if_sip.c revision 1.164 1 /* $NetBSD: if_sip.c,v 1.164 2016/12/08 01:12:01 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.164 2016/12/08 01:12:01 ozaki-r Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rndsource.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997 char intrbuf[PCI_INTRSTR_LEN];
998
999 callout_init(&sc->sc_tick_ch, 0);
1000
1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 if (sip == NULL) {
1003 aprint_error("\n");
1004 panic("%s: impossible", __func__);
1005 }
1006 sc->sc_dev = self;
1007 sc->sc_gigabit = sip->sip_gigabit;
1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 aprint_naive("\n");
1027 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1028
1029 sc->sc_model = sip;
1030
1031 /*
1032 * XXX Work-around broken PXE firmware on some boards.
1033 *
1034 * The DP83815 shares an address decoder with the MEM BAR
1035 * and the ROM BAR. Make sure the ROM BAR is disabled,
1036 * so that memory mapped access works.
1037 */
1038 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1039 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1040 ~PCI_MAPREG_ROM_ENABLE);
1041
1042 /*
1043 * Map the device.
1044 */
1045 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1046 PCI_MAPREG_TYPE_IO, 0,
1047 &iot, &ioh, NULL, &iosz) == 0);
1048 if (sc->sc_gigabit) {
1049 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1050 switch (memtype) {
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1052 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1053 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1054 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1055 break;
1056 default:
1057 memh_valid = 0;
1058 }
1059 } else {
1060 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1061 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1062 &memt, &memh, NULL, &memsz) == 0);
1063 }
1064
1065 if (memh_valid) {
1066 sc->sc_st = memt;
1067 sc->sc_sh = memh;
1068 sc->sc_sz = memsz;
1069 } else if (ioh_valid) {
1070 sc->sc_st = iot;
1071 sc->sc_sh = ioh;
1072 sc->sc_sz = iosz;
1073 } else {
1074 aprint_error_dev(self, "unable to map device registers\n");
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 aprint_error(" at %s", intrstr);
1110 aprint_error("\n");
1111 sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 return;
1113 }
1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(sc->sc_dev,
1127 "unable to allocate control data, error = %d\n", error);
1128 sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 return;
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT)) != 0) {
1135 aprint_error_dev(sc->sc_dev,
1136 "unable to map control data, error = %d\n", error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(self, "unable to create control data DMA map"
1144 ", error = %d\n", error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 aprint_error_dev(self, "unable to load control data DMA map"
1152 ", error = %d\n", error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 aprint_error_dev(self, "unable to create tx DMA map %d"
1164 ", error = %d\n", i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 aprint_error_dev(self, "unable to create rx DMA map %d"
1176 ", error = %d\n", i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 SIP_SIS900_REV(sc,SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 SIP_SIS900_REV(sc,SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1209
1210 /*
1211 * Initialize the configuration register: aggressive PCI
1212 * bus request algorithm, default backoff, default OW timer,
1213 * default parity error detection.
1214 *
1215 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 * friends -- it affects packet data, not descriptors.
1217 */
1218 if (sc->sc_gigabit)
1219 sipcom_dp83820_attach(sc, pa);
1220
1221 /*
1222 * Initialize our media structures and probe the MII.
1223 */
1224 sc->sc_mii.mii_ifp = ifp;
1225 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 } else
1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 if_deferred_start_init(ifp, NULL);
1287 ether_ifattach(ifp, enaddr);
1288 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 sc->sc_prev.if_capenable = ifp->if_capenable;
1292 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1293 RND_TYPE_NET, RND_FLAG_DEFAULT);
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(sc->sc_dev), "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, device_xname(sc->sc_dev), "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 pmf_class_network_register(self, ifp);
1370 else
1371 aprint_error_dev(self, "couldn't establish power handler\n");
1372 }
1373
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376 uint64_t capenable)
1377 {
1378 struct m_tag *mtag;
1379 u_int32_t extsts;
1380 #ifdef DEBUG
1381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 /*
1384 * If VLANs are enabled and the packet has a VLAN tag, set
1385 * up the descriptor to encapsulate the packet for us.
1386 *
1387 * This apparently has to be on the last descriptor of
1388 * the packet.
1389 */
1390
1391 /*
1392 * Byte swapping is tricky. We need to provide the tag
1393 * in a network byte order. On a big-endian machine,
1394 * the byteorder is correct, but we need to swap it
1395 * anyway, because this will be undone by the outside
1396 * htole32(). That's why there must be an
1397 * unconditional swap instead of htons() inside.
1398 */
1399 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 sc->sc_txdescs[lasttx].sipd_extsts |=
1401 htole32(EXTSTS_VPKT |
1402 (bswap16(VLAN_TAG_VALUE(mtag)) &
1403 EXTSTS_VTCI));
1404 }
1405
1406 /*
1407 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 * checksumming, set up the descriptor to do this work
1409 * for us.
1410 *
1411 * This apparently has to be on the first descriptor of
1412 * the packet.
1413 *
1414 * Byte-swap constants so the compiler can optimize.
1415 */
1416 extsts = 0;
1417 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 extsts |= htole32(EXTSTS_IPPKT);
1421 }
1422 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 extsts |= htole32(EXTSTS_TCPPKT);
1426 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 extsts |= htole32(EXTSTS_UDPPKT);
1430 }
1431 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433
1434 /*
1435 * sip_start: [ifnet interface function]
1436 *
1437 * Start packet transmission on the interface.
1438 */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 struct sip_softc *sc = ifp->if_softc;
1443 struct mbuf *m0;
1444 struct mbuf *m;
1445 struct sip_txsoft *txs;
1446 bus_dmamap_t dmamap;
1447 int error, nexttx, lasttx, seg;
1448 int ofree = sc->sc_txfree;
1449 #if 0
1450 int firsttx = sc->sc_txnext;
1451 #endif
1452
1453 /*
1454 * If we've been told to pause, don't transmit any more packets.
1455 */
1456 if (!sc->sc_gigabit && sc->sc_paused)
1457 ifp->if_flags |= IFF_OACTIVE;
1458
1459 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 return;
1461
1462 /*
1463 * Loop through the send queue, setting up transmit descriptors
1464 * until we drain the queue, or use up all available transmit
1465 * descriptors.
1466 */
1467 for (;;) {
1468 /* Get a work queue entry. */
1469 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 break;
1472 }
1473
1474 /*
1475 * Grab a packet off the queue.
1476 */
1477 IFQ_POLL(&ifp->if_snd, m0);
1478 if (m0 == NULL)
1479 break;
1480 m = NULL;
1481
1482 dmamap = txs->txs_dmamap;
1483
1484 /*
1485 * Load the DMA map. If this fails, the packet either
1486 * didn't fit in the alloted number of segments, or we
1487 * were short on resources.
1488 */
1489 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 /* In the non-gigabit case, we'll copy and try again. */
1492 if (error != 0 && !sc->sc_gigabit) {
1493 MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 if (m == NULL) {
1495 printf("%s: unable to allocate Tx mbuf\n",
1496 device_xname(sc->sc_dev));
1497 break;
1498 }
1499 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 if (m0->m_pkthdr.len > MHLEN) {
1501 MCLGET(m, M_DONTWAIT);
1502 if ((m->m_flags & M_EXT) == 0) {
1503 printf("%s: unable to allocate Tx "
1504 "cluster\n",
1505 device_xname(sc->sc_dev));
1506 m_freem(m);
1507 break;
1508 }
1509 }
1510 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1514 if (error) {
1515 printf("%s: unable to load Tx buffer, error = "
1516 "%d\n", device_xname(sc->sc_dev), error);
1517 break;
1518 }
1519 } else if (error == EFBIG) {
1520 /*
1521 * For the too-many-segments case, we simply
1522 * report an error and drop the packet,
1523 * since we can't sanely copy a jumbo packet
1524 * to a single buffer.
1525 */
1526 printf("%s: Tx packet consumes too many DMA segments, "
1527 "dropping...\n", device_xname(sc->sc_dev));
1528 IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 m_freem(m0);
1530 continue;
1531 } else if (error != 0) {
1532 /*
1533 * Short on resources, just stop for now.
1534 */
1535 break;
1536 }
1537
1538 /*
1539 * Ensure we have enough descriptors free to describe
1540 * the packet. Note, we always reserve one descriptor
1541 * at the end of the ring as a termination point, to
1542 * prevent wrap-around.
1543 */
1544 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 /*
1546 * Not enough free descriptors to transmit this
1547 * packet. We haven't committed anything yet,
1548 * so just unload the DMA map, put the packet
1549 * back on the queue, and punt. Notify the upper
1550 * layer that there are not more slots left.
1551 *
1552 * XXX We could allocate an mbuf and copy, but
1553 * XXX is it worth it?
1554 */
1555 ifp->if_flags |= IFF_OACTIVE;
1556 bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 if (m != NULL)
1558 m_freem(m);
1559 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 break;
1561 }
1562
1563 IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 if (m != NULL) {
1565 m_freem(m0);
1566 m0 = m;
1567 }
1568
1569 /*
1570 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 */
1572
1573 /* Sync the DMA map. */
1574 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 BUS_DMASYNC_PREWRITE);
1576
1577 /*
1578 * Initialize the transmit descriptors.
1579 */
1580 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 seg < dmamap->dm_nsegs;
1582 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 /*
1584 * If this is the first descriptor we're
1585 * enqueueing, don't set the OWN bit just
1586 * yet. That could cause a race condition.
