Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.158.4.6
      1 /*	$NetBSD: if_sip.c,v 1.158.4.6 2017/08/28 17:52:05 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.158.4.6 2017/08/28 17:52:05 skrll Exp $");
     77 
     78 
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/callout.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/malloc.h>
     85 #include <sys/kernel.h>
     86 #include <sys/socket.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/errno.h>
     89 #include <sys/device.h>
     90 #include <sys/queue.h>
     91 
     92 #include <sys/rndsource.h>
     93 
     94 #include <net/if.h>
     95 #include <net/if_dl.h>
     96 #include <net/if_media.h>
     97 #include <net/if_ether.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 #include <machine/endian.h>
    104 
    105 #include <dev/mii/mii.h>
    106 #include <dev/mii/miivar.h>
    107 #include <dev/mii/mii_bitbang.h>
    108 
    109 #include <dev/pci/pcireg.h>
    110 #include <dev/pci/pcivar.h>
    111 #include <dev/pci/pcidevs.h>
    112 
    113 #include <dev/pci/if_sipreg.h>
    114 
    115 /*
    116  * Transmit descriptor list size.  This is arbitrary, but allocate
    117  * enough descriptors for 128 pending transmissions, and 8 segments
    118  * per packet (64 for DP83820 for jumbo frames).
    119  *
    120  * This MUST work out to a power of 2.
    121  */
    122 #define	GSIP_NTXSEGS_ALLOC 16
    123 #define	SIP_NTXSEGS_ALLOC 8
    124 
    125 #define	SIP_TXQUEUELEN		256
    126 #define	MAX_SIP_NTXDESC	\
    127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    128 
    129 /*
    130  * Receive descriptor list size.  We have one Rx buffer per incoming
    131  * packet, so this logic is a little simpler.
    132  *
    133  * Actually, on the DP83820, we allow the packet to consume more than
    134  * one buffer, in order to support jumbo Ethernet frames.  In that
    135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    137  * so we'd better be quick about handling receive interrupts.
    138  */
    139 #define	GSIP_NRXDESC		256
    140 #define	SIP_NRXDESC		128
    141 
    142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    143 
    144 /*
    145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    146  * a single clump that maps to a single DMA segment to make several things
    147  * easier.
    148  */
    149 struct sip_control_data {
    150 	/*
    151 	 * The transmit descriptors.
    152 	 */
    153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    154 
    155 	/*
    156 	 * The receive descriptors.
    157 	 */
    158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    159 };
    160 
    161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    164 
    165 /*
    166  * Software state for transmit jobs.
    167  */
    168 struct sip_txsoft {
    169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    171 	int txs_firstdesc;		/* first descriptor in packet */
    172 	int txs_lastdesc;		/* last descriptor in packet */
    173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    174 };
    175 
    176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    177 
    178 /*
    179  * Software state for receive jobs.
    180  */
    181 struct sip_rxsoft {
    182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    184 };
    185 
    186 enum sip_attach_stage {
    187 	  SIP_ATTACH_FIN = 0
    188 	, SIP_ATTACH_CREATE_RXMAP
    189 	, SIP_ATTACH_CREATE_TXMAP
    190 	, SIP_ATTACH_LOAD_MAP
    191 	, SIP_ATTACH_CREATE_MAP
    192 	, SIP_ATTACH_MAP_MEM
    193 	, SIP_ATTACH_ALLOC_MEM
    194 	, SIP_ATTACH_INTR
    195 	, SIP_ATTACH_MAP
    196 };
    197 
    198 /*
    199  * Software state per device.
    200  */
    201 struct sip_softc {
    202 	device_t sc_dev;		/* generic device information */
    203 	device_suspensor_t		sc_suspensor;
    204 	pmf_qual_t			sc_qual;
    205 
    206 	bus_space_tag_t sc_st;		/* bus space tag */
    207 	bus_space_handle_t sc_sh;	/* bus space handle */
    208 	bus_size_t sc_sz;		/* bus space size */
    209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    210 	pci_chipset_tag_t sc_pc;
    211 	bus_dma_segment_t sc_seg;
    212 	struct ethercom sc_ethercom;	/* ethernet common data */
    213 
    214 	const struct sip_product *sc_model; /* which model are we? */
    215 	int sc_gigabit;			/* 1: 83820, 0: other */
    216 	int sc_rev;			/* chip revision */
    217 
    218 	void *sc_ih;			/* interrupt cookie */
    219 
    220 	struct mii_data sc_mii;		/* MII/media information */
    221 
    222 	callout_t sc_tick_ch;		/* tick callout */
    223 
    224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    226 
    227 	/*
    228 	 * Software state for transmit and receive descriptors.
    229 	 */
    230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    232 
    233 	/*
    234 	 * Control data structures.
    235 	 */
    236 	struct sip_control_data *sc_control_data;
    237 #define	sc_txdescs	sc_control_data->scd_txdescs
    238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    239 
    240 #ifdef SIP_EVENT_COUNTERS
    241 	/*
    242 	 * Event counters.
    243 	 */
    244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    252 	/* DP83820 only */
    253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    260 #endif /* SIP_EVENT_COUNTERS */
    261 
    262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    264 	u_int32_t sc_imr;		/* prototype IMR register */
    265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    266 
    267 	u_int32_t sc_cfg;		/* prototype CFG register */
    268 
    269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    270 
    271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    273 
    274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    275 
    276 	int	sc_flowflags;		/* 802.3x flow control flags */
    277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    278 	int	sc_paused;		/* paused indication */
    279 
    280 	int	sc_txfree;		/* number of free Tx descriptors */
    281 	int	sc_txnext;		/* next ready Tx descriptor */
    282 	int	sc_txwin;		/* Tx descriptors since last intr */
    283 
    284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    286 
    287 	/* values of interface state at last init */
    288 	struct {
    289 		/* if_capenable */
    290 		uint64_t	if_capenable;
    291 		/* ec_capenable */
    292 		int		ec_capenable;
    293 		/* VLAN_ATTACHED */
    294 		int		is_vlan;
    295 	}	sc_prev;
    296 
    297 	short	sc_if_flags;
    298 
    299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    300 	int	sc_rxdiscard;
    301 	int	sc_rxlen;
    302 	struct mbuf *sc_rxhead;
    303 	struct mbuf *sc_rxtail;
    304 	struct mbuf **sc_rxtailp;
    305 
    306 	int sc_ntxdesc;
    307 	int sc_ntxdesc_mask;
    308 
    309 	int sc_nrxdesc_mask;
    310 
    311 	const struct sip_parm {
    312 		const struct sip_regs {
    313 			int r_rxcfg;
    314 			int r_txcfg;
    315 		} p_regs;
    316 
    317 		const struct sip_bits {
    318 			uint32_t b_txcfg_mxdma_8;
    319 			uint32_t b_txcfg_mxdma_16;
    320 			uint32_t b_txcfg_mxdma_32;
    321 			uint32_t b_txcfg_mxdma_64;
    322 			uint32_t b_txcfg_mxdma_128;
    323 			uint32_t b_txcfg_mxdma_256;
    324 			uint32_t b_txcfg_mxdma_512;
    325 			uint32_t b_txcfg_flth_mask;
    326 			uint32_t b_txcfg_drth_mask;
    327 
    328 			uint32_t b_rxcfg_mxdma_8;
    329 			uint32_t b_rxcfg_mxdma_16;
    330 			uint32_t b_rxcfg_mxdma_32;
    331 			uint32_t b_rxcfg_mxdma_64;
    332 			uint32_t b_rxcfg_mxdma_128;
    333 			uint32_t b_rxcfg_mxdma_256;
    334 			uint32_t b_rxcfg_mxdma_512;
    335 
    336 			uint32_t b_isr_txrcmp;
    337 			uint32_t b_isr_rxrcmp;
    338 			uint32_t b_isr_dperr;
    339 			uint32_t b_isr_sserr;
    340 			uint32_t b_isr_rmabt;
    341 			uint32_t b_isr_rtabt;
    342 
    343 			uint32_t b_cmdsts_size_mask;
    344 		} p_bits;
    345 		int		p_filtmem;
    346 		int		p_rxbuf_len;
    347 		bus_size_t	p_tx_dmamap_size;
    348 		int		p_ntxsegs;
    349 		int		p_ntxsegs_alloc;
    350 		int		p_nrxdesc;
    351 	} *sc_parm;
    352 
    353 	void (*sc_rxintr)(struct sip_softc *);
    354 
    355 	krndsource_t rnd_source;	/* random source */
    356 };
    357 
    358 #define	sc_bits	sc_parm->p_bits
    359 #define	sc_regs	sc_parm->p_regs
    360 
    361 static const struct sip_parm sip_parm = {
    362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    364 	, .p_tx_dmamap_size = MCLBYTES
    365 	, .p_ntxsegs = 16
    366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    367 	, .p_nrxdesc = SIP_NRXDESC
    368 	, .p_bits = {
    369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    378 
    379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
    380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
    381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
    382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
    383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    386 
    387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    394 	}
    395 	, .p_regs = {
    396 		.r_rxcfg = OTHER_SIP_RXCFG,
    397 		.r_txcfg = OTHER_SIP_TXCFG
    398 	}
    399 }, gsip_parm = {
    400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    401 	, .p_rxbuf_len = MCLBYTES - 8
    402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    403 	, .p_ntxsegs = 64
    404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    405 	, .p_nrxdesc = GSIP_NRXDESC
    406 	, .p_bits = {
    407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    416 
    417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
    418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
    419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
    420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
    421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    424 
    425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    432 	}
    433 	, .p_regs = {
    434 		.r_rxcfg = DP83820_SIP_RXCFG,
    435 		.r_txcfg = DP83820_SIP_TXCFG
    436 	}
    437 };
    438 
    439 static inline int
    440 sip_nexttx(const struct sip_softc *sc, int x)
    441 {
    442 	return (x + 1) & sc->sc_ntxdesc_mask;
    443 }
    444 
    445 static inline int
    446 sip_nextrx(const struct sip_softc *sc, int x)
    447 {
    448 	return (x + 1) & sc->sc_nrxdesc_mask;
    449 }
    450 
    451 /* 83820 only */
    452 static inline void
    453 sip_rxchain_reset(struct sip_softc *sc)
    454 {
    455 	sc->sc_rxtailp = &sc->sc_rxhead;
    456 	*sc->sc_rxtailp = NULL;
    457 	sc->sc_rxlen = 0;
    458 }
    459 
    460 /* 83820 only */
    461 static inline void
    462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    463 {
    464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    465 	sc->sc_rxtailp = &m->m_next;
    466 }
    467 
    468 #ifdef SIP_EVENT_COUNTERS
    469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    470 #else
    471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    472 #endif
    473 
    474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    476 
    477 static inline void
    478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    479 {
    480 	int x, n;
    481 
    482 	x = x0;
    483 	n = n0;
    484 
    485 	/* If it will wrap around, sync to the end of the ring. */
    486 	if (x + n > sc->sc_ntxdesc) {
    487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    489 		    (sc->sc_ntxdesc - x), ops);
    490 		n -= (sc->sc_ntxdesc - x);
    491 		x = 0;
    492 	}
    493 
    494 	/* Now sync whatever is left. */
    495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    497 }
    498 
    499 static inline void
    500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    501 {
    502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    504 }
    505 
    506 #if 0
    507 #ifdef DP83820
    508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    509 	u_int32_t	sipd_cmdsts;	/* command/status word */
    510 #else
    511 	u_int32_t	sipd_cmdsts;	/* command/status word */
    512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
    513 #endif /* DP83820 */
    514 #endif /* 0 */
    515 
    516 static inline volatile uint32_t *
    517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    518 {
    519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    520 }
    521 
    522 static inline volatile uint32_t *
    523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    524 {
    525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    526 }
    527 
    528 static inline void
    529 sip_init_rxdesc(struct sip_softc *sc, int x)
    530 {
    531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    533 
    534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    538 	sipd->sipd_extsts = 0;
    539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    540 }
    541 
    542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    543 	((sc)->sc_model->sip_vendor == (v) &&				\
    544 	 (sc)->sc_model->sip_product == (p) &&				\
    545 	 (sc)->sc_rev == (r))
    546 
    547 #define	SIP_CHIP_MODEL(sc, v, p)					\
    548 	((sc)->sc_model->sip_vendor == (v) &&				\
    549 	 (sc)->sc_model->sip_product == (p))
    550 
    551 #define	SIP_SIS900_REV(sc, rev)						\
    552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    553 
    554 #define SIP_TIMEOUT 1000
    555 
    556 static int	sip_ifflags_cb(struct ethercom *);
    557 static void	sipcom_start(struct ifnet *);
    558 static void	sipcom_watchdog(struct ifnet *);
    559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    560 static int	sipcom_init(struct ifnet *);
    561 static void	sipcom_stop(struct ifnet *, int);
    562 
    563 static bool	sipcom_reset(struct sip_softc *);
    564 static void	sipcom_rxdrain(struct sip_softc *);
    565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    567 				      u_int16_t *);
    568 static void	sipcom_tick(void *);
    569 
    570 static void	sipcom_sis900_set_filter(struct sip_softc *);
    571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    572 
    573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    574 		    const struct pci_attach_args *, u_int8_t *);
    575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    577 		    const struct pci_attach_args *, u_int8_t *);
    578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    579 		    const struct pci_attach_args *, u_int8_t *);
    580 
    581 static int	sipcom_intr(void *);
    582 static void	sipcom_txintr(struct sip_softc *);
    583 static void	sip_rxintr(struct sip_softc *);
    584 static void	gsip_rxintr(struct sip_softc *);
    585 
    586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
    587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
    588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
    589 
    590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
    591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
    592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
    593 
    594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
    595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
    596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
    597 
    598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    599 
    600 static int	sipcom_match(device_t, cfdata_t, void *);
    601 static void	sipcom_attach(device_t, device_t, void *);
    602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    603 static int	sipcom_detach(device_t, int);
    604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    606 
    607 int	gsip_copy_small = 0;
    608 int	sip_copy_small = 0;
    609 
    610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    612     DVF_DETACH_SHUTDOWN);
    613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    615     DVF_DETACH_SHUTDOWN);
    616 
    617 /*
    618  * Descriptions of the variants of the SiS900.
