if_sip.c revision 1.161 1 /* $NetBSD: if_sip.c,v 1.161 2016/06/10 13:27:14 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.161 2016/06/10 13:27:14 ozaki-r Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rndsource.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997 char intrbuf[PCI_INTRSTR_LEN];
998
999 callout_init(&sc->sc_tick_ch, 0);
1000
1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 if (sip == NULL) {
1003 printf("\n");
1004 panic("%s: impossible", __func__);
1005 }
1006 sc->sc_dev = self;
1007 sc->sc_gigabit = sip->sip_gigabit;
1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 printf("%s: unable to map device registers\n",
1074 device_xname(sc->sc_dev));
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 aprint_error(" at %s", intrstr);
1110 aprint_error("\n");
1111 sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 return;
1113 }
1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1127 error);
1128 sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 return;
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT)) != 0) {
1135 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1136 error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1144 "error = %d\n", error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1152 error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1164 "error = %d\n", i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1176 "error = %d\n", i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 SIP_SIS900_REV(sc,SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1209 ether_sprintf(enaddr));
1210
1211 /*
1212 * Initialize the configuration register: aggressive PCI
1213 * bus request algorithm, default backoff, default OW timer,
1214 * default parity error detection.
1215 *
1216 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 * friends -- it affects packet data, not descriptors.
1218 */
1219 if (sc->sc_gigabit)
1220 sipcom_dp83820_attach(sc, pa);
1221
1222 /*
1223 * Initialize our media structures and probe the MII.
1224 */
1225 sc->sc_mii.mii_ifp = ifp;
1226 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 sipcom_mediastatus);
1232
1233 /*
1234 * XXX We cannot handle flow control on the DP83815.
1235 */
1236 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, 0);
1239 else
1240 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 } else
1246 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247
1248 ifp = &sc->sc_ethercom.ec_if;
1249 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 ifp->if_softc = sc;
1251 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 sc->sc_if_flags = ifp->if_flags;
1253 ifp->if_ioctl = sipcom_ioctl;
1254 ifp->if_start = sipcom_start;
1255 ifp->if_watchdog = sipcom_watchdog;
1256 ifp->if_init = sipcom_init;
1257 ifp->if_stop = sipcom_stop;
1258 IFQ_SET_READY(&ifp->if_snd);
1259
1260 /*
1261 * We can support 802.1Q VLAN-sized frames.
1262 */
1263 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264
1265 if (sc->sc_gigabit) {
1266 /*
1267 * And the DP83820 can do VLAN tagging in hardware, and
1268 * support the jumbo Ethernet MTU.
1269 */
1270 sc->sc_ethercom.ec_capabilities |=
1271 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272
1273 /*
1274 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 * in hardware.
1276 */
1277 ifp->if_capabilities |=
1278 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 }
1282
1283 /*
1284 * Attach the interface.
1285 */
1286 if_attach(ifp);
1287 ether_ifattach(ifp, enaddr);
1288 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 sc->sc_prev.if_capenable = ifp->if_capenable;
1292 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1293 RND_TYPE_NET, RND_FLAG_DEFAULT);
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(sc->sc_dev), "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, device_xname(sc->sc_dev), "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 pmf_class_network_register(self, ifp);
1370 else
1371 aprint_error_dev(self, "couldn't establish power handler\n");
1372 }
1373
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376 uint64_t capenable)
1377 {
1378 struct m_tag *mtag;
1379 u_int32_t extsts;
1380 #ifdef DEBUG
1381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 /*
1384 * If VLANs are enabled and the packet has a VLAN tag, set
1385 * up the descriptor to encapsulate the packet for us.
1386 *
1387 * This apparently has to be on the last descriptor of
1388 * the packet.
1389 */
1390
1391 /*
1392 * Byte swapping is tricky. We need to provide the tag
1393 * in a network byte order. On a big-endian machine,
1394 * the byteorder is correct, but we need to swap it
1395 * anyway, because this will be undone by the outside
1396 * htole32(). That's why there must be an
1397 * unconditional swap instead of htons() inside.
1398 */
1399 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 sc->sc_txdescs[lasttx].sipd_extsts |=
1401 htole32(EXTSTS_VPKT |
1402 (bswap16(VLAN_TAG_VALUE(mtag)) &
1403 EXTSTS_VTCI));
1404 }
1405
1406 /*
1407 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 * checksumming, set up the descriptor to do this work
1409 * for us.
1410 *
1411 * This apparently has to be on the first descriptor of
1412 * the packet.
1413 *
1414 * Byte-swap constants so the compiler can optimize.
1415 */
1416 extsts = 0;
1417 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 extsts |= htole32(EXTSTS_IPPKT);
1421 }
1422 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 extsts |= htole32(EXTSTS_TCPPKT);
1426 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 extsts |= htole32(EXTSTS_UDPPKT);
1430 }
1431 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433
1434 /*
1435 * sip_start: [ifnet interface function]
1436 *
1437 * Start packet transmission on the interface.
1438 */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 struct sip_softc *sc = ifp->if_softc;
1443 struct mbuf *m0;
1444 struct mbuf *m;
1445 struct sip_txsoft *txs;
1446 bus_dmamap_t dmamap;
1447 int error, nexttx, lasttx, seg;
1448 int ofree = sc->sc_txfree;
1449 #if 0
1450 int firsttx = sc->sc_txnext;
1451 #endif
1452
1453 /*
1454 * If we've been told to pause, don't transmit any more packets.
1455 */
1456 if (!sc->sc_gigabit && sc->sc_paused)
1457 ifp->if_flags |= IFF_OACTIVE;
1458
1459 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 return;
1461
1462 /*
1463 * Loop through the send queue, setting up transmit descriptors
1464 * until we drain the queue, or use up all available transmit
1465 * descriptors.
1466 */
1467 for (;;) {
1468 /* Get a work queue entry. */
1469 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 break;
1472 }
1473
1474 /*
1475 * Grab a packet off the queue.
1476 */
1477 IFQ_POLL(&ifp->if_snd, m0);
1478 if (m0 == NULL)
1479 break;
1480 m = NULL;
1481
1482 dmamap = txs->txs_dmamap;
1483
1484 /*
1485 * Load the DMA map. If this fails, the packet either
1486 * didn't fit in the alloted number of segments, or we
1487 * were short on resources.
1488 */
1489 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 /* In the non-gigabit case, we'll copy and try again. */
1492 if (error != 0 && !sc->sc_gigabit) {
1493 MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 if (m == NULL) {
1495 printf("%s: unable to allocate Tx mbuf\n",
1496 device_xname(sc->sc_dev));
1497 break;
1498 }
1499 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 if (m0->m_pkthdr.len > MHLEN) {
1501 MCLGET(m, M_DONTWAIT);
1502 if ((m->m_flags & M_EXT) == 0) {
1503 printf("%s: unable to allocate Tx "
1504 "cluster\n", device_xname(sc->sc_dev));
1505 m_freem(m);
1506 break;
1507 }
1508 }
1509 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1510 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1511 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1512 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1513 if (error) {
1514 printf("%s: unable to load Tx buffer, "
1515 "error = %d\n", device_xname(sc->sc_dev), error);
1516 break;
1517 }
1518 } else if (error == EFBIG) {
1519 /*
1520 * For the too-many-segments case, we simply
1521 * report an error and drop the packet,
1522 * since we can't sanely copy a jumbo packet
1523 * to a single buffer.
1524 */
1525 printf("%s: Tx packet consumes too many "
1526 "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1527 IFQ_DEQUEUE(&ifp->if_snd, m0);
1528 m_freem(m0);
1529 continue;
1530 } else if (error != 0) {
1531 /*
1532 * Short on resources, just stop for now.
1533 */
1534 break;
1535 }
1536
1537 /*
1538 * Ensure we have enough descriptors free to describe
1539 * the packet. Note, we always reserve one descriptor
1540 * at the end of the ring as a termination point, to
1541 * prevent wrap-around.
1542 */
1543 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1544 /*
1545 * Not enough free descriptors to transmit this
1546 * packet. We haven't committed anything yet,
1547 * so just unload the DMA map, put the packet
1548 * back on the queue, and punt. Notify the upper
1549 * layer that there are not more slots left.
1550 *
1551 * XXX We could allocate an mbuf and copy, but
1552 * XXX is it worth it?
1553 */
1554 ifp->if_flags |= IFF_OACTIVE;
1555 bus_dmamap_unload(sc->sc_dmat, dmamap);
1556 if (m != NULL)
1557 m_freem(m);
1558 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1559 break;
1560 }
1561
1562 IFQ_DEQUEUE(&ifp->if_snd, m0);
1563 if (m != NULL) {
1564 m_freem(m0);
1565 m0 = m;
1566 }
1567
1568 /*
1569 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1570 */
1571
1572 /* Sync the DMA map. */
1573 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1574 BUS_DMASYNC_PREWRITE);
1575
1576 /*
1577 * Initialize the transmit descriptors.
1578 */
1579 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1580 seg < dmamap->dm_nsegs;
1581 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1582 /*
1583 * If this is the first descriptor we're
1584 * enqueueing, don't set the OWN bit just
1585 * yet. That could cause a race condition.
1586 * We'll do it below.
1587 */
1588 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32(dmamap->dm_segs[seg].ds_addr);
1590 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1592 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1593 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1594 lasttx = nexttx;
1595 }
1596
1597 /* Clear the MORE bit on the last segment. */
1598 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1599 htole32(~CMDSTS_MORE);
1600
1601 /*
1602 * If we're in the interrupt delay window, delay the
1603 * interrupt.