1587 * We'll do it below.
1588 */
1589 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32(dmamap->dm_segs[seg].ds_addr);
1591 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1593 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 lasttx = nexttx;
1596 }
1597
1598 /* Clear the MORE bit on the last segment. */
1599 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 htole32(~CMDSTS_MORE);
1601
1602 /*
1603 * If we're in the interrupt delay window, delay the
1604 * interrupt.
1605 */
1606 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 htole32(CMDSTS_INTR);
1610 sc->sc_txwin = 0;
1611 }
1612
1613 if (sc->sc_gigabit)
1614 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615
1616 /* Sync the descriptors we're using. */
1617 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1619
1620 /*
1621 * The entire packet is set up. Give the first descrptor
1622 * to the chip now.
1623 */
1624 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 htole32(CMDSTS_OWN);
1626 sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1628
1629 /*
1630 * Store a pointer to the packet so we can free it later,
1631 * and remember what txdirty will be once the packet is
1632 * done.
1633 */
1634 txs->txs_mbuf = m0;
1635 txs->txs_firstdesc = sc->sc_txnext;
1636 txs->txs_lastdesc = lasttx;
1637
1638 /* Advance the tx pointer. */
1639 sc->sc_txfree -= dmamap->dm_nsegs;
1640 sc->sc_txnext = nexttx;
1641
1642 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644
1645 /*
1646 * Pass the packet to any BPF listeners.
1647 */
1648 bpf_mtap(ifp, m0);
1649 }
1650
1651 if (txs == NULL || sc->sc_txfree == 0) {
1652 /* No more slots left; notify upper layer. */
1653 ifp->if_flags |= IFF_OACTIVE;
1654 }
1655
1656 if (sc->sc_txfree != ofree) {
1657 /*
1658 * Start the transmit process. Note, the manual says
1659 * that if there are no pending transmissions in the
1660 * chip's internal queue (indicated by TXE being clear),
1661 * then the driver software must set the TXDP to the
1662 * first descriptor to be transmitted. However, if we
1663 * do this, it causes serious performance degredation on
1664 * the DP83820 under load, not setting TXDP doesn't seem
1665 * to adversely affect the SiS 900 or DP83815.
1666 *
1667 * Well, I guess it wouldn't be the first time a manual
1668 * has lied -- and they could be speaking of the NULL-
1669 * terminated descriptor list case, rather than OWN-
1670 * terminated rings.
1671 */
1672 #if 0
1673 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 CR_TXE) == 0) {
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 SIP_CDTXADDR(sc, firsttx));
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 }
1679 #else
1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682
1683 /* Set a watchdog timer in case the chip flakes out. */
1684 /* Gigabit autonegotiation takes 5 seconds. */
1685 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 }
1687 }
1688
1689 /*
1690 * sip_watchdog: [ifnet interface function]
1691 *
1692 * Watchdog timer handler.
1693 */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 struct sip_softc *sc = ifp->if_softc;
1698
1699 /*
1700 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 * If we get a timeout, try and sweep up transmit descriptors.
1702 * If we manage to sweep them all up, ignore the lack of
1703 * interrupt.
1704 */
1705 sipcom_txintr(sc);
1706
1707 if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1709 ifp->if_oerrors++;
1710
1711 /* Reset the interface. */
1712 (void) sipcom_init(ifp);
1713 } else if (ifp->if_flags & IFF_DEBUG)
1714 printf("%s: recovered from device timeout\n",
1715 device_xname(sc->sc_dev));
1716
1717 /* Try to get more packets going. */
1718 sipcom_start(ifp);
1719 }
1720
1721 /* If the interface is up and running, only modify the receive
1722 * filter when setting promiscuous or debug mode. Otherwise fall
1723 * through to ether_ioctl, which will reset the chip.
1724 */
1725 static int
1726 sip_ifflags_cb(struct ethercom *ec)
1727 {
1728 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1729 == (sc)->sc_ethercom.ec_capenable) \
1730 && ((sc)->sc_prev.is_vlan == \
1731 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1732 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1733 struct ifnet *ifp = &ec->ec_if;
1734 struct sip_softc *sc = ifp->if_softc;
1735 int change = ifp->if_flags ^ sc->sc_if_flags;
1736
1737 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1738 !COMPARE_IC(sc, ifp))
1739 return ENETRESET;
1740 /* Set up the receive filter. */
1741 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1742 return 0;
1743 }
1744
1745 /*
1746 * sip_ioctl: [ifnet interface function]
1747 *
1748 * Handle control requests from the operator.
1749 */
1750 static int
1751 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1752 {
1753 struct sip_softc *sc = ifp->if_softc;
1754 struct ifreq *ifr = (struct ifreq *)data;
1755 int s, error;
1756
1757 s = splnet();
1758
1759 switch (cmd) {
1760 case SIOCSIFMEDIA:
1761 /* Flow control requires full-duplex mode. */
1762 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1763 (ifr->ifr_media & IFM_FDX) == 0)
1764 ifr->ifr_media &= ~IFM_ETH_FMASK;
1765
1766 /* XXX */
1767 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1768 ifr->ifr_media &= ~IFM_ETH_FMASK;
1769 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1770 if (sc->sc_gigabit &&
1771 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1772 /* We can do both TXPAUSE and RXPAUSE. */
1773 ifr->ifr_media |=
1774 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1775 } else if (ifr->ifr_media & IFM_FLOW) {
1776 /*
1777 * Both TXPAUSE and RXPAUSE must be set.
1778 * (SiS900 and DP83815 don't have PAUSE_ASYM
1779 * feature.)
1780 *
1781 * XXX Can SiS900 and DP83815 send PAUSE?
1782 */
1783 ifr->ifr_media |=
1784 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1785 }
1786 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1787 }
1788 /*FALLTHROUGH*/
1789 default:
1790 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1791 break;
1792
1793 error = 0;
1794
1795 if (cmd == SIOCSIFCAP)
1796 error = (*ifp->if_init)(ifp);
1797 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1798 ;
1799 else if (ifp->if_flags & IFF_RUNNING) {
1800 /*
1801 * Multicast list has changed; set the hardware filter
1802 * accordingly.
1803 */
1804 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1805 }
1806 break;
1807 }
1808
1809 /* Try to get more packets going. */
1810 sipcom_start(ifp);
1811
1812 sc->sc_if_flags = ifp->if_flags;
1813 splx(s);
1814 return (error);
1815 }
1816
1817 /*
1818 * sip_intr:
1819 *
1820 * Interrupt service routine.
1821 */
1822 static int
1823 sipcom_intr(void *arg)
1824 {
1825 struct sip_softc *sc = arg;
1826 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1827 u_int32_t isr;
1828 int handled = 0;
1829
1830 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1831 return 0;
1832
1833 /* Disable interrupts. */
1834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1835
1836 for (;;) {
1837 /* Reading clears interrupt. */
1838 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1839 if ((isr & sc->sc_imr) == 0)
1840 break;
1841
1842 rnd_add_uint32(&sc->rnd_source, isr);
1843
1844 handled = 1;
1845
1846 if ((ifp->if_flags & IFF_RUNNING) == 0)
1847 break;
1848
1849 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1850 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1851
1852 /* Grab any new packets. */
1853 (*sc->sc_rxintr)(sc);
1854
1855 if (isr & ISR_RXORN) {
1856 printf("%s: receive FIFO overrun\n",
1857 device_xname(sc->sc_dev));
1858
1859 /* XXX adjust rx_drain_thresh? */
1860 }
1861
1862 if (isr & ISR_RXIDLE) {
1863 printf("%s: receive ring overrun\n",
1864 device_xname(sc->sc_dev));
1865
1866 /* Get the receive process going again. */
1867 bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1869 bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 SIP_CR, CR_RXE);
1871 }
1872 }
1873
1874 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1875 #ifdef SIP_EVENT_COUNTERS
1876 if (isr & ISR_TXDESC)
1877 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1878 else if (isr & ISR_TXIDLE)
1879 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1880 #endif
1881
1882 /* Sweep up transmit descriptors. */
1883 sipcom_txintr(sc);
1884
1885 if (isr & ISR_TXURN) {
1886 u_int32_t thresh;
1887 int txfifo_size = (sc->sc_gigabit)
1888 ? DP83820_SIP_TXFIFO_SIZE
1889 : OTHER_SIP_TXFIFO_SIZE;
1890
1891 printf("%s: transmit FIFO underrun",
1892 device_xname(sc->sc_dev));
1893 thresh = sc->sc_tx_drain_thresh + 1;
1894 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1895 && (thresh * 32) <= (txfifo_size -
1896 (sc->sc_tx_fill_thresh * 32))) {
1897 printf("; increasing Tx drain "
1898 "threshold to %u bytes\n",
1899 thresh * 32);
1900 sc->sc_tx_drain_thresh = thresh;
1901 (void) sipcom_init(ifp);
1902 } else {
1903 (void) sipcom_init(ifp);
1904 printf("\n");
1905 }
1906 }
1907 }
1908
1909 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1910 if (isr & ISR_PAUSE_ST) {
1911 sc->sc_paused = 1;
1912 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1913 ifp->if_flags |= IFF_OACTIVE;
1914 }
1915 if (isr & ISR_PAUSE_END) {
1916 sc->sc_paused = 0;
1917 ifp->if_flags &= ~IFF_OACTIVE;
1918 }
1919 }
1920
1921 if (isr & ISR_HIBERR) {
1922 int want_init = 0;
1923
1924 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1925
1926 #define PRINTERR(bit, str) \
1927 do { \
1928 if ((isr & (bit)) != 0) { \
1929 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1930 printf("%s: %s\n", \
1931 device_xname(sc->sc_dev), str); \
1932 want_init = 1; \
1933 } \
1934 } while (/*CONSTCOND*/0)
1935
1936 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1937 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1938 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1939 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1940 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1941 /*
1942 * Ignore:
1943 * Tx reset complete
1944 * Rx reset complete
1945 */
1946 if (want_init)
1947 (void) sipcom_init(ifp);
1948 #undef PRINTERR
1949 }
1950 }
1951
1952 /* Re-enable interrupts. */
1953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1954
1955 /* Try to get more packets going. */
1956 if_schedule_deferred_start(ifp);
1957
1958 return (handled);
1959 }
1960
1961 /*
1962 * sip_txintr:
1963 *
1964 * Helper; handle transmit interrupts.