    619  */
    620 struct sip_variant {
    621 	int	(*sipv_mii_readreg)(device_t, int, int);
    622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
    623 	void	(*sipv_mii_statchg)(struct ifnet *);
    624 	void	(*sipv_set_filter)(struct sip_softc *);
    625 	void	(*sipv_read_macaddr)(struct sip_softc *,
    626 		    const struct pci_attach_args *, u_int8_t *);
    627 };
    628 
    629 static u_int32_t sipcom_mii_bitbang_read(device_t);
    630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
    631 
    632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    633 	sipcom_mii_bitbang_read,
    634 	sipcom_mii_bitbang_write,
    635 	{
    636 		EROMAR_MDIO,		/* MII_BIT_MDO */
    637 		EROMAR_MDIO,		/* MII_BIT_MDI */
    638 		EROMAR_MDC,		/* MII_BIT_MDC */
    639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    640 		0,			/* MII_BIT_DIR_PHY_HOST */
    641 	}
    642 };
    643 
    644 static const struct sip_variant sipcom_variant_dp83820 = {
    645 	sipcom_dp83820_mii_readreg,
    646 	sipcom_dp83820_mii_writereg,
    647 	sipcom_dp83820_mii_statchg,
    648 	sipcom_dp83815_set_filter,
    649 	sipcom_dp83820_read_macaddr,
    650 };
    651 
    652 static const struct sip_variant sipcom_variant_sis900 = {
    653 	sipcom_sis900_mii_readreg,
    654 	sipcom_sis900_mii_writereg,
    655 	sipcom_sis900_mii_statchg,
    656 	sipcom_sis900_set_filter,
    657 	sipcom_sis900_read_macaddr,
    658 };
    659 
    660 static const struct sip_variant sipcom_variant_dp83815 = {
    661 	sipcom_dp83815_mii_readreg,
    662 	sipcom_dp83815_mii_writereg,
    663 	sipcom_dp83815_mii_statchg,
    664 	sipcom_dp83815_set_filter,
    665 	sipcom_dp83815_read_macaddr,
    666 };
    667 
    668 
    669 /*
    670  * Devices supported by this driver.
    671  */
    672 static const struct sip_product {
    673 	pci_vendor_id_t		sip_vendor;
    674 	pci_product_id_t	sip_product;
    675 	const char		*sip_name;
    676 	const struct sip_variant *sip_variant;
    677 	int			sip_gigabit;
    678 } sipcom_products[] = {
    679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    680 	  "NatSemi DP83820 Gigabit Ethernet",
    681 	  &sipcom_variant_dp83820, 1 },
    682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    683 	  "SiS 900 10/100 Ethernet",
    684 	  &sipcom_variant_sis900, 0 },
    685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    686 	  "SiS 7016 10/100 Ethernet",
    687 	  &sipcom_variant_sis900, 0 },
    688 
    689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    690 	  "NatSemi DP83815 10/100 Ethernet",
    691 	  &sipcom_variant_dp83815, 0 },
    692 
    693 	{ 0,			0,
    694 	  NULL,
    695 	  NULL, 0 },
    696 };
    697 
    698 static const struct sip_product *
    699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    700 {
    701 	const struct sip_product *sip;
    702 
    703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    706 		    sip->sip_gigabit == gigabit)
    707 			return sip;
    708 	}
    709 	return NULL;
    710 }
    711 
    712 /*
    713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    716  * which means we try to use 64-bit data transfers on those cards if we
    717  * happen to be plugged into a 32-bit slot.
    718  *
    719  * What we do is use this table of cards known to be 64-bit cards.  If
    720  * you have a 64-bit card who's subsystem ID is not listed in this table,
    721  * send the output of "pcictl dump ..." of the device to me so that your
    722  * card will use the 64-bit data path when plugged into a 64-bit slot.
    723  *
    724  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    725  *	   June 30, 2002
    726  */
    727 static int
    728 sipcom_check_64bit(const struct pci_attach_args *pa)
    729 {
    730 	static const struct {
    731 		pci_vendor_id_t c64_vendor;
    732 		pci_product_id_t c64_product;
    733 	} card64[] = {
    734 		/* Asante GigaNIX */
    735 		{ 0x128a,	0x0002 },
    736 
    737 		/* Accton EN1407-T, Planex GN-1000TE */
    738 		{ 0x1113,	0x1407 },
    739 
    740 		/* Netgear GA621 */
    741 		{ 0x1385,	0x621a },
    742 
    743 		/* Netgear GA622 */
    744 		{ 0x1385,	0x622a },
    745 
    746 		/* SMC EZ Card 1000 (9462TX) */
    747 		{ 0x10b8,	0x9462 },
    748 
    749 		{ 0, 0}
    750 	};
    751 	pcireg_t subsys;
    752 	int i;
    753 
    754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    755 
    756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    759 			return (1);
    760 	}
    761 
    762 	return (0);
    763 }
    764 
    765 static int
    766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    767 {
    768 	struct pci_attach_args *pa = aux;
    769 
    770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    771 		return 1;
    772 
    773 	return 0;
    774 }
    775 
    776 static void
    777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    778 {
    779 	u_int32_t reg;
    780 	int i;
    781 
    782 	/*
    783 	 * Cause the chip to load configuration data from the EEPROM.
    784 	 */
    785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    786 	for (i = 0; i < 10000; i++) {
    787 		delay(10);
    788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    789 		    PTSCR_EELOAD_EN) == 0)
    790 			break;
    791 	}
    792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    793 	    PTSCR_EELOAD_EN) {
    794 		printf("%s: timeout loading configuration from EEPROM\n",
    795 		    device_xname(sc->sc_dev));
    796 		return;
    797 	}
    798 
    799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    800 
    801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    802 	if (reg & CFG_PCI64_DET) {
    803 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    804 		/*
    805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    806 		 * data transfers.
    807 		 *
    808 		 * We can't use the DATA64_EN bit in the EEPROM, because
    809 		 * vendors of 32-bit cards fail to clear that bit in many
    810 		 * cases (yet the card still detects that it's in a 64-bit
    811 		 * slot; go figure).
    812 		 */
    813 		if (sipcom_check_64bit(pa)) {
    814 			sc->sc_cfg |= CFG_DATA64_EN;
    815 			printf(", using 64-bit data transfers");
    816 		}
    817 		printf("\n");
    818 	}
    819 
    820 	/*
    821 	 * XXX Need some PCI flags indicating support for
    822 	 * XXX 64-bit addressing.
    823 	 */
    824 #if 0
    825 	if (reg & CFG_M64ADDR)
    826 		sc->sc_cfg |= CFG_M64ADDR;
    827 	if (reg & CFG_T64ADDR)
    828 		sc->sc_cfg |= CFG_T64ADDR;
    829 #endif
    830 
    831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    832 		const char *sep = "";
    833 		printf("%s: using ", device_xname(sc->sc_dev));
    834 		if (reg & CFG_EXT_125) {
    835 			sc->sc_cfg |= CFG_EXT_125;
    836 			printf("%s125MHz clock", sep);
    837 			sep = ", ";
    838 		}
    839 		if (reg & CFG_TBI_EN) {
    840 			sc->sc_cfg |= CFG_TBI_EN;
    841 			printf("%sten-bit interface", sep);
    842 			sep = ", ";
    843 		}
    844 		printf("\n");
    845 	}
    846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    847 	    (reg & CFG_MRM_DIS) != 0)
    848 		sc->sc_cfg |= CFG_MRM_DIS;
    849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    850 	    (reg & CFG_MWI_DIS) != 0)
    851 		sc->sc_cfg |= CFG_MWI_DIS;
    852 
    853 	/*
    854 	 * Use the extended descriptor format on the DP83820.  This
    855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    856 	 * checksumming.
    857 	 */
    858 	sc->sc_cfg |= CFG_EXTSTS_EN;
    859 }
    860 
    861 static int
    862 sipcom_detach(device_t self, int flags)
    863 {
    864 	int s;
    865 
    866 	s = splnet();
    867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    868 	splx(s);
    869 
    870 	return 0;
    871 }
    872 
    873 static void
    874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    875 {
    876 	int i;
    877 	struct sip_softc *sc = device_private(self);
    878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    879 
    880 	/*
    881 	 * Free any resources we've allocated during attach.
    882 	 * Do this in reverse order and fall through.
    883 	 */
    884 	switch (stage) {
    885 	case SIP_ATTACH_FIN:
    886 		sipcom_stop(ifp, 1);
    887 		pmf_device_deregister(self);
    888 #ifdef SIP_EVENT_COUNTERS
    889 		/*
    890 		 * Attach event counters.
    891 		 */
    892 		evcnt_detach(&sc->sc_ev_txforceintr);
    893 		evcnt_detach(&sc->sc_ev_txdstall);
    894 		evcnt_detach(&sc->sc_ev_txsstall);
    895 		evcnt_detach(&sc->sc_ev_hiberr);
    896 		evcnt_detach(&sc->sc_ev_rxintr);
    897 		evcnt_detach(&sc->sc_ev_txiintr);
    898 		evcnt_detach(&sc->sc_ev_txdintr);
    899 		if (!sc->sc_gigabit) {
    900 			evcnt_detach(&sc->sc_ev_rxpause);
    901 		} else {
    902 			evcnt_detach(&sc->sc_ev_txudpsum);
    903 			evcnt_detach(&sc->sc_ev_txtcpsum);
    904 			evcnt_detach(&sc->sc_ev_txipsum);
    905 			evcnt_detach(&sc->sc_ev_rxudpsum);
    906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    907 			evcnt_detach(&sc->sc_ev_rxipsum);
    908 			evcnt_detach(&sc->sc_ev_txpause);
    909 			evcnt_detach(&sc->sc_ev_rxpause);
    910 		}
    911 #endif /* SIP_EVENT_COUNTERS */
    912 
    913 		rnd_detach_source(&sc->rnd_source);
    914 
    915 		ether_ifdetach(ifp);
    916 		if_detach(ifp);
    917 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    918 
    919 		/*FALLTHROUGH*/
    920 	case SIP_ATTACH_CREATE_RXMAP:
    921 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    922 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    923 				bus_dmamap_destroy(sc->sc_dmat,
    924 				    sc->sc_rxsoft[i].rxs_dmamap);
    925 		}
    926 		/*FALLTHROUGH*/
    927 	case SIP_ATTACH_CREATE_TXMAP:
    928 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    929 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    930 				bus_dmamap_destroy(sc->sc_dmat,
    931 				    sc->sc_txsoft[i].txs_dmamap);
    932 		}
    933 		/*FALLTHROUGH*/
    934 	case SIP_ATTACH_LOAD_MAP:
    935 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    936 		/*FALLTHROUGH*/
    937 	case SIP_ATTACH_CREATE_MAP:
    938 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    939 		/*FALLTHROUGH*/
    940 	case SIP_ATTACH_MAP_MEM:
    941 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    942 		    sizeof(struct sip_control_data));
    943 		/*FALLTHROUGH*/
    944 	case SIP_ATTACH_ALLOC_MEM:
    945 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    946 		/* FALLTHROUGH*/
    947 	case SIP_ATTACH_INTR:
    948 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    949 		/* FALLTHROUGH*/
    950 	case SIP_ATTACH_MAP:
    951 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    952 		break;
    953 	default:
    954 		break;
    955 	}
    956 	return;
    957 }
    958 
    959 static bool
    960 sipcom_resume(device_t self, const pmf_qual_t *qual)
    961 {
    962 	struct sip_softc *sc = device_private(self);
    963 
    964 	return sipcom_reset(sc);
    965 }
    966 
    967 static bool
    968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    969 {
    970 	struct sip_softc *sc = device_private(self);
    971 
    972 	sipcom_rxdrain(sc);
    973 	return true;
    974 }
    975 
    976 static void
    977 sipcom_attach(device_t parent, device_t self, void *aux)
    978 {
    979 	struct sip_softc *sc = device_private(self);
    980 	struct pci_attach_args *pa = aux;
    981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    982 	pci_chipset_tag_t pc = pa->pa_pc;
    983 	pci_intr_handle_t ih;
    984 	const char *intrstr = NULL;
    985 	bus_space_tag_t iot, memt;
    986 	bus_space_handle_t ioh, memh;
    987 	bus_size_t iosz, memsz;
    988 	int ioh_valid, memh_valid;
    989 	int i, rseg, error;
    990 	const struct sip_product *sip;
    991 	u_int8_t enaddr[ETHER_ADDR_LEN];
    992 	pcireg_t csr;
    993 	pcireg_t memtype;
    994 	bus_size_t tx_dmamap_size;
    995 	int ntxsegs_alloc;
    996 	cfdata_t cf = device_cfdata(self);
    997 	char intrbuf[PCI_INTRSTR_LEN];
    998 
    999 	callout_init(&sc->sc_tick_ch, 0);
   1000 
   1001 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1002 	if (sip == NULL) {
   1003 		aprint_error("\n");
   1004 		panic("%s: impossible", __func__);
   1005 	}
   1006 	sc->sc_dev = self;
   1007 	sc->sc_gigabit = sip->sip_gigabit;
   1008 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1009 	sc->sc_pc = pc;
   1010 
   1011 	if (sc->sc_gigabit) {
   1012 		sc->sc_rxintr = gsip_rxintr;
   1013 		sc->sc_parm = &gsip_parm;
   1014 	} else {
   1015 		sc->sc_rxintr = sip_rxintr;
   1016 		sc->sc_parm = &sip_parm;
   1017 	}
   1018 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1019 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1020 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1021 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1022 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1023 
   1024 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1025 
   1026 	aprint_naive("\n");
   1027 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1028 
   1029 	sc->sc_model = sip;
   1030 
   1031 	/*
   1032 	 * XXX Work-around broken PXE firmware on some boards.
   1033 	 *
   1034 	 * The DP83815 shares an address decoder with the MEM BAR
   1035 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1036 	 * so that memory mapped access works.
   1037 	 */
   1038 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1039 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1040 	    ~PCI_MAPREG_ROM_ENABLE);
   1041 
   1042 	/*
   1043 	 * Map the device.