1604 */
1605 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1606 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1607 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1608 htole32(CMDSTS_INTR);
1609 sc->sc_txwin = 0;
1610 }
1611
1612 if (sc->sc_gigabit)
1613 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1614
1615 /* Sync the descriptors we're using. */
1616 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1617 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1618
1619 /*
1620 * The entire packet is set up. Give the first descrptor
1621 * to the chip now.
1622 */
1623 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1624 htole32(CMDSTS_OWN);
1625 sip_cdtxsync(sc, sc->sc_txnext, 1,
1626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1627
1628 /*
1629 * Store a pointer to the packet so we can free it later,
1630 * and remember what txdirty will be once the packet is
1631 * done.
1632 */
1633 txs->txs_mbuf = m0;
1634 txs->txs_firstdesc = sc->sc_txnext;
1635 txs->txs_lastdesc = lasttx;
1636
1637 /* Advance the tx pointer. */
1638 sc->sc_txfree -= dmamap->dm_nsegs;
1639 sc->sc_txnext = nexttx;
1640
1641 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1642 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1643
1644 /*
1645 * Pass the packet to any BPF listeners.
1646 */
1647 bpf_mtap(ifp, m0);
1648 }
1649
1650 if (txs == NULL || sc->sc_txfree == 0) {
1651 /* No more slots left; notify upper layer. */
1652 ifp->if_flags |= IFF_OACTIVE;
1653 }
1654
1655 if (sc->sc_txfree != ofree) {
1656 /*
1657 * Start the transmit process. Note, the manual says
1658 * that if there are no pending transmissions in the
1659 * chip's internal queue (indicated by TXE being clear),
1660 * then the driver software must set the TXDP to the
1661 * first descriptor to be transmitted. However, if we
1662 * do this, it causes serious performance degredation on
1663 * the DP83820 under load, not setting TXDP doesn't seem
1664 * to adversely affect the SiS 900 or DP83815.
1665 *
1666 * Well, I guess it wouldn't be the first time a manual
1667 * has lied -- and they could be speaking of the NULL-
1668 * terminated descriptor list case, rather than OWN-
1669 * terminated rings.
1670 */
1671 #if 0
1672 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1673 CR_TXE) == 0) {
1674 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1675 SIP_CDTXADDR(sc, firsttx));
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1677 }
1678 #else
1679 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1680 #endif
1681
1682 /* Set a watchdog timer in case the chip flakes out. */
1683 /* Gigabit autonegotiation takes 5 seconds. */
1684 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1685 }
1686 }
1687
1688 /*
1689 * sip_watchdog: [ifnet interface function]
1690 *
1691 * Watchdog timer handler.
1692 */
1693 static void
1694 sipcom_watchdog(struct ifnet *ifp)
1695 {
1696 struct sip_softc *sc = ifp->if_softc;
1697
1698 /*
1699 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1700 * If we get a timeout, try and sweep up transmit descriptors.
1701 * If we manage to sweep them all up, ignore the lack of
1702 * interrupt.
1703 */
1704 sipcom_txintr(sc);
1705
1706 if (sc->sc_txfree != sc->sc_ntxdesc) {
1707 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1708 ifp->if_oerrors++;
1709
1710 /* Reset the interface. */
1711 (void) sipcom_init(ifp);
1712 } else if (ifp->if_flags & IFF_DEBUG)
1713 printf("%s: recovered from device timeout\n",
1714 device_xname(sc->sc_dev));
1715
1716 /* Try to get more packets going. */
1717 sipcom_start(ifp);
1718 }
1719
1720 /* If the interface is up and running, only modify the receive
1721 * filter when setting promiscuous or debug mode. Otherwise fall
1722 * through to ether_ioctl, which will reset the chip.
1723 */
1724 static int
1725 sip_ifflags_cb(struct ethercom *ec)
1726 {
1727 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1728 == (sc)->sc_ethercom.ec_capenable) \
1729 && ((sc)->sc_prev.is_vlan == \
1730 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1731 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1732 struct ifnet *ifp = &ec->ec_if;
1733 struct sip_softc *sc = ifp->if_softc;
1734 int change = ifp->if_flags ^ sc->sc_if_flags;
1735
1736 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1737 !COMPARE_IC(sc, ifp))
1738 return ENETRESET;
1739 /* Set up the receive filter. */
1740 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1741 return 0;
1742 }
1743
1744 /*
1745 * sip_ioctl: [ifnet interface function]
1746 *
1747 * Handle control requests from the operator.
1748 */
1749 static int
1750 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1751 {
1752 struct sip_softc *sc = ifp->if_softc;
1753 struct ifreq *ifr = (struct ifreq *)data;
1754 int s, error;
1755
1756 s = splnet();
1757
1758 switch (cmd) {
1759 case SIOCSIFMEDIA:
1760 /* Flow control requires full-duplex mode. */
1761 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1762 (ifr->ifr_media & IFM_FDX) == 0)
1763 ifr->ifr_media &= ~IFM_ETH_FMASK;
1764
1765 /* XXX */
1766 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1767 ifr->ifr_media &= ~IFM_ETH_FMASK;
1768 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1769 if (sc->sc_gigabit &&
1770 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1771 /* We can do both TXPAUSE and RXPAUSE. */
1772 ifr->ifr_media |=
1773 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1774 } else if (ifr->ifr_media & IFM_FLOW) {
1775 /*
1776 * Both TXPAUSE and RXPAUSE must be set.
1777 * (SiS900 and DP83815 don't have PAUSE_ASYM
1778 * feature.)
1779 *
1780 * XXX Can SiS900 and DP83815 send PAUSE?
1781 */
1782 ifr->ifr_media |=
1783 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1784 }
1785 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1786 }
1787 /*FALLTHROUGH*/
1788 default:
1789 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1790 break;
1791
1792 error = 0;
1793
1794 if (cmd == SIOCSIFCAP)
1795 error = (*ifp->if_init)(ifp);
1796 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1797 ;
1798 else if (ifp->if_flags & IFF_RUNNING) {
1799 /*
1800 * Multicast list has changed; set the hardware filter
1801 * accordingly.
1802 */
1803 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1804 }
1805 break;
1806 }
1807
1808 /* Try to get more packets going. */
1809 sipcom_start(ifp);
1810
1811 sc->sc_if_flags = ifp->if_flags;
1812 splx(s);
1813 return (error);
1814 }
1815
1816 /*
1817 * sip_intr:
1818 *
1819 * Interrupt service routine.
1820 */
1821 static int
1822 sipcom_intr(void *arg)
1823 {
1824 struct sip_softc *sc = arg;
1825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1826 u_int32_t isr;
1827 int handled = 0;
1828
1829 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1830 return 0;
1831
1832 /* Disable interrupts. */
1833 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1834
1835 for (;;) {
1836 /* Reading clears interrupt. */
1837 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1838 if ((isr & sc->sc_imr) == 0)
1839 break;
1840
1841 rnd_add_uint32(&sc->rnd_source, isr);
1842
1843 handled = 1;
1844
1845 if ((ifp->if_flags & IFF_RUNNING) == 0)
1846 break;
1847
1848 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1849 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1850
1851 /* Grab any new packets. */
1852 (*sc->sc_rxintr)(sc);
1853
1854 if (isr & ISR_RXORN) {
1855 printf("%s: receive FIFO overrun\n",
1856 device_xname(sc->sc_dev));
1857
1858 /* XXX adjust rx_drain_thresh? */
1859 }
1860
1861 if (isr & ISR_RXIDLE) {
1862 printf("%s: receive ring overrun\n",
1863 device_xname(sc->sc_dev));
1864
1865 /* Get the receive process going again. */
1866 bus_space_write_4(sc->sc_st, sc->sc_sh,
1867 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1868 bus_space_write_4(sc->sc_st, sc->sc_sh,
1869 SIP_CR, CR_RXE);
1870 }
1871 }
1872
1873 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1874 #ifdef SIP_EVENT_COUNTERS
1875 if (isr & ISR_TXDESC)
1876 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1877 else if (isr & ISR_TXIDLE)
1878 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1879 #endif
1880
1881 /* Sweep up transmit descriptors. */
1882 sipcom_txintr(sc);
1883
1884 if (isr & ISR_TXURN) {
1885 u_int32_t thresh;
1886 int txfifo_size = (sc->sc_gigabit)
1887 ? DP83820_SIP_TXFIFO_SIZE
1888 : OTHER_SIP_TXFIFO_SIZE;
1889
1890 printf("%s: transmit FIFO underrun",
1891 device_xname(sc->sc_dev));
1892 thresh = sc->sc_tx_drain_thresh + 1;
1893 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1894 && (thresh * 32) <= (txfifo_size -
1895 (sc->sc_tx_fill_thresh * 32))) {
1896 printf("; increasing Tx drain "
1897 "threshold to %u bytes\n",
1898 thresh * 32);
1899 sc->sc_tx_drain_thresh = thresh;
1900 (void) sipcom_init(ifp);
1901 } else {
1902 (void) sipcom_init(ifp);
1903 printf("\n");
1904 }
1905 }
1906 }
1907
1908 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1909 if (isr & ISR_PAUSE_ST) {
1910 sc->sc_paused = 1;
1911 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1912 ifp->if_flags |= IFF_OACTIVE;
1913 }
1914 if (isr & ISR_PAUSE_END) {
1915 sc->sc_paused = 0;
1916 ifp->if_flags &= ~IFF_OACTIVE;
1917 }
1918 }
1919
1920 if (isr & ISR_HIBERR) {
1921 int want_init = 0;
1922
1923 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1924
1925 #define PRINTERR(bit, str) \
1926 do { \
1927 if ((isr & (bit)) != 0) { \
1928 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1929 printf("%s: %s\n", \
1930 device_xname(sc->sc_dev), str); \
1931 want_init = 1; \
1932 } \
1933 } while (/*CONSTCOND*/0)
1934
1935 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1936 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1937 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1938 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1939 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1940 /*
1941 * Ignore:
1942 * Tx reset complete
1943 * Rx reset complete
1944 */
1945 if (want_init)
1946 (void) sipcom_init(ifp);
1947 #undef PRINTERR
1948 }
1949 }
1950
1951 /* Re-enable interrupts. */
1952 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1953
1954 /* Try to get more packets going. */
1955 sipcom_start(ifp);
1956
1957 return (handled);
1958 }
1959
1960 /*
1961 * sip_txintr:
1962 *
1963 * Helper; handle transmit interrupts.