1965 */
1966 static void
1967 sipcom_txintr(struct sip_softc *sc)
1968 {
1969 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 struct sip_txsoft *txs;
1971 u_int32_t cmdsts;
1972
1973 if (sc->sc_paused == 0)
1974 ifp->if_flags &= ~IFF_OACTIVE;
1975
1976 /*
1977 * Go through our Tx list and free mbufs for those
1978 * frames which have been transmitted.
1979 */
1980 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1983
1984 cmdsts = le32toh(*sipd_cmdsts(sc,
1985 &sc->sc_txdescs[txs->txs_lastdesc]));
1986 if (cmdsts & CMDSTS_OWN)
1987 break;
1988
1989 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1990
1991 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1992
1993 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1994 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1995 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1996 m_freem(txs->txs_mbuf);
1997 txs->txs_mbuf = NULL;
1998
1999 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2000
2001 /*
2002 * Check for errors and collisions.
2003 */
2004 if (cmdsts &
2005 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2006 ifp->if_oerrors++;
2007 if (cmdsts & CMDSTS_Tx_EC)
2008 ifp->if_collisions += 16;
2009 if (ifp->if_flags & IFF_DEBUG) {
2010 if (cmdsts & CMDSTS_Tx_ED)
2011 printf("%s: excessive deferral\n",
2012 device_xname(sc->sc_dev));
2013 if (cmdsts & CMDSTS_Tx_EC)
2014 printf("%s: excessive collisions\n",
2015 device_xname(sc->sc_dev));
2016 }
2017 } else {
2018 /* Packet was transmitted successfully. */
2019 ifp->if_opackets++;
2020 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2021 }
2022 }
2023
2024 /*
2025 * If there are no more pending transmissions, cancel the watchdog
2026 * timer.
2027 */
2028 if (txs == NULL) {
2029 ifp->if_timer = 0;
2030 sc->sc_txwin = 0;
2031 }
2032 }
2033
2034 /*
2035 * gsip_rxintr:
2036 *
2037 * Helper; handle receive interrupts on gigabit parts.
2038 */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_rxsoft *rxs;
2044 struct mbuf *m;
2045 u_int32_t cmdsts, extsts;
2046 int i, len;
2047
2048 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 rxs = &sc->sc_rxsoft[i];
2050
2051 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052
2053 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2054 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2055 len = CMDSTS_SIZE(sc, cmdsts);
2056
2057 /*
2058 * NOTE: OWN is set if owned by _consumer_. We're the
2059 * consumer of the receive ring, so if the bit is clear,
2060 * we have processed all of the packets.
2061 */
2062 if ((cmdsts & CMDSTS_OWN) == 0) {
2063 /*
2064 * We have processed all of the receive buffers.
2065 */
2066 break;
2067 }
2068
2069 if (__predict_false(sc->sc_rxdiscard)) {
2070 sip_init_rxdesc(sc, i);
2071 if ((cmdsts & CMDSTS_MORE) == 0) {
2072 /* Reset our state. */
2073 sc->sc_rxdiscard = 0;
2074 }
2075 continue;
2076 }
2077
2078 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2079 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080
2081 m = rxs->rxs_mbuf;
2082
2083 /*
2084 * Add a new receive buffer to the ring.
2085 */
2086 if (sipcom_add_rxbuf(sc, i) != 0) {
2087 /*
2088 * Failed, throw away what we've done so
2089 * far, and discard the rest of the packet.
2090 */
2091 ifp->if_ierrors++;
2092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2094 sip_init_rxdesc(sc, i);
2095 if (cmdsts & CMDSTS_MORE)
2096 sc->sc_rxdiscard = 1;
2097 if (sc->sc_rxhead != NULL)
2098 m_freem(sc->sc_rxhead);
2099 sip_rxchain_reset(sc);
2100 continue;
2101 }
2102
2103 sip_rxchain_link(sc, m);
2104
2105 m->m_len = len;
2106
2107 /*
2108 * If this is not the end of the packet, keep
2109 * looking.
2110 */
2111 if (cmdsts & CMDSTS_MORE) {
2112 sc->sc_rxlen += len;
2113 continue;
2114 }
2115
2116 /*
2117 * Okay, we have the entire packet now. The chip includes
2118 * the FCS, so we need to trim it.
2119 */
2120 m->m_len -= ETHER_CRC_LEN;
2121
2122 *sc->sc_rxtailp = NULL;
2123 len = m->m_len + sc->sc_rxlen;
2124 m = sc->sc_rxhead;
2125
2126 sip_rxchain_reset(sc);
2127
2128 /*
2129 * If an error occurred, update stats and drop the packet.
2130 */
2131 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2132 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2133 ifp->if_ierrors++;
2134 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2135 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2136 /* Receive overrun handled elsewhere. */
2137 printf("%s: receive descriptor error\n",
2138 device_xname(sc->sc_dev));
2139 }
2140 #define PRINTERR(bit, str) \
2141 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2142 (cmdsts & (bit)) != 0) \
2143 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2144 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2145 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2146 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2147 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2148 #undef PRINTERR
2149 m_freem(m);
2150 continue;
2151 }
2152
2153 /*
2154 * If the packet is small enough to fit in a
2155 * single header mbuf, allocate one and copy
2156 * the data into it. This greatly reduces
2157 * memory consumption when we receive lots
2158 * of small packets.
2159 */
2160 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2161 struct mbuf *nm;
2162 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2163 if (nm == NULL) {
2164 ifp->if_ierrors++;
2165 m_freem(m);
2166 continue;
2167 }
2168 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2169 nm->m_data += 2;
2170 nm->m_pkthdr.len = nm->m_len = len;
2171 m_copydata(m, 0, len, mtod(nm, void *));
2172 m_freem(m);
2173 m = nm;
2174 }
2175 #ifndef __NO_STRICT_ALIGNMENT
2176 else {
2177 /*
2178 * The DP83820's receive buffers must be 4-byte
2179 * aligned. But this means that the data after
2180 * the Ethernet header is misaligned. To compensate,
2181 * we have artificially shortened the buffer size
2182 * in the descriptor, and we do an overlapping copy
2183 * of the data two bytes further in (in the first
2184 * buffer of the chain only).
2185 */
2186 memmove(mtod(m, char *) + 2, mtod(m, void *),
2187 m->m_len);
2188 m->m_data += 2;
2189 }
2190 #endif /* ! __NO_STRICT_ALIGNMENT */
2191
2192 /*
2193 * If VLANs are enabled, VLAN packets have been unwrapped
2194 * for us. Associate the tag with the packet.
2195 */
2196
2197 /*
2198 * Again, byte swapping is tricky. Hardware provided
2199 * the tag in the network byte order, but extsts was
2200 * passed through le32toh() in the meantime. On a
2201 * big-endian machine, we need to swap it again. On a
2202 * little-endian machine, we need to convert from the
2203 * network to host byte order. This means that we must
2204 * swap it in any case, so unconditional swap instead
2205 * of htons() is used.
2206 */
2207 if ((extsts & EXTSTS_VPKT) != 0) {
2208 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2209 continue);
2210 }
2211
2212 /*
2213 * Set the incoming checksum information for the
2214 * packet.
2215 */
2216 if ((extsts & EXTSTS_IPPKT) != 0) {
2217 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2219 if (extsts & EXTSTS_Rx_IPERR)
2220 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2221 if (extsts & EXTSTS_TCPPKT) {
2222 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2223 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2224 if (extsts & EXTSTS_Rx_TCPERR)
2225 m->m_pkthdr.csum_flags |=
2226 M_CSUM_TCP_UDP_BAD;
2227 } else if (extsts & EXTSTS_UDPPKT) {
2228 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2229 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2230 if (extsts & EXTSTS_Rx_UDPERR)
2231 m->m_pkthdr.csum_flags |=
2232 M_CSUM_TCP_UDP_BAD;
2233 }
2234 }
2235
2236 ifp->if_ipackets++;
2237 m_set_rcvif(m, ifp);
2238 m->m_pkthdr.len = len;
2239
2240 /*
2241 * Pass this up to any BPF listeners, but only
2242 * pass if up the stack if it's for us.
2243 */
2244 bpf_mtap(ifp, m);
2245
2246 /* Pass it on. */
2247 if_percpuq_enqueue(ifp->if_percpuq, m);
2248 }
2249
2250 /* Update the receive pointer. */
2251 sc->sc_rxptr = i;
2252 }
2253
2254 /*
2255 * sip_rxintr:
2256 *
2257 * Helper; handle receive interrupts on 10/100 parts.
