Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.168.2.1
      1 /*	$NetBSD: if_sip.c,v 1.168.2.1 2019/06/10 22:07:16 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.168.2.1 2019/06/10 22:07:16 christos Exp $");
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/callout.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/malloc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/socket.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 #include <sys/queue.h>
     89 #include <sys/rndsource.h>
     90 
     91 #include <net/if.h>
     92 #include <net/if_dl.h>
     93 #include <net/if_media.h>
     94 #include <net/if_ether.h>
     95 #include <net/bpf.h>
     96 
     97 #include <sys/bus.h>
     98 #include <sys/intr.h>
     99 #include <machine/endian.h>
    100 
    101 #include <dev/mii/mii.h>
    102 #include <dev/mii/miivar.h>
    103 #include <dev/mii/mii_bitbang.h>
    104 
    105 #include <dev/pci/pcireg.h>
    106 #include <dev/pci/pcivar.h>
    107 #include <dev/pci/pcidevs.h>
    108 
    109 #include <dev/pci/if_sipreg.h>
    110 
    111 /*
    112  * Transmit descriptor list size.  This is arbitrary, but allocate
    113  * enough descriptors for 128 pending transmissions, and 8 segments
    114  * per packet (64 for DP83820 for jumbo frames).
    115  *
    116  * This MUST work out to a power of 2.
    117  */
    118 #define	GSIP_NTXSEGS_ALLOC	16
    119 #define	SIP_NTXSEGS_ALLOC	8
    120 
    121 #define	SIP_TXQUEUELEN		256
    122 #define	MAX_SIP_NTXDESC	\
    123     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    124 
    125 /*
    126  * Receive descriptor list size.  We have one Rx buffer per incoming
    127  * packet, so this logic is a little simpler.
    128  *
    129  * Actually, on the DP83820, we allow the packet to consume more than
    130  * one buffer, in order to support jumbo Ethernet frames.  In that
    131  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    132  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    133  * so we'd better be quick about handling receive interrupts.
    134  */
    135 #define	GSIP_NRXDESC		256
    136 #define	SIP_NRXDESC		128
    137 
    138 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    139 
    140 /*
    141  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    142  * a single clump that maps to a single DMA segment to make several things
    143  * easier.
    144  */
    145 struct sip_control_data {
    146 	/*
    147 	 * The transmit descriptors.
    148 	 */
    149 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    150 
    151 	/*
    152 	 * The receive descriptors.
    153 	 */
    154 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    155 };
    156 
    157 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    158 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    159 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    160 
    161 /*
    162  * Software state for transmit jobs.
    163  */
    164 struct sip_txsoft {
    165 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    166 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    167 	int txs_firstdesc;		/* first descriptor in packet */
    168 	int txs_lastdesc;		/* last descriptor in packet */
    169 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    170 };
    171 
    172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    173 
    174 /*
    175  * Software state for receive jobs.
    176  */
    177 struct sip_rxsoft {
    178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    180 };
    181 
    182 enum sip_attach_stage {
    183 	  SIP_ATTACH_FIN = 0
    184 	, SIP_ATTACH_CREATE_RXMAP
    185 	, SIP_ATTACH_CREATE_TXMAP
    186 	, SIP_ATTACH_LOAD_MAP
    187 	, SIP_ATTACH_CREATE_MAP
    188 	, SIP_ATTACH_MAP_MEM
    189 	, SIP_ATTACH_ALLOC_MEM
    190 	, SIP_ATTACH_INTR
    191 	, SIP_ATTACH_MAP
    192 };
    193 
    194 /*
    195  * Software state per device.
    196  */
    197 struct sip_softc {
    198 	device_t sc_dev;		/* generic device information */
    199 	device_suspensor_t		sc_suspensor;
    200 	pmf_qual_t			sc_qual;
    201 
    202 	bus_space_tag_t sc_st;		/* bus space tag */
    203 	bus_space_handle_t sc_sh;	/* bus space handle */
    204 	bus_size_t sc_sz;		/* bus space size */
    205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    206 	pci_chipset_tag_t sc_pc;
    207 	bus_dma_segment_t sc_seg;
    208 	struct ethercom sc_ethercom;	/* ethernet common data */
    209 
    210 	const struct sip_product *sc_model; /* which model are we? */
    211 	int sc_gigabit;			/* 1: 83820, 0: other */
    212 	int sc_rev;			/* chip revision */
    213 
    214 	void *sc_ih;			/* interrupt cookie */
    215 
    216 	struct mii_data sc_mii;		/* MII/media information */
    217 
    218 	callout_t sc_tick_ch;		/* tick callout */
    219 
    220 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    221 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    222 
    223 	/*
    224 	 * Software state for transmit and receive descriptors.
    225 	 */
    226 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    227 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    228 
    229 	/*
    230 	 * Control data structures.
    231 	 */
    232 	struct sip_control_data *sc_control_data;
    233 #define	sc_txdescs	sc_control_data->scd_txdescs
    234 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    235 
    236 #ifdef SIP_EVENT_COUNTERS
    237 	/*
    238 	 * Event counters.
    239 	 */
    240 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    241 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    242 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    243 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    244 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    245 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    246 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    247 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    248 	/* DP83820 only */
    249 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    250 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    251 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    252 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    253 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    254 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    255 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    256 #endif /* SIP_EVENT_COUNTERS */
    257 
    258 	uint32_t sc_txcfg;		/* prototype TXCFG register */
    259 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
    260 	uint32_t sc_imr;		/* prototype IMR register */
    261 	uint32_t sc_rfcr;		/* prototype RFCR register */
    262 
    263 	uint32_t sc_cfg;		/* prototype CFG register */
    264 
    265 	uint32_t sc_gpior;		/* prototype GPIOR register */
    266 
    267 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    268 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    269 
    270 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
    271 
    272 	int	sc_flowflags;		/* 802.3x flow control flags */
    273 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    274 	int	sc_paused;		/* paused indication */
    275 
    276 	int	sc_txfree;		/* number of free Tx descriptors */
    277 	int	sc_txnext;		/* next ready Tx descriptor */
    278 	int	sc_txwin;		/* Tx descriptors since last intr */
    279 
    280 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    281 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    282 
    283 	/* values of interface state at last init */
    284 	struct {
    285 		/* if_capenable */
    286 		uint64_t	if_capenable;
    287 		/* ec_capenable */
    288 		int		ec_capenable;
    289 		/* VLAN_ATTACHED */
    290 		int		is_vlan;
    291 	}	sc_prev;
    292 
    293 	short	sc_if_flags;
    294 
    295 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    296 	int	sc_rxdiscard;
    297 	int	sc_rxlen;
    298 	struct mbuf *sc_rxhead;
    299 	struct mbuf *sc_rxtail;
    300 	struct mbuf **sc_rxtailp;
    301 
    302 	int sc_ntxdesc;
    303 	int sc_ntxdesc_mask;
    304 
    305 	int sc_nrxdesc_mask;
    306 
    307 	const struct sip_parm {
    308 		const struct sip_regs {
    309 			int r_rxcfg;
    310 			int r_txcfg;
    311 		} p_regs;
    312 
    313 		const struct sip_bits {
    314 			uint32_t b_txcfg_mxdma_8;
    315 			uint32_t b_txcfg_mxdma_16;
    316 			uint32_t b_txcfg_mxdma_32;
    317 			uint32_t b_txcfg_mxdma_64;
    318 			uint32_t b_txcfg_mxdma_128;
    319 			uint32_t b_txcfg_mxdma_256;
    320 			uint32_t b_txcfg_mxdma_512;
    321 			uint32_t b_txcfg_flth_mask;
    322 			uint32_t b_txcfg_drth_mask;
    323 
    324 			uint32_t b_rxcfg_mxdma_8;
    325 			uint32_t b_rxcfg_mxdma_16;
    326 			uint32_t b_rxcfg_mxdma_32;
    327 			uint32_t b_rxcfg_mxdma_64;
    328 			uint32_t b_rxcfg_mxdma_128;
    329 			uint32_t b_rxcfg_mxdma_256;
    330 			uint32_t b_rxcfg_mxdma_512;
    331 
    332 			uint32_t b_isr_txrcmp;
    333 			uint32_t b_isr_rxrcmp;
    334 			uint32_t b_isr_dperr;
    335 			uint32_t b_isr_sserr;
    336 			uint32_t b_isr_rmabt;
    337 			uint32_t b_isr_rtabt;
    338 
    339 			uint32_t b_cmdsts_size_mask;
    340 		} p_bits;
    341 		int		p_filtmem;
    342 		int		p_rxbuf_len;
    343 		bus_size_t	p_tx_dmamap_size;
    344 		int		p_ntxsegs;
    345 		int		p_ntxsegs_alloc;
    346 		int		p_nrxdesc;
    347 	} *sc_parm;
    348 
    349 	void (*sc_rxintr)(struct sip_softc *);
    350 
    351 	krndsource_t rnd_source;	/* random source */
    352 };
    353 
    354 #define	sc_bits	sc_parm->p_bits
    355 #define	sc_regs	sc_parm->p_regs
    356 
    357 static const struct sip_parm sip_parm = {
    358 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    359 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    360 	, .p_tx_dmamap_size = MCLBYTES
    361 	, .p_ntxsegs = 16
    362 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    363 	, .p_nrxdesc = SIP_NRXDESC
    364 	, .p_bits = {
    365 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    366 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    367 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    368 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    369 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    370 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    371 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    372 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    373 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    374 
    375 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    376 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    377 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    378 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    379 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    380 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    381 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    382 
    383 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    384 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    385 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    386 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    387 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    388 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    389 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    390 	}
    391 	, .p_regs = {
    392 		.r_rxcfg = OTHER_SIP_RXCFG,
    393 		.r_txcfg = OTHER_SIP_TXCFG
    394 	}
    395 }, gsip_parm = {
    396 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    397 	, .p_rxbuf_len = MCLBYTES - 8
    398 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    399 	, .p_ntxsegs = 64
    400 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    401 	, .p_nrxdesc = GSIP_NRXDESC
    402 	, .p_bits = {
    403 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    404 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    405 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    406 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    407 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    408 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    409 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    410 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    411 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    412 
    413 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    414 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    415 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    416 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    417 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    418 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    419 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    420 
    421 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    422 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    423 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    424 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    425 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    426 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    427 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    428 	}
    429 	, .p_regs = {
    430 		.r_rxcfg = DP83820_SIP_RXCFG,
    431 		.r_txcfg = DP83820_SIP_TXCFG
    432 	}
    433 };
    434 
    435 static inline int
    436 sip_nexttx(const struct sip_softc *sc, int x)
    437 {
    438 	return (x + 1) & sc->sc_ntxdesc_mask;
    439 }
    440 
    441 static inline int
    442 sip_nextrx(const struct sip_softc *sc, int x)
    443 {
    444 	return (x + 1) & sc->sc_nrxdesc_mask;
    445 }
    446 
    447 /* 83820 only */
    448 static inline void
    449 sip_rxchain_reset(struct sip_softc *sc)
    450 {
    451 	sc->sc_rxtailp = &sc->sc_rxhead;
    452 	*sc->sc_rxtailp = NULL;
    453 	sc->sc_rxlen = 0;
    454 }
    455 
    456 /* 83820 only */
    457 static inline void
    458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    459 {
    460 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    461 	sc->sc_rxtailp = &m->m_next;
    462 }
    463 
    464 #ifdef SIP_EVENT_COUNTERS
    465 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    466 #else
    467 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    468 #endif
    469 
    470 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    471 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    472 
    473 static inline void
    474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    475 {
    476 	int x, n;
    477 
    478 	x = x0;
    479 	n = n0;
    480 
    481 	/* If it will wrap around, sync to the end of the ring. */
    482 	if (x + n > sc->sc_ntxdesc) {
    483 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    484 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    485 		    (sc->sc_ntxdesc - x), ops);
    486 		n -= (sc->sc_ntxdesc - x);
    487 		x = 0;
    488 	}
    489 
    490 	/* Now sync whatever is left. */
    491 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    492 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    493 }
    494 
    495 static inline void
    496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    497 {
    498 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    499 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    500 }
    501 
    502 #if 0
    503 #ifdef DP83820
    504 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
    505 	uint32_t	sipd_cmdsts;	/* command/status word */
    506 #else
    507 	uint32_t	sipd_cmdsts;	/* command/status word */
    508 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
    509 #endif /* DP83820 */
    510 #endif /* 0 */
    511 
    512 static inline volatile uint32_t *
    513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    514 {
    515 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    516 }
    517 
    518 static inline volatile uint32_t *
    519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    520 {
    521 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    522 }
    523 
    524 static inline void
    525 sip_init_rxdesc(struct sip_softc *sc, int x)
    526 {
    527 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    528 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    529 
    530 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    531 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    532 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    533 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    534 	sipd->sipd_extsts = 0;
    535 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    536 }
    537 
    538 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    539 	((sc)->sc_model->sip_vendor == (v) &&				\
    540 	 (sc)->sc_model->sip_product == (p) &&				\
    541 	 (sc)->sc_rev == (r))
    542 
    543 #define	SIP_CHIP_MODEL(sc, v, p)					\
    544 	((sc)->sc_model->sip_vendor == (v) &&				\
    545 	 (sc)->sc_model->sip_product == (p))
    546 
    547 #define	SIP_SIS900_REV(sc, rev)						\
    548 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    549 
    550 #define SIP_TIMEOUT 1000
    551 
    552 static int	sip_ifflags_cb(struct ethercom *);
    553 static void	sipcom_start(struct ifnet *);
    554 static void	sipcom_watchdog(struct ifnet *);
    555 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    556 static int	sipcom_init(struct ifnet *);
    557 static void	sipcom_stop(struct ifnet *, int);
    558 
    559 static bool	sipcom_reset(struct sip_softc *);
    560 static void	sipcom_rxdrain(struct sip_softc *);
    561 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    562 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    563 				      uint16_t *);
    564 static void	sipcom_tick(void *);
    565 
    566 static void	sipcom_sis900_set_filter(struct sip_softc *);
    567 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    568 
    569 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    570 		    const struct pci_attach_args *, uint8_t *);
    571 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    572 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    573 		    const struct pci_attach_args *, uint8_t *);
    574 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    575 		    const struct pci_attach_args *, uint8_t *);
    576 
    577 static int	sipcom_intr(void *);
    578 static void	sipcom_txintr(struct sip_softc *);
    579 static void	sip_rxintr(struct sip_softc *);
    580 static void	gsip_rxintr(struct sip_softc *);
    581 
    582 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
    583 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
    584 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
    585 
    586 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
    587 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
    588 static void	sipcom_sis900_mii_statchg(struct ifnet *);
    589 
    590 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
    591 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
    592 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
    593 
    594 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    595 
    596 static int	sipcom_match(device_t, cfdata_t, void *);
    597 static void	sipcom_attach(device_t, device_t, void *);
    598 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    599 static int	sipcom_detach(device_t, int);
    600 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    601 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    602 
    603 int	gsip_copy_small = 0;
    604 int	sip_copy_small = 0;
    605 
    606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    607     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    608     DVF_DETACH_SHUTDOWN);
    609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    610     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    611     DVF_DETACH_SHUTDOWN);
    612 
    613 /*
    614  * Descriptions of the variants of the SiS900.
