if_sip.c revision 1.158.4.3 1 /* $NetBSD: if_sip.c,v 1.158.4.3 2016/07/09 20:25:04 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.158.4.3 2016/07/09 20:25:04 skrll Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rndsource.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997 char intrbuf[PCI_INTRSTR_LEN];
998
999 callout_init(&sc->sc_tick_ch, 0);
1000
1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 if (sip == NULL) {
1003 printf("\n");
1004 panic("%s: impossible", __func__);
1005 }
1006 sc->sc_dev = self;
1007 sc->sc_gigabit = sip->sip_gigabit;
1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 printf("%s: unable to map device registers\n",
1074 device_xname(sc->sc_dev));
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 aprint_error(" at %s", intrstr);
1110 aprint_error("\n");
1111 sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 return;
1113 }
1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(sc->sc_dev,
1127 "unable to allocate control data, error = %d\n", error);
1128 sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 return;
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT)) != 0) {
1135 aprint_error_dev(sc->sc_dev,
1136 "unable to map control data, error = %d\n", error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(sc->sc_dev,
1144 "unable to create control data DMA map, error = %d\n",
1145 error);
1146 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1147 }
1148
1149 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1150 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1151 0)) != 0) {
1152 aprint_error_dev(sc->sc_dev,
1153 "unable to load control data DMA map, error = %d\n",
1154 error);
1155 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1156 }
1157
1158 /*
1159 * Create the transmit buffer DMA maps.
1160 */
1161 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1162 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1163 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1164 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1165 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1166 "error = %d\n", i, error);
1167 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1168 }
1169 }
1170
1171 /*
1172 * Create the receive buffer DMA maps.
1173 */
1174 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1175 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1176 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1177 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1178 "error = %d\n", i, error);
1179 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1180 }
1181 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1182 }
1183
1184 /*
1185 * Reset the chip to a known state.
1186 */
1187 sipcom_reset(sc);
1188
1189 /*
1190 * Read the Ethernet address from the EEPROM. This might
1191 * also fetch other stuff from the EEPROM and stash it
1192 * in the softc.
1193 */
1194 sc->sc_cfg = 0;
1195 if (!sc->sc_gigabit) {
1196 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 SIP_SIS900_REV(sc,SIS_REV_900B))
1198 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1199
1200 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 SIP_SIS900_REV(sc,SIS_REV_960) ||
1202 SIP_SIS900_REV(sc,SIS_REV_900B))
1203 sc->sc_cfg |=
1204 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1205 CFG_EDBMASTEN);
1206 }
1207
1208 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1209
1210 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1211 ether_sprintf(enaddr));
1212
1213 /*
1214 * Initialize the configuration register: aggressive PCI
1215 * bus request algorithm, default backoff, default OW timer,
1216 * default parity error detection.
1217 *
1218 * NOTE: "Big endian mode" is useless on the SiS900 and
1219 * friends -- it affects packet data, not descriptors.
1220 */
1221 if (sc->sc_gigabit)
1222 sipcom_dp83820_attach(sc, pa);
1223
1224 /*
1225 * Initialize our media structures and probe the MII.
1226 */
1227 sc->sc_mii.mii_ifp = ifp;
1228 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1229 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1230 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1231 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1232 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1233 sipcom_mediastatus);
1234
1235 /*
1236 * XXX We cannot handle flow control on the DP83815.
1237 */
1238 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, 0);
1241 else
1242 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 MII_OFFSET_ANY, MIIF_DOPAUSE);
1244 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1245 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1246 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1247 } else
1248 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249
1250 ifp = &sc->sc_ethercom.ec_if;
1251 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1252 ifp->if_softc = sc;
1253 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254 sc->sc_if_flags = ifp->if_flags;
1255 ifp->if_ioctl = sipcom_ioctl;
1256 ifp->if_start = sipcom_start;
1257 ifp->if_watchdog = sipcom_watchdog;
1258 ifp->if_init = sipcom_init;
1259 ifp->if_stop = sipcom_stop;
1260 IFQ_SET_READY(&ifp->if_snd);
1261
1262 /*
1263 * We can support 802.1Q VLAN-sized frames.
1264 */
1265 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1266
1267 if (sc->sc_gigabit) {
1268 /*
1269 * And the DP83820 can do VLAN tagging in hardware, and
1270 * support the jumbo Ethernet MTU.
1271 */
1272 sc->sc_ethercom.ec_capabilities |=
1273 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1274
1275 /*
1276 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1277 * in hardware.
1278 */
1279 ifp->if_capabilities |=
1280 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1281 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1282 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1283 }
1284
1285 /*
1286 * Attach the interface.
1287 */
1288 if_attach(ifp);
1289 ether_ifattach(ifp, enaddr);
1290 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1291 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1292 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1293 sc->sc_prev.if_capenable = ifp->if_capenable;
1294 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1295 RND_TYPE_NET, RND_FLAG_DEFAULT);
1296
1297 /*
1298 * The number of bytes that must be available in
1299 * the Tx FIFO before the bus master can DMA more
1300 * data into the FIFO.
1301 */
1302 sc->sc_tx_fill_thresh = 64 / 32;
1303
1304 /*
1305 * Start at a drain threshold of 512 bytes. We will
1306 * increase it if a DMA underrun occurs.
1307 *
1308 * XXX The minimum value of this variable should be
1309 * tuned. We may be able to improve performance
1310 * by starting with a lower value. That, however,
1311 * may trash the first few outgoing packets if the
1312 * PCI bus is saturated.
1313 */
1314 if (sc->sc_gigabit)
1315 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1316 else
1317 sc->sc_tx_drain_thresh = 1504 / 32;
1318
1319 /*
1320 * Initialize the Rx FIFO drain threshold.
1321 *
1322 * This is in units of 8 bytes.
1323 *
1324 * We should never set this value lower than 2; 14 bytes are
1325 * required to filter the packet.
1326 */
1327 sc->sc_rx_drain_thresh = 128 / 8;
1328
1329 #ifdef SIP_EVENT_COUNTERS
1330 /*
1331 * Attach event counters.
1332 */
1333 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txsstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1336 NULL, device_xname(sc->sc_dev), "txdstall");
1337 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txforceintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txdintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "txiintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "rxintr");
1345 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1346 NULL, device_xname(sc->sc_dev), "hiberr");
1347 if (!sc->sc_gigabit) {
1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1349 NULL, device_xname(sc->sc_dev), "rxpause");
1350 } else {
1351 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "rxpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "txpause");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxipsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "rxudpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txipsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txtcpsum");
1365 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1366 NULL, device_xname(sc->sc_dev), "txudpsum");
1367 }
1368 #endif /* SIP_EVENT_COUNTERS */
1369
1370 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1371 pmf_class_network_register(self, ifp);
1372 else
1373 aprint_error_dev(self, "couldn't establish power handler\n");
1374 }
1375
1376 static inline void
1377 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1378 uint64_t capenable)
1379 {
1380 struct m_tag *mtag;
1381 u_int32_t extsts;
1382 #ifdef DEBUG
1383 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1384 #endif
1385 /*
1386 * If VLANs are enabled and the packet has a VLAN tag, set
1387 * up the descriptor to encapsulate the packet for us.
1388 *
1389 * This apparently has to be on the last descriptor of
1390 * the packet.
1391 */
1392
1393 /*
1394 * Byte swapping is tricky. We need to provide the tag
1395 * in a network byte order. On a big-endian machine,
1396 * the byteorder is correct, but we need to swap it
1397 * anyway, because this will be undone by the outside
1398 * htole32(). That's why there must be an
1399 * unconditional swap instead of htons() inside.
1400 */
1401 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1402 sc->sc_txdescs[lasttx].sipd_extsts |=
1403 htole32(EXTSTS_VPKT |
1404 (bswap16(VLAN_TAG_VALUE(mtag)) &
1405 EXTSTS_VTCI));
1406 }
1407
1408 /*
1409 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1410 * checksumming, set up the descriptor to do this work
1411 * for us.
1412 *
1413 * This apparently has to be on the first descriptor of
1414 * the packet.
1415 *
1416 * Byte-swap constants so the compiler can optimize.
1417 */
1418 extsts = 0;
1419 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1420 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1421 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1422 extsts |= htole32(EXTSTS_IPPKT);
1423 }
1424 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1427 extsts |= htole32(EXTSTS_TCPPKT);
1428 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1429 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1430 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1431 extsts |= htole32(EXTSTS_UDPPKT);
1432 }
1433 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1434 }
1435
1436 /*
1437 * sip_start: [ifnet interface function]
1438 *
1439 * Start packet transmission on the interface.
1440 */
1441 static void
1442 sipcom_start(struct ifnet *ifp)
1443 {
1444 struct sip_softc *sc = ifp->if_softc;
1445 struct mbuf *m0;
1446 struct mbuf *m;
1447 struct sip_txsoft *txs;
1448 bus_dmamap_t dmamap;
1449 int error, nexttx, lasttx, seg;
1450 int ofree = sc->sc_txfree;
1451 #if 0
1452 int firsttx = sc->sc_txnext;
1453 #endif
1454
1455 /*
1456 * If we've been told to pause, don't transmit any more packets.
1457 */
1458 if (!sc->sc_gigabit && sc->sc_paused)
1459 ifp->if_flags |= IFF_OACTIVE;
1460
1461 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1462 return;
1463
1464 /*
1465 * Loop through the send queue, setting up transmit descriptors
1466 * until we drain the queue, or use up all available transmit
1467 * descriptors.
1468 */
1469 for (;;) {
1470 /* Get a work queue entry. */
1471 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1472 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1473 break;
1474 }
1475
1476 /*
1477 * Grab a packet off the queue.
1478 */
1479 IFQ_POLL(&ifp->if_snd, m0);
1480 if (m0 == NULL)
1481 break;
1482 m = NULL;
1483
1484 dmamap = txs->txs_dmamap;
1485
1486 /*
1487 * Load the DMA map. If this fails, the packet either
1488 * didn't fit in the alloted number of segments, or we
1489 * were short on resources.
