mii_writereg:	[mii interface function]
   3504  *
   3505  *	Write a PHY register on the MII.
   3506  */
   3507 static void
   3508 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
   3509 {
   3510 	struct sip_softc *sc = device_private(self);
   3511 	u_int32_t enphy;
   3512 
   3513 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3514 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3515 		    phy, reg, val);
   3516 		return;
   3517 	}
   3518 
   3519 #ifndef SIS900_MII_RESTRICT
   3520 	/*
   3521 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3522 	 * MII address 0.
   3523 	 */
   3524 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3525 		return;
   3526 #endif
   3527 
   3528 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3529 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3530 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3531 	do {
   3532 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3533 	} while (enphy & ENPHY_ACCESS);
   3534 }
   3535 
   3536 /*
   3537  * sip_sis900_mii_statchg:	[mii interface function]
   3538  *
   3539  *	Callback from MII layer when media changes.
   3540  */
   3541 static void
   3542 sipcom_sis900_mii_statchg(struct ifnet *ifp)
   3543 {
   3544 	struct sip_softc *sc = ifp->if_softc;
   3545 	struct mii_data *mii = &sc->sc_mii;
   3546 	u_int32_t flowctl;
   3547 
   3548 	/*
   3549 	 * Get flow control negotiation result.
   3550 	 */
   3551 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3552 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3553 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3554 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3555 	}
   3556 
   3557 	/*
   3558 	 * Update TXCFG for full-duplex operation.
   3559 	 */
   3560 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3561 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3562 	else
   3563 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3564 
   3565 	/*
   3566 	 * Update RXCFG for full-duplex or loopback.
   3567 	 */
   3568 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3569 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3570 		sc->sc_rxcfg |= RXCFG_ATX;
   3571 	else
   3572 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3573 
   3574 	/*
   3575 	 * Update IMR for use of 802.3x flow control.
   3576 	 */
   3577 	if (sc->sc_flowflags & IFM_FLOW) {
   3578 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3579 		flowctl = FLOWCTL_FLOWEN;
   3580 	} else {
   3581 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3582 		flowctl = 0;
   3583 	}
   3584 
   3585 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3586 	    sc->sc_txcfg);
   3587 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3588 	    sc->sc_rxcfg);
   3589 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3591 }
   3592 
   3593 /*
   3594  * sip_dp83815_mii_readreg:	[mii interface function]
   3595  *
   3596  *	Read a PHY register on the MII.
   3597  */
   3598 static int
   3599 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
   3600 {
   3601 	struct sip_softc *sc = device_private(self);
   3602 	u_int32_t val;
   3603 
   3604 	/*
   3605 	 * The DP83815 only has an internal PHY.  Only allow
   3606 	 * MII address 0.
   3607 	 */
   3608 	if (phy != 0)
   3609 		return (0);
   3610 
   3611 	/*
   3612 	 * Apparently, after a reset, the DP83815 can take a while
   3613 	 * to respond.  During this recovery period, the BMSR returns
   3614 	 * a value of 0.  Catch this -- it's not supposed to happen
   3615 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3616 	 * PHY to come back to life.
   3617 	 *
   3618 	 * This works out because the BMSR is the first register
   3619 	 * read during the PHY probe process.
   3620 	 */
   3621 	do {
   3622 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3623 	} while (reg == MII_BMSR && val == 0);
   3624 
   3625 	return (val & 0xffff);
   3626 }
   3627 
   3628 /*
   3629  * sip_dp83815_mii_writereg:	[mii interface function]
   3630  *
   3631  *	Write a PHY register to the MII.
   3632  */
   3633 static void
   3634 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
   3635 {
   3636 	struct sip_softc *sc = device_private(self);
   3637 
   3638 	/*
   3639 	 * The DP83815 only has an internal PHY.  Only allow
   3640 	 * MII address 0.
   3641 	 */
   3642 	if (phy != 0)
   3643 		return;
   3644 
   3645 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3646 }
   3647 
   3648 /*
   3649  * sip_dp83815_mii_statchg:	[mii interface function]
   3650  *
   3651  *	Callback from MII layer when media changes.