    615  */
    616 struct sip_variant {
    617 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
    618 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
    619 	void	(*sipv_mii_statchg)(struct ifnet *);
    620 	void	(*sipv_set_filter)(struct sip_softc *);
    621 	void	(*sipv_read_macaddr)(struct sip_softc *,
    622 		    const struct pci_attach_args *, uint8_t *);
    623 };
    624 
    625 static uint32_t sipcom_mii_bitbang_read(device_t);
    626 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
    627 
    628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    629 	sipcom_mii_bitbang_read,
    630 	sipcom_mii_bitbang_write,
    631 	{
    632 		EROMAR_MDIO,		/* MII_BIT_MDO */
    633 		EROMAR_MDIO,		/* MII_BIT_MDI */
    634 		EROMAR_MDC,		/* MII_BIT_MDC */
    635 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    636 		0,			/* MII_BIT_DIR_PHY_HOST */
    637 	}
    638 };
    639 
    640 static const struct sip_variant sipcom_variant_dp83820 = {
    641 	sipcom_dp83820_mii_readreg,
    642 	sipcom_dp83820_mii_writereg,
    643 	sipcom_dp83820_mii_statchg,
    644 	sipcom_dp83815_set_filter,
    645 	sipcom_dp83820_read_macaddr,
    646 };
    647 
    648 static const struct sip_variant sipcom_variant_sis900 = {
    649 	sipcom_sis900_mii_readreg,
    650 	sipcom_sis900_mii_writereg,
    651 	sipcom_sis900_mii_statchg,
    652 	sipcom_sis900_set_filter,
    653 	sipcom_sis900_read_macaddr,
    654 };
    655 
    656 static const struct sip_variant sipcom_variant_dp83815 = {
    657 	sipcom_dp83815_mii_readreg,
    658 	sipcom_dp83815_mii_writereg,
    659 	sipcom_dp83815_mii_statchg,
    660 	sipcom_dp83815_set_filter,
    661 	sipcom_dp83815_read_macaddr,
    662 };
    663 
    664 
    665 /*
    666  * Devices supported by this driver.
    667  */
    668 static const struct sip_product {
    669 	pci_vendor_id_t		sip_vendor;
    670 	pci_product_id_t	sip_product;
    671 	const char		*sip_name;
    672 	const struct sip_variant *sip_variant;
    673 	int			sip_gigabit;
    674 } sipcom_products[] = {
    675 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    676 	  "NatSemi DP83820 Gigabit Ethernet",
    677 	  &sipcom_variant_dp83820, 1 },
    678 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    679 	  "SiS 900 10/100 Ethernet",
    680 	  &sipcom_variant_sis900, 0 },
    681 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    682 	  "SiS 7016 10/100 Ethernet",
    683 	  &sipcom_variant_sis900, 0 },
    684 
    685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    686 	  "NatSemi DP83815 10/100 Ethernet",
    687 	  &sipcom_variant_dp83815, 0 },
    688 
    689 	{ 0,			0,
    690 	  NULL,
    691 	  NULL, 0 },
    692 };
    693 
    694 static const struct sip_product *
    695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    696 {
    697 	const struct sip_product *sip;
    698 
    699 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    700 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    701 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    702 		    sip->sip_gigabit == gigabit)
    703 			return sip;
    704 	}
    705 	return NULL;
    706 }
    707 
    708 /*
    709  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    710  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    711  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    712  * which means we try to use 64-bit data transfers on those cards if we
    713  * happen to be plugged into a 32-bit slot.
    714  *
    715  * What we do is use this table of cards known to be 64-bit cards.  If
    716  * you have a 64-bit card who's subsystem ID is not listed in this table,
    717  * send the output of "pcictl dump ..." of the device to me so that your
    718  * card will use the 64-bit data path when plugged into a 64-bit slot.
    719  *
    720  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    721  *	   June 30, 2002
    722  */
    723 static int
    724 sipcom_check_64bit(const struct pci_attach_args *pa)
    725 {
    726 	static const struct {
    727 		pci_vendor_id_t c64_vendor;
    728 		pci_product_id_t c64_product;
    729 	} card64[] = {
    730 		/* Asante GigaNIX */
    731 		{ 0x128a,	0x0002 },
    732 
    733 		/* Accton EN1407-T, Planex GN-1000TE */
    734 		{ 0x1113,	0x1407 },
    735 
    736 		/* Netgear GA621 */
    737 		{ 0x1385,	0x621a },
    738 
    739 		/* Netgear GA622 */
    740 		{ 0x1385,	0x622a },
    741 
    742 		/* SMC EZ Card 1000 (9462TX) */
    743 		{ 0x10b8,	0x9462 },
    744 
    745 		{ 0, 0}
    746 	};
    747 	pcireg_t subsys;
    748 	int i;
    749 
    750 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    751 
    752 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    753 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    754 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    755 			return 1;
    756 	}
    757 
    758 	return 0;
    759 }
    760 
    761 static int
    762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    763 {
    764 	struct pci_attach_args *pa = aux;
    765 
    766 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    767 		return 1;
    768 
    769 	return 0;
    770 }
    771 
    772 static void
    773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    774 {
    775 	uint32_t reg;
    776 	int i;
    777 
    778 	/*
    779 	 * Cause the chip to load configuration data from the EEPROM.
    780 	 */
    781 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    782 	for (i = 0; i < 10000; i++) {
    783 		delay(10);
    784 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    785 		    PTSCR_EELOAD_EN) == 0)
    786 			break;
    787 	}
    788 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    789 	    PTSCR_EELOAD_EN) {
    790 		printf("%s: timeout loading configuration from EEPROM\n",
    791 		    device_xname(sc->sc_dev));
    792 		return;
    793 	}
    794 
    795 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    796 
    797 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    798 	if (reg & CFG_PCI64_DET) {
    799 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    800 		/*
    801 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    802 		 * data transfers.
    803 		 *
    804 		 * We can't use the DATA64_EN bit in the EEPROM, because
    805 		 * vendors of 32-bit cards fail to clear that bit in many
    806 		 * cases (yet the card still detects that it's in a 64-bit
    807 		 * slot; go figure).
    808 		 */
    809 		if (sipcom_check_64bit(pa)) {
    810 			sc->sc_cfg |= CFG_DATA64_EN;
    811 			printf(", using 64-bit data transfers");
    812 		}
    813 		printf("\n");
    814 	}
    815 
    816 	/*
    817 	 * XXX Need some PCI flags indicating support for
    818 	 * XXX 64-bit addressing.
    819 	 */
    820 #if 0
    821 	if (reg & CFG_M64ADDR)
    822 		sc->sc_cfg |= CFG_M64ADDR;
    823 	if (reg & CFG_T64ADDR)
    824 		sc->sc_cfg |= CFG_T64ADDR;
    825 #endif
    826 
    827 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
    828 		const char *sep = "";
    829 		printf("%s: using ", device_xname(sc->sc_dev));
    830 		if (reg & CFG_EXT_125) {
    831 			sc->sc_cfg |= CFG_EXT_125;
    832 			printf("%s125MHz clock", sep);
    833 			sep = ", ";
    834 		}
    835 		if (reg & CFG_TBI_EN) {
    836 			sc->sc_cfg |= CFG_TBI_EN;
    837 			printf("%sten-bit interface", sep);
    838 			sep = ", ";
    839 		}
    840 		printf("\n");
    841 	}
    842 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    843 	    (reg & CFG_MRM_DIS) != 0)
    844 		sc->sc_cfg |= CFG_MRM_DIS;
    845 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    846 	    (reg & CFG_MWI_DIS) != 0)
    847 		sc->sc_cfg |= CFG_MWI_DIS;
    848 
    849 	/*
    850 	 * Use the extended descriptor format on the DP83820.  This
    851 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    852 	 * checksumming.
    853 	 */
    854 	sc->sc_cfg |= CFG_EXTSTS_EN;
    855 }
    856 
    857 static int
    858 sipcom_detach(device_t self, int flags)
    859 {
    860 	int s;
    861 
    862 	s = splnet();
    863 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    864 	splx(s);
    865 
    866 	return 0;
    867 }
    868 
    869 static void
    870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    871 {
    872 	int i;
    873 	struct sip_softc *sc = device_private(self);
    874 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    875 
    876 	/*
    877 	 * Free any resources we've allocated during attach.
    878 	 * Do this in reverse order and fall through.
    879 	 */
    880 	switch (stage) {
    881 	case SIP_ATTACH_FIN:
    882 		sipcom_stop(ifp, 1);
    883 		pmf_device_deregister(self);
    884 #ifdef SIP_EVENT_COUNTERS
    885 		/*
    886 		 * Attach event counters.
    887 		 */
    888 		evcnt_detach(&sc->sc_ev_txforceintr);
    889 		evcnt_detach(&sc->sc_ev_txdstall);
    890 		evcnt_detach(&sc->sc_ev_txsstall);
    891 		evcnt_detach(&sc->sc_ev_hiberr);
    892 		evcnt_detach(&sc->sc_ev_rxintr);
    893 		evcnt_detach(&sc->sc_ev_txiintr);
    894 		evcnt_detach(&sc->sc_ev_txdintr);
    895 		if (!sc->sc_gigabit) {
    896 			evcnt_detach(&sc->sc_ev_rxpause);
    897 		} else {
    898 			evcnt_detach(&sc->sc_ev_txudpsum);
    899 			evcnt_detach(&sc->sc_ev_txtcpsum);
    900 			evcnt_detach(&sc->sc_ev_txipsum);
    901 			evcnt_detach(&sc->sc_ev_rxudpsum);
    902 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    903 			evcnt_detach(&sc->sc_ev_rxipsum);
    904 			evcnt_detach(&sc->sc_ev_txpause);
    905 			evcnt_detach(&sc->sc_ev_rxpause);
    906 		}
    907 #endif /* SIP_EVENT_COUNTERS */
    908 
    909 		rnd_detach_source(&sc->rnd_source);
    910 
    911 		ether_ifdetach(ifp);
    912 		if_detach(ifp);
    913 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    914 
    915 		/*FALLTHROUGH*/
    916 	case SIP_ATTACH_CREATE_RXMAP:
    917 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    918 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    919 				bus_dmamap_destroy(sc->sc_dmat,
    920 				    sc->sc_rxsoft[i].rxs_dmamap);
    921 		}
    922 		/*FALLTHROUGH*/
    923 	case SIP_ATTACH_CREATE_TXMAP:
    924 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    925 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    926 				bus_dmamap_destroy(sc->sc_dmat,
    927 				    sc->sc_txsoft[i].txs_dmamap);
    928 		}
    929 		/*FALLTHROUGH*/
    930 	case SIP_ATTACH_LOAD_MAP:
    931 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    932 		/*FALLTHROUGH*/
    933 	case SIP_ATTACH_CREATE_MAP:
    934 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    935 		/*FALLTHROUGH*/
    936 	case SIP_ATTACH_MAP_MEM:
    937 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    938 		    sizeof(struct sip_control_data));
    939 		/*FALLTHROUGH*/
    940 	case SIP_ATTACH_ALLOC_MEM:
    941 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    942 		/* FALLTHROUGH*/
    943 	case SIP_ATTACH_INTR:
    944 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    945 		/* FALLTHROUGH*/
    946 	case SIP_ATTACH_MAP:
    947 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    948 		break;
    949 	default:
    950 		break;
    951 	}
    952 	return;
    953 }
    954 
    955 static bool
    956 sipcom_resume(device_t self, const pmf_qual_t *qual)
    957 {
    958 	struct sip_softc *sc = device_private(self);
    959 
    960 	return sipcom_reset(sc);
    961 }
    962 
    963 static bool
    964 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    965 {
    966 	struct sip_softc *sc = device_private(self);
    967 
    968 	sipcom_rxdrain(sc);
    969 	return true;
    970 }
    971 
    972 static void
    973 sipcom_attach(device_t parent, device_t self, void *aux)
    974 {
    975 	struct sip_softc *sc = device_private(self);
    976 	struct pci_attach_args *pa = aux;
    977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    978 	struct mii_data * const mii = &sc->sc_mii;
    979 	pci_chipset_tag_t pc = pa->pa_pc;
    980 	pci_intr_handle_t ih;
    981 	const char *intrstr = NULL;
    982 	bus_space_tag_t iot, memt;
    983 	bus_space_handle_t ioh, memh;
    984 	bus_size_t iosz, memsz;
    985 	int ioh_valid, memh_valid;
    986 	int i, rseg, error;
    987 	const struct sip_product *sip;
    988 	uint8_t enaddr[ETHER_ADDR_LEN];
    989 	pcireg_t csr;
    990 	pcireg_t memtype;
    991 	bus_size_t tx_dmamap_size;
    992 	int ntxsegs_alloc;
    993 	cfdata_t cf = device_cfdata(self);
    994 	char intrbuf[PCI_INTRSTR_LEN];
    995 
    996 	callout_init(&sc->sc_tick_ch, 0);
    997 
    998 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
    999 	if (sip == NULL) {
   1000 		aprint_error("\n");
   1001 		panic("%s: impossible", __func__);
   1002 	}
   1003 	sc->sc_dev = self;
   1004 	sc->sc_gigabit = sip->sip_gigabit;
   1005 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1006 	sc->sc_pc = pc;
   1007 
   1008 	if (sc->sc_gigabit) {
   1009 		sc->sc_rxintr = gsip_rxintr;
   1010 		sc->sc_parm = &gsip_parm;
   1011 	} else {
   1012 		sc->sc_rxintr = sip_rxintr;
   1013 		sc->sc_parm = &sip_parm;
   1014 	}
   1015 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1016 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1017 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1018 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1019 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1020 
   1021 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1022 
   1023 	aprint_naive("\n");
   1024 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1025 
   1026 	sc->sc_model = sip;
   1027 
   1028 	/*
   1029 	 * XXX Work-around broken PXE firmware on some boards.
