if_sip.c revision 1.163.2.1 1 /* $NetBSD: if_sip.c,v 1.163.2.1 2017/01/07 08:56:33 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.163.2.1 2017/01/07 08:56:33 pgoyette Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rndsource.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997 char intrbuf[PCI_INTRSTR_LEN];
998
999 callout_init(&sc->sc_tick_ch, 0);
1000
1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 if (sip == NULL) {
1003 aprint_error("\n");
1004 panic("%s: impossible", __func__);
1005 }
1006 sc->sc_dev = self;
1007 sc->sc_gigabit = sip->sip_gigabit;
1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 aprint_naive("\n");
1027 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1028
1029 sc->sc_model = sip;
1030
1031 /*
1032 * XXX Work-around broken PXE firmware on some boards.
1033 *
1034 * The DP83815 shares an address decoder with the MEM BAR
1035 * and the ROM BAR. Make sure the ROM BAR is disabled,
1036 * so that memory mapped access works.
1037 */
1038 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1039 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1040 ~PCI_MAPREG_ROM_ENABLE);
1041
1042 /*
1043 * Map the device.
1044 */
1045 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1046 PCI_MAPREG_TYPE_IO, 0,
1047 &iot, &ioh, NULL, &iosz) == 0);
1048 if (sc->sc_gigabit) {
1049 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1050 switch (memtype) {
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1052 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1053 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1054 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1055 break;
1056 default:
1057 memh_valid = 0;
1058 }
1059 } else {
1060 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1061 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1062 &memt, &memh, NULL, &memsz) == 0);
1063 }
1064
1065 if (memh_valid) {
1066 sc->sc_st = memt;
1067 sc->sc_sh = memh;
1068 sc->sc_sz = memsz;
1069 } else if (ioh_valid) {
1070 sc->sc_st = iot;
1071 sc->sc_sh = ioh;
1072 sc->sc_sz = iosz;
1073 } else {
1074 aprint_error_dev(self, "unable to map device registers\n");
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 aprint_error(" at %s", intrstr);
1110 aprint_error("\n");
1111 sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 return;
1113 }
1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(sc->sc_dev,
1127 "unable to allocate control data, error = %d\n", error);
1128 sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 return;
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT)) != 0) {
1135 aprint_error_dev(sc->sc_dev,
1136 "unable to map control data, error = %d\n", error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(self, "unable to create control data DMA map"
1144 ", error = %d\n", error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 aprint_error_dev(self, "unable to load control data DMA map"
1152 ", error = %d\n", error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 aprint_error_dev(self, "unable to create tx DMA map %d"
1164 ", error = %d\n", i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 aprint_error_dev(self, "unable to create rx DMA map %d"
1176 ", error = %d\n", i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 SIP_SIS900_REV(sc,SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1209
1210 /*
1211 * Initialize the configuration register: aggressive PCI
1212 * bus request algorithm, default backoff, default OW timer,
1213 * default parity error detection.
1214 *
1215 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 * friends -- it affects packet data, not descriptors.
1217 */
1218 if (sc->sc_gigabit)
1219 sipcom_dp83820_attach(sc, pa);
1220
1221 /*
1222 * Initialize our media structures and probe the MII.
1223 */
1224 sc->sc_mii.mii_ifp = ifp;
1225 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 } else
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 if_deferred_start_init(ifp, NULL);
1287 ether_ifattach(ifp, enaddr);
1288 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 sc->sc_prev.if_capenable = ifp->if_capenable;
1292 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1293 RND_TYPE_NET, RND_FLAG_DEFAULT);
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(sc->sc_dev), "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, device_xname(sc->sc_dev), "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 pmf_class_network_register(self, ifp);
1370 else
1371 aprint_error_dev(self, "couldn't establish power handler\n");
1372 }
1373
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376 uint64_t capenable)
1377 {
1378 struct m_tag *mtag;
1379 u_int32_t extsts;
1380 #ifdef DEBUG
1381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 /*
1384 * If VLANs are enabled and the packet has a VLAN tag, set
1385 * up the descriptor to encapsulate the packet for us.
1386 *
1387 * This apparently has to be on the last descriptor of
1388 * the packet.
1389 */
1390
1391 /*
1392 * Byte swapping is tricky. We need to provide the tag
1393 * in a network byte order. On a big-endian machine,
1394 * the byteorder is correct, but we need to swap it
1395 * anyway, because this will be undone by the outside
1396 * htole32(). That's why there must be an
1397 * unconditional swap instead of htons() inside.
1398 */
1399 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 sc->sc_txdescs[lasttx].sipd_extsts |=
1401 htole32(EXTSTS_VPKT |
1402 (bswap16(VLAN_TAG_VALUE(mtag)) &
1403 EXTSTS_VTCI));
1404 }
1405
1406 /*
1407 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 * checksumming, set up the descriptor to do this work
1409 * for us.
1410 *
1411 * This apparently has to be on the first descriptor of
1412 * the packet.
1413 *
1414 * Byte-swap constants so the compiler can optimize.
1415 */
1416 extsts = 0;
1417 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 extsts |= htole32(EXTSTS_IPPKT);
1421 }
1422 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 extsts |= htole32(EXTSTS_TCPPKT);
1426 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 extsts |= htole32(EXTSTS_UDPPKT);
1430 }
1431 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433
1434 /*
1435 * sip_start: [ifnet interface function]
1436 *
1437 * Start packet transmission on the interface.
1438 */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 struct sip_softc *sc = ifp->if_softc;
1443 struct mbuf *m0;
1444 struct mbuf *m;
1445 struct sip_txsoft *txs;
1446 bus_dmamap_t dmamap;
1447 int error, nexttx, lasttx, seg;
1448 int ofree = sc->sc_txfree;
1449 #if 0
1450 int firsttx = sc->sc_txnext;
1451 #endif
1452
1453 /*
1454 * If we've been told to pause, don't transmit any more packets.
1455 */
1456 if (!sc->sc_gigabit && sc->sc_paused)
1457 ifp->if_flags |= IFF_OACTIVE;
1458
1459 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 return;
1461
1462 /*
1463 * Loop through the send queue, setting up transmit descriptors
1464 * until we drain the queue, or use up all available transmit
1465 * descriptors.
1466 */
1467 for (;;) {
1468 /* Get a work queue entry. */
1469 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 break;
1472 }
1473
1474 /*
1475 * Grab a packet off the queue.
1476 */
1477 IFQ_POLL(&ifp->if_snd, m0);
1478 if (m0 == NULL)
1479 break;
1480 m = NULL;
1481
1482 dmamap = txs->txs_dmamap;
1483
1484 /*
1485 * Load the DMA map. If this fails, the packet either
1486 * didn't fit in the alloted number of segments, or we
1487 * were short on resources.
1488 */
1489 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 /* In the non-gigabit case, we'll copy and try again. */
1492 if (error != 0 && !sc->sc_gigabit) {
1493 MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 if (m == NULL) {
1495 printf("%s: unable to allocate Tx mbuf\n",
1496 device_xname(sc->sc_dev));
1497 break;
1498 }
1499 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 if (m0->m_pkthdr.len > MHLEN) {
1501 MCLGET(m, M_DONTWAIT);
1502 if ((m->m_flags & M_EXT) == 0) {
1503 printf("%s: unable to allocate Tx "
1504 "cluster\n",
1505 device_xname(sc->sc_dev));
1506 m_freem(m);
1507 break;
1508 }
1509 }
1510 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1514 if (error) {
1515 printf("%s: unable to load Tx buffer, error = "
1516 "%d\n", device_xname(sc->sc_dev), error);
1517 break;
1518 }
1519 } else if (error == EFBIG) {
1520 /*
1521 * For the too-many-segments case, we simply
1522 * report an error and drop the packet,
1523 * since we can't sanely copy a jumbo packet
1524 * to a single buffer.
1525 */
1526 printf("%s: Tx packet consumes too many DMA segments, "
1527 "dropping...\n", device_xname(sc->sc_dev));
1528 IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 m_freem(m0);
1530 continue;
1531 } else if (error != 0) {
1532 /*
1533 * Short on resources, just stop for now.
1534 */
1535 break;
1536 }
1537
1538 /*
1539 * Ensure we have enough descriptors free to describe
1540 * the packet. Note, we always reserve one descriptor
1541 * at the end of the ring as a termination point, to
1542 * prevent wrap-around.
1543 */
1544 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 /*
1546 * Not enough free descriptors to transmit this
1547 * packet. We haven't committed anything yet,
1548 * so just unload the DMA map, put the packet
1549 * back on the queue, and punt. Notify the upper
1550 * layer that there are not more slots left.
1551 *
1552 * XXX We could allocate an mbuf and copy, but
1553 * XXX is it worth it?
1554 */
1555 ifp->if_flags |= IFF_OACTIVE;
1556 bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 if (m != NULL)
1558 m_freem(m);
1559 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 break;
1561 }
1562
1563 IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 if (m != NULL) {
1565 m_freem(m0);
1566 m0 = m;
1567 }
1568
1569 /*
1570 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 */
1572
1573 /* Sync the DMA map. */
1574 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 BUS_DMASYNC_PREWRITE);
1576
1577 /*
1578 * Initialize the transmit descriptors.
1579 */
1580 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 seg < dmamap->dm_nsegs;
1582 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 /*
1584 * If this is the first descriptor we're
1585 * enqueueing, don't set the OWN bit just
1586 * yet. That could cause a race condition.
