if_sip.c revision 1.165.6.1 1 /* $NetBSD: if_sip.c,v 1.165.6.1 2017/05/11 02:58:38 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.165.6.1 2017/05/11 02:58:38 pgoyette Exp $");
77
78
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91
92 #include <sys/rndsource.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112
113 #include <dev/pci/if_sipreg.h>
114
115 /*
116 * Transmit descriptor list size. This is arbitrary, but allocate
117 * enough descriptors for 128 pending transmissions, and 8 segments
118 * per packet (64 for DP83820 for jumbo frames).
119 *
120 * This MUST work out to a power of 2.
121 */
122 #define GSIP_NTXSEGS_ALLOC 16
123 #define SIP_NTXSEGS_ALLOC 8
124
125 #define SIP_TXQUEUELEN 256
126 #define MAX_SIP_NTXDESC \
127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128
129 /*
130 * Receive descriptor list size. We have one Rx buffer per incoming
131 * packet, so this logic is a little simpler.
132 *
133 * Actually, on the DP83820, we allow the packet to consume more than
134 * one buffer, in order to support jumbo Ethernet frames. In that
135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
137 * so we'd better be quick about handling receive interrupts.
138 */
139 #define GSIP_NRXDESC 256
140 #define SIP_NRXDESC 128
141
142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
143
144 /*
145 * Control structures are DMA'd to the SiS900 chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct sip_control_data {
150 /*
151 * The transmit descriptors.
152 */
153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154
155 /*
156 * The receive descriptors.
157 */
158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160
161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct sip_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177
178 /*
179 * Software state for receive jobs.
180 */
181 struct sip_rxsoft {
182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
183 bus_dmamap_t rxs_dmamap; /* our DMA map */
184 };
185
186 enum sip_attach_stage {
187 SIP_ATTACH_FIN = 0
188 , SIP_ATTACH_CREATE_RXMAP
189 , SIP_ATTACH_CREATE_TXMAP
190 , SIP_ATTACH_LOAD_MAP
191 , SIP_ATTACH_CREATE_MAP
192 , SIP_ATTACH_MAP_MEM
193 , SIP_ATTACH_ALLOC_MEM
194 , SIP_ATTACH_INTR
195 , SIP_ATTACH_MAP
196 };
197
198 /*
199 * Software state per device.
200 */
201 struct sip_softc {
202 device_t sc_dev; /* generic device information */
203 device_suspensor_t sc_suspensor;
204 pmf_qual_t sc_qual;
205
206 bus_space_tag_t sc_st; /* bus space tag */
207 bus_space_handle_t sc_sh; /* bus space handle */
208 bus_size_t sc_sz; /* bus space size */
209 bus_dma_tag_t sc_dmat; /* bus DMA tag */
210 pci_chipset_tag_t sc_pc;
211 bus_dma_segment_t sc_seg;
212 struct ethercom sc_ethercom; /* ethernet common data */
213
214 const struct sip_product *sc_model; /* which model are we? */
215 int sc_gigabit; /* 1: 83820, 0: other */
216 int sc_rev; /* chip revision */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 callout_t sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
249 struct evcnt sc_ev_rxintr; /* Rx interrupts */
250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
251 struct evcnt sc_ev_rxpause; /* PAUSE received */
252 /* DP83820 only */
253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261
262 u_int32_t sc_txcfg; /* prototype TXCFG register */
263 u_int32_t sc_rxcfg; /* prototype RXCFG register */
264 u_int32_t sc_imr; /* prototype IMR register */
265 u_int32_t sc_rfcr; /* prototype RFCR register */
266
267 u_int32_t sc_cfg; /* prototype CFG register */
268
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270
271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
273
274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
275
276 int sc_flowflags; /* 802.3x flow control flags */
277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
278 int sc_paused; /* paused indication */
279
280 int sc_txfree; /* number of free Tx descriptors */
281 int sc_txnext; /* next ready Tx descriptor */
282 int sc_txwin; /* Tx descriptors since last intr */
283
284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
286
287 /* values of interface state at last init */
288 struct {
289 /* if_capenable */
290 uint64_t if_capenable;
291 /* ec_capenable */
292 int ec_capenable;
293 /* VLAN_ATTACHED */
294 int is_vlan;
295 } sc_prev;
296
297 short sc_if_flags;
298
299 int sc_rxptr; /* next ready Rx descriptor/descsoft */
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305
306 int sc_ntxdesc;
307 int sc_ntxdesc_mask;
308
309 int sc_nrxdesc_mask;
310
311 const struct sip_parm {
312 const struct sip_regs {
313 int r_rxcfg;
314 int r_txcfg;
315 } p_regs;
316
317 const struct sip_bits {
318 uint32_t b_txcfg_mxdma_8;
319 uint32_t b_txcfg_mxdma_16;
320 uint32_t b_txcfg_mxdma_32;
321 uint32_t b_txcfg_mxdma_64;
322 uint32_t b_txcfg_mxdma_128;
323 uint32_t b_txcfg_mxdma_256;
324 uint32_t b_txcfg_mxdma_512;
325 uint32_t b_txcfg_flth_mask;
326 uint32_t b_txcfg_drth_mask;
327
328 uint32_t b_rxcfg_mxdma_8;
329 uint32_t b_rxcfg_mxdma_16;
330 uint32_t b_rxcfg_mxdma_32;
331 uint32_t b_rxcfg_mxdma_64;
332 uint32_t b_rxcfg_mxdma_128;
333 uint32_t b_rxcfg_mxdma_256;
334 uint32_t b_rxcfg_mxdma_512;
335
336 uint32_t b_isr_txrcmp;
337 uint32_t b_isr_rxrcmp;
338 uint32_t b_isr_dperr;
339 uint32_t b_isr_sserr;
340 uint32_t b_isr_rmabt;
341 uint32_t b_isr_rtabt;
342
343 uint32_t b_cmdsts_size_mask;
344 } p_bits;
345 int p_filtmem;
346 int p_rxbuf_len;
347 bus_size_t p_tx_dmamap_size;
348 int p_ntxsegs;
349 int p_ntxsegs_alloc;
350 int p_nrxdesc;
351 } *sc_parm;
352
353 void (*sc_rxintr)(struct sip_softc *);
354
355 krndsource_t rnd_source; /* random source */
356 };
357
358 #define sc_bits sc_parm->p_bits
359 #define sc_regs sc_parm->p_regs
360
361 static const struct sip_parm sip_parm = {
362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
364 , .p_tx_dmamap_size = MCLBYTES
365 , .p_ntxsegs = 16
366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 , .p_nrxdesc = SIP_NRXDESC
368 , .p_bits = {
369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
378
379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
386
387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
389 , .b_isr_dperr = 0x00800000 /* detected parity error */
390 , .b_isr_sserr = 0x00400000 /* signalled system error */
391 , .b_isr_rmabt = 0x00200000 /* received master abort */
392 , .b_isr_rtabt = 0x00100000 /* received target abort */
393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 }
395 , .p_regs = {
396 .r_rxcfg = OTHER_SIP_RXCFG,
397 .r_txcfg = OTHER_SIP_TXCFG
398 }
399 }, gsip_parm = {
400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 , .p_rxbuf_len = MCLBYTES - 8
402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 , .p_ntxsegs = 64
404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 , .p_nrxdesc = GSIP_NRXDESC
406 , .p_bits = {
407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
416
417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
424
425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
427 , .b_isr_dperr = 0x00100000 /* detected parity error */
428 , .b_isr_sserr = 0x00080000 /* signalled system error */
429 , .b_isr_rmabt = 0x00040000 /* received master abort */
430 , .b_isr_rtabt = 0x00020000 /* received target abort */
431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 }
433 , .p_regs = {
434 .r_rxcfg = DP83820_SIP_RXCFG,
435 .r_txcfg = DP83820_SIP_TXCFG
436 }
437 };
438
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 sc->sc_rxtailp = &sc->sc_rxhead;
456 *sc->sc_rxtailp = NULL;
457 sc->sc_rxlen = 0;
458 }
459
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 *sc->sc_rxtailp = sc->sc_rxtail = m;
465 sc->sc_rxtailp = &m->m_next;
466 }
467
468 #ifdef SIP_EVENT_COUNTERS
469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
470 #else
471 #define SIP_EVCNT_INCR(ev) /* nothing */
472 #endif
473
474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
476
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 int x, n;
481
482 x = x0;
483 n = n0;
484
485 /* If it will wrap around, sync to the end of the ring. */
486 if (x + n > sc->sc_ntxdesc) {
487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 (sc->sc_ntxdesc - x), ops);
490 n -= (sc->sc_ntxdesc - x);
491 x = 0;
492 }
493
494 /* Now sync whatever is left. */
495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505
506 #if 0
507 #ifdef DP83820
508 u_int32_t sipd_bufptr; /* pointer to DMA segment */
509 u_int32_t sipd_cmdsts; /* command/status word */
510 #else
511 u_int32_t sipd_cmdsts; /* command/status word */
512 u_int32_t sipd_bufptr; /* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 struct sip_desc *sipd = &sc->sc_rxdescs[x];
533
534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 sipd->sipd_extsts = 0;
539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541
542 #define SIP_CHIP_VERS(sc, v, p, r) \
543 ((sc)->sc_model->sip_vendor == (v) && \
544 (sc)->sc_model->sip_product == (p) && \
545 (sc)->sc_rev == (r))
546
547 #define SIP_CHIP_MODEL(sc, v, p) \
548 ((sc)->sc_model->sip_vendor == (v) && \
549 (sc)->sc_model->sip_product == (p))
550
551 #define SIP_SIS900_REV(sc, rev) \
552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553
554 #define SIP_TIMEOUT 1000
555
556 static int sip_ifflags_cb(struct ethercom *);
557 static void sipcom_start(struct ifnet *);
558 static void sipcom_watchdog(struct ifnet *);
559 static int sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int sipcom_init(struct ifnet *);
561 static void sipcom_stop(struct ifnet *, int);
562
563 static bool sipcom_reset(struct sip_softc *);
564 static void sipcom_rxdrain(struct sip_softc *);
565 static int sipcom_add_rxbuf(struct sip_softc *, int);
566 static void sipcom_read_eeprom(struct sip_softc *, int, int,
567 u_int16_t *);
568 static void sipcom_tick(void *);
569
570 static void sipcom_sis900_set_filter(struct sip_softc *);
571 static void sipcom_dp83815_set_filter(struct sip_softc *);
572
573 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
574 const struct pci_attach_args *, u_int8_t *);
575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void sipcom_sis900_read_macaddr(struct sip_softc *,
577 const struct pci_attach_args *, u_int8_t *);
578 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
579 const struct pci_attach_args *, u_int8_t *);
580
581 static int sipcom_intr(void *);
582 static void sipcom_txintr(struct sip_softc *);
583 static void sip_rxintr(struct sip_softc *);
584 static void gsip_rxintr(struct sip_softc *);
585
586 static int sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void sipcom_dp83820_mii_statchg(struct ifnet *);
589
590 static int sipcom_sis900_mii_readreg(device_t, int, int);
591 static void sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void sipcom_sis900_mii_statchg(struct ifnet *);
593
594 static int sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void sipcom_dp83815_mii_statchg(struct ifnet *);
597
598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599
600 static int sipcom_match(device_t, cfdata_t, void *);
601 static void sipcom_attach(device_t, device_t, void *);
602 static void sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int sipcom_detach(device_t, int);
604 static bool sipcom_resume(device_t, const pmf_qual_t *);
605 static bool sipcom_suspend(device_t, const pmf_qual_t *);
606
607 int gsip_copy_small = 0;
608 int sip_copy_small = 0;
609
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612 DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615 DVF_DETACH_SHUTDOWN);
616
617 /*
618 * Descriptions of the variants of the SiS900.
619 */
620 struct sip_variant {
621 int (*sipv_mii_readreg)(device_t, int, int);
622 void (*sipv_mii_writereg)(device_t, int, int, int);
623 void (*sipv_mii_statchg)(struct ifnet *);
624 void (*sipv_set_filter)(struct sip_softc *);
625 void (*sipv_read_macaddr)(struct sip_softc *,
626 const struct pci_attach_args *, u_int8_t *);
627 };
628
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void sipcom_mii_bitbang_write(device_t, u_int32_t);
631
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 sipcom_mii_bitbang_read,
634 sipcom_mii_bitbang_write,
635 {
636 EROMAR_MDIO, /* MII_BIT_MDO */
637 EROMAR_MDIO, /* MII_BIT_MDI */
638 EROMAR_MDC, /* MII_BIT_MDC */
639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
640 0, /* MII_BIT_DIR_PHY_HOST */
641 }
642 };
643
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 sipcom_dp83820_mii_readreg,
646 sipcom_dp83820_mii_writereg,
647 sipcom_dp83820_mii_statchg,
648 sipcom_dp83815_set_filter,
649 sipcom_dp83820_read_macaddr,
650 };
651
652 static const struct sip_variant sipcom_variant_sis900 = {
653 sipcom_sis900_mii_readreg,
654 sipcom_sis900_mii_writereg,
655 sipcom_sis900_mii_statchg,
656 sipcom_sis900_set_filter,
657 sipcom_sis900_read_macaddr,
658 };
659
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 sipcom_dp83815_mii_readreg,
662 sipcom_dp83815_mii_writereg,
663 sipcom_dp83815_mii_statchg,
664 sipcom_dp83815_set_filter,
665 sipcom_dp83815_read_macaddr,
666 };
667
668
669 /*
670 * Devices supported by this driver.