1964 */
1965 static void
1966 sipcom_txintr(struct sip_softc *sc)
1967 {
1968 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1969 struct sip_txsoft *txs;
1970 u_int32_t cmdsts;
1971
1972 if (sc->sc_paused == 0)
1973 ifp->if_flags &= ~IFF_OACTIVE;
1974
1975 /*
1976 * Go through our Tx list and free mbufs for those
1977 * frames which have been transmitted.
1978 */
1979 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1980 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1981 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1982
1983 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1984 if (cmdsts & CMDSTS_OWN)
1985 break;
1986
1987 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1988
1989 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1990
1991 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1992 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1993 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1994 m_freem(txs->txs_mbuf);
1995 txs->txs_mbuf = NULL;
1996
1997 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1998
1999 /*
2000 * Check for errors and collisions.
2001 */
2002 if (cmdsts &
2003 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2004 ifp->if_oerrors++;
2005 if (cmdsts & CMDSTS_Tx_EC)
2006 ifp->if_collisions += 16;
2007 if (ifp->if_flags & IFF_DEBUG) {
2008 if (cmdsts & CMDSTS_Tx_ED)
2009 printf("%s: excessive deferral\n",
2010 device_xname(sc->sc_dev));
2011 if (cmdsts & CMDSTS_Tx_EC)
2012 printf("%s: excessive collisions\n",
2013 device_xname(sc->sc_dev));
2014 }
2015 } else {
2016 /* Packet was transmitted successfully. */
2017 ifp->if_opackets++;
2018 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2019 }
2020 }
2021
2022 /*
2023 * If there are no more pending transmissions, cancel the watchdog
2024 * timer.
2025 */
2026 if (txs == NULL) {
2027 ifp->if_timer = 0;
2028 sc->sc_txwin = 0;
2029 }
2030 }
2031
2032 /*
2033 * gsip_rxintr:
2034 *
2035 * Helper; handle receive interrupts on gigabit parts.
2036 */
2037 static void
2038 gsip_rxintr(struct sip_softc *sc)
2039 {
2040 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2041 struct sip_rxsoft *rxs;
2042 struct mbuf *m;
2043 u_int32_t cmdsts, extsts;
2044 int i, len;
2045
2046 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2047 rxs = &sc->sc_rxsoft[i];
2048
2049 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2050
2051 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2052 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2053 len = CMDSTS_SIZE(sc, cmdsts);
2054
2055 /*
2056 * NOTE: OWN is set if owned by _consumer_. We're the
2057 * consumer of the receive ring, so if the bit is clear,
2058 * we have processed all of the packets.
2059 */
2060 if ((cmdsts & CMDSTS_OWN) == 0) {
2061 /*
2062 * We have processed all of the receive buffers.
2063 */
2064 break;
2065 }
2066
2067 if (__predict_false(sc->sc_rxdiscard)) {
2068 sip_init_rxdesc(sc, i);
2069 if ((cmdsts & CMDSTS_MORE) == 0) {
2070 /* Reset our state. */
2071 sc->sc_rxdiscard = 0;
2072 }
2073 continue;
2074 }
2075
2076 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2077 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2078
2079 m = rxs->rxs_mbuf;
2080
2081 /*
2082 * Add a new receive buffer to the ring.
2083 */
2084 if (sipcom_add_rxbuf(sc, i) != 0) {
2085 /*
2086 * Failed, throw away what we've done so
2087 * far, and discard the rest of the packet.
2088 */
2089 ifp->if_ierrors++;
2090 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2091 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2092 sip_init_rxdesc(sc, i);
2093 if (cmdsts & CMDSTS_MORE)
2094 sc->sc_rxdiscard = 1;
2095 if (sc->sc_rxhead != NULL)
2096 m_freem(sc->sc_rxhead);
2097 sip_rxchain_reset(sc);
2098 continue;
2099 }
2100
2101 sip_rxchain_link(sc, m);
2102
2103 m->m_len = len;
2104
2105 /*
2106 * If this is not the end of the packet, keep
2107 * looking.
2108 */
2109 if (cmdsts & CMDSTS_MORE) {
2110 sc->sc_rxlen += len;
2111 continue;
2112 }
2113
2114 /*
2115 * Okay, we have the entire packet now. The chip includes
2116 * the FCS, so we need to trim it.
2117 */
2118 m->m_len -= ETHER_CRC_LEN;
2119
2120 *sc->sc_rxtailp = NULL;
2121 len = m->m_len + sc->sc_rxlen;
2122 m = sc->sc_rxhead;
2123
2124 sip_rxchain_reset(sc);
2125
2126 /*
2127 * If an error occurred, update stats and drop the packet.
2128 */
2129 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2130 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2131 ifp->if_ierrors++;
2132 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2133 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2134 /* Receive overrun handled elsewhere. */
2135 printf("%s: receive descriptor error\n",
2136 device_xname(sc->sc_dev));
2137 }
2138 #define PRINTERR(bit, str) \
2139 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2140 (cmdsts & (bit)) != 0) \
2141 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2142 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2143 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2144 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2145 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2146 #undef PRINTERR
2147 m_freem(m);
2148 continue;
2149 }
2150
2151 /*
2152 * If the packet is small enough to fit in a
2153 * single header mbuf, allocate one and copy
2154 * the data into it. This greatly reduces
2155 * memory consumption when we receive lots
2156 * of small packets.
2157 */
2158 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2159 struct mbuf *nm;
2160 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2161 if (nm == NULL) {
2162 ifp->if_ierrors++;
2163 m_freem(m);
2164 continue;
2165 }
2166 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2167 nm->m_data += 2;
2168 nm->m_pkthdr.len = nm->m_len = len;
2169 m_copydata(m, 0, len, mtod(nm, void *));
2170 m_freem(m);
2171 m = nm;
2172 }
2173 #ifndef __NO_STRICT_ALIGNMENT
2174 else {
2175 /*
2176 * The DP83820's receive buffers must be 4-byte
2177 * aligned. But this means that the data after
2178 * the Ethernet header is misaligned. To compensate,
2179 * we have artificially shortened the buffer size
2180 * in the descriptor, and we do an overlapping copy
2181 * of the data two bytes further in (in the first
2182 * buffer of the chain only).
2183 */
2184 memmove(mtod(m, char *) + 2, mtod(m, void *),
2185 m->m_len);
2186 m->m_data += 2;
2187 }
2188 #endif /* ! __NO_STRICT_ALIGNMENT */
2189
2190 /*
2191 * If VLANs are enabled, VLAN packets have been unwrapped
2192 * for us. Associate the tag with the packet.
2193 */
2194
2195 /*
2196 * Again, byte swapping is tricky. Hardware provided
2197 * the tag in the network byte order, but extsts was
2198 * passed through le32toh() in the meantime. On a
2199 * big-endian machine, we need to swap it again. On a
2200 * little-endian machine, we need to convert from the
2201 * network to host byte order. This means that we must
2202 * swap it in any case, so unconditional swap instead
2203 * of htons() is used.
2204 */
2205 if ((extsts & EXTSTS_VPKT) != 0) {
2206 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2207 continue);
2208 }
2209
2210 /*
2211 * Set the incoming checksum information for the
2212 * packet.
2213 */
2214 if ((extsts & EXTSTS_IPPKT) != 0) {
2215 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2216 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2217 if (extsts & EXTSTS_Rx_IPERR)
2218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2219 if (extsts & EXTSTS_TCPPKT) {
2220 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2221 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2222 if (extsts & EXTSTS_Rx_TCPERR)
2223 m->m_pkthdr.csum_flags |=
2224 M_CSUM_TCP_UDP_BAD;
2225 } else if (extsts & EXTSTS_UDPPKT) {
2226 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2227 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2228 if (extsts & EXTSTS_Rx_UDPERR)
2229 m->m_pkthdr.csum_flags |=
2230 M_CSUM_TCP_UDP_BAD;
2231 }
2232 }
2233
2234 ifp->if_ipackets++;
2235 m_set_rcvif(m, ifp);
2236 m->m_pkthdr.len = len;
2237
2238 /*
2239 * Pass this up to any BPF listeners, but only
2240 * pass if up the stack if it's for us.