1587 * We'll do it below.
1588 */
1589 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32(dmamap->dm_segs[seg].ds_addr);
1591 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1593 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 lasttx = nexttx;
1596 }
1597
1598 /* Clear the MORE bit on the last segment. */
1599 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 htole32(~CMDSTS_MORE);
1601
1602 /*
1603 * If we're in the interrupt delay window, delay the
1604 * interrupt.
1605 */
1606 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 htole32(CMDSTS_INTR);
1610 sc->sc_txwin = 0;
1611 }
1612
1613 if (sc->sc_gigabit)
1614 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615
1616 /* Sync the descriptors we're using. */
1617 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1619
1620 /*
1621 * The entire packet is set up. Give the first descrptor
1622 * to the chip now.
1623 */
1624 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 htole32(CMDSTS_OWN);
1626 sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1628
1629 /*
1630 * Store a pointer to the packet so we can free it later,
1631 * and remember what txdirty will be once the packet is
1632 * done.
1633 */
1634 txs->txs_mbuf = m0;
1635 txs->txs_firstdesc = sc->sc_txnext;
1636 txs->txs_lastdesc = lasttx;
1637
1638 /* Advance the tx pointer. */
1639 sc->sc_txfree -= dmamap->dm_nsegs;
1640 sc->sc_txnext = nexttx;
1641
1642 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644
1645 /*
1646 * Pass the packet to any BPF listeners.
1647 */
1648 bpf_mtap(ifp, m0);
1649 }
1650
1651 if (txs == NULL || sc->sc_txfree == 0) {
1652 /* No more slots left; notify upper layer. */
1653 ifp->if_flags |= IFF_OACTIVE;
1654 }
1655
1656 if (sc->sc_txfree != ofree) {
1657 /*
1658 * Start the transmit process. Note, the manual says
1659 * that if there are no pending transmissions in the
1660 * chip's internal queue (indicated by TXE being clear),
1661 * then the driver software must set the TXDP to the
1662 * first descriptor to be transmitted. However, if we
1663 * do this, it causes serious performance degredation on
1664 * the DP83820 under load, not setting TXDP doesn't seem
1665 * to adversely affect the SiS 900 or DP83815.
1666 *
1667 * Well, I guess it wouldn't be the first time a manual
1668 * has lied -- and they could be speaking of the NULL-
1669 * terminated descriptor list case, rather than OWN-
1670 * terminated rings.
1671 */
1672 #if 0
1673 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 CR_TXE) == 0) {
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 SIP_CDTXADDR(sc, firsttx));
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 }
1679 #else
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682
1683 /* Set a watchdog timer in case the chip flakes out. */
1684 /* Gigabit autonegotiation takes 5 seconds. */
1685 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 }
1687 }
1688
1689 /*
1690 * sip_watchdog: [ifnet interface function]
1691 *
1692 * Watchdog timer handler.
1693 */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 struct sip_softc *sc = ifp->if_softc;
1698
1699 /*
1700 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 * If we get a timeout, try and sweep up transmit descriptors.
1702 * If we manage to sweep them all up, ignore the lack of
1703 * interrupt.
1704 */
1705 sipcom_txintr(sc);
1706
1707 if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1709 ifp->if_oerrors++;
1710
1711 /* Reset the interface. */
1712 (void) sipcom_init(ifp);
1713 } else if (ifp->if_flags & IFF_DEBUG)
1714 printf("%s: recovered from device timeout\n",
1715 device_xname(sc->sc_dev));
1716
1717 /* Try to get more packets going. */
1718 sipcom_start(ifp);
1719 }
1720
1721 /* If the interface is up and running, only modify the receive
1722 * filter when setting promiscuous or debug mode. Otherwise fall
1723 * through to ether_ioctl, which will reset the chip.
1724 */
1725 static int
1726 sip_ifflags_cb(struct ethercom *ec)
1727 {
1728 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1729 == (sc)->sc_ethercom.ec_capenable) \
1730 && ((sc)->sc_prev.is_vlan == \
1731 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1732 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1733 struct ifnet *ifp = &ec->ec_if;
1734 struct sip_softc *sc = ifp->if_softc;
1735 int change = ifp->if_flags ^ sc->sc_if_flags;
1736
1737 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1738 !COMPARE_IC(sc, ifp))
1739 return ENETRESET;
1740 /* Set up the receive filter. */
1741 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1742 return 0;
1743 }
1744
1745 /*
1746 * sip_ioctl: [ifnet interface function]
1747 *
1748 * Handle control requests from the operator.
1749 */
1750 static int
1751 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1752 {
1753 struct sip_softc *sc = ifp->if_softc;
1754 struct ifreq *ifr = (struct ifreq *)data;
1755 int s, error;
1756
1757 s = splnet();
1758
1759 switch (cmd) {
1760 case SIOCSIFMEDIA:
1761 /* Flow control requires full-duplex mode. */
1762 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1763 (ifr->ifr_media & IFM_FDX) == 0)
1764 ifr->ifr_media &= ~IFM_ETH_FMASK;
1765
1766 /* XXX */
1767 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1768 ifr->ifr_media &= ~IFM_ETH_FMASK;
1769 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1770 if (sc->sc_gigabit &&
1771 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1772 /* We can do both TXPAUSE and RXPAUSE. */
1773 ifr->ifr_media |=
1774 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1775 } else if (ifr->ifr_media & IFM_FLOW) {
1776 /*
1777 * Both TXPAUSE and RXPAUSE must be set.
1778 * (SiS900 and DP83815 don't have PAUSE_ASYM
1779 * feature.)
1780 *
1781 * XXX Can SiS900 and DP83815 send PAUSE?
1782 */
1783 ifr->ifr_media |=
1784 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1785 }
1786 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1787 }
1788 /*FALLTHROUGH*/
1789 default:
1790 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1791 break;
1792
1793 error = 0;
1794
1795 if (cmd == SIOCSIFCAP)
1796 error = (*ifp->if_init)(ifp);
1797 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1798 ;
1799 else if (ifp->if_flags & IFF_RUNNING) {
1800 /*
1801 * Multicast list has changed; set the hardware filter
1802 * accordingly.
1803 */
1804 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1805 }
1806 break;
1807 }
1808
1809 /* Try to get more packets going. */
1810 sipcom_start(ifp);
1811
1812 sc->sc_if_flags = ifp->if_flags;
1813 splx(s);
1814 return (error);
1815 }
1816
1817 /*
1818 * sip_intr:
1819 *
1820 * Interrupt service routine.
1821 */
1822 static int
1823 sipcom_intr(void *arg)
1824 {
1825 struct sip_softc *sc = arg;
1826 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1827 u_int32_t isr;
1828 int handled = 0;
1829
1830 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1831 return 0;
1832
1833 /* Disable interrupts. */
1834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1835
1836 for (;;) {
1837 /* Reading clears interrupt. */
1838 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1839 if ((isr & sc->sc_imr) == 0)
1840 break;
1841
1842 rnd_add_uint32(&sc->rnd_source, isr);
1843
1844 handled = 1;
1845
1846 if ((ifp->if_flags & IFF_RUNNING) == 0)
1847 break;
1848
1849 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1850 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1851
1852 /* Grab any new packets. */
1853 (*sc->sc_rxintr)(sc);
1854
1855 if (isr & ISR_RXORN) {
1856 printf("%s: receive FIFO overrun\n",
1857 device_xname(sc->sc_dev));
1858
1859 /* XXX adjust rx_drain_thresh? */
1860 }
1861
1862 if (isr & ISR_RXIDLE) {
1863 printf("%s: receive ring overrun\n",
1864 device_xname(sc->sc_dev));
1865
1866 /* Get the receive process going again. */
1867 bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1869 bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 SIP_CR, CR_RXE);
1871 }
1872 }
1873
1874 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1875 #ifdef SIP_EVENT_COUNTERS
1876 if (isr & ISR_TXDESC)
1877 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1878 else if (isr & ISR_TXIDLE)
1879 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1880 #endif
1881
1882 /* Sweep up transmit descriptors. */
1883 sipcom_txintr(sc);
1884
1885 if (isr & ISR_TXURN) {
1886 u_int32_t thresh;
1887 int txfifo_size = (sc->sc_gigabit)
1888 ? DP83820_SIP_TXFIFO_SIZE
1889 : OTHER_SIP_TXFIFO_SIZE;
1890
1891 printf("%s: transmit FIFO underrun",
1892 device_xname(sc->sc_dev));
1893 thresh = sc->sc_tx_drain_thresh + 1;
1894 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1895 && (thresh * 32) <= (txfifo_size -
1896 (sc->sc_tx_fill_thresh * 32))) {
1897 printf("; increasing Tx drain "
1898 "threshold to %u bytes\n",
1899 thresh * 32);
1900 sc->sc_tx_drain_thresh = thresh;
1901 (void) sipcom_init(ifp);
1902 } else {
1903 (void) sipcom_init(ifp);
1904 printf("\n");
1905 }
1906 }
1907 }
1908
1909 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1910 if (isr & ISR_PAUSE_ST) {
1911 sc->sc_paused = 1;
1912 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1913 ifp->if_flags |= IFF_OACTIVE;
1914 }
1915 if (isr & ISR_PAUSE_END) {
1916 sc->sc_paused = 0;
1917 ifp->if_flags &= ~IFF_OACTIVE;
1918 }
1919 }
1920
1921 if (isr & ISR_HIBERR) {
1922 int want_init = 0;
1923
1924 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1925
1926 #define PRINTERR(bit, str) \
1927 do { \
1928 if ((isr & (bit)) != 0) { \
1929 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1930 printf("%s: %s\n", \
1931 device_xname(sc->sc_dev), str); \
1932 want_init = 1; \
1933 } \
1934 } while (/*CONSTCOND*/0)
1935
1936 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1937 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1938 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1939 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1940 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1941 /*
1942 * Ignore:
1943 * Tx reset complete
1944 * Rx reset complete
1945 */
1946 if (want_init)
1947 (void) sipcom_init(ifp);
1948 #undef PRINTERR
1949 }
1950 }
1951
1952 /* Re-enable interrupts. */
1953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1954
1955 /* Try to get more packets going. */
1956 if_schedule_deferred_start(ifp);
1957
1958 return (handled);
1959 }
1960
1961 /*
1962 * sip_txintr:
1963 *
1964 * Helper; handle transmit interrupts.