1490 */
1491 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1492 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1493 /* In the non-gigabit case, we'll copy and try again. */
1494 if (error != 0 && !sc->sc_gigabit) {
1495 MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 if (m == NULL) {
1497 printf("%s: unable to allocate Tx mbuf\n",
1498 device_xname(sc->sc_dev));
1499 break;
1500 }
1501 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1502 if (m0->m_pkthdr.len > MHLEN) {
1503 MCLGET(m, M_DONTWAIT);
1504 if ((m->m_flags & M_EXT) == 0) {
1505 printf("%s: unable to allocate Tx "
1506 "cluster\n", device_xname(sc->sc_dev));
1507 m_freem(m);
1508 break;
1509 }
1510 }
1511 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1512 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1513 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1514 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1515 if (error) {
1516 printf("%s: unable to load Tx buffer, "
1517 "error = %d\n", device_xname(sc->sc_dev), error);
1518 break;
1519 }
1520 } else if (error == EFBIG) {
1521 /*
1522 * For the too-many-segments case, we simply
1523 * report an error and drop the packet,
1524 * since we can't sanely copy a jumbo packet
1525 * to a single buffer.
1526 */
1527 printf("%s: Tx packet consumes too many "
1528 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1529 IFQ_DEQUEUE(&ifp->if_snd, m0);
1530 m_freem(m0);
1531 continue;
1532 } else if (error != 0) {
1533 /*
1534 * Short on resources, just stop for now.
1535 */
1536 break;
1537 }
1538
1539 /*
1540 * Ensure we have enough descriptors free to describe
1541 * the packet. Note, we always reserve one descriptor
1542 * at the end of the ring as a termination point, to
1543 * prevent wrap-around.
1544 */
1545 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1546 /*
1547 * Not enough free descriptors to transmit this
1548 * packet. We haven't committed anything yet,
1549 * so just unload the DMA map, put the packet
1550 * back on the queue, and punt. Notify the upper
1551 * layer that there are not more slots left.
1552 *
1553 * XXX We could allocate an mbuf and copy, but
1554 * XXX is it worth it?
1555 */
1556 ifp->if_flags |= IFF_OACTIVE;
1557 bus_dmamap_unload(sc->sc_dmat, dmamap);
1558 if (m != NULL)
1559 m_freem(m);
1560 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1561 break;
1562 }
1563
1564 IFQ_DEQUEUE(&ifp->if_snd, m0);
1565 if (m != NULL) {
1566 m_freem(m0);
1567 m0 = m;
1568 }
1569
1570 /*
1571 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1572 */
1573
1574 /* Sync the DMA map. */
1575 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1576 BUS_DMASYNC_PREWRITE);
1577
1578 /*
1579 * Initialize the transmit descriptors.
1580 */
1581 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1582 seg < dmamap->dm_nsegs;
1583 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1584 /*
1585 * If this is the first descriptor we're
1586 * enqueueing, don't set the OWN bit just
1587 * yet. That could cause a race condition.
1588 * We'll do it below.
1589 */
1590 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32(dmamap->dm_segs[seg].ds_addr);
1592 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1593 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1594 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1595 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1596 lasttx = nexttx;
1597 }
1598
1599 /* Clear the MORE bit on the last segment. */
1600 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1601 htole32(~CMDSTS_MORE);
1602
1603 /*
1604 * If we're in the interrupt delay window, delay the
1605 * interrupt.
1606 */
1607 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1608 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1609 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1610 htole32(CMDSTS_INTR);
1611 sc->sc_txwin = 0;
1612 }
1613
1614 if (sc->sc_gigabit)
1615 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1616
1617 /* Sync the descriptors we're using. */
1618 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1619 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1620
1621 /*
1622 * The entire packet is set up. Give the first descrptor
1623 * to the chip now.
1624 */
1625 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1626 htole32(CMDSTS_OWN);
1627 sip_cdtxsync(sc, sc->sc_txnext, 1,
1628 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629
1630 /*
1631 * Store a pointer to the packet so we can free it later,
1632 * and remember what txdirty will be once the packet is
1633 * done.
1634 */
1635 txs->txs_mbuf = m0;
1636 txs->txs_firstdesc = sc->sc_txnext;
1637 txs->txs_lastdesc = lasttx;
1638
1639 /* Advance the tx pointer. */
1640 sc->sc_txfree -= dmamap->dm_nsegs;
1641 sc->sc_txnext = nexttx;
1642
1643 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1644 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1645
1646 /*
1647 * Pass the packet to any BPF listeners.
1648 */
1649 bpf_mtap(ifp, m0);
1650 }
1651
1652 if (txs == NULL || sc->sc_txfree == 0) {
1653 /* No more slots left; notify upper layer. */
1654 ifp->if_flags |= IFF_OACTIVE;
1655 }
1656
1657 if (sc->sc_txfree != ofree) {
1658 /*
1659 * Start the transmit process. Note, the manual says
1660 * that if there are no pending transmissions in the
1661 * chip's internal queue (indicated by TXE being clear),
1662 * then the driver software must set the TXDP to the
1663 * first descriptor to be transmitted. However, if we
1664 * do this, it causes serious performance degredation on
1665 * the DP83820 under load, not setting TXDP doesn't seem
1666 * to adversely affect the SiS 900 or DP83815.
1667 *
1668 * Well, I guess it wouldn't be the first time a manual
1669 * has lied -- and they could be speaking of the NULL-
1670 * terminated descriptor list case, rather than OWN-
1671 * terminated rings.
1672 */
1673 #if 0
1674 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1675 CR_TXE) == 0) {
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1677 SIP_CDTXADDR(sc, firsttx));
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 }
1680 #else
1681 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 #endif
1683
1684 /* Set a watchdog timer in case the chip flakes out. */
1685 /* Gigabit autonegotiation takes 5 seconds. */
1686 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1687 }
1688 }
1689
1690 /*
1691 * sip_watchdog: [ifnet interface function]
1692 *
1693 * Watchdog timer handler.
1694 */
1695 static void
1696 sipcom_watchdog(struct ifnet *ifp)
1697 {
1698 struct sip_softc *sc = ifp->if_softc;
1699
1700 /*
1701 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1702 * If we get a timeout, try and sweep up transmit descriptors.
1703 * If we manage to sweep them all up, ignore the lack of
1704 * interrupt.
1705 */
1706 sipcom_txintr(sc);
1707
1708 if (sc->sc_txfree != sc->sc_ntxdesc) {
1709 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1710 ifp->if_oerrors++;
1711
1712 /* Reset the interface. */
1713 (void) sipcom_init(ifp);
1714 } else if (ifp->if_flags & IFF_DEBUG)
1715 printf("%s: recovered from device timeout\n",
1716 device_xname(sc->sc_dev));
1717
1718 /* Try to get more packets going. */
1719 sipcom_start(ifp);
1720 }
1721
1722 /* If the interface is up and running, only modify the receive
1723 * filter when setting promiscuous or debug mode. Otherwise fall
1724 * through to ether_ioctl, which will reset the chip.
1725 */
1726 static int
1727 sip_ifflags_cb(struct ethercom *ec)
1728 {
1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1730 == (sc)->sc_ethercom.ec_capenable) \
1731 && ((sc)->sc_prev.is_vlan == \
1732 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1734 struct ifnet *ifp = &ec->ec_if;
1735 struct sip_softc *sc = ifp->if_softc;
1736 int change = ifp->if_flags ^ sc->sc_if_flags;
1737
1738 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1739 !COMPARE_IC(sc, ifp))
1740 return ENETRESET;
1741 /* Set up the receive filter. */
1742 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1743 return 0;
1744 }
1745
1746 /*
1747 * sip_ioctl: [ifnet interface function]
1748 *
1749 * Handle control requests from the operator.
1750 */
1751 static int
1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1753 {
1754 struct sip_softc *sc = ifp->if_softc;
1755 struct ifreq *ifr = (struct ifreq *)data;
1756 int s, error;
1757
1758 s = splnet();
1759
1760 switch (cmd) {
1761 case SIOCSIFMEDIA:
1762 /* Flow control requires full-duplex mode. */
1763 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1764 (ifr->ifr_media & IFM_FDX) == 0)
1765 ifr->ifr_media &= ~IFM_ETH_FMASK;
1766
1767 /* XXX */
1768 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1769 ifr->ifr_media &= ~IFM_ETH_FMASK;
1770 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1771 if (sc->sc_gigabit &&
1772 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1773 /* We can do both TXPAUSE and RXPAUSE. */
1774 ifr->ifr_media |=
1775 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1776 } else if (ifr->ifr_media & IFM_FLOW) {
1777 /*
1778 * Both TXPAUSE and RXPAUSE must be set.
1779 * (SiS900 and DP83815 don't have PAUSE_ASYM
1780 * feature.)
1781 *
1782 * XXX Can SiS900 and DP83815 send PAUSE?
1783 */
1784 ifr->ifr_media |=
1785 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1786 }
1787 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1788 }
1789 /*FALLTHROUGH*/
1790 default:
1791 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1792 break;
1793
1794 error = 0;
1795
1796 if (cmd == SIOCSIFCAP)
1797 error = (*ifp->if_init)(ifp);
1798 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1799 ;
1800 else if (ifp->if_flags & IFF_RUNNING) {
1801 /*
1802 * Multicast list has changed; set the hardware filter
1803 * accordingly.
1804 */
1805 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1806 }
1807 break;
1808 }
1809
1810 /* Try to get more packets going. */
1811 sipcom_start(ifp);
1812
1813 sc->sc_if_flags = ifp->if_flags;
1814 splx(s);
1815 return (error);
1816 }
1817
1818 /*
1819 * sip_intr:
1820 *
1821 * Interrupt service routine.