2241 */
2242 bpf_mtap(ifp, m);
2243
2244 /* Pass it on. */
2245 if_percpuq_enqueue(ifp->if_percpuq, m);
2246 }
2247
2248 /* Update the receive pointer. */
2249 sc->sc_rxptr = i;
2250 }
2251
2252 /*
2253 * sip_rxintr:
2254 *
2255 * Helper; handle receive interrupts on 10/100 parts.
2256 */
2257 static void
2258 sip_rxintr(struct sip_softc *sc)
2259 {
2260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261 struct sip_rxsoft *rxs;
2262 struct mbuf *m;
2263 u_int32_t cmdsts;
2264 int i, len;
2265
2266 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2267 rxs = &sc->sc_rxsoft[i];
2268
2269 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2270
2271 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2272
2273 /*
2274 * NOTE: OWN is set if owned by _consumer_. We're the
2275 * consumer of the receive ring, so if the bit is clear,
2276 * we have processed all of the packets.
2277 */
2278 if ((cmdsts & CMDSTS_OWN) == 0) {
2279 /*
2280 * We have processed all of the receive buffers.
2281 */
2282 break;
2283 }
2284
2285 /*
2286 * If any collisions were seen on the wire, count one.
2287 */
2288 if (cmdsts & CMDSTS_Rx_COL)
2289 ifp->if_collisions++;
2290
2291 /*
2292 * If an error occurred, update stats, clear the status
2293 * word, and leave the packet buffer in place. It will
2294 * simply be reused the next time the ring comes around.
2295 */
2296 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2297 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2298 ifp->if_ierrors++;
2299 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2300 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2301 /* Receive overrun handled elsewhere. */
2302 printf("%s: receive descriptor error\n",
2303 device_xname(sc->sc_dev));
2304 }
2305 #define PRINTERR(bit, str) \
2306 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2307 (cmdsts & (bit)) != 0) \
2308 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2309 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2310 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2311 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2312 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2313 #undef PRINTERR
2314 sip_init_rxdesc(sc, i);
2315 continue;
2316 }
2317
2318 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2319 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320
2321 /*
2322 * No errors; receive the packet. Note, the SiS 900
2323 * includes the CRC with every packet.
2324 */
2325 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2326
2327 #ifdef __NO_STRICT_ALIGNMENT
2328 /*
2329 * If the packet is small enough to fit in a
2330 * single header mbuf, allocate one and copy
2331 * the data into it. This greatly reduces
2332 * memory consumption when we receive lots
2333 * of small packets.
2334 *
2335 * Otherwise, we add a new buffer to the receive
2336 * chain. If this fails, we drop the packet and
2337 * recycle the old buffer.
2338 */
2339 if (sip_copy_small != 0 && len <= MHLEN) {
2340 MGETHDR(m, M_DONTWAIT, MT_DATA);
2341 if (m == NULL)
2342 goto dropit;
2343 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2344 memcpy(mtod(m, void *),
2345 mtod(rxs->rxs_mbuf, void *), len);
2346 sip_init_rxdesc(sc, i);
2347 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2348 rxs->rxs_dmamap->dm_mapsize,
2349 BUS_DMASYNC_PREREAD);
2350 } else {
2351 m = rxs->rxs_mbuf;
2352 if (sipcom_add_rxbuf(sc, i) != 0) {
2353 dropit:
2354 ifp->if_ierrors++;
2355 sip_init_rxdesc(sc, i);
2356 bus_dmamap_sync(sc->sc_dmat,
2357 rxs->rxs_dmamap, 0,
2358 rxs->rxs_dmamap->dm_mapsize,
2359 BUS_DMASYNC_PREREAD);
2360 continue;
2361 }
2362 }
2363 #else
2364 /*
2365 * The SiS 900's receive buffers must be 4-byte aligned.
2366 * But this means that the data after the Ethernet header
2367 * is misaligned. We must allocate a new buffer and
2368 * copy the data, shifted forward 2 bytes.
2369 */
2370 MGETHDR(m, M_DONTWAIT, MT_DATA);
2371 if (m == NULL) {
2372 dropit:
2373 ifp->if_ierrors++;
2374 sip_init_rxdesc(sc, i);
2375 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2376 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2377 continue;
2378 }
2379 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2380 if (len > (MHLEN - 2)) {
2381 MCLGET(m, M_DONTWAIT);
2382 if ((m->m_flags & M_EXT) == 0) {
2383 m_freem(m);
2384 goto dropit;
2385 }
2386 }
2387 m->m_data += 2;
2388
2389 /*
2390 * Note that we use clusters for incoming frames, so the
2391 * buffer is virtually contiguous.
2392 */
2393 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2394
2395 /* Allow the receive descriptor to continue using its mbuf. */
2396 sip_init_rxdesc(sc, i);
2397 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2398 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2399 #endif /* __NO_STRICT_ALIGNMENT */
2400
2401 ifp->if_ipackets++;
2402 m_set_rcvif(m, ifp);
2403 m->m_pkthdr.len = m->m_len = len;
2404
2405 /*
2406 * Pass this up to any BPF listeners, but only
2407 * pass if up the stack if it's for us.
2408 */
2409 bpf_mtap(ifp, m);
2410
2411 /* Pass it on. */
2412 if_percpuq_enqueue(ifp->if_percpuq, m);
2413 }
2414
2415 /* Update the receive pointer. */
2416 sc->sc_rxptr = i;
2417 }
2418
2419 /*
2420 * sip_tick:
2421 *
2422 * One second timer, used to tick the MII.
2423 */
2424 static void
2425 sipcom_tick(void *arg)
2426 {
2427 struct sip_softc *sc = arg;
2428 int s;
2429
2430 s = splnet();
2431 #ifdef SIP_EVENT_COUNTERS
2432 if (sc->sc_gigabit) {
2433 /* Read PAUSE related counts from MIB registers. */
2434 sc->sc_ev_rxpause.ev_count +=
2435 bus_space_read_4(sc->sc_st, sc->sc_sh,
2436 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2437 sc->sc_ev_txpause.ev_count +=
2438 bus_space_read_4(sc->sc_st, sc->sc_sh,
2439 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2440 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2441 }
2442 #endif /* SIP_EVENT_COUNTERS */
2443 mii_tick(&sc->sc_mii);
2444 splx(s);
2445
2446 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2447 }
2448
2449 /*
2450 * sip_reset:
2451 *
2452 * Perform a soft reset on the SiS 900.
2453 */
2454 static bool
2455 sipcom_reset(struct sip_softc *sc)
2456 {
2457 bus_space_tag_t st = sc->sc_st;
2458 bus_space_handle_t sh = sc->sc_sh;
2459 int i;
2460
2461 bus_space_write_4(st, sh, SIP_IER, 0);
2462 bus_space_write_4(st, sh, SIP_IMR, 0);
2463 bus_space_write_4(st, sh, SIP_RFCR, 0);
2464 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2465
2466 for (i = 0; i < SIP_TIMEOUT; i++) {
2467 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2468 break;
2469 delay(2);
2470 }
2471
2472 if (i == SIP_TIMEOUT) {
2473 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2474 return false;
2475 }
2476
2477 delay(1000);
2478
2479 if (sc->sc_gigabit) {
2480 /*
2481 * Set the general purpose I/O bits. Do it here in case we
2482 * need to have GPIO set up to talk to the media interface.
2483 */
2484 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2485 delay(1000);
2486 }
2487 return true;
2488 }
2489
2490 static void
2491 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2492 {
2493 u_int32_t reg;
2494 bus_space_tag_t st = sc->sc_st;
2495 bus_space_handle_t sh = sc->sc_sh;
2496 /*
2497 * Initialize the VLAN/IP receive control register.
2498 * We enable checksum computation on all incoming
2499 * packets, and do not reject packets w/ bad checksums.
2500 */
2501 reg = 0;
2502 if (capenable &
2503 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2504 reg |= VRCR_IPEN;
2505 if (VLAN_ATTACHED(&sc->sc_ethercom))
2506 reg |= VRCR_VTDEN|VRCR_VTREN;
2507 bus_space_write_4(st, sh, SIP_VRCR, reg);
2508
2509 /*
2510 * Initialize the VLAN/IP transmit control register.
2511 * We enable outgoing checksum computation on a
2512 * per-packet basis.
2513 */
2514 reg = 0;
2515 if (capenable &
2516 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2517 reg |= VTCR_PPCHK;
2518 if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 reg |= VTCR_VPPTI;
2520 bus_space_write_4(st, sh, SIP_VTCR, reg);
2521
2522 /*
2523 * If we're using VLANs, initialize the VLAN data register.
2524 * To understand why we bswap the VLAN Ethertype, see section
2525 * 4.2.36 of the DP83820 manual.
2526 */
2527 if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2529 }
2530
2531 /*
2532 * sip_init: [ ifnet interface function ]
2533 *
2534 * Initialize the interface. Must be called at splnet().
2535 */
2536 static int
2537 sipcom_init(struct ifnet *ifp)
2538 {
2539 struct sip_softc *sc = ifp->if_softc;
2540 bus_space_tag_t st = sc->sc_st;
2541 bus_space_handle_t sh = sc->sc_sh;
2542 struct sip_txsoft *txs;
2543 struct sip_rxsoft *rxs;
2544 struct sip_desc *sipd;
2545 int i, error = 0;
2546
2547 if (device_is_active(sc->sc_dev)) {
2548 /*
2549 * Cancel any pending I/O.
2550 */
2551 sipcom_stop(ifp, 0);
2552 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2553 !device_is_active(sc->sc_dev))
2554 return 0;
2555
2556 /*
2557 * Reset the chip to a known state.