1965 */
1966 static void
1967 sipcom_txintr(struct sip_softc *sc)
1968 {
1969 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 struct sip_txsoft *txs;
1971 u_int32_t cmdsts;
1972
1973 if (sc->sc_paused == 0)
1974 ifp->if_flags &= ~IFF_OACTIVE;
1975
1976 /*
1977 * Go through our Tx list and free mbufs for those
1978 * frames which have been transmitted.
1979 */
1980 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1983
1984 cmdsts = le32toh(*sipd_cmdsts(sc,
1985 &sc->sc_txdescs[txs->txs_lastdesc]));
1986 if (cmdsts & CMDSTS_OWN)
1987 break;
1988
1989 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1990
1991 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1992
1993 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1994 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1995 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1996 m_freem(txs->txs_mbuf);
1997 txs->txs_mbuf = NULL;
1998
1999 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2000
2001 /*
2002 * Check for errors and collisions.
2003 */
2004 if (cmdsts &
2005 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2006 ifp->if_oerrors++;
2007 if (cmdsts & CMDSTS_Tx_EC)
2008 ifp->if_collisions += 16;
2009 if (ifp->if_flags & IFF_DEBUG) {
2010 if (cmdsts & CMDSTS_Tx_ED)
2011 printf("%s: excessive deferral\n",
2012 device_xname(sc->sc_dev));
2013 if (cmdsts & CMDSTS_Tx_EC)
2014 printf("%s: excessive collisions\n",
2015 device_xname(sc->sc_dev));
2016 }
2017 } else {
2018 /* Packet was transmitted successfully. */
2019 ifp->if_opackets++;
2020 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2021 }
2022 }
2023
2024 /*
2025 * If there are no more pending transmissions, cancel the watchdog
2026 * timer.
2027 */
2028 if (txs == NULL) {
2029 ifp->if_timer = 0;
2030 sc->sc_txwin = 0;
2031 }
2032 }
2033
2034 /*
2035 * gsip_rxintr:
2036 *
2037 * Helper; handle receive interrupts on gigabit parts.
2038 */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_rxsoft *rxs;
2044 struct mbuf *m;
2045 u_int32_t cmdsts, extsts;
2046 int i, len;
2047
2048 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 rxs = &sc->sc_rxsoft[i];
2050
2051 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052
2053 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2054 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2055 len = CMDSTS_SIZE(sc, cmdsts);
2056
2057 /*
2058 * NOTE: OWN is set if owned by _consumer_. We're the
2059 * consumer of the receive ring, so if the bit is clear,
2060 * we have processed all of the packets.
2061 */
2062 if ((cmdsts & CMDSTS_OWN) == 0) {
2063 /*
2064 * We have processed all of the receive buffers.
2065 */
2066 break;
2067 }
2068
2069 if (__predict_false(sc->sc_rxdiscard)) {
2070 sip_init_rxdesc(sc, i);
2071 if ((cmdsts & CMDSTS_MORE) == 0) {
2072 /* Reset our state. */
2073 sc->sc_rxdiscard = 0;
2074 }
2075 continue;
2076 }
2077
2078 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2079 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080
2081 m = rxs->rxs_mbuf;
2082
2083 /*
2084 * Add a new receive buffer to the ring.
2085 */
2086 if (sipcom_add_rxbuf(sc, i) != 0) {
2087 /*
2088 * Failed, throw away what we've done so
2089 * far, and discard the rest of the packet.
2090 */
2091 ifp->if_ierrors++;
2092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2094 sip_init_rxdesc(sc, i);
2095 if (cmdsts & CMDSTS_MORE)
2096 sc->sc_rxdiscard = 1;
2097 if (sc->sc_rxhead != NULL)
2098 m_freem(sc->sc_rxhead);
2099 sip_rxchain_reset(sc);
2100 continue;
2101 }
2102
2103 sip_rxchain_link(sc, m);
2104
2105 m->m_len = len;
2106
2107 /*
2108 * If this is not the end of the packet, keep
2109 * looking.
2110 */
2111 if (cmdsts & CMDSTS_MORE) {
2112 sc->sc_rxlen += len;
2113 continue;
2114 }
2115
2116 /*
2117 * Okay, we have the entire packet now. The chip includes
2118 * the FCS, so we need to trim it.
2119 */
2120 m->m_len -= ETHER_CRC_LEN;
2121
2122 *sc->sc_rxtailp = NULL;
2123 len = m->m_len + sc->sc_rxlen;
2124 m = sc->sc_rxhead;
2125
2126 sip_rxchain_reset(sc);
2127
2128 /*
2129 * If an error occurred, update stats and drop the packet.
2130 */
2131 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2132 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2133 ifp->if_ierrors++;
2134 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2135 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2136 /* Receive overrun handled elsewhere. */
2137 printf("%s: receive descriptor error\n",
2138 device_xname(sc->sc_dev));
2139 }
2140 #define PRINTERR(bit, str) \
2141 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2142 (cmdsts & (bit)) != 0) \
2143 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2144 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2145 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2146 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2147 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2148 #undef PRINTERR
2149 m_freem(m);
2150 continue;
2151 }
2152
2153 /*
2154 * If the packet is small enough to fit in a
2155 * single header mbuf, allocate one and copy
2156 * the data into it. This greatly reduces
2157 * memory consumption when we receive lots
2158 * of small packets.
2159 */
2160 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2161 struct mbuf *nm;
2162 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2163 if (nm == NULL) {
2164 ifp->if_ierrors++;
2165 m_freem(m);
2166 continue;
2167 }
2168 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2169 nm->m_data += 2;
2170 nm->m_pkthdr.len = nm->m_len = len;
2171 m_copydata(m, 0, len, mtod(nm, void *));
2172 m_freem(m);
2173 m = nm;
2174 }
2175 #ifndef __NO_STRICT_ALIGNMENT
2176 else {
2177 /*
2178 * The DP83820's receive buffers must be 4-byte
2179 * aligned. But this means that the data after
2180 * the Ethernet header is misaligned. To compensate,
2181 * we have artificially shortened the buffer size
2182 * in the descriptor, and we do an overlapping copy
2183 * of the data two bytes further in (in the first
2184 * buffer of the chain only).
2185 */
2186 memmove(mtod(m, char *) + 2, mtod(m, void *),
2187 m->m_len);
2188 m->m_data += 2;
2189 }
2190 #endif /* ! __NO_STRICT_ALIGNMENT */
2191
2192 /*
2193 * If VLANs are enabled, VLAN packets have been unwrapped
2194 * for us. Associate the tag with the packet.
2195 */
2196
2197 /*
2198 * Again, byte swapping is tricky. Hardware provided
2199 * the tag in the network byte order, but extsts was
2200 * passed through le32toh() in the meantime. On a
2201 * big-endian machine, we need to swap it again. On a
2202 * little-endian machine, we need to convert from the
2203 * network to host byte order. This means that we must
2204 * swap it in any case, so unconditional swap instead
2205 * of htons() is used.
2206 */
2207 if ((extsts & EXTSTS_VPKT) != 0) {
2208 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2209 continue);
2210 }
2211
2212 /*
2213 * Set the incoming checksum information for the
2214 * packet.
2215 */
2216 if ((extsts & EXTSTS_IPPKT) != 0) {
2217 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2219 if (extsts & EXTSTS_Rx_IPERR)
2220 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2221 if (extsts & EXTSTS_TCPPKT) {
2222 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2223 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2224 if (extsts & EXTSTS_Rx_TCPERR)
2225 m->m_pkthdr.csum_flags |=
2226 M_CSUM_TCP_UDP_BAD;
2227 } else if (extsts & EXTSTS_UDPPKT) {
2228 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2229 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2230 if (extsts & EXTSTS_Rx_UDPERR)
2231 m->m_pkthdr.csum_flags |=
2232 M_CSUM_TCP_UDP_BAD;
2233 }
2234 }
2235
2236 m_set_rcvif(m, ifp);
2237 m->m_pkthdr.len = len;
2238
2239 /* Pass it on. */
2240 if_percpuq_enqueue(ifp->if_percpuq, m);
2241 }
2242
2243 /* Update the receive pointer. */
2244 sc->sc_rxptr = i;
2245 }
2246
2247 /*
2248 * sip_rxintr:
2249 *
2250 * Helper; handle receive interrupts on 10/100 parts.