2258 */
2259 static void
2260 sip_rxintr(struct sip_softc *sc)
2261 {
2262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2263 struct sip_rxsoft *rxs;
2264 struct mbuf *m;
2265 u_int32_t cmdsts;
2266 int i, len;
2267
2268 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2269 rxs = &sc->sc_rxsoft[i];
2270
2271 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2272
2273 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2274
2275 /*
2276 * NOTE: OWN is set if owned by _consumer_. We're the
2277 * consumer of the receive ring, so if the bit is clear,
2278 * we have processed all of the packets.
2279 */
2280 if ((cmdsts & CMDSTS_OWN) == 0) {
2281 /*
2282 * We have processed all of the receive buffers.
2283 */
2284 break;
2285 }
2286
2287 /*
2288 * If any collisions were seen on the wire, count one.
2289 */
2290 if (cmdsts & CMDSTS_Rx_COL)
2291 ifp->if_collisions++;
2292
2293 /*
2294 * If an error occurred, update stats, clear the status
2295 * word, and leave the packet buffer in place. It will
2296 * simply be reused the next time the ring comes around.
2297 */
2298 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2299 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2300 ifp->if_ierrors++;
2301 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2302 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2303 /* Receive overrun handled elsewhere. */
2304 printf("%s: receive descriptor error\n",
2305 device_xname(sc->sc_dev));
2306 }
2307 #define PRINTERR(bit, str) \
2308 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2309 (cmdsts & (bit)) != 0) \
2310 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2311 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2312 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2313 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2314 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2315 #undef PRINTERR
2316 sip_init_rxdesc(sc, i);
2317 continue;
2318 }
2319
2320 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2321 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2322
2323 /*
2324 * No errors; receive the packet. Note, the SiS 900
2325 * includes the CRC with every packet.
2326 */
2327 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2328
2329 #ifdef __NO_STRICT_ALIGNMENT
2330 /*
2331 * If the packet is small enough to fit in a
2332 * single header mbuf, allocate one and copy
2333 * the data into it. This greatly reduces
2334 * memory consumption when we receive lots
2335 * of small packets.
2336 *
2337 * Otherwise, we add a new buffer to the receive
2338 * chain. If this fails, we drop the packet and
2339 * recycle the old buffer.
2340 */
2341 if (sip_copy_small != 0 && len <= MHLEN) {
2342 MGETHDR(m, M_DONTWAIT, MT_DATA);
2343 if (m == NULL)
2344 goto dropit;
2345 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2346 memcpy(mtod(m, void *),
2347 mtod(rxs->rxs_mbuf, void *), len);
2348 sip_init_rxdesc(sc, i);
2349 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2350 rxs->rxs_dmamap->dm_mapsize,
2351 BUS_DMASYNC_PREREAD);
2352 } else {
2353 m = rxs->rxs_mbuf;
2354 if (sipcom_add_rxbuf(sc, i) != 0) {
2355 dropit:
2356 ifp->if_ierrors++;
2357 sip_init_rxdesc(sc, i);
2358 bus_dmamap_sync(sc->sc_dmat,
2359 rxs->rxs_dmamap, 0,
2360 rxs->rxs_dmamap->dm_mapsize,
2361 BUS_DMASYNC_PREREAD);
2362 continue;
2363 }
2364 }
2365 #else
2366 /*
2367 * The SiS 900's receive buffers must be 4-byte aligned.
2368 * But this means that the data after the Ethernet header
2369 * is misaligned. We must allocate a new buffer and
2370 * copy the data, shifted forward 2 bytes.
2371 */
2372 MGETHDR(m, M_DONTWAIT, MT_DATA);
2373 if (m == NULL) {
2374 dropit:
2375 ifp->if_ierrors++;
2376 sip_init_rxdesc(sc, i);
2377 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2378 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2379 continue;
2380 }
2381 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2382 if (len > (MHLEN - 2)) {
2383 MCLGET(m, M_DONTWAIT);
2384 if ((m->m_flags & M_EXT) == 0) {
2385 m_freem(m);
2386 goto dropit;
2387 }
2388 }
2389 m->m_data += 2;
2390
2391 /*
2392 * Note that we use clusters for incoming frames, so the
2393 * buffer is virtually contiguous.
2394 */
2395 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2396
2397 /* Allow the receive descriptor to continue using its mbuf. */
2398 sip_init_rxdesc(sc, i);
2399 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2400 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2401 #endif /* __NO_STRICT_ALIGNMENT */
2402
2403 ifp->if_ipackets++;
2404 m_set_rcvif(m, ifp);
2405 m->m_pkthdr.len = m->m_len = len;
2406
2407 /*
2408 * Pass this up to any BPF listeners, but only
2409 * pass if up the stack if it's for us.
2410 */
2411 bpf_mtap(ifp, m);
2412
2413 /* Pass it on. */
2414 if_percpuq_enqueue(ifp->if_percpuq, m);
2415 }
2416
2417 /* Update the receive pointer. */
2418 sc->sc_rxptr = i;
2419 }
2420
2421 /*
2422 * sip_tick:
2423 *
2424 * One second timer, used to tick the MII.
2425 */
2426 static void
2427 sipcom_tick(void *arg)
2428 {
2429 struct sip_softc *sc = arg;
2430 int s;
2431
2432 s = splnet();
2433 #ifdef SIP_EVENT_COUNTERS
2434 if (sc->sc_gigabit) {
2435 /* Read PAUSE related counts from MIB registers. */
2436 sc->sc_ev_rxpause.ev_count +=
2437 bus_space_read_4(sc->sc_st, sc->sc_sh,
2438 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2439 sc->sc_ev_txpause.ev_count +=
2440 bus_space_read_4(sc->sc_st, sc->sc_sh,
2441 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2442 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2443 }
2444 #endif /* SIP_EVENT_COUNTERS */
2445 mii_tick(&sc->sc_mii);
2446 splx(s);
2447
2448 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2449 }
2450
2451 /*
2452 * sip_reset:
2453 *
2454 * Perform a soft reset on the SiS 900.
2455 */
2456 static bool
2457 sipcom_reset(struct sip_softc *sc)
2458 {
2459 bus_space_tag_t st = sc->sc_st;
2460 bus_space_handle_t sh = sc->sc_sh;
2461 int i;
2462
2463 bus_space_write_4(st, sh, SIP_IER, 0);
2464 bus_space_write_4(st, sh, SIP_IMR, 0);
2465 bus_space_write_4(st, sh, SIP_RFCR, 0);
2466 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2467
2468 for (i = 0; i < SIP_TIMEOUT; i++) {
2469 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2470 break;
2471 delay(2);
2472 }
2473
2474 if (i == SIP_TIMEOUT) {
2475 printf("%s: reset failed to complete\n",
2476 device_xname(sc->sc_dev));
2477 return false;
2478 }
2479
2480 delay(1000);
2481
2482 if (sc->sc_gigabit) {
2483 /*
2484 * Set the general purpose I/O bits. Do it here in case we
2485 * need to have GPIO set up to talk to the media interface.
2486 */
2487 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2488 delay(1000);
2489 }
2490 return true;
2491 }
2492
2493 static void
2494 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2495 {
2496 u_int32_t reg;
2497 bus_space_tag_t st = sc->sc_st;
2498 bus_space_handle_t sh = sc->sc_sh;
2499 /*
2500 * Initialize the VLAN/IP receive control register.
2501 * We enable checksum computation on all incoming
2502 * packets, and do not reject packets w/ bad checksums.
2503 */
2504 reg = 0;
2505 if (capenable &
2506 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2507 reg |= VRCR_IPEN;
2508 if (VLAN_ATTACHED(&sc->sc_ethercom))
2509 reg |= VRCR_VTDEN|VRCR_VTREN;
2510 bus_space_write_4(st, sh, SIP_VRCR, reg);
2511
2512 /*
2513 * Initialize the VLAN/IP transmit control register.
2514 * We enable outgoing checksum computation on a
2515 * per-packet basis.
2516 */
2517 reg = 0;
2518 if (capenable &
2519 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2520 reg |= VTCR_PPCHK;
2521 if (VLAN_ATTACHED(&sc->sc_ethercom))
2522 reg |= VTCR_VPPTI;
2523 bus_space_write_4(st, sh, SIP_VTCR, reg);
2524
2525 /*
2526 * If we're using VLANs, initialize the VLAN data register.
2527 * To understand why we bswap the VLAN Ethertype, see section
2528 * 4.2.36 of the DP83820 manual.
2529 */
2530 if (VLAN_ATTACHED(&sc->sc_ethercom))
2531 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2532 }
2533
2534 /*
2535 * sip_init: [ ifnet interface function ]
2536 *
2537 * Initialize the interface. Must be called at splnet().
2538 */
2539 static int
2540 sipcom_init(struct ifnet *ifp)
2541 {
2542 struct sip_softc *sc = ifp->if_softc;
2543 bus_space_tag_t st = sc->sc_st;
2544 bus_space_handle_t sh = sc->sc_sh;
2545 struct sip_txsoft *txs;
2546 struct sip_rxsoft *rxs;
2547 struct sip_desc *sipd;
2548 int i, error = 0;
2549
2550 if (device_is_active(sc->sc_dev)) {
2551 /*
2552 * Cancel any pending I/O.
2553 */
2554 sipcom_stop(ifp, 0);
2555 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2556 !device_is_active(sc->sc_dev))
2557 return 0;
2558
2559 /*
2560 * Reset the chip to a known state.