   1030 	 *
   1031 	 * The DP83815 shares an address decoder with the MEM BAR
   1032 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1033 	 * so that memory mapped access works.
   1034 	 */
   1035 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1036 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1037 	    ~PCI_MAPREG_ROM_ENABLE);
   1038 
   1039 	/*
   1040 	 * Map the device.
   1041 	 */
   1042 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1043 	    PCI_MAPREG_TYPE_IO, 0,
   1044 	    &iot, &ioh, NULL, &iosz) == 0);
   1045 	if (sc->sc_gigabit) {
   1046 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1047 		switch (memtype) {
   1048 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1049 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1050 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1051 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1052 			break;
   1053 		default:
   1054 			memh_valid = 0;
   1055 		}
   1056 	} else {
   1057 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1058 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1059 		    &memt, &memh, NULL, &memsz) == 0);
   1060 	}
   1061 
   1062 	if (memh_valid) {
   1063 		sc->sc_st = memt;
   1064 		sc->sc_sh = memh;
   1065 		sc->sc_sz = memsz;
   1066 	} else if (ioh_valid) {
   1067 		sc->sc_st = iot;
   1068 		sc->sc_sh = ioh;
   1069 		sc->sc_sz = iosz;
   1070 	} else {
   1071 		aprint_error_dev(self, "unable to map device registers\n");
   1072 		return;
   1073 	}
   1074 
   1075 	sc->sc_dmat = pa->pa_dmat;
   1076 
   1077 	/*
   1078 	 * Make sure bus mastering is enabled.  Also make sure
   1079 	 * Write/Invalidate is enabled if we're allowed to use it.
   1080 	 */
   1081 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1082 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1083 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1084 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1085 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1086 
   1087 	/* Power up chip */
   1088 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1089 	if (error != 0 && error != EOPNOTSUPP) {
   1090 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1091 		return;
   1092 	}
   1093 
   1094 	/*
   1095 	 * Map and establish our interrupt.
   1096 	 */
   1097 	if (pci_intr_map(pa, &ih)) {
   1098 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1099 		return;
   1100 	}
   1101 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1102 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
   1103 	    device_xname(self));
   1104 	if (sc->sc_ih == NULL) {
   1105 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1106 		if (intrstr != NULL)
   1107 			aprint_error(" at %s", intrstr);
   1108 		aprint_error("\n");
   1109 		sipcom_do_detach(self, SIP_ATTACH_MAP);
   1110 		return;
   1111 	}
   1112 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1113 
   1114 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1115 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1116 
   1117 	/*
   1118 	 * Allocate the control data structures, and create and load the
   1119 	 * DMA map for it.
   1120 	 */
   1121 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1122 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1123 	    &rseg, 0)) != 0) {
   1124 		aprint_error_dev(sc->sc_dev,
   1125 		    "unable to allocate control data, error = %d\n", error);
   1126 		sipcom_do_detach(self, SIP_ATTACH_INTR);
   1127 		return;
   1128 	}
   1129 
   1130 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1131 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1132 	    BUS_DMA_COHERENT)) != 0) {
   1133 		aprint_error_dev(sc->sc_dev,
   1134 		    "unable to map control data, error = %d\n", error);
   1135 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1136 	}
   1137 
   1138 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1139 	    sizeof(struct sip_control_data), 1,
   1140 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1141 		aprint_error_dev(self, "unable to create control data DMA map"
   1142 		    ", error = %d\n", error);
   1143 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1144 	}
   1145 
   1146 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1147 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1148 	    0)) != 0) {
   1149 		aprint_error_dev(self, "unable to load control data DMA map"
   1150 		    ", error = %d\n", error);
   1151 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1152 	}
   1153 
   1154 	/*
   1155 	 * Create the transmit buffer DMA maps.
   1156 	 */
   1157 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1158 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1159 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1160 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1161 			aprint_error_dev(self, "unable to create tx DMA map %d"
   1162 			    ", error = %d\n", i, error);
   1163 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1164 		}
   1165 	}
   1166 
   1167 	/*
   1168 	 * Create the receive buffer DMA maps.
   1169 	 */
   1170 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1171 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1172 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1173 			aprint_error_dev(self, "unable to create rx DMA map %d"
   1174 			    ", error = %d\n", i, error);
   1175 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1176 		}
   1177 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1178 	}
   1179 
   1180 	/*
   1181 	 * Reset the chip to a known state.
   1182 	 */
   1183 	sipcom_reset(sc);
   1184 
   1185 	/*
   1186 	 * Read the Ethernet address from the EEPROM.  This might
   1187 	 * also fetch other stuff from the EEPROM and stash it
   1188 	 * in the softc.
   1189 	 */
   1190 	sc->sc_cfg = 0;
   1191 	if (!sc->sc_gigabit) {
   1192 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1193 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1194 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1195 
   1196 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1197 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   1198 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1199 			sc->sc_cfg |=
   1200 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1201 			     CFG_EDBMASTEN);
   1202 	}
   1203 
   1204 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1205 
   1206 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
   1207 
   1208 	/*
   1209 	 * Initialize the configuration register: aggressive PCI
   1210 	 * bus request algorithm, default backoff, default OW timer,
   1211 	 * default parity error detection.
   1212 	 *
   1213 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1214 	 * friends -- it affects packet data, not descriptors.
   1215 	 */
   1216 	if (sc->sc_gigabit)
   1217 		sipcom_dp83820_attach(sc, pa);
   1218 
   1219 	/*
   1220 	 * Initialize our media structures and probe the MII.
   1221 	 */
   1222 	mii->mii_ifp = ifp;
   1223 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1224 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1225 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1226 	sc->sc_ethercom.ec_mii = mii;
   1227 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
   1228 	    sipcom_mediastatus);
   1229 
   1230 	/*
   1231 	 * XXX We cannot handle flow control on the DP83815.
   1232 	 */
   1233 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1234 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1235 			   MII_OFFSET_ANY, 0);
   1236 	else
   1237 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1238 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1239 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   1240 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   1241 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   1242 	} else
   1243 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1244 
   1245 	ifp = &sc->sc_ethercom.ec_if;
   1246 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1247 	ifp->if_softc = sc;
   1248 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1249 	sc->sc_if_flags = ifp->if_flags;
   1250 	ifp->if_ioctl = sipcom_ioctl;
   1251 	ifp->if_start = sipcom_start;
   1252 	ifp->if_watchdog = sipcom_watchdog;
   1253 	ifp->if_init = sipcom_init;
   1254 	ifp->if_stop = sipcom_stop;
   1255 	IFQ_SET_READY(&ifp->if_snd);
   1256 
   1257 	/*
   1258 	 * We can support 802.1Q VLAN-sized frames.
   1259 	 */
   1260 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1261 
   1262 	if (sc->sc_gigabit) {
   1263 		/*
   1264 		 * And the DP83820 can do VLAN tagging in hardware, and
   1265 		 * support the jumbo Ethernet MTU.
   1266 		 */
   1267 		sc->sc_ethercom.ec_capabilities |=
   1268 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1269 
   1270 		/*
   1271 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1272 		 * in hardware.
   1273 		 */
   1274 		ifp->if_capabilities |=
   1275 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1276 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1277 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1278 	}
   1279 
   1280 	/*
   1281 	 * Attach the interface.
   1282 	 */
   1283 	if_attach(ifp);
   1284 	if_deferred_start_init(ifp, NULL);
   1285 	ether_ifattach(ifp, enaddr);
   1286 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1287 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1288 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1289 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1290 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1291 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1292 
   1293 	/*
   1294 	 * The number of bytes that must be available in
   1295 	 * the Tx FIFO before the bus master can DMA more
   1296 	 * data into the FIFO.
   1297 	 */
   1298 	sc->sc_tx_fill_thresh = 64 / 32;
   1299 
   1300 	/*
   1301 	 * Start at a drain threshold of 512 bytes.  We will
   1302 	 * increase it if a DMA underrun occurs.
   1303 	 *
   1304 	 * XXX The minimum value of this variable should be
   1305 	 * tuned.  We may be able to improve performance
   1306 	 * by starting with a lower value.  That, however,
   1307 	 * may trash the first few outgoing packets if the
   1308 	 * PCI bus is saturated.
   1309 	 */
   1310 	if (sc->sc_gigabit)
   1311 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1312 	else
   1313 		sc->sc_tx_drain_thresh = 1504 / 32;
   1314 
   1315 	/*
   1316 	 * Initialize the Rx FIFO drain threshold.
   1317 	 *
   1318 	 * This is in units of 8 bytes.
   1319 	 *
   1320 	 * We should never set this value lower than 2; 14 bytes are
   1321 	 * required to filter the packet.
   1322 	 */
   1323 	sc->sc_rx_drain_thresh = 128 / 8;
   1324 
   1325 #ifdef SIP_EVENT_COUNTERS
   1326 	/*
   1327 	 * Attach event counters.
   1328 	 */
   1329 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1330 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1331 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1332 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1333 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1334 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1335 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1336 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1337 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1338 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1339 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1340 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1341 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1342 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1343 	if (!sc->sc_gigabit) {
   1344 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1345 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1346 	} else {
   1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1349 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1350 		    NULL, device_xname(sc->sc_dev), "txpause");
   1351 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1352 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1353 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1354 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1355 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1356 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1357 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1358 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1359 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1360 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1361 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1362 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1363 	}
   1364 #endif /* SIP_EVENT_COUNTERS */
   1365 
   1366 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1367 		pmf_class_network_register(self, ifp);
   1368 	else
   1369 		aprint_error_dev(self, "couldn't establish power handler\n");
   1370 }
   1371 
   1372 static inline void
   1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1374     uint64_t capenable)
   1375 {
   1376 	uint32_t extsts;
   1377 #ifdef DEBUG
   1378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1379 #endif
   1380 	/*
   1381 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1382 	 * up the descriptor to encapsulate the packet for us.
   1383 	 *
   1384 	 * This apparently has to be on the last descriptor of
   1385 	 * the packet.
   1386 	 */
   1387 
   1388 	/*
   1389 	 * Byte swapping is tricky. We need to provide the tag
   1390 	 * in a network byte order. On a big-endian machine,
   1391 	 * the byteorder is correct, but we need to swap it
   1392 	 * anyway, because this will be undone by the outside
   1393 	 * htole32(). That's why there must be an
   1394 	 * unconditional swap instead of htons() inside.
   1395 	 */
   1396 	if (vlan_has_tag(m0)) {
   1397 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1398 		    htole32(EXTSTS_VPKT |
   1399 				(bswap16(vlan_get_tag(m0)) &
   1400 				 EXTSTS_VTCI));
   1401 	}
   1402 
   1403 	/*
   1404 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1405 	 * checksumming, set up the descriptor to do this work
   1406 	 * for us.
   1407 	 *
   1408 	 * This apparently has to be on the first descriptor of
   1409 	 * the packet.
   1410 	 *
   1411 	 * Byte-swap constants so the compiler can optimize.
   1412 	 */
   1413 	extsts = 0;
   1414 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1415 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1416 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1417 		extsts |= htole32(EXTSTS_IPPKT);
   1418 	}
   1419 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1420 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1421 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1422 		extsts |= htole32(EXTSTS_TCPPKT);
   1423 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1424 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1425 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1426 		extsts |= htole32(EXTSTS_UDPPKT);
   1427 	}
   1428 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1429 }
   1430 
   1431 /*
   1432  * sip_start:		[ifnet interface function]
   1433  *
   1434  *	Start packet transmission on the interface.
   1435  */
   1436 static void
   1437 sipcom_start(struct ifnet *ifp)
   1438 {
   1439 	struct sip_softc *sc = ifp->if_softc;
   1440 	struct mbuf *m0;
   1441 	struct mbuf *m;
   1442 	struct sip_txsoft *txs;
   1443 	bus_dmamap_t dmamap;
   1444 	int error, nexttx, lasttx, seg;
   1445 	int ofree = sc->sc_txfree;
   1446 #if 0
   1447 	int firsttx = sc->sc_txnext;
   1448 #endif
   1449 
   1450 	/*
   1451 	 * If we've been told to pause, don't transmit any more packets.
   1452 	 */
   1453 	if (!sc->sc_gigabit && sc->sc_paused)
   1454 		ifp->if_flags |= IFF_OACTIVE;
   1455 
   1456 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1457 		return;
   1458 
   1459 	/*
   1460 	 * Loop through the send queue, setting up transmit descriptors
   1461 	 * until we drain the queue, or use up all available transmit
   1462 	 * descriptors.
   1463 	 */
   1464 	for (;;) {
   1465 		/* Get a work queue entry. */
   1466 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1467 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1468 			break;
   1469 		}
   1470 
   1471 		/*
   1472 		 * Grab a packet off the queue.
   1473 		 */
   1474 		IFQ_POLL(&ifp->if_snd, m0);
   1475 		if (m0 == NULL)
   1476 			break;
   1477 		m = NULL;
   1478 
   1479 		dmamap = txs->txs_dmamap;
   1480 
   1481 		/*
   1482 		 * Load the DMA map.  If this fails, the packet either
   1483 		 * didn't fit in the alloted number of segments, or we
   1484 		 * were short on resources.