2251 */
2252 static void
2253 sip_rxintr(struct sip_softc *sc)
2254 {
2255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2256 struct sip_rxsoft *rxs;
2257 struct mbuf *m;
2258 u_int32_t cmdsts;
2259 int i, len;
2260
2261 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2262 rxs = &sc->sc_rxsoft[i];
2263
2264 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2265
2266 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2267
2268 /*
2269 * NOTE: OWN is set if owned by _consumer_. We're the
2270 * consumer of the receive ring, so if the bit is clear,
2271 * we have processed all of the packets.
2272 */
2273 if ((cmdsts & CMDSTS_OWN) == 0) {
2274 /*
2275 * We have processed all of the receive buffers.
2276 */
2277 break;
2278 }
2279
2280 /*
2281 * If any collisions were seen on the wire, count one.
2282 */
2283 if (cmdsts & CMDSTS_Rx_COL)
2284 ifp->if_collisions++;
2285
2286 /*
2287 * If an error occurred, update stats, clear the status
2288 * word, and leave the packet buffer in place. It will
2289 * simply be reused the next time the ring comes around.
2290 */
2291 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2292 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2293 ifp->if_ierrors++;
2294 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2295 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2296 /* Receive overrun handled elsewhere. */
2297 printf("%s: receive descriptor error\n",
2298 device_xname(sc->sc_dev));
2299 }
2300 #define PRINTERR(bit, str) \
2301 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2302 (cmdsts & (bit)) != 0) \
2303 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2304 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2305 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2306 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2307 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2308 #undef PRINTERR
2309 sip_init_rxdesc(sc, i);
2310 continue;
2311 }
2312
2313 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2314 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2315
2316 /*
2317 * No errors; receive the packet. Note, the SiS 900
2318 * includes the CRC with every packet.
2319 */
2320 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2321
2322 #ifdef __NO_STRICT_ALIGNMENT
2323 /*
2324 * If the packet is small enough to fit in a
2325 * single header mbuf, allocate one and copy
2326 * the data into it. This greatly reduces
2327 * memory consumption when we receive lots
2328 * of small packets.
2329 *
2330 * Otherwise, we add a new buffer to the receive
2331 * chain. If this fails, we drop the packet and
2332 * recycle the old buffer.
2333 */
2334 if (sip_copy_small != 0 && len <= MHLEN) {
2335 MGETHDR(m, M_DONTWAIT, MT_DATA);
2336 if (m == NULL)
2337 goto dropit;
2338 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2339 memcpy(mtod(m, void *),
2340 mtod(rxs->rxs_mbuf, void *), len);
2341 sip_init_rxdesc(sc, i);
2342 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2343 rxs->rxs_dmamap->dm_mapsize,
2344 BUS_DMASYNC_PREREAD);
2345 } else {
2346 m = rxs->rxs_mbuf;
2347 if (sipcom_add_rxbuf(sc, i) != 0) {
2348 dropit:
2349 ifp->if_ierrors++;
2350 sip_init_rxdesc(sc, i);
2351 bus_dmamap_sync(sc->sc_dmat,
2352 rxs->rxs_dmamap, 0,
2353 rxs->rxs_dmamap->dm_mapsize,
2354 BUS_DMASYNC_PREREAD);
2355 continue;
2356 }
2357 }
2358 #else
2359 /*
2360 * The SiS 900's receive buffers must be 4-byte aligned.
2361 * But this means that the data after the Ethernet header
2362 * is misaligned. We must allocate a new buffer and
2363 * copy the data, shifted forward 2 bytes.
2364 */
2365 MGETHDR(m, M_DONTWAIT, MT_DATA);
2366 if (m == NULL) {
2367 dropit:
2368 ifp->if_ierrors++;
2369 sip_init_rxdesc(sc, i);
2370 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2371 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2372 continue;
2373 }
2374 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2375 if (len > (MHLEN - 2)) {
2376 MCLGET(m, M_DONTWAIT);
2377 if ((m->m_flags & M_EXT) == 0) {
2378 m_freem(m);
2379 goto dropit;
2380 }
2381 }
2382 m->m_data += 2;
2383
2384 /*
2385 * Note that we use clusters for incoming frames, so the
2386 * buffer is virtually contiguous.
2387 */
2388 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2389
2390 /* Allow the receive descriptor to continue using its mbuf. */
2391 sip_init_rxdesc(sc, i);
2392 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2393 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2394 #endif /* __NO_STRICT_ALIGNMENT */
2395
2396 m_set_rcvif(m, ifp);
2397 m->m_pkthdr.len = m->m_len = len;
2398
2399 /* Pass it on. */
2400 if_percpuq_enqueue(ifp->if_percpuq, m);
2401 }
2402
2403 /* Update the receive pointer. */
2404 sc->sc_rxptr = i;
2405 }
2406
2407 /*
2408 * sip_tick:
2409 *
2410 * One second timer, used to tick the MII.
2411 */
2412 static void
2413 sipcom_tick(void *arg)
2414 {
2415 struct sip_softc *sc = arg;
2416 int s;
2417
2418 s = splnet();
2419 #ifdef SIP_EVENT_COUNTERS
2420 if (sc->sc_gigabit) {
2421 /* Read PAUSE related counts from MIB registers. */
2422 sc->sc_ev_rxpause.ev_count +=
2423 bus_space_read_4(sc->sc_st, sc->sc_sh,
2424 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2425 sc->sc_ev_txpause.ev_count +=
2426 bus_space_read_4(sc->sc_st, sc->sc_sh,
2427 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2428 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2429 }
2430 #endif /* SIP_EVENT_COUNTERS */
2431 mii_tick(&sc->sc_mii);
2432 splx(s);
2433
2434 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2435 }
2436
2437 /*
2438 * sip_reset:
2439 *
2440 * Perform a soft reset on the SiS 900.
2441 */
2442 static bool
2443 sipcom_reset(struct sip_softc *sc)
2444 {
2445 bus_space_tag_t st = sc->sc_st;
2446 bus_space_handle_t sh = sc->sc_sh;
2447 int i;
2448
2449 bus_space_write_4(st, sh, SIP_IER, 0);
2450 bus_space_write_4(st, sh, SIP_IMR, 0);
2451 bus_space_write_4(st, sh, SIP_RFCR, 0);
2452 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2453
2454 for (i = 0; i < SIP_TIMEOUT; i++) {
2455 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2456 break;
2457 delay(2);
2458 }
2459
2460 if (i == SIP_TIMEOUT) {
2461 printf("%s: reset failed to complete\n",
2462 device_xname(sc->sc_dev));
2463 return false;
2464 }
2465
2466 delay(1000);
2467
2468 if (sc->sc_gigabit) {
2469 /*
2470 * Set the general purpose I/O bits. Do it here in case we
2471 * need to have GPIO set up to talk to the media interface.
2472 */
2473 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2474 delay(1000);
2475 }
2476 return true;
2477 }
2478
2479 static void
2480 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2481 {
2482 u_int32_t reg;
2483 bus_space_tag_t st = sc->sc_st;
2484 bus_space_handle_t sh = sc->sc_sh;
2485 /*
2486 * Initialize the VLAN/IP receive control register.
2487 * We enable checksum computation on all incoming
2488 * packets, and do not reject packets w/ bad checksums.
2489 */
2490 reg = 0;
2491 if (capenable &
2492 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2493 reg |= VRCR_IPEN;
2494 if (VLAN_ATTACHED(&sc->sc_ethercom))
2495 reg |= VRCR_VTDEN|VRCR_VTREN;
2496 bus_space_write_4(st, sh, SIP_VRCR, reg);
2497
2498 /*
2499 * Initialize the VLAN/IP transmit control register.
2500 * We enable outgoing checksum computation on a
2501 * per-packet basis.
2502 */
2503 reg = 0;
2504 if (capenable &
2505 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2506 reg |= VTCR_PPCHK;
2507 if (VLAN_ATTACHED(&sc->sc_ethercom))
2508 reg |= VTCR_VPPTI;
2509 bus_space_write_4(st, sh, SIP_VTCR, reg);
2510
2511 /*
2512 * If we're using VLANs, initialize the VLAN data register.
2513 * To understand why we bswap the VLAN Ethertype, see section
2514 * 4.2.36 of the DP83820 manual.
2515 */
2516 if (VLAN_ATTACHED(&sc->sc_ethercom))
2517 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2518 }
2519
2520 /*
2521 * sip_init: [ ifnet interface function ]
2522 *
2523 * Initialize the interface. Must be called at splnet().
2524 */
2525 static int
2526 sipcom_init(struct ifnet *ifp)
2527 {
2528 struct sip_softc *sc = ifp->if_softc;
2529 bus_space_tag_t st = sc->sc_st;
2530 bus_space_handle_t sh = sc->sc_sh;
2531 struct sip_txsoft *txs;
2532 struct sip_rxsoft *rxs;
2533 struct sip_desc *sipd;
2534 int i, error = 0;
2535
2536 if (device_is_active(sc->sc_dev)) {
2537 /*
2538 * Cancel any pending I/O.
2539 */
2540 sipcom_stop(ifp, 0);
2541 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2542 !device_is_active(sc->sc_dev))
2543 return 0;
2544
2545 /*
2546 * Reset the chip to a known state.
2547 */
2548 if (!sipcom_reset(sc))
2549 return EBUSY;
2550
2551 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2552 /*
2553 * DP83815 manual, page 78:
2554 * 4.4 Recommended Registers Configuration
2555 * For optimum performance of the DP83815, version noted
2556 * as DP83815CVNG (SRR = 203h), the listed register
2557 * modifications must be followed in sequence...