671 */
672 static const struct sip_product {
673 pci_vendor_id_t sip_vendor;
674 pci_product_id_t sip_product;
675 const char *sip_name;
676 const struct sip_variant *sip_variant;
677 int sip_gigabit;
678 } sipcom_products[] = {
679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
680 "NatSemi DP83820 Gigabit Ethernet",
681 &sipcom_variant_dp83820, 1 },
682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
683 "SiS 900 10/100 Ethernet",
684 &sipcom_variant_sis900, 0 },
685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
686 "SiS 7016 10/100 Ethernet",
687 &sipcom_variant_sis900, 0 },
688
689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
690 "NatSemi DP83815 10/100 Ethernet",
691 &sipcom_variant_dp83815, 0 },
692
693 { 0, 0,
694 NULL,
695 NULL, 0 },
696 };
697
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 const struct sip_product *sip;
702
703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 sip->sip_gigabit == gigabit)
707 return sip;
708 }
709 return NULL;
710 }
711
712 /*
713 * I really hate stupid hardware vendors. There's a bit in the EEPROM
714 * which indicates if the card can do 64-bit data transfers. Unfortunately,
715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716 * which means we try to use 64-bit data transfers on those cards if we
717 * happen to be plugged into a 32-bit slot.
718 *
719 * What we do is use this table of cards known to be 64-bit cards. If
720 * you have a 64-bit card who's subsystem ID is not listed in this table,
721 * send the output of "pcictl dump ..." of the device to me so that your
722 * card will use the 64-bit data path when plugged into a 64-bit slot.
723 *
724 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
725 * June 30, 2002
726 */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 static const struct {
731 pci_vendor_id_t c64_vendor;
732 pci_product_id_t c64_product;
733 } card64[] = {
734 /* Asante GigaNIX */
735 { 0x128a, 0x0002 },
736
737 /* Accton EN1407-T, Planex GN-1000TE */
738 { 0x1113, 0x1407 },
739
740 /* Netgear GA621 */
741 { 0x1385, 0x621a },
742
743 /* Netgear GA622 */
744 { 0x1385, 0x622a },
745
746 /* SMC EZ Card 1000 (9462TX) */
747 { 0x10b8, 0x9462 },
748
749 { 0, 0}
750 };
751 pcireg_t subsys;
752 int i;
753
754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755
756 for (i = 0; card64[i].c64_vendor != 0; i++) {
757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 PCI_PRODUCT(subsys) == card64[i].c64_product)
759 return (1);
760 }
761
762 return (0);
763 }
764
765 static int
766 sipcom_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 struct pci_attach_args *pa = aux;
769
770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 return 1;
772
773 return 0;
774 }
775
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 u_int32_t reg;
780 int i;
781
782 /*
783 * Cause the chip to load configuration data from the EEPROM.
784 */
785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 for (i = 0; i < 10000; i++) {
787 delay(10);
788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) == 0)
790 break;
791 }
792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 PTSCR_EELOAD_EN) {
794 printf("%s: timeout loading configuration from EEPROM\n",
795 device_xname(sc->sc_dev));
796 return;
797 }
798
799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800
801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 if (reg & CFG_PCI64_DET) {
803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
804 /*
805 * Check to see if this card is 64-bit. If so, enable 64-bit
806 * data transfers.
807 *
808 * We can't use the DATA64_EN bit in the EEPROM, because
809 * vendors of 32-bit cards fail to clear that bit in many
810 * cases (yet the card still detects that it's in a 64-bit
811 * slot; go figure).
812 */
813 if (sipcom_check_64bit(pa)) {
814 sc->sc_cfg |= CFG_DATA64_EN;
815 printf(", using 64-bit data transfers");
816 }
817 printf("\n");
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", device_xname(sc->sc_dev));
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 int s;
865
866 s = splnet();
867 sipcom_do_detach(self, SIP_ATTACH_FIN);
868 splx(s);
869
870 return 0;
871 }
872
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 int i;
877 struct sip_softc *sc = device_private(self);
878 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879
880 /*
881 * Free any resources we've allocated during attach.
882 * Do this in reverse order and fall through.
883 */
884 switch (stage) {
885 case SIP_ATTACH_FIN:
886 sipcom_stop(ifp, 1);
887 pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 /*
890 * Attach event counters.
891 */
892 evcnt_detach(&sc->sc_ev_txforceintr);
893 evcnt_detach(&sc->sc_ev_txdstall);
894 evcnt_detach(&sc->sc_ev_txsstall);
895 evcnt_detach(&sc->sc_ev_hiberr);
896 evcnt_detach(&sc->sc_ev_rxintr);
897 evcnt_detach(&sc->sc_ev_txiintr);
898 evcnt_detach(&sc->sc_ev_txdintr);
899 if (!sc->sc_gigabit) {
900 evcnt_detach(&sc->sc_ev_rxpause);
901 } else {
902 evcnt_detach(&sc->sc_ev_txudpsum);
903 evcnt_detach(&sc->sc_ev_txtcpsum);
904 evcnt_detach(&sc->sc_ev_txipsum);
905 evcnt_detach(&sc->sc_ev_rxudpsum);
906 evcnt_detach(&sc->sc_ev_rxtcpsum);
907 evcnt_detach(&sc->sc_ev_rxipsum);
908 evcnt_detach(&sc->sc_ev_txpause);
909 evcnt_detach(&sc->sc_ev_rxpause);
910 }
911 #endif /* SIP_EVENT_COUNTERS */
912
913 rnd_detach_source(&sc->rnd_source);
914
915 ether_ifdetach(ifp);
916 if_detach(ifp);
917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
918
919 /*FALLTHROUGH*/
920 case SIP_ATTACH_CREATE_RXMAP:
921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->sc_rxsoft[i].rxs_dmamap);
925 }
926 /*FALLTHROUGH*/
927 case SIP_ATTACH_CREATE_TXMAP:
928 for (i = 0; i < SIP_TXQUEUELEN; i++) {
929 if (sc->sc_txsoft[i].txs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->sc_txsoft[i].txs_dmamap);
932 }
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_LOAD_MAP:
935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_CREATE_MAP:
938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_MAP_MEM:
941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
942 sizeof(struct sip_control_data));
943 /*FALLTHROUGH*/
944 case SIP_ATTACH_ALLOC_MEM:
945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_INTR:
948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
949 /* FALLTHROUGH*/
950 case SIP_ATTACH_MAP:
951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
952 break;
953 default:
954 break;
955 }
956 return;
957 }
958
959 static bool
960 sipcom_resume(device_t self, const pmf_qual_t *qual)
961 {
962 struct sip_softc *sc = device_private(self);
963
964 return sipcom_reset(sc);
965 }
966
967 static bool
968 sipcom_suspend(device_t self, const pmf_qual_t *qual)
969 {
970 struct sip_softc *sc = device_private(self);
971
972 sipcom_rxdrain(sc);
973 return true;
974 }
975
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 struct sip_softc *sc = device_private(self);
980 struct pci_attach_args *pa = aux;
981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 pci_chipset_tag_t pc = pa->pa_pc;
983 pci_intr_handle_t ih;
984 const char *intrstr = NULL;
985 bus_space_tag_t iot, memt;
986 bus_space_handle_t ioh, memh;
987 bus_size_t iosz, memsz;
988 int ioh_valid, memh_valid;
989 int i, rseg, error;
990 const struct sip_product *sip;
991 u_int8_t enaddr[ETHER_ADDR_LEN];
992 pcireg_t csr;
993 pcireg_t memtype;
994 bus_size_t tx_dmamap_size;
995 int ntxsegs_alloc;
996 cfdata_t cf = device_cfdata(self);
997 char intrbuf[PCI_INTRSTR_LEN];
998
999 callout_init(&sc->sc_tick_ch, 0);
1000
1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1002 if (sip == NULL) {
1003 aprint_error("\n");
1004 panic("%s: impossible", __func__);
1005 }
1006 sc->sc_dev = self;
1007 sc->sc_gigabit = sip->sip_gigabit;
1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1009 sc->sc_pc = pc;
1010
1011 if (sc->sc_gigabit) {
1012 sc->sc_rxintr = gsip_rxintr;
1013 sc->sc_parm = &gsip_parm;
1014 } else {
1015 sc->sc_rxintr = sip_rxintr;
1016 sc->sc_parm = &sip_parm;
1017 }
1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023
1024 sc->sc_rev = PCI_REVISION(pa->pa_class);
1025
1026 aprint_naive("\n");
1027 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1028
1029 sc->sc_model = sip;
1030
1031 /*
1032 * XXX Work-around broken PXE firmware on some boards.
1033 *
1034 * The DP83815 shares an address decoder with the MEM BAR
1035 * and the ROM BAR. Make sure the ROM BAR is disabled,
1036 * so that memory mapped access works.
1037 */
1038 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1039 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1040 ~PCI_MAPREG_ROM_ENABLE);
1041
1042 /*
1043 * Map the device.
1044 */
1045 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1046 PCI_MAPREG_TYPE_IO, 0,
1047 &iot, &ioh, NULL, &iosz) == 0);
1048 if (sc->sc_gigabit) {
1049 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1050 switch (memtype) {
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1052 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1053 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1054 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1055 break;
1056 default:
1057 memh_valid = 0;
1058 }
1059 } else {
1060 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1061 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1062 &memt, &memh, NULL, &memsz) == 0);
1063 }
1064
1065 if (memh_valid) {
1066 sc->sc_st = memt;
1067 sc->sc_sh = memh;
1068 sc->sc_sz = memsz;
1069 } else if (ioh_valid) {
1070 sc->sc_st = iot;
1071 sc->sc_sh = ioh;
1072 sc->sc_sz = iosz;
1073 } else {
1074 aprint_error_dev(self, "unable to map device registers\n");
1075 return;
1076 }
1077
1078 sc->sc_dmat = pa->pa_dmat;
1079
1080 /*
1081 * Make sure bus mastering is enabled. Also make sure
1082 * Write/Invalidate is enabled if we're allowed to use it.
1083 */
1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 csr | PCI_COMMAND_MASTER_ENABLE);
1089
1090 /* power up chip */
1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1092 if (error != 0 && error != EOPNOTSUPP) {
1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1094 return;
1095 }
1096
1097 /*
1098 * Map and establish our interrupt.
1099 */
1100 if (pci_intr_map(pa, &ih)) {
1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1102 return;
1103 }
1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1105 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1106 device_xname(self));
1107 if (sc->sc_ih == NULL) {
1108 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1109 if (intrstr != NULL)
1110 aprint_error(" at %s", intrstr);
1111 aprint_error("\n");
1112 sipcom_do_detach(self, SIP_ATTACH_MAP);
1113 return;
1114 }
1115 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1116
1117 SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119
1120 /*
1121 * Allocate the control data structures, and create and load the
1122 * DMA map for it.
1123 */
1124 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1125 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1126 &rseg, 0)) != 0) {
1127 aprint_error_dev(sc->sc_dev,
1128 "unable to allocate control data, error = %d\n", error);
1129 sipcom_do_detach(self, SIP_ATTACH_INTR);
1130 return;
1131 }
1132
1133 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1134 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1135 BUS_DMA_COHERENT)) != 0) {
1136 aprint_error_dev(sc->sc_dev,
1137 "unable to map control data, error = %d\n", error);
1138 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1139 }
1140
1141 if ((error = bus_dmamap_create(sc->sc_dmat,
1142 sizeof(struct sip_control_data), 1,
1143 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1144 aprint_error_dev(self, "unable to create control data DMA map"
1145 ", error = %d\n", error);
1146 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1147 }
1148
1149 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1150 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1151 0)) != 0) {
1152 aprint_error_dev(self, "unable to load control data DMA map"
1153 ", error = %d\n", error);
1154 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1155 }
1156
1157 /*
1158 * Create the transmit buffer DMA maps.
1159 */
1160 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1161 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1162 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1163 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1164 aprint_error_dev(self, "unable to create tx DMA map %d"
1165 ", error = %d\n", i, error);
1166 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1167 }
1168 }
1169
1170 /*
1171 * Create the receive buffer DMA maps.
1172 */
1173 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1174 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1175 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1176 aprint_error_dev(self, "unable to create rx DMA map %d"
1177 ", error = %d\n", i, error);
1178 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1179 }
1180 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1181 }
1182
1183 /*
1184 * Reset the chip to a known state.