   1485 		 */
   1486 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1487 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1488 		/* In the non-gigabit case, we'll copy and try again. */
   1489 		if (error != 0 && !sc->sc_gigabit) {
   1490 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1491 			if (m == NULL) {
   1492 				printf("%s: unable to allocate Tx mbuf\n",
   1493 				    device_xname(sc->sc_dev));
   1494 				break;
   1495 			}
   1496 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1497 			if (m0->m_pkthdr.len > MHLEN) {
   1498 				MCLGET(m, M_DONTWAIT);
   1499 				if ((m->m_flags & M_EXT) == 0) {
   1500 					printf("%s: unable to allocate Tx "
   1501 					    "cluster\n",
   1502 					    device_xname(sc->sc_dev));
   1503 					m_freem(m);
   1504 					break;
   1505 				}
   1506 			}
   1507 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1508 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1509 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1510 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1511 			if (error) {
   1512 				printf("%s: unable to load Tx buffer, error = "
   1513 				    "%d\n", device_xname(sc->sc_dev), error);
   1514 				break;
   1515 			}
   1516 		} else if (error == EFBIG) {
   1517 			/*
   1518 			 * For the too-many-segments case, we simply
   1519 			 * report an error and drop the packet,
   1520 			 * since we can't sanely copy a jumbo packet
   1521 			 * to a single buffer.
   1522 			 */
   1523 			printf("%s: Tx packet consumes too many DMA segments, "
   1524 			    "dropping...\n", device_xname(sc->sc_dev));
   1525 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1526 			m_freem(m0);
   1527 			continue;
   1528 		} else if (error != 0) {
   1529 			/*
   1530 			 * Short on resources, just stop for now.
   1531 			 */
   1532 			break;
   1533 		}
   1534 
   1535 		/*
   1536 		 * Ensure we have enough descriptors free to describe
   1537 		 * the packet.  Note, we always reserve one descriptor
   1538 		 * at the end of the ring as a termination point, to
   1539 		 * prevent wrap-around.
   1540 		 */
   1541 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1542 			/*
   1543 			 * Not enough free descriptors to transmit this
   1544 			 * packet.  We haven't committed anything yet,
   1545 			 * so just unload the DMA map, put the packet
   1546 			 * back on the queue, and punt.  Notify the upper
   1547 			 * layer that there are not more slots left.
   1548 			 *
   1549 			 * XXX We could allocate an mbuf and copy, but
   1550 			 * XXX is it worth it?
   1551 			 */
   1552 			ifp->if_flags |= IFF_OACTIVE;
   1553 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1554 			if (m != NULL)
   1555 				m_freem(m);
   1556 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1557 			break;
   1558 		}
   1559 
   1560 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1561 		if (m != NULL) {
   1562 			m_freem(m0);
   1563 			m0 = m;
   1564 		}
   1565 
   1566 		/*
   1567 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1568 		 */
   1569 
   1570 		/* Sync the DMA map. */
   1571 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1572 		    BUS_DMASYNC_PREWRITE);
   1573 
   1574 		/*
   1575 		 * Initialize the transmit descriptors.
   1576 		 */
   1577 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1578 		     seg < dmamap->dm_nsegs;
   1579 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1580 			/*
   1581 			 * If this is the first descriptor we're
   1582 			 * enqueueing, don't set the OWN bit just
   1583 			 * yet.  That could cause a race condition.
   1584 			 * We'll do it below.
   1585 			 */
   1586 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1587 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1588 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1589 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
   1590 				| CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1591 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1592 			lasttx = nexttx;
   1593 		}
   1594 
   1595 		/* Clear the MORE bit on the last segment. */
   1596 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1597 		    htole32(~CMDSTS_MORE);
   1598 
   1599 		/*
   1600 		 * If we're in the interrupt delay window, delay the
   1601 		 * interrupt.
   1602 		 */
   1603 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1604 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1605 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1606 			    htole32(CMDSTS_INTR);
   1607 			sc->sc_txwin = 0;
   1608 		}
   1609 
   1610 		if (sc->sc_gigabit)
   1611 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1612 
   1613 		/* Sync the descriptors we're using. */
   1614 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1615 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1616 
   1617 		/*
   1618 		 * The entire packet is set up.  Give the first descrptor
   1619 		 * to the chip now.
   1620 		 */
   1621 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1622 		    htole32(CMDSTS_OWN);
   1623 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1624 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1625 
   1626 		/*
   1627 		 * Store a pointer to the packet so we can free it later,
   1628 		 * and remember what txdirty will be once the packet is
   1629 		 * done.
   1630 		 */
   1631 		txs->txs_mbuf = m0;
   1632 		txs->txs_firstdesc = sc->sc_txnext;
   1633 		txs->txs_lastdesc = lasttx;
   1634 
   1635 		/* Advance the tx pointer. */
   1636 		sc->sc_txfree -= dmamap->dm_nsegs;
   1637 		sc->sc_txnext = nexttx;
   1638 
   1639 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1640 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1641 
   1642 		/* Pass the packet to any BPF listeners. */
   1643 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1644 	}
   1645 
   1646 	if (txs == NULL || sc->sc_txfree == 0) {
   1647 		/* No more slots left; notify upper layer. */
   1648 		ifp->if_flags |= IFF_OACTIVE;
   1649 	}
   1650 
   1651 	if (sc->sc_txfree != ofree) {
   1652 		/*
   1653 		 * Start the transmit process.  Note, the manual says
   1654 		 * that if there are no pending transmissions in the
   1655 		 * chip's internal queue (indicated by TXE being clear),
   1656 		 * then the driver software must set the TXDP to the
   1657 		 * first descriptor to be transmitted.  However, if we
   1658 		 * do this, it causes serious performance degredation on
   1659 		 * the DP83820 under load, not setting TXDP doesn't seem
   1660 		 * to adversely affect the SiS 900 or DP83815.
   1661 		 *
   1662 		 * Well, I guess it wouldn't be the first time a manual
   1663 		 * has lied -- and they could be speaking of the NULL-
   1664 		 * terminated descriptor list case, rather than OWN-
   1665 		 * terminated rings.
   1666 		 */
   1667 #if 0
   1668 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1669 		     CR_TXE) == 0) {
   1670 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1671 			    SIP_CDTXADDR(sc, firsttx));
   1672 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1673 		}
   1674 #else
   1675 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1676 #endif
   1677 
   1678 		/* Set a watchdog timer in case the chip flakes out. */
   1679 		/* Gigabit autonegotiation takes 5 seconds. */
   1680 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1681 	}
   1682 }
   1683 
   1684 /*
   1685  * sip_watchdog:	[ifnet interface function]
   1686  *
   1687  *	Watchdog timer handler.
   1688  */
   1689 static void
   1690 sipcom_watchdog(struct ifnet *ifp)
   1691 {
   1692 	struct sip_softc *sc = ifp->if_softc;
   1693 
   1694 	/*
   1695 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1696 	 * If we get a timeout, try and sweep up transmit descriptors.
   1697 	 * If we manage to sweep them all up, ignore the lack of
   1698 	 * interrupt.
   1699 	 */
   1700 	sipcom_txintr(sc);
   1701 
   1702 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1703 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1704 		ifp->if_oerrors++;
   1705 
   1706 		/* Reset the interface. */
   1707 		(void) sipcom_init(ifp);
   1708 	} else if (ifp->if_flags & IFF_DEBUG)
   1709 		printf("%s: recovered from device timeout\n",
   1710 		    device_xname(sc->sc_dev));
   1711 
   1712 	/* Try to get more packets going. */
   1713 	sipcom_start(ifp);
   1714 }
   1715 
   1716 /* If the interface is up and running, only modify the receive
   1717  * filter when setting promiscuous or debug mode.  Otherwise fall
   1718  * through to ether_ioctl, which will reset the chip.
   1719  */
   1720 static int
   1721 sip_ifflags_cb(struct ethercom *ec)
   1722 {
   1723 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1724 			 == (sc)->sc_ethercom.ec_capenable)		\
   1725 			&& ((sc)->sc_prev.is_vlan ==			\
   1726 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1727 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1728 	struct ifnet *ifp = &ec->ec_if;
   1729 	struct sip_softc *sc = ifp->if_softc;
   1730 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1731 
   1732 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1733 	    !COMPARE_IC(sc, ifp))
   1734 		return ENETRESET;
   1735 	/* Set up the receive filter. */
   1736 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1737 	return 0;
   1738 }
   1739 
   1740 /*
   1741  * sip_ioctl:		[ifnet interface function]
   1742  *
   1743  *	Handle control requests from the operator.
   1744  */
   1745 static int
   1746 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1747 {
   1748 	struct sip_softc *sc = ifp->if_softc;
   1749 	struct ifreq *ifr = (struct ifreq *)data;
   1750 	int s, error;
   1751 
   1752 	s = splnet();
   1753 
   1754 	switch (cmd) {
   1755 	case SIOCSIFMEDIA:
   1756 		/* Flow control requires full-duplex mode. */
   1757 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1758 		    (ifr->ifr_media & IFM_FDX) == 0)
   1759 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1760 
   1761 		/* XXX */
   1762 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1763 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1764 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1765 			if (sc->sc_gigabit &&
   1766 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1767 				/* We can do both TXPAUSE and RXPAUSE. */
   1768 				ifr->ifr_media |=
   1769 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1770 			} else if (ifr->ifr_media & IFM_FLOW) {
   1771 				/*
   1772 				 * Both TXPAUSE and RXPAUSE must be set.
   1773 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1774 				 * feature.)
   1775 				 *
   1776 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1777 				 */
   1778 				ifr->ifr_media |=
   1779 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1780 			}
   1781 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1782 		}
   1783 		/*FALLTHROUGH*/
   1784 	default:
   1785 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1786 			break;
   1787 
   1788 		error = 0;
   1789 
   1790 		if (cmd == SIOCSIFCAP)
   1791 			error = (*ifp->if_init)(ifp);
   1792 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1793 			;
   1794 		else if (ifp->if_flags & IFF_RUNNING) {
   1795 			/*
   1796 			 * Multicast list has changed; set the hardware filter
   1797 			 * accordingly.
   1798 			 */
   1799 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1800 		}
   1801 		break;
   1802 	}
   1803 
   1804 	/* Try to get more packets going. */
   1805 	sipcom_start(ifp);
   1806 
   1807 	sc->sc_if_flags = ifp->if_flags;
   1808 	splx(s);
   1809 	return error;
   1810 }
   1811 
   1812 /*
   1813  * sip_intr:
   1814  *
   1815  *	Interrupt service routine.
   1816  */
   1817 static int
   1818 sipcom_intr(void *arg)
   1819 {
   1820 	struct sip_softc *sc = arg;
   1821 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1822 	uint32_t isr;
   1823 	int handled = 0;
   1824 
   1825 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1826 		return 0;
   1827 
   1828 	/* Disable interrupts. */
   1829 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1830 
   1831 	for (;;) {
   1832 		/* Reading clears interrupt. */
   1833 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1834 		if ((isr & sc->sc_imr) == 0)
   1835 			break;
   1836 
   1837 		rnd_add_uint32(&sc->rnd_source, isr);
   1838 
   1839 		handled = 1;
   1840 
   1841 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1842 			break;
   1843 
   1844 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
   1845 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1846 
   1847 			/* Grab any new packets. */
   1848 			(*sc->sc_rxintr)(sc);
   1849 
   1850 			if (isr & ISR_RXORN) {
   1851 				printf("%s: receive FIFO overrun\n",
   1852 				    device_xname(sc->sc_dev));
   1853 
   1854 				/* XXX adjust rx_drain_thresh? */
   1855 			}
   1856 
   1857 			if (isr & ISR_RXIDLE) {
   1858 				printf("%s: receive ring overrun\n",
   1859 				    device_xname(sc->sc_dev));
   1860 
   1861 				/* Get the receive process going again. */
   1862 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1863 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1864 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1865 				    SIP_CR, CR_RXE);
   1866 			}
   1867 		}
   1868 
   1869 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
   1870 #ifdef SIP_EVENT_COUNTERS
   1871 			if (isr & ISR_TXDESC)
   1872 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1873 			else if (isr & ISR_TXIDLE)
   1874 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1875 #endif
   1876 
   1877 			/* Sweep up transmit descriptors. */
   1878 			sipcom_txintr(sc);
   1879 
   1880 			if (isr & ISR_TXURN) {
   1881 				uint32_t thresh;
   1882 				int txfifo_size = (sc->sc_gigabit)
   1883 				    ? DP83820_SIP_TXFIFO_SIZE
   1884 				    : OTHER_SIP_TXFIFO_SIZE;
   1885 
   1886 				printf("%s: transmit FIFO underrun",
   1887 				    device_xname(sc->sc_dev));
   1888 				thresh = sc->sc_tx_drain_thresh + 1;
   1889 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1890 				&& (thresh * 32) <= (txfifo_size -
   1891 				     (sc->sc_tx_fill_thresh * 32))) {
   1892 					printf("; increasing Tx drain "
   1893 					    "threshold to %u bytes\n",
   1894 					    thresh * 32);
   1895 					sc->sc_tx_drain_thresh = thresh;
   1896 					(void) sipcom_init(ifp);
   1897 				} else {
   1898 					(void) sipcom_init(ifp);
   1899 					printf("\n");
   1900 				}
   1901 			}
   1902 		}
   1903 
   1904 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
   1905 			if (isr & ISR_PAUSE_ST) {
   1906 				sc->sc_paused = 1;
   1907 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1908 				ifp->if_flags |= IFF_OACTIVE;
   1909 			}
   1910 			if (isr & ISR_PAUSE_END) {
   1911 				sc->sc_paused = 0;
   1912 				ifp->if_flags &= ~IFF_OACTIVE;
   1913 			}
   1914 		}
   1915 
   1916 		if (isr & ISR_HIBERR) {
   1917 			int want_init = 0;
   1918 
   1919 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1920 
   1921 #define	PRINTERR(bit, str)						\
   1922 			do {						\
   1923 				if ((isr & (bit)) != 0) {		\
   1924 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1925 						printf("%s: %s\n",	\
   1926 						    device_xname(sc->sc_dev), str); \
   1927 					want_init = 1;			\
   1928 				}					\
   1929 			} while (/*CONSTCOND*/0)
   1930 
   1931 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1932 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1933 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1934 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1935 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1936 			/*
   1937 			 * Ignore:
   1938 			 *	Tx reset complete
   1939 			 *	Rx reset complete
   1940 			 */
   1941 			if (want_init)
   1942 				(void) sipcom_init(ifp);
   1943 #undef PRINTERR
   1944 		}
   1945 	}
   1946 
   1947 	/* Re-enable interrupts. */
   1948 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1949 
   1950 	/* Try to get more packets going. */
   1951 	if_schedule_deferred_start(ifp);
   1952 
   1953 	return handled;
   1954 }
   1955 
   1956 /*
   1957  * sip_txintr:
   1958  *
   1959  *	Helper; handle transmit interrupts.