   1044 	 */
   1045 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1046 	    PCI_MAPREG_TYPE_IO, 0,
   1047 	    &iot, &ioh, NULL, &iosz) == 0);
   1048 	if (sc->sc_gigabit) {
   1049 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1050 		switch (memtype) {
   1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1053 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1054 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1055 			break;
   1056 		default:
   1057 			memh_valid = 0;
   1058 		}
   1059 	} else {
   1060 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1061 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1062 		    &memt, &memh, NULL, &memsz) == 0);
   1063 	}
   1064 
   1065 	if (memh_valid) {
   1066 		sc->sc_st = memt;
   1067 		sc->sc_sh = memh;
   1068 		sc->sc_sz = memsz;
   1069 	} else if (ioh_valid) {
   1070 		sc->sc_st = iot;
   1071 		sc->sc_sh = ioh;
   1072 		sc->sc_sz = iosz;
   1073 	} else {
   1074 		aprint_error_dev(self, "unable to map device registers\n");
   1075 		return;
   1076 	}
   1077 
   1078 	sc->sc_dmat = pa->pa_dmat;
   1079 
   1080 	/*
   1081 	 * Make sure bus mastering is enabled.  Also make sure
   1082 	 * Write/Invalidate is enabled if we're allowed to use it.
   1083 	 */
   1084 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1085 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1086 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1087 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1088 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1089 
   1090 	/* power up chip */
   1091 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1092 	if (error != 0 && error != EOPNOTSUPP) {
   1093 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1094 		return;
   1095 	}
   1096 
   1097 	/*
   1098 	 * Map and establish our interrupt.
   1099 	 */
   1100 	if (pci_intr_map(pa, &ih)) {
   1101 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1102 		return;
   1103 	}
   1104 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1105 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
   1106 	    device_xname(self));
   1107 	if (sc->sc_ih == NULL) {
   1108 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1109 		if (intrstr != NULL)
   1110 			aprint_error(" at %s", intrstr);
   1111 		aprint_error("\n");
   1112 		sipcom_do_detach(self, SIP_ATTACH_MAP);
   1113 		return;
   1114 	}
   1115 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1116 
   1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1119 
   1120 	/*
   1121 	 * Allocate the control data structures, and create and load the
   1122 	 * DMA map for it.
   1123 	 */
   1124 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1125 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1126 	    &rseg, 0)) != 0) {
   1127 		aprint_error_dev(sc->sc_dev,
   1128 		    "unable to allocate control data, error = %d\n", error);
   1129 		sipcom_do_detach(self, SIP_ATTACH_INTR);
   1130 		return;
   1131 	}
   1132 
   1133 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1134 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1135 	    BUS_DMA_COHERENT)) != 0) {
   1136 		aprint_error_dev(sc->sc_dev,
   1137 		    "unable to map control data, error = %d\n", error);
   1138 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1139 	}
   1140 
   1141 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1142 	    sizeof(struct sip_control_data), 1,
   1143 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1144 		aprint_error_dev(self, "unable to create control data DMA map"
   1145 		    ", error = %d\n", error);
   1146 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1147 	}
   1148 
   1149 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1150 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1151 	    0)) != 0) {
   1152 		aprint_error_dev(self, "unable to load control data DMA map"
   1153 		    ", error = %d\n", error);
   1154 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1155 	}
   1156 
   1157 	/*
   1158 	 * Create the transmit buffer DMA maps.
   1159 	 */
   1160 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1161 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1162 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1163 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1164 			aprint_error_dev(self, "unable to create tx DMA map %d"
   1165 			    ", error = %d\n", i, error);
   1166 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1167 		}
   1168 	}
   1169 
   1170 	/*
   1171 	 * Create the receive buffer DMA maps.
   1172 	 */
   1173 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1174 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1175 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1176 			aprint_error_dev(self, "unable to create rx DMA map %d"
   1177 			    ", error = %d\n", i, error);
   1178 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1179 		}
   1180 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1181 	}
   1182 
   1183 	/*
   1184 	 * Reset the chip to a known state.
   1185 	 */
   1186 	sipcom_reset(sc);
   1187 
   1188 	/*
   1189 	 * Read the Ethernet address from the EEPROM.  This might
   1190 	 * also fetch other stuff from the EEPROM and stash it
   1191 	 * in the softc.
   1192 	 */
   1193 	sc->sc_cfg = 0;
   1194 	if (!sc->sc_gigabit) {
   1195 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1196 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1197 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1198 
   1199 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
   1200 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
   1201 		    SIP_SIS900_REV(sc,SIS_REV_900B))
   1202 			sc->sc_cfg |=
   1203 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1204 			     CFG_EDBMASTEN);
   1205 	}
   1206 
   1207 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1208 
   1209 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
   1210 
   1211 	/*
   1212 	 * Initialize the configuration register: aggressive PCI
   1213 	 * bus request algorithm, default backoff, default OW timer,
   1214 	 * default parity error detection.
   1215 	 *
   1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1217 	 * friends -- it affects packet data, not descriptors.
   1218 	 */
   1219 	if (sc->sc_gigabit)
   1220 		sipcom_dp83820_attach(sc, pa);
   1221 
   1222 	/*
   1223 	 * Initialize our media structures and probe the MII.
   1224 	 */
   1225 	sc->sc_mii.mii_ifp = ifp;
   1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1229 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1230 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
   1231 	    sipcom_mediastatus);
   1232 
   1233 	/*
   1234 	 * XXX We cannot handle flow control on the DP83815.
   1235 	 */
   1236 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1237 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1238 			   MII_OFFSET_ANY, 0);
   1239 	else
   1240 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1241 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1245 	} else
   1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1247 
   1248 	ifp = &sc->sc_ethercom.ec_if;
   1249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1250 	ifp->if_softc = sc;
   1251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1252 	sc->sc_if_flags = ifp->if_flags;
   1253 	ifp->if_ioctl = sipcom_ioctl;
   1254 	ifp->if_start = sipcom_start;
   1255 	ifp->if_watchdog = sipcom_watchdog;
   1256 	ifp->if_init = sipcom_init;
   1257 	ifp->if_stop = sipcom_stop;
   1258 	IFQ_SET_READY(&ifp->if_snd);
   1259 
   1260 	/*
   1261 	 * We can support 802.1Q VLAN-sized frames.
   1262 	 */
   1263 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1264 
   1265 	if (sc->sc_gigabit) {
   1266 		/*
   1267 		 * And the DP83820 can do VLAN tagging in hardware, and
   1268 		 * support the jumbo Ethernet MTU.
   1269 		 */
   1270 		sc->sc_ethercom.ec_capabilities |=
   1271 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1272 
   1273 		/*
   1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1275 		 * in hardware.
   1276 		 */
   1277 		ifp->if_capabilities |=
   1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1281 	}
   1282 
   1283 	/*
   1284 	 * Attach the interface.
   1285 	 */
   1286 	if_attach(ifp);
   1287 	if_deferred_start_init(ifp, NULL);
   1288 	ether_ifattach(ifp, enaddr);
   1289 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1290 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1291 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1292 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1294 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1295 
   1296 	/*
   1297 	 * The number of bytes that must be available in
   1298 	 * the Tx FIFO before the bus master can DMA more
   1299 	 * data into the FIFO.
   1300 	 */
   1301 	sc->sc_tx_fill_thresh = 64 / 32;
   1302 
   1303 	/*
   1304 	 * Start at a drain threshold of 512 bytes.  We will
   1305 	 * increase it if a DMA underrun occurs.
   1306 	 *
   1307 	 * XXX The minimum value of this variable should be
   1308 	 * tuned.  We may be able to improve performance
   1309 	 * by starting with a lower value.  That, however,
   1310 	 * may trash the first few outgoing packets if the
   1311 	 * PCI bus is saturated.
   1312 	 */
   1313 	if (sc->sc_gigabit)
   1314 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1315 	else
   1316 		sc->sc_tx_drain_thresh = 1504 / 32;
   1317 
   1318 	/*
   1319 	 * Initialize the Rx FIFO drain threshold.
   1320 	 *
   1321 	 * This is in units of 8 bytes.
   1322 	 *
   1323 	 * We should never set this value lower than 2; 14 bytes are
   1324 	 * required to filter the packet.
   1325 	 */
   1326 	sc->sc_rx_drain_thresh = 128 / 8;
   1327 
   1328 #ifdef SIP_EVENT_COUNTERS
   1329 	/*
   1330 	 * Attach event counters.
   1331 	 */
   1332 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1333 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1334 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1335 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1336 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1337 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1338 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1339 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1340 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1341 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1342 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1343 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1344 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1345 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1346 	if (!sc->sc_gigabit) {
   1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1349 	} else {
   1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1352 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1353 		    NULL, device_xname(sc->sc_dev), "txpause");
   1354 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1355 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1356 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1357 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1358 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1359 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1360 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1361 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1362 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1363 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1364 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1365 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1366 	}
   1367 #endif /* SIP_EVENT_COUNTERS */
   1368 
   1369 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1370 		pmf_class_network_register(self, ifp);
   1371 	else
   1372 		aprint_error_dev(self, "couldn't establish power handler\n");
   1373 }
   1374 
   1375 static inline void
   1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1377     uint64_t capenable)
   1378 {
   1379 	struct m_tag *mtag;
   1380 	u_int32_t extsts;
   1381 #ifdef DEBUG
   1382 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1383 #endif
   1384 	/*
   1385 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1386 	 * up the descriptor to encapsulate the packet for us.
   1387 	 *
   1388 	 * This apparently has to be on the last descriptor of
   1389 	 * the packet.
   1390 	 */
   1391 
   1392 	/*
   1393 	 * Byte swapping is tricky. We need to provide the tag
   1394 	 * in a network byte order. On a big-endian machine,
   1395 	 * the byteorder is correct, but we need to swap it
   1396 	 * anyway, because this will be undone by the outside
   1397 	 * htole32(). That's why there must be an
   1398 	 * unconditional swap instead of htons() inside.
   1399 	 */
   1400 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
   1401 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1402 		    htole32(EXTSTS_VPKT |
   1403 				(bswap16(VLAN_TAG_VALUE(mtag)) &
   1404 				 EXTSTS_VTCI));
   1405 	}
   1406 
   1407 	/*
   1408 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1409 	 * checksumming, set up the descriptor to do this work
   1410 	 * for us.
   1411 	 *
   1412 	 * This apparently has to be on the first descriptor of
   1413 	 * the packet.
   1414 	 *
   1415 	 * Byte-swap constants so the compiler can optimize.
   1416 	 */
   1417 	extsts = 0;
   1418 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1419 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1420 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1421 		extsts |= htole32(EXTSTS_IPPKT);
   1422 	}
   1423 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1424 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1425 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1426 		extsts |= htole32(EXTSTS_TCPPKT);
   1427 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1428 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1429 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1430 		extsts |= htole32(EXTSTS_UDPPKT);
   1431 	}
   1432 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1433 }
   1434 
   1435 /*
   1436  * sip_start:		[ifnet interface function]
   1437  *
   1438  *	Start packet transmission on the interface.
   1439  */
   1440 static void
   1441 sipcom_start(struct ifnet *ifp)
   1442 {
   1443 	struct sip_softc *sc = ifp->if_softc;
   1444 	struct mbuf *m0;
   1445 	struct mbuf *m;
   1446 	struct sip_txsoft *txs;
   1447 	bus_dmamap_t dmamap;
   1448 	int error, nexttx, lasttx, seg;
   1449 	int ofree = sc->sc_txfree;
   1450 #if 0
   1451 	int firsttx = sc->sc_txnext;
   1452 #endif
   1453 
   1454 	/*
   1455 	 * If we've been told to pause, don't transmit any more packets.
   1456 	 */
   1457 	if (!sc->sc_gigabit && sc->sc_paused)
   1458 		ifp->if_flags |= IFF_OACTIVE;
   1459 
   1460 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1461 		return;
   1462 
   1463 	/*
   1464 	 * Loop through the send queue, setting up transmit descriptors
   1465 	 * until we drain the queue, or use up all available transmit
   1466 	 * descriptors.
   1467 	 */
   1468 	for (;;) {
   1469 		/* Get a work queue entry. */
   1470 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1471 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1472 			break;
   1473 		}
   1474 
   1475 		/*
   1476 		 * Grab a packet off the queue.
   1477 		 */
   1478 		IFQ_POLL(&ifp->if_snd, m0);
   1479 		if (m0 == NULL)
   1480 			break;
   1481 		m = NULL;
   1482 
   1483 		dmamap = txs->txs_dmamap;
   1484 
   1485 		/*
   1486 		 * Load the DMA map.  If this fails, the packet either
   1487 		 * didn't fit in the alloted number of segments, or we
   1488 		 * were short on resources.
   1489 		 */
   1490 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1491 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1492 		/* In the non-gigabit case, we'll copy and try again. */
   1493 		if (error != 0 && !sc->sc_gigabit) {
   1494 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1495 			if (m == NULL) {
   1496 				printf("%s: unable to allocate Tx mbuf\n",
   1497 				    device_xname(sc->sc_dev));
   1498 				break;
   1499 			}
   1500 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1501 			if (m0->m_pkthdr.len > MHLEN) {
   1502 				MCLGET(m, M_DONTWAIT);
   1503 				if ((m->m_flags & M_EXT) == 0) {
   1504 					printf("%s: unable to allocate Tx "
   1505 					    "cluster\n",
   1506 					    device_xname(sc->sc_dev));
   1507 					m_freem(m);
   1508 					break;
   1509 				}
   1510 			}
   1511 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1512 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1513 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1514 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1515 			if (error) {
   1516 				printf("%s: unable to load Tx buffer, error = "
   1517 				    "%d\n", device_xname(sc->sc_dev), error);
   1518 				break;
   1519 			}
   1520 		} else if (error == EFBIG) {
   1521 			/*
   1522 			 * For the too-many-segments case, we simply
   1523 			 * report an error and drop the packet,
   1524 			 * since we can't sanely copy a jumbo packet
   1525 			 * to a single buffer.
   1526 			 */
   1527 			printf("%s: Tx packet consumes too many DMA segments, "
   1528 			    "dropping...\n", device_xname(sc->sc_dev));
   1529 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1530 			m_freem(m0);
   1531 			continue;
   1532 		} else if (error != 0) {
   1533 			/*
   1534 			 * Short on resources, just stop for now.