1822 */
1823 static int
1824 sipcom_intr(void *arg)
1825 {
1826 struct sip_softc *sc = arg;
1827 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1828 u_int32_t isr;
1829 int handled = 0;
1830
1831 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1832 return 0;
1833
1834 /* Disable interrupts. */
1835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1836
1837 for (;;) {
1838 /* Reading clears interrupt. */
1839 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1840 if ((isr & sc->sc_imr) == 0)
1841 break;
1842
1843 rnd_add_uint32(&sc->rnd_source, isr);
1844
1845 handled = 1;
1846
1847 if ((ifp->if_flags & IFF_RUNNING) == 0)
1848 break;
1849
1850 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1851 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1852
1853 /* Grab any new packets. */
1854 (*sc->sc_rxintr)(sc);
1855
1856 if (isr & ISR_RXORN) {
1857 printf("%s: receive FIFO overrun\n",
1858 device_xname(sc->sc_dev));
1859
1860 /* XXX adjust rx_drain_thresh? */
1861 }
1862
1863 if (isr & ISR_RXIDLE) {
1864 printf("%s: receive ring overrun\n",
1865 device_xname(sc->sc_dev));
1866
1867 /* Get the receive process going again. */
1868 bus_space_write_4(sc->sc_st, sc->sc_sh,
1869 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1870 bus_space_write_4(sc->sc_st, sc->sc_sh,
1871 SIP_CR, CR_RXE);
1872 }
1873 }
1874
1875 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1876 #ifdef SIP_EVENT_COUNTERS
1877 if (isr & ISR_TXDESC)
1878 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1879 else if (isr & ISR_TXIDLE)
1880 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1881 #endif
1882
1883 /* Sweep up transmit descriptors. */
1884 sipcom_txintr(sc);
1885
1886 if (isr & ISR_TXURN) {
1887 u_int32_t thresh;
1888 int txfifo_size = (sc->sc_gigabit)
1889 ? DP83820_SIP_TXFIFO_SIZE
1890 : OTHER_SIP_TXFIFO_SIZE;
1891
1892 printf("%s: transmit FIFO underrun",
1893 device_xname(sc->sc_dev));
1894 thresh = sc->sc_tx_drain_thresh + 1;
1895 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1896 && (thresh * 32) <= (txfifo_size -
1897 (sc->sc_tx_fill_thresh * 32))) {
1898 printf("; increasing Tx drain "
1899 "threshold to %u bytes\n",
1900 thresh * 32);
1901 sc->sc_tx_drain_thresh = thresh;
1902 (void) sipcom_init(ifp);
1903 } else {
1904 (void) sipcom_init(ifp);
1905 printf("\n");
1906 }
1907 }
1908 }
1909
1910 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1911 if (isr & ISR_PAUSE_ST) {
1912 sc->sc_paused = 1;
1913 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1914 ifp->if_flags |= IFF_OACTIVE;
1915 }
1916 if (isr & ISR_PAUSE_END) {
1917 sc->sc_paused = 0;
1918 ifp->if_flags &= ~IFF_OACTIVE;
1919 }
1920 }
1921
1922 if (isr & ISR_HIBERR) {
1923 int want_init = 0;
1924
1925 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1926
1927 #define PRINTERR(bit, str) \
1928 do { \
1929 if ((isr & (bit)) != 0) { \
1930 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1931 printf("%s: %s\n", \
1932 device_xname(sc->sc_dev), str); \
1933 want_init = 1; \
1934 } \
1935 } while (/*CONSTCOND*/0)
1936
1937 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1938 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1939 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1940 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1941 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1942 /*
1943 * Ignore:
1944 * Tx reset complete
1945 * Rx reset complete
1946 */
1947 if (want_init)
1948 (void) sipcom_init(ifp);
1949 #undef PRINTERR
1950 }
1951 }
1952
1953 /* Re-enable interrupts. */
1954 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1955
1956 /* Try to get more packets going. */
1957 sipcom_start(ifp);
1958
1959 return (handled);
1960 }
1961
1962 /*
1963 * sip_txintr:
1964 *
1965 * Helper; handle transmit interrupts.
1966 */
1967 static void
1968 sipcom_txintr(struct sip_softc *sc)
1969 {
1970 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1971 struct sip_txsoft *txs;
1972 u_int32_t cmdsts;
1973
1974 if (sc->sc_paused == 0)
1975 ifp->if_flags &= ~IFF_OACTIVE;
1976
1977 /*
1978 * Go through our Tx list and free mbufs for those
1979 * frames which have been transmitted.
1980 */
1981 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1982 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1983 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1984
1985 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1986 if (cmdsts & CMDSTS_OWN)
1987 break;
1988
1989 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1990
1991 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1992
1993 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1994 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1995 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1996 m_freem(txs->txs_mbuf);
1997 txs->txs_mbuf = NULL;
1998
1999 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2000
2001 /*
2002 * Check for errors and collisions.
2003 */
2004 if (cmdsts &
2005 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2006 ifp->if_oerrors++;
2007 if (cmdsts & CMDSTS_Tx_EC)
2008 ifp->if_collisions += 16;
2009 if (ifp->if_flags & IFF_DEBUG) {
2010 if (cmdsts & CMDSTS_Tx_ED)
2011 printf("%s: excessive deferral\n",
2012 device_xname(sc->sc_dev));
2013 if (cmdsts & CMDSTS_Tx_EC)
2014 printf("%s: excessive collisions\n",
2015 device_xname(sc->sc_dev));
2016 }
2017 } else {
2018 /* Packet was transmitted successfully. */
2019 ifp->if_opackets++;
2020 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2021 }
2022 }
2023
2024 /*
2025 * If there are no more pending transmissions, cancel the watchdog
2026 * timer.
2027 */
2028 if (txs == NULL) {
2029 ifp->if_timer = 0;
2030 sc->sc_txwin = 0;
2031 }
2032 }
2033
2034 /*
2035 * gsip_rxintr:
2036 *
2037 * Helper; handle receive interrupts on gigabit parts.
2038 */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_rxsoft *rxs;
2044 struct mbuf *m;
2045 u_int32_t cmdsts, extsts;
2046 int i, len;
2047
2048 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 rxs = &sc->sc_rxsoft[i];
2050
2051 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052
2053 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2054 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2055 len = CMDSTS_SIZE(sc, cmdsts);
2056
2057 /*
2058 * NOTE: OWN is set if owned by _consumer_. We're the
2059 * consumer of the receive ring, so if the bit is clear,
2060 * we have processed all of the packets.
2061 */
2062 if ((cmdsts & CMDSTS_OWN) == 0) {
2063 /*
2064 * We have processed all of the receive buffers.
2065 */
2066 break;
2067 }
2068
2069 if (__predict_false(sc->sc_rxdiscard)) {
2070 sip_init_rxdesc(sc, i);
2071 if ((cmdsts & CMDSTS_MORE) == 0) {
2072 /* Reset our state. */
2073 sc->sc_rxdiscard = 0;
2074 }
2075 continue;
2076 }
2077
2078 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2079 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080
2081 m = rxs->rxs_mbuf;
2082
2083 /*
2084 * Add a new receive buffer to the ring.
2085 */
2086 if (sipcom_add_rxbuf(sc, i) != 0) {
2087 /*
2088 * Failed, throw away what we've done so
2089 * far, and discard the rest of the packet.
2090 */
2091 ifp->if_ierrors++;
2092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2094 sip_init_rxdesc(sc, i);
2095 if (cmdsts & CMDSTS_MORE)
2096 sc->sc_rxdiscard = 1;
2097 if (sc->sc_rxhead != NULL)
2098 m_freem(sc->sc_rxhead);
2099 sip_rxchain_reset(sc);
2100 continue;
2101 }
2102
2103 sip_rxchain_link(sc, m);
2104
2105 m->m_len = len;
2106
2107 /*
2108 * If this is not the end of the packet, keep
2109 * looking.
2110 */
2111 if (cmdsts & CMDSTS_MORE) {
2112 sc->sc_rxlen += len;
2113 continue;
2114 }
2115
2116 /*
2117 * Okay, we have the entire packet now. The chip includes
2118 * the FCS, so we need to trim it.
2119 */
2120 m->m_len -= ETHER_CRC_LEN;
2121
2122 *sc->sc_rxtailp = NULL;
2123 len = m->m_len + sc->sc_rxlen;
2124 m = sc->sc_rxhead;
2125
2126 sip_rxchain_reset(sc);
2127
2128 /*
2129 * If an error occurred, update stats and drop the packet.
2130 */
2131 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2132 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2133 ifp->if_ierrors++;
2134 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2135 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2136 /* Receive overrun handled elsewhere. */
2137 printf("%s: receive descriptor error\n",
2138 device_xname(sc->sc_dev));
2139 }
2140 #define PRINTERR(bit, str) \
2141 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2142 (cmdsts & (bit)) != 0) \
2143 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2144 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2145 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2146 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2147 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2148 #undef PRINTERR
2149 m_freem(m);
2150 continue;
2151 }
2152
2153 /*
2154 * If the packet is small enough to fit in a
2155 * single header mbuf, allocate one and copy
2156 * the data into it. This greatly reduces
2157 * memory consumption when we receive lots
2158 * of small packets.
2159 */
2160 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2161 struct mbuf *nm;
2162 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2163 if (nm == NULL) {
2164 ifp->if_ierrors++;
2165 m_freem(m);
2166 continue;
2167 }
2168 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2169 nm->m_data += 2;
2170 nm->m_pkthdr.len = nm->m_len = len;
2171 m_copydata(m, 0, len, mtod(nm, void *));
2172 m_freem(m);
2173 m = nm;
2174 }
2175 #ifndef __NO_STRICT_ALIGNMENT
2176 else {
2177 /*
2178 * The DP83820's receive buffers must be 4-byte
2179 * aligned. But this means that the data after
2180 * the Ethernet header is misaligned. To compensate,
2181 * we have artificially shortened the buffer size
2182 * in the descriptor, and we do an overlapping copy
2183 * of the data two bytes further in (in the first
2184 * buffer of the chain only).