   1960  */
   1961 static void
   1962 sipcom_txintr(struct sip_softc *sc)
   1963 {
   1964 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1965 	struct sip_txsoft *txs;
   1966 	uint32_t cmdsts;
   1967 
   1968 	if (sc->sc_paused == 0)
   1969 		ifp->if_flags &= ~IFF_OACTIVE;
   1970 
   1971 	/*
   1972 	 * Go through our Tx list and free mbufs for those
   1973 	 * frames which have been transmitted.
   1974 	 */
   1975 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1976 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1977 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1978 
   1979 		cmdsts = le32toh(*sipd_cmdsts(sc,
   1980 			&sc->sc_txdescs[txs->txs_lastdesc]));
   1981 		if (cmdsts & CMDSTS_OWN)
   1982 			break;
   1983 
   1984 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1985 
   1986 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1987 
   1988 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1989 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1990 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1991 		m_freem(txs->txs_mbuf);
   1992 		txs->txs_mbuf = NULL;
   1993 
   1994 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1995 
   1996 		/* Check for errors and collisions. */
   1997 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
   1998 		    CMDSTS_Tx_EC)) {
   1999 			ifp->if_oerrors++;
   2000 			if (cmdsts & CMDSTS_Tx_EC)
   2001 				ifp->if_collisions += 16;
   2002 			if (ifp->if_flags & IFF_DEBUG) {
   2003 				if (cmdsts & CMDSTS_Tx_ED)
   2004 					printf("%s: excessive deferral\n",
   2005 					    device_xname(sc->sc_dev));
   2006 				if (cmdsts & CMDSTS_Tx_EC)
   2007 					printf("%s: excessive collisions\n",
   2008 					    device_xname(sc->sc_dev));
   2009 			}
   2010 		} else {
   2011 			/* Packet was transmitted successfully. */
   2012 			ifp->if_opackets++;
   2013 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   2014 		}
   2015 	}
   2016 
   2017 	/*
   2018 	 * If there are no more pending transmissions, cancel the watchdog
   2019 	 * timer.
   2020 	 */
   2021 	if (txs == NULL) {
   2022 		ifp->if_timer = 0;
   2023 		sc->sc_txwin = 0;
   2024 	}
   2025 }
   2026 
   2027 /*
   2028  * gsip_rxintr:
   2029  *
   2030  *	Helper; handle receive interrupts on gigabit parts.
   2031  */
   2032 static void
   2033 gsip_rxintr(struct sip_softc *sc)
   2034 {
   2035 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2036 	struct sip_rxsoft *rxs;
   2037 	struct mbuf *m;
   2038 	uint32_t cmdsts, extsts;
   2039 	int i, len;
   2040 
   2041 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2042 		rxs = &sc->sc_rxsoft[i];
   2043 
   2044 		sip_cdrxsync(sc, i,
   2045 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2046 
   2047 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2048 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2049 		len = CMDSTS_SIZE(sc, cmdsts);
   2050 
   2051 		/*
   2052 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2053 		 * consumer of the receive ring, so if the bit is clear,
   2054 		 * we have processed all of the packets.
   2055 		 */
   2056 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2057 			/*
   2058 			 * We have processed all of the receive buffers.
   2059 			 */
   2060 			break;
   2061 		}
   2062 
   2063 		if (__predict_false(sc->sc_rxdiscard)) {
   2064 			sip_init_rxdesc(sc, i);
   2065 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2066 				/* Reset our state. */
   2067 				sc->sc_rxdiscard = 0;
   2068 			}
   2069 			continue;
   2070 		}
   2071 
   2072 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2073 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2074 
   2075 		m = rxs->rxs_mbuf;
   2076 
   2077 		/*
   2078 		 * Add a new receive buffer to the ring.
   2079 		 */
   2080 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2081 			/*
   2082 			 * Failed, throw away what we've done so
   2083 			 * far, and discard the rest of the packet.
   2084 			 */
   2085 			ifp->if_ierrors++;
   2086 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2087 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2088 			sip_init_rxdesc(sc, i);
   2089 			if (cmdsts & CMDSTS_MORE)
   2090 				sc->sc_rxdiscard = 1;
   2091 			if (sc->sc_rxhead != NULL)
   2092 				m_freem(sc->sc_rxhead);
   2093 			sip_rxchain_reset(sc);
   2094 			continue;
   2095 		}
   2096 
   2097 		sip_rxchain_link(sc, m);
   2098 
   2099 		m->m_len = len;
   2100 
   2101 		/*
   2102 		 * If this is not the end of the packet, keep
   2103 		 * looking.
   2104 		 */
   2105 		if (cmdsts & CMDSTS_MORE) {
   2106 			sc->sc_rxlen += len;
   2107 			continue;
   2108 		}
   2109 
   2110 		/*
   2111 		 * Okay, we have the entire packet now.  The chip includes
   2112 		 * the FCS, so we need to trim it.
   2113 		 */
   2114 		m->m_len -= ETHER_CRC_LEN;
   2115 
   2116 		*sc->sc_rxtailp = NULL;
   2117 		len = m->m_len + sc->sc_rxlen;
   2118 		m = sc->sc_rxhead;
   2119 
   2120 		sip_rxchain_reset(sc);
   2121 
   2122 		/* If an error occurred, update stats and drop the packet. */
   2123 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2124 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2125 			ifp->if_ierrors++;
   2126 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2127 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2128 				/* Receive overrun handled elsewhere. */
   2129 				printf("%s: receive descriptor error\n",
   2130 				    device_xname(sc->sc_dev));
   2131 			}
   2132 #define	PRINTERR(bit, str)						\
   2133 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2134 			    (cmdsts & (bit)) != 0)			\
   2135 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2136 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2137 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2138 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2139 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2140 #undef PRINTERR
   2141 			m_freem(m);
   2142 			continue;
   2143 		}
   2144 
   2145 		/*
   2146 		 * If the packet is small enough to fit in a
   2147 		 * single header mbuf, allocate one and copy
   2148 		 * the data into it.  This greatly reduces
   2149 		 * memory consumption when we receive lots
   2150 		 * of small packets.
   2151 		 */
   2152 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2153 			struct mbuf *nm;
   2154 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2155 			if (nm == NULL) {
   2156 				ifp->if_ierrors++;
   2157 				m_freem(m);
   2158 				continue;
   2159 			}
   2160 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2161 			nm->m_data += 2;
   2162 			nm->m_pkthdr.len = nm->m_len = len;
   2163 			m_copydata(m, 0, len, mtod(nm, void *));
   2164 			m_freem(m);
   2165 			m = nm;
   2166 		}
   2167 #ifndef __NO_STRICT_ALIGNMENT
   2168 		else {
   2169 			/*
   2170 			 * The DP83820's receive buffers must be 4-byte
   2171 			 * aligned.  But this means that the data after
   2172 			 * the Ethernet header is misaligned.  To compensate,
   2173 			 * we have artificially shortened the buffer size
   2174 			 * in the descriptor, and we do an overlapping copy
   2175 			 * of the data two bytes further in (in the first
   2176 			 * buffer of the chain only).
   2177 			 */
   2178 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2179 			    m->m_len);
   2180 			m->m_data += 2;
   2181 		}
   2182 #endif /* ! __NO_STRICT_ALIGNMENT */
   2183 
   2184 		/*
   2185 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2186 		 * for us.  Associate the tag with the packet.
   2187 		 */
   2188 
   2189 		/*
   2190 		 * Again, byte swapping is tricky. Hardware provided
   2191 		 * the tag in the network byte order, but extsts was
   2192 		 * passed through le32toh() in the meantime. On a
   2193 		 * big-endian machine, we need to swap it again. On a
   2194 		 * little-endian machine, we need to convert from the
   2195 		 * network to host byte order. This means that we must
   2196 		 * swap it in any case, so unconditional swap instead
   2197 		 * of htons() is used.
   2198 		 */
   2199 		if ((extsts & EXTSTS_VPKT) != 0) {
   2200 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
   2201 		}
   2202 
   2203 		/*
   2204 		 * Set the incoming checksum information for the
   2205 		 * packet.
   2206 		 */
   2207 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2208 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2209 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2210 			if (extsts & EXTSTS_Rx_IPERR)
   2211 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2212 			if (extsts & EXTSTS_TCPPKT) {
   2213 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2214 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2215 				if (extsts & EXTSTS_Rx_TCPERR)
   2216 					m->m_pkthdr.csum_flags |=
   2217 					    M_CSUM_TCP_UDP_BAD;
   2218 			} else if (extsts & EXTSTS_UDPPKT) {
   2219 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2220 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2221 				if (extsts & EXTSTS_Rx_UDPERR)
   2222 					m->m_pkthdr.csum_flags |=
   2223 					    M_CSUM_TCP_UDP_BAD;
   2224 			}
   2225 		}
   2226 
   2227 		m_set_rcvif(m, ifp);
   2228 		m->m_pkthdr.len = len;
   2229 
   2230 		/* Pass it on. */
   2231 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2232 	}
   2233 
   2234 	/* Update the receive pointer. */
   2235 	sc->sc_rxptr = i;
   2236 }
   2237 
   2238 /*
   2239  * sip_rxintr:
   2240  *
   2241  *	Helper; handle receive interrupts on 10/100 parts.
   2242  */
   2243 static void
   2244 sip_rxintr(struct sip_softc *sc)
   2245 {
   2246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2247 	struct sip_rxsoft *rxs;
   2248 	struct mbuf *m;
   2249 	uint32_t cmdsts;
   2250 	int i, len;
   2251 
   2252 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2253 		rxs = &sc->sc_rxsoft[i];
   2254 
   2255 		sip_cdrxsync(sc, i,
   2256 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2257 
   2258 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2259 
   2260 		/*
   2261 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2262 		 * consumer of the receive ring, so if the bit is clear,
   2263 		 * we have processed all of the packets.
   2264 		 */
   2265 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2266 			/*
   2267 			 * We have processed all of the receive buffers.
   2268 			 */
   2269 			break;
   2270 		}
   2271 
   2272 		/* If any collisions were seen on the wire, count one. */
   2273 		if (cmdsts & CMDSTS_Rx_COL)
   2274 			ifp->if_collisions++;
   2275 
   2276 		/*
   2277 		 * If an error occurred, update stats, clear the status
   2278 		 * word, and leave the packet buffer in place.  It will
   2279 		 * simply be reused the next time the ring comes around.
   2280 		 */
   2281 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2282 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2283 			ifp->if_ierrors++;
   2284 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2285 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2286 				/* Receive overrun handled elsewhere. */
   2287 				printf("%s: receive descriptor error\n",
   2288 				    device_xname(sc->sc_dev));
   2289 			}
   2290 #define	PRINTERR(bit, str)						\
   2291 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2292 			    (cmdsts & (bit)) != 0)			\
   2293 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2294 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2295 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2296 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2297 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2298 #undef PRINTERR
   2299 			sip_init_rxdesc(sc, i);
   2300 			continue;
   2301 		}
   2302 
   2303 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2304 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2305 
   2306 		/*
   2307 		 * No errors; receive the packet.  Note, the SiS 900
   2308 		 * includes the CRC with every packet.
   2309 		 */
   2310 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2311 
   2312 #ifdef __NO_STRICT_ALIGNMENT
   2313 		/*
   2314 		 * If the packet is small enough to fit in a
   2315 		 * single header mbuf, allocate one and copy
   2316 		 * the data into it.  This greatly reduces
   2317 		 * memory consumption when we receive lots
   2318 		 * of small packets.
   2319 		 *
   2320 		 * Otherwise, we add a new buffer to the receive
   2321 		 * chain.  If this fails, we drop the packet and
   2322 		 * recycle the old buffer.
   2323 		 */
   2324 		if (sip_copy_small != 0 && len <= MHLEN) {
   2325 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2326 			if (m == NULL)
   2327 				goto dropit;
   2328 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2329 			memcpy(mtod(m, void *),
   2330 			    mtod(rxs->rxs_mbuf, void *), len);
   2331 			sip_init_rxdesc(sc, i);
   2332 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2333 			    rxs->rxs_dmamap->dm_mapsize,
   2334 			    BUS_DMASYNC_PREREAD);
   2335 		} else {
   2336 			m = rxs->rxs_mbuf;
   2337 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2338  dropit:
   2339 				ifp->if_ierrors++;
   2340 				sip_init_rxdesc(sc, i);
   2341 				bus_dmamap_sync(sc->sc_dmat,
   2342 				    rxs->rxs_dmamap, 0,
   2343 				    rxs->rxs_dmamap->dm_mapsize,
   2344 				    BUS_DMASYNC_PREREAD);
   2345 				continue;
   2346 			}
   2347 		}
   2348 #else
   2349 		/*
   2350 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2351 		 * But this means that the data after the Ethernet header
   2352 		 * is misaligned.  We must allocate a new buffer and
   2353 		 * copy the data, shifted forward 2 bytes.