1185 */
1186 sipcom_reset(sc);
1187
1188 /*
1189 * Read the Ethernet address from the EEPROM. This might
1190 * also fetch other stuff from the EEPROM and stash it
1191 * in the softc.
1192 */
1193 sc->sc_cfg = 0;
1194 if (!sc->sc_gigabit) {
1195 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 SIP_SIS900_REV(sc,SIS_REV_900B))
1197 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1198
1199 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1200 SIP_SIS900_REV(sc,SIS_REV_960) ||
1201 SIP_SIS900_REV(sc,SIS_REV_900B))
1202 sc->sc_cfg |=
1203 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1204 CFG_EDBMASTEN);
1205 }
1206
1207 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1208
1209 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1210
1211 /*
1212 * Initialize the configuration register: aggressive PCI
1213 * bus request algorithm, default backoff, default OW timer,
1214 * default parity error detection.
1215 *
1216 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 * friends -- it affects packet data, not descriptors.
1218 */
1219 if (sc->sc_gigabit)
1220 sipcom_dp83820_attach(sc, pa);
1221
1222 /*
1223 * Initialize our media structures and probe the MII.
1224 */
1225 sc->sc_mii.mii_ifp = ifp;
1226 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 sipcom_mediastatus);
1232
1233 /*
1234 * XXX We cannot handle flow control on the DP83815.
1235 */
1236 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, 0);
1239 else
1240 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 } else
1246 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247
1248 ifp = &sc->sc_ethercom.ec_if;
1249 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 ifp->if_softc = sc;
1251 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 sc->sc_if_flags = ifp->if_flags;
1253 ifp->if_ioctl = sipcom_ioctl;
1254 ifp->if_start = sipcom_start;
1255 ifp->if_watchdog = sipcom_watchdog;
1256 ifp->if_init = sipcom_init;
1257 ifp->if_stop = sipcom_stop;
1258 IFQ_SET_READY(&ifp->if_snd);
1259
1260 /*
1261 * We can support 802.1Q VLAN-sized frames.
1262 */
1263 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264
1265 if (sc->sc_gigabit) {
1266 /*
1267 * And the DP83820 can do VLAN tagging in hardware, and
1268 * support the jumbo Ethernet MTU.
1269 */
1270 sc->sc_ethercom.ec_capabilities |=
1271 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272
1273 /*
1274 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 * in hardware.
1276 */
1277 ifp->if_capabilities |=
1278 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 }
1282
1283 /*
1284 * Attach the interface.
1285 */
1286 if_attach(ifp);
1287 if_deferred_start_init(ifp, NULL);
1288 ether_ifattach(ifp, enaddr);
1289 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 sc->sc_prev.if_capenable = ifp->if_capenable;
1293 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 RND_TYPE_NET, RND_FLAG_DEFAULT);
1295
1296 /*
1297 * The number of bytes that must be available in
1298 * the Tx FIFO before the bus master can DMA more
1299 * data into the FIFO.
1300 */
1301 sc->sc_tx_fill_thresh = 64 / 32;
1302
1303 /*
1304 * Start at a drain threshold of 512 bytes. We will
1305 * increase it if a DMA underrun occurs.
1306 *
1307 * XXX The minimum value of this variable should be
1308 * tuned. We may be able to improve performance
1309 * by starting with a lower value. That, however,
1310 * may trash the first few outgoing packets if the
1311 * PCI bus is saturated.
1312 */
1313 if (sc->sc_gigabit)
1314 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1315 else
1316 sc->sc_tx_drain_thresh = 1504 / 32;
1317
1318 /*
1319 * Initialize the Rx FIFO drain threshold.
1320 *
1321 * This is in units of 8 bytes.
1322 *
1323 * We should never set this value lower than 2; 14 bytes are
1324 * required to filter the packet.
1325 */
1326 sc->sc_rx_drain_thresh = 128 / 8;
1327
1328 #ifdef SIP_EVENT_COUNTERS
1329 /*
1330 * Attach event counters.
1331 */
1332 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1333 NULL, device_xname(sc->sc_dev), "txsstall");
1334 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1335 NULL, device_xname(sc->sc_dev), "txdstall");
1336 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(sc->sc_dev), "txforceintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(sc->sc_dev), "txdintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(sc->sc_dev), "txiintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(sc->sc_dev), "rxintr");
1344 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1345 NULL, device_xname(sc->sc_dev), "hiberr");
1346 if (!sc->sc_gigabit) {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1348 NULL, device_xname(sc->sc_dev), "rxpause");
1349 } else {
1350 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1351 NULL, device_xname(sc->sc_dev), "rxpause");
1352 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1353 NULL, device_xname(sc->sc_dev), "txpause");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(sc->sc_dev), "rxipsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(sc->sc_dev), "rxudpsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(sc->sc_dev), "txipsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(sc->sc_dev), "txtcpsum");
1364 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1365 NULL, device_xname(sc->sc_dev), "txudpsum");
1366 }
1367 #endif /* SIP_EVENT_COUNTERS */
1368
1369 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1370 pmf_class_network_register(self, ifp);
1371 else
1372 aprint_error_dev(self, "couldn't establish power handler\n");
1373 }
1374
1375 static inline void
1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1377 uint64_t capenable)
1378 {
1379 struct m_tag *mtag;
1380 u_int32_t extsts;
1381 #ifdef DEBUG
1382 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1383 #endif
1384 /*
1385 * If VLANs are enabled and the packet has a VLAN tag, set
1386 * up the descriptor to encapsulate the packet for us.
1387 *
1388 * This apparently has to be on the last descriptor of
1389 * the packet.
1390 */
1391
1392 /*
1393 * Byte swapping is tricky. We need to provide the tag
1394 * in a network byte order. On a big-endian machine,
1395 * the byteorder is correct, but we need to swap it
1396 * anyway, because this will be undone by the outside
1397 * htole32(). That's why there must be an
1398 * unconditional swap instead of htons() inside.
1399 */
1400 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1401 sc->sc_txdescs[lasttx].sipd_extsts |=
1402 htole32(EXTSTS_VPKT |
1403 (bswap16(VLAN_TAG_VALUE(mtag)) &
1404 EXTSTS_VTCI));
1405 }
1406
1407 /*
1408 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1409 * checksumming, set up the descriptor to do this work
1410 * for us.
1411 *
1412 * This apparently has to be on the first descriptor of
1413 * the packet.
1414 *
1415 * Byte-swap constants so the compiler can optimize.
1416 */
1417 extsts = 0;
1418 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1419 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1420 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1421 extsts |= htole32(EXTSTS_IPPKT);
1422 }
1423 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1424 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1425 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1426 extsts |= htole32(EXTSTS_TCPPKT);
1427 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1428 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1429 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1430 extsts |= htole32(EXTSTS_UDPPKT);
1431 }
1432 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1433 }
1434
1435 /*
1436 * sip_start: [ifnet interface function]
1437 *
1438 * Start packet transmission on the interface.
1439 */
1440 static void
1441 sipcom_start(struct ifnet *ifp)
1442 {
1443 struct sip_softc *sc = ifp->if_softc;
1444 struct mbuf *m0;
1445 struct mbuf *m;
1446 struct sip_txsoft *txs;
1447 bus_dmamap_t dmamap;
1448 int error, nexttx, lasttx, seg;
1449 int ofree = sc->sc_txfree;
1450 #if 0
1451 int firsttx = sc->sc_txnext;
1452 #endif
1453
1454 /*
1455 * If we've been told to pause, don't transmit any more packets.
1456 */
1457 if (!sc->sc_gigabit && sc->sc_paused)
1458 ifp->if_flags |= IFF_OACTIVE;
1459
1460 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1461 return;
1462
1463 /*
1464 * Loop through the send queue, setting up transmit descriptors
1465 * until we drain the queue, or use up all available transmit
1466 * descriptors.
1467 */
1468 for (;;) {
1469 /* Get a work queue entry. */
1470 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1471 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1472 break;
1473 }
1474
1475 /*
1476 * Grab a packet off the queue.
1477 */
1478 IFQ_POLL(&ifp->if_snd, m0);
1479 if (m0 == NULL)
1480 break;
1481 m = NULL;
1482
1483 dmamap = txs->txs_dmamap;
1484
1485 /*
1486 * Load the DMA map. If this fails, the packet either
1487 * didn't fit in the alloted number of segments, or we
1488 * were short on resources.
1489 */
1490 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1491 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1492 /* In the non-gigabit case, we'll copy and try again. */
1493 if (error != 0 && !sc->sc_gigabit) {
1494 MGETHDR(m, M_DONTWAIT, MT_DATA);
1495 if (m == NULL) {
1496 printf("%s: unable to allocate Tx mbuf\n",
1497 device_xname(sc->sc_dev));
1498 break;
1499 }
1500 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1501 if (m0->m_pkthdr.len > MHLEN) {
1502 MCLGET(m, M_DONTWAIT);
1503 if ((m->m_flags & M_EXT) == 0) {
1504 printf("%s: unable to allocate Tx "
1505 "cluster\n",
1506 device_xname(sc->sc_dev));
1507 m_freem(m);
1508 break;
1509 }
1510 }
1511 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1512 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1513 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1514 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1515 if (error) {
1516 printf("%s: unable to load Tx buffer, error = "
1517 "%d\n", device_xname(sc->sc_dev), error);
1518 break;
1519 }
1520 } else if (error == EFBIG) {
1521 /*
1522 * For the too-many-segments case, we simply
1523 * report an error and drop the packet,
1524 * since we can't sanely copy a jumbo packet
1525 * to a single buffer.
1526 */
1527 printf("%s: Tx packet consumes too many DMA segments, "
1528 "dropping...\n", device_xname(sc->sc_dev));
1529 IFQ_DEQUEUE(&ifp->if_snd, m0);
1530 m_freem(m0);
1531 continue;
1532 } else if (error != 0) {
1533 /*
1534 * Short on resources, just stop for now.
1535 */
1536 break;
1537 }
1538
1539 /*
1540 * Ensure we have enough descriptors free to describe
1541 * the packet. Note, we always reserve one descriptor
1542 * at the end of the ring as a termination point, to
1543 * prevent wrap-around.
1544 */
1545 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1546 /*
1547 * Not enough free descriptors to transmit this
1548 * packet. We haven't committed anything yet,
1549 * so just unload the DMA map, put the packet
1550 * back on the queue, and punt. Notify the upper
1551 * layer that there are not more slots left.
1552 *
1553 * XXX We could allocate an mbuf and copy, but
1554 * XXX is it worth it?
1555 */
1556 ifp->if_flags |= IFF_OACTIVE;
1557 bus_dmamap_unload(sc->sc_dmat, dmamap);
1558 if (m != NULL)
1559 m_freem(m);
1560 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1561 break;
1562 }
1563
1564 IFQ_DEQUEUE(&ifp->if_snd, m0);
1565 if (m != NULL) {
1566 m_freem(m0);
1567 m0 = m;
1568 }
1569
1570 /*
1571 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1572 */
1573
1574 /* Sync the DMA map. */
1575 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1576 BUS_DMASYNC_PREWRITE);
1577
1578 /*
1579 * Initialize the transmit descriptors.
1580 */
1581 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1582 seg < dmamap->dm_nsegs;
1583 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1584 /*
1585 * If this is the first descriptor we're
1586 * enqueueing, don't set the OWN bit just
1587 * yet. That could cause a race condition.
1588 * We'll do it below.
1589 */
1590 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32(dmamap->dm_segs[seg].ds_addr);
1592 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1593 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1594 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1595 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1596 lasttx = nexttx;
1597 }
1598
1599 /* Clear the MORE bit on the last segment. */
1600 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1601 htole32(~CMDSTS_MORE);
1602
1603 /*
1604 * If we're in the interrupt delay window, delay the
1605 * interrupt.
1606 */
1607 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1608 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1609 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1610 htole32(CMDSTS_INTR);
1611 sc->sc_txwin = 0;
1612 }
1613
1614 if (sc->sc_gigabit)
1615 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1616
1617 /* Sync the descriptors we're using. */
1618 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1619 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1620
1621 /*
1622 * The entire packet is set up. Give the first descrptor
1623 * to the chip now.
1624 */
1625 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1626 htole32(CMDSTS_OWN);
1627 sip_cdtxsync(sc, sc->sc_txnext, 1,
1628 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629
1630 /*
1631 * Store a pointer to the packet so we can free it later,
1632 * and remember what txdirty will be once the packet is
1633 * done.
1634 */
1635 txs->txs_mbuf = m0;
1636 txs->txs_firstdesc = sc->sc_txnext;
1637 txs->txs_lastdesc = lasttx;
1638
1639 /* Advance the tx pointer. */
1640 sc->sc_txfree -= dmamap->dm_nsegs;
1641 sc->sc_txnext = nexttx;
1642
1643 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1644 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1645
1646 /*
1647 * Pass the packet to any BPF listeners.