2558 */
2559 if (!sipcom_reset(sc))
2560 return EBUSY;
2561
2562 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2563 /*
2564 * DP83815 manual, page 78:
2565 * 4.4 Recommended Registers Configuration
2566 * For optimum performance of the DP83815, version noted
2567 * as DP83815CVNG (SRR = 203h), the listed register
2568 * modifications must be followed in sequence...
2569 *
2570 * It's not clear if this should be 302h or 203h because that
2571 * chip name is listed as SRR 302h in the description of the
2572 * SRR register. However, my revision 302h DP83815 on the
2573 * Netgear FA311 purchased in 02/2001 needs these settings
2574 * to avoid tons of errors in AcceptPerfectMatch (non-
2575 * IFF_PROMISC) mode. I do not know if other revisions need
2576 * this set or not. [briggs -- 09 March 2001]
2577 *
2578 * Note that only the low-order 12 bits of 0xe4 are documented
2579 * and that this sets reserved bits in that register.
2580 */
2581 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2582
2583 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2584 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2585 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2586 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2587
2588 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2589 }
2590
2591 /*
2592 * Initialize the transmit descriptor ring.
2593 */
2594 for (i = 0; i < sc->sc_ntxdesc; i++) {
2595 sipd = &sc->sc_txdescs[i];
2596 memset(sipd, 0, sizeof(struct sip_desc));
2597 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2598 }
2599 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2600 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2601 sc->sc_txfree = sc->sc_ntxdesc;
2602 sc->sc_txnext = 0;
2603 sc->sc_txwin = 0;
2604
2605 /*
2606 * Initialize the transmit job descriptors.
2607 */
2608 SIMPLEQ_INIT(&sc->sc_txfreeq);
2609 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2610 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2611 txs = &sc->sc_txsoft[i];
2612 txs->txs_mbuf = NULL;
2613 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2614 }
2615
2616 /*
2617 * Initialize the receive descriptor and receive job
2618 * descriptor rings.
2619 */
2620 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2621 rxs = &sc->sc_rxsoft[i];
2622 if (rxs->rxs_mbuf == NULL) {
2623 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2624 printf("%s: unable to allocate or map rx "
2625 "buffer %d, error = %d\n",
2626 device_xname(sc->sc_dev), i, error);
2627 /*
2628 * XXX Should attempt to run with fewer receive
2629 * XXX buffers instead of just failing.
2630 */
2631 sipcom_rxdrain(sc);
2632 goto out;
2633 }
2634 } else
2635 sip_init_rxdesc(sc, i);
2636 }
2637 sc->sc_rxptr = 0;
2638 sc->sc_rxdiscard = 0;
2639 sip_rxchain_reset(sc);
2640
2641 /*
2642 * Set the configuration register; it's already initialized
2643 * in sip_attach().
2644 */
2645 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2646
2647 /*
2648 * Initialize the prototype TXCFG register.
2649 */
2650 if (sc->sc_gigabit) {
2651 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2652 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2653 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2654 SIP_SIS900_REV(sc, SIS_REV_960) ||
2655 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2656 (sc->sc_cfg & CFG_EDBMASTEN)) {
2657 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2658 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2659 } else {
2660 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2661 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2662 }
2663
2664 sc->sc_txcfg |= TXCFG_ATP |
2665 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2666 sc->sc_tx_drain_thresh;
2667 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2668
2669 /*
2670 * Initialize the receive drain threshold if we have never
2671 * done so.
2672 */
2673 if (sc->sc_rx_drain_thresh == 0) {
2674 /*
2675 * XXX This value should be tuned. This is set to the
2676 * maximum of 248 bytes, and we may be able to improve
2677 * performance by decreasing it (although we should never
2678 * set this value lower than 2; 14 bytes are required to
2679 * filter the packet).
2680 */
2681 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2682 }
2683
2684 /*
2685 * Initialize the prototype RXCFG register.
2686 */
2687 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2688 /*
2689 * Accept long packets (including FCS) so we can handle
2690 * 802.1q-tagged frames and jumbo frames properly.
2691 */
2692 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2693 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2694 sc->sc_rxcfg |= RXCFG_ALP;
2695
2696 /*
2697 * Checksum offloading is disabled if the user selects an MTU
2698 * larger than 8109. (FreeBSD says 8152, but there is emperical
2699 * evidence that >8109 does not work on some boards, such as the
2700 * Planex GN-1000TE).
2701 */
2702 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2703 (ifp->if_capenable &
2704 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2705 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2706 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2707 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2708 "disabled.\n", device_xname(sc->sc_dev));
2709 ifp->if_capenable &=
2710 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2711 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2712 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2713 ifp->if_csum_flags_tx = 0;
2714 ifp->if_csum_flags_rx = 0;
2715 }
2716
2717 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2718
2719 if (sc->sc_gigabit)
2720 sipcom_dp83820_init(sc, ifp->if_capenable);
2721
2722 /*
2723 * Give the transmit and receive rings to the chip.
2724 */
2725 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2726 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2727
2728 /*
2729 * Initialize the interrupt mask.
2730 */
2731 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2732 sc->sc_bits.b_isr_sserr |
2733 sc->sc_bits.b_isr_rmabt |
2734 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2735 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2736 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2737
2738 /* Set up the receive filter. */
2739 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2740
2741 /*
2742 * Tune sc_rx_flow_thresh.
2743 * XXX "More than 8KB" is too short for jumbo frames.
2744 * XXX TODO: Threshold value should be user-settable.
2745 */
2746 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2747 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2748 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2749
2750 /*
2751 * Set the current media. Do this after initializing the prototype
2752 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2753 * control.
2754 */
2755 if ((error = ether_mediachange(ifp)) != 0)
2756 goto out;
2757
2758 /*
2759 * Set the interrupt hold-off timer to 100us.
2760 */
2761 if (sc->sc_gigabit)
2762 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2763
2764 /*
2765 * Enable interrupts.
2766 */
2767 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2768
2769 /*
2770 * Start the transmit and receive processes.
2771 */
2772 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2773
2774 /*
2775 * Start the one second MII clock.
2776 */
2777 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2778
2779 /*
2780 * ...all done!
2781 */
2782 ifp->if_flags |= IFF_RUNNING;
2783 ifp->if_flags &= ~IFF_OACTIVE;
2784 sc->sc_if_flags = ifp->if_flags;
2785 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2786 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2787 sc->sc_prev.if_capenable = ifp->if_capenable;
2788
2789 out:
2790 if (error)
2791 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2792 return (error);
2793 }
2794
2795 /*
2796 * sip_drain:
2797 *
2798 * Drain the receive queue.
2799 */
2800 static void
2801 sipcom_rxdrain(struct sip_softc *sc)
2802 {
2803 struct sip_rxsoft *rxs;
2804 int i;
2805
2806 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2807 rxs = &sc->sc_rxsoft[i];
2808 if (rxs->rxs_mbuf != NULL) {
2809 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2810 m_freem(rxs->rxs_mbuf);
2811 rxs->rxs_mbuf = NULL;
2812 }
2813 }
2814 }
2815
2816 /*
2817 * sip_stop: [ ifnet interface function ]
2818 *
2819 * Stop transmission on the interface.
2820 */
2821 static void
2822 sipcom_stop(struct ifnet *ifp, int disable)
2823 {
2824 struct sip_softc *sc = ifp->if_softc;
2825 bus_space_tag_t st = sc->sc_st;
2826 bus_space_handle_t sh = sc->sc_sh;
2827 struct sip_txsoft *txs;
2828 u_int32_t cmdsts = 0; /* DEBUG */
2829
2830 /*
2831 * Stop the one second clock.
2832 */
2833 callout_stop(&sc->sc_tick_ch);
2834
2835 /* Down the MII. */
2836 mii_down(&sc->sc_mii);
2837
2838 if (device_is_active(sc->sc_dev)) {
2839 /*
2840 * Disable interrupts.
2841 */
2842 bus_space_write_4(st, sh, SIP_IER, 0);
2843
2844 /*
2845 * Stop receiver and transmitter.
2846 */
2847 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2848 }
2849
2850 /*
2851 * Release any queued transmit buffers.
2852 */
2853 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2854 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2855 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2856 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2857 CMDSTS_INTR) == 0)
2858 printf("%s: sip_stop: last descriptor does not "
2859 "have INTR bit set\n", device_xname(sc->sc_dev));
2860 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2861 #ifdef DIAGNOSTIC
2862 if (txs->txs_mbuf == NULL) {
2863 printf("%s: dirty txsoft with no mbuf chain\n",
2864 device_xname(sc->sc_dev));
2865 panic("sip_stop");
2866 }
2867 #endif
2868 cmdsts |= /* DEBUG */
2869 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2870 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2871 m_freem(txs->txs_mbuf);
2872 txs->txs_mbuf = NULL;
2873 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2874 }
2875
2876 /*
2877 * Mark the interface down and cancel the watchdog timer.
2878 */
2879 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2880 ifp->if_timer = 0;
2881
2882 if (disable)
2883 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2884
2885 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2886 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2887 printf("%s: sip_stop: no INTR bits set in dirty tx "
2888 "descriptors\n", device_xname(sc->sc_dev));
2889 }
2890
2891 /*
2892 * sip_read_eeprom:
2893 *
2894 * Read data from the serial EEPROM.