   2354 		 */
   2355 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2356 		if (m == NULL) {
   2357  dropit:
   2358 			ifp->if_ierrors++;
   2359 			sip_init_rxdesc(sc, i);
   2360 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2361 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2362 			continue;
   2363 		}
   2364 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2365 		if (len > (MHLEN - 2)) {
   2366 			MCLGET(m, M_DONTWAIT);
   2367 			if ((m->m_flags & M_EXT) == 0) {
   2368 				m_freem(m);
   2369 				goto dropit;
   2370 			}
   2371 		}
   2372 		m->m_data += 2;
   2373 
   2374 		/*
   2375 		 * Note that we use clusters for incoming frames, so the
   2376 		 * buffer is virtually contiguous.
   2377 		 */
   2378 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2379 
   2380 		/* Allow the receive descriptor to continue using its mbuf. */
   2381 		sip_init_rxdesc(sc, i);
   2382 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2383 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2384 #endif /* __NO_STRICT_ALIGNMENT */
   2385 
   2386 		m_set_rcvif(m, ifp);
   2387 		m->m_pkthdr.len = m->m_len = len;
   2388 
   2389 		/* Pass it on. */
   2390 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2391 	}
   2392 
   2393 	/* Update the receive pointer. */
   2394 	sc->sc_rxptr = i;
   2395 }
   2396 
   2397 /*
   2398  * sip_tick:
   2399  *
   2400  *	One second timer, used to tick the MII.
   2401  */
   2402 static void
   2403 sipcom_tick(void *arg)
   2404 {
   2405 	struct sip_softc *sc = arg;
   2406 	int s;
   2407 
   2408 	s = splnet();
   2409 #ifdef SIP_EVENT_COUNTERS
   2410 	if (sc->sc_gigabit) {
   2411 		/* Read PAUSE related counts from MIB registers. */
   2412 		sc->sc_ev_rxpause.ev_count +=
   2413 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2414 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2415 		sc->sc_ev_txpause.ev_count +=
   2416 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2417 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2418 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2419 	}
   2420 #endif /* SIP_EVENT_COUNTERS */
   2421 	mii_tick(&sc->sc_mii);
   2422 	splx(s);
   2423 
   2424 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2425 }
   2426 
   2427 /*
   2428  * sip_reset:
   2429  *
   2430  *	Perform a soft reset on the SiS 900.
   2431  */
   2432 static bool
   2433 sipcom_reset(struct sip_softc *sc)
   2434 {
   2435 	bus_space_tag_t st = sc->sc_st;
   2436 	bus_space_handle_t sh = sc->sc_sh;
   2437 	int i;
   2438 
   2439 	bus_space_write_4(st, sh, SIP_IER, 0);
   2440 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2441 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2442 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2443 
   2444 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2445 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2446 			break;
   2447 		delay(2);
   2448 	}
   2449 
   2450 	if (i == SIP_TIMEOUT) {
   2451 		printf("%s: reset failed to complete\n",
   2452 		    device_xname(sc->sc_dev));
   2453 		return false;
   2454 	}
   2455 
   2456 	delay(1000);
   2457 
   2458 	if (sc->sc_gigabit) {
   2459 		/*
   2460 		 * Set the general purpose I/O bits.  Do it here in case we
   2461 		 * need to have GPIO set up to talk to the media interface.
   2462 		 */
   2463 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2464 		delay(1000);
   2465 	}
   2466 	return true;
   2467 }
   2468 
   2469 static void
   2470 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2471 {
   2472 	uint32_t reg;
   2473 	bus_space_tag_t st = sc->sc_st;
   2474 	bus_space_handle_t sh = sc->sc_sh;
   2475 	/*
   2476 	 * Initialize the VLAN/IP receive control register.
   2477 	 * We enable checksum computation on all incoming
   2478 	 * packets, and do not reject packets w/ bad checksums.
   2479 	 */
   2480 	reg = 0;
   2481 	if (capenable &
   2482 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2483 		reg |= VRCR_IPEN;
   2484 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2485 		reg |= VRCR_VTDEN | VRCR_VTREN;
   2486 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2487 
   2488 	/*
   2489 	 * Initialize the VLAN/IP transmit control register.
   2490 	 * We enable outgoing checksum computation on a
   2491 	 * per-packet basis.
   2492 	 */
   2493 	reg = 0;
   2494 	if (capenable &
   2495 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
   2496 		reg |= VTCR_PPCHK;
   2497 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2498 		reg |= VTCR_VPPTI;
   2499 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2500 
   2501 	/*
   2502 	 * If we're using VLANs, initialize the VLAN data register.
   2503 	 * To understand why we bswap the VLAN Ethertype, see section
   2504 	 * 4.2.36 of the DP83820 manual.
   2505 	 */
   2506 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2507 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2508 }
   2509 
   2510 /*
   2511  * sip_init:		[ ifnet interface function ]
   2512  *
   2513  *	Initialize the interface.  Must be called at splnet().
   2514  */
   2515 static int
   2516 sipcom_init(struct ifnet *ifp)
   2517 {
   2518 	struct sip_softc *sc = ifp->if_softc;
   2519 	bus_space_tag_t st = sc->sc_st;
   2520 	bus_space_handle_t sh = sc->sc_sh;
   2521 	struct sip_txsoft *txs;
   2522 	struct sip_rxsoft *rxs;
   2523 	struct sip_desc *sipd;
   2524 	int i, error = 0;
   2525 
   2526 	if (device_is_active(sc->sc_dev)) {
   2527 		/*
   2528 		 * Cancel any pending I/O.
   2529 		 */
   2530 		sipcom_stop(ifp, 0);
   2531 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2532 		   !device_is_active(sc->sc_dev))
   2533 		return 0;
   2534 
   2535 	/*
   2536 	 * Reset the chip to a known state.
   2537 	 */
   2538 	if (!sipcom_reset(sc))
   2539 		return EBUSY;
   2540 
   2541 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2542 		/*
   2543 		 * DP83815 manual, page 78:
   2544 		 *    4.4 Recommended Registers Configuration
   2545 		 *    For optimum performance of the DP83815, version noted
   2546 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2547 		 *    modifications must be followed in sequence...
   2548 		 *
   2549 		 * It's not clear if this should be 302h or 203h because that
   2550 		 * chip name is listed as SRR 302h in the description of the
   2551 		 * SRR register.  However, my revision 302h DP83815 on the
   2552 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2553 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2554 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2555 		 * this set or not.  [briggs -- 09 March 2001]
   2556 		 *
   2557 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2558 		 * and that this sets reserved bits in that register.
   2559 		 */
   2560 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2561 
   2562 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2563 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2564 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2565 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2566 
   2567 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2568 	}
   2569 
   2570 	/*
   2571 	 * Initialize the transmit descriptor ring.
   2572 	 */
   2573 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2574 		sipd = &sc->sc_txdescs[i];
   2575 		memset(sipd, 0, sizeof(struct sip_desc));
   2576 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2577 	}
   2578 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2579 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2580 	sc->sc_txfree = sc->sc_ntxdesc;
   2581 	sc->sc_txnext = 0;
   2582 	sc->sc_txwin = 0;
   2583 
   2584 	/*
   2585 	 * Initialize the transmit job descriptors.
   2586 	 */
   2587 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2588 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2589 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2590 		txs = &sc->sc_txsoft[i];
   2591 		txs->txs_mbuf = NULL;
   2592 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2593 	}
   2594 
   2595 	/*
   2596 	 * Initialize the receive descriptor and receive job
   2597 	 * descriptor rings.
   2598 	 */
   2599 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2600 		rxs = &sc->sc_rxsoft[i];
   2601 		if (rxs->rxs_mbuf == NULL) {
   2602 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2603 				printf("%s: unable to allocate or map rx "
   2604 				    "buffer %d, error = %d\n",
   2605 				    device_xname(sc->sc_dev), i, error);
   2606 				/*
   2607 				 * XXX Should attempt to run with fewer receive
   2608 				 * XXX buffers instead of just failing.
   2609 				 */
   2610 				sipcom_rxdrain(sc);
   2611 				goto out;
   2612 			}
   2613 		} else
   2614 			sip_init_rxdesc(sc, i);
   2615 	}
   2616 	sc->sc_rxptr = 0;
   2617 	sc->sc_rxdiscard = 0;
   2618 	sip_rxchain_reset(sc);
   2619 
   2620 	/*
   2621 	 * Set the configuration register; it's already initialized
   2622 	 * in sip_attach().
   2623 	 */
   2624 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2625 
   2626 	/*
   2627 	 * Initialize the prototype TXCFG register.
   2628 	 */
   2629 	if (sc->sc_gigabit) {
   2630 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2631 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2632 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2633 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2634 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2635 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2636 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2637 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2638 	} else {
   2639 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2640 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2641 	}
   2642 
   2643 	sc->sc_txcfg |= TXCFG_ATP |
   2644 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2645 	    sc->sc_tx_drain_thresh;
   2646 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2647 
   2648 	/*
   2649 	 * Initialize the receive drain threshold if we have never
   2650 	 * done so.
   2651 	 */
   2652 	if (sc->sc_rx_drain_thresh == 0) {
   2653 		/*
   2654 		 * XXX This value should be tuned.  This is set to the
   2655 		 * maximum of 248 bytes, and we may be able to improve
   2656 		 * performance by decreasing it (although we should never
   2657 		 * set this value lower than 2; 14 bytes are required to
   2658 		 * filter the packet).
   2659 		 */
   2660 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2661 	}
   2662 
   2663 	/*
   2664 	 * Initialize the prototype RXCFG register.
   2665 	 */
   2666 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2667 	/*
   2668 	 * Accept long packets (including FCS) so we can handle
   2669 	 * 802.1q-tagged frames and jumbo frames properly.
   2670 	 */
   2671 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2672 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2673 		sc->sc_rxcfg |= RXCFG_ALP;
   2674 
   2675 	/*
   2676 	 * Checksum offloading is disabled if the user selects an MTU
   2677 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2678 	 * evidence that >8109 does not work on some boards, such as the
   2679 	 * Planex GN-1000TE).
   2680 	 */
   2681 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2682 	    (ifp->if_capenable &
   2683 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2684 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2685 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
   2686 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2687 		       "disabled.\n", device_xname(sc->sc_dev));
   2688 		ifp->if_capenable &=
   2689 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2690 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2691 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
   2692 		ifp->if_csum_flags_tx = 0;
   2693 		ifp->if_csum_flags_rx = 0;
   2694 	}
   2695 
   2696 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2697 
   2698 	if (sc->sc_gigabit)
   2699 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2700 
   2701 	/*
   2702 	 * Give the transmit and receive rings to the chip.
   2703 	 */
   2704 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2705 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2706 
   2707 	/*
   2708 	 * Initialize the interrupt mask.
   2709 	 */
   2710 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2711 		     sc->sc_bits.b_isr_sserr |
   2712 		     sc->sc_bits.b_isr_rmabt |
   2713 		     sc->sc_bits.b_isr_rtabt |
   2714 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
   2715 	    ISR_RXIDLE | ISR_RXDESC;
   2716 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2717 
   2718 	/* Set up the receive filter. */
   2719 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2720 
   2721 	/*
   2722 	 * Tune sc_rx_flow_thresh.
   2723 	 * XXX "More than 8KB" is too short for jumbo frames.
   2724 	 * XXX TODO: Threshold value should be user-settable.
   2725 	 */
   2726 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2727 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2728 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2729 
   2730 	/*
   2731 	 * Set the current media.  Do this after initializing the prototype
   2732 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2733 	 * control.
   2734 	 */
   2735 	if ((error = ether_mediachange(ifp)) != 0)
   2736 		goto out;
   2737 
   2738 	/*
   2739 	 * Set the interrupt hold-off timer to 100us.
   2740 	 */
   2741 	if (sc->sc_gigabit)
   2742 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2743 
   2744 	/*
   2745 	 * Enable interrupts.
   2746 	 */
   2747 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2748 
   2749 	/*
   2750 	 * Start the transmit and receive processes.
   2751 	 */
   2752 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2753 
   2754 	/*
   2755 	 * Start the one second MII clock.
   2756 	 */
   2757 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
   2758 
   2759 	/*
   2760 	 * ...all done!
   2761 	 */
   2762 	ifp->if_flags |= IFF_RUNNING;
   2763 	ifp->if_flags &= ~IFF_OACTIVE;
   2764 	sc->sc_if_flags = ifp->if_flags;
   2765 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2766 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2767 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2768 
   2769  out:
   2770 	if (error)
   2771 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2772 	return error;
   2773 }
   2774 
   2775 /*
   2776  * sip_drain:
   2777  *
   2778  *	Drain the receive queue.
   2779  */
   2780 static void
   2781 sipcom_rxdrain(struct sip_softc *sc)
   2782 {
   2783 	struct sip_rxsoft *rxs;
   2784 	int i;
   2785 
   2786 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2787 		rxs = &sc->sc_rxsoft[i];
   2788 		if (rxs->rxs_mbuf != NULL) {
   2789 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2790 			m_freem(rxs->rxs_mbuf);
   2791 			rxs->rxs_mbuf = NULL;
   2792 		}
   2793 	}
   2794 }
   2795 
   2796 /*
   2797  * sip_stop:		[ ifnet interface function ]
   2798  *
   2799  *	Stop transmission on the interface.
   2800  */
   2801 static void
   2802 sipcom_stop(struct ifnet *ifp, int disable)
   2803 {
   2804 	struct sip_softc *sc = ifp->if_softc;
   2805 	bus_space_tag_t st = sc->sc_st;
   2806 	bus_space_handle_t sh = sc->sc_sh;
   2807 	struct sip_txsoft *txs;
   2808 	uint32_t cmdsts = 0;		/* DEBUG */
   2809 
   2810 	/*
   2811 	 * Stop the one second clock.
   2812 	 */
   2813 	callout_stop(&sc->sc_tick_ch);
   2814 
   2815 	/* Down the MII. */
   2816 	mii_down(&sc->sc_mii);
   2817 
   2818 	if (device_is_active(sc->sc_dev)) {
   2819 		/*
   2820 		 * Disable interrupts.