1648 */
1649 bpf_mtap(ifp, m0);
1650 }
1651
1652 if (txs == NULL || sc->sc_txfree == 0) {
1653 /* No more slots left; notify upper layer. */
1654 ifp->if_flags |= IFF_OACTIVE;
1655 }
1656
1657 if (sc->sc_txfree != ofree) {
1658 /*
1659 * Start the transmit process. Note, the manual says
1660 * that if there are no pending transmissions in the
1661 * chip's internal queue (indicated by TXE being clear),
1662 * then the driver software must set the TXDP to the
1663 * first descriptor to be transmitted. However, if we
1664 * do this, it causes serious performance degredation on
1665 * the DP83820 under load, not setting TXDP doesn't seem
1666 * to adversely affect the SiS 900 or DP83815.
1667 *
1668 * Well, I guess it wouldn't be the first time a manual
1669 * has lied -- and they could be speaking of the NULL-
1670 * terminated descriptor list case, rather than OWN-
1671 * terminated rings.
1672 */
1673 #if 0
1674 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1675 CR_TXE) == 0) {
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1677 SIP_CDTXADDR(sc, firsttx));
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 }
1680 #else
1681 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 #endif
1683
1684 /* Set a watchdog timer in case the chip flakes out. */
1685 /* Gigabit autonegotiation takes 5 seconds. */
1686 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1687 }
1688 }
1689
1690 /*
1691 * sip_watchdog: [ifnet interface function]
1692 *
1693 * Watchdog timer handler.
1694 */
1695 static void
1696 sipcom_watchdog(struct ifnet *ifp)
1697 {
1698 struct sip_softc *sc = ifp->if_softc;
1699
1700 /*
1701 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1702 * If we get a timeout, try and sweep up transmit descriptors.
1703 * If we manage to sweep them all up, ignore the lack of
1704 * interrupt.
1705 */
1706 sipcom_txintr(sc);
1707
1708 if (sc->sc_txfree != sc->sc_ntxdesc) {
1709 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1710 ifp->if_oerrors++;
1711
1712 /* Reset the interface. */
1713 (void) sipcom_init(ifp);
1714 } else if (ifp->if_flags & IFF_DEBUG)
1715 printf("%s: recovered from device timeout\n",
1716 device_xname(sc->sc_dev));
1717
1718 /* Try to get more packets going. */
1719 sipcom_start(ifp);
1720 }
1721
1722 /* If the interface is up and running, only modify the receive
1723 * filter when setting promiscuous or debug mode. Otherwise fall
1724 * through to ether_ioctl, which will reset the chip.
1725 */
1726 static int
1727 sip_ifflags_cb(struct ethercom *ec)
1728 {
1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1730 == (sc)->sc_ethercom.ec_capenable) \
1731 && ((sc)->sc_prev.is_vlan == \
1732 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1734 struct ifnet *ifp = &ec->ec_if;
1735 struct sip_softc *sc = ifp->if_softc;
1736 int change = ifp->if_flags ^ sc->sc_if_flags;
1737
1738 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1739 !COMPARE_IC(sc, ifp))
1740 return ENETRESET;
1741 /* Set up the receive filter. */
1742 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1743 return 0;
1744 }
1745
1746 /*
1747 * sip_ioctl: [ifnet interface function]
1748 *
1749 * Handle control requests from the operator.
1750 */
1751 static int
1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1753 {
1754 struct sip_softc *sc = ifp->if_softc;
1755 struct ifreq *ifr = (struct ifreq *)data;
1756 int s, error;
1757
1758 s = splnet();
1759
1760 switch (cmd) {
1761 case SIOCSIFMEDIA:
1762 /* Flow control requires full-duplex mode. */
1763 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1764 (ifr->ifr_media & IFM_FDX) == 0)
1765 ifr->ifr_media &= ~IFM_ETH_FMASK;
1766
1767 /* XXX */
1768 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1769 ifr->ifr_media &= ~IFM_ETH_FMASK;
1770 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1771 if (sc->sc_gigabit &&
1772 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1773 /* We can do both TXPAUSE and RXPAUSE. */
1774 ifr->ifr_media |=
1775 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1776 } else if (ifr->ifr_media & IFM_FLOW) {
1777 /*
1778 * Both TXPAUSE and RXPAUSE must be set.
1779 * (SiS900 and DP83815 don't have PAUSE_ASYM
1780 * feature.)
1781 *
1782 * XXX Can SiS900 and DP83815 send PAUSE?
1783 */
1784 ifr->ifr_media |=
1785 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1786 }
1787 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1788 }
1789 /*FALLTHROUGH*/
1790 default:
1791 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1792 break;
1793
1794 error = 0;
1795
1796 if (cmd == SIOCSIFCAP)
1797 error = (*ifp->if_init)(ifp);
1798 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1799 ;
1800 else if (ifp->if_flags & IFF_RUNNING) {
1801 /*
1802 * Multicast list has changed; set the hardware filter
1803 * accordingly.
1804 */
1805 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1806 }
1807 break;
1808 }
1809
1810 /* Try to get more packets going. */
1811 sipcom_start(ifp);
1812
1813 sc->sc_if_flags = ifp->if_flags;
1814 splx(s);
1815 return (error);
1816 }
1817
1818 /*
1819 * sip_intr:
1820 *
1821 * Interrupt service routine.
1822 */
1823 static int
1824 sipcom_intr(void *arg)
1825 {
1826 struct sip_softc *sc = arg;
1827 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1828 u_int32_t isr;
1829 int handled = 0;
1830
1831 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1832 return 0;
1833
1834 /* Disable interrupts. */
1835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1836
1837 for (;;) {
1838 /* Reading clears interrupt. */
1839 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1840 if ((isr & sc->sc_imr) == 0)
1841 break;
1842
1843 rnd_add_uint32(&sc->rnd_source, isr);
1844
1845 handled = 1;
1846
1847 if ((ifp->if_flags & IFF_RUNNING) == 0)
1848 break;
1849
1850 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1851 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1852
1853 /* Grab any new packets. */
1854 (*sc->sc_rxintr)(sc);
1855
1856 if (isr & ISR_RXORN) {
1857 printf("%s: receive FIFO overrun\n",
1858 device_xname(sc->sc_dev));
1859
1860 /* XXX adjust rx_drain_thresh? */
1861 }
1862
1863 if (isr & ISR_RXIDLE) {
1864 printf("%s: receive ring overrun\n",
1865 device_xname(sc->sc_dev));
1866
1867 /* Get the receive process going again. */
1868 bus_space_write_4(sc->sc_st, sc->sc_sh,
1869 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1870 bus_space_write_4(sc->sc_st, sc->sc_sh,
1871 SIP_CR, CR_RXE);
1872 }
1873 }
1874
1875 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1876 #ifdef SIP_EVENT_COUNTERS
1877 if (isr & ISR_TXDESC)
1878 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1879 else if (isr & ISR_TXIDLE)
1880 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1881 #endif
1882
1883 /* Sweep up transmit descriptors. */
1884 sipcom_txintr(sc);
1885
1886 if (isr & ISR_TXURN) {
1887 u_int32_t thresh;
1888 int txfifo_size = (sc->sc_gigabit)
1889 ? DP83820_SIP_TXFIFO_SIZE
1890 : OTHER_SIP_TXFIFO_SIZE;
1891
1892 printf("%s: transmit FIFO underrun",
1893 device_xname(sc->sc_dev));
1894 thresh = sc->sc_tx_drain_thresh + 1;
1895 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1896 && (thresh * 32) <= (txfifo_size -
1897 (sc->sc_tx_fill_thresh * 32))) {
1898 printf("; increasing Tx drain "
1899 "threshold to %u bytes\n",
1900 thresh * 32);
1901 sc->sc_tx_drain_thresh = thresh;
1902 (void) sipcom_init(ifp);
1903 } else {
1904 (void) sipcom_init(ifp);
1905 printf("\n");
1906 }
1907 }
1908 }
1909
1910 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1911 if (isr & ISR_PAUSE_ST) {
1912 sc->sc_paused = 1;
1913 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1914 ifp->if_flags |= IFF_OACTIVE;
1915 }
1916 if (isr & ISR_PAUSE_END) {
1917 sc->sc_paused = 0;
1918 ifp->if_flags &= ~IFF_OACTIVE;
1919 }
1920 }
1921
1922 if (isr & ISR_HIBERR) {
1923 int want_init = 0;
1924
1925 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1926
1927 #define PRINTERR(bit, str) \
1928 do { \
1929 if ((isr & (bit)) != 0) { \
1930 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1931 printf("%s: %s\n", \
1932 device_xname(sc->sc_dev), str); \
1933 want_init = 1; \
1934 } \
1935 } while (/*CONSTCOND*/0)
1936
1937 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1938 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1939 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1940 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1941 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1942 /*
1943 * Ignore:
1944 * Tx reset complete
1945 * Rx reset complete
1946 */
1947 if (want_init)
1948 (void) sipcom_init(ifp);
1949 #undef PRINTERR
1950 }
1951 }
1952
1953 /* Re-enable interrupts. */
1954 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1955
1956 /* Try to get more packets going. */
1957 if_schedule_deferred_start(ifp);
1958
1959 return (handled);
1960 }
1961
1962 /*
1963 * sip_txintr:
1964 *
1965 * Helper; handle transmit interrupts.
1966 */
1967 static void
1968 sipcom_txintr(struct sip_softc *sc)
1969 {
1970 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1971 struct sip_txsoft *txs;
1972 u_int32_t cmdsts;
1973
1974 if (sc->sc_paused == 0)
1975 ifp->if_flags &= ~IFF_OACTIVE;
1976
1977 /*
1978 * Go through our Tx list and free mbufs for those
1979 * frames which have been transmitted.
1980 */
1981 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1982 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1983 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1984
1985 cmdsts = le32toh(*sipd_cmdsts(sc,
1986 &sc->sc_txdescs[txs->txs_lastdesc]));
1987 if (cmdsts & CMDSTS_OWN)
1988 break;
1989
1990 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1991
1992 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1993
1994 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1995 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1996 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1997 m_freem(txs->txs_mbuf);
1998 txs->txs_mbuf = NULL;
1999
2000 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2001
2002 /*
2003 * Check for errors and collisions.
2004 */
2005 if (cmdsts &
2006 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2007 ifp->if_oerrors++;
2008 if (cmdsts & CMDSTS_Tx_EC)
2009 ifp->if_collisions += 16;
2010 if (ifp->if_flags & IFF_DEBUG) {
2011 if (cmdsts & CMDSTS_Tx_ED)
2012 printf("%s: excessive deferral\n",
2013 device_xname(sc->sc_dev));
2014 if (cmdsts & CMDSTS_Tx_EC)
2015 printf("%s: excessive collisions\n",
2016 device_xname(sc->sc_dev));
2017 }
2018 } else {
2019 /* Packet was transmitted successfully. */
2020 ifp->if_opackets++;
2021 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2022 }
2023 }
2024
2025 /*
2026 * If there are no more pending transmissions, cancel the watchdog
2027 * timer.
2028 */
2029 if (txs == NULL) {
2030 ifp->if_timer = 0;
2031 sc->sc_txwin = 0;
2032 }
2033 }
2034
2035 /*
2036 * gsip_rxintr:
2037 *
2038 * Helper; handle receive interrupts on gigabit parts.
2039 */
2040 static void
2041 gsip_rxintr(struct sip_softc *sc)
2042 {
2043 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2044 struct sip_rxsoft *rxs;
2045 struct mbuf *m;
2046 u_int32_t cmdsts, extsts;
2047 int i, len;
2048
2049 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2050 rxs = &sc->sc_rxsoft[i];
2051
2052 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2053
2054 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2055 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2056 len = CMDSTS_SIZE(sc, cmdsts);
2057
2058 /*
2059 * NOTE: OWN is set if owned by _consumer_. We're the
2060 * consumer of the receive ring, so if the bit is clear,
2061 * we have processed all of the packets.
2062 */
2063 if ((cmdsts & CMDSTS_OWN) == 0) {
2064 /*
2065 * We have processed all of the receive buffers.
2066 */
2067 break;
2068 }
2069
2070 if (__predict_false(sc->sc_rxdiscard)) {
2071 sip_init_rxdesc(sc, i);
2072 if ((cmdsts & CMDSTS_MORE) == 0) {
2073 /* Reset our state. */
2074 sc->sc_rxdiscard = 0;
2075 }
2076 continue;
2077 }
2078
2079 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2080 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2081
2082 m = rxs->rxs_mbuf;
2083
2084 /*
2085 * Add a new receive buffer to the ring.
2086 */
2087 if (sipcom_add_rxbuf(sc, i) != 0) {
2088 /*
2089 * Failed, throw away what we've done so
2090 * far, and discard the rest of the packet.