2895 */
2896 static void
2897 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2898 u_int16_t *data)
2899 {
2900 bus_space_tag_t st = sc->sc_st;
2901 bus_space_handle_t sh = sc->sc_sh;
2902 u_int16_t reg;
2903 int i, x;
2904
2905 for (i = 0; i < wordcnt; i++) {
2906 /* Send CHIP SELECT. */
2907 reg = EROMAR_EECS;
2908 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2909
2910 /* Shift in the READ opcode. */
2911 for (x = 3; x > 0; x--) {
2912 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2913 reg |= EROMAR_EEDI;
2914 else
2915 reg &= ~EROMAR_EEDI;
2916 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 bus_space_write_4(st, sh, SIP_EROMAR,
2918 reg | EROMAR_EESK);
2919 delay(4);
2920 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 delay(4);
2922 }
2923
2924 /* Shift in address. */
2925 for (x = 6; x > 0; x--) {
2926 if ((word + i) & (1 << (x - 1)))
2927 reg |= EROMAR_EEDI;
2928 else
2929 reg &= ~EROMAR_EEDI;
2930 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 bus_space_write_4(st, sh, SIP_EROMAR,
2932 reg | EROMAR_EESK);
2933 delay(4);
2934 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 delay(4);
2936 }
2937
2938 /* Shift out data. */
2939 reg = EROMAR_EECS;
2940 data[i] = 0;
2941 for (x = 16; x > 0; x--) {
2942 bus_space_write_4(st, sh, SIP_EROMAR,
2943 reg | EROMAR_EESK);
2944 delay(4);
2945 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2946 data[i] |= (1 << (x - 1));
2947 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2948 delay(4);
2949 }
2950
2951 /* Clear CHIP SELECT. */
2952 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2953 delay(4);
2954 }
2955 }
2956
2957 /*
2958 * sipcom_add_rxbuf:
2959 *
2960 * Add a receive buffer to the indicated descriptor.
2961 */
2962 static int
2963 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2964 {
2965 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2966 struct mbuf *m;
2967 int error;
2968
2969 MGETHDR(m, M_DONTWAIT, MT_DATA);
2970 if (m == NULL)
2971 return (ENOBUFS);
2972 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2973
2974 MCLGET(m, M_DONTWAIT);
2975 if ((m->m_flags & M_EXT) == 0) {
2976 m_freem(m);
2977 return (ENOBUFS);
2978 }
2979
2980 /* XXX I don't believe this is necessary. --dyoung */
2981 if (sc->sc_gigabit)
2982 m->m_len = sc->sc_parm->p_rxbuf_len;
2983
2984 if (rxs->rxs_mbuf != NULL)
2985 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2986
2987 rxs->rxs_mbuf = m;
2988
2989 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2990 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2991 BUS_DMA_READ|BUS_DMA_NOWAIT);
2992 if (error) {
2993 printf("%s: can't load rx DMA map %d, error = %d\n",
2994 device_xname(sc->sc_dev), idx, error);
2995 panic("%s", __func__); /* XXX */
2996 }
2997
2998 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2999 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3000
3001 sip_init_rxdesc(sc, idx);
3002
3003 return (0);
3004 }
3005
3006 /*
3007 * sip_sis900_set_filter:
3008 *
3009 * Set up the receive filter.
3010 */
3011 static void
3012 sipcom_sis900_set_filter(struct sip_softc *sc)
3013 {
3014 bus_space_tag_t st = sc->sc_st;
3015 bus_space_handle_t sh = sc->sc_sh;
3016 struct ethercom *ec = &sc->sc_ethercom;
3017 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3018 struct ether_multi *enm;
3019 const u_int8_t *cp;
3020 struct ether_multistep step;
3021 u_int32_t crc, mchash[16];
3022
3023 /*
3024 * Initialize the prototype RFCR.
3025 */
3026 sc->sc_rfcr = RFCR_RFEN;
3027 if (ifp->if_flags & IFF_BROADCAST)
3028 sc->sc_rfcr |= RFCR_AAB;
3029 if (ifp->if_flags & IFF_PROMISC) {
3030 sc->sc_rfcr |= RFCR_AAP;
3031 goto allmulti;
3032 }
3033
3034 /*
3035 * Set up the multicast address filter by passing all multicast
3036 * addresses through a CRC generator, and then using the high-order
3037 * 6 bits as an index into the 128 bit multicast hash table (only
3038 * the lower 16 bits of each 32 bit multicast hash register are
3039 * valid). The high order bits select the register, while the
3040 * rest of the bits select the bit within the register.
3041 */
3042
3043 memset(mchash, 0, sizeof(mchash));
3044
3045 /*
3046 * SiS900 (at least SiS963) requires us to register the address of
3047 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3048 */
3049 crc = 0x0ed423f9;
3050
3051 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3052 SIP_SIS900_REV(sc, SIS_REV_960) ||
3053 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3054 /* Just want the 8 most significant bits. */
3055 crc >>= 24;
3056 } else {
3057 /* Just want the 7 most significant bits. */
3058 crc >>= 25;
3059 }
3060
3061 /* Set the corresponding bit in the hash table. */
3062 mchash[crc >> 4] |= 1 << (crc & 0xf);
3063
3064 ETHER_FIRST_MULTI(step, ec, enm);
3065 while (enm != NULL) {
3066 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3067 /*
3068 * We must listen to a range of multicast addresses.
3069 * For now, just accept all multicasts, rather than
3070 * trying to set only those filter bits needed to match
3071 * the range. (At this time, the only use of address
3072 * ranges is for IP multicast routing, for which the
3073 * range is big enough to require all bits set.)
3074 */
3075 goto allmulti;
3076 }
3077
3078 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3079
3080 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3081 SIP_SIS900_REV(sc, SIS_REV_960) ||
3082 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3083 /* Just want the 8 most significant bits. */
3084 crc >>= 24;
3085 } else {
3086 /* Just want the 7 most significant bits. */
3087 crc >>= 25;
3088 }
3089
3090 /* Set the corresponding bit in the hash table. */
3091 mchash[crc >> 4] |= 1 << (crc & 0xf);
3092
3093 ETHER_NEXT_MULTI(step, enm);
3094 }
3095
3096 ifp->if_flags &= ~IFF_ALLMULTI;
3097 goto setit;
3098
3099 allmulti:
3100 ifp->if_flags |= IFF_ALLMULTI;
3101 sc->sc_rfcr |= RFCR_AAM;
3102
3103 setit:
3104 #define FILTER_EMIT(addr, data) \
3105 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3106 delay(1); \
3107 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3108 delay(1)
3109
3110 /*
3111 * Disable receive filter, and program the node address.
3112 */
3113 cp = CLLADDR(ifp->if_sadl);
3114 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3115 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3116 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3117
3118 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3119 /*
3120 * Program the multicast hash table.
3121 */
3122 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3123 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3124 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3125 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3126 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3127 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3128 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3129 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3130 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3131 SIP_SIS900_REV(sc, SIS_REV_960) ||
3132 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3133 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3134 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3135 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3136 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3137 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3138 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3139 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3140 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3141 }
3142 }
3143 #undef FILTER_EMIT
3144
3145 /*
3146 * Re-enable the receiver filter.
3147 */
3148 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3149 }
3150
3151 /*
3152 * sip_dp83815_set_filter:
3153 *
3154 * Set up the receive filter.
3155 */
3156 static void
3157 sipcom_dp83815_set_filter(struct sip_softc *sc)
3158 {
3159 bus_space_tag_t st = sc->sc_st;
3160 bus_space_handle_t sh = sc->sc_sh;
3161 struct ethercom *ec = &sc->sc_ethercom;
3162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3163 struct ether_multi *enm;
3164 const u_int8_t *cp;
3165 struct ether_multistep step;
3166 u_int32_t crc, hash, slot, bit;
3167 #define MCHASH_NWORDS_83820 128
3168 #define MCHASH_NWORDS_83815 32
3169 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3170 u_int16_t mchash[MCHASH_NWORDS];
3171 int i;
3172
3173 /*
3174 * Initialize the prototype RFCR.
3175 * Enable the receive filter, and accept on
3176 * Perfect (destination address) Match
3177 * If IFF_BROADCAST, also accept all broadcast packets.
3178 * If IFF_PROMISC, accept all unicast packets (and later, set
3179 * IFF_ALLMULTI and accept all multicast, too).
3180 */
3181 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3182 if (ifp->if_flags & IFF_BROADCAST)
3183 sc->sc_rfcr |= RFCR_AAB;
3184 if (ifp->if_flags & IFF_PROMISC) {
3185 sc->sc_rfcr |= RFCR_AAP;
3186 goto allmulti;
3187 }
3188
3189 /*
3190 * Set up the DP83820/DP83815 multicast address filter by
3191 * passing all multicast addresses through a CRC generator,
3192 * and then using the high-order 11/9 bits as an index into
3193 * the 2048/512 bit multicast hash table. The high-order
3194 * 7/5 bits select the slot, while the low-order 4 bits
3195 * select the bit within the slot. Note that only the low
3196 * 16-bits of each filter word are used, and there are
3197 * 128/32 filter words.
3198 */
3199
3200 memset(mchash, 0, sizeof(mchash));
3201
3202 ifp->if_flags &= ~IFF_ALLMULTI;
3203 ETHER_FIRST_MULTI(step, ec, enm);
3204 if (enm == NULL)
3205 goto setit;
3206 while (enm != NULL) {
3207 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3208 /*
3209 * We must listen to a range of multicast addresses.