2185 */
2186 memmove(mtod(m, char *) + 2, mtod(m, void *),
2187 m->m_len);
2188 m->m_data += 2;
2189 }
2190 #endif /* ! __NO_STRICT_ALIGNMENT */
2191
2192 /*
2193 * If VLANs are enabled, VLAN packets have been unwrapped
2194 * for us. Associate the tag with the packet.
2195 */
2196
2197 /*
2198 * Again, byte swapping is tricky. Hardware provided
2199 * the tag in the network byte order, but extsts was
2200 * passed through le32toh() in the meantime. On a
2201 * big-endian machine, we need to swap it again. On a
2202 * little-endian machine, we need to convert from the
2203 * network to host byte order. This means that we must
2204 * swap it in any case, so unconditional swap instead
2205 * of htons() is used.
2206 */
2207 if ((extsts & EXTSTS_VPKT) != 0) {
2208 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2209 continue);
2210 }
2211
2212 /*
2213 * Set the incoming checksum information for the
2214 * packet.
2215 */
2216 if ((extsts & EXTSTS_IPPKT) != 0) {
2217 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2219 if (extsts & EXTSTS_Rx_IPERR)
2220 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2221 if (extsts & EXTSTS_TCPPKT) {
2222 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2223 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2224 if (extsts & EXTSTS_Rx_TCPERR)
2225 m->m_pkthdr.csum_flags |=
2226 M_CSUM_TCP_UDP_BAD;
2227 } else if (extsts & EXTSTS_UDPPKT) {
2228 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2229 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2230 if (extsts & EXTSTS_Rx_UDPERR)
2231 m->m_pkthdr.csum_flags |=
2232 M_CSUM_TCP_UDP_BAD;
2233 }
2234 }
2235
2236 ifp->if_ipackets++;
2237 m_set_rcvif(m, ifp);
2238 m->m_pkthdr.len = len;
2239
2240 /*
2241 * Pass this up to any BPF listeners, but only
2242 * pass if up the stack if it's for us.
2243 */
2244 bpf_mtap(ifp, m);
2245
2246 /* Pass it on. */
2247 if_percpuq_enqueue(ifp->if_percpuq, m);
2248 }
2249
2250 /* Update the receive pointer. */
2251 sc->sc_rxptr = i;
2252 }
2253
2254 /*
2255 * sip_rxintr:
2256 *
2257 * Helper; handle receive interrupts on 10/100 parts.
2258 */
2259 static void
2260 sip_rxintr(struct sip_softc *sc)
2261 {
2262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2263 struct sip_rxsoft *rxs;
2264 struct mbuf *m;
2265 u_int32_t cmdsts;
2266 int i, len;
2267
2268 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2269 rxs = &sc->sc_rxsoft[i];
2270
2271 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2272
2273 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2274
2275 /*
2276 * NOTE: OWN is set if owned by _consumer_. We're the
2277 * consumer of the receive ring, so if the bit is clear,
2278 * we have processed all of the packets.
2279 */
2280 if ((cmdsts & CMDSTS_OWN) == 0) {
2281 /*
2282 * We have processed all of the receive buffers.
2283 */
2284 break;
2285 }
2286
2287 /*
2288 * If any collisions were seen on the wire, count one.
2289 */
2290 if (cmdsts & CMDSTS_Rx_COL)
2291 ifp->if_collisions++;
2292
2293 /*
2294 * If an error occurred, update stats, clear the status
2295 * word, and leave the packet buffer in place. It will
2296 * simply be reused the next time the ring comes around.
2297 */
2298 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2299 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2300 ifp->if_ierrors++;
2301 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2302 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2303 /* Receive overrun handled elsewhere. */
2304 printf("%s: receive descriptor error\n",
2305 device_xname(sc->sc_dev));
2306 }
2307 #define PRINTERR(bit, str) \
2308 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2309 (cmdsts & (bit)) != 0) \
2310 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2311 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2312 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2313 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2314 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2315 #undef PRINTERR
2316 sip_init_rxdesc(sc, i);
2317 continue;
2318 }
2319
2320 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2321 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2322
2323 /*
2324 * No errors; receive the packet. Note, the SiS 900
2325 * includes the CRC with every packet.
2326 */
2327 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2328
2329 #ifdef __NO_STRICT_ALIGNMENT
2330 /*
2331 * If the packet is small enough to fit in a
2332 * single header mbuf, allocate one and copy
2333 * the data into it. This greatly reduces
2334 * memory consumption when we receive lots
2335 * of small packets.
2336 *
2337 * Otherwise, we add a new buffer to the receive
2338 * chain. If this fails, we drop the packet and
2339 * recycle the old buffer.
2340 */
2341 if (sip_copy_small != 0 && len <= MHLEN) {
2342 MGETHDR(m, M_DONTWAIT, MT_DATA);
2343 if (m == NULL)
2344 goto dropit;
2345 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2346 memcpy(mtod(m, void *),
2347 mtod(rxs->rxs_mbuf, void *), len);
2348 sip_init_rxdesc(sc, i);
2349 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2350 rxs->rxs_dmamap->dm_mapsize,
2351 BUS_DMASYNC_PREREAD);
2352 } else {
2353 m = rxs->rxs_mbuf;
2354 if (sipcom_add_rxbuf(sc, i) != 0) {
2355 dropit:
2356 ifp->if_ierrors++;
2357 sip_init_rxdesc(sc, i);
2358 bus_dmamap_sync(sc->sc_dmat,
2359 rxs->rxs_dmamap, 0,
2360 rxs->rxs_dmamap->dm_mapsize,
2361 BUS_DMASYNC_PREREAD);
2362 continue;
2363 }
2364 }
2365 #else
2366 /*
2367 * The SiS 900's receive buffers must be 4-byte aligned.
2368 * But this means that the data after the Ethernet header
2369 * is misaligned. We must allocate a new buffer and
2370 * copy the data, shifted forward 2 bytes.
2371 */
2372 MGETHDR(m, M_DONTWAIT, MT_DATA);
2373 if (m == NULL) {
2374 dropit:
2375 ifp->if_ierrors++;
2376 sip_init_rxdesc(sc, i);
2377 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2378 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2379 continue;
2380 }
2381 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2382 if (len > (MHLEN - 2)) {
2383 MCLGET(m, M_DONTWAIT);
2384 if ((m->m_flags & M_EXT) == 0) {
2385 m_freem(m);
2386 goto dropit;
2387 }
2388 }
2389 m->m_data += 2;
2390
2391 /*
2392 * Note that we use clusters for incoming frames, so the
2393 * buffer is virtually contiguous.
2394 */
2395 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2396
2397 /* Allow the receive descriptor to continue using its mbuf. */
2398 sip_init_rxdesc(sc, i);
2399 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2400 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2401 #endif /* __NO_STRICT_ALIGNMENT */
2402
2403 ifp->if_ipackets++;
2404 m_set_rcvif(m, ifp);
2405 m->m_pkthdr.len = m->m_len = len;
2406
2407 /*
2408 * Pass this up to any BPF listeners, but only
2409 * pass if up the stack if it's for us.
2410 */
2411 bpf_mtap(ifp, m);
2412
2413 /* Pass it on. */
2414 if_percpuq_enqueue(ifp->if_percpuq, m);
2415 }
2416
2417 /* Update the receive pointer. */
2418 sc->sc_rxptr = i;
2419 }
2420
2421 /*
2422 * sip_tick:
2423 *
2424 * One second timer, used to tick the MII.
2425 */
2426 static void
2427 sipcom_tick(void *arg)
2428 {
2429 struct sip_softc *sc = arg;
2430 int s;
2431
2432 s = splnet();
2433 #ifdef SIP_EVENT_COUNTERS
2434 if (sc->sc_gigabit) {
2435 /* Read PAUSE related counts from MIB registers. */
2436 sc->sc_ev_rxpause.ev_count +=
2437 bus_space_read_4(sc->sc_st, sc->sc_sh,
2438 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2439 sc->sc_ev_txpause.ev_count +=
2440 bus_space_read_4(sc->sc_st, sc->sc_sh,
2441 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2442 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2443 }
2444 #endif /* SIP_EVENT_COUNTERS */
2445 mii_tick(&sc->sc_mii);
2446 splx(s);
2447
2448 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2449 }
2450
2451 /*
2452 * sip_reset:
2453 *
2454 * Perform a soft reset on the SiS 900.
2455 */
2456 static bool
2457 sipcom_reset(struct sip_softc *sc)
2458 {
2459 bus_space_tag_t st = sc->sc_st;
2460 bus_space_handle_t sh = sc->sc_sh;
2461 int i;
2462
2463 bus_space_write_4(st, sh, SIP_IER, 0);
2464 bus_space_write_4(st, sh, SIP_IMR, 0);
2465 bus_space_write_4(st, sh, SIP_RFCR, 0);
2466 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2467
2468 for (i = 0; i < SIP_TIMEOUT; i++) {
2469 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2470 break;
2471 delay(2);
2472 }
2473
2474 if (i == SIP_TIMEOUT) {
2475 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2476 return false;
2477 }
2478
2479 delay(1000);
2480
2481 if (sc->sc_gigabit) {
2482 /*
2483 * Set the general purpose I/O bits. Do it here in case we
2484 * need to have GPIO set up to talk to the media interface.
2485 */
2486 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2487 delay(1000);
2488 }
2489 return true;
2490 }
2491
2492 static void
2493 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2494 {
2495 u_int32_t reg;
2496 bus_space_tag_t st = sc->sc_st;
2497 bus_space_handle_t sh = sc->sc_sh;
2498 /*
2499 * Initialize the VLAN/IP receive control register.
2500 * We enable checksum computation on all incoming
2501 * packets, and do not reject packets w/ bad checksums.