   2821 		 */
   2822 		bus_space_write_4(st, sh, SIP_IER, 0);
   2823 
   2824 		/*
   2825 		 * Stop receiver and transmitter.
   2826 		 */
   2827 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2828 	}
   2829 
   2830 	/*
   2831 	 * Release any queued transmit buffers.
   2832 	 */
   2833 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2834 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2835 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2836 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2837 		     CMDSTS_INTR) == 0)
   2838 			printf("%s: sip_stop: last descriptor does not "
   2839 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2840 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2841 #ifdef DIAGNOSTIC
   2842 		if (txs->txs_mbuf == NULL) {
   2843 			printf("%s: dirty txsoft with no mbuf chain\n",
   2844 			    device_xname(sc->sc_dev));
   2845 			panic("sip_stop");
   2846 		}
   2847 #endif
   2848 		cmdsts |=		/* DEBUG */
   2849 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2850 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2851 		m_freem(txs->txs_mbuf);
   2852 		txs->txs_mbuf = NULL;
   2853 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2854 	}
   2855 
   2856 	/*
   2857 	 * Mark the interface down and cancel the watchdog timer.
   2858 	 */
   2859 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2860 	ifp->if_timer = 0;
   2861 
   2862 	if (disable)
   2863 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2864 
   2865 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2866 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2867 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2868 		    "descriptors\n", device_xname(sc->sc_dev));
   2869 }
   2870 
   2871 /*
   2872  * sip_read_eeprom:
   2873  *
   2874  *	Read data from the serial EEPROM.
   2875  */
   2876 static void
   2877 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2878     uint16_t *data)
   2879 {
   2880 	bus_space_tag_t st = sc->sc_st;
   2881 	bus_space_handle_t sh = sc->sc_sh;
   2882 	uint16_t reg;
   2883 	int i, x;
   2884 
   2885 	for (i = 0; i < wordcnt; i++) {
   2886 		/* Send CHIP SELECT. */
   2887 		reg = EROMAR_EECS;
   2888 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2889 
   2890 		/* Shift in the READ opcode. */
   2891 		for (x = 3; x > 0; x--) {
   2892 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2893 				reg |= EROMAR_EEDI;
   2894 			else
   2895 				reg &= ~EROMAR_EEDI;
   2896 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2897 			bus_space_write_4(st, sh, SIP_EROMAR,
   2898 			    reg | EROMAR_EESK);
   2899 			delay(4);
   2900 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2901 			delay(4);
   2902 		}
   2903 
   2904 		/* Shift in address. */
   2905 		for (x = 6; x > 0; x--) {
   2906 			if ((word + i) & (1 << (x - 1)))
   2907 				reg |= EROMAR_EEDI;
   2908 			else
   2909 				reg &= ~EROMAR_EEDI;
   2910 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2911 			bus_space_write_4(st, sh, SIP_EROMAR,
   2912 			    reg | EROMAR_EESK);
   2913 			delay(4);
   2914 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2915 			delay(4);
   2916 		}
   2917 
   2918 		/* Shift out data. */
   2919 		reg = EROMAR_EECS;
   2920 		data[i] = 0;
   2921 		for (x = 16; x > 0; x--) {
   2922 			bus_space_write_4(st, sh, SIP_EROMAR,
   2923 			    reg | EROMAR_EESK);
   2924 			delay(4);
   2925 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2926 				data[i] |= (1 << (x - 1));
   2927 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2928 			delay(4);
   2929 		}
   2930 
   2931 		/* Clear CHIP SELECT. */
   2932 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2933 		delay(4);
   2934 	}
   2935 }
   2936 
   2937 /*
   2938  * sipcom_add_rxbuf:
   2939  *
   2940  *	Add a receive buffer to the indicated descriptor.
   2941  */
   2942 static int
   2943 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2944 {
   2945 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2946 	struct mbuf *m;
   2947 	int error;
   2948 
   2949 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2950 	if (m == NULL)
   2951 		return ENOBUFS;
   2952 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2953 
   2954 	MCLGET(m, M_DONTWAIT);
   2955 	if ((m->m_flags & M_EXT) == 0) {
   2956 		m_freem(m);
   2957 		return ENOBUFS;
   2958 	}
   2959 
   2960 	/* XXX I don't believe this is necessary. --dyoung */
   2961 	if (sc->sc_gigabit)
   2962 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2963 
   2964 	if (rxs->rxs_mbuf != NULL)
   2965 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2966 
   2967 	rxs->rxs_mbuf = m;
   2968 
   2969 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2970 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2971 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2972 	if (error) {
   2973 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2974 		    device_xname(sc->sc_dev), idx, error);
   2975 		panic("%s", __func__);		/* XXX */
   2976 	}
   2977 
   2978 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2979 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2980 
   2981 	sip_init_rxdesc(sc, idx);
   2982 
   2983 	return 0;
   2984 }
   2985 
   2986 /*
   2987  * sip_sis900_set_filter:
   2988  *
   2989  *	Set up the receive filter.
   2990  */
   2991 static void
   2992 sipcom_sis900_set_filter(struct sip_softc *sc)
   2993 {
   2994 	bus_space_tag_t st = sc->sc_st;
   2995 	bus_space_handle_t sh = sc->sc_sh;
   2996 	struct ethercom *ec = &sc->sc_ethercom;
   2997 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2998 	struct ether_multi *enm;
   2999 	const uint8_t *cp;
   3000 	struct ether_multistep step;
   3001 	uint32_t crc, mchash[16];
   3002 
   3003 	/*
   3004 	 * Initialize the prototype RFCR.
   3005 	 */
   3006 	sc->sc_rfcr = RFCR_RFEN;
   3007 	if (ifp->if_flags & IFF_BROADCAST)
   3008 		sc->sc_rfcr |= RFCR_AAB;
   3009 	if (ifp->if_flags & IFF_PROMISC) {
   3010 		sc->sc_rfcr |= RFCR_AAP;
   3011 		goto allmulti;
   3012 	}
   3013 
   3014 	/*
   3015 	 * Set up the multicast address filter by passing all multicast
   3016 	 * addresses through a CRC generator, and then using the high-order
   3017 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3018 	 * the lower 16 bits of each 32 bit multicast hash register are
   3019 	 * valid).  The high order bits select the register, while the
   3020 	 * rest of the bits select the bit within the register.
   3021 	 */
   3022 
   3023 	memset(mchash, 0, sizeof(mchash));
   3024 
   3025 	/*
   3026 	 * SiS900 (at least SiS963) requires us to register the address of
   3027 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3028 	 */
   3029 	crc = 0x0ed423f9;
   3030 
   3031 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3032 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3033 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3034 		/* Just want the 8 most significant bits. */
   3035 		crc >>= 24;
   3036 	} else {
   3037 		/* Just want the 7 most significant bits. */
   3038 		crc >>= 25;
   3039 	}
   3040 
   3041 	/* Set the corresponding bit in the hash table. */
   3042 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3043 
   3044 	ETHER_LOCK(ec);
   3045 	ETHER_FIRST_MULTI(step, ec, enm);
   3046 	while (enm != NULL) {
   3047 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3048 			/*
   3049 			 * We must listen to a range of multicast addresses.
   3050 			 * For now, just accept all multicasts, rather than
   3051 			 * trying to set only those filter bits needed to match
   3052 			 * the range.  (At this time, the only use of address
   3053 			 * ranges is for IP multicast routing, for which the
   3054 			 * range is big enough to require all bits set.)
   3055 			 */
   3056 			ETHER_UNLOCK(ec);
   3057 			goto allmulti;
   3058 		}
   3059 
   3060 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3061 
   3062 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3063 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3064 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3065 			/* Just want the 8 most significant bits. */
   3066 			crc >>= 24;
   3067 		} else {
   3068 			/* Just want the 7 most significant bits. */
   3069 			crc >>= 25;
   3070 		}
   3071 
   3072 		/* Set the corresponding bit in the hash table. */
   3073 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3074 
   3075 		ETHER_NEXT_MULTI(step, enm);
   3076 	}
   3077 	ETHER_UNLOCK(ec);
   3078 
   3079 	ifp->if_flags &= ~IFF_ALLMULTI;
   3080 	goto setit;
   3081 
   3082  allmulti:
   3083 	ifp->if_flags |= IFF_ALLMULTI;
   3084 	sc->sc_rfcr |= RFCR_AAM;
   3085 
   3086  setit:
   3087 #define	FILTER_EMIT(addr, data)						\
   3088 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3089 	delay(1);							\
   3090 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3091 	delay(1)
   3092 
   3093 	/*
   3094 	 * Disable receive filter, and program the node address.
   3095 	 */
   3096 	cp = CLLADDR(ifp->if_sadl);
   3097 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3098 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3099 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3100 
   3101 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3102 		/*
   3103 		 * Program the multicast hash table.
   3104 		 */
   3105 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3106 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3107 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3108 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3109 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3110 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3111 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3112 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3113 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3114 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3115 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3116 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3117 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3118 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3119 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3120 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3121 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3122 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3123 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3124 		}
   3125 	}
   3126 #undef FILTER_EMIT
   3127 
   3128 	/*
   3129 	 * Re-enable the receiver filter.
   3130 	 */
   3131 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3132 }
   3133 
   3134 /*
   3135  * sip_dp83815_set_filter:
   3136  *
   3137  *	Set up the receive filter.
   3138  */
   3139 static void
   3140 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3141 {
   3142 	bus_space_tag_t st = sc->sc_st;
   3143 	bus_space_handle_t sh = sc->sc_sh;
   3144 	struct ethercom *ec = &sc->sc_ethercom;
   3145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3146 	struct ether_multi *enm;
   3147 	const uint8_t *cp;
   3148 	struct ether_multistep step;
   3149 	uint32_t crc, hash, slot, bit;
   3150 #define	MCHASH_NWORDS_83820	128
   3151 #define	MCHASH_NWORDS_83815	32
   3152 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3153 	uint16_t mchash[MCHASH_NWORDS];
   3154 	int i;
   3155 
   3156 	/*
   3157 	 * Initialize the prototype RFCR.
   3158 	 * Enable the receive filter, and accept on
   3159 	 *    Perfect (destination address) Match
   3160 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3161 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3162 	 *    IFF_ALLMULTI and accept all multicast, too).
   3163 	 */
   3164 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3165 	if (ifp->if_flags & IFF_BROADCAST)
   3166 		sc->sc_rfcr |= RFCR_AAB;
   3167 	if (ifp->if_flags & IFF_PROMISC) {
   3168 		sc->sc_rfcr |= RFCR_AAP;
   3169 		goto allmulti;
   3170 	}
   3171 
   3172 	/*
   3173 	 * Set up the DP83820/DP83815 multicast address filter by
   3174 	 * passing all multicast addresses through a CRC generator,
   3175 	 * and then using the high-order 11/9 bits as an index into
   3176 	 * the 2048/512 bit multicast hash table.  The high-order
   3177 	 * 7/5 bits select the slot, while the low-order 4 bits
   3178 	 * select the bit within the slot.  Note that only the low
   3179 	 * 16-bits of each filter word are used, and there are
   3180 	 * 128/32 filter words.
   3181 	 */
   3182 
   3183 	memset(mchash, 0, sizeof(mchash));
   3184 
   3185 	ifp->if_flags &= ~IFF_ALLMULTI;
   3186 	ETHER_FIRST_MULTI(step, ec, enm);
   3187 	if (enm == NULL)
   3188 		goto setit;
   3189 	while (enm != NULL) {
   3190 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3191 			/*
   3192 			 * We must listen to a range of multicast addresses.
   3193 			 * For now, just accept all multicasts, rather than
   3194 			 * trying to set only those filter bits needed to match
   3195 			 * the range.  (At this time, the only use of address
   3196 			 * ranges is for IP multicast routing, for which the
   3197 			 * range is big enough to require all bits set.)
   3198 			 */
   3199 			goto allmulti;
   3200 		}
   3201 
   3202 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3203 
   3204 		if (sc->sc_gigabit) {
   3205 			/* Just want the 11 most significant bits. */
   3206 			hash = crc >> 21;
   3207 		} else {
   3208 			/* Just want the 9 most significant bits. */
   3209 			hash = crc >> 23;
   3210 		}
   3211 
   3212 		slot = hash >> 4;
   3213 		bit = hash & 0xf;
   3214 
   3215 		/* Set the corresponding bit in the hash table. */
   3216 		mchash[slot] |= 1 << bit;
   3217 
   3218 		ETHER_NEXT_MULTI(step, enm);
   3219 	}
   3220 	sc->sc_rfcr |= RFCR_MHEN;
   3221 	goto setit;
   3222 
   3223  allmulti:
   3224 	ifp->if_flags |= IFF_ALLMULTI;
   3225 	sc->sc_rfcr |= RFCR_AAM;
   3226 
   3227  setit:
   3228 #define	FILTER_EMIT(addr, data)						\
   3229 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3230 	delay(1);							\
   3231 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3232 	delay(1)
   3233 
   3234 	/*
   3235 	 * Disable receive filter, and program the node address.
   3236 	 */
   3237 	cp = CLLADDR(ifp->if_sadl);
   3238 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3239 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3240 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3241 
   3242 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3243 		int nwords =
   3244 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3245 		/*
   3246 		 * Program the multicast hash table.
   3247 		 */
   3248 		for (i = 0; i < nwords; i++) {
   3249 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3250 		}
   3251 	}
   3252 #undef FILTER_EMIT
   3253 #undef MCHASH_NWORDS
   3254 #undef MCHASH_NWORDS_83815
   3255 #undef MCHASH_NWORDS_83820
   3256 
   3257 	/*
   3258 	 * Re-enable the receiver filter.
   3259 	 */
   3260 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3261 }
   3262 
   3263 /*
   3264  * sip_dp83820_mii_readreg:	[mii interface function]
   3265  *
   3266  *	Read a PHY register on the MII of the DP83820.