3210 * For now, just accept all multicasts, rather than
3211 * trying to set only those filter bits needed to match
3212 * the range. (At this time, the only use of address
3213 * ranges is for IP multicast routing, for which the
3214 * range is big enough to require all bits set.)
3215 */
3216 goto allmulti;
3217 }
3218
3219 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3220
3221 if (sc->sc_gigabit) {
3222 /* Just want the 11 most significant bits. */
3223 hash = crc >> 21;
3224 } else {
3225 /* Just want the 9 most significant bits. */
3226 hash = crc >> 23;
3227 }
3228
3229 slot = hash >> 4;
3230 bit = hash & 0xf;
3231
3232 /* Set the corresponding bit in the hash table. */
3233 mchash[slot] |= 1 << bit;
3234
3235 ETHER_NEXT_MULTI(step, enm);
3236 }
3237 sc->sc_rfcr |= RFCR_MHEN;
3238 goto setit;
3239
3240 allmulti:
3241 ifp->if_flags |= IFF_ALLMULTI;
3242 sc->sc_rfcr |= RFCR_AAM;
3243
3244 setit:
3245 #define FILTER_EMIT(addr, data) \
3246 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3247 delay(1); \
3248 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3249 delay(1)
3250
3251 /*
3252 * Disable receive filter, and program the node address.
3253 */
3254 cp = CLLADDR(ifp->if_sadl);
3255 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3256 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3257 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3258
3259 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3260 int nwords =
3261 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3262 /*
3263 * Program the multicast hash table.
3264 */
3265 for (i = 0; i < nwords; i++) {
3266 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3267 }
3268 }
3269 #undef FILTER_EMIT
3270 #undef MCHASH_NWORDS
3271 #undef MCHASH_NWORDS_83815
3272 #undef MCHASH_NWORDS_83820
3273
3274 /*
3275 * Re-enable the receiver filter.
3276 */
3277 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3278 }
3279
3280 /*
3281 * sip_dp83820_mii_readreg: [mii interface function]
3282 *
3283 * Read a PHY register on the MII of the DP83820.
3284 */
3285 static int
3286 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3287 {
3288 struct sip_softc *sc = device_private(self);
3289
3290 if (sc->sc_cfg & CFG_TBI_EN) {
3291 bus_addr_t tbireg;
3292 int rv;
3293
3294 if (phy != 0)
3295 return (0);
3296
3297 switch (reg) {
3298 case MII_BMCR: tbireg = SIP_TBICR; break;
3299 case MII_BMSR: tbireg = SIP_TBISR; break;
3300 case MII_ANAR: tbireg = SIP_TANAR; break;
3301 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3302 case MII_ANER: tbireg = SIP_TANER; break;
3303 case MII_EXTSR:
3304 /*
3305 * Don't even bother reading the TESR register.
3306 * The manual documents that the device has
3307 * 1000baseX full/half capability, but the
3308 * register itself seems read back 0 on some
3309 * boards. Just hard-code the result.
3310 */
3311 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3312
3313 default:
3314 return (0);
3315 }
3316
3317 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3318 if (tbireg == SIP_TBISR) {
3319 /* LINK and ACOMP are switched! */
3320 int val = rv;
3321
3322 rv = 0;
3323 if (val & TBISR_MR_LINK_STATUS)
3324 rv |= BMSR_LINK;
3325 if (val & TBISR_MR_AN_COMPLETE)
3326 rv |= BMSR_ACOMP;
3327
3328 /*
3329 * The manual claims this register reads back 0
3330 * on hard and soft reset. But we want to let
3331 * the gentbi driver know that we support auto-
3332 * negotiation, so hard-code this bit in the
3333 * result.
3334 */
3335 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3336 }
3337
3338 return (rv);
3339 }
3340
3341 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3342 }
3343
3344 /*
3345 * sip_dp83820_mii_writereg: [mii interface function]
3346 *
3347 * Write a PHY register on the MII of the DP83820.
3348 */
3349 static void
3350 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3351 {
3352 struct sip_softc *sc = device_private(self);
3353
3354 if (sc->sc_cfg & CFG_TBI_EN) {
3355 bus_addr_t tbireg;
3356
3357 if (phy != 0)
3358 return;
3359
3360 switch (reg) {
3361 case MII_BMCR: tbireg = SIP_TBICR; break;
3362 case MII_ANAR: tbireg = SIP_TANAR; break;
3363 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3364 default:
3365 return;
3366 }
3367
3368 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3369 return;
3370 }
3371
3372 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3373 }
3374
3375 /*
3376 * sip_dp83820_mii_statchg: [mii interface function]
3377 *
3378 * Callback from MII layer when media changes.
3379 */
3380 static void
3381 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3382 {
3383 struct sip_softc *sc = ifp->if_softc;
3384 struct mii_data *mii = &sc->sc_mii;
3385 u_int32_t cfg, pcr;
3386
3387 /*
3388 * Get flow control negotiation result.
3389 */
3390 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3391 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3392 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3393 mii->mii_media_active &= ~IFM_ETH_FMASK;
3394 }
3395
3396 /*
3397 * Update TXCFG for full-duplex operation.
3398 */
3399 if ((mii->mii_media_active & IFM_FDX) != 0)
3400 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3401 else
3402 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3403
3404 /*
3405 * Update RXCFG for full-duplex or loopback.
3406 */
3407 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3408 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3409 sc->sc_rxcfg |= RXCFG_ATX;
3410 else
3411 sc->sc_rxcfg &= ~RXCFG_ATX;
3412
3413 /*
3414 * Update CFG for MII/GMII.
3415 */
3416 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3417 cfg = sc->sc_cfg | CFG_MODE_1000;
3418 else
3419 cfg = sc->sc_cfg;
3420
3421 /*
3422 * 802.3x flow control.
3423 */
3424 pcr = 0;
3425 if (sc->sc_flowflags & IFM_FLOW) {
3426 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3427 pcr |= sc->sc_rx_flow_thresh;
3428 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3429 pcr |= PCR_PSEN | PCR_PS_MCAST;
3430 }
3431
3432 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3433 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3434 sc->sc_txcfg);
3435 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3436 sc->sc_rxcfg);
3437 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3438 }
3439
3440 /*
3441 * sip_mii_bitbang_read: [mii bit-bang interface function]
3442 *
3443 * Read the MII serial port for the MII bit-bang module.
3444 */
3445 static u_int32_t
3446 sipcom_mii_bitbang_read(device_t self)
3447 {
3448 struct sip_softc *sc = device_private(self);
3449
3450 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3451 }
3452
3453 /*
3454 * sip_mii_bitbang_write: [mii big-bang interface function]
3455 *
3456 * Write the MII serial port for the MII bit-bang module.
3457 */
3458 static void
3459 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3460 {
3461 struct sip_softc *sc = device_private(self);
3462
3463 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3464 }
3465
3466 /*
3467 * sip_sis900_mii_readreg: [mii interface function]
3468 *
3469 * Read a PHY register on the MII.
3470 */
3471 static int
3472 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3473 {
3474 struct sip_softc *sc = device_private(self);
3475 u_int32_t enphy;
3476
3477 /*
3478 * The PHY of recent SiS chipsets is accessed through bitbang
3479 * operations.
3480 */
3481 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3482 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3483 phy, reg);
3484
3485 #ifndef SIS900_MII_RESTRICT
3486 /*
3487 * The SiS 900 has only an internal PHY on the MII. Only allow
3488 * MII address 0.
3489 */
3490 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3491 return (0);
3492 #endif
3493
3494 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3495 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3496 ENPHY_RWCMD | ENPHY_ACCESS);
3497 do {
3498 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3499 } while (enphy & ENPHY_ACCESS);
3500 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3501 }
3502
3503 /*
3504 * sip_sis900_mii_writereg: [mii interface function]
3505 *
3506 * Write a PHY register on the MII.
3507 */
3508 static void
3509 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3510 {
3511 struct sip_softc *sc = device_private(self);
3512 u_int32_t enphy;
3513
3514 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3515 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3516 phy, reg, val);
3517 return;
3518 }
3519
3520 #ifndef SIS900_MII_RESTRICT
3521 /*
3522 * The SiS 900 has only an internal PHY on the MII. Only allow
3523 * MII address 0.
3524 */
3525 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3526 return;
3527 #endif
3528
3529 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3530 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3531 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3532 do {
3533 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3534 } while (enphy & ENPHY_ACCESS);
3535 }
3536
3537 /*
3538 * sip_sis900_mii_statchg: [mii interface function]
3539 *
3540 * Callback from MII layer when media changes.
3541 */
3542 static void
3543 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3544 {
3545 struct sip_softc *sc = ifp->if_softc;
3546 struct mii_data *mii = &sc->sc_mii;
3547 u_int32_t flowctl;
3548
3549 /*
3550 * Get flow control negotiation result.
3551 */
3552 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3553 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3554 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3555 mii->mii_media_active &= ~IFM_ETH_FMASK;
3556 }
3557
3558 /*
3559 * Update TXCFG for full-duplex operation.
3560 */
3561 if ((mii->mii_media_active & IFM_FDX) != 0)
3562 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3563 else
3564 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3565
3566 /*
3567 * Update RXCFG for full-duplex or loopback.
3568 */
3569 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3570 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3571 sc->sc_rxcfg |= RXCFG_ATX;
3572 else
3573 sc->sc_rxcfg &= ~RXCFG_ATX;
3574
3575 /*
3576 * Update IMR for use of 802.3x flow control.