2502 */
2503 reg = 0;
2504 if (capenable &
2505 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2506 reg |= VRCR_IPEN;
2507 if (VLAN_ATTACHED(&sc->sc_ethercom))
2508 reg |= VRCR_VTDEN|VRCR_VTREN;
2509 bus_space_write_4(st, sh, SIP_VRCR, reg);
2510
2511 /*
2512 * Initialize the VLAN/IP transmit control register.
2513 * We enable outgoing checksum computation on a
2514 * per-packet basis.
2515 */
2516 reg = 0;
2517 if (capenable &
2518 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2519 reg |= VTCR_PPCHK;
2520 if (VLAN_ATTACHED(&sc->sc_ethercom))
2521 reg |= VTCR_VPPTI;
2522 bus_space_write_4(st, sh, SIP_VTCR, reg);
2523
2524 /*
2525 * If we're using VLANs, initialize the VLAN data register.
2526 * To understand why we bswap the VLAN Ethertype, see section
2527 * 4.2.36 of the DP83820 manual.
2528 */
2529 if (VLAN_ATTACHED(&sc->sc_ethercom))
2530 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2531 }
2532
2533 /*
2534 * sip_init: [ ifnet interface function ]
2535 *
2536 * Initialize the interface. Must be called at splnet().
2537 */
2538 static int
2539 sipcom_init(struct ifnet *ifp)
2540 {
2541 struct sip_softc *sc = ifp->if_softc;
2542 bus_space_tag_t st = sc->sc_st;
2543 bus_space_handle_t sh = sc->sc_sh;
2544 struct sip_txsoft *txs;
2545 struct sip_rxsoft *rxs;
2546 struct sip_desc *sipd;
2547 int i, error = 0;
2548
2549 if (device_is_active(sc->sc_dev)) {
2550 /*
2551 * Cancel any pending I/O.
2552 */
2553 sipcom_stop(ifp, 0);
2554 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2555 !device_is_active(sc->sc_dev))
2556 return 0;
2557
2558 /*
2559 * Reset the chip to a known state.
2560 */
2561 if (!sipcom_reset(sc))
2562 return EBUSY;
2563
2564 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2565 /*
2566 * DP83815 manual, page 78:
2567 * 4.4 Recommended Registers Configuration
2568 * For optimum performance of the DP83815, version noted
2569 * as DP83815CVNG (SRR = 203h), the listed register
2570 * modifications must be followed in sequence...
2571 *
2572 * It's not clear if this should be 302h or 203h because that
2573 * chip name is listed as SRR 302h in the description of the
2574 * SRR register. However, my revision 302h DP83815 on the
2575 * Netgear FA311 purchased in 02/2001 needs these settings
2576 * to avoid tons of errors in AcceptPerfectMatch (non-
2577 * IFF_PROMISC) mode. I do not know if other revisions need
2578 * this set or not. [briggs -- 09 March 2001]
2579 *
2580 * Note that only the low-order 12 bits of 0xe4 are documented
2581 * and that this sets reserved bits in that register.
2582 */
2583 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2584
2585 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2586 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2587 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2588 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2589
2590 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2591 }
2592
2593 /*
2594 * Initialize the transmit descriptor ring.
2595 */
2596 for (i = 0; i < sc->sc_ntxdesc; i++) {
2597 sipd = &sc->sc_txdescs[i];
2598 memset(sipd, 0, sizeof(struct sip_desc));
2599 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2600 }
2601 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2602 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2603 sc->sc_txfree = sc->sc_ntxdesc;
2604 sc->sc_txnext = 0;
2605 sc->sc_txwin = 0;
2606
2607 /*
2608 * Initialize the transmit job descriptors.
2609 */
2610 SIMPLEQ_INIT(&sc->sc_txfreeq);
2611 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2612 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2613 txs = &sc->sc_txsoft[i];
2614 txs->txs_mbuf = NULL;
2615 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2616 }
2617
2618 /*
2619 * Initialize the receive descriptor and receive job
2620 * descriptor rings.
2621 */
2622 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2623 rxs = &sc->sc_rxsoft[i];
2624 if (rxs->rxs_mbuf == NULL) {
2625 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2626 printf("%s: unable to allocate or map rx "
2627 "buffer %d, error = %d\n",
2628 device_xname(sc->sc_dev), i, error);
2629 /*
2630 * XXX Should attempt to run with fewer receive
2631 * XXX buffers instead of just failing.
2632 */
2633 sipcom_rxdrain(sc);
2634 goto out;
2635 }
2636 } else
2637 sip_init_rxdesc(sc, i);
2638 }
2639 sc->sc_rxptr = 0;
2640 sc->sc_rxdiscard = 0;
2641 sip_rxchain_reset(sc);
2642
2643 /*
2644 * Set the configuration register; it's already initialized
2645 * in sip_attach().
2646 */
2647 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2648
2649 /*
2650 * Initialize the prototype TXCFG register.
2651 */
2652 if (sc->sc_gigabit) {
2653 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2654 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2655 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2656 SIP_SIS900_REV(sc, SIS_REV_960) ||
2657 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2658 (sc->sc_cfg & CFG_EDBMASTEN)) {
2659 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2660 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2661 } else {
2662 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2663 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2664 }
2665
2666 sc->sc_txcfg |= TXCFG_ATP |
2667 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2668 sc->sc_tx_drain_thresh;
2669 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2670
2671 /*
2672 * Initialize the receive drain threshold if we have never
2673 * done so.
2674 */
2675 if (sc->sc_rx_drain_thresh == 0) {
2676 /*
2677 * XXX This value should be tuned. This is set to the
2678 * maximum of 248 bytes, and we may be able to improve
2679 * performance by decreasing it (although we should never
2680 * set this value lower than 2; 14 bytes are required to
2681 * filter the packet).
2682 */
2683 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2684 }
2685
2686 /*
2687 * Initialize the prototype RXCFG register.
2688 */
2689 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2690 /*
2691 * Accept long packets (including FCS) so we can handle
2692 * 802.1q-tagged frames and jumbo frames properly.
2693 */
2694 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2695 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2696 sc->sc_rxcfg |= RXCFG_ALP;
2697
2698 /*
2699 * Checksum offloading is disabled if the user selects an MTU
2700 * larger than 8109. (FreeBSD says 8152, but there is emperical
2701 * evidence that >8109 does not work on some boards, such as the
2702 * Planex GN-1000TE).
2703 */
2704 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2705 (ifp->if_capenable &
2706 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2707 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2708 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2709 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2710 "disabled.\n", device_xname(sc->sc_dev));
2711 ifp->if_capenable &=
2712 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2713 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2714 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2715 ifp->if_csum_flags_tx = 0;
2716 ifp->if_csum_flags_rx = 0;
2717 }
2718
2719 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2720
2721 if (sc->sc_gigabit)
2722 sipcom_dp83820_init(sc, ifp->if_capenable);
2723
2724 /*
2725 * Give the transmit and receive rings to the chip.
2726 */
2727 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2728 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2729
2730 /*
2731 * Initialize the interrupt mask.
2732 */
2733 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2734 sc->sc_bits.b_isr_sserr |
2735 sc->sc_bits.b_isr_rmabt |
2736 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2737 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2738 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2739
2740 /* Set up the receive filter. */
2741 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2742
2743 /*
2744 * Tune sc_rx_flow_thresh.
2745 * XXX "More than 8KB" is too short for jumbo frames.
2746 * XXX TODO: Threshold value should be user-settable.
2747 */
2748 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2749 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2750 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2751
2752 /*
2753 * Set the current media. Do this after initializing the prototype
2754 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2755 * control.
2756 */
2757 if ((error = ether_mediachange(ifp)) != 0)
2758 goto out;
2759
2760 /*
2761 * Set the interrupt hold-off timer to 100us.
2762 */
2763 if (sc->sc_gigabit)
2764 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2765
2766 /*
2767 * Enable interrupts.
2768 */
2769 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2770
2771 /*
2772 * Start the transmit and receive processes.
2773 */
2774 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2775
2776 /*
2777 * Start the one second MII clock.
2778 */
2779 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2780
2781 /*
2782 * ...all done!
2783 */
2784 ifp->if_flags |= IFF_RUNNING;
2785 ifp->if_flags &= ~IFF_OACTIVE;
2786 sc->sc_if_flags = ifp->if_flags;
2787 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2788 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2789 sc->sc_prev.if_capenable = ifp->if_capenable;
2790
2791 out:
2792 if (error)
2793 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2794 return (error);
2795 }
2796
2797 /*
2798 * sip_drain:
2799 *
2800 * Drain the receive queue.
2801 */
2802 static void
2803 sipcom_rxdrain(struct sip_softc *sc)
2804 {
2805 struct sip_rxsoft *rxs;
2806 int i;
2807
2808 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2809 rxs = &sc->sc_rxsoft[i];
2810 if (rxs->rxs_mbuf != NULL) {
2811 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2812 m_freem(rxs->rxs_mbuf);
2813 rxs->rxs_mbuf = NULL;
2814 }
2815 }
2816 }
2817
2818 /*
2819 * sip_stop: [ ifnet interface function ]
2820 *
2821 * Stop transmission on the interface.
2822 */
2823 static void
2824 sipcom_stop(struct ifnet *ifp, int disable)
2825 {
2826 struct sip_softc *sc = ifp->if_softc;
2827 bus_space_tag_t st = sc->sc_st;
2828 bus_space_handle_t sh = sc->sc_sh;
2829 struct sip_txsoft *txs;
2830 u_int32_t cmdsts = 0; /* DEBUG */
2831
2832 /*
2833 * Stop the one second clock.
2834 */
2835 callout_stop(&sc->sc_tick_ch);
2836
2837 /* Down the MII. */
2838 mii_down(&sc->sc_mii);
2839
2840 if (device_is_active(sc->sc_dev)) {
2841 /*
2842 * Disable interrupts.
2843 */
2844 bus_space_write_4(st, sh, SIP_IER, 0);
2845
2846 /*
2847 * Stop receiver and transmitter.