   1535 			 */
   1536 			break;
   1537 		}
   1538 
   1539 		/*
   1540 		 * Ensure we have enough descriptors free to describe
   1541 		 * the packet.  Note, we always reserve one descriptor
   1542 		 * at the end of the ring as a termination point, to
   1543 		 * prevent wrap-around.
   1544 		 */
   1545 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1546 			/*
   1547 			 * Not enough free descriptors to transmit this
   1548 			 * packet.  We haven't committed anything yet,
   1549 			 * so just unload the DMA map, put the packet
   1550 			 * back on the queue, and punt.  Notify the upper
   1551 			 * layer that there are not more slots left.
   1552 			 *
   1553 			 * XXX We could allocate an mbuf and copy, but
   1554 			 * XXX is it worth it?
   1555 			 */
   1556 			ifp->if_flags |= IFF_OACTIVE;
   1557 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1558 			if (m != NULL)
   1559 				m_freem(m);
   1560 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1561 			break;
   1562 		}
   1563 
   1564 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1565 		if (m != NULL) {
   1566 			m_freem(m0);
   1567 			m0 = m;
   1568 		}
   1569 
   1570 		/*
   1571 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1572 		 */
   1573 
   1574 		/* Sync the DMA map. */
   1575 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1576 		    BUS_DMASYNC_PREWRITE);
   1577 
   1578 		/*
   1579 		 * Initialize the transmit descriptors.
   1580 		 */
   1581 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1582 		     seg < dmamap->dm_nsegs;
   1583 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1584 			/*
   1585 			 * If this is the first descriptor we're
   1586 			 * enqueueing, don't set the OWN bit just
   1587 			 * yet.  That could cause a race condition.
   1588 			 * We'll do it below.
   1589 			 */
   1590 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1591 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1592 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1593 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1594 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1595 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1596 			lasttx = nexttx;
   1597 		}
   1598 
   1599 		/* Clear the MORE bit on the last segment. */
   1600 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1601 		    htole32(~CMDSTS_MORE);
   1602 
   1603 		/*
   1604 		 * If we're in the interrupt delay window, delay the
   1605 		 * interrupt.
   1606 		 */
   1607 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1608 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1609 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1610 			    htole32(CMDSTS_INTR);
   1611 			sc->sc_txwin = 0;
   1612 		}
   1613 
   1614 		if (sc->sc_gigabit)
   1615 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1616 
   1617 		/* Sync the descriptors we're using. */
   1618 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1619 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1620 
   1621 		/*
   1622 		 * The entire packet is set up.  Give the first descrptor
   1623 		 * to the chip now.
   1624 		 */
   1625 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1626 		    htole32(CMDSTS_OWN);
   1627 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1628 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1629 
   1630 		/*
   1631 		 * Store a pointer to the packet so we can free it later,
   1632 		 * and remember what txdirty will be once the packet is
   1633 		 * done.
   1634 		 */
   1635 		txs->txs_mbuf = m0;
   1636 		txs->txs_firstdesc = sc->sc_txnext;
   1637 		txs->txs_lastdesc = lasttx;
   1638 
   1639 		/* Advance the tx pointer. */
   1640 		sc->sc_txfree -= dmamap->dm_nsegs;
   1641 		sc->sc_txnext = nexttx;
   1642 
   1643 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1644 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1645 
   1646 		/*
   1647 		 * Pass the packet to any BPF listeners.
   1648 		 */
   1649 		bpf_mtap(ifp, m0);
   1650 	}
   1651 
   1652 	if (txs == NULL || sc->sc_txfree == 0) {
   1653 		/* No more slots left; notify upper layer. */
   1654 		ifp->if_flags |= IFF_OACTIVE;
   1655 	}
   1656 
   1657 	if (sc->sc_txfree != ofree) {
   1658 		/*
   1659 		 * Start the transmit process.  Note, the manual says
   1660 		 * that if there are no pending transmissions in the
   1661 		 * chip's internal queue (indicated by TXE being clear),
   1662 		 * then the driver software must set the TXDP to the
   1663 		 * first descriptor to be transmitted.  However, if we
   1664 		 * do this, it causes serious performance degredation on
   1665 		 * the DP83820 under load, not setting TXDP doesn't seem
   1666 		 * to adversely affect the SiS 900 or DP83815.
   1667 		 *
   1668 		 * Well, I guess it wouldn't be the first time a manual
   1669 		 * has lied -- and they could be speaking of the NULL-
   1670 		 * terminated descriptor list case, rather than OWN-
   1671 		 * terminated rings.
   1672 		 */
   1673 #if 0
   1674 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1675 		     CR_TXE) == 0) {
   1676 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1677 			    SIP_CDTXADDR(sc, firsttx));
   1678 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1679 		}
   1680 #else
   1681 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1682 #endif
   1683 
   1684 		/* Set a watchdog timer in case the chip flakes out. */
   1685 		/* Gigabit autonegotiation takes 5 seconds. */
   1686 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1687 	}
   1688 }
   1689 
   1690 /*
   1691  * sip_watchdog:	[ifnet interface function]
   1692  *
   1693  *	Watchdog timer handler.
   1694  */
   1695 static void
   1696 sipcom_watchdog(struct ifnet *ifp)
   1697 {
   1698 	struct sip_softc *sc = ifp->if_softc;
   1699 
   1700 	/*
   1701 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1702 	 * If we get a timeout, try and sweep up transmit descriptors.
   1703 	 * If we manage to sweep them all up, ignore the lack of
   1704 	 * interrupt.
   1705 	 */
   1706 	sipcom_txintr(sc);
   1707 
   1708 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1709 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1710 		ifp->if_oerrors++;
   1711 
   1712 		/* Reset the interface. */
   1713 		(void) sipcom_init(ifp);
   1714 	} else if (ifp->if_flags & IFF_DEBUG)
   1715 		printf("%s: recovered from device timeout\n",
   1716 		    device_xname(sc->sc_dev));
   1717 
   1718 	/* Try to get more packets going. */
   1719 	sipcom_start(ifp);
   1720 }
   1721 
   1722 /* If the interface is up and running, only modify the receive
   1723  * filter when setting promiscuous or debug mode.  Otherwise fall
   1724  * through to ether_ioctl, which will reset the chip.
   1725  */
   1726 static int
   1727 sip_ifflags_cb(struct ethercom *ec)
   1728 {
   1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1730 			 == (sc)->sc_ethercom.ec_capenable)		\
   1731 			&& ((sc)->sc_prev.is_vlan ==			\
   1732 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1734 	struct ifnet *ifp = &ec->ec_if;
   1735 	struct sip_softc *sc = ifp->if_softc;
   1736 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1737 
   1738 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1739 	    !COMPARE_IC(sc, ifp))
   1740 		return ENETRESET;
   1741 	/* Set up the receive filter. */
   1742 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1743 	return 0;
   1744 }
   1745 
   1746 /*
   1747  * sip_ioctl:		[ifnet interface function]
   1748  *
   1749  *	Handle control requests from the operator.
   1750  */
   1751 static int
   1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1753 {
   1754 	struct sip_softc *sc = ifp->if_softc;
   1755 	struct ifreq *ifr = (struct ifreq *)data;
   1756 	int s, error;
   1757 
   1758 	s = splnet();
   1759 
   1760 	switch (cmd) {
   1761 	case SIOCSIFMEDIA:
   1762 		/* Flow control requires full-duplex mode. */
   1763 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1764 		    (ifr->ifr_media & IFM_FDX) == 0)
   1765 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   1766 
   1767 		/* XXX */
   1768 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1769 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1770 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1771 			if (sc->sc_gigabit &&
   1772 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1773 				/* We can do both TXPAUSE and RXPAUSE. */
   1774 				ifr->ifr_media |=
   1775 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1776 			} else if (ifr->ifr_media & IFM_FLOW) {
   1777 				/*
   1778 				 * Both TXPAUSE and RXPAUSE must be set.
   1779 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1780 				 * feature.)
   1781 				 *
   1782 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1783 				 */
   1784 				ifr->ifr_media |=
   1785 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1786 			}
   1787 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1788 		}
   1789 		/*FALLTHROUGH*/
   1790 	default:
   1791 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1792 			break;
   1793 
   1794 		error = 0;
   1795 
   1796 		if (cmd == SIOCSIFCAP)
   1797 			error = (*ifp->if_init)(ifp);
   1798 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1799 			;
   1800 		else if (ifp->if_flags & IFF_RUNNING) {
   1801 			/*
   1802 			 * Multicast list has changed; set the hardware filter
   1803 			 * accordingly.
   1804 			 */
   1805 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1806 		}
   1807 		break;
   1808 	}
   1809 
   1810 	/* Try to get more packets going. */
   1811 	sipcom_start(ifp);
   1812 
   1813 	sc->sc_if_flags = ifp->if_flags;
   1814 	splx(s);
   1815 	return (error);
   1816 }
   1817 
   1818 /*
   1819  * sip_intr:
   1820  *
   1821  *	Interrupt service routine.
   1822  */
   1823 static int
   1824 sipcom_intr(void *arg)
   1825 {
   1826 	struct sip_softc *sc = arg;
   1827 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1828 	u_int32_t isr;
   1829 	int handled = 0;
   1830 
   1831 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1832 		return 0;
   1833 
   1834 	/* Disable interrupts. */
   1835 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1836 
   1837 	for (;;) {
   1838 		/* Reading clears interrupt. */
   1839 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1840 		if ((isr & sc->sc_imr) == 0)
   1841 			break;
   1842 
   1843 		rnd_add_uint32(&sc->rnd_source, isr);
   1844 
   1845 		handled = 1;
   1846 
   1847 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1848 			break;
   1849 
   1850 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1851 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1852 
   1853 			/* Grab any new packets. */
   1854 			(*sc->sc_rxintr)(sc);
   1855 
   1856 			if (isr & ISR_RXORN) {
   1857 				printf("%s: receive FIFO overrun\n",
   1858 				    device_xname(sc->sc_dev));
   1859 
   1860 				/* XXX adjust rx_drain_thresh? */
   1861 			}
   1862 
   1863 			if (isr & ISR_RXIDLE) {
   1864 				printf("%s: receive ring overrun\n",
   1865 				    device_xname(sc->sc_dev));
   1866 
   1867 				/* Get the receive process going again. */
   1868 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1869 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1870 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1871 				    SIP_CR, CR_RXE);
   1872 			}
   1873 		}
   1874 
   1875 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1876 #ifdef SIP_EVENT_COUNTERS
   1877 			if (isr & ISR_TXDESC)
   1878 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1879 			else if (isr & ISR_TXIDLE)
   1880 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1881 #endif
   1882 
   1883 			/* Sweep up transmit descriptors. */
   1884 			sipcom_txintr(sc);
   1885 
   1886 			if (isr & ISR_TXURN) {
   1887 				u_int32_t thresh;
   1888 				int txfifo_size = (sc->sc_gigabit)
   1889 				    ? DP83820_SIP_TXFIFO_SIZE
   1890 				    : OTHER_SIP_TXFIFO_SIZE;
   1891 
   1892 				printf("%s: transmit FIFO underrun",
   1893 				    device_xname(sc->sc_dev));
   1894 				thresh = sc->sc_tx_drain_thresh + 1;
   1895 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1896 				&& (thresh * 32) <= (txfifo_size -
   1897 				     (sc->sc_tx_fill_thresh * 32))) {
   1898 					printf("; increasing Tx drain "
   1899 					    "threshold to %u bytes\n",
   1900 					    thresh * 32);
   1901 					sc->sc_tx_drain_thresh = thresh;
   1902 					(void) sipcom_init(ifp);
   1903 				} else {
   1904 					(void) sipcom_init(ifp);
   1905 					printf("\n");
   1906 				}
   1907 			}
   1908 		}
   1909 
   1910 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1911 			if (isr & ISR_PAUSE_ST) {
   1912 				sc->sc_paused = 1;
   1913 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1914 				ifp->if_flags |= IFF_OACTIVE;
   1915 			}
   1916 			if (isr & ISR_PAUSE_END) {
   1917 				sc->sc_paused = 0;
   1918 				ifp->if_flags &= ~IFF_OACTIVE;
   1919 			}
   1920 		}
   1921 
   1922 		if (isr & ISR_HIBERR) {
   1923 			int want_init = 0;
   1924 
   1925 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1926 
   1927 #define	PRINTERR(bit, str)						\
   1928 			do {						\
   1929 				if ((isr & (bit)) != 0) {		\
   1930 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1931 						printf("%s: %s\n",	\
   1932 						    device_xname(sc->sc_dev), str); \
   1933 					want_init = 1;			\
   1934 				}					\
   1935 			} while (/*CONSTCOND*/0)
   1936 
   1937 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1938 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1939 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1940 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1941 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1942 			/*
   1943 			 * Ignore:
   1944 			 *	Tx reset complete
   1945 			 *	Rx reset complete
   1946 			 */
   1947 			if (want_init)
   1948 				(void) sipcom_init(ifp);
   1949 #undef PRINTERR
   1950 		}
   1951 	}
   1952 
   1953 	/* Re-enable interrupts. */
   1954 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1955 
   1956 	/* Try to get more packets going. */
   1957 	if_schedule_deferred_start(ifp);
   1958 
   1959 	return (handled);
   1960 }
   1961 
   1962 /*
   1963  * sip_txintr:
   1964  *
   1965  *	Helper; handle transmit interrupts.
   1966  */
   1967 static void
   1968 sipcom_txintr(struct sip_softc *sc)
   1969 {
   1970 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1971 	struct sip_txsoft *txs;
   1972 	u_int32_t cmdsts;
   1973 
   1974 	if (sc->sc_paused == 0)
   1975 		ifp->if_flags &= ~IFF_OACTIVE;
   1976 
   1977 	/*
   1978 	 * Go through our Tx list and free mbufs for those
   1979 	 * frames which have been transmitted.
   1980 	 */
   1981 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1982 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1983 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1984 
   1985 		cmdsts = le32toh(*sipd_cmdsts(sc,
   1986 			&sc->sc_txdescs[txs->txs_lastdesc]));
   1987 		if (cmdsts & CMDSTS_OWN)
   1988 			break;
   1989 
   1990 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1991 
   1992 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1993 
   1994 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1995 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1996 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1997 		m_freem(txs->txs_mbuf);
   1998 		txs->txs_mbuf = NULL;
   1999 
   2000 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2001 
   2002 		/*
   2003 		 * Check for errors and collisions.