   3652  */
   3653 static void
   3654 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
   3655 {
   3656 	struct sip_softc *sc = ifp->if_softc;
   3657 
   3658 	/*
   3659 	 * Update TXCFG for full-duplex operation.
   3660 	 */
   3661 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3662 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3663 	else
   3664 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3665 
   3666 	/*
   3667 	 * Update RXCFG for full-duplex or loopback.
   3668 	 */
   3669 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3670 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3671 		sc->sc_rxcfg |= RXCFG_ATX;
   3672 	else
   3673 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3674 
   3675 	/*
   3676 	 * XXX 802.3x flow control.
   3677 	 */
   3678 
   3679 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3680 	    sc->sc_txcfg);
   3681 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3682 	    sc->sc_rxcfg);
   3683 
   3684 	/*
   3685 	 * Some DP83815s experience problems when used with short
   3686 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3687 	 * sequence adjusts the DSP's signal attenuation to fix the
   3688 	 * problem.
   3689 	 */
   3690 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3691 		uint32_t reg;
   3692 
   3693 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3694 
   3695 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3696 		reg &= 0x0fff;
   3697 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3698 		delay(100);
   3699 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3700 		reg &= 0x00ff;
   3701 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3702 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3703 			    0x00e8);
   3704 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3705 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3706 			    reg | 0x20);
   3707 		}
   3708 
   3709 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3710 	}
   3711 }
   3712 
   3713 static void
   3714 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3715     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3716 {
   3717 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3718 	u_int8_t cksum, *e, match;
   3719 	int i;
   3720 
   3721 	/*
   3722 	 * EEPROM data format for the DP83820 can be found in
   3723 	 * the DP83820 manual, section 4.2.4.
   3724 	 */
   3725 
   3726 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3727 
   3728 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3729 	match = ~(match - 1);
   3730 
   3731 	cksum = 0x55;
   3732 	e = (u_int8_t *) eeprom_data;
   3733 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3734 		cksum += *e++;
   3735 
   3736 	if (cksum != match)
   3737 		printf("%s: Checksum (%x) mismatch (%x)",
   3738 		    device_xname(sc->sc_dev), cksum, match);
   3739 
   3740 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3741 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3742 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3743 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3744 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3745 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3746 }
   3747 
   3748 static void
   3749 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3750 {
   3751 	int i;
   3752 
   3753 	/*
   3754 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3755 	 * a reason, but I don't know it.
   3756 	 */
   3757 	for (i = 0; i < 10; i++)
   3758 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3759 }
   3760 
   3761 static void
   3762 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3763     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3764 {
   3765 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3766 
   3767 	switch (sc->sc_rev) {
   3768 	case SIS_REV_630S:
   3769 	case SIS_REV_630E:
   3770 	case SIS_REV_630EA1:
   3771 	case SIS_REV_630ET:
   3772 	case SIS_REV_635:
   3773 		/*
   3774 		 * The MAC address for the on-board Ethernet of
   3775 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3776 		 * the chip into re-loading it from NVRAM, and
   3777 		 * read the MAC address out of the filter registers.
   3778 		 */
   3779 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3780 
   3781 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3782 		    RFCR_RFADDR_NODE0);
   3783 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3784 		    0xffff;
   3785 
   3786 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3787 		    RFCR_RFADDR_NODE2);
   3788 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3789 		    0xffff;
   3790 
   3791 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3792 		    RFCR_RFADDR_NODE4);
   3793 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3794 		    0xffff;
   3795 		break;
   3796 
   3797 	case SIS_REV_960:
   3798 		{
   3799 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3800 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3801 
   3802 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3803 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3804 
   3805 			int waittime, i;
   3806 
   3807 			/* Allow to read EEPROM from LAN. It is shared
   3808 			 * between a 1394 controller and the NIC and each
   3809 			 * time we access it, we need to set SIS_EECMD_REQ.