2848 */
2849 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2850 }
2851
2852 /*
2853 * Release any queued transmit buffers.
2854 */
2855 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2856 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2857 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2858 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2859 CMDSTS_INTR) == 0)
2860 printf("%s: sip_stop: last descriptor does not "
2861 "have INTR bit set\n", device_xname(sc->sc_dev));
2862 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2863 #ifdef DIAGNOSTIC
2864 if (txs->txs_mbuf == NULL) {
2865 printf("%s: dirty txsoft with no mbuf chain\n",
2866 device_xname(sc->sc_dev));
2867 panic("sip_stop");
2868 }
2869 #endif
2870 cmdsts |= /* DEBUG */
2871 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2872 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2873 m_freem(txs->txs_mbuf);
2874 txs->txs_mbuf = NULL;
2875 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2876 }
2877
2878 /*
2879 * Mark the interface down and cancel the watchdog timer.
2880 */
2881 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2882 ifp->if_timer = 0;
2883
2884 if (disable)
2885 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2886
2887 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2888 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2889 printf("%s: sip_stop: no INTR bits set in dirty tx "
2890 "descriptors\n", device_xname(sc->sc_dev));
2891 }
2892
2893 /*
2894 * sip_read_eeprom:
2895 *
2896 * Read data from the serial EEPROM.
2897 */
2898 static void
2899 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2900 u_int16_t *data)
2901 {
2902 bus_space_tag_t st = sc->sc_st;
2903 bus_space_handle_t sh = sc->sc_sh;
2904 u_int16_t reg;
2905 int i, x;
2906
2907 for (i = 0; i < wordcnt; i++) {
2908 /* Send CHIP SELECT. */
2909 reg = EROMAR_EECS;
2910 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2911
2912 /* Shift in the READ opcode. */
2913 for (x = 3; x > 0; x--) {
2914 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2915 reg |= EROMAR_EEDI;
2916 else
2917 reg &= ~EROMAR_EEDI;
2918 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2919 bus_space_write_4(st, sh, SIP_EROMAR,
2920 reg | EROMAR_EESK);
2921 delay(4);
2922 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2923 delay(4);
2924 }
2925
2926 /* Shift in address. */
2927 for (x = 6; x > 0; x--) {
2928 if ((word + i) & (1 << (x - 1)))
2929 reg |= EROMAR_EEDI;
2930 else
2931 reg &= ~EROMAR_EEDI;
2932 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2933 bus_space_write_4(st, sh, SIP_EROMAR,
2934 reg | EROMAR_EESK);
2935 delay(4);
2936 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 delay(4);
2938 }
2939
2940 /* Shift out data. */
2941 reg = EROMAR_EECS;
2942 data[i] = 0;
2943 for (x = 16; x > 0; x--) {
2944 bus_space_write_4(st, sh, SIP_EROMAR,
2945 reg | EROMAR_EESK);
2946 delay(4);
2947 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2948 data[i] |= (1 << (x - 1));
2949 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2950 delay(4);
2951 }
2952
2953 /* Clear CHIP SELECT. */
2954 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2955 delay(4);
2956 }
2957 }
2958
2959 /*
2960 * sipcom_add_rxbuf:
2961 *
2962 * Add a receive buffer to the indicated descriptor.
2963 */
2964 static int
2965 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2966 {
2967 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2968 struct mbuf *m;
2969 int error;
2970
2971 MGETHDR(m, M_DONTWAIT, MT_DATA);
2972 if (m == NULL)
2973 return (ENOBUFS);
2974 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2975
2976 MCLGET(m, M_DONTWAIT);
2977 if ((m->m_flags & M_EXT) == 0) {
2978 m_freem(m);
2979 return (ENOBUFS);
2980 }
2981
2982 /* XXX I don't believe this is necessary. --dyoung */
2983 if (sc->sc_gigabit)
2984 m->m_len = sc->sc_parm->p_rxbuf_len;
2985
2986 if (rxs->rxs_mbuf != NULL)
2987 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2988
2989 rxs->rxs_mbuf = m;
2990
2991 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2992 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2993 BUS_DMA_READ|BUS_DMA_NOWAIT);
2994 if (error) {
2995 printf("%s: can't load rx DMA map %d, error = %d\n",
2996 device_xname(sc->sc_dev), idx, error);
2997 panic("%s", __func__); /* XXX */
2998 }
2999
3000 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3001 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3002
3003 sip_init_rxdesc(sc, idx);
3004
3005 return (0);
3006 }
3007
3008 /*
3009 * sip_sis900_set_filter:
3010 *
3011 * Set up the receive filter.
3012 */
3013 static void
3014 sipcom_sis900_set_filter(struct sip_softc *sc)
3015 {
3016 bus_space_tag_t st = sc->sc_st;
3017 bus_space_handle_t sh = sc->sc_sh;
3018 struct ethercom *ec = &sc->sc_ethercom;
3019 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3020 struct ether_multi *enm;
3021 const u_int8_t *cp;
3022 struct ether_multistep step;
3023 u_int32_t crc, mchash[16];
3024
3025 /*
3026 * Initialize the prototype RFCR.
3027 */
3028 sc->sc_rfcr = RFCR_RFEN;
3029 if (ifp->if_flags & IFF_BROADCAST)
3030 sc->sc_rfcr |= RFCR_AAB;
3031 if (ifp->if_flags & IFF_PROMISC) {
3032 sc->sc_rfcr |= RFCR_AAP;
3033 goto allmulti;
3034 }
3035
3036 /*
3037 * Set up the multicast address filter by passing all multicast
3038 * addresses through a CRC generator, and then using the high-order
3039 * 6 bits as an index into the 128 bit multicast hash table (only
3040 * the lower 16 bits of each 32 bit multicast hash register are
3041 * valid). The high order bits select the register, while the
3042 * rest of the bits select the bit within the register.
3043 */
3044
3045 memset(mchash, 0, sizeof(mchash));
3046
3047 /*
3048 * SiS900 (at least SiS963) requires us to register the address of
3049 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3050 */
3051 crc = 0x0ed423f9;
3052
3053 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3054 SIP_SIS900_REV(sc, SIS_REV_960) ||
3055 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3056 /* Just want the 8 most significant bits. */
3057 crc >>= 24;
3058 } else {
3059 /* Just want the 7 most significant bits. */
3060 crc >>= 25;
3061 }
3062
3063 /* Set the corresponding bit in the hash table. */
3064 mchash[crc >> 4] |= 1 << (crc & 0xf);
3065
3066 ETHER_FIRST_MULTI(step, ec, enm);
3067 while (enm != NULL) {
3068 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3069 /*
3070 * We must listen to a range of multicast addresses.
3071 * For now, just accept all multicasts, rather than
3072 * trying to set only those filter bits needed to match
3073 * the range. (At this time, the only use of address
3074 * ranges is for IP multicast routing, for which the
3075 * range is big enough to require all bits set.)
3076 */
3077 goto allmulti;
3078 }
3079
3080 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3081
3082 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3083 SIP_SIS900_REV(sc, SIS_REV_960) ||
3084 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3085 /* Just want the 8 most significant bits. */
3086 crc >>= 24;
3087 } else {
3088 /* Just want the 7 most significant bits. */
3089 crc >>= 25;
3090 }
3091
3092 /* Set the corresponding bit in the hash table. */
3093 mchash[crc >> 4] |= 1 << (crc & 0xf);
3094
3095 ETHER_NEXT_MULTI(step, enm);
3096 }
3097
3098 ifp->if_flags &= ~IFF_ALLMULTI;
3099 goto setit;
3100
3101 allmulti:
3102 ifp->if_flags |= IFF_ALLMULTI;
3103 sc->sc_rfcr |= RFCR_AAM;
3104
3105 setit:
3106 #define FILTER_EMIT(addr, data) \
3107 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3108 delay(1); \
3109 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3110 delay(1)
3111
3112 /*
3113 * Disable receive filter, and program the node address.
3114 */
3115 cp = CLLADDR(ifp->if_sadl);
3116 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3117 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3118 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3119
3120 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3121 /*
3122 * Program the multicast hash table.
3123 */
3124 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3125 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3126 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3127 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3128 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3129 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3130 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3131 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3132 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3133 SIP_SIS900_REV(sc, SIS_REV_960) ||
3134 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3135 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3136 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3137 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3138 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3139 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3140 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3141 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3142 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3143 }
3144 }
3145 #undef FILTER_EMIT
3146
3147 /*
3148 * Re-enable the receiver filter.
3149 */
3150 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3151 }
3152
3153 /*
3154 * sip_dp83815_set_filter:
3155 *
3156 * Set up the receive filter.
3157 */
3158 static void
3159 sipcom_dp83815_set_filter(struct sip_softc *sc)
3160 {
3161 bus_space_tag_t st = sc->sc_st;
3162 bus_space_handle_t sh = sc->sc_sh;
3163 struct ethercom *ec = &sc->sc_ethercom;
3164 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3165 struct ether_multi *enm;
3166 const u_int8_t *cp;
3167 struct ether_multistep step;
3168 u_int32_t crc, hash, slot, bit;
3169 #define MCHASH_NWORDS_83820 128
3170 #define MCHASH_NWORDS_83815 32
3171 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3172 u_int16_t mchash[MCHASH_NWORDS];
3173 int i;
3174
3175 /*
3176 * Initialize the prototype RFCR.
3177 * Enable the receive filter, and accept on
3178 * Perfect (destination address) Match
3179 * If IFF_BROADCAST, also accept all broadcast packets.
3180 * If IFF_PROMISC, accept all unicast packets (and later, set
3181 * IFF_ALLMULTI and accept all multicast, too).