2561 */
2562 if (!sipcom_reset(sc))
2563 return EBUSY;
2564
2565 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2566 /*
2567 * DP83815 manual, page 78:
2568 * 4.4 Recommended Registers Configuration
2569 * For optimum performance of the DP83815, version noted
2570 * as DP83815CVNG (SRR = 203h), the listed register
2571 * modifications must be followed in sequence...
2572 *
2573 * It's not clear if this should be 302h or 203h because that
2574 * chip name is listed as SRR 302h in the description of the
2575 * SRR register. However, my revision 302h DP83815 on the
2576 * Netgear FA311 purchased in 02/2001 needs these settings
2577 * to avoid tons of errors in AcceptPerfectMatch (non-
2578 * IFF_PROMISC) mode. I do not know if other revisions need
2579 * this set or not. [briggs -- 09 March 2001]
2580 *
2581 * Note that only the low-order 12 bits of 0xe4 are documented
2582 * and that this sets reserved bits in that register.
2583 */
2584 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2585
2586 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2587 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2588 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2589 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2590
2591 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2592 }
2593
2594 /*
2595 * Initialize the transmit descriptor ring.
2596 */
2597 for (i = 0; i < sc->sc_ntxdesc; i++) {
2598 sipd = &sc->sc_txdescs[i];
2599 memset(sipd, 0, sizeof(struct sip_desc));
2600 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2601 }
2602 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2603 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2604 sc->sc_txfree = sc->sc_ntxdesc;
2605 sc->sc_txnext = 0;
2606 sc->sc_txwin = 0;
2607
2608 /*
2609 * Initialize the transmit job descriptors.
2610 */
2611 SIMPLEQ_INIT(&sc->sc_txfreeq);
2612 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2613 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2614 txs = &sc->sc_txsoft[i];
2615 txs->txs_mbuf = NULL;
2616 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2617 }
2618
2619 /*
2620 * Initialize the receive descriptor and receive job
2621 * descriptor rings.
2622 */
2623 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2624 rxs = &sc->sc_rxsoft[i];
2625 if (rxs->rxs_mbuf == NULL) {
2626 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2627 printf("%s: unable to allocate or map rx "
2628 "buffer %d, error = %d\n",
2629 device_xname(sc->sc_dev), i, error);
2630 /*
2631 * XXX Should attempt to run with fewer receive
2632 * XXX buffers instead of just failing.
2633 */
2634 sipcom_rxdrain(sc);
2635 goto out;
2636 }
2637 } else
2638 sip_init_rxdesc(sc, i);
2639 }
2640 sc->sc_rxptr = 0;
2641 sc->sc_rxdiscard = 0;
2642 sip_rxchain_reset(sc);
2643
2644 /*
2645 * Set the configuration register; it's already initialized
2646 * in sip_attach().
2647 */
2648 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2649
2650 /*
2651 * Initialize the prototype TXCFG register.
2652 */
2653 if (sc->sc_gigabit) {
2654 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2655 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2656 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2657 SIP_SIS900_REV(sc, SIS_REV_960) ||
2658 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2659 (sc->sc_cfg & CFG_EDBMASTEN)) {
2660 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2661 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2662 } else {
2663 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2664 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2665 }
2666
2667 sc->sc_txcfg |= TXCFG_ATP |
2668 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2669 sc->sc_tx_drain_thresh;
2670 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2671
2672 /*
2673 * Initialize the receive drain threshold if we have never
2674 * done so.
2675 */
2676 if (sc->sc_rx_drain_thresh == 0) {
2677 /*
2678 * XXX This value should be tuned. This is set to the
2679 * maximum of 248 bytes, and we may be able to improve
2680 * performance by decreasing it (although we should never
2681 * set this value lower than 2; 14 bytes are required to
2682 * filter the packet).
2683 */
2684 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2685 }
2686
2687 /*
2688 * Initialize the prototype RXCFG register.
2689 */
2690 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2691 /*
2692 * Accept long packets (including FCS) so we can handle
2693 * 802.1q-tagged frames and jumbo frames properly.
2694 */
2695 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2696 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2697 sc->sc_rxcfg |= RXCFG_ALP;
2698
2699 /*
2700 * Checksum offloading is disabled if the user selects an MTU
2701 * larger than 8109. (FreeBSD says 8152, but there is emperical
2702 * evidence that >8109 does not work on some boards, such as the
2703 * Planex GN-1000TE).
2704 */
2705 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2706 (ifp->if_capenable &
2707 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2708 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2709 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2710 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2711 "disabled.\n", device_xname(sc->sc_dev));
2712 ifp->if_capenable &=
2713 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2714 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2715 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2716 ifp->if_csum_flags_tx = 0;
2717 ifp->if_csum_flags_rx = 0;
2718 }
2719
2720 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2721
2722 if (sc->sc_gigabit)
2723 sipcom_dp83820_init(sc, ifp->if_capenable);
2724
2725 /*
2726 * Give the transmit and receive rings to the chip.
2727 */
2728 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2729 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2730
2731 /*
2732 * Initialize the interrupt mask.
2733 */
2734 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2735 sc->sc_bits.b_isr_sserr |
2736 sc->sc_bits.b_isr_rmabt |
2737 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2738 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2739 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2740
2741 /* Set up the receive filter. */
2742 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2743
2744 /*
2745 * Tune sc_rx_flow_thresh.
2746 * XXX "More than 8KB" is too short for jumbo frames.
2747 * XXX TODO: Threshold value should be user-settable.
2748 */
2749 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2750 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2751 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2752
2753 /*
2754 * Set the current media. Do this after initializing the prototype
2755 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2756 * control.
2757 */
2758 if ((error = ether_mediachange(ifp)) != 0)
2759 goto out;
2760
2761 /*
2762 * Set the interrupt hold-off timer to 100us.
2763 */
2764 if (sc->sc_gigabit)
2765 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2766
2767 /*
2768 * Enable interrupts.
2769 */
2770 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2771
2772 /*
2773 * Start the transmit and receive processes.
2774 */
2775 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2776
2777 /*
2778 * Start the one second MII clock.
2779 */
2780 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2781
2782 /*
2783 * ...all done!
2784 */
2785 ifp->if_flags |= IFF_RUNNING;
2786 ifp->if_flags &= ~IFF_OACTIVE;
2787 sc->sc_if_flags = ifp->if_flags;
2788 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2789 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2790 sc->sc_prev.if_capenable = ifp->if_capenable;
2791
2792 out:
2793 if (error)
2794 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2795 return (error);
2796 }
2797
2798 /*
2799 * sip_drain:
2800 *
2801 * Drain the receive queue.
2802 */
2803 static void
2804 sipcom_rxdrain(struct sip_softc *sc)
2805 {
2806 struct sip_rxsoft *rxs;
2807 int i;
2808
2809 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2810 rxs = &sc->sc_rxsoft[i];
2811 if (rxs->rxs_mbuf != NULL) {
2812 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2813 m_freem(rxs->rxs_mbuf);
2814 rxs->rxs_mbuf = NULL;
2815 }
2816 }
2817 }
2818
2819 /*
2820 * sip_stop: [ ifnet interface function ]
2821 *
2822 * Stop transmission on the interface.
2823 */
2824 static void
2825 sipcom_stop(struct ifnet *ifp, int disable)
2826 {
2827 struct sip_softc *sc = ifp->if_softc;
2828 bus_space_tag_t st = sc->sc_st;
2829 bus_space_handle_t sh = sc->sc_sh;
2830 struct sip_txsoft *txs;
2831 u_int32_t cmdsts = 0; /* DEBUG */
2832
2833 /*
2834 * Stop the one second clock.
2835 */
2836 callout_stop(&sc->sc_tick_ch);
2837
2838 /* Down the MII. */
2839 mii_down(&sc->sc_mii);
2840
2841 if (device_is_active(sc->sc_dev)) {
2842 /*
2843 * Disable interrupts.
2844 */
2845 bus_space_write_4(st, sh, SIP_IER, 0);
2846
2847 /*
2848 * Stop receiver and transmitter.
2849 */
2850 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2851 }
2852
2853 /*
2854 * Release any queued transmit buffers.
2855 */
2856 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2857 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2858 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2859 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2860 CMDSTS_INTR) == 0)
2861 printf("%s: sip_stop: last descriptor does not "
2862 "have INTR bit set\n", device_xname(sc->sc_dev));
2863 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2864 #ifdef DIAGNOSTIC
2865 if (txs->txs_mbuf == NULL) {
2866 printf("%s: dirty txsoft with no mbuf chain\n",
2867 device_xname(sc->sc_dev));
2868 panic("sip_stop");
2869 }
2870 #endif
2871 cmdsts |= /* DEBUG */
2872 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2873 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2874 m_freem(txs->txs_mbuf);
2875 txs->txs_mbuf = NULL;
2876 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2877 }
2878
2879 /*
2880 * Mark the interface down and cancel the watchdog timer.
2881 */
2882 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2883 ifp->if_timer = 0;
2884
2885 if (disable)
2886 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2887
2888 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2889 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2890 printf("%s: sip_stop: no INTR bits set in dirty tx "
2891 "descriptors\n", device_xname(sc->sc_dev));
2892 }
2893
2894 /*
2895 * sip_read_eeprom:
2896 *
2897 * Read data from the serial EEPROM.