2558 *
2559 * It's not clear if this should be 302h or 203h because that
2560 * chip name is listed as SRR 302h in the description of the
2561 * SRR register. However, my revision 302h DP83815 on the
2562 * Netgear FA311 purchased in 02/2001 needs these settings
2563 * to avoid tons of errors in AcceptPerfectMatch (non-
2564 * IFF_PROMISC) mode. I do not know if other revisions need
2565 * this set or not. [briggs -- 09 March 2001]
2566 *
2567 * Note that only the low-order 12 bits of 0xe4 are documented
2568 * and that this sets reserved bits in that register.
2569 */
2570 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2571
2572 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2573 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2574 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2575 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2576
2577 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2578 }
2579
2580 /*
2581 * Initialize the transmit descriptor ring.
2582 */
2583 for (i = 0; i < sc->sc_ntxdesc; i++) {
2584 sipd = &sc->sc_txdescs[i];
2585 memset(sipd, 0, sizeof(struct sip_desc));
2586 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2587 }
2588 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2589 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2590 sc->sc_txfree = sc->sc_ntxdesc;
2591 sc->sc_txnext = 0;
2592 sc->sc_txwin = 0;
2593
2594 /*
2595 * Initialize the transmit job descriptors.
2596 */
2597 SIMPLEQ_INIT(&sc->sc_txfreeq);
2598 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2599 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2600 txs = &sc->sc_txsoft[i];
2601 txs->txs_mbuf = NULL;
2602 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2603 }
2604
2605 /*
2606 * Initialize the receive descriptor and receive job
2607 * descriptor rings.
2608 */
2609 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2610 rxs = &sc->sc_rxsoft[i];
2611 if (rxs->rxs_mbuf == NULL) {
2612 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2613 printf("%s: unable to allocate or map rx "
2614 "buffer %d, error = %d\n",
2615 device_xname(sc->sc_dev), i, error);
2616 /*
2617 * XXX Should attempt to run with fewer receive
2618 * XXX buffers instead of just failing.
2619 */
2620 sipcom_rxdrain(sc);
2621 goto out;
2622 }
2623 } else
2624 sip_init_rxdesc(sc, i);
2625 }
2626 sc->sc_rxptr = 0;
2627 sc->sc_rxdiscard = 0;
2628 sip_rxchain_reset(sc);
2629
2630 /*
2631 * Set the configuration register; it's already initialized
2632 * in sip_attach().
2633 */
2634 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2635
2636 /*
2637 * Initialize the prototype TXCFG register.
2638 */
2639 if (sc->sc_gigabit) {
2640 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2641 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2642 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2643 SIP_SIS900_REV(sc, SIS_REV_960) ||
2644 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2645 (sc->sc_cfg & CFG_EDBMASTEN)) {
2646 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2647 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2648 } else {
2649 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2650 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2651 }
2652
2653 sc->sc_txcfg |= TXCFG_ATP |
2654 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2655 sc->sc_tx_drain_thresh;
2656 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2657
2658 /*
2659 * Initialize the receive drain threshold if we have never
2660 * done so.
2661 */
2662 if (sc->sc_rx_drain_thresh == 0) {
2663 /*
2664 * XXX This value should be tuned. This is set to the
2665 * maximum of 248 bytes, and we may be able to improve
2666 * performance by decreasing it (although we should never
2667 * set this value lower than 2; 14 bytes are required to
2668 * filter the packet).
2669 */
2670 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2671 }
2672
2673 /*
2674 * Initialize the prototype RXCFG register.
2675 */
2676 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2677 /*
2678 * Accept long packets (including FCS) so we can handle
2679 * 802.1q-tagged frames and jumbo frames properly.
2680 */
2681 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2682 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2683 sc->sc_rxcfg |= RXCFG_ALP;
2684
2685 /*
2686 * Checksum offloading is disabled if the user selects an MTU
2687 * larger than 8109. (FreeBSD says 8152, but there is emperical
2688 * evidence that >8109 does not work on some boards, such as the
2689 * Planex GN-1000TE).
2690 */
2691 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2692 (ifp->if_capenable &
2693 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2694 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2695 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2696 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2697 "disabled.\n", device_xname(sc->sc_dev));
2698 ifp->if_capenable &=
2699 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2700 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2701 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2702 ifp->if_csum_flags_tx = 0;
2703 ifp->if_csum_flags_rx = 0;
2704 }
2705
2706 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2707
2708 if (sc->sc_gigabit)
2709 sipcom_dp83820_init(sc, ifp->if_capenable);
2710
2711 /*
2712 * Give the transmit and receive rings to the chip.
2713 */
2714 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2715 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2716
2717 /*
2718 * Initialize the interrupt mask.
2719 */
2720 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2721 sc->sc_bits.b_isr_sserr |
2722 sc->sc_bits.b_isr_rmabt |
2723 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2724 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2725 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2726
2727 /* Set up the receive filter. */
2728 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2729
2730 /*
2731 * Tune sc_rx_flow_thresh.
2732 * XXX "More than 8KB" is too short for jumbo frames.
2733 * XXX TODO: Threshold value should be user-settable.
2734 */
2735 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2736 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2737 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2738
2739 /*
2740 * Set the current media. Do this after initializing the prototype
2741 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2742 * control.
2743 */
2744 if ((error = ether_mediachange(ifp)) != 0)
2745 goto out;
2746
2747 /*
2748 * Set the interrupt hold-off timer to 100us.
2749 */
2750 if (sc->sc_gigabit)
2751 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2752
2753 /*
2754 * Enable interrupts.
2755 */
2756 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2757
2758 /*
2759 * Start the transmit and receive processes.
2760 */
2761 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2762
2763 /*
2764 * Start the one second MII clock.
2765 */
2766 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2767
2768 /*
2769 * ...all done!
2770 */
2771 ifp->if_flags |= IFF_RUNNING;
2772 ifp->if_flags &= ~IFF_OACTIVE;
2773 sc->sc_if_flags = ifp->if_flags;
2774 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2775 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2776 sc->sc_prev.if_capenable = ifp->if_capenable;
2777
2778 out:
2779 if (error)
2780 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2781 return (error);
2782 }
2783
2784 /*
2785 * sip_drain:
2786 *
2787 * Drain the receive queue.
2788 */
2789 static void
2790 sipcom_rxdrain(struct sip_softc *sc)
2791 {
2792 struct sip_rxsoft *rxs;
2793 int i;
2794
2795 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2796 rxs = &sc->sc_rxsoft[i];
2797 if (rxs->rxs_mbuf != NULL) {
2798 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2799 m_freem(rxs->rxs_mbuf);
2800 rxs->rxs_mbuf = NULL;
2801 }
2802 }
2803 }
2804
2805 /*
2806 * sip_stop: [ ifnet interface function ]
2807 *
2808 * Stop transmission on the interface.
2809 */
2810 static void
2811 sipcom_stop(struct ifnet *ifp, int disable)
2812 {
2813 struct sip_softc *sc = ifp->if_softc;
2814 bus_space_tag_t st = sc->sc_st;
2815 bus_space_handle_t sh = sc->sc_sh;
2816 struct sip_txsoft *txs;
2817 u_int32_t cmdsts = 0; /* DEBUG */
2818
2819 /*
2820 * Stop the one second clock.
2821 */
2822 callout_stop(&sc->sc_tick_ch);
2823
2824 /* Down the MII. */
2825 mii_down(&sc->sc_mii);
2826
2827 if (device_is_active(sc->sc_dev)) {
2828 /*
2829 * Disable interrupts.
2830 */
2831 bus_space_write_4(st, sh, SIP_IER, 0);
2832
2833 /*
2834 * Stop receiver and transmitter.
2835 */
2836 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2837 }
2838
2839 /*
2840 * Release any queued transmit buffers.
2841 */
2842 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2843 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2844 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2845 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2846 CMDSTS_INTR) == 0)
2847 printf("%s: sip_stop: last descriptor does not "
2848 "have INTR bit set\n", device_xname(sc->sc_dev));
2849 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2850 #ifdef DIAGNOSTIC
2851 if (txs->txs_mbuf == NULL) {
2852 printf("%s: dirty txsoft with no mbuf chain\n",
2853 device_xname(sc->sc_dev));
2854 panic("sip_stop");
2855 }
2856 #endif
2857 cmdsts |= /* DEBUG */
2858 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2859 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2860 m_freem(txs->txs_mbuf);
2861 txs->txs_mbuf = NULL;
2862 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2863 }
2864
2865 /*
2866 * Mark the interface down and cancel the watchdog timer.
2867 */
2868 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2869 ifp->if_timer = 0;
2870
2871 if (disable)
2872 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2873
2874 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2875 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2876 printf("%s: sip_stop: no INTR bits set in dirty tx "
2877 "descriptors\n", device_xname(sc->sc_dev));
2878 }
2879
2880 /*
2881 * sip_read_eeprom:
2882 *
2883 * Read data from the serial EEPROM.