3182 */
3183 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3184 if (ifp->if_flags & IFF_BROADCAST)
3185 sc->sc_rfcr |= RFCR_AAB;
3186 if (ifp->if_flags & IFF_PROMISC) {
3187 sc->sc_rfcr |= RFCR_AAP;
3188 goto allmulti;
3189 }
3190
3191 /*
3192 * Set up the DP83820/DP83815 multicast address filter by
3193 * passing all multicast addresses through a CRC generator,
3194 * and then using the high-order 11/9 bits as an index into
3195 * the 2048/512 bit multicast hash table. The high-order
3196 * 7/5 bits select the slot, while the low-order 4 bits
3197 * select the bit within the slot. Note that only the low
3198 * 16-bits of each filter word are used, and there are
3199 * 128/32 filter words.
3200 */
3201
3202 memset(mchash, 0, sizeof(mchash));
3203
3204 ifp->if_flags &= ~IFF_ALLMULTI;
3205 ETHER_FIRST_MULTI(step, ec, enm);
3206 if (enm == NULL)
3207 goto setit;
3208 while (enm != NULL) {
3209 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3210 /*
3211 * We must listen to a range of multicast addresses.
3212 * For now, just accept all multicasts, rather than
3213 * trying to set only those filter bits needed to match
3214 * the range. (At this time, the only use of address
3215 * ranges is for IP multicast routing, for which the
3216 * range is big enough to require all bits set.)
3217 */
3218 goto allmulti;
3219 }
3220
3221 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3222
3223 if (sc->sc_gigabit) {
3224 /* Just want the 11 most significant bits. */
3225 hash = crc >> 21;
3226 } else {
3227 /* Just want the 9 most significant bits. */
3228 hash = crc >> 23;
3229 }
3230
3231 slot = hash >> 4;
3232 bit = hash & 0xf;
3233
3234 /* Set the corresponding bit in the hash table. */
3235 mchash[slot] |= 1 << bit;
3236
3237 ETHER_NEXT_MULTI(step, enm);
3238 }
3239 sc->sc_rfcr |= RFCR_MHEN;
3240 goto setit;
3241
3242 allmulti:
3243 ifp->if_flags |= IFF_ALLMULTI;
3244 sc->sc_rfcr |= RFCR_AAM;
3245
3246 setit:
3247 #define FILTER_EMIT(addr, data) \
3248 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3249 delay(1); \
3250 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3251 delay(1)
3252
3253 /*
3254 * Disable receive filter, and program the node address.
3255 */
3256 cp = CLLADDR(ifp->if_sadl);
3257 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3258 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3259 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3260
3261 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3262 int nwords =
3263 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3264 /*
3265 * Program the multicast hash table.
3266 */
3267 for (i = 0; i < nwords; i++) {
3268 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3269 }
3270 }
3271 #undef FILTER_EMIT
3272 #undef MCHASH_NWORDS
3273 #undef MCHASH_NWORDS_83815
3274 #undef MCHASH_NWORDS_83820
3275
3276 /*
3277 * Re-enable the receiver filter.
3278 */
3279 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3280 }
3281
3282 /*
3283 * sip_dp83820_mii_readreg: [mii interface function]
3284 *
3285 * Read a PHY register on the MII of the DP83820.
3286 */
3287 static int
3288 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3289 {
3290 struct sip_softc *sc = device_private(self);
3291
3292 if (sc->sc_cfg & CFG_TBI_EN) {
3293 bus_addr_t tbireg;
3294 int rv;
3295
3296 if (phy != 0)
3297 return (0);
3298
3299 switch (reg) {
3300 case MII_BMCR: tbireg = SIP_TBICR; break;
3301 case MII_BMSR: tbireg = SIP_TBISR; break;
3302 case MII_ANAR: tbireg = SIP_TANAR; break;
3303 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3304 case MII_ANER: tbireg = SIP_TANER; break;
3305 case MII_EXTSR:
3306 /*
3307 * Don't even bother reading the TESR register.
3308 * The manual documents that the device has
3309 * 1000baseX full/half capability, but the
3310 * register itself seems read back 0 on some
3311 * boards. Just hard-code the result.
3312 */
3313 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3314
3315 default:
3316 return (0);
3317 }
3318
3319 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3320 if (tbireg == SIP_TBISR) {
3321 /* LINK and ACOMP are switched! */
3322 int val = rv;
3323
3324 rv = 0;
3325 if (val & TBISR_MR_LINK_STATUS)
3326 rv |= BMSR_LINK;
3327 if (val & TBISR_MR_AN_COMPLETE)
3328 rv |= BMSR_ACOMP;
3329
3330 /*
3331 * The manual claims this register reads back 0
3332 * on hard and soft reset. But we want to let
3333 * the gentbi driver know that we support auto-
3334 * negotiation, so hard-code this bit in the
3335 * result.
3336 */
3337 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3338 }
3339
3340 return (rv);
3341 }
3342
3343 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3344 }
3345
3346 /*
3347 * sip_dp83820_mii_writereg: [mii interface function]
3348 *
3349 * Write a PHY register on the MII of the DP83820.
3350 */
3351 static void
3352 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3353 {
3354 struct sip_softc *sc = device_private(self);
3355
3356 if (sc->sc_cfg & CFG_TBI_EN) {
3357 bus_addr_t tbireg;
3358
3359 if (phy != 0)
3360 return;
3361
3362 switch (reg) {
3363 case MII_BMCR: tbireg = SIP_TBICR; break;
3364 case MII_ANAR: tbireg = SIP_TANAR; break;
3365 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3366 default:
3367 return;
3368 }
3369
3370 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3371 return;
3372 }
3373
3374 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3375 }
3376
3377 /*
3378 * sip_dp83820_mii_statchg: [mii interface function]
3379 *
3380 * Callback from MII layer when media changes.
3381 */
3382 static void
3383 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3384 {
3385 struct sip_softc *sc = ifp->if_softc;
3386 struct mii_data *mii = &sc->sc_mii;
3387 u_int32_t cfg, pcr;
3388
3389 /*
3390 * Get flow control negotiation result.
3391 */
3392 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3393 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3394 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3395 mii->mii_media_active &= ~IFM_ETH_FMASK;
3396 }
3397
3398 /*
3399 * Update TXCFG for full-duplex operation.
3400 */
3401 if ((mii->mii_media_active & IFM_FDX) != 0)
3402 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3403 else
3404 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3405
3406 /*
3407 * Update RXCFG for full-duplex or loopback.
3408 */
3409 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3410 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3411 sc->sc_rxcfg |= RXCFG_ATX;
3412 else
3413 sc->sc_rxcfg &= ~RXCFG_ATX;
3414
3415 /*
3416 * Update CFG for MII/GMII.
3417 */
3418 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3419 cfg = sc->sc_cfg | CFG_MODE_1000;
3420 else
3421 cfg = sc->sc_cfg;
3422
3423 /*
3424 * 802.3x flow control.
3425 */
3426 pcr = 0;
3427 if (sc->sc_flowflags & IFM_FLOW) {
3428 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3429 pcr |= sc->sc_rx_flow_thresh;
3430 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3431 pcr |= PCR_PSEN | PCR_PS_MCAST;
3432 }
3433
3434 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3435 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3436 sc->sc_txcfg);
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3438 sc->sc_rxcfg);
3439 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3440 }
3441
3442 /*
3443 * sip_mii_bitbang_read: [mii bit-bang interface function]
3444 *
3445 * Read the MII serial port for the MII bit-bang module.
3446 */
3447 static u_int32_t
3448 sipcom_mii_bitbang_read(device_t self)
3449 {
3450 struct sip_softc *sc = device_private(self);
3451
3452 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3453 }
3454
3455 /*
3456 * sip_mii_bitbang_write: [mii big-bang interface function]
3457 *
3458 * Write the MII serial port for the MII bit-bang module.
3459 */
3460 static void
3461 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3462 {
3463 struct sip_softc *sc = device_private(self);
3464
3465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3466 }
3467
3468 /*
3469 * sip_sis900_mii_readreg: [mii interface function]
3470 *
3471 * Read a PHY register on the MII.
3472 */
3473 static int
3474 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3475 {
3476 struct sip_softc *sc = device_private(self);
3477 u_int32_t enphy;
3478
3479 /*
3480 * The PHY of recent SiS chipsets is accessed through bitbang
3481 * operations.
3482 */
3483 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3484 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3485 phy, reg);
3486
3487 #ifndef SIS900_MII_RESTRICT
3488 /*
3489 * The SiS 900 has only an internal PHY on the MII. Only allow
3490 * MII address 0.
3491 */
3492 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3493 return (0);
3494 #endif
3495
3496 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3497 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3498 ENPHY_RWCMD | ENPHY_ACCESS);
3499 do {
3500 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3501 } while (enphy & ENPHY_ACCESS);
3502 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3503 }
3504
3505 /*
3506 * sip_sis900_mii_writereg: [mii interface function]
3507 *
3508 * Write a PHY register on the MII.
3509 */
3510 static void
3511 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3512 {
3513 struct sip_softc *sc = device_private(self);
3514 u_int32_t enphy;
3515
3516 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3517 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3518 phy, reg, val);
3519 return;
3520 }
3521
3522 #ifndef SIS900_MII_RESTRICT
3523 /*
3524 * The SiS 900 has only an internal PHY on the MII. Only allow
3525 * MII address 0.
3526 */
3527 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3528 return;
3529 #endif
3530
3531 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3532 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3533 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3534 do {
3535 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3536 } while (enphy & ENPHY_ACCESS);
3537 }
3538
3539 /*
3540 * sip_sis900_mii_statchg: [mii interface function]
3541 *
3542 * Callback from MII layer when media changes.
3543 */
3544 static void
3545 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3546 {
3547 struct sip_softc *sc = ifp->if_softc;
3548 struct mii_data *mii = &sc->sc_mii;
3549 u_int32_t flowctl;
3550
3551 /*
3552 * Get flow control negotiation result.
3553 */
3554 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3555 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3556 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3557 mii->mii_media_active &= ~IFM_ETH_FMASK;
3558 }
3559
3560 /*
3561 * Update TXCFG for full-duplex operation.