2898 */
2899 static void
2900 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2901 u_int16_t *data)
2902 {
2903 bus_space_tag_t st = sc->sc_st;
2904 bus_space_handle_t sh = sc->sc_sh;
2905 u_int16_t reg;
2906 int i, x;
2907
2908 for (i = 0; i < wordcnt; i++) {
2909 /* Send CHIP SELECT. */
2910 reg = EROMAR_EECS;
2911 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2912
2913 /* Shift in the READ opcode. */
2914 for (x = 3; x > 0; x--) {
2915 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2916 reg |= EROMAR_EEDI;
2917 else
2918 reg &= ~EROMAR_EEDI;
2919 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920 bus_space_write_4(st, sh, SIP_EROMAR,
2921 reg | EROMAR_EESK);
2922 delay(4);
2923 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 delay(4);
2925 }
2926
2927 /* Shift in address. */
2928 for (x = 6; x > 0; x--) {
2929 if ((word + i) & (1 << (x - 1)))
2930 reg |= EROMAR_EEDI;
2931 else
2932 reg &= ~EROMAR_EEDI;
2933 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 bus_space_write_4(st, sh, SIP_EROMAR,
2935 reg | EROMAR_EESK);
2936 delay(4);
2937 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2938 delay(4);
2939 }
2940
2941 /* Shift out data. */
2942 reg = EROMAR_EECS;
2943 data[i] = 0;
2944 for (x = 16; x > 0; x--) {
2945 bus_space_write_4(st, sh, SIP_EROMAR,
2946 reg | EROMAR_EESK);
2947 delay(4);
2948 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2949 data[i] |= (1 << (x - 1));
2950 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2951 delay(4);
2952 }
2953
2954 /* Clear CHIP SELECT. */
2955 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2956 delay(4);
2957 }
2958 }
2959
2960 /*
2961 * sipcom_add_rxbuf:
2962 *
2963 * Add a receive buffer to the indicated descriptor.
2964 */
2965 static int
2966 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2967 {
2968 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2969 struct mbuf *m;
2970 int error;
2971
2972 MGETHDR(m, M_DONTWAIT, MT_DATA);
2973 if (m == NULL)
2974 return (ENOBUFS);
2975 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2976
2977 MCLGET(m, M_DONTWAIT);
2978 if ((m->m_flags & M_EXT) == 0) {
2979 m_freem(m);
2980 return (ENOBUFS);
2981 }
2982
2983 /* XXX I don't believe this is necessary. --dyoung */
2984 if (sc->sc_gigabit)
2985 m->m_len = sc->sc_parm->p_rxbuf_len;
2986
2987 if (rxs->rxs_mbuf != NULL)
2988 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2989
2990 rxs->rxs_mbuf = m;
2991
2992 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2993 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2994 BUS_DMA_READ|BUS_DMA_NOWAIT);
2995 if (error) {
2996 printf("%s: can't load rx DMA map %d, error = %d\n",
2997 device_xname(sc->sc_dev), idx, error);
2998 panic("%s", __func__); /* XXX */
2999 }
3000
3001 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3002 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3003
3004 sip_init_rxdesc(sc, idx);
3005
3006 return (0);
3007 }
3008
3009 /*
3010 * sip_sis900_set_filter:
3011 *
3012 * Set up the receive filter.
3013 */
3014 static void
3015 sipcom_sis900_set_filter(struct sip_softc *sc)
3016 {
3017 bus_space_tag_t st = sc->sc_st;
3018 bus_space_handle_t sh = sc->sc_sh;
3019 struct ethercom *ec = &sc->sc_ethercom;
3020 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3021 struct ether_multi *enm;
3022 const u_int8_t *cp;
3023 struct ether_multistep step;
3024 u_int32_t crc, mchash[16];
3025
3026 /*
3027 * Initialize the prototype RFCR.
3028 */
3029 sc->sc_rfcr = RFCR_RFEN;
3030 if (ifp->if_flags & IFF_BROADCAST)
3031 sc->sc_rfcr |= RFCR_AAB;
3032 if (ifp->if_flags & IFF_PROMISC) {
3033 sc->sc_rfcr |= RFCR_AAP;
3034 goto allmulti;
3035 }
3036
3037 /*
3038 * Set up the multicast address filter by passing all multicast
3039 * addresses through a CRC generator, and then using the high-order
3040 * 6 bits as an index into the 128 bit multicast hash table (only
3041 * the lower 16 bits of each 32 bit multicast hash register are
3042 * valid). The high order bits select the register, while the
3043 * rest of the bits select the bit within the register.
3044 */
3045
3046 memset(mchash, 0, sizeof(mchash));
3047
3048 /*
3049 * SiS900 (at least SiS963) requires us to register the address of
3050 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3051 */
3052 crc = 0x0ed423f9;
3053
3054 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3055 SIP_SIS900_REV(sc, SIS_REV_960) ||
3056 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3057 /* Just want the 8 most significant bits. */
3058 crc >>= 24;
3059 } else {
3060 /* Just want the 7 most significant bits. */
3061 crc >>= 25;
3062 }
3063
3064 /* Set the corresponding bit in the hash table. */
3065 mchash[crc >> 4] |= 1 << (crc & 0xf);
3066
3067 ETHER_FIRST_MULTI(step, ec, enm);
3068 while (enm != NULL) {
3069 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3070 /*
3071 * We must listen to a range of multicast addresses.
3072 * For now, just accept all multicasts, rather than
3073 * trying to set only those filter bits needed to match
3074 * the range. (At this time, the only use of address
3075 * ranges is for IP multicast routing, for which the
3076 * range is big enough to require all bits set.)
3077 */
3078 goto allmulti;
3079 }
3080
3081 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3082
3083 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3084 SIP_SIS900_REV(sc, SIS_REV_960) ||
3085 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3086 /* Just want the 8 most significant bits. */
3087 crc >>= 24;
3088 } else {
3089 /* Just want the 7 most significant bits. */
3090 crc >>= 25;
3091 }
3092
3093 /* Set the corresponding bit in the hash table. */
3094 mchash[crc >> 4] |= 1 << (crc & 0xf);
3095
3096 ETHER_NEXT_MULTI(step, enm);
3097 }
3098
3099 ifp->if_flags &= ~IFF_ALLMULTI;
3100 goto setit;
3101
3102 allmulti:
3103 ifp->if_flags |= IFF_ALLMULTI;
3104 sc->sc_rfcr |= RFCR_AAM;
3105
3106 setit:
3107 #define FILTER_EMIT(addr, data) \
3108 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3109 delay(1); \
3110 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3111 delay(1)
3112
3113 /*
3114 * Disable receive filter, and program the node address.
3115 */
3116 cp = CLLADDR(ifp->if_sadl);
3117 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3118 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3119 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3120
3121 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3122 /*
3123 * Program the multicast hash table.
3124 */
3125 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3126 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3127 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3128 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3129 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3130 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3131 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3132 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3133 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3134 SIP_SIS900_REV(sc, SIS_REV_960) ||
3135 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3136 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3137 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3138 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3139 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3140 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3141 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3142 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3143 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3144 }
3145 }
3146 #undef FILTER_EMIT
3147
3148 /*
3149 * Re-enable the receiver filter.
3150 */
3151 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3152 }
3153
3154 /*
3155 * sip_dp83815_set_filter:
3156 *
3157 * Set up the receive filter.
3158 */
3159 static void
3160 sipcom_dp83815_set_filter(struct sip_softc *sc)
3161 {
3162 bus_space_tag_t st = sc->sc_st;
3163 bus_space_handle_t sh = sc->sc_sh;
3164 struct ethercom *ec = &sc->sc_ethercom;
3165 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3166 struct ether_multi *enm;
3167 const u_int8_t *cp;
3168 struct ether_multistep step;
3169 u_int32_t crc, hash, slot, bit;
3170 #define MCHASH_NWORDS_83820 128
3171 #define MCHASH_NWORDS_83815 32
3172 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3173 u_int16_t mchash[MCHASH_NWORDS];
3174 int i;
3175
3176 /*
3177 * Initialize the prototype RFCR.
3178 * Enable the receive filter, and accept on
3179 * Perfect (destination address) Match
3180 * If IFF_BROADCAST, also accept all broadcast packets.
3181 * If IFF_PROMISC, accept all unicast packets (and later, set
3182 * IFF_ALLMULTI and accept all multicast, too).
3183 */
3184 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3185 if (ifp->if_flags & IFF_BROADCAST)
3186 sc->sc_rfcr |= RFCR_AAB;
3187 if (ifp->if_flags & IFF_PROMISC) {
3188 sc->sc_rfcr |= RFCR_AAP;
3189 goto allmulti;
3190 }
3191
3192 /*
3193 * Set up the DP83820/DP83815 multicast address filter by
3194 * passing all multicast addresses through a CRC generator,
3195 * and then using the high-order 11/9 bits as an index into
3196 * the 2048/512 bit multicast hash table. The high-order
3197 * 7/5 bits select the slot, while the low-order 4 bits
3198 * select the bit within the slot. Note that only the low
3199 * 16-bits of each filter word are used, and there are
3200 * 128/32 filter words.
3201 */
3202
3203 memset(mchash, 0, sizeof(mchash));
3204
3205 ifp->if_flags &= ~IFF_ALLMULTI;
3206 ETHER_FIRST_MULTI(step, ec, enm);
3207 if (enm == NULL)
3208 goto setit;
3209 while (enm != NULL) {
3210 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3211 /*
3212 * We must listen to a range of multicast addresses.