3577 */
3578 if (sc->sc_flowflags & IFM_FLOW) {
3579 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3580 flowctl = FLOWCTL_FLOWEN;
3581 } else {
3582 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3583 flowctl = 0;
3584 }
3585
3586 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3587 sc->sc_txcfg);
3588 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3589 sc->sc_rxcfg);
3590 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3591 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3592 }
3593
3594 /*
3595 * sip_dp83815_mii_readreg: [mii interface function]
3596 *
3597 * Read a PHY register on the MII.
3598 */
3599 static int
3600 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3601 {
3602 struct sip_softc *sc = device_private(self);
3603 u_int32_t val;
3604
3605 /*
3606 * The DP83815 only has an internal PHY. Only allow
3607 * MII address 0.
3608 */
3609 if (phy != 0)
3610 return (0);
3611
3612 /*
3613 * Apparently, after a reset, the DP83815 can take a while
3614 * to respond. During this recovery period, the BMSR returns
3615 * a value of 0. Catch this -- it's not supposed to happen
3616 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3617 * PHY to come back to life.
3618 *
3619 * This works out because the BMSR is the first register
3620 * read during the PHY probe process.
3621 */
3622 do {
3623 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3624 } while (reg == MII_BMSR && val == 0);
3625
3626 return (val & 0xffff);
3627 }
3628
3629 /*
3630 * sip_dp83815_mii_writereg: [mii interface function]
3631 *
3632 * Write a PHY register to the MII.
3633 */
3634 static void
3635 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3636 {
3637 struct sip_softc *sc = device_private(self);
3638
3639 /*
3640 * The DP83815 only has an internal PHY. Only allow
3641 * MII address 0.
3642 */
3643 if (phy != 0)
3644 return;
3645
3646 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3647 }
3648
3649 /*
3650 * sip_dp83815_mii_statchg: [mii interface function]
3651 *
3652 * Callback from MII layer when media changes.
3653 */
3654 static void
3655 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3656 {
3657 struct sip_softc *sc = ifp->if_softc;
3658
3659 /*
3660 * Update TXCFG for full-duplex operation.
3661 */
3662 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3663 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3664 else
3665 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3666
3667 /*
3668 * Update RXCFG for full-duplex or loopback.
3669 */
3670 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3671 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3672 sc->sc_rxcfg |= RXCFG_ATX;
3673 else
3674 sc->sc_rxcfg &= ~RXCFG_ATX;
3675
3676 /*
3677 * XXX 802.3x flow control.
3678 */
3679
3680 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3681 sc->sc_txcfg);
3682 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3683 sc->sc_rxcfg);
3684
3685 /*
3686 * Some DP83815s experience problems when used with short
3687 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3688 * sequence adjusts the DSP's signal attenuation to fix the
3689 * problem.
3690 */
3691 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3692 uint32_t reg;
3693
3694 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3695
3696 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3697 reg &= 0x0fff;
3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3699 delay(100);
3700 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3701 reg &= 0x00ff;
3702 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3703 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3704 0x00e8);
3705 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3707 reg | 0x20);
3708 }
3709
3710 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3711 }
3712 }
3713
3714 static void
3715 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3716 const struct pci_attach_args *pa, u_int8_t *enaddr)
3717 {
3718 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3719 u_int8_t cksum, *e, match;
3720 int i;
3721
3722 /*
3723 * EEPROM data format for the DP83820 can be found in
3724 * the DP83820 manual, section 4.2.4.
3725 */
3726
3727 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3728
3729 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3730 match = ~(match - 1);
3731
3732 cksum = 0x55;
3733 e = (u_int8_t *) eeprom_data;
3734 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3735 cksum += *e++;
3736
3737 if (cksum != match)
3738 printf("%s: Checksum (%x) mismatch (%x)",
3739 device_xname(sc->sc_dev), cksum, match);
3740
3741 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3742 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3743 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3744 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3745 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3746 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3747 }
3748
3749 static void
3750 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3751 {
3752 int i;
3753
3754 /*
3755 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3756 * a reason, but I don't know it.
3757 */
3758 for (i = 0; i < 10; i++)
3759 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3760 }
3761
3762 static void
3763 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3764 const struct pci_attach_args *pa, u_int8_t *enaddr)
3765 {
3766 u_int16_t myea[ETHER_ADDR_LEN / 2];
3767
3768 switch (sc->sc_rev) {
3769 case SIS_REV_630S:
3770 case SIS_REV_630E:
3771 case SIS_REV_630EA1:
3772 case SIS_REV_630ET:
3773 case SIS_REV_635:
3774 /*
3775 * The MAC address for the on-board Ethernet of
3776 * the SiS 630 chipset is in the NVRAM. Kick
3777 * the chip into re-loading it from NVRAM, and
3778 * read the MAC address out of the filter registers.
3779 */
3780 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3781
3782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3783 RFCR_RFADDR_NODE0);
3784 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3785 0xffff;
3786
3787 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3788 RFCR_RFADDR_NODE2);
3789 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3790 0xffff;
3791
3792 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 RFCR_RFADDR_NODE4);
3794 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 0xffff;
3796 break;
3797
3798 case SIS_REV_960:
3799 {
3800 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3801 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3802
3803 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3804 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3805
3806 int waittime, i;
3807
3808 /* Allow to read EEPROM from LAN. It is shared
3809 * between a 1394 controller and the NIC and each
3810 * time we access it, we need to set SIS_EECMD_REQ.
3811 */
3812 SIS_SET_EROMAR(sc, EROMAR_REQ);
3813
3814 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3815 /* Force EEPROM to idle state. */
3816
3817 /*
3818 * XXX-cube This is ugly. I'll look for docs about it.
3819 */
3820 SIS_SET_EROMAR(sc, EROMAR_EECS);
3821 sipcom_sis900_eeprom_delay(sc);
3822 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3823 SIS_SET_EROMAR(sc, EROMAR_EESK);
3824 sipcom_sis900_eeprom_delay(sc);
3825 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3826 sipcom_sis900_eeprom_delay(sc);
3827 }
3828 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3829 sipcom_sis900_eeprom_delay(sc);
3830 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3831
3832 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3833 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3834 sizeof(myea) / sizeof(myea[0]), myea);
3835 break;
3836 }
3837 DELAY(1);
3838 }
3839
3840 /*
3841 * Set SIS_EECTL_CLK to high, so a other master
3842 * can operate on the i2c bus.
3843 */
3844 SIS_SET_EROMAR(sc, EROMAR_EESK);
3845
3846 /* Refuse EEPROM access by LAN */
3847 SIS_SET_EROMAR(sc, EROMAR_DONE);
3848 } break;
3849
3850 default:
3851 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3852 sizeof(myea) / sizeof(myea[0]), myea);
3853 }
3854
3855 enaddr[0] = myea[0] & 0xff;
3856 enaddr[1] = myea[0] >> 8;
3857 enaddr[2] = myea[1] & 0xff;
3858 enaddr[3] = myea[1] >> 8;
3859 enaddr[4] = myea[2] & 0xff;
3860 enaddr[5] = myea[2] >> 8;
3861 }
3862
3863 /* Table and macro to bit-reverse an octet. */
3864 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3865 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3866
3867 static void
3868 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3869 const struct pci_attach_args *pa, u_int8_t *enaddr)
3870 {
3871 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3872 u_int8_t cksum, *e, match;
3873 int i;
3874
3875 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3876 sizeof(eeprom_data[0]), eeprom_data);
3877
3878 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3879 match = ~(match - 1);
3880
3881 cksum = 0x55;
3882 e = (u_int8_t *) eeprom_data;
3883 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3884 cksum += *e++;
3885 }
3886 if (cksum != match) {
3887 printf("%s: Checksum (%x) mismatch (%x)",
3888 device_xname(sc->sc_dev), cksum, match);
3889 }
3890
3891 /*
3892 * Unrolled because it makes slightly more sense this way.
3893 * The DP83815 stores the MAC address in bit 0 of word 6
3894 * through bit 15 of word 8.
3895 */
3896 ea = &eeprom_data[6];
3897 enaddr[0] = ((*ea & 0x1) << 7);
3898 ea++;
3899 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3900 enaddr[1] = ((*ea & 0x1FE) >> 1);
3901 enaddr[2] = ((*ea & 0x1) << 7);
3902 ea++;
3903 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3904 enaddr[3] = ((*ea & 0x1FE) >> 1);
3905 enaddr[4] = ((*ea & 0x1) << 7);
3906 ea++;
3907 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3908 enaddr[5] = ((*ea & 0x1FE) >> 1);
3909
3910 /*
3911 * In case that's not weird enough, we also need to reverse
3912 * the bits in each byte. This all actually makes more sense
3913 * if you think about the EEPROM storage as an array of bits
3914 * being shifted into bytes, but that's not how we're looking
3915 * at it here...
3916 */
3917 for (i = 0; i < 6 ;i++)
3918 enaddr[i] = bbr(enaddr[i]);
3919 }
3920
3921 /*
3922 * sip_mediastatus: [ifmedia interface function]
3923 *
3924 * Get the current interface media status.
3925 */
3926 static void
3927 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3928 {
3929 struct sip_softc *sc = ifp->if_softc;
3930
3931 if (!device_is_active(sc->sc_dev)) {
3932 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3933 ifmr->ifm_status = 0;
3934 return;
3935 }
3936 ether_mediastatus(ifp, ifmr);
3937 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3938 sc->sc_flowflags;
3939 }
3940