2091 */
2092 ifp->if_ierrors++;
2093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2095 sip_init_rxdesc(sc, i);
2096 if (cmdsts & CMDSTS_MORE)
2097 sc->sc_rxdiscard = 1;
2098 if (sc->sc_rxhead != NULL)
2099 m_freem(sc->sc_rxhead);
2100 sip_rxchain_reset(sc);
2101 continue;
2102 }
2103
2104 sip_rxchain_link(sc, m);
2105
2106 m->m_len = len;
2107
2108 /*
2109 * If this is not the end of the packet, keep
2110 * looking.
2111 */
2112 if (cmdsts & CMDSTS_MORE) {
2113 sc->sc_rxlen += len;
2114 continue;
2115 }
2116
2117 /*
2118 * Okay, we have the entire packet now. The chip includes
2119 * the FCS, so we need to trim it.
2120 */
2121 m->m_len -= ETHER_CRC_LEN;
2122
2123 *sc->sc_rxtailp = NULL;
2124 len = m->m_len + sc->sc_rxlen;
2125 m = sc->sc_rxhead;
2126
2127 sip_rxchain_reset(sc);
2128
2129 /*
2130 * If an error occurred, update stats and drop the packet.
2131 */
2132 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2133 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2134 ifp->if_ierrors++;
2135 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2136 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2137 /* Receive overrun handled elsewhere. */
2138 printf("%s: receive descriptor error\n",
2139 device_xname(sc->sc_dev));
2140 }
2141 #define PRINTERR(bit, str) \
2142 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2143 (cmdsts & (bit)) != 0) \
2144 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2145 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2146 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2147 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2148 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2149 #undef PRINTERR
2150 m_freem(m);
2151 continue;
2152 }
2153
2154 /*
2155 * If the packet is small enough to fit in a
2156 * single header mbuf, allocate one and copy
2157 * the data into it. This greatly reduces
2158 * memory consumption when we receive lots
2159 * of small packets.
2160 */
2161 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2162 struct mbuf *nm;
2163 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2164 if (nm == NULL) {
2165 ifp->if_ierrors++;
2166 m_freem(m);
2167 continue;
2168 }
2169 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2170 nm->m_data += 2;
2171 nm->m_pkthdr.len = nm->m_len = len;
2172 m_copydata(m, 0, len, mtod(nm, void *));
2173 m_freem(m);
2174 m = nm;
2175 }
2176 #ifndef __NO_STRICT_ALIGNMENT
2177 else {
2178 /*
2179 * The DP83820's receive buffers must be 4-byte
2180 * aligned. But this means that the data after
2181 * the Ethernet header is misaligned. To compensate,
2182 * we have artificially shortened the buffer size
2183 * in the descriptor, and we do an overlapping copy
2184 * of the data two bytes further in (in the first
2185 * buffer of the chain only).
2186 */
2187 memmove(mtod(m, char *) + 2, mtod(m, void *),
2188 m->m_len);
2189 m->m_data += 2;
2190 }
2191 #endif /* ! __NO_STRICT_ALIGNMENT */
2192
2193 /*
2194 * If VLANs are enabled, VLAN packets have been unwrapped
2195 * for us. Associate the tag with the packet.
2196 */
2197
2198 /*
2199 * Again, byte swapping is tricky. Hardware provided
2200 * the tag in the network byte order, but extsts was
2201 * passed through le32toh() in the meantime. On a
2202 * big-endian machine, we need to swap it again. On a
2203 * little-endian machine, we need to convert from the
2204 * network to host byte order. This means that we must
2205 * swap it in any case, so unconditional swap instead
2206 * of htons() is used.
2207 */
2208 if ((extsts & EXTSTS_VPKT) != 0) {
2209 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2210 continue);
2211 }
2212
2213 /*
2214 * Set the incoming checksum information for the
2215 * packet.
2216 */
2217 if ((extsts & EXTSTS_IPPKT) != 0) {
2218 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2220 if (extsts & EXTSTS_Rx_IPERR)
2221 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2222 if (extsts & EXTSTS_TCPPKT) {
2223 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2224 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2225 if (extsts & EXTSTS_Rx_TCPERR)
2226 m->m_pkthdr.csum_flags |=
2227 M_CSUM_TCP_UDP_BAD;
2228 } else if (extsts & EXTSTS_UDPPKT) {
2229 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2230 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2231 if (extsts & EXTSTS_Rx_UDPERR)
2232 m->m_pkthdr.csum_flags |=
2233 M_CSUM_TCP_UDP_BAD;
2234 }
2235 }
2236
2237 m_set_rcvif(m, ifp);
2238 m->m_pkthdr.len = len;
2239
2240 /* Pass it on. */
2241 if_percpuq_enqueue(ifp->if_percpuq, m);
2242 }
2243
2244 /* Update the receive pointer. */
2245 sc->sc_rxptr = i;
2246 }
2247
2248 /*
2249 * sip_rxintr:
2250 *
2251 * Helper; handle receive interrupts on 10/100 parts.
2252 */
2253 static void
2254 sip_rxintr(struct sip_softc *sc)
2255 {
2256 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2257 struct sip_rxsoft *rxs;
2258 struct mbuf *m;
2259 u_int32_t cmdsts;
2260 int i, len;
2261
2262 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2263 rxs = &sc->sc_rxsoft[i];
2264
2265 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2266
2267 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2268
2269 /*
2270 * NOTE: OWN is set if owned by _consumer_. We're the
2271 * consumer of the receive ring, so if the bit is clear,
2272 * we have processed all of the packets.
2273 */
2274 if ((cmdsts & CMDSTS_OWN) == 0) {
2275 /*
2276 * We have processed all of the receive buffers.
2277 */
2278 break;
2279 }
2280
2281 /*
2282 * If any collisions were seen on the wire, count one.
2283 */
2284 if (cmdsts & CMDSTS_Rx_COL)
2285 ifp->if_collisions++;
2286
2287 /*
2288 * If an error occurred, update stats, clear the status
2289 * word, and leave the packet buffer in place. It will
2290 * simply be reused the next time the ring comes around.
2291 */
2292 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2293 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2294 ifp->if_ierrors++;
2295 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2296 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2297 /* Receive overrun handled elsewhere. */
2298 printf("%s: receive descriptor error\n",
2299 device_xname(sc->sc_dev));
2300 }
2301 #define PRINTERR(bit, str) \
2302 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2303 (cmdsts & (bit)) != 0) \
2304 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2305 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2306 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2307 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2308 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2309 #undef PRINTERR
2310 sip_init_rxdesc(sc, i);
2311 continue;
2312 }
2313
2314 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2315 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2316
2317 /*
2318 * No errors; receive the packet. Note, the SiS 900
2319 * includes the CRC with every packet.
2320 */
2321 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2322
2323 #ifdef __NO_STRICT_ALIGNMENT
2324 /*
2325 * If the packet is small enough to fit in a
2326 * single header mbuf, allocate one and copy
2327 * the data into it. This greatly reduces
2328 * memory consumption when we receive lots
2329 * of small packets.
2330 *
2331 * Otherwise, we add a new buffer to the receive
2332 * chain. If this fails, we drop the packet and
2333 * recycle the old buffer.
2334 */
2335 if (sip_copy_small != 0 && len <= MHLEN) {
2336 MGETHDR(m, M_DONTWAIT, MT_DATA);
2337 if (m == NULL)
2338 goto dropit;
2339 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2340 memcpy(mtod(m, void *),
2341 mtod(rxs->rxs_mbuf, void *), len);
2342 sip_init_rxdesc(sc, i);
2343 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2344 rxs->rxs_dmamap->dm_mapsize,
2345 BUS_DMASYNC_PREREAD);
2346 } else {
2347 m = rxs->rxs_mbuf;
2348 if (sipcom_add_rxbuf(sc, i) != 0) {
2349 dropit:
2350 ifp->if_ierrors++;
2351 sip_init_rxdesc(sc, i);
2352 bus_dmamap_sync(sc->sc_dmat,
2353 rxs->rxs_dmamap, 0,
2354 rxs->rxs_dmamap->dm_mapsize,
2355 BUS_DMASYNC_PREREAD);
2356 continue;
2357 }
2358 }
2359 #else
2360 /*
2361 * The SiS 900's receive buffers must be 4-byte aligned.
2362 * But this means that the data after the Ethernet header
2363 * is misaligned. We must allocate a new buffer and
2364 * copy the data, shifted forward 2 bytes.
2365 */
2366 MGETHDR(m, M_DONTWAIT, MT_DATA);
2367 if (m == NULL) {
2368 dropit:
2369 ifp->if_ierrors++;
2370 sip_init_rxdesc(sc, i);
2371 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2372 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2373 continue;
2374 }
2375 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2376 if (len > (MHLEN - 2)) {
2377 MCLGET(m, M_DONTWAIT);
2378 if ((m->m_flags & M_EXT) == 0) {
2379 m_freem(m);
2380 goto dropit;
2381 }
2382 }
2383 m->m_data += 2;
2384
2385 /*
2386 * Note that we use clusters for incoming frames, so the
2387 * buffer is virtually contiguous.
2388 */
2389 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2390
2391 /* Allow the receive descriptor to continue using its mbuf. */
2392 sip_init_rxdesc(sc, i);
2393 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2394 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2395 #endif /* __NO_STRICT_ALIGNMENT */
2396
2397 m_set_rcvif(m, ifp);
2398 m->m_pkthdr.len = m->m_len = len;
2399
2400 /* Pass it on. */
2401 if_percpuq_enqueue(ifp->if_percpuq, m);
2402 }
2403
2404 /* Update the receive pointer. */
2405 sc->sc_rxptr = i;
2406 }
2407
2408 /*
2409 * sip_tick:
2410 *
2411 * One second timer, used to tick the MII.
2412 */
2413 static void
2414 sipcom_tick(void *arg)
2415 {
2416 struct sip_softc *sc = arg;
2417 int s;
2418
2419 s = splnet();
2420 #ifdef SIP_EVENT_COUNTERS
2421 if (sc->sc_gigabit) {
2422 /* Read PAUSE related counts from MIB registers. */
2423 sc->sc_ev_rxpause.ev_count +=
2424 bus_space_read_4(sc->sc_st, sc->sc_sh,
2425 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2426 sc->sc_ev_txpause.ev_count +=
2427 bus_space_read_4(sc->sc_st, sc->sc_sh,
2428 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2429 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2430 }
2431 #endif /* SIP_EVENT_COUNTERS */
2432 mii_tick(&sc->sc_mii);
2433 splx(s);
2434
2435 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2436 }
2437
2438 /*
2439 * sip_reset:
2440 *
2441 * Perform a soft reset on the SiS 900.
2442 */
2443 static bool
2444 sipcom_reset(struct sip_softc *sc)
2445 {
2446 bus_space_tag_t st = sc->sc_st;
2447 bus_space_handle_t sh = sc->sc_sh;
2448 int i;
2449
2450 bus_space_write_4(st, sh, SIP_IER, 0);
2451 bus_space_write_4(st, sh, SIP_IMR, 0);
2452 bus_space_write_4(st, sh, SIP_RFCR, 0);
2453 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2454
2455 for (i = 0; i < SIP_TIMEOUT; i++) {
2456 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2457 break;
2458 delay(2);
2459 }
2460
2461 if (i == SIP_TIMEOUT) {
2462 printf("%s: reset failed to complete\n",
2463 device_xname(sc->sc_dev));
2464 return false;
2465 }
2466
2467 delay(1000);
2468
2469 if (sc->sc_gigabit) {
2470 /*
2471 * Set the general purpose I/O bits. Do it here in case we
2472 * need to have GPIO set up to talk to the media interface.
2473 */
2474 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2475 delay(1000);
2476 }
2477 return true;
2478 }
2479
2480 static void
2481 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2482 {
2483 u_int32_t reg;
2484 bus_space_tag_t st = sc->sc_st;
2485 bus_space_handle_t sh = sc->sc_sh;
2486 /*
2487 * Initialize the VLAN/IP receive control register.
2488 * We enable checksum computation on all incoming
2489 * packets, and do not reject packets w/ bad checksums.
2490 */
2491 reg = 0;
2492 if (capenable &
2493 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2494 reg |= VRCR_IPEN;
2495 if (VLAN_ATTACHED(&sc->sc_ethercom))
2496 reg |= VRCR_VTDEN|VRCR_VTREN;
2497 bus_space_write_4(st, sh, SIP_VRCR, reg);
2498
2499 /*
2500 * Initialize the VLAN/IP transmit control register.
2501 * We enable outgoing checksum computation on a
2502 * per-packet basis.
2503 */
2504 reg = 0;
2505 if (capenable &
2506 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2507 reg |= VTCR_PPCHK;
2508 if (VLAN_ATTACHED(&sc->sc_ethercom))
2509 reg |= VTCR_VPPTI;
2510 bus_space_write_4(st, sh, SIP_VTCR, reg);
2511
2512 /*
2513 * If we're using VLANs, initialize the VLAN data register.