3213 * For now, just accept all multicasts, rather than
3214 * trying to set only those filter bits needed to match
3215 * the range. (At this time, the only use of address
3216 * ranges is for IP multicast routing, for which the
3217 * range is big enough to require all bits set.)
3218 */
3219 goto allmulti;
3220 }
3221
3222 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3223
3224 if (sc->sc_gigabit) {
3225 /* Just want the 11 most significant bits. */
3226 hash = crc >> 21;
3227 } else {
3228 /* Just want the 9 most significant bits. */
3229 hash = crc >> 23;
3230 }
3231
3232 slot = hash >> 4;
3233 bit = hash & 0xf;
3234
3235 /* Set the corresponding bit in the hash table. */
3236 mchash[slot] |= 1 << bit;
3237
3238 ETHER_NEXT_MULTI(step, enm);
3239 }
3240 sc->sc_rfcr |= RFCR_MHEN;
3241 goto setit;
3242
3243 allmulti:
3244 ifp->if_flags |= IFF_ALLMULTI;
3245 sc->sc_rfcr |= RFCR_AAM;
3246
3247 setit:
3248 #define FILTER_EMIT(addr, data) \
3249 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3250 delay(1); \
3251 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3252 delay(1)
3253
3254 /*
3255 * Disable receive filter, and program the node address.
3256 */
3257 cp = CLLADDR(ifp->if_sadl);
3258 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3259 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3260 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3261
3262 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3263 int nwords =
3264 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3265 /*
3266 * Program the multicast hash table.
3267 */
3268 for (i = 0; i < nwords; i++) {
3269 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3270 }
3271 }
3272 #undef FILTER_EMIT
3273 #undef MCHASH_NWORDS
3274 #undef MCHASH_NWORDS_83815
3275 #undef MCHASH_NWORDS_83820
3276
3277 /*
3278 * Re-enable the receiver filter.
3279 */
3280 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3281 }
3282
3283 /*
3284 * sip_dp83820_mii_readreg: [mii interface function]
3285 *
3286 * Read a PHY register on the MII of the DP83820.
3287 */
3288 static int
3289 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3290 {
3291 struct sip_softc *sc = device_private(self);
3292
3293 if (sc->sc_cfg & CFG_TBI_EN) {
3294 bus_addr_t tbireg;
3295 int rv;
3296
3297 if (phy != 0)
3298 return (0);
3299
3300 switch (reg) {
3301 case MII_BMCR: tbireg = SIP_TBICR; break;
3302 case MII_BMSR: tbireg = SIP_TBISR; break;
3303 case MII_ANAR: tbireg = SIP_TANAR; break;
3304 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3305 case MII_ANER: tbireg = SIP_TANER; break;
3306 case MII_EXTSR:
3307 /*
3308 * Don't even bother reading the TESR register.
3309 * The manual documents that the device has
3310 * 1000baseX full/half capability, but the
3311 * register itself seems read back 0 on some
3312 * boards. Just hard-code the result.
3313 */
3314 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3315
3316 default:
3317 return (0);
3318 }
3319
3320 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3321 if (tbireg == SIP_TBISR) {
3322 /* LINK and ACOMP are switched! */
3323 int val = rv;
3324
3325 rv = 0;
3326 if (val & TBISR_MR_LINK_STATUS)
3327 rv |= BMSR_LINK;
3328 if (val & TBISR_MR_AN_COMPLETE)
3329 rv |= BMSR_ACOMP;
3330
3331 /*
3332 * The manual claims this register reads back 0
3333 * on hard and soft reset. But we want to let
3334 * the gentbi driver know that we support auto-
3335 * negotiation, so hard-code this bit in the
3336 * result.
3337 */
3338 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3339 }
3340
3341 return (rv);
3342 }
3343
3344 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3345 }
3346
3347 /*
3348 * sip_dp83820_mii_writereg: [mii interface function]
3349 *
3350 * Write a PHY register on the MII of the DP83820.
3351 */
3352 static void
3353 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3354 {
3355 struct sip_softc *sc = device_private(self);
3356
3357 if (sc->sc_cfg & CFG_TBI_EN) {
3358 bus_addr_t tbireg;
3359
3360 if (phy != 0)
3361 return;
3362
3363 switch (reg) {
3364 case MII_BMCR: tbireg = SIP_TBICR; break;
3365 case MII_ANAR: tbireg = SIP_TANAR; break;
3366 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3367 default:
3368 return;
3369 }
3370
3371 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3372 return;
3373 }
3374
3375 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3376 }
3377
3378 /*
3379 * sip_dp83820_mii_statchg: [mii interface function]
3380 *
3381 * Callback from MII layer when media changes.
3382 */
3383 static void
3384 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3385 {
3386 struct sip_softc *sc = ifp->if_softc;
3387 struct mii_data *mii = &sc->sc_mii;
3388 u_int32_t cfg, pcr;
3389
3390 /*
3391 * Get flow control negotiation result.
3392 */
3393 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3394 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3395 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3396 mii->mii_media_active &= ~IFM_ETH_FMASK;
3397 }
3398
3399 /*
3400 * Update TXCFG for full-duplex operation.
3401 */
3402 if ((mii->mii_media_active & IFM_FDX) != 0)
3403 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3404 else
3405 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3406
3407 /*
3408 * Update RXCFG for full-duplex or loopback.
3409 */
3410 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3411 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3412 sc->sc_rxcfg |= RXCFG_ATX;
3413 else
3414 sc->sc_rxcfg &= ~RXCFG_ATX;
3415
3416 /*
3417 * Update CFG for MII/GMII.
3418 */
3419 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3420 cfg = sc->sc_cfg | CFG_MODE_1000;
3421 else
3422 cfg = sc->sc_cfg;
3423
3424 /*
3425 * 802.3x flow control.
3426 */
3427 pcr = 0;
3428 if (sc->sc_flowflags & IFM_FLOW) {
3429 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3430 pcr |= sc->sc_rx_flow_thresh;
3431 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3432 pcr |= PCR_PSEN | PCR_PS_MCAST;
3433 }
3434
3435 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3436 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3437 sc->sc_txcfg);
3438 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3439 sc->sc_rxcfg);
3440 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3441 }
3442
3443 /*
3444 * sip_mii_bitbang_read: [mii bit-bang interface function]
3445 *
3446 * Read the MII serial port for the MII bit-bang module.
3447 */
3448 static u_int32_t
3449 sipcom_mii_bitbang_read(device_t self)
3450 {
3451 struct sip_softc *sc = device_private(self);
3452
3453 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3454 }
3455
3456 /*
3457 * sip_mii_bitbang_write: [mii big-bang interface function]
3458 *
3459 * Write the MII serial port for the MII bit-bang module.
3460 */
3461 static void
3462 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3463 {
3464 struct sip_softc *sc = device_private(self);
3465
3466 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3467 }
3468
3469 /*
3470 * sip_sis900_mii_readreg: [mii interface function]
3471 *
3472 * Read a PHY register on the MII.
3473 */
3474 static int
3475 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3476 {
3477 struct sip_softc *sc = device_private(self);
3478 u_int32_t enphy;
3479
3480 /*
3481 * The PHY of recent SiS chipsets is accessed through bitbang
3482 * operations.
3483 */
3484 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3485 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3486 phy, reg);
3487
3488 #ifndef SIS900_MII_RESTRICT
3489 /*
3490 * The SiS 900 has only an internal PHY on the MII. Only allow
3491 * MII address 0.
3492 */
3493 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3494 return (0);
3495 #endif
3496
3497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3498 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3499 ENPHY_RWCMD | ENPHY_ACCESS);
3500 do {
3501 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3502 } while (enphy & ENPHY_ACCESS);
3503 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3504 }
3505
3506 /*
3507 * sip_sis900_mii_writereg: [mii interface function]
3508 *
3509 * Write a PHY register on the MII.
3510 */
3511 static void
3512 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3513 {
3514 struct sip_softc *sc = device_private(self);
3515 u_int32_t enphy;
3516
3517 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3518 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3519 phy, reg, val);
3520 return;
3521 }
3522
3523 #ifndef SIS900_MII_RESTRICT
3524 /*
3525 * The SiS 900 has only an internal PHY on the MII. Only allow
3526 * MII address 0.
3527 */
3528 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3529 return;
3530 #endif
3531
3532 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3533 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3534 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3535 do {
3536 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3537 } while (enphy & ENPHY_ACCESS);
3538 }
3539
3540 /*
3541 * sip_sis900_mii_statchg: [mii interface function]
3542 *
3543 * Callback from MII layer when media changes.
3544 */
3545 static void
3546 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3547 {
3548 struct sip_softc *sc = ifp->if_softc;
3549 struct mii_data *mii = &sc->sc_mii;
3550 u_int32_t flowctl;
3551
3552 /*
3553 * Get flow control negotiation result.
3554 */
3555 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3556 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3557 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3558 mii->mii_media_active &= ~IFM_ETH_FMASK;
3559 }
3560
3561 /*
3562 * Update TXCFG for full-duplex operation.
3563 */
3564 if ((mii->mii_media_active & IFM_FDX) != 0)
3565 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3566 else
3567 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3568
3569 /*
3570 * Update RXCFG for full-duplex or loopback.
3571 */
3572 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3573 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3574 sc->sc_rxcfg |= RXCFG_ATX;
3575 else
3576 sc->sc_rxcfg &= ~RXCFG_ATX;
3577
3578 /*
3579 * Update IMR for use of 802.3x flow control.