   2004 		 */
   2005 		if (cmdsts &
   2006 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   2007 			ifp->if_oerrors++;
   2008 			if (cmdsts & CMDSTS_Tx_EC)
   2009 				ifp->if_collisions += 16;
   2010 			if (ifp->if_flags & IFF_DEBUG) {
   2011 				if (cmdsts & CMDSTS_Tx_ED)
   2012 					printf("%s: excessive deferral\n",
   2013 					    device_xname(sc->sc_dev));
   2014 				if (cmdsts & CMDSTS_Tx_EC)
   2015 					printf("%s: excessive collisions\n",
   2016 					    device_xname(sc->sc_dev));
   2017 			}
   2018 		} else {
   2019 			/* Packet was transmitted successfully. */
   2020 			ifp->if_opackets++;
   2021 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2022 		}
   2023 	}
   2024 
   2025 	/*
   2026 	 * If there are no more pending transmissions, cancel the watchdog
   2027 	 * timer.
   2028 	 */
   2029 	if (txs == NULL) {
   2030 		ifp->if_timer = 0;
   2031 		sc->sc_txwin = 0;
   2032 	}
   2033 }
   2034 
   2035 /*
   2036  * gsip_rxintr:
   2037  *
   2038  *	Helper; handle receive interrupts on gigabit parts.
   2039  */
   2040 static void
   2041 gsip_rxintr(struct sip_softc *sc)
   2042 {
   2043 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2044 	struct sip_rxsoft *rxs;
   2045 	struct mbuf *m;
   2046 	u_int32_t cmdsts, extsts;
   2047 	int i, len;
   2048 
   2049 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2050 		rxs = &sc->sc_rxsoft[i];
   2051 
   2052 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2053 
   2054 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2055 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2056 		len = CMDSTS_SIZE(sc, cmdsts);
   2057 
   2058 		/*
   2059 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2060 		 * consumer of the receive ring, so if the bit is clear,
   2061 		 * we have processed all of the packets.
   2062 		 */
   2063 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2064 			/*
   2065 			 * We have processed all of the receive buffers.
   2066 			 */
   2067 			break;
   2068 		}
   2069 
   2070 		if (__predict_false(sc->sc_rxdiscard)) {
   2071 			sip_init_rxdesc(sc, i);
   2072 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2073 				/* Reset our state. */
   2074 				sc->sc_rxdiscard = 0;
   2075 			}
   2076 			continue;
   2077 		}
   2078 
   2079 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2080 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2081 
   2082 		m = rxs->rxs_mbuf;
   2083 
   2084 		/*
   2085 		 * Add a new receive buffer to the ring.
   2086 		 */
   2087 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2088 			/*
   2089 			 * Failed, throw away what we've done so
   2090 			 * far, and discard the rest of the packet.
   2091 			 */
   2092 			ifp->if_ierrors++;
   2093 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2094 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2095 			sip_init_rxdesc(sc, i);
   2096 			if (cmdsts & CMDSTS_MORE)
   2097 				sc->sc_rxdiscard = 1;
   2098 			if (sc->sc_rxhead != NULL)
   2099 				m_freem(sc->sc_rxhead);
   2100 			sip_rxchain_reset(sc);
   2101 			continue;
   2102 		}
   2103 
   2104 		sip_rxchain_link(sc, m);
   2105 
   2106 		m->m_len = len;
   2107 
   2108 		/*
   2109 		 * If this is not the end of the packet, keep
   2110 		 * looking.
   2111 		 */
   2112 		if (cmdsts & CMDSTS_MORE) {
   2113 			sc->sc_rxlen += len;
   2114 			continue;
   2115 		}
   2116 
   2117 		/*
   2118 		 * Okay, we have the entire packet now.  The chip includes
   2119 		 * the FCS, so we need to trim it.
   2120 		 */
   2121 		m->m_len -= ETHER_CRC_LEN;
   2122 
   2123 		*sc->sc_rxtailp = NULL;
   2124 		len = m->m_len + sc->sc_rxlen;
   2125 		m = sc->sc_rxhead;
   2126 
   2127 		sip_rxchain_reset(sc);
   2128 
   2129 		/*
   2130 		 * If an error occurred, update stats and drop the packet.
   2131 		 */
   2132 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2133 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2134 			ifp->if_ierrors++;
   2135 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2136 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2137 				/* Receive overrun handled elsewhere. */
   2138 				printf("%s: receive descriptor error\n",
   2139 				    device_xname(sc->sc_dev));
   2140 			}
   2141 #define	PRINTERR(bit, str)						\
   2142 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2143 			    (cmdsts & (bit)) != 0)			\
   2144 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2145 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2146 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2147 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2148 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2149 #undef PRINTERR
   2150 			m_freem(m);
   2151 			continue;
   2152 		}
   2153 
   2154 		/*
   2155 		 * If the packet is small enough to fit in a
   2156 		 * single header mbuf, allocate one and copy
   2157 		 * the data into it.  This greatly reduces
   2158 		 * memory consumption when we receive lots
   2159 		 * of small packets.
   2160 		 */
   2161 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2162 			struct mbuf *nm;
   2163 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2164 			if (nm == NULL) {
   2165 				ifp->if_ierrors++;
   2166 				m_freem(m);
   2167 				continue;
   2168 			}
   2169 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2170 			nm->m_data += 2;
   2171 			nm->m_pkthdr.len = nm->m_len = len;
   2172 			m_copydata(m, 0, len, mtod(nm, void *));
   2173 			m_freem(m);
   2174 			m = nm;
   2175 		}
   2176 #ifndef __NO_STRICT_ALIGNMENT
   2177 		else {
   2178 			/*
   2179 			 * The DP83820's receive buffers must be 4-byte
   2180 			 * aligned.  But this means that the data after
   2181 			 * the Ethernet header is misaligned.  To compensate,
   2182 			 * we have artificially shortened the buffer size
   2183 			 * in the descriptor, and we do an overlapping copy
   2184 			 * of the data two bytes further in (in the first
   2185 			 * buffer of the chain only).
   2186 			 */
   2187 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2188 			    m->m_len);
   2189 			m->m_data += 2;
   2190 		}
   2191 #endif /* ! __NO_STRICT_ALIGNMENT */
   2192 
   2193 		/*
   2194 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2195 		 * for us.  Associate the tag with the packet.
   2196 		 */
   2197 
   2198 		/*
   2199 		 * Again, byte swapping is tricky. Hardware provided
   2200 		 * the tag in the network byte order, but extsts was
   2201 		 * passed through le32toh() in the meantime. On a
   2202 		 * big-endian machine, we need to swap it again. On a
   2203 		 * little-endian machine, we need to convert from the
   2204 		 * network to host byte order. This means that we must
   2205 		 * swap it in any case, so unconditional swap instead
   2206 		 * of htons() is used.
   2207 		 */
   2208 		if ((extsts & EXTSTS_VPKT) != 0) {
   2209 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
   2210 			    continue);
   2211 		}
   2212 
   2213 		/*
   2214 		 * Set the incoming checksum information for the
   2215 		 * packet.
   2216 		 */
   2217 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2218 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2219 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2220 			if (extsts & EXTSTS_Rx_IPERR)
   2221 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2222 			if (extsts & EXTSTS_TCPPKT) {
   2223 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2224 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2225 				if (extsts & EXTSTS_Rx_TCPERR)
   2226 					m->m_pkthdr.csum_flags |=
   2227 					    M_CSUM_TCP_UDP_BAD;
   2228 			} else if (extsts & EXTSTS_UDPPKT) {
   2229 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2230 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2231 				if (extsts & EXTSTS_Rx_UDPERR)
   2232 					m->m_pkthdr.csum_flags |=
   2233 					    M_CSUM_TCP_UDP_BAD;
   2234 			}
   2235 		}
   2236 
   2237 		m_set_rcvif(m, ifp);
   2238 		m->m_pkthdr.len = len;
   2239 
   2240 		/* Pass it on. */
   2241 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2242 	}
   2243 
   2244 	/* Update the receive pointer. */
   2245 	sc->sc_rxptr = i;
   2246 }
   2247 
   2248 /*
   2249  * sip_rxintr:
   2250  *
   2251  *	Helper; handle receive interrupts on 10/100 parts.
   2252  */
   2253 static void
   2254 sip_rxintr(struct sip_softc *sc)
   2255 {
   2256 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2257 	struct sip_rxsoft *rxs;
   2258 	struct mbuf *m;
   2259 	u_int32_t cmdsts;
   2260 	int i, len;
   2261 
   2262 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2263 		rxs = &sc->sc_rxsoft[i];
   2264 
   2265 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2266 
   2267 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2268 
   2269 		/*
   2270 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2271 		 * consumer of the receive ring, so if the bit is clear,
   2272 		 * we have processed all of the packets.
   2273 		 */
   2274 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2275 			/*
   2276 			 * We have processed all of the receive buffers.
   2277 			 */
   2278 			break;
   2279 		}
   2280 
   2281 		/*
   2282 		 * If any collisions were seen on the wire, count one.
   2283 		 */
   2284 		if (cmdsts & CMDSTS_Rx_COL)
   2285 			ifp->if_collisions++;
   2286 
   2287 		/*
   2288 		 * If an error occurred, update stats, clear the status
   2289 		 * word, and leave the packet buffer in place.  It will
   2290 		 * simply be reused the next time the ring comes around.
   2291 		 */
   2292 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   2293 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   2294 			ifp->if_ierrors++;
   2295 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2296 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2297 				/* Receive overrun handled elsewhere. */
   2298 				printf("%s: receive descriptor error\n",
   2299 				    device_xname(sc->sc_dev));
   2300 			}
   2301 #define	PRINTERR(bit, str)						\
   2302 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2303 			    (cmdsts & (bit)) != 0)			\
   2304 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2305 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2306 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2307 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2308 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2309 #undef PRINTERR
   2310 			sip_init_rxdesc(sc, i);
   2311 			continue;
   2312 		}
   2313 
   2314 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2315 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2316 
   2317 		/*
   2318 		 * No errors; receive the packet.  Note, the SiS 900
   2319 		 * includes the CRC with every packet.
   2320 		 */
   2321 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2322 
   2323 #ifdef __NO_STRICT_ALIGNMENT
   2324 		/*
   2325 		 * If the packet is small enough to fit in a
   2326 		 * single header mbuf, allocate one and copy
   2327 		 * the data into it.  This greatly reduces
   2328 		 * memory consumption when we receive lots
   2329 		 * of small packets.
   2330 		 *
   2331 		 * Otherwise, we add a new buffer to the receive
   2332 		 * chain.  If this fails, we drop the packet and
   2333 		 * recycle the old buffer.
   2334 		 */
   2335 		if (sip_copy_small != 0 && len <= MHLEN) {
   2336 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2337 			if (m == NULL)
   2338 				goto dropit;
   2339 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2340 			memcpy(mtod(m, void *),
   2341 			    mtod(rxs->rxs_mbuf, void *), len);
   2342 			sip_init_rxdesc(sc, i);
   2343 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2344 			    rxs->rxs_dmamap->dm_mapsize,
   2345 			    BUS_DMASYNC_PREREAD);
   2346 		} else {
   2347 			m = rxs->rxs_mbuf;
   2348 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2349  dropit:
   2350 				ifp->if_ierrors++;
   2351 				sip_init_rxdesc(sc, i);
   2352 				bus_dmamap_sync(sc->sc_dmat,
   2353 				    rxs->rxs_dmamap, 0,
   2354 				    rxs->rxs_dmamap->dm_mapsize,
   2355 				    BUS_DMASYNC_PREREAD);
   2356 				continue;
   2357 			}
   2358 		}
   2359 #else
   2360 		/*
   2361 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2362 		 * But this means that the data after the Ethernet header
   2363 		 * is misaligned.  We must allocate a new buffer and
   2364 		 * copy the data, shifted forward 2 bytes.
   2365 		 */
   2366 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2367 		if (m == NULL) {
   2368  dropit:
   2369 			ifp->if_ierrors++;
   2370 			sip_init_rxdesc(sc, i);
   2371 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2372 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2373 			continue;
   2374 		}
   2375 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2376 		if (len > (MHLEN - 2)) {
   2377 			MCLGET(m, M_DONTWAIT);
   2378 			if ((m->m_flags & M_EXT) == 0) {
   2379 				m_freem(m);
   2380 				goto dropit;
   2381 			}
   2382 		}
   2383 		m->m_data += 2;
   2384 
   2385 		/*
   2386 		 * Note that we use clusters for incoming frames, so the
   2387 		 * buffer is virtually contiguous.
   2388 		 */
   2389 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2390 
   2391 		/* Allow the receive descriptor to continue using its mbuf. */
   2392 		sip_init_rxdesc(sc, i);
   2393 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2394 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2395 #endif /* __NO_STRICT_ALIGNMENT */
   2396 
   2397 		m_set_rcvif(m, ifp);
   2398 		m->m_pkthdr.len = m->m_len = len;
   2399 
   2400 		/* Pass it on. */
   2401 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2402 	}
   2403 
   2404 	/* Update the receive pointer. */
   2405 	sc->sc_rxptr = i;
   2406 }
   2407 
   2408 /*
   2409  * sip_tick:
   2410  *
   2411  *	One second timer, used to tick the MII.
   2412  */
   2413 static void
   2414 sipcom_tick(void *arg)
   2415 {
   2416 	struct sip_softc *sc = arg;
   2417 	int s;
   2418 
   2419 	s = splnet();
   2420 #ifdef SIP_EVENT_COUNTERS
   2421 	if (sc->sc_gigabit) {
   2422 		/* Read PAUSE related counts from MIB registers. */
   2423 		sc->sc_ev_rxpause.ev_count +=
   2424 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2425 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2426 		sc->sc_ev_txpause.ev_count +=
   2427 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2428 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2429 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2430 	}
   2431 #endif /* SIP_EVENT_COUNTERS */
   2432 	mii_tick(&sc->sc_mii);
   2433 	splx(s);
   2434 
   2435 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2436 }
   2437 
   2438 /*
   2439  * sip_reset:
   2440  *
   2441  *	Perform a soft reset on the SiS 900.