2514 * To understand why we bswap the VLAN Ethertype, see section
2515 * 4.2.36 of the DP83820 manual.
2516 */
2517 if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2519 }
2520
2521 /*
2522 * sip_init: [ ifnet interface function ]
2523 *
2524 * Initialize the interface. Must be called at splnet().
2525 */
2526 static int
2527 sipcom_init(struct ifnet *ifp)
2528 {
2529 struct sip_softc *sc = ifp->if_softc;
2530 bus_space_tag_t st = sc->sc_st;
2531 bus_space_handle_t sh = sc->sc_sh;
2532 struct sip_txsoft *txs;
2533 struct sip_rxsoft *rxs;
2534 struct sip_desc *sipd;
2535 int i, error = 0;
2536
2537 if (device_is_active(sc->sc_dev)) {
2538 /*
2539 * Cancel any pending I/O.
2540 */
2541 sipcom_stop(ifp, 0);
2542 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2543 !device_is_active(sc->sc_dev))
2544 return 0;
2545
2546 /*
2547 * Reset the chip to a known state.
2548 */
2549 if (!sipcom_reset(sc))
2550 return EBUSY;
2551
2552 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2553 /*
2554 * DP83815 manual, page 78:
2555 * 4.4 Recommended Registers Configuration
2556 * For optimum performance of the DP83815, version noted
2557 * as DP83815CVNG (SRR = 203h), the listed register
2558 * modifications must be followed in sequence...
2559 *
2560 * It's not clear if this should be 302h or 203h because that
2561 * chip name is listed as SRR 302h in the description of the
2562 * SRR register. However, my revision 302h DP83815 on the
2563 * Netgear FA311 purchased in 02/2001 needs these settings
2564 * to avoid tons of errors in AcceptPerfectMatch (non-
2565 * IFF_PROMISC) mode. I do not know if other revisions need
2566 * this set or not. [briggs -- 09 March 2001]
2567 *
2568 * Note that only the low-order 12 bits of 0xe4 are documented
2569 * and that this sets reserved bits in that register.
2570 */
2571 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2572
2573 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2574 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2575 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2576 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2577
2578 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2579 }
2580
2581 /*
2582 * Initialize the transmit descriptor ring.
2583 */
2584 for (i = 0; i < sc->sc_ntxdesc; i++) {
2585 sipd = &sc->sc_txdescs[i];
2586 memset(sipd, 0, sizeof(struct sip_desc));
2587 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2588 }
2589 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2591 sc->sc_txfree = sc->sc_ntxdesc;
2592 sc->sc_txnext = 0;
2593 sc->sc_txwin = 0;
2594
2595 /*
2596 * Initialize the transmit job descriptors.
2597 */
2598 SIMPLEQ_INIT(&sc->sc_txfreeq);
2599 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2600 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2601 txs = &sc->sc_txsoft[i];
2602 txs->txs_mbuf = NULL;
2603 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2604 }
2605
2606 /*
2607 * Initialize the receive descriptor and receive job
2608 * descriptor rings.
2609 */
2610 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2611 rxs = &sc->sc_rxsoft[i];
2612 if (rxs->rxs_mbuf == NULL) {
2613 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2614 printf("%s: unable to allocate or map rx "
2615 "buffer %d, error = %d\n",
2616 device_xname(sc->sc_dev), i, error);
2617 /*
2618 * XXX Should attempt to run with fewer receive
2619 * XXX buffers instead of just failing.
2620 */
2621 sipcom_rxdrain(sc);
2622 goto out;
2623 }
2624 } else
2625 sip_init_rxdesc(sc, i);
2626 }
2627 sc->sc_rxptr = 0;
2628 sc->sc_rxdiscard = 0;
2629 sip_rxchain_reset(sc);
2630
2631 /*
2632 * Set the configuration register; it's already initialized
2633 * in sip_attach().
2634 */
2635 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2636
2637 /*
2638 * Initialize the prototype TXCFG register.
2639 */
2640 if (sc->sc_gigabit) {
2641 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2642 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2643 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2644 SIP_SIS900_REV(sc, SIS_REV_960) ||
2645 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2646 (sc->sc_cfg & CFG_EDBMASTEN)) {
2647 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2648 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2649 } else {
2650 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2651 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2652 }
2653
2654 sc->sc_txcfg |= TXCFG_ATP |
2655 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2656 sc->sc_tx_drain_thresh;
2657 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2658
2659 /*
2660 * Initialize the receive drain threshold if we have never
2661 * done so.
2662 */
2663 if (sc->sc_rx_drain_thresh == 0) {
2664 /*
2665 * XXX This value should be tuned. This is set to the
2666 * maximum of 248 bytes, and we may be able to improve
2667 * performance by decreasing it (although we should never
2668 * set this value lower than 2; 14 bytes are required to
2669 * filter the packet).
2670 */
2671 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2672 }
2673
2674 /*
2675 * Initialize the prototype RXCFG register.
2676 */
2677 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2678 /*
2679 * Accept long packets (including FCS) so we can handle
2680 * 802.1q-tagged frames and jumbo frames properly.
2681 */
2682 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2683 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2684 sc->sc_rxcfg |= RXCFG_ALP;
2685
2686 /*
2687 * Checksum offloading is disabled if the user selects an MTU
2688 * larger than 8109. (FreeBSD says 8152, but there is emperical
2689 * evidence that >8109 does not work on some boards, such as the
2690 * Planex GN-1000TE).
2691 */
2692 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2693 (ifp->if_capenable &
2694 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2695 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2696 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2697 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2698 "disabled.\n", device_xname(sc->sc_dev));
2699 ifp->if_capenable &=
2700 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2701 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2702 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2703 ifp->if_csum_flags_tx = 0;
2704 ifp->if_csum_flags_rx = 0;
2705 }
2706
2707 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2708
2709 if (sc->sc_gigabit)
2710 sipcom_dp83820_init(sc, ifp->if_capenable);
2711
2712 /*
2713 * Give the transmit and receive rings to the chip.
2714 */
2715 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2716 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2717
2718 /*
2719 * Initialize the interrupt mask.
2720 */
2721 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2722 sc->sc_bits.b_isr_sserr |
2723 sc->sc_bits.b_isr_rmabt |
2724 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2725 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2726 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2727
2728 /* Set up the receive filter. */
2729 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2730
2731 /*
2732 * Tune sc_rx_flow_thresh.
2733 * XXX "More than 8KB" is too short for jumbo frames.
2734 * XXX TODO: Threshold value should be user-settable.
2735 */
2736 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2737 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2738 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2739
2740 /*
2741 * Set the current media. Do this after initializing the prototype
2742 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2743 * control.
2744 */
2745 if ((error = ether_mediachange(ifp)) != 0)
2746 goto out;
2747
2748 /*
2749 * Set the interrupt hold-off timer to 100us.
2750 */
2751 if (sc->sc_gigabit)
2752 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2753
2754 /*
2755 * Enable interrupts.
2756 */
2757 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2758
2759 /*
2760 * Start the transmit and receive processes.
2761 */
2762 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2763
2764 /*
2765 * Start the one second MII clock.
2766 */
2767 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2768
2769 /*
2770 * ...all done!
2771 */
2772 ifp->if_flags |= IFF_RUNNING;
2773 ifp->if_flags &= ~IFF_OACTIVE;
2774 sc->sc_if_flags = ifp->if_flags;
2775 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2776 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2777 sc->sc_prev.if_capenable = ifp->if_capenable;
2778
2779 out:
2780 if (error)
2781 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2782 return (error);
2783 }
2784
2785 /*
2786 * sip_drain:
2787 *
2788 * Drain the receive queue.
2789 */
2790 static void
2791 sipcom_rxdrain(struct sip_softc *sc)
2792 {
2793 struct sip_rxsoft *rxs;
2794 int i;
2795
2796 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2797 rxs = &sc->sc_rxsoft[i];
2798 if (rxs->rxs_mbuf != NULL) {
2799 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2800 m_freem(rxs->rxs_mbuf);
2801 rxs->rxs_mbuf = NULL;
2802 }
2803 }
2804 }
2805
2806 /*
2807 * sip_stop: [ ifnet interface function ]
2808 *
2809 * Stop transmission on the interface.
2810 */
2811 static void
2812 sipcom_stop(struct ifnet *ifp, int disable)
2813 {
2814 struct sip_softc *sc = ifp->if_softc;
2815 bus_space_tag_t st = sc->sc_st;
2816 bus_space_handle_t sh = sc->sc_sh;
2817 struct sip_txsoft *txs;
2818 u_int32_t cmdsts = 0; /* DEBUG */
2819
2820 /*
2821 * Stop the one second clock.
2822 */
2823 callout_stop(&sc->sc_tick_ch);
2824
2825 /* Down the MII. */
2826 mii_down(&sc->sc_mii);
2827
2828 if (device_is_active(sc->sc_dev)) {
2829 /*
2830 * Disable interrupts.
2831 */
2832 bus_space_write_4(st, sh, SIP_IER, 0);
2833
2834 /*
2835 * Stop receiver and transmitter.
2836 */
2837 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2838 }
2839
2840 /*
2841 * Release any queued transmit buffers.
2842 */
2843 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2844 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2845 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2846 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2847 CMDSTS_INTR) == 0)
2848 printf("%s: sip_stop: last descriptor does not "
2849 "have INTR bit set\n", device_xname(sc->sc_dev));
2850 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2851 #ifdef DIAGNOSTIC
2852 if (txs->txs_mbuf == NULL) {
2853 printf("%s: dirty txsoft with no mbuf chain\n",
2854 device_xname(sc->sc_dev));
2855 panic("sip_stop");
2856 }
2857 #endif
2858 cmdsts |= /* DEBUG */
2859 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2860 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2861 m_freem(txs->txs_mbuf);
2862 txs->txs_mbuf = NULL;
2863 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2864 }
2865
2866 /*
2867 * Mark the interface down and cancel the watchdog timer.
2868 */
2869 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2870 ifp->if_timer = 0;
2871
2872 if (disable)
2873 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2874
2875 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2876 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2877 printf("%s: sip_stop: no INTR bits set in dirty tx "
2878 "descriptors\n", device_xname(sc->sc_dev));
2879 }
2880
2881 /*
2882 * sip_read_eeprom:
2883 *
2884 * Read data from the serial EEPROM.
2885 */
2886 static void
2887 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2888 u_int16_t *data)
2889 {
2890 bus_space_tag_t st = sc->sc_st;
2891 bus_space_handle_t sh = sc->sc_sh;
2892 u_int16_t reg;
2893 int i, x;
2894
2895 for (i = 0; i < wordcnt; i++) {
2896 /* Send CHIP SELECT. */
2897 reg = EROMAR_EECS;
2898 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2899
2900 /* Shift in the READ opcode. */
2901 for (x = 3; x > 0; x--) {
2902 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2903 reg |= EROMAR_EEDI;
2904 else
2905 reg &= ~EROMAR_EEDI;
2906 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2907 bus_space_write_4(st, sh, SIP_EROMAR,
2908 reg | EROMAR_EESK);
2909 delay(4);
2910 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2911 delay(4);
2912 }
2913
2914 /* Shift in address. */
2915 for (x = 6; x > 0; x--) {
2916 if ((word + i) & (1 << (x - 1)))
2917 reg |= EROMAR_EEDI;
2918 else
2919 reg &= ~EROMAR_EEDI;
2920 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 bus_space_write_4(st, sh, SIP_EROMAR,
2922 reg | EROMAR_EESK);
2923 delay(4);
2924 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2925 delay(4);
2926 }
2927
2928 /* Shift out data. */
2929 reg = EROMAR_EECS;
2930 data[i] = 0;
2931 for (x = 16; x > 0; x--) {
2932 bus_space_write_4(st, sh, SIP_EROMAR,
2933 reg | EROMAR_EESK);
2934 delay(4);
2935 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2936 data[i] |= (1 << (x - 1));
2937 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2938 delay(4);
2939 }
2940
2941 /* Clear CHIP SELECT. */
2942 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2943 delay(4);
2944 }
2945 }
2946
2947 /*
2948 * sipcom_add_rxbuf:
2949 *
2950 * Add a receive buffer to the indicated descriptor.