2884 */
2885 static void
2886 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2887 u_int16_t *data)
2888 {
2889 bus_space_tag_t st = sc->sc_st;
2890 bus_space_handle_t sh = sc->sc_sh;
2891 u_int16_t reg;
2892 int i, x;
2893
2894 for (i = 0; i < wordcnt; i++) {
2895 /* Send CHIP SELECT. */
2896 reg = EROMAR_EECS;
2897 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2898
2899 /* Shift in the READ opcode. */
2900 for (x = 3; x > 0; x--) {
2901 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2902 reg |= EROMAR_EEDI;
2903 else
2904 reg &= ~EROMAR_EEDI;
2905 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2906 bus_space_write_4(st, sh, SIP_EROMAR,
2907 reg | EROMAR_EESK);
2908 delay(4);
2909 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2910 delay(4);
2911 }
2912
2913 /* Shift in address. */
2914 for (x = 6; x > 0; x--) {
2915 if ((word + i) & (1 << (x - 1)))
2916 reg |= EROMAR_EEDI;
2917 else
2918 reg &= ~EROMAR_EEDI;
2919 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920 bus_space_write_4(st, sh, SIP_EROMAR,
2921 reg | EROMAR_EESK);
2922 delay(4);
2923 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 delay(4);
2925 }
2926
2927 /* Shift out data. */
2928 reg = EROMAR_EECS;
2929 data[i] = 0;
2930 for (x = 16; x > 0; x--) {
2931 bus_space_write_4(st, sh, SIP_EROMAR,
2932 reg | EROMAR_EESK);
2933 delay(4);
2934 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2935 data[i] |= (1 << (x - 1));
2936 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 delay(4);
2938 }
2939
2940 /* Clear CHIP SELECT. */
2941 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2942 delay(4);
2943 }
2944 }
2945
2946 /*
2947 * sipcom_add_rxbuf:
2948 *
2949 * Add a receive buffer to the indicated descriptor.
2950 */
2951 static int
2952 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2953 {
2954 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2955 struct mbuf *m;
2956 int error;
2957
2958 MGETHDR(m, M_DONTWAIT, MT_DATA);
2959 if (m == NULL)
2960 return (ENOBUFS);
2961 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2962
2963 MCLGET(m, M_DONTWAIT);
2964 if ((m->m_flags & M_EXT) == 0) {
2965 m_freem(m);
2966 return (ENOBUFS);
2967 }
2968
2969 /* XXX I don't believe this is necessary. --dyoung */
2970 if (sc->sc_gigabit)
2971 m->m_len = sc->sc_parm->p_rxbuf_len;
2972
2973 if (rxs->rxs_mbuf != NULL)
2974 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2975
2976 rxs->rxs_mbuf = m;
2977
2978 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2979 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2980 BUS_DMA_READ|BUS_DMA_NOWAIT);
2981 if (error) {
2982 printf("%s: can't load rx DMA map %d, error = %d\n",
2983 device_xname(sc->sc_dev), idx, error);
2984 panic("%s", __func__); /* XXX */
2985 }
2986
2987 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2988 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2989
2990 sip_init_rxdesc(sc, idx);
2991
2992 return (0);
2993 }
2994
2995 /*
2996 * sip_sis900_set_filter:
2997 *
2998 * Set up the receive filter.
2999 */
3000 static void
3001 sipcom_sis900_set_filter(struct sip_softc *sc)
3002 {
3003 bus_space_tag_t st = sc->sc_st;
3004 bus_space_handle_t sh = sc->sc_sh;
3005 struct ethercom *ec = &sc->sc_ethercom;
3006 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3007 struct ether_multi *enm;
3008 const u_int8_t *cp;
3009 struct ether_multistep step;
3010 u_int32_t crc, mchash[16];
3011
3012 /*
3013 * Initialize the prototype RFCR.
3014 */
3015 sc->sc_rfcr = RFCR_RFEN;
3016 if (ifp->if_flags & IFF_BROADCAST)
3017 sc->sc_rfcr |= RFCR_AAB;
3018 if (ifp->if_flags & IFF_PROMISC) {
3019 sc->sc_rfcr |= RFCR_AAP;
3020 goto allmulti;
3021 }
3022
3023 /*
3024 * Set up the multicast address filter by passing all multicast
3025 * addresses through a CRC generator, and then using the high-order
3026 * 6 bits as an index into the 128 bit multicast hash table (only
3027 * the lower 16 bits of each 32 bit multicast hash register are
3028 * valid). The high order bits select the register, while the
3029 * rest of the bits select the bit within the register.
3030 */
3031
3032 memset(mchash, 0, sizeof(mchash));
3033
3034 /*
3035 * SiS900 (at least SiS963) requires us to register the address of
3036 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3037 */
3038 crc = 0x0ed423f9;
3039
3040 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3041 SIP_SIS900_REV(sc, SIS_REV_960) ||
3042 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3043 /* Just want the 8 most significant bits. */
3044 crc >>= 24;
3045 } else {
3046 /* Just want the 7 most significant bits. */
3047 crc >>= 25;
3048 }
3049
3050 /* Set the corresponding bit in the hash table. */
3051 mchash[crc >> 4] |= 1 << (crc & 0xf);
3052
3053 ETHER_FIRST_MULTI(step, ec, enm);
3054 while (enm != NULL) {
3055 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3056 /*
3057 * We must listen to a range of multicast addresses.
3058 * For now, just accept all multicasts, rather than
3059 * trying to set only those filter bits needed to match
3060 * the range. (At this time, the only use of address
3061 * ranges is for IP multicast routing, for which the
3062 * range is big enough to require all bits set.)
3063 */
3064 goto allmulti;
3065 }
3066
3067 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3068
3069 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3070 SIP_SIS900_REV(sc, SIS_REV_960) ||
3071 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3072 /* Just want the 8 most significant bits. */
3073 crc >>= 24;
3074 } else {
3075 /* Just want the 7 most significant bits. */
3076 crc >>= 25;
3077 }
3078
3079 /* Set the corresponding bit in the hash table. */
3080 mchash[crc >> 4] |= 1 << (crc & 0xf);
3081
3082 ETHER_NEXT_MULTI(step, enm);
3083 }
3084
3085 ifp->if_flags &= ~IFF_ALLMULTI;
3086 goto setit;
3087
3088 allmulti:
3089 ifp->if_flags |= IFF_ALLMULTI;
3090 sc->sc_rfcr |= RFCR_AAM;
3091
3092 setit:
3093 #define FILTER_EMIT(addr, data) \
3094 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3095 delay(1); \
3096 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3097 delay(1)
3098
3099 /*
3100 * Disable receive filter, and program the node address.
3101 */
3102 cp = CLLADDR(ifp->if_sadl);
3103 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3104 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3105 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3106
3107 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3108 /*
3109 * Program the multicast hash table.
3110 */
3111 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3112 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3113 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3114 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3115 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3116 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3117 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3118 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3119 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3120 SIP_SIS900_REV(sc, SIS_REV_960) ||
3121 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3122 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3123 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3124 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3125 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3126 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3127 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3128 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3129 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3130 }
3131 }
3132 #undef FILTER_EMIT
3133
3134 /*
3135 * Re-enable the receiver filter.
3136 */
3137 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3138 }
3139
3140 /*
3141 * sip_dp83815_set_filter:
3142 *
3143 * Set up the receive filter.
3144 */
3145 static void
3146 sipcom_dp83815_set_filter(struct sip_softc *sc)
3147 {
3148 bus_space_tag_t st = sc->sc_st;
3149 bus_space_handle_t sh = sc->sc_sh;
3150 struct ethercom *ec = &sc->sc_ethercom;
3151 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3152 struct ether_multi *enm;
3153 const u_int8_t *cp;
3154 struct ether_multistep step;
3155 u_int32_t crc, hash, slot, bit;
3156 #define MCHASH_NWORDS_83820 128
3157 #define MCHASH_NWORDS_83815 32
3158 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3159 u_int16_t mchash[MCHASH_NWORDS];
3160 int i;
3161
3162 /*
3163 * Initialize the prototype RFCR.
3164 * Enable the receive filter, and accept on
3165 * Perfect (destination address) Match
3166 * If IFF_BROADCAST, also accept all broadcast packets.
3167 * If IFF_PROMISC, accept all unicast packets (and later, set
3168 * IFF_ALLMULTI and accept all multicast, too).
3169 */
3170 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3171 if (ifp->if_flags & IFF_BROADCAST)
3172 sc->sc_rfcr |= RFCR_AAB;
3173 if (ifp->if_flags & IFF_PROMISC) {
3174 sc->sc_rfcr |= RFCR_AAP;
3175 goto allmulti;
3176 }
3177
3178 /*
3179 * Set up the DP83820/DP83815 multicast address filter by
3180 * passing all multicast addresses through a CRC generator,
3181 * and then using the high-order 11/9 bits as an index into
3182 * the 2048/512 bit multicast hash table. The high-order
3183 * 7/5 bits select the slot, while the low-order 4 bits
3184 * select the bit within the slot. Note that only the low
3185 * 16-bits of each filter word are used, and there are
3186 * 128/32 filter words.
3187 */
3188
3189 memset(mchash, 0, sizeof(mchash));
3190
3191 ifp->if_flags &= ~IFF_ALLMULTI;
3192 ETHER_FIRST_MULTI(step, ec, enm);
3193 if (enm == NULL)
3194 goto setit;
3195 while (enm != NULL) {
3196 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3197 /*
3198 * We must listen to a range of multicast addresses.
3199 * For now, just accept all multicasts, rather than
3200 * trying to set only those filter bits needed to match
3201 * the range. (At this time, the only use of address
3202 * ranges is for IP multicast routing, for which the
3203 * range is big enough to require all bits set.)