3580 */
3581 if (sc->sc_flowflags & IFM_FLOW) {
3582 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3583 flowctl = FLOWCTL_FLOWEN;
3584 } else {
3585 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3586 flowctl = 0;
3587 }
3588
3589 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3590 sc->sc_txcfg);
3591 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3592 sc->sc_rxcfg);
3593 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3594 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3595 }
3596
3597 /*
3598 * sip_dp83815_mii_readreg: [mii interface function]
3599 *
3600 * Read a PHY register on the MII.
3601 */
3602 static int
3603 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3604 {
3605 struct sip_softc *sc = device_private(self);
3606 u_int32_t val;
3607
3608 /*
3609 * The DP83815 only has an internal PHY. Only allow
3610 * MII address 0.
3611 */
3612 if (phy != 0)
3613 return (0);
3614
3615 /*
3616 * Apparently, after a reset, the DP83815 can take a while
3617 * to respond. During this recovery period, the BMSR returns
3618 * a value of 0. Catch this -- it's not supposed to happen
3619 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3620 * PHY to come back to life.
3621 *
3622 * This works out because the BMSR is the first register
3623 * read during the PHY probe process.
3624 */
3625 do {
3626 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3627 } while (reg == MII_BMSR && val == 0);
3628
3629 return (val & 0xffff);
3630 }
3631
3632 /*
3633 * sip_dp83815_mii_writereg: [mii interface function]
3634 *
3635 * Write a PHY register to the MII.
3636 */
3637 static void
3638 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3639 {
3640 struct sip_softc *sc = device_private(self);
3641
3642 /*
3643 * The DP83815 only has an internal PHY. Only allow
3644 * MII address 0.
3645 */
3646 if (phy != 0)
3647 return;
3648
3649 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3650 }
3651
3652 /*
3653 * sip_dp83815_mii_statchg: [mii interface function]
3654 *
3655 * Callback from MII layer when media changes.
3656 */
3657 static void
3658 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3659 {
3660 struct sip_softc *sc = ifp->if_softc;
3661
3662 /*
3663 * Update TXCFG for full-duplex operation.
3664 */
3665 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3666 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3667 else
3668 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3669
3670 /*
3671 * Update RXCFG for full-duplex or loopback.
3672 */
3673 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3674 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3675 sc->sc_rxcfg |= RXCFG_ATX;
3676 else
3677 sc->sc_rxcfg &= ~RXCFG_ATX;
3678
3679 /*
3680 * XXX 802.3x flow control.
3681 */
3682
3683 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3684 sc->sc_txcfg);
3685 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3686 sc->sc_rxcfg);
3687
3688 /*
3689 * Some DP83815s experience problems when used with short
3690 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3691 * sequence adjusts the DSP's signal attenuation to fix the
3692 * problem.
3693 */
3694 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3695 uint32_t reg;
3696
3697 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3698
3699 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3700 reg &= 0x0fff;
3701 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3702 delay(100);
3703 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3704 reg &= 0x00ff;
3705 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3707 0x00e8);
3708 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3709 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3710 reg | 0x20);
3711 }
3712
3713 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3714 }
3715 }
3716
3717 static void
3718 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3719 const struct pci_attach_args *pa, u_int8_t *enaddr)
3720 {
3721 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3722 u_int8_t cksum, *e, match;
3723 int i;
3724
3725 /*
3726 * EEPROM data format for the DP83820 can be found in
3727 * the DP83820 manual, section 4.2.4.
3728 */
3729
3730 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3731
3732 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3733 match = ~(match - 1);
3734
3735 cksum = 0x55;
3736 e = (u_int8_t *) eeprom_data;
3737 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3738 cksum += *e++;
3739
3740 if (cksum != match)
3741 printf("%s: Checksum (%x) mismatch (%x)",
3742 device_xname(sc->sc_dev), cksum, match);
3743
3744 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3745 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3746 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3747 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3748 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3749 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3750 }
3751
3752 static void
3753 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3754 {
3755 int i;
3756
3757 /*
3758 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3759 * a reason, but I don't know it.
3760 */
3761 for (i = 0; i < 10; i++)
3762 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3763 }
3764
3765 static void
3766 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3767 const struct pci_attach_args *pa, u_int8_t *enaddr)
3768 {
3769 u_int16_t myea[ETHER_ADDR_LEN / 2];
3770
3771 switch (sc->sc_rev) {
3772 case SIS_REV_630S:
3773 case SIS_REV_630E:
3774 case SIS_REV_630EA1:
3775 case SIS_REV_630ET:
3776 case SIS_REV_635:
3777 /*
3778 * The MAC address for the on-board Ethernet of
3779 * the SiS 630 chipset is in the NVRAM. Kick
3780 * the chip into re-loading it from NVRAM, and
3781 * read the MAC address out of the filter registers.
3782 */
3783 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3784
3785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3786 RFCR_RFADDR_NODE0);
3787 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3788 0xffff;
3789
3790 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3791 RFCR_RFADDR_NODE2);
3792 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3793 0xffff;
3794
3795 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3796 RFCR_RFADDR_NODE4);
3797 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3798 0xffff;
3799 break;
3800
3801 case SIS_REV_960:
3802 {
3803 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3804 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3805
3806 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3807 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3808
3809 int waittime, i;
3810
3811 /* Allow to read EEPROM from LAN. It is shared
3812 * between a 1394 controller and the NIC and each
3813 * time we access it, we need to set SIS_EECMD_REQ.
3814 */
3815 SIS_SET_EROMAR(sc, EROMAR_REQ);
3816
3817 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3818 /* Force EEPROM to idle state. */
3819
3820 /*
3821 * XXX-cube This is ugly. I'll look for docs about it.
3822 */
3823 SIS_SET_EROMAR(sc, EROMAR_EECS);
3824 sipcom_sis900_eeprom_delay(sc);
3825 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3826 SIS_SET_EROMAR(sc, EROMAR_EESK);
3827 sipcom_sis900_eeprom_delay(sc);
3828 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3829 sipcom_sis900_eeprom_delay(sc);
3830 }
3831 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3832 sipcom_sis900_eeprom_delay(sc);
3833 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3834
3835 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3836 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3837 sizeof(myea) / sizeof(myea[0]), myea);
3838 break;
3839 }
3840 DELAY(1);
3841 }
3842
3843 /*
3844 * Set SIS_EECTL_CLK to high, so a other master
3845 * can operate on the i2c bus.
3846 */
3847 SIS_SET_EROMAR(sc, EROMAR_EESK);
3848
3849 /* Refuse EEPROM access by LAN */
3850 SIS_SET_EROMAR(sc, EROMAR_DONE);
3851 } break;
3852
3853 default:
3854 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3855 sizeof(myea) / sizeof(myea[0]), myea);
3856 }
3857
3858 enaddr[0] = myea[0] & 0xff;
3859 enaddr[1] = myea[0] >> 8;
3860 enaddr[2] = myea[1] & 0xff;
3861 enaddr[3] = myea[1] >> 8;
3862 enaddr[4] = myea[2] & 0xff;
3863 enaddr[5] = myea[2] >> 8;
3864 }
3865
3866 /* Table and macro to bit-reverse an octet. */
3867 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3868 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3869
3870 static void
3871 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3872 const struct pci_attach_args *pa, u_int8_t *enaddr)
3873 {
3874 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3875 u_int8_t cksum, *e, match;
3876 int i;
3877
3878 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3879 sizeof(eeprom_data[0]), eeprom_data);
3880
3881 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3882 match = ~(match - 1);
3883
3884 cksum = 0x55;
3885 e = (u_int8_t *) eeprom_data;
3886 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3887 cksum += *e++;
3888 }
3889 if (cksum != match) {
3890 printf("%s: Checksum (%x) mismatch (%x)",
3891 device_xname(sc->sc_dev), cksum, match);
3892 }
3893
3894 /*
3895 * Unrolled because it makes slightly more sense this way.
3896 * The DP83815 stores the MAC address in bit 0 of word 6
3897 * through bit 15 of word 8.
3898 */
3899 ea = &eeprom_data[6];
3900 enaddr[0] = ((*ea & 0x1) << 7);
3901 ea++;
3902 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3903 enaddr[1] = ((*ea & 0x1FE) >> 1);
3904 enaddr[2] = ((*ea & 0x1) << 7);
3905 ea++;
3906 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3907 enaddr[3] = ((*ea & 0x1FE) >> 1);
3908 enaddr[4] = ((*ea & 0x1) << 7);
3909 ea++;
3910 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3911 enaddr[5] = ((*ea & 0x1FE) >> 1);
3912
3913 /*
3914 * In case that's not weird enough, we also need to reverse
3915 * the bits in each byte. This all actually makes more sense
3916 * if you think about the EEPROM storage as an array of bits
3917 * being shifted into bytes, but that's not how we're looking
3918 * at it here...
3919 */
3920 for (i = 0; i < 6 ;i++)
3921 enaddr[i] = bbr(enaddr[i]);
3922 }
3923
3924 /*
3925 * sip_mediastatus: [ifmedia interface function]
3926 *
3927 * Get the current interface media status.
3928 */
3929 static void
3930 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3931 {
3932 struct sip_softc *sc = ifp->if_softc;
3933
3934 if (!device_is_active(sc->sc_dev)) {
3935 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3936 ifmr->ifm_status = 0;
3937 return;
3938 }
3939 ether_mediastatus(ifp, ifmr);
3940 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3941 sc->sc_flowflags;
3942 }
3943