2951 */
2952 static int
2953 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2954 {
2955 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2956 struct mbuf *m;
2957 int error;
2958
2959 MGETHDR(m, M_DONTWAIT, MT_DATA);
2960 if (m == NULL)
2961 return (ENOBUFS);
2962 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2963
2964 MCLGET(m, M_DONTWAIT);
2965 if ((m->m_flags & M_EXT) == 0) {
2966 m_freem(m);
2967 return (ENOBUFS);
2968 }
2969
2970 /* XXX I don't believe this is necessary. --dyoung */
2971 if (sc->sc_gigabit)
2972 m->m_len = sc->sc_parm->p_rxbuf_len;
2973
2974 if (rxs->rxs_mbuf != NULL)
2975 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2976
2977 rxs->rxs_mbuf = m;
2978
2979 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2980 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2981 BUS_DMA_READ|BUS_DMA_NOWAIT);
2982 if (error) {
2983 printf("%s: can't load rx DMA map %d, error = %d\n",
2984 device_xname(sc->sc_dev), idx, error);
2985 panic("%s", __func__); /* XXX */
2986 }
2987
2988 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2989 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2990
2991 sip_init_rxdesc(sc, idx);
2992
2993 return (0);
2994 }
2995
2996 /*
2997 * sip_sis900_set_filter:
2998 *
2999 * Set up the receive filter.
3000 */
3001 static void
3002 sipcom_sis900_set_filter(struct sip_softc *sc)
3003 {
3004 bus_space_tag_t st = sc->sc_st;
3005 bus_space_handle_t sh = sc->sc_sh;
3006 struct ethercom *ec = &sc->sc_ethercom;
3007 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3008 struct ether_multi *enm;
3009 const u_int8_t *cp;
3010 struct ether_multistep step;
3011 u_int32_t crc, mchash[16];
3012
3013 /*
3014 * Initialize the prototype RFCR.
3015 */
3016 sc->sc_rfcr = RFCR_RFEN;
3017 if (ifp->if_flags & IFF_BROADCAST)
3018 sc->sc_rfcr |= RFCR_AAB;
3019 if (ifp->if_flags & IFF_PROMISC) {
3020 sc->sc_rfcr |= RFCR_AAP;
3021 goto allmulti;
3022 }
3023
3024 /*
3025 * Set up the multicast address filter by passing all multicast
3026 * addresses through a CRC generator, and then using the high-order
3027 * 6 bits as an index into the 128 bit multicast hash table (only
3028 * the lower 16 bits of each 32 bit multicast hash register are
3029 * valid). The high order bits select the register, while the
3030 * rest of the bits select the bit within the register.
3031 */
3032
3033 memset(mchash, 0, sizeof(mchash));
3034
3035 /*
3036 * SiS900 (at least SiS963) requires us to register the address of
3037 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3038 */
3039 crc = 0x0ed423f9;
3040
3041 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3042 SIP_SIS900_REV(sc, SIS_REV_960) ||
3043 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3044 /* Just want the 8 most significant bits. */
3045 crc >>= 24;
3046 } else {
3047 /* Just want the 7 most significant bits. */
3048 crc >>= 25;
3049 }
3050
3051 /* Set the corresponding bit in the hash table. */
3052 mchash[crc >> 4] |= 1 << (crc & 0xf);
3053
3054 ETHER_FIRST_MULTI(step, ec, enm);
3055 while (enm != NULL) {
3056 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3057 /*
3058 * We must listen to a range of multicast addresses.
3059 * For now, just accept all multicasts, rather than
3060 * trying to set only those filter bits needed to match
3061 * the range. (At this time, the only use of address
3062 * ranges is for IP multicast routing, for which the
3063 * range is big enough to require all bits set.)
3064 */
3065 goto allmulti;
3066 }
3067
3068 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3069
3070 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3071 SIP_SIS900_REV(sc, SIS_REV_960) ||
3072 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3073 /* Just want the 8 most significant bits. */
3074 crc >>= 24;
3075 } else {
3076 /* Just want the 7 most significant bits. */
3077 crc >>= 25;
3078 }
3079
3080 /* Set the corresponding bit in the hash table. */
3081 mchash[crc >> 4] |= 1 << (crc & 0xf);
3082
3083 ETHER_NEXT_MULTI(step, enm);
3084 }
3085
3086 ifp->if_flags &= ~IFF_ALLMULTI;
3087 goto setit;
3088
3089 allmulti:
3090 ifp->if_flags |= IFF_ALLMULTI;
3091 sc->sc_rfcr |= RFCR_AAM;
3092
3093 setit:
3094 #define FILTER_EMIT(addr, data) \
3095 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3096 delay(1); \
3097 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3098 delay(1)
3099
3100 /*
3101 * Disable receive filter, and program the node address.
3102 */
3103 cp = CLLADDR(ifp->if_sadl);
3104 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3105 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3106 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3107
3108 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3109 /*
3110 * Program the multicast hash table.
3111 */
3112 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3113 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3114 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3115 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3116 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3117 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3118 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3119 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3120 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3121 SIP_SIS900_REV(sc, SIS_REV_960) ||
3122 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3123 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3124 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3125 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3126 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3127 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3128 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3129 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3130 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3131 }
3132 }
3133 #undef FILTER_EMIT
3134
3135 /*
3136 * Re-enable the receiver filter.
3137 */
3138 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3139 }
3140
3141 /*
3142 * sip_dp83815_set_filter:
3143 *
3144 * Set up the receive filter.
3145 */
3146 static void
3147 sipcom_dp83815_set_filter(struct sip_softc *sc)
3148 {
3149 bus_space_tag_t st = sc->sc_st;
3150 bus_space_handle_t sh = sc->sc_sh;
3151 struct ethercom *ec = &sc->sc_ethercom;
3152 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3153 struct ether_multi *enm;
3154 const u_int8_t *cp;
3155 struct ether_multistep step;
3156 u_int32_t crc, hash, slot, bit;
3157 #define MCHASH_NWORDS_83820 128
3158 #define MCHASH_NWORDS_83815 32
3159 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3160 u_int16_t mchash[MCHASH_NWORDS];
3161 int i;
3162
3163 /*
3164 * Initialize the prototype RFCR.
3165 * Enable the receive filter, and accept on
3166 * Perfect (destination address) Match
3167 * If IFF_BROADCAST, also accept all broadcast packets.
3168 * If IFF_PROMISC, accept all unicast packets (and later, set
3169 * IFF_ALLMULTI and accept all multicast, too).
3170 */
3171 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3172 if (ifp->if_flags & IFF_BROADCAST)
3173 sc->sc_rfcr |= RFCR_AAB;
3174 if (ifp->if_flags & IFF_PROMISC) {
3175 sc->sc_rfcr |= RFCR_AAP;
3176 goto allmulti;
3177 }
3178
3179 /*
3180 * Set up the DP83820/DP83815 multicast address filter by
3181 * passing all multicast addresses through a CRC generator,
3182 * and then using the high-order 11/9 bits as an index into
3183 * the 2048/512 bit multicast hash table. The high-order
3184 * 7/5 bits select the slot, while the low-order 4 bits
3185 * select the bit within the slot. Note that only the low
3186 * 16-bits of each filter word are used, and there are
3187 * 128/32 filter words.
3188 */
3189
3190 memset(mchash, 0, sizeof(mchash));
3191
3192 ifp->if_flags &= ~IFF_ALLMULTI;
3193 ETHER_FIRST_MULTI(step, ec, enm);
3194 if (enm == NULL)
3195 goto setit;
3196 while (enm != NULL) {
3197 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3198 /*
3199 * We must listen to a range of multicast addresses.
3200 * For now, just accept all multicasts, rather than
3201 * trying to set only those filter bits needed to match
3202 * the range. (At this time, the only use of address
3203 * ranges is for IP multicast routing, for which the
3204 * range is big enough to require all bits set.)
3205 */
3206 goto allmulti;
3207 }
3208
3209 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3210
3211 if (sc->sc_gigabit) {
3212 /* Just want the 11 most significant bits. */
3213 hash = crc >> 21;
3214 } else {
3215 /* Just want the 9 most significant bits. */
3216 hash = crc >> 23;
3217 }
3218
3219 slot = hash >> 4;
3220 bit = hash & 0xf;
3221
3222 /* Set the corresponding bit in the hash table. */
3223 mchash[slot] |= 1 << bit;
3224
3225 ETHER_NEXT_MULTI(step, enm);
3226 }
3227 sc->sc_rfcr |= RFCR_MHEN;
3228 goto setit;
3229
3230 allmulti:
3231 ifp->if_flags |= IFF_ALLMULTI;
3232 sc->sc_rfcr |= RFCR_AAM;
3233
3234 setit:
3235 #define FILTER_EMIT(addr, data) \
3236 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3237 delay(1); \
3238 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3239 delay(1)
3240
3241 /*
3242 * Disable receive filter, and program the node address.
3243 */
3244 cp = CLLADDR(ifp->if_sadl);
3245 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3246 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3247 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3248
3249 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3250 int nwords =
3251 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3252 /*
3253 * Program the multicast hash table.
3254 */
3255 for (i = 0; i < nwords; i++) {
3256 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3257 }
3258 }
3259 #undef FILTER_EMIT
3260 #undef MCHASH_NWORDS
3261 #undef MCHASH_NWORDS_83815
3262 #undef MCHASH_NWORDS_83820
3263
3264 /*
3265 * Re-enable the receiver filter.
3266 */
3267 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3268 }
3269
3270 /*
3271 * sip_dp83820_mii_readreg: [mii interface function]
3272 *
3273 * Read a PHY register on the MII of the DP83820.
3274 */
3275 static int
3276 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3277 {
3278 struct sip_softc *sc = device_private(self);
3279
3280 if (sc->sc_cfg & CFG_TBI_EN) {
3281 bus_addr_t tbireg;
3282 int rv;
3283
3284 if (phy != 0)
3285 return (0);
3286
3287 switch (reg) {
3288 case MII_BMCR: tbireg = SIP_TBICR; break;
3289 case MII_BMSR: tbireg = SIP_TBISR; break;
3290 case MII_ANAR: tbireg = SIP_TANAR; break;
3291 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3292 case MII_ANER: tbireg = SIP_TANER; break;
3293 case MII_EXTSR:
3294 /*
3295 * Don't even bother reading the TESR register.
3296 * The manual documents that the device has
3297 * 1000baseX full/half capability, but the
3298 * register itself seems read back 0 on some
3299 * boards. Just hard-code the result.
3300 */
3301 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3302
3303 default:
3304 return (0);
3305 }
3306
3307 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3308 if (tbireg == SIP_TBISR) {
3309 /* LINK and ACOMP are switched! */
3310 int val = rv;
3311
3312 rv = 0;
3313 if (val & TBISR_MR_LINK_STATUS)
3314 rv |= BMSR_LINK;
3315 if (val & TBISR_MR_AN_COMPLETE)
3316 rv |= BMSR_ACOMP;
3317
3318 /*
3319 * The manual claims this register reads back 0
3320 * on hard and soft reset. But we want to let
3321 * the gentbi driver know that we support auto-
3322 * negotiation, so hard-code this bit in the
3323 * result.
3324 */
3325 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3326 }
3327
3328 return (rv);
3329 }
3330
3331 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3332 }
3333
3334 /*
3335 * sip_dp83820_mii_writereg: [mii interface function]
3336 *
3337 * Write a PHY register on the MII of the DP83820.
3338 */
3339 static void
3340 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3341 {
3342 struct sip_softc *sc = device_private(self);
3343
3344 if (sc->sc_cfg & CFG_TBI_EN) {
3345 bus_addr_t tbireg;
3346
3347 if (phy != 0)
3348 return;
3349
3350 switch (reg) {
3351 case MII_BMCR: tbireg = SIP_TBICR; break;
3352 case MII_ANAR: tbireg = SIP_TANAR; break;
3353 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3354 default:
3355 return;
3356 }
3357
3358 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3359 return;
3360 }
3361
3362 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3363 }
3364
3365 /*
3366 * sip_dp83820_mii_statchg: [mii interface function]
3367 *
3368 * Callback from MII layer when media changes.
3369 */
3370 static void
3371 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3372 {
3373 struct sip_softc *sc = ifp->if_softc;
3374 struct mii_data *mii = &sc->sc_mii;
3375 u_int32_t cfg, pcr;
3376
3377 /*
3378 * Get flow control negotiation result.
3379 */
3380 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3381 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3382 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3383 mii->mii_media_active &= ~IFM_ETH_FMASK;
3384 }
3385
3386 /*
3387 * Update TXCFG for full-duplex operation.
3388 */
3389 if ((mii->mii_media_active & IFM_FDX) != 0)
3390 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3391 else
3392 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3393
3394 /*
3395 * Update RXCFG for full-duplex or loopback.
3396 */
3397 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3398 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3399 sc->sc_rxcfg |= RXCFG_ATX;
3400 else
3401 sc->sc_rxcfg &= ~RXCFG_ATX;
3402
3403 /*
3404 * Update CFG for MII/GMII.
3405 */
3406 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3407 cfg = sc->sc_cfg | CFG_MODE_1000;
3408 else
3409 cfg = sc->sc_cfg;
3410
3411 /*
3412 * 802.3x flow control.