3204 */
3205 goto allmulti;
3206 }
3207
3208 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3209
3210 if (sc->sc_gigabit) {
3211 /* Just want the 11 most significant bits. */
3212 hash = crc >> 21;
3213 } else {
3214 /* Just want the 9 most significant bits. */
3215 hash = crc >> 23;
3216 }
3217
3218 slot = hash >> 4;
3219 bit = hash & 0xf;
3220
3221 /* Set the corresponding bit in the hash table. */
3222 mchash[slot] |= 1 << bit;
3223
3224 ETHER_NEXT_MULTI(step, enm);
3225 }
3226 sc->sc_rfcr |= RFCR_MHEN;
3227 goto setit;
3228
3229 allmulti:
3230 ifp->if_flags |= IFF_ALLMULTI;
3231 sc->sc_rfcr |= RFCR_AAM;
3232
3233 setit:
3234 #define FILTER_EMIT(addr, data) \
3235 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3236 delay(1); \
3237 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3238 delay(1)
3239
3240 /*
3241 * Disable receive filter, and program the node address.
3242 */
3243 cp = CLLADDR(ifp->if_sadl);
3244 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3245 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3246 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3247
3248 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3249 int nwords =
3250 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3251 /*
3252 * Program the multicast hash table.
3253 */
3254 for (i = 0; i < nwords; i++) {
3255 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3256 }
3257 }
3258 #undef FILTER_EMIT
3259 #undef MCHASH_NWORDS
3260 #undef MCHASH_NWORDS_83815
3261 #undef MCHASH_NWORDS_83820
3262
3263 /*
3264 * Re-enable the receiver filter.
3265 */
3266 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3267 }
3268
3269 /*
3270 * sip_dp83820_mii_readreg: [mii interface function]
3271 *
3272 * Read a PHY register on the MII of the DP83820.
3273 */
3274 static int
3275 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3276 {
3277 struct sip_softc *sc = device_private(self);
3278
3279 if (sc->sc_cfg & CFG_TBI_EN) {
3280 bus_addr_t tbireg;
3281 int rv;
3282
3283 if (phy != 0)
3284 return (0);
3285
3286 switch (reg) {
3287 case MII_BMCR: tbireg = SIP_TBICR; break;
3288 case MII_BMSR: tbireg = SIP_TBISR; break;
3289 case MII_ANAR: tbireg = SIP_TANAR; break;
3290 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3291 case MII_ANER: tbireg = SIP_TANER; break;
3292 case MII_EXTSR:
3293 /*
3294 * Don't even bother reading the TESR register.
3295 * The manual documents that the device has
3296 * 1000baseX full/half capability, but the
3297 * register itself seems read back 0 on some
3298 * boards. Just hard-code the result.
3299 */
3300 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3301
3302 default:
3303 return (0);
3304 }
3305
3306 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3307 if (tbireg == SIP_TBISR) {
3308 /* LINK and ACOMP are switched! */
3309 int val = rv;
3310
3311 rv = 0;
3312 if (val & TBISR_MR_LINK_STATUS)
3313 rv |= BMSR_LINK;
3314 if (val & TBISR_MR_AN_COMPLETE)
3315 rv |= BMSR_ACOMP;
3316
3317 /*
3318 * The manual claims this register reads back 0
3319 * on hard and soft reset. But we want to let
3320 * the gentbi driver know that we support auto-
3321 * negotiation, so hard-code this bit in the
3322 * result.
3323 */
3324 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3325 }
3326
3327 return (rv);
3328 }
3329
3330 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3331 }
3332
3333 /*
3334 * sip_dp83820_mii_writereg: [mii interface function]
3335 *
3336 * Write a PHY register on the MII of the DP83820.
3337 */
3338 static void
3339 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3340 {
3341 struct sip_softc *sc = device_private(self);
3342
3343 if (sc->sc_cfg & CFG_TBI_EN) {
3344 bus_addr_t tbireg;
3345
3346 if (phy != 0)
3347 return;
3348
3349 switch (reg) {
3350 case MII_BMCR: tbireg = SIP_TBICR; break;
3351 case MII_ANAR: tbireg = SIP_TANAR; break;
3352 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3353 default:
3354 return;
3355 }
3356
3357 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3358 return;
3359 }
3360
3361 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3362 }
3363
3364 /*
3365 * sip_dp83820_mii_statchg: [mii interface function]
3366 *
3367 * Callback from MII layer when media changes.
3368 */
3369 static void
3370 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3371 {
3372 struct sip_softc *sc = ifp->if_softc;
3373 struct mii_data *mii = &sc->sc_mii;
3374 u_int32_t cfg, pcr;
3375
3376 /*
3377 * Get flow control negotiation result.
3378 */
3379 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3380 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3381 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3382 mii->mii_media_active &= ~IFM_ETH_FMASK;
3383 }
3384
3385 /*
3386 * Update TXCFG for full-duplex operation.
3387 */
3388 if ((mii->mii_media_active & IFM_FDX) != 0)
3389 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3390 else
3391 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3392
3393 /*
3394 * Update RXCFG for full-duplex or loopback.
3395 */
3396 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3397 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3398 sc->sc_rxcfg |= RXCFG_ATX;
3399 else
3400 sc->sc_rxcfg &= ~RXCFG_ATX;
3401
3402 /*
3403 * Update CFG for MII/GMII.
3404 */
3405 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3406 cfg = sc->sc_cfg | CFG_MODE_1000;
3407 else
3408 cfg = sc->sc_cfg;
3409
3410 /*
3411 * 802.3x flow control.
3412 */
3413 pcr = 0;
3414 if (sc->sc_flowflags & IFM_FLOW) {
3415 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3416 pcr |= sc->sc_rx_flow_thresh;
3417 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3418 pcr |= PCR_PSEN | PCR_PS_MCAST;
3419 }
3420
3421 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3422 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3423 sc->sc_txcfg);
3424 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3425 sc->sc_rxcfg);
3426 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3427 }
3428
3429 /*
3430 * sip_mii_bitbang_read: [mii bit-bang interface function]
3431 *
3432 * Read the MII serial port for the MII bit-bang module.
3433 */
3434 static u_int32_t
3435 sipcom_mii_bitbang_read(device_t self)
3436 {
3437 struct sip_softc *sc = device_private(self);
3438
3439 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3440 }
3441
3442 /*
3443 * sip_mii_bitbang_write: [mii big-bang interface function]
3444 *
3445 * Write the MII serial port for the MII bit-bang module.
3446 */
3447 static void
3448 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3449 {
3450 struct sip_softc *sc = device_private(self);
3451
3452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3453 }
3454
3455 /*
3456 * sip_sis900_mii_readreg: [mii interface function]
3457 *
3458 * Read a PHY register on the MII.
3459 */
3460 static int
3461 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3462 {
3463 struct sip_softc *sc = device_private(self);
3464 u_int32_t enphy;
3465
3466 /*
3467 * The PHY of recent SiS chipsets is accessed through bitbang
3468 * operations.
3469 */
3470 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3471 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3472 phy, reg);
3473
3474 #ifndef SIS900_MII_RESTRICT
3475 /*
3476 * The SiS 900 has only an internal PHY on the MII. Only allow
3477 * MII address 0.
3478 */
3479 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3480 return (0);
3481 #endif
3482
3483 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3484 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3485 ENPHY_RWCMD | ENPHY_ACCESS);
3486 do {
3487 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3488 } while (enphy & ENPHY_ACCESS);
3489 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3490 }
3491
3492 /*
3493 * sip_sis900_mii_writereg: [mii interface function]
3494 *
3495 * Write a PHY register on the MII.
3496 */
3497 static void
3498 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3499 {
3500 struct sip_softc *sc = device_private(self);
3501 u_int32_t enphy;
3502
3503 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3504 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3505 phy, reg, val);
3506 return;
3507 }
3508
3509 #ifndef SIS900_MII_RESTRICT
3510 /*
3511 * The SiS 900 has only an internal PHY on the MII. Only allow
3512 * MII address 0.
3513 */
3514 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3515 return;
3516 #endif
3517
3518 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3519 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3520 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3521 do {
3522 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3523 } while (enphy & ENPHY_ACCESS);
3524 }
3525
3526 /*
3527 * sip_sis900_mii_statchg: [mii interface function]
3528 *
3529 * Callback from MII layer when media changes.
3530 */
3531 static void
3532 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3533 {
3534 struct sip_softc *sc = ifp->if_softc;
3535 struct mii_data *mii = &sc->sc_mii;
3536 u_int32_t flowctl;
3537
3538 /*
3539 * Get flow control negotiation result.
3540 */
3541 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3542 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3543 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3544 mii->mii_media_active &= ~IFM_ETH_FMASK;
3545 }
3546
3547 /*
3548 * Update TXCFG for full-duplex operation.
3549 */
3550 if ((mii->mii_media_active & IFM_FDX) != 0)
3551 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3552 else
3553 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3554
3555 /*
3556 * Update RXCFG for full-duplex or loopback.
3557 */
3558 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3559 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3560 sc->sc_rxcfg |= RXCFG_ATX;
3561 else
3562 sc->sc_rxcfg &= ~RXCFG_ATX;
3563
3564 /*
3565 * Update IMR for use of 802.3x flow control.