3562 */
3563 if ((mii->mii_media_active & IFM_FDX) != 0)
3564 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3565 else
3566 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3567
3568 /*
3569 * Update RXCFG for full-duplex or loopback.
3570 */
3571 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3572 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3573 sc->sc_rxcfg |= RXCFG_ATX;
3574 else
3575 sc->sc_rxcfg &= ~RXCFG_ATX;
3576
3577 /*
3578 * Update IMR for use of 802.3x flow control.
3579 */
3580 if (sc->sc_flowflags & IFM_FLOW) {
3581 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3582 flowctl = FLOWCTL_FLOWEN;
3583 } else {
3584 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3585 flowctl = 0;
3586 }
3587
3588 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3589 sc->sc_txcfg);
3590 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3591 sc->sc_rxcfg);
3592 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3593 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3594 }
3595
3596 /*
3597 * sip_dp83815_mii_readreg: [mii interface function]
3598 *
3599 * Read a PHY register on the MII.
3600 */
3601 static int
3602 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3603 {
3604 struct sip_softc *sc = device_private(self);
3605 u_int32_t val;
3606
3607 /*
3608 * The DP83815 only has an internal PHY. Only allow
3609 * MII address 0.
3610 */
3611 if (phy != 0)
3612 return (0);
3613
3614 /*
3615 * Apparently, after a reset, the DP83815 can take a while
3616 * to respond. During this recovery period, the BMSR returns
3617 * a value of 0. Catch this -- it's not supposed to happen
3618 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3619 * PHY to come back to life.
3620 *
3621 * This works out because the BMSR is the first register
3622 * read during the PHY probe process.
3623 */
3624 do {
3625 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3626 } while (reg == MII_BMSR && val == 0);
3627
3628 return (val & 0xffff);
3629 }
3630
3631 /*
3632 * sip_dp83815_mii_writereg: [mii interface function]
3633 *
3634 * Write a PHY register to the MII.
3635 */
3636 static void
3637 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3638 {
3639 struct sip_softc *sc = device_private(self);
3640
3641 /*
3642 * The DP83815 only has an internal PHY. Only allow
3643 * MII address 0.
3644 */
3645 if (phy != 0)
3646 return;
3647
3648 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3649 }
3650
3651 /*
3652 * sip_dp83815_mii_statchg: [mii interface function]
3653 *
3654 * Callback from MII layer when media changes.
3655 */
3656 static void
3657 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3658 {
3659 struct sip_softc *sc = ifp->if_softc;
3660
3661 /*
3662 * Update TXCFG for full-duplex operation.
3663 */
3664 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3665 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3666 else
3667 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3668
3669 /*
3670 * Update RXCFG for full-duplex or loopback.
3671 */
3672 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3673 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3674 sc->sc_rxcfg |= RXCFG_ATX;
3675 else
3676 sc->sc_rxcfg &= ~RXCFG_ATX;
3677
3678 /*
3679 * XXX 802.3x flow control.
3680 */
3681
3682 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3683 sc->sc_txcfg);
3684 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3685 sc->sc_rxcfg);
3686
3687 /*
3688 * Some DP83815s experience problems when used with short
3689 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3690 * sequence adjusts the DSP's signal attenuation to fix the
3691 * problem.
3692 */
3693 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3694 uint32_t reg;
3695
3696 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3697
3698 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3699 reg &= 0x0fff;
3700 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3701 delay(100);
3702 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3703 reg &= 0x00ff;
3704 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3705 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3706 0x00e8);
3707 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3708 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3709 reg | 0x20);
3710 }
3711
3712 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3713 }
3714 }
3715
3716 static void
3717 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3718 const struct pci_attach_args *pa, u_int8_t *enaddr)
3719 {
3720 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3721 u_int8_t cksum, *e, match;
3722 int i;
3723
3724 /*
3725 * EEPROM data format for the DP83820 can be found in
3726 * the DP83820 manual, section 4.2.4.
3727 */
3728
3729 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3730
3731 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3732 match = ~(match - 1);
3733
3734 cksum = 0x55;
3735 e = (u_int8_t *) eeprom_data;
3736 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3737 cksum += *e++;
3738
3739 if (cksum != match)
3740 printf("%s: Checksum (%x) mismatch (%x)",
3741 device_xname(sc->sc_dev), cksum, match);
3742
3743 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3744 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3745 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3746 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3747 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3748 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3749 }
3750
3751 static void
3752 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3753 {
3754 int i;
3755
3756 /*
3757 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3758 * a reason, but I don't know it.
3759 */
3760 for (i = 0; i < 10; i++)
3761 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3762 }
3763
3764 static void
3765 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3766 const struct pci_attach_args *pa, u_int8_t *enaddr)
3767 {
3768 u_int16_t myea[ETHER_ADDR_LEN / 2];
3769
3770 switch (sc->sc_rev) {
3771 case SIS_REV_630S:
3772 case SIS_REV_630E:
3773 case SIS_REV_630EA1:
3774 case SIS_REV_630ET:
3775 case SIS_REV_635:
3776 /*
3777 * The MAC address for the on-board Ethernet of
3778 * the SiS 630 chipset is in the NVRAM. Kick
3779 * the chip into re-loading it from NVRAM, and
3780 * read the MAC address out of the filter registers.
3781 */
3782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3783
3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3785 RFCR_RFADDR_NODE0);
3786 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3787 0xffff;
3788
3789 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3790 RFCR_RFADDR_NODE2);
3791 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3792 0xffff;
3793
3794 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3795 RFCR_RFADDR_NODE4);
3796 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3797 0xffff;
3798 break;
3799
3800 case SIS_REV_960:
3801 {
3802 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3803 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3804
3805 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3806 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3807
3808 int waittime, i;
3809
3810 /* Allow to read EEPROM from LAN. It is shared
3811 * between a 1394 controller and the NIC and each
3812 * time we access it, we need to set SIS_EECMD_REQ.
3813 */
3814 SIS_SET_EROMAR(sc, EROMAR_REQ);
3815
3816 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3817 /* Force EEPROM to idle state. */
3818
3819 /*
3820 * XXX-cube This is ugly. I'll look for docs about it.
3821 */
3822 SIS_SET_EROMAR(sc, EROMAR_EECS);
3823 sipcom_sis900_eeprom_delay(sc);
3824 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3825 SIS_SET_EROMAR(sc, EROMAR_EESK);
3826 sipcom_sis900_eeprom_delay(sc);
3827 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3828 sipcom_sis900_eeprom_delay(sc);
3829 }
3830 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3831 sipcom_sis900_eeprom_delay(sc);
3832 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3833
3834 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3835 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3836 sizeof(myea) / sizeof(myea[0]), myea);
3837 break;
3838 }
3839 DELAY(1);
3840 }
3841
3842 /*
3843 * Set SIS_EECTL_CLK to high, so a other master
3844 * can operate on the i2c bus.
3845 */
3846 SIS_SET_EROMAR(sc, EROMAR_EESK);
3847
3848 /* Refuse EEPROM access by LAN */
3849 SIS_SET_EROMAR(sc, EROMAR_DONE);
3850 } break;
3851
3852 default:
3853 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3854 sizeof(myea) / sizeof(myea[0]), myea);
3855 }
3856
3857 enaddr[0] = myea[0] & 0xff;
3858 enaddr[1] = myea[0] >> 8;
3859 enaddr[2] = myea[1] & 0xff;
3860 enaddr[3] = myea[1] >> 8;
3861 enaddr[4] = myea[2] & 0xff;
3862 enaddr[5] = myea[2] >> 8;
3863 }
3864
3865 /* Table and macro to bit-reverse an octet. */
3866 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3867 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3868
3869 static void
3870 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3871 const struct pci_attach_args *pa, u_int8_t *enaddr)
3872 {
3873 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3874 u_int8_t cksum, *e, match;
3875 int i;
3876
3877 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3878 sizeof(eeprom_data[0]), eeprom_data);
3879
3880 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3881 match = ~(match - 1);
3882
3883 cksum = 0x55;
3884 e = (u_int8_t *) eeprom_data;
3885 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3886 cksum += *e++;
3887 }
3888 if (cksum != match) {
3889 printf("%s: Checksum (%x) mismatch (%x)",
3890 device_xname(sc->sc_dev), cksum, match);
3891 }
3892
3893 /*
3894 * Unrolled because it makes slightly more sense this way.
3895 * The DP83815 stores the MAC address in bit 0 of word 6
3896 * through bit 15 of word 8.
3897 */
3898 ea = &eeprom_data[6];
3899 enaddr[0] = ((*ea & 0x1) << 7);
3900 ea++;
3901 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3902 enaddr[1] = ((*ea & 0x1FE) >> 1);
3903 enaddr[2] = ((*ea & 0x1) << 7);
3904 ea++;
3905 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3906 enaddr[3] = ((*ea & 0x1FE) >> 1);
3907 enaddr[4] = ((*ea & 0x1) << 7);
3908 ea++;
3909 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3910 enaddr[5] = ((*ea & 0x1FE) >> 1);
3911
3912 /*
3913 * In case that's not weird enough, we also need to reverse
3914 * the bits in each byte. This all actually makes more sense
3915 * if you think about the EEPROM storage as an array of bits
3916 * being shifted into bytes, but that's not how we're looking
3917 * at it here...
3918 */
3919 for (i = 0; i < 6 ;i++)
3920 enaddr[i] = bbr(enaddr[i]);
3921 }
3922
3923 /*
3924 * sip_mediastatus: [ifmedia interface function]
3925 *
3926 * Get the current interface media status.
3927 */
3928 static void
3929 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3930 {
3931 struct sip_softc *sc = ifp->if_softc;
3932
3933 if (!device_is_active(sc->sc_dev)) {
3934 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3935 ifmr->ifm_status = 0;
3936 return;
3937 }
3938 ether_mediastatus(ifp, ifmr);
3939 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3940 sc->sc_flowflags;
3941 }
3942