3413 */
3414 pcr = 0;
3415 if (sc->sc_flowflags & IFM_FLOW) {
3416 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3417 pcr |= sc->sc_rx_flow_thresh;
3418 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3419 pcr |= PCR_PSEN | PCR_PS_MCAST;
3420 }
3421
3422 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3423 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3424 sc->sc_txcfg);
3425 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3426 sc->sc_rxcfg);
3427 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3428 }
3429
3430 /*
3431 * sip_mii_bitbang_read: [mii bit-bang interface function]
3432 *
3433 * Read the MII serial port for the MII bit-bang module.
3434 */
3435 static u_int32_t
3436 sipcom_mii_bitbang_read(device_t self)
3437 {
3438 struct sip_softc *sc = device_private(self);
3439
3440 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3441 }
3442
3443 /*
3444 * sip_mii_bitbang_write: [mii big-bang interface function]
3445 *
3446 * Write the MII serial port for the MII bit-bang module.
3447 */
3448 static void
3449 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3450 {
3451 struct sip_softc *sc = device_private(self);
3452
3453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3454 }
3455
3456 /*
3457 * sip_sis900_mii_readreg: [mii interface function]
3458 *
3459 * Read a PHY register on the MII.
3460 */
3461 static int
3462 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3463 {
3464 struct sip_softc *sc = device_private(self);
3465 u_int32_t enphy;
3466
3467 /*
3468 * The PHY of recent SiS chipsets is accessed through bitbang
3469 * operations.
3470 */
3471 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3472 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3473 phy, reg);
3474
3475 #ifndef SIS900_MII_RESTRICT
3476 /*
3477 * The SiS 900 has only an internal PHY on the MII. Only allow
3478 * MII address 0.
3479 */
3480 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3481 return (0);
3482 #endif
3483
3484 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3485 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3486 ENPHY_RWCMD | ENPHY_ACCESS);
3487 do {
3488 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3489 } while (enphy & ENPHY_ACCESS);
3490 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3491 }
3492
3493 /*
3494 * sip_sis900_mii_writereg: [mii interface function]
3495 *
3496 * Write a PHY register on the MII.
3497 */
3498 static void
3499 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3500 {
3501 struct sip_softc *sc = device_private(self);
3502 u_int32_t enphy;
3503
3504 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3505 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3506 phy, reg, val);
3507 return;
3508 }
3509
3510 #ifndef SIS900_MII_RESTRICT
3511 /*
3512 * The SiS 900 has only an internal PHY on the MII. Only allow
3513 * MII address 0.
3514 */
3515 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3516 return;
3517 #endif
3518
3519 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3520 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3521 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3522 do {
3523 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3524 } while (enphy & ENPHY_ACCESS);
3525 }
3526
3527 /*
3528 * sip_sis900_mii_statchg: [mii interface function]
3529 *
3530 * Callback from MII layer when media changes.
3531 */
3532 static void
3533 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3534 {
3535 struct sip_softc *sc = ifp->if_softc;
3536 struct mii_data *mii = &sc->sc_mii;
3537 u_int32_t flowctl;
3538
3539 /*
3540 * Get flow control negotiation result.
3541 */
3542 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3543 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3544 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3545 mii->mii_media_active &= ~IFM_ETH_FMASK;
3546 }
3547
3548 /*
3549 * Update TXCFG for full-duplex operation.
3550 */
3551 if ((mii->mii_media_active & IFM_FDX) != 0)
3552 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3553 else
3554 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3555
3556 /*
3557 * Update RXCFG for full-duplex or loopback.
3558 */
3559 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3560 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3561 sc->sc_rxcfg |= RXCFG_ATX;
3562 else
3563 sc->sc_rxcfg &= ~RXCFG_ATX;
3564
3565 /*
3566 * Update IMR for use of 802.3x flow control.
3567 */
3568 if (sc->sc_flowflags & IFM_FLOW) {
3569 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3570 flowctl = FLOWCTL_FLOWEN;
3571 } else {
3572 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3573 flowctl = 0;
3574 }
3575
3576 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3577 sc->sc_txcfg);
3578 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3579 sc->sc_rxcfg);
3580 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3581 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3582 }
3583
3584 /*
3585 * sip_dp83815_mii_readreg: [mii interface function]
3586 *
3587 * Read a PHY register on the MII.
3588 */
3589 static int
3590 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3591 {
3592 struct sip_softc *sc = device_private(self);
3593 u_int32_t val;
3594
3595 /*
3596 * The DP83815 only has an internal PHY. Only allow
3597 * MII address 0.
3598 */
3599 if (phy != 0)
3600 return (0);
3601
3602 /*
3603 * Apparently, after a reset, the DP83815 can take a while
3604 * to respond. During this recovery period, the BMSR returns
3605 * a value of 0. Catch this -- it's not supposed to happen
3606 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3607 * PHY to come back to life.
3608 *
3609 * This works out because the BMSR is the first register
3610 * read during the PHY probe process.
3611 */
3612 do {
3613 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3614 } while (reg == MII_BMSR && val == 0);
3615
3616 return (val & 0xffff);
3617 }
3618
3619 /*
3620 * sip_dp83815_mii_writereg: [mii interface function]
3621 *
3622 * Write a PHY register to the MII.
3623 */
3624 static void
3625 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3626 {
3627 struct sip_softc *sc = device_private(self);
3628
3629 /*
3630 * The DP83815 only has an internal PHY. Only allow
3631 * MII address 0.
3632 */
3633 if (phy != 0)
3634 return;
3635
3636 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3637 }
3638
3639 /*
3640 * sip_dp83815_mii_statchg: [mii interface function]
3641 *
3642 * Callback from MII layer when media changes.
3643 */
3644 static void
3645 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3646 {
3647 struct sip_softc *sc = ifp->if_softc;
3648
3649 /*
3650 * Update TXCFG for full-duplex operation.
3651 */
3652 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3653 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3654 else
3655 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3656
3657 /*
3658 * Update RXCFG for full-duplex or loopback.
3659 */
3660 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3661 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3662 sc->sc_rxcfg |= RXCFG_ATX;
3663 else
3664 sc->sc_rxcfg &= ~RXCFG_ATX;
3665
3666 /*
3667 * XXX 802.3x flow control.
3668 */
3669
3670 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3671 sc->sc_txcfg);
3672 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3673 sc->sc_rxcfg);
3674
3675 /*
3676 * Some DP83815s experience problems when used with short
3677 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3678 * sequence adjusts the DSP's signal attenuation to fix the
3679 * problem.
3680 */
3681 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3682 uint32_t reg;
3683
3684 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3685
3686 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3687 reg &= 0x0fff;
3688 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3689 delay(100);
3690 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3691 reg &= 0x00ff;
3692 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3693 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3694 0x00e8);
3695 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3696 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3697 reg | 0x20);
3698 }
3699
3700 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3701 }
3702 }
3703
3704 static void
3705 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3706 const struct pci_attach_args *pa, u_int8_t *enaddr)
3707 {
3708 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3709 u_int8_t cksum, *e, match;
3710 int i;
3711
3712 /*
3713 * EEPROM data format for the DP83820 can be found in
3714 * the DP83820 manual, section 4.2.4.
3715 */
3716
3717 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3718
3719 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3720 match = ~(match - 1);
3721
3722 cksum = 0x55;
3723 e = (u_int8_t *) eeprom_data;
3724 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3725 cksum += *e++;
3726
3727 if (cksum != match)
3728 printf("%s: Checksum (%x) mismatch (%x)",
3729 device_xname(sc->sc_dev), cksum, match);
3730
3731 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3732 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3733 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3734 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3735 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3736 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3737 }
3738
3739 static void
3740 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3741 {
3742 int i;
3743
3744 /*
3745 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3746 * a reason, but I don't know it.
3747 */
3748 for (i = 0; i < 10; i++)
3749 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3750 }
3751
3752 static void
3753 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3754 const struct pci_attach_args *pa, u_int8_t *enaddr)
3755 {
3756 u_int16_t myea[ETHER_ADDR_LEN / 2];
3757
3758 switch (sc->sc_rev) {
3759 case SIS_REV_630S:
3760 case SIS_REV_630E:
3761 case SIS_REV_630EA1:
3762 case SIS_REV_630ET:
3763 case SIS_REV_635:
3764 /*
3765 * The MAC address for the on-board Ethernet of
3766 * the SiS 630 chipset is in the NVRAM. Kick
3767 * the chip into re-loading it from NVRAM, and
3768 * read the MAC address out of the filter registers.
3769 */
3770 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3771
3772 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3773 RFCR_RFADDR_NODE0);
3774 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3775 0xffff;
3776
3777 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3778 RFCR_RFADDR_NODE2);
3779 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3780 0xffff;
3781
3782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3783 RFCR_RFADDR_NODE4);
3784 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3785 0xffff;
3786 break;
3787
3788 case SIS_REV_960:
3789 {
3790 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3791 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3792
3793 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3794 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3795
3796 int waittime, i;
3797
3798 /* Allow to read EEPROM from LAN. It is shared
3799 * between a 1394 controller and the NIC and each
3800 * time we access it, we need to set SIS_EECMD_REQ.
3801 */
3802 SIS_SET_EROMAR(sc, EROMAR_REQ);
3803
3804 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3805 /* Force EEPROM to idle state. */
3806
3807 /*
3808 * XXX-cube This is ugly. I'll look for docs about it.
3809 */
3810 SIS_SET_EROMAR(sc, EROMAR_EECS);
3811 sipcom_sis900_eeprom_delay(sc);
3812 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3813 SIS_SET_EROMAR(sc, EROMAR_EESK);
3814 sipcom_sis900_eeprom_delay(sc);
3815 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3816 sipcom_sis900_eeprom_delay(sc);
3817 }
3818 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3819 sipcom_sis900_eeprom_delay(sc);
3820 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3821
3822 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3823 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3824 sizeof(myea) / sizeof(myea[0]), myea);
3825 break;
3826 }
3827 DELAY(1);
3828 }
3829
3830 /*
3831 * Set SIS_EECTL_CLK to high, so a other master
3832 * can operate on the i2c bus.
3833 */
3834 SIS_SET_EROMAR(sc, EROMAR_EESK);
3835
3836 /* Refuse EEPROM access by LAN */
3837 SIS_SET_EROMAR(sc, EROMAR_DONE);
3838 } break;
3839
3840 default:
3841 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3842 sizeof(myea) / sizeof(myea[0]), myea);
3843 }
3844
3845 enaddr[0] = myea[0] & 0xff;
3846 enaddr[1] = myea[0] >> 8;
3847 enaddr[2] = myea[1] & 0xff;
3848 enaddr[3] = myea[1] >> 8;
3849 enaddr[4] = myea[2] & 0xff;
3850 enaddr[5] = myea[2] >> 8;
3851 }
3852
3853 /* Table and macro to bit-reverse an octet. */
3854 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3855 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3856
3857 static void
3858 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3859 const struct pci_attach_args *pa, u_int8_t *enaddr)
3860 {
3861 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3862 u_int8_t cksum, *e, match;
3863 int i;
3864
3865 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3866 sizeof(eeprom_data[0]), eeprom_data);
3867
3868 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3869 match = ~(match - 1);
3870
3871 cksum = 0x55;
3872 e = (u_int8_t *) eeprom_data;
3873 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3874 cksum += *e++;
3875 }
3876 if (cksum != match) {
3877 printf("%s: Checksum (%x) mismatch (%x)",
3878 device_xname(sc->sc_dev), cksum, match);
3879 }
3880
3881 /*
3882 * Unrolled because it makes slightly more sense this way.
3883 * The DP83815 stores the MAC address in bit 0 of word 6
3884 * through bit 15 of word 8.
3885 */
3886 ea = &eeprom_data[6];
3887 enaddr[0] = ((*ea & 0x1) << 7);
3888 ea++;
3889 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3890 enaddr[1] = ((*ea & 0x1FE) >> 1);
3891 enaddr[2] = ((*ea & 0x1) << 7);
3892 ea++;
3893 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3894 enaddr[3] = ((*ea & 0x1FE) >> 1);
3895 enaddr[4] = ((*ea & 0x1) << 7);
3896 ea++;
3897 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3898 enaddr[5] = ((*ea & 0x1FE) >> 1);
3899
3900 /*
3901 * In case that's not weird enough, we also need to reverse
3902 * the bits in each byte. This all actually makes more sense
3903 * if you think about the EEPROM storage as an array of bits
3904 * being shifted into bytes, but that's not how we're looking
3905 * at it here...
3906 */
3907 for (i = 0; i < 6 ;i++)
3908 enaddr[i] = bbr(enaddr[i]);
3909 }
3910
3911 /*
3912 * sip_mediastatus: [ifmedia interface function]
3913 *
3914 * Get the current interface media status.
3915 */
3916 static void
3917 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3918 {
3919 struct sip_softc *sc = ifp->if_softc;
3920
3921 if (!device_is_active(sc->sc_dev)) {
3922 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3923 ifmr->ifm_status = 0;
3924 return;
3925 }
3926 ether_mediastatus(ifp, ifmr);
3927 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3928 sc->sc_flowflags;
3929 }
3930