3566 */
3567 if (sc->sc_flowflags & IFM_FLOW) {
3568 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3569 flowctl = FLOWCTL_FLOWEN;
3570 } else {
3571 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3572 flowctl = 0;
3573 }
3574
3575 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3576 sc->sc_txcfg);
3577 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3578 sc->sc_rxcfg);
3579 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3580 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3581 }
3582
3583 /*
3584 * sip_dp83815_mii_readreg: [mii interface function]
3585 *
3586 * Read a PHY register on the MII.
3587 */
3588 static int
3589 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3590 {
3591 struct sip_softc *sc = device_private(self);
3592 u_int32_t val;
3593
3594 /*
3595 * The DP83815 only has an internal PHY. Only allow
3596 * MII address 0.
3597 */
3598 if (phy != 0)
3599 return (0);
3600
3601 /*
3602 * Apparently, after a reset, the DP83815 can take a while
3603 * to respond. During this recovery period, the BMSR returns
3604 * a value of 0. Catch this -- it's not supposed to happen
3605 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3606 * PHY to come back to life.
3607 *
3608 * This works out because the BMSR is the first register
3609 * read during the PHY probe process.
3610 */
3611 do {
3612 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3613 } while (reg == MII_BMSR && val == 0);
3614
3615 return (val & 0xffff);
3616 }
3617
3618 /*
3619 * sip_dp83815_mii_writereg: [mii interface function]
3620 *
3621 * Write a PHY register to the MII.
3622 */
3623 static void
3624 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3625 {
3626 struct sip_softc *sc = device_private(self);
3627
3628 /*
3629 * The DP83815 only has an internal PHY. Only allow
3630 * MII address 0.
3631 */
3632 if (phy != 0)
3633 return;
3634
3635 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3636 }
3637
3638 /*
3639 * sip_dp83815_mii_statchg: [mii interface function]
3640 *
3641 * Callback from MII layer when media changes.
3642 */
3643 static void
3644 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3645 {
3646 struct sip_softc *sc = ifp->if_softc;
3647
3648 /*
3649 * Update TXCFG for full-duplex operation.
3650 */
3651 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3652 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3653 else
3654 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3655
3656 /*
3657 * Update RXCFG for full-duplex or loopback.
3658 */
3659 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3660 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3661 sc->sc_rxcfg |= RXCFG_ATX;
3662 else
3663 sc->sc_rxcfg &= ~RXCFG_ATX;
3664
3665 /*
3666 * XXX 802.3x flow control.
3667 */
3668
3669 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3670 sc->sc_txcfg);
3671 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3672 sc->sc_rxcfg);
3673
3674 /*
3675 * Some DP83815s experience problems when used with short
3676 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3677 * sequence adjusts the DSP's signal attenuation to fix the
3678 * problem.
3679 */
3680 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3681 uint32_t reg;
3682
3683 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3684
3685 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3686 reg &= 0x0fff;
3687 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3688 delay(100);
3689 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3690 reg &= 0x00ff;
3691 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3692 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3693 0x00e8);
3694 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3695 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3696 reg | 0x20);
3697 }
3698
3699 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3700 }
3701 }
3702
3703 static void
3704 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3705 const struct pci_attach_args *pa, u_int8_t *enaddr)
3706 {
3707 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3708 u_int8_t cksum, *e, match;
3709 int i;
3710
3711 /*
3712 * EEPROM data format for the DP83820 can be found in
3713 * the DP83820 manual, section 4.2.4.
3714 */
3715
3716 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3717
3718 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3719 match = ~(match - 1);
3720
3721 cksum = 0x55;
3722 e = (u_int8_t *) eeprom_data;
3723 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3724 cksum += *e++;
3725
3726 if (cksum != match)
3727 printf("%s: Checksum (%x) mismatch (%x)",
3728 device_xname(sc->sc_dev), cksum, match);
3729
3730 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3731 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3732 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3733 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3734 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3735 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3736 }
3737
3738 static void
3739 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3740 {
3741 int i;
3742
3743 /*
3744 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3745 * a reason, but I don't know it.
3746 */
3747 for (i = 0; i < 10; i++)
3748 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3749 }
3750
3751 static void
3752 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3753 const struct pci_attach_args *pa, u_int8_t *enaddr)
3754 {
3755 u_int16_t myea[ETHER_ADDR_LEN / 2];
3756
3757 switch (sc->sc_rev) {
3758 case SIS_REV_630S:
3759 case SIS_REV_630E:
3760 case SIS_REV_630EA1:
3761 case SIS_REV_630ET:
3762 case SIS_REV_635:
3763 /*
3764 * The MAC address for the on-board Ethernet of
3765 * the SiS 630 chipset is in the NVRAM. Kick
3766 * the chip into re-loading it from NVRAM, and
3767 * read the MAC address out of the filter registers.
3768 */
3769 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3770
3771 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3772 RFCR_RFADDR_NODE0);
3773 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3774 0xffff;
3775
3776 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3777 RFCR_RFADDR_NODE2);
3778 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3779 0xffff;
3780
3781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3782 RFCR_RFADDR_NODE4);
3783 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3784 0xffff;
3785 break;
3786
3787 case SIS_REV_960:
3788 {
3789 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3790 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3791
3792 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3793 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3794
3795 int waittime, i;
3796
3797 /* Allow to read EEPROM from LAN. It is shared
3798 * between a 1394 controller and the NIC and each
3799 * time we access it, we need to set SIS_EECMD_REQ.
3800 */
3801 SIS_SET_EROMAR(sc, EROMAR_REQ);
3802
3803 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3804 /* Force EEPROM to idle state. */
3805
3806 /*
3807 * XXX-cube This is ugly. I'll look for docs about it.
3808 */
3809 SIS_SET_EROMAR(sc, EROMAR_EECS);
3810 sipcom_sis900_eeprom_delay(sc);
3811 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3812 SIS_SET_EROMAR(sc, EROMAR_EESK);
3813 sipcom_sis900_eeprom_delay(sc);
3814 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3815 sipcom_sis900_eeprom_delay(sc);
3816 }
3817 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3818 sipcom_sis900_eeprom_delay(sc);
3819 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3820
3821 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3822 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3823 sizeof(myea) / sizeof(myea[0]), myea);
3824 break;
3825 }
3826 DELAY(1);
3827 }
3828
3829 /*
3830 * Set SIS_EECTL_CLK to high, so a other master
3831 * can operate on the i2c bus.
3832 */
3833 SIS_SET_EROMAR(sc, EROMAR_EESK);
3834
3835 /* Refuse EEPROM access by LAN */
3836 SIS_SET_EROMAR(sc, EROMAR_DONE);
3837 } break;
3838
3839 default:
3840 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3841 sizeof(myea) / sizeof(myea[0]), myea);
3842 }
3843
3844 enaddr[0] = myea[0] & 0xff;
3845 enaddr[1] = myea[0] >> 8;
3846 enaddr[2] = myea[1] & 0xff;
3847 enaddr[3] = myea[1] >> 8;
3848 enaddr[4] = myea[2] & 0xff;
3849 enaddr[5] = myea[2] >> 8;
3850 }
3851
3852 /* Table and macro to bit-reverse an octet. */
3853 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3854 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3855
3856 static void
3857 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3858 const struct pci_attach_args *pa, u_int8_t *enaddr)
3859 {
3860 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3861 u_int8_t cksum, *e, match;
3862 int i;
3863
3864 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3865 sizeof(eeprom_data[0]), eeprom_data);
3866
3867 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3868 match = ~(match - 1);
3869
3870 cksum = 0x55;
3871 e = (u_int8_t *) eeprom_data;
3872 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3873 cksum += *e++;
3874 }
3875 if (cksum != match) {
3876 printf("%s: Checksum (%x) mismatch (%x)",
3877 device_xname(sc->sc_dev), cksum, match);
3878 }
3879
3880 /*
3881 * Unrolled because it makes slightly more sense this way.
3882 * The DP83815 stores the MAC address in bit 0 of word 6
3883 * through bit 15 of word 8.
3884 */
3885 ea = &eeprom_data[6];
3886 enaddr[0] = ((*ea & 0x1) << 7);
3887 ea++;
3888 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3889 enaddr[1] = ((*ea & 0x1FE) >> 1);
3890 enaddr[2] = ((*ea & 0x1) << 7);
3891 ea++;
3892 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3893 enaddr[3] = ((*ea & 0x1FE) >> 1);
3894 enaddr[4] = ((*ea & 0x1) << 7);
3895 ea++;
3896 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3897 enaddr[5] = ((*ea & 0x1FE) >> 1);
3898
3899 /*
3900 * In case that's not weird enough, we also need to reverse
3901 * the bits in each byte. This all actually makes more sense
3902 * if you think about the EEPROM storage as an array of bits
3903 * being shifted into bytes, but that's not how we're looking
3904 * at it here...
3905 */
3906 for (i = 0; i < 6 ;i++)
3907 enaddr[i] = bbr(enaddr[i]);
3908 }
3909
3910 /*
3911 * sip_mediastatus: [ifmedia interface function]
3912 *
3913 * Get the current interface media status.
3914 */
3915 static void
3916 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3917 {
3918 struct sip_softc *sc = ifp->if_softc;
3919
3920 if (!device_is_active(sc->sc_dev)) {
3921 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3922 ifmr->ifm_status = 0;
3923 return;
3924 }
3925 ether_mediastatus(ifp, ifmr);
3926 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3927 sc->sc_flowflags;
3928 }
3929