   2442  */
   2443 static bool
   2444 sipcom_reset(struct sip_softc *sc)
   2445 {
   2446 	bus_space_tag_t st = sc->sc_st;
   2447 	bus_space_handle_t sh = sc->sc_sh;
   2448 	int i;
   2449 
   2450 	bus_space_write_4(st, sh, SIP_IER, 0);
   2451 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2452 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2453 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2454 
   2455 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2456 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2457 			break;
   2458 		delay(2);
   2459 	}
   2460 
   2461 	if (i == SIP_TIMEOUT) {
   2462 		printf("%s: reset failed to complete\n",
   2463 		    device_xname(sc->sc_dev));
   2464 		return false;
   2465 	}
   2466 
   2467 	delay(1000);
   2468 
   2469 	if (sc->sc_gigabit) {
   2470 		/*
   2471 		 * Set the general purpose I/O bits.  Do it here in case we
   2472 		 * need to have GPIO set up to talk to the media interface.
   2473 		 */
   2474 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2475 		delay(1000);
   2476 	}
   2477 	return true;
   2478 }
   2479 
   2480 static void
   2481 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2482 {
   2483 	u_int32_t reg;
   2484 	bus_space_tag_t st = sc->sc_st;
   2485 	bus_space_handle_t sh = sc->sc_sh;
   2486 	/*
   2487 	 * Initialize the VLAN/IP receive control register.
   2488 	 * We enable checksum computation on all incoming
   2489 	 * packets, and do not reject packets w/ bad checksums.
   2490 	 */
   2491 	reg = 0;
   2492 	if (capenable &
   2493 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   2494 		reg |= VRCR_IPEN;
   2495 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2496 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2497 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2498 
   2499 	/*
   2500 	 * Initialize the VLAN/IP transmit control register.
   2501 	 * We enable outgoing checksum computation on a
   2502 	 * per-packet basis.
   2503 	 */
   2504 	reg = 0;
   2505 	if (capenable &
   2506 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   2507 		reg |= VTCR_PPCHK;
   2508 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2509 		reg |= VTCR_VPPTI;
   2510 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2511 
   2512 	/*
   2513 	 * If we're using VLANs, initialize the VLAN data register.
   2514 	 * To understand why we bswap the VLAN Ethertype, see section
   2515 	 * 4.2.36 of the DP83820 manual.
   2516 	 */
   2517 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2518 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2519 }
   2520 
   2521 /*
   2522  * sip_init:		[ ifnet interface function ]
   2523  *
   2524  *	Initialize the interface.  Must be called at splnet().
   2525  */
   2526 static int
   2527 sipcom_init(struct ifnet *ifp)
   2528 {
   2529 	struct sip_softc *sc = ifp->if_softc;
   2530 	bus_space_tag_t st = sc->sc_st;
   2531 	bus_space_handle_t sh = sc->sc_sh;
   2532 	struct sip_txsoft *txs;
   2533 	struct sip_rxsoft *rxs;
   2534 	struct sip_desc *sipd;
   2535 	int i, error = 0;
   2536 
   2537 	if (device_is_active(sc->sc_dev)) {
   2538 		/*
   2539 		 * Cancel any pending I/O.
   2540 		 */
   2541 		sipcom_stop(ifp, 0);
   2542 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2543 	           !device_is_active(sc->sc_dev))
   2544 		return 0;
   2545 
   2546 	/*
   2547 	 * Reset the chip to a known state.
   2548 	 */
   2549 	if (!sipcom_reset(sc))
   2550 		return EBUSY;
   2551 
   2552 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2553 		/*
   2554 		 * DP83815 manual, page 78:
   2555 		 *    4.4 Recommended Registers Configuration
   2556 		 *    For optimum performance of the DP83815, version noted
   2557 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2558 		 *    modifications must be followed in sequence...
   2559 		 *
   2560 		 * It's not clear if this should be 302h or 203h because that
   2561 		 * chip name is listed as SRR 302h in the description of the
   2562 		 * SRR register.  However, my revision 302h DP83815 on the
   2563 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2564 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2565 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2566 		 * this set or not.  [briggs -- 09 March 2001]
   2567 		 *
   2568 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2569 		 * and that this sets reserved bits in that register.
   2570 		 */
   2571 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2572 
   2573 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2574 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2575 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2576 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2577 
   2578 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2579 	}
   2580 
   2581 	/*
   2582 	 * Initialize the transmit descriptor ring.
   2583 	 */
   2584 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2585 		sipd = &sc->sc_txdescs[i];
   2586 		memset(sipd, 0, sizeof(struct sip_desc));
   2587 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2588 	}
   2589 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2590 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2591 	sc->sc_txfree = sc->sc_ntxdesc;
   2592 	sc->sc_txnext = 0;
   2593 	sc->sc_txwin = 0;
   2594 
   2595 	/*
   2596 	 * Initialize the transmit job descriptors.
   2597 	 */
   2598 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2599 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2600 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2601 		txs = &sc->sc_txsoft[i];
   2602 		txs->txs_mbuf = NULL;
   2603 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2604 	}
   2605 
   2606 	/*
   2607 	 * Initialize the receive descriptor and receive job
   2608 	 * descriptor rings.
   2609 	 */
   2610 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2611 		rxs = &sc->sc_rxsoft[i];
   2612 		if (rxs->rxs_mbuf == NULL) {
   2613 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2614 				printf("%s: unable to allocate or map rx "
   2615 				    "buffer %d, error = %d\n",
   2616 				    device_xname(sc->sc_dev), i, error);
   2617 				/*
   2618 				 * XXX Should attempt to run with fewer receive
   2619 				 * XXX buffers instead of just failing.
   2620 				 */
   2621 				sipcom_rxdrain(sc);
   2622 				goto out;
   2623 			}
   2624 		} else
   2625 			sip_init_rxdesc(sc, i);
   2626 	}
   2627 	sc->sc_rxptr = 0;
   2628 	sc->sc_rxdiscard = 0;
   2629 	sip_rxchain_reset(sc);
   2630 
   2631 	/*
   2632 	 * Set the configuration register; it's already initialized
   2633 	 * in sip_attach().
   2634 	 */
   2635 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2636 
   2637 	/*
   2638 	 * Initialize the prototype TXCFG register.
   2639 	 */
   2640 	if (sc->sc_gigabit) {
   2641 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2642 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2643 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2644 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2645 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2646 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2647 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2648 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2649 	} else {
   2650 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2651 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2652 	}
   2653 
   2654 	sc->sc_txcfg |= TXCFG_ATP |
   2655 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2656 	    sc->sc_tx_drain_thresh;
   2657 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2658 
   2659 	/*
   2660 	 * Initialize the receive drain threshold if we have never
   2661 	 * done so.
   2662 	 */
   2663 	if (sc->sc_rx_drain_thresh == 0) {
   2664 		/*
   2665 		 * XXX This value should be tuned.  This is set to the
   2666 		 * maximum of 248 bytes, and we may be able to improve
   2667 		 * performance by decreasing it (although we should never
   2668 		 * set this value lower than 2; 14 bytes are required to
   2669 		 * filter the packet).
   2670 		 */
   2671 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2672 	}
   2673 
   2674 	/*
   2675 	 * Initialize the prototype RXCFG register.
   2676 	 */
   2677 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2678 	/*
   2679 	 * Accept long packets (including FCS) so we can handle
   2680 	 * 802.1q-tagged frames and jumbo frames properly.
   2681 	 */
   2682 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2683 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2684 		sc->sc_rxcfg |= RXCFG_ALP;
   2685 
   2686 	/*
   2687 	 * Checksum offloading is disabled if the user selects an MTU
   2688 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2689 	 * evidence that >8109 does not work on some boards, such as the
   2690 	 * Planex GN-1000TE).
   2691 	 */
   2692 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2693 	    (ifp->if_capenable &
   2694 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2695 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2696 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
   2697 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2698 		       "disabled.\n", device_xname(sc->sc_dev));
   2699 		ifp->if_capenable &=
   2700 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
   2701 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
   2702 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
   2703 		ifp->if_csum_flags_tx = 0;
   2704 		ifp->if_csum_flags_rx = 0;
   2705 	}
   2706 
   2707 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2708 
   2709 	if (sc->sc_gigabit)
   2710 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2711 
   2712 	/*
   2713 	 * Give the transmit and receive rings to the chip.
   2714 	 */
   2715 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2716 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2717 
   2718 	/*
   2719 	 * Initialize the interrupt mask.
   2720 	 */
   2721 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2722 	             sc->sc_bits.b_isr_sserr |
   2723 		     sc->sc_bits.b_isr_rmabt |
   2724 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
   2725 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2726 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2727 
   2728 	/* Set up the receive filter. */
   2729 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2730 
   2731 	/*
   2732 	 * Tune sc_rx_flow_thresh.
   2733 	 * XXX "More than 8KB" is too short for jumbo frames.
   2734 	 * XXX TODO: Threshold value should be user-settable.
   2735 	 */
   2736 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2737 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2738 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2739 
   2740 	/*
   2741 	 * Set the current media.  Do this after initializing the prototype
   2742 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2743 	 * control.
   2744 	 */
   2745 	if ((error = ether_mediachange(ifp)) != 0)
   2746 		goto out;
   2747 
   2748 	/*
   2749 	 * Set the interrupt hold-off timer to 100us.
   2750 	 */
   2751 	if (sc->sc_gigabit)
   2752 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2753 
   2754 	/*
   2755 	 * Enable interrupts.
   2756 	 */
   2757 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2758 
   2759 	/*
   2760 	 * Start the transmit and receive processes.
   2761 	 */
   2762 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2763 
   2764 	/*
   2765 	 * Start the one second MII clock.
   2766 	 */
   2767 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2768 
   2769 	/*
   2770 	 * ...all done!
   2771 	 */
   2772 	ifp->if_flags |= IFF_RUNNING;
   2773 	ifp->if_flags &= ~IFF_OACTIVE;
   2774 	sc->sc_if_flags = ifp->if_flags;
   2775 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2776 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2777 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2778 
   2779  out:
   2780 	if (error)
   2781 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2782 	return (error);
   2783 }
   2784 
   2785 /*
   2786  * sip_drain:
   2787  *
   2788  *	Drain the receive queue.
   2789  */
   2790 static void
   2791 sipcom_rxdrain(struct sip_softc *sc)
   2792 {
   2793 	struct sip_rxsoft *rxs;
   2794 	int i;
   2795 
   2796 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2797 		rxs = &sc->sc_rxsoft[i];
   2798 		if (rxs->rxs_mbuf != NULL) {
   2799 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2800 			m_freem(rxs->rxs_mbuf);
   2801 			rxs->rxs_mbuf = NULL;
   2802 		}
   2803 	}
   2804 }
   2805 
   2806 /*
   2807  * sip_stop:		[ ifnet interface function ]
   2808  *
   2809  *	Stop transmission on the interface.
   2810  */
   2811 static void
   2812 sipcom_stop(struct ifnet *ifp, int disable)
   2813 {
   2814 	struct sip_softc *sc = ifp->if_softc;
   2815 	bus_space_tag_t st = sc->sc_st;
   2816 	bus_space_handle_t sh = sc->sc_sh;
   2817 	struct sip_txsoft *txs;
   2818 	u_int32_t cmdsts = 0;		/* DEBUG */
   2819 
   2820 	/*
   2821 	 * Stop the one second clock.
   2822 	 */
   2823 	callout_stop(&sc->sc_tick_ch);
   2824 
   2825 	/* Down the MII. */
   2826 	mii_down(&sc->sc_mii);
   2827 
   2828 	if (device_is_active(sc->sc_dev)) {
   2829 		/*
   2830 		 * Disable interrupts.
   2831 		 */
   2832 		bus_space_write_4(st, sh, SIP_IER, 0);
   2833 
   2834 		/*
   2835 		 * Stop receiver and transmitter.
   2836 		 */
   2837 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2838 	}
   2839 
   2840 	/*
   2841 	 * Release any queued transmit buffers.
   2842 	 */
   2843 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2844 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2845 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2846 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2847 		     CMDSTS_INTR) == 0)
   2848 			printf("%s: sip_stop: last descriptor does not "
   2849 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2850 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2851 #ifdef DIAGNOSTIC
   2852 		if (txs->txs_mbuf == NULL) {
   2853 			printf("%s: dirty txsoft with no mbuf chain\n",
   2854 			    device_xname(sc->sc_dev));
   2855 			panic("sip_stop");
   2856 		}
   2857 #endif
   2858 		cmdsts |=		/* DEBUG */
   2859 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2860 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2861 		m_freem(txs->txs_mbuf);
   2862 		txs->txs_mbuf = NULL;
   2863 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2864 	}
   2865 
   2866 	/*
   2867 	 * Mark the interface down and cancel the watchdog timer.
   2868 	 */
   2869 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2870 	ifp->if_timer = 0;
   2871 
   2872 	if (disable)
   2873 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2874 
   2875 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2876 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2877 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2878 		    "descriptors\n", device_xname(sc->sc_dev));
   2879 }
   2880 
   2881 /*
   2882  * sip_read_eeprom:
   2883  *
   2884  *	Read data from the serial EEPROM.