   3810 			 */
   3811 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3812 
   3813 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3814 				/* Force EEPROM to idle state. */
   3815 
   3816 				/*
   3817 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3818 				 */
   3819 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3820 				sipcom_sis900_eeprom_delay(sc);
   3821 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3822 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3823 					sipcom_sis900_eeprom_delay(sc);
   3824 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3825 					sipcom_sis900_eeprom_delay(sc);
   3826 				}
   3827 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3828 				sipcom_sis900_eeprom_delay(sc);
   3829 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3830 
   3831 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3832 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3833 					    sizeof(myea) / sizeof(myea[0]), myea);
   3834 					break;
   3835 				}
   3836 				DELAY(1);
   3837 			}
   3838 
   3839 			/*
   3840 			 * Set SIS_EECTL_CLK to high, so a other master
   3841 			 * can operate on the i2c bus.
   3842 			 */
   3843 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3844 
   3845 			/* Refuse EEPROM access by LAN */
   3846 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3847 		} break;
   3848 
   3849 	default:
   3850 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3851 		    sizeof(myea) / sizeof(myea[0]), myea);
   3852 	}
   3853 
   3854 	enaddr[0] = myea[0] & 0xff;
   3855 	enaddr[1] = myea[0] >> 8;
   3856 	enaddr[2] = myea[1] & 0xff;
   3857 	enaddr[3] = myea[1] >> 8;
   3858 	enaddr[4] = myea[2] & 0xff;
   3859 	enaddr[5] = myea[2] >> 8;
   3860 }
   3861 
   3862 /* Table and macro to bit-reverse an octet. */
   3863 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3864 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3865 
   3866 static void
   3867 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3868     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3869 {
   3870 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3871 	u_int8_t cksum, *e, match;
   3872 	int i;
   3873 
   3874 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3875 	    sizeof(eeprom_data[0]), eeprom_data);
   3876 
   3877 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3878 	match = ~(match - 1);
   3879 
   3880 	cksum = 0x55;
   3881 	e = (u_int8_t *) eeprom_data;
   3882 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3883 		cksum += *e++;
   3884 	}
   3885 	if (cksum != match) {
   3886 		printf("%s: Checksum (%x) mismatch (%x)",
   3887 		    device_xname(sc->sc_dev), cksum, match);
   3888 	}
   3889 
   3890 	/*
   3891 	 * Unrolled because it makes slightly more sense this way.
   3892 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3893 	 * through bit 15 of word 8.
   3894 	 */
   3895 	ea = &eeprom_data[6];
   3896 	enaddr[0] = ((*ea & 0x1) << 7);
   3897 	ea++;
   3898 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3899 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3900 	enaddr[2] = ((*ea & 0x1) << 7);
   3901 	ea++;
   3902 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3903 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3904 	enaddr[4] = ((*ea & 0x1) << 7);
   3905 	ea++;
   3906 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3907 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3908 
   3909 	/*
   3910 	 * In case that's not weird enough, we also need to reverse
   3911 	 * the bits in each byte.  This all actually makes more sense
   3912 	 * if you think about the EEPROM storage as an array of bits
   3913 	 * being shifted into bytes, but that's not how we're looking
   3914 	 * at it here...
   3915 	 */
   3916 	for (i = 0; i < 6 ;i++)
   3917 		enaddr[i] = bbr(enaddr[i]);
   3918 }
   3919 
   3920 /*
   3921  * sip_mediastatus:	[ifmedia interface function]
   3922  *
   3923  *	Get the current interface media status.
   3924  */
   3925 static void
   3926 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3927 {
   3928 	struct sip_softc *sc = ifp->if_softc;
   3929 
   3930 	if (!device_is_active(sc->sc_dev)) {
   3931 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3932 		ifmr->ifm_status = 0;
   3933 		return;
   3934 	}
   3935 	ether_mediastatus(ifp, ifmr);
   3936 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3937 			   sc->sc_flowflags;
   3938 }
   3939