   2885  */
   2886 static void
   2887 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2888     u_int16_t *data)
   2889 {
   2890 	bus_space_tag_t st = sc->sc_st;
   2891 	bus_space_handle_t sh = sc->sc_sh;
   2892 	u_int16_t reg;
   2893 	int i, x;
   2894 
   2895 	for (i = 0; i < wordcnt; i++) {
   2896 		/* Send CHIP SELECT. */
   2897 		reg = EROMAR_EECS;
   2898 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2899 
   2900 		/* Shift in the READ opcode. */
   2901 		for (x = 3; x > 0; x--) {
   2902 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2903 				reg |= EROMAR_EEDI;
   2904 			else
   2905 				reg &= ~EROMAR_EEDI;
   2906 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2907 			bus_space_write_4(st, sh, SIP_EROMAR,
   2908 			    reg | EROMAR_EESK);
   2909 			delay(4);
   2910 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2911 			delay(4);
   2912 		}
   2913 
   2914 		/* Shift in address. */
   2915 		for (x = 6; x > 0; x--) {
   2916 			if ((word + i) & (1 << (x - 1)))
   2917 				reg |= EROMAR_EEDI;
   2918 			else
   2919 				reg &= ~EROMAR_EEDI;
   2920 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2921 			bus_space_write_4(st, sh, SIP_EROMAR,
   2922 			    reg | EROMAR_EESK);
   2923 			delay(4);
   2924 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2925 			delay(4);
   2926 		}
   2927 
   2928 		/* Shift out data. */
   2929 		reg = EROMAR_EECS;
   2930 		data[i] = 0;
   2931 		for (x = 16; x > 0; x--) {
   2932 			bus_space_write_4(st, sh, SIP_EROMAR,
   2933 			    reg | EROMAR_EESK);
   2934 			delay(4);
   2935 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2936 				data[i] |= (1 << (x - 1));
   2937 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2938 			delay(4);
   2939 		}
   2940 
   2941 		/* Clear CHIP SELECT. */
   2942 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2943 		delay(4);
   2944 	}
   2945 }
   2946 
   2947 /*
   2948  * sipcom_add_rxbuf:
   2949  *
   2950  *	Add a receive buffer to the indicated descriptor.
   2951  */
   2952 static int
   2953 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2954 {
   2955 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2956 	struct mbuf *m;
   2957 	int error;
   2958 
   2959 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2960 	if (m == NULL)
   2961 		return (ENOBUFS);
   2962 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2963 
   2964 	MCLGET(m, M_DONTWAIT);
   2965 	if ((m->m_flags & M_EXT) == 0) {
   2966 		m_freem(m);
   2967 		return (ENOBUFS);
   2968 	}
   2969 
   2970 	/* XXX I don't believe this is necessary. --dyoung */
   2971 	if (sc->sc_gigabit)
   2972 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2973 
   2974 	if (rxs->rxs_mbuf != NULL)
   2975 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2976 
   2977 	rxs->rxs_mbuf = m;
   2978 
   2979 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2980 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2981 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2982 	if (error) {
   2983 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2984 		    device_xname(sc->sc_dev), idx, error);
   2985 		panic("%s", __func__);		/* XXX */
   2986 	}
   2987 
   2988 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2989 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2990 
   2991 	sip_init_rxdesc(sc, idx);
   2992 
   2993 	return (0);
   2994 }
   2995 
   2996 /*
   2997  * sip_sis900_set_filter:
   2998  *
   2999  *	Set up the receive filter.
   3000  */
   3001 static void
   3002 sipcom_sis900_set_filter(struct sip_softc *sc)
   3003 {
   3004 	bus_space_tag_t st = sc->sc_st;
   3005 	bus_space_handle_t sh = sc->sc_sh;
   3006 	struct ethercom *ec = &sc->sc_ethercom;
   3007 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3008 	struct ether_multi *enm;
   3009 	const u_int8_t *cp;
   3010 	struct ether_multistep step;
   3011 	u_int32_t crc, mchash[16];
   3012 
   3013 	/*
   3014 	 * Initialize the prototype RFCR.
   3015 	 */
   3016 	sc->sc_rfcr = RFCR_RFEN;
   3017 	if (ifp->if_flags & IFF_BROADCAST)
   3018 		sc->sc_rfcr |= RFCR_AAB;
   3019 	if (ifp->if_flags & IFF_PROMISC) {
   3020 		sc->sc_rfcr |= RFCR_AAP;
   3021 		goto allmulti;
   3022 	}
   3023 
   3024 	/*
   3025 	 * Set up the multicast address filter by passing all multicast
   3026 	 * addresses through a CRC generator, and then using the high-order
   3027 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3028 	 * the lower 16 bits of each 32 bit multicast hash register are
   3029 	 * valid).  The high order bits select the register, while the
   3030 	 * rest of the bits select the bit within the register.
   3031 	 */
   3032 
   3033 	memset(mchash, 0, sizeof(mchash));
   3034 
   3035 	/*
   3036 	 * SiS900 (at least SiS963) requires us to register the address of
   3037 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3038 	 */
   3039 	crc = 0x0ed423f9;
   3040 
   3041 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3042 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3043 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3044 		/* Just want the 8 most significant bits. */
   3045 		crc >>= 24;
   3046 	} else {
   3047 		/* Just want the 7 most significant bits. */
   3048 		crc >>= 25;
   3049 	}
   3050 
   3051 	/* Set the corresponding bit in the hash table. */
   3052 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3053 
   3054 	ETHER_FIRST_MULTI(step, ec, enm);
   3055 	while (enm != NULL) {
   3056 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3057 			/*
   3058 			 * We must listen to a range of multicast addresses.
   3059 			 * For now, just accept all multicasts, rather than
   3060 			 * trying to set only those filter bits needed to match
   3061 			 * the range.  (At this time, the only use of address
   3062 			 * ranges is for IP multicast routing, for which the
   3063 			 * range is big enough to require all bits set.)
   3064 			 */
   3065 			goto allmulti;
   3066 		}
   3067 
   3068 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3069 
   3070 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3071 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3072 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3073 			/* Just want the 8 most significant bits. */
   3074 			crc >>= 24;
   3075 		} else {
   3076 			/* Just want the 7 most significant bits. */
   3077 			crc >>= 25;
   3078 		}
   3079 
   3080 		/* Set the corresponding bit in the hash table. */
   3081 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3082 
   3083 		ETHER_NEXT_MULTI(step, enm);
   3084 	}
   3085 
   3086 	ifp->if_flags &= ~IFF_ALLMULTI;
   3087 	goto setit;
   3088 
   3089  allmulti:
   3090 	ifp->if_flags |= IFF_ALLMULTI;
   3091 	sc->sc_rfcr |= RFCR_AAM;
   3092 
   3093  setit:
   3094 #define	FILTER_EMIT(addr, data)						\
   3095 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3096 	delay(1);							\
   3097 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3098 	delay(1)
   3099 
   3100 	/*
   3101 	 * Disable receive filter, and program the node address.
   3102 	 */
   3103 	cp = CLLADDR(ifp->if_sadl);
   3104 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3105 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3106 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3107 
   3108 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3109 		/*
   3110 		 * Program the multicast hash table.
   3111 		 */
   3112 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3113 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3114 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3115 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3116 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3117 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3118 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3119 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3120 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3121 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3122 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3123 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3124 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3125 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3126 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3127 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3128 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3129 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3130 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3131 		}
   3132 	}
   3133 #undef FILTER_EMIT
   3134 
   3135 	/*
   3136 	 * Re-enable the receiver filter.
   3137 	 */
   3138 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3139 }
   3140 
   3141 /*
   3142  * sip_dp83815_set_filter:
   3143  *
   3144  *	Set up the receive filter.
   3145  */
   3146 static void
   3147 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3148 {
   3149 	bus_space_tag_t st = sc->sc_st;
   3150 	bus_space_handle_t sh = sc->sc_sh;
   3151 	struct ethercom *ec = &sc->sc_ethercom;
   3152 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3153 	struct ether_multi *enm;
   3154 	const u_int8_t *cp;
   3155 	struct ether_multistep step;
   3156 	u_int32_t crc, hash, slot, bit;
   3157 #define	MCHASH_NWORDS_83820	128
   3158 #define	MCHASH_NWORDS_83815	32
   3159 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3160 	u_int16_t mchash[MCHASH_NWORDS];
   3161 	int i;
   3162 
   3163 	/*
   3164 	 * Initialize the prototype RFCR.
   3165 	 * Enable the receive filter, and accept on
   3166 	 *    Perfect (destination address) Match
   3167 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3168 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3169 	 *    IFF_ALLMULTI and accept all multicast, too).
   3170 	 */
   3171 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3172 	if (ifp->if_flags & IFF_BROADCAST)
   3173 		sc->sc_rfcr |= RFCR_AAB;
   3174 	if (ifp->if_flags & IFF_PROMISC) {
   3175 		sc->sc_rfcr |= RFCR_AAP;
   3176 		goto allmulti;
   3177 	}
   3178 
   3179 	/*
   3180          * Set up the DP83820/DP83815 multicast address filter by
   3181          * passing all multicast addresses through a CRC generator,
   3182          * and then using the high-order 11/9 bits as an index into
   3183          * the 2048/512 bit multicast hash table.  The high-order
   3184          * 7/5 bits select the slot, while the low-order 4 bits
   3185          * select the bit within the slot.  Note that only the low
   3186          * 16-bits of each filter word are used, and there are
   3187          * 128/32 filter words.
   3188 	 */
   3189 
   3190 	memset(mchash, 0, sizeof(mchash));
   3191 
   3192 	ifp->if_flags &= ~IFF_ALLMULTI;
   3193 	ETHER_FIRST_MULTI(step, ec, enm);
   3194 	if (enm == NULL)
   3195 		goto setit;
   3196 	while (enm != NULL) {
   3197 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3198 			/*
   3199 			 * We must listen to a range of multicast addresses.
   3200 			 * For now, just accept all multicasts, rather than
   3201 			 * trying to set only those filter bits needed to match
   3202 			 * the range.  (At this time, the only use of address
   3203 			 * ranges is for IP multicast routing, for which the
   3204 			 * range is big enough to require all bits set.)
   3205 			 */
   3206 			goto allmulti;
   3207 		}
   3208 
   3209 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3210 
   3211 		if (sc->sc_gigabit) {
   3212 			/* Just want the 11 most significant bits. */
   3213 			hash = crc >> 21;
   3214 		} else {
   3215 			/* Just want the 9 most significant bits. */
   3216 			hash = crc >> 23;
   3217 		}
   3218 
   3219 		slot = hash >> 4;
   3220 		bit = hash & 0xf;
   3221 
   3222 		/* Set the corresponding bit in the hash table. */
   3223 		mchash[slot] |= 1 << bit;
   3224 
   3225 		ETHER_NEXT_MULTI(step, enm);
   3226 	}
   3227 	sc->sc_rfcr |= RFCR_MHEN;
   3228 	goto setit;
   3229 
   3230  allmulti:
   3231 	ifp->if_flags |= IFF_ALLMULTI;
   3232 	sc->sc_rfcr |= RFCR_AAM;
   3233 
   3234  setit:
   3235 #define	FILTER_EMIT(addr, data)						\
   3236 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3237 	delay(1);							\
   3238 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3239 	delay(1)
   3240 
   3241 	/*
   3242 	 * Disable receive filter, and program the node address.
   3243 	 */
   3244 	cp = CLLADDR(ifp->if_sadl);
   3245 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3246 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3247 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3248 
   3249 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3250 		int nwords =
   3251 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3252 		/*
   3253 		 * Program the multicast hash table.
   3254 		 */
   3255 		for (i = 0; i < nwords; i++) {
   3256 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3257 		}
   3258 	}
   3259 #undef FILTER_EMIT
   3260 #undef MCHASH_NWORDS
   3261 #undef MCHASH_NWORDS_83815
   3262 #undef MCHASH_NWORDS_83820
   3263 
   3264 	/*
   3265 	 * Re-enable the receiver filter.
   3266 	 */
   3267 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3268 }
   3269 
   3270 /*
   3271  * sip_dp83820_mii_readreg:	[mii interface function]
   3272  *
   3273  *	Read a PHY register on the MII of the DP83820.
   3274  */
   3275 static int
   3276 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
   3277 {
   3278 	struct sip_softc *sc = device_private(self);
   3279 
   3280 	if (sc->sc_cfg & CFG_TBI_EN) {
   3281 		bus_addr_t tbireg;
   3282 		int rv;
   3283 
   3284 		if (phy != 0)
   3285 			return (0);
   3286 
   3287 		switch (reg) {
   3288 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3289 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3290 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3291 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3292 		case MII_ANER:		tbireg = SIP_TANER; break;
   3293 		case MII_EXTSR:
   3294 			/*
   3295 			 * Don't even bother reading the TESR register.
   3296 			 * The manual documents that the device has
   3297 			 * 1000baseX full/half capability, but the
   3298 			 * register itself seems read back 0 on some
   3299 			 * boards.  Just hard-code the result.
   3300 			 */
   3301 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   3302 
   3303 		default:
   3304 			return (0);
   3305 		}
   3306 
   3307 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3308 		if (tbireg == SIP_TBISR) {
   3309 			/* LINK and ACOMP are switched! */
   3310 			int val = rv;
   3311 
   3312 			rv = 0;
   3313 			if (val & TBISR_MR_LINK_STATUS)
   3314 				rv |= BMSR_LINK;
   3315 			if (val & TBISR_MR_AN_COMPLETE)
   3316 				rv |= BMSR_ACOMP;
   3317 
   3318 			/*
   3319 			 * The manual claims this register reads back 0
   3320 			 * on hard and soft reset.  But we want to let
   3321 			 * the gentbi driver know that we support auto-
   3322 			 * negotiation, so hard-code this bit in the
   3323 			 * result.
   3324 			 */
   3325 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   3326 		}
   3327 
   3328 		return (rv);
   3329 	}
   3330 
   3331 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
   3332 }
   3333 
   3334 /*
   3335  * sip_dp83820_mii_writereg:	[mii interface function]
   3336  *
   3337  *	Write a PHY register on the MII of the DP83820.
   3338  */
   3339 static void
   3340 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
   3341 {
   3342 	struct sip_softc *sc = device_private(self);
   3343 
   3344 	if (sc->sc_cfg & CFG_TBI_EN) {
   3345 		bus_addr_t tbireg;
   3346 
   3347 		if (phy != 0)
   3348 			return;
   3349 
   3350 		switch (reg) {
   3351 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3352 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3353 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3354 		default:
   3355 			return;
   3356 		}
   3357 
   3358 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3359 		return;
   3360 	}
   3361 
   3362 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
   3363 }
   3364 
   3365 /*
   3366  * sip_dp83820_mii_statchg:	[mii interface function]
   3367  *
   3368  *	Callback from MII layer when media changes.
   3369  */
   3370 static void
   3371 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
   3372 {
   3373 	struct sip_softc *sc = ifp->if_softc;
   3374 	struct mii_data *mii = &sc->sc_mii;
   3375 	u_int32_t cfg, pcr;
   3376 
   3377 	/*
   3378 	 * Get flow control negotiation result.
   3379 	 */
   3380 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3381 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3382 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3383 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3384 	}
   3385 
   3386 	/*
   3387 	 * Update TXCFG for full-duplex operation.
   3388 	 */
   3389 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3390 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3391 	else
   3392 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3393 
   3394 	/*
   3395 	 * Update RXCFG for full-duplex or loopback.
   3396 	 */
   3397 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3398 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3399 		sc->sc_rxcfg |= RXCFG_ATX;
   3400 	else
   3401 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3402 
   3403 	/*
   3404 	 * Update CFG for MII/GMII.
   3405 	 */
   3406 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3407 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3408 	else
   3409 		cfg = sc->sc_cfg;
   3410 
   3411 	/*
   3412 	 * 802.3x flow control.
   3413 	 */
   3414 	pcr = 0;
   3415 	if (sc->sc_flowflags & IFM_FLOW) {
   3416 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3417 			pcr |= sc->sc_rx_flow_thresh;
   3418 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3419 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3420 	}
   3421 
   3422 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3423 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3424 	    sc->sc_txcfg);
   3425 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3426 	    sc->sc_rxcfg);
   3427 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3428 }
   3429 
   3430 /*
   3431  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3432  *
   3433  *	Read the MII serial port for the MII bit-bang module.
   3434  */
   3435 static u_int32_t
   3436 sipcom_mii_bitbang_read(device_t self)
   3437 {
   3438 	struct sip_softc *sc = device_private(self);
   3439 
   3440 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3441 }
   3442 
   3443 /*
   3444  * sip_mii_bitbang_write: [mii big-bang interface function]
   3445  *
   3446  *	Write the MII serial port for the MII bit-bang module.
   3447  */
   3448 static void
   3449 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
   3450 {
   3451 	struct sip_softc *sc = device_private(self);
   3452 
   3453 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3454 }
   3455 
   3456 /*
   3457  * sip_sis900_mii_readreg:	[mii interface function]
   3458  *
   3459  *	Read a PHY register on the MII.
   3460  */
   3461 static int
   3462 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
   3463 {
   3464 	struct sip_softc *sc = device_private(self);
   3465 	u_int32_t enphy;
   3466 
   3467 	/*
   3468 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3469 	 * operations.
   3470 	 */
   3471 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3472 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3473 		    phy, reg);
   3474 
   3475 #ifndef SIS900_MII_RESTRICT
   3476 	/*
   3477 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3478 	 * MII address 0.
   3479 	 */
   3480 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3481 		return (0);
   3482 #endif
   3483 
   3484 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3485 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3486 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3487 	do {
   3488 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3489 	} while (enphy & ENPHY_ACCESS);
   3490 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3491 }
   3492 
   3493 /*
   3494  * sip_sis900_mii_writereg:	[mii interface function]
   3495  *
   3496  *	Write a PHY register on the MII.
   3497  */
   3498 static void
   3499 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
   3500 {
   3501 	struct sip_softc *sc = device_private(self);
   3502 	u_int32_t enphy;
   3503 
   3504 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3505 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3506 		    phy, reg, val);
   3507 		return;
   3508 	}
   3509 
   3510 #ifndef SIS900_MII_RESTRICT
   3511 	/*
   3512 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3513 	 * MII address 0.
   3514 	 */
   3515 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3516 		return;
   3517 #endif
   3518 
   3519 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3520 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3521 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3522 	do {
   3523 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3524 	} while (enphy & ENPHY_ACCESS);
   3525 }
   3526 
   3527 /*
   3528  * sip_sis900_mii_statchg:	[mii interface function]
   3529  *
   3530  *	Callback from MII layer when media changes.
   3531  */
   3532 static void
   3533 sipcom_sis900_mii_statchg(struct ifnet *ifp)
   3534 {
   3535 	struct sip_softc *sc = ifp->if_softc;
   3536 	struct mii_data *mii = &sc->sc_mii;
   3537 	u_int32_t flowctl;
   3538 
   3539 	/*
   3540 	 * Get flow control negotiation result.
   3541 	 */
   3542 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3543 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3544 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3545 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3546 	}
   3547 
   3548 	/*
   3549 	 * Update TXCFG for full-duplex operation.
   3550 	 */
   3551 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3552 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3553 	else
   3554 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3555 
   3556 	/*
   3557 	 * Update RXCFG for full-duplex or loopback.
   3558 	 */
   3559 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3560 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3561 		sc->sc_rxcfg |= RXCFG_ATX;
   3562 	else
   3563 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3564 
   3565 	/*
   3566 	 * Update IMR for use of 802.3x flow control.
   3567 	 */
   3568 	if (sc->sc_flowflags & IFM_FLOW) {
   3569 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3570 		flowctl = FLOWCTL_FLOWEN;
   3571 	} else {
   3572 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3573 		flowctl = 0;
   3574 	}
   3575 
   3576 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3577 	    sc->sc_txcfg);
   3578 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3579 	    sc->sc_rxcfg);
   3580 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3581 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3582 }
   3583 
   3584 /*
   3585  * sip_dp83815_mii_readreg:	[mii interface function]
   3586  *
   3587  *	Read a PHY register on the MII.
   3588  */
   3589 static int
   3590 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
   3591 {
   3592 	struct sip_softc *sc = device_private(self);
   3593 	u_int32_t val;
   3594 
   3595 	/*
   3596 	 * The DP83815 only has an internal PHY.  Only allow
   3597 	 * MII address 0.
   3598 	 */
   3599 	if (phy != 0)
   3600 		return (0);
   3601 
   3602 	/*
   3603 	 * Apparently, after a reset, the DP83815 can take a while
   3604 	 * to respond.  During this recovery period, the BMSR returns
   3605 	 * a value of 0.  Catch this -- it's not supposed to happen
   3606 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3607 	 * PHY to come back to life.
   3608 	 *
   3609 	 * This works out because the BMSR is the first register
   3610 	 * read during the PHY probe process.
   3611 	 */
   3612 	do {
   3613 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3614 	} while (reg == MII_BMSR && val == 0);
   3615 
   3616 	return (val & 0xffff);
   3617 }
   3618 
   3619 /*
   3620  * sip_dp83815_mii_writereg:	[mii interface function]
   3621  *
   3622  *	Write a PHY register to the MII.
   3623  */
   3624 static void
   3625 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
   3626 {
   3627 	struct sip_softc *sc = device_private(self);
   3628 
   3629 	/*
   3630 	 * The DP83815 only has an internal PHY.  Only allow
   3631 	 * MII address 0.
   3632 	 */
   3633 	if (phy != 0)
   3634 		return;
   3635 
   3636 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3637 }
   3638 
   3639 /*
   3640  * sip_dp83815_mii_statchg:	[mii interface function]
   3641  *
   3642  *	Callback from MII layer when media changes.
   3643  */
   3644 static void
   3645 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
   3646 {
   3647 	struct sip_softc *sc = ifp->if_softc;
   3648 
   3649 	/*
   3650 	 * Update TXCFG for full-duplex operation.
   3651 	 */
   3652 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3653 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3654 	else
   3655 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3656 
   3657 	/*
   3658 	 * Update RXCFG for full-duplex or loopback.
   3659 	 */
   3660 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3661 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3662 		sc->sc_rxcfg |= RXCFG_ATX;
   3663 	else
   3664 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3665 
   3666 	/*
   3667 	 * XXX 802.3x flow control.
   3668 	 */
   3669 
   3670 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3671 	    sc->sc_txcfg);
   3672 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3673 	    sc->sc_rxcfg);
   3674 
   3675 	/*
   3676 	 * Some DP83815s experience problems when used with short
   3677 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3678 	 * sequence adjusts the DSP's signal attenuation to fix the
   3679 	 * problem.
   3680 	 */
   3681 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3682 		uint32_t reg;
   3683 
   3684 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3685 
   3686 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3687 		reg &= 0x0fff;
   3688 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3689 		delay(100);
   3690 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3691 		reg &= 0x00ff;
   3692 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3693 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3694 			    0x00e8);
   3695 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3696 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3697 			    reg | 0x20);
   3698 		}
   3699 
   3700 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3701 	}
   3702 }
   3703 
   3704 static void
   3705 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3706     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3707 {
   3708 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3709 	u_int8_t cksum, *e, match;
   3710 	int i;
   3711 
   3712 	/*
   3713 	 * EEPROM data format for the DP83820 can be found in
   3714 	 * the DP83820 manual, section 4.2.4.
   3715 	 */
   3716 
   3717 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3718 
   3719 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3720 	match = ~(match - 1);
   3721 
   3722 	cksum = 0x55;
   3723 	e = (u_int8_t *) eeprom_data;
   3724 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3725 		cksum += *e++;
   3726 
   3727 	if (cksum != match)
   3728 		printf("%s: Checksum (%x) mismatch (%x)",
   3729 		    device_xname(sc->sc_dev), cksum, match);
   3730 
   3731 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3732 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3733 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3734 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3735 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3736 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3737 }
   3738 
   3739 static void
   3740 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3741 {
   3742 	int i;
   3743 
   3744 	/*
   3745 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3746 	 * a reason, but I don't know it.
   3747 	 */
   3748 	for (i = 0; i < 10; i++)
   3749 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3750 }
   3751 
   3752 static void
   3753 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3754     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3755 {
   3756 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3757 
   3758 	switch (sc->sc_rev) {
   3759 	case SIS_REV_630S:
   3760 	case SIS_REV_630E:
   3761 	case SIS_REV_630EA1:
   3762 	case SIS_REV_630ET:
   3763 	case SIS_REV_635:
   3764 		/*
   3765 		 * The MAC address for the on-board Ethernet of
   3766 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3767 		 * the chip into re-loading it from NVRAM, and
   3768 		 * read the MAC address out of the filter registers.
   3769 		 */
   3770 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3771 
   3772 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3773 		    RFCR_RFADDR_NODE0);
   3774 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3775 		    0xffff;
   3776 
   3777 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3778 		    RFCR_RFADDR_NODE2);
   3779 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3780 		    0xffff;
   3781 
   3782 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3783 		    RFCR_RFADDR_NODE4);
   3784 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3785 		    0xffff;
   3786 		break;
   3787 
   3788 	case SIS_REV_960:
   3789 		{
   3790 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3791 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3792 
   3793 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3794 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3795 
   3796 			int waittime, i;
   3797 
   3798 			/* Allow to read EEPROM from LAN. It is shared
   3799 			 * between a 1394 controller and the NIC and each
   3800 			 * time we access it, we need to set SIS_EECMD_REQ.
   3801 			 */
   3802 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3803 
   3804 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3805 				/* Force EEPROM to idle state. */
   3806 
   3807 				/*
   3808 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3809 				 */
   3810 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3811 				sipcom_sis900_eeprom_delay(sc);
   3812 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3813 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3814 					sipcom_sis900_eeprom_delay(sc);
   3815 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3816 					sipcom_sis900_eeprom_delay(sc);
   3817 				}
   3818 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3819 				sipcom_sis900_eeprom_delay(sc);
   3820 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3821 
   3822 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3823 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3824 					    sizeof(myea) / sizeof(myea[0]), myea);
   3825 					break;
   3826 				}
   3827 				DELAY(1);
   3828 			}
   3829 
   3830 			/*
   3831 			 * Set SIS_EECTL_CLK to high, so a other master
   3832 			 * can operate on the i2c bus.
   3833 			 */
   3834 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3835 
   3836 			/* Refuse EEPROM access by LAN */
   3837 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3838 		} break;
   3839 
   3840 	default:
   3841 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3842 		    sizeof(myea) / sizeof(myea[0]), myea);
   3843 	}
   3844 
   3845 	enaddr[0] = myea[0] & 0xff;
   3846 	enaddr[1] = myea[0] >> 8;
   3847 	enaddr[2] = myea[1] & 0xff;
   3848 	enaddr[3] = myea[1] >> 8;
   3849 	enaddr[4] = myea[2] & 0xff;
   3850 	enaddr[5] = myea[2] >> 8;
   3851 }
   3852 
   3853 /* Table and macro to bit-reverse an octet. */
   3854 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3855 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3856 
   3857 static void
   3858 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3859     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3860 {
   3861 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3862 	u_int8_t cksum, *e, match;
   3863 	int i;
   3864 
   3865 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3866 	    sizeof(eeprom_data[0]), eeprom_data);
   3867 
   3868 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3869 	match = ~(match - 1);
   3870 
   3871 	cksum = 0x55;
   3872 	e = (u_int8_t *) eeprom_data;
   3873 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3874 		cksum += *e++;
   3875 	}
   3876 	if (cksum != match) {
   3877 		printf("%s: Checksum (%x) mismatch (%x)",
   3878 		    device_xname(sc->sc_dev), cksum, match);
   3879 	}
   3880 
   3881 	/*
   3882 	 * Unrolled because it makes slightly more sense this way.
   3883 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3884 	 * through bit 15 of word 8.
   3885 	 */
   3886 	ea = &eeprom_data[6];
   3887 	enaddr[0] = ((*ea & 0x1) << 7);
   3888 	ea++;
   3889 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3890 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3891 	enaddr[2] = ((*ea & 0x1) << 7);
   3892 	ea++;
   3893 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3894 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3895 	enaddr[4] = ((*ea & 0x1) << 7);
   3896 	ea++;
   3897 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3898 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3899 
   3900 	/*
   3901 	 * In case that's not weird enough, we also need to reverse
   3902 	 * the bits in each byte.  This all actually makes more sense
   3903 	 * if you think about the EEPROM storage as an array of bits
   3904 	 * being shifted into bytes, but that's not how we're looking
   3905 	 * at it here...
   3906 	 */
   3907 	for (i = 0; i < 6 ;i++)
   3908 		enaddr[i] = bbr(enaddr[i]);
   3909 }
   3910 
   3911 /*
   3912  * sip_mediastatus:	[ifmedia interface function]
   3913  *
   3914  *	Get the current interface media status.
   3915  */
   3916 static void
   3917 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3918 {
   3919 	struct sip_softc *sc = ifp->if_softc;
   3920 
   3921 	if (!device_is_active(sc->sc_dev)) {
   3922 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3923 		ifmr->ifm_status = 0;
   3924 		return;
   3925 	}
   3926 	ether_mediastatus(ifp, ifmr);
   3927 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3928 			   sc->sc_flowflags;
   3929 }
   3930