   3267  */
   3268 static int
   3269 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3270 {
   3271 	struct sip_softc *sc = device_private(self);
   3272 
   3273 	if (sc->sc_cfg & CFG_TBI_EN) {
   3274 		bus_addr_t tbireg;
   3275 
   3276 		if (phy != 0)
   3277 			return -1;
   3278 
   3279 		switch (reg) {
   3280 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3281 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3282 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3283 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3284 		case MII_ANER:		tbireg = SIP_TANER; break;
   3285 		case MII_EXTSR:
   3286 			/*
   3287 			 * Don't even bother reading the TESR register.
   3288 			 * The manual documents that the device has
   3289 			 * 1000baseX full/half capability, but the
   3290 			 * register itself seems read back 0 on some
   3291 			 * boards.  Just hard-code the result.
   3292 			 */
   3293 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
   3294 			return 0;
   3295 
   3296 		default:
   3297 			return 0;
   3298 		}
   3299 
   3300 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3301 		if (tbireg == SIP_TBISR) {
   3302 			/* LINK and ACOMP are switched! */
   3303 			int sr = *val;
   3304 
   3305 			*val = 0;
   3306 			if (sr & TBISR_MR_LINK_STATUS)
   3307 				*val |= BMSR_LINK;
   3308 			if (sr & TBISR_MR_AN_COMPLETE)
   3309 				*val |= BMSR_ACOMP;
   3310 
   3311 			/*
   3312 			 * The manual claims this register reads back 0
   3313 			 * on hard and soft reset.  But we want to let
   3314 			 * the gentbi driver know that we support auto-
   3315 			 * negotiation, so hard-code this bit in the
   3316 			 * result.
   3317 			 */
   3318 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
   3319 		}
   3320 
   3321 		return 0;
   3322 	}
   3323 
   3324 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3325 	    val);
   3326 }
   3327 
   3328 /*
   3329  * sip_dp83820_mii_writereg:	[mii interface function]
   3330  *
   3331  *	Write a PHY register on the MII of the DP83820.
   3332  */
   3333 static int
   3334 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3335 {
   3336 	struct sip_softc *sc = device_private(self);
   3337 
   3338 	if (sc->sc_cfg & CFG_TBI_EN) {
   3339 		bus_addr_t tbireg;
   3340 
   3341 		if (phy != 0)
   3342 			return -1;
   3343 
   3344 		switch (reg) {
   3345 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3346 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3347 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3348 		default:
   3349 			return 0;
   3350 		}
   3351 
   3352 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3353 		return 0;
   3354 	}
   3355 
   3356 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3357 	    val);
   3358 }
   3359 
   3360 /*
   3361  * sip_dp83820_mii_statchg:	[mii interface function]
   3362  *
   3363  *	Callback from MII layer when media changes.
   3364  */
   3365 static void
   3366 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
   3367 {
   3368 	struct sip_softc *sc = ifp->if_softc;
   3369 	struct mii_data *mii = &sc->sc_mii;
   3370 	uint32_t cfg, pcr;
   3371 
   3372 	/*
   3373 	 * Get flow control negotiation result.
   3374 	 */
   3375 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3376 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3377 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3378 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3379 	}
   3380 
   3381 	/*
   3382 	 * Update TXCFG for full-duplex operation.
   3383 	 */
   3384 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3385 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3386 	else
   3387 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3388 
   3389 	/*
   3390 	 * Update RXCFG for full-duplex or loopback.
   3391 	 */
   3392 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3393 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3394 		sc->sc_rxcfg |= RXCFG_ATX;
   3395 	else
   3396 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3397 
   3398 	/*
   3399 	 * Update CFG for MII/GMII.
   3400 	 */
   3401 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3402 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3403 	else
   3404 		cfg = sc->sc_cfg;
   3405 
   3406 	/*
   3407 	 * 802.3x flow control.
   3408 	 */
   3409 	pcr = 0;
   3410 	if (sc->sc_flowflags & IFM_FLOW) {
   3411 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3412 			pcr |= sc->sc_rx_flow_thresh;
   3413 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3414 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3415 	}
   3416 
   3417 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3418 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3419 	    sc->sc_txcfg);
   3420 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3421 	    sc->sc_rxcfg);
   3422 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3423 }
   3424 
   3425 /*
   3426  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3427  *
   3428  *	Read the MII serial port for the MII bit-bang module.
   3429  */
   3430 static uint32_t
   3431 sipcom_mii_bitbang_read(device_t self)
   3432 {
   3433 	struct sip_softc *sc = device_private(self);
   3434 
   3435 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3436 }
   3437 
   3438 /*
   3439  * sip_mii_bitbang_write: [mii big-bang interface function]
   3440  *
   3441  *	Write the MII serial port for the MII bit-bang module.
   3442  */
   3443 static void
   3444 sipcom_mii_bitbang_write(device_t self, uint32_t val)
   3445 {
   3446 	struct sip_softc *sc = device_private(self);
   3447 
   3448 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3449 }
   3450 
   3451 /*
   3452  * sip_sis900_mii_readreg:	[mii interface function]
   3453  *
   3454  *	Read a PHY register on the MII.
   3455  */
   3456 static int
   3457 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3458 {
   3459 	struct sip_softc *sc = device_private(self);
   3460 	uint32_t enphy;
   3461 
   3462 	/*
   3463 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3464 	 * operations.
   3465 	 */
   3466 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3467 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3468 		    phy, reg, val);
   3469 
   3470 #ifndef SIS900_MII_RESTRICT
   3471 	/*
   3472 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3473 	 * MII address 0.
   3474 	 */
   3475 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3476 		return -1;
   3477 #endif
   3478 
   3479 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3480 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3481 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3482 	do {
   3483 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3484 	} while (enphy & ENPHY_ACCESS);
   3485 
   3486 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
   3487 	return 0;
   3488 }
   3489 
   3490 /*
   3491  * sip_sis900_mii_writereg:	[mii interface function]
   3492  *
   3493  *	Write a PHY register on the MII.
   3494  */
   3495 static int
   3496 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3497 {
   3498 	struct sip_softc *sc = device_private(self);
   3499 	uint32_t enphy;
   3500 
   3501 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3502 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3503 		    phy, reg, val);
   3504 	}
   3505 
   3506 #ifndef SIS900_MII_RESTRICT
   3507 	/*
   3508 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3509 	 * MII address 0.
   3510 	 */
   3511 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3512 		return -1;
   3513 #endif
   3514 
   3515 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3516 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3517 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3518 	do {
   3519 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3520 	} while (enphy & ENPHY_ACCESS);
   3521 
   3522 	return 0;
   3523 }
   3524 
   3525 /*
   3526  * sip_sis900_mii_statchg:	[mii interface function]
   3527  *
   3528  *	Callback from MII layer when media changes.
   3529  */
   3530 static void
   3531 sipcom_sis900_mii_statchg(struct ifnet *ifp)
   3532 {
   3533 	struct sip_softc *sc = ifp->if_softc;
   3534 	struct mii_data *mii = &sc->sc_mii;
   3535 	uint32_t flowctl;
   3536 
   3537 	/*
   3538 	 * Get flow control negotiation result.
   3539 	 */
   3540 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3541 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3542 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3543 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3544 	}
   3545 
   3546 	/*
   3547 	 * Update TXCFG for full-duplex operation.
   3548 	 */
   3549 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3550 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3551 	else
   3552 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3553 
   3554 	/*
   3555 	 * Update RXCFG for full-duplex or loopback.
   3556 	 */
   3557 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3558 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3559 		sc->sc_rxcfg |= RXCFG_ATX;
   3560 	else
   3561 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3562 
   3563 	/*
   3564 	 * Update IMR for use of 802.3x flow control.
   3565 	 */
   3566 	if (sc->sc_flowflags & IFM_FLOW) {
   3567 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
   3568 		flowctl = FLOWCTL_FLOWEN;
   3569 	} else {
   3570 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
   3571 		flowctl = 0;
   3572 	}
   3573 
   3574 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3575 	    sc->sc_txcfg);
   3576 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3577 	    sc->sc_rxcfg);
   3578 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3579 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3580 }
   3581 
   3582 /*
   3583  * sip_dp83815_mii_readreg:	[mii interface function]
   3584  *
   3585  *	Read a PHY register on the MII.
   3586  */
   3587 static int
   3588 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3589 {
   3590 	struct sip_softc *sc = device_private(self);
   3591 	uint32_t data;
   3592 
   3593 	/*
   3594 	 * The DP83815 only has an internal PHY.  Only allow
   3595 	 * MII address 0.
   3596 	 */
   3597 	if (phy != 0)
   3598 		return -1;
   3599 
   3600 	/*
   3601 	 * Apparently, after a reset, the DP83815 can take a while
   3602 	 * to respond.  During this recovery period, the BMSR returns
   3603 	 * a value of 0.  Catch this -- it's not supposed to happen
   3604 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3605 	 * PHY to come back to life.
   3606 	 *
   3607 	 * This works out because the BMSR is the first register
   3608 	 * read during the PHY probe process.
   3609 	 */
   3610 	do {
   3611 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3612 	} while (reg == MII_BMSR && data == 0);
   3613 
   3614 	*val = data & 0xffff;
   3615 	return 0;
   3616 }
   3617 
   3618 /*
   3619  * sip_dp83815_mii_writereg:	[mii interface function]
   3620  *
   3621  *	Write a PHY register to the MII.
   3622  */
   3623 static int
   3624 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3625 {
   3626 	struct sip_softc *sc = device_private(self);
   3627 
   3628 	/*
   3629 	 * The DP83815 only has an internal PHY.  Only allow
   3630 	 * MII address 0.
   3631 	 */
   3632 	if (phy != 0)
   3633 		return -1;
   3634 
   3635 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3636 
   3637 	return 0;
   3638 }
   3639 
   3640 /*
   3641  * sip_dp83815_mii_statchg:	[mii interface function]
   3642  *
   3643  *	Callback from MII layer when media changes.
   3644  */
   3645 static void
   3646 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
   3647 {
   3648 	struct sip_softc *sc = ifp->if_softc;
   3649 
   3650 	/*
   3651 	 * Update TXCFG for full-duplex operation.
   3652 	 */
   3653 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3654 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3655 	else
   3656 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3657 
   3658 	/*
   3659 	 * Update RXCFG for full-duplex or loopback.
   3660 	 */
   3661 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3662 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3663 		sc->sc_rxcfg |= RXCFG_ATX;
   3664 	else
   3665 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3666 
   3667 	/*
   3668 	 * XXX 802.3x flow control.
   3669 	 */
   3670 
   3671 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3672 	    sc->sc_txcfg);
   3673 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3674 	    sc->sc_rxcfg);
   3675 
   3676 	/*
   3677 	 * Some DP83815s experience problems when used with short
   3678 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3679 	 * sequence adjusts the DSP's signal attenuation to fix the
   3680 	 * problem.
   3681 	 */
   3682 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3683 		uint32_t reg;
   3684 
   3685 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3686 
   3687 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3688 		reg &= 0x0fff;
   3689 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3690 		delay(100);
   3691 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3692 		reg &= 0x00ff;
   3693 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3694 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3695 			    0x00e8);
   3696 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3697 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3698 			    reg | 0x20);
   3699 		}
   3700 
   3701 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3702 	}
   3703 }
   3704 
   3705 static void
   3706 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3707     const struct pci_attach_args *pa, uint8_t *enaddr)
   3708 {
   3709 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3710 	uint8_t cksum, *e, match;
   3711 	int i;
   3712 
   3713 	/*
   3714 	 * EEPROM data format for the DP83820 can be found in
   3715 	 * the DP83820 manual, section 4.2.4.
   3716 	 */
   3717 
   3718 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3719 
   3720 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3721 	match = ~(match - 1);
   3722 
   3723 	cksum = 0x55;
   3724 	e = (uint8_t *)eeprom_data;
   3725 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3726 		cksum += *e++;
   3727 
   3728 	if (cksum != match)
   3729 		printf("%s: Checksum (%x) mismatch (%x)",
   3730 		    device_xname(sc->sc_dev), cksum, match);
   3731 
   3732 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3733 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3734 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3735 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3736 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3737 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3738 }
   3739 
   3740 static void
   3741 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3742 {
   3743 	int i;
   3744 
   3745 	/*
   3746 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3747 	 * a reason, but I don't know it.
   3748 	 */
   3749 	for (i = 0; i < 10; i++)
   3750 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3751 }
   3752 
   3753 static void
   3754 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3755     const struct pci_attach_args *pa, uint8_t *enaddr)
   3756 {
   3757 	uint16_t myea[ETHER_ADDR_LEN / 2];
   3758 
   3759 	switch (sc->sc_rev) {
   3760 	case SIS_REV_630S:
   3761 	case SIS_REV_630E:
   3762 	case SIS_REV_630EA1:
   3763 	case SIS_REV_630ET:
   3764 	case SIS_REV_635:
   3765 		/*
   3766 		 * The MAC address for the on-board Ethernet of
   3767 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3768 		 * the chip into re-loading it from NVRAM, and
   3769 		 * read the MAC address out of the filter registers.
   3770 		 */
   3771 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3772 
   3773 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3774 		    RFCR_RFADDR_NODE0);
   3775 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3776 		    0xffff;
   3777 
   3778 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3779 		    RFCR_RFADDR_NODE2);
   3780 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3781 		    0xffff;
   3782 
   3783 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3784 		    RFCR_RFADDR_NODE4);
   3785 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3786 		    0xffff;
   3787 		break;
   3788 
   3789 	case SIS_REV_960:
   3790 		{
   3791 #define	SIS_SET_EROMAR(x, y)						     \
   3792 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3793 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3794 
   3795 #define	SIS_CLR_EROMAR(x, y)						     \
   3796 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3797 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3798 
   3799 			int waittime, i;
   3800 
   3801 			/* Allow to read EEPROM from LAN. It is shared
   3802 			 * between a 1394 controller and the NIC and each
   3803 			 * time we access it, we need to set SIS_EECMD_REQ.
   3804 			 */
   3805 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3806 
   3807 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3808 				/* Force EEPROM to idle state. */
   3809 
   3810 				/*
   3811 				 * XXX-cube This is ugly.
   3812 				 * I'll look for docs about it.
   3813 				 */
   3814 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3815 				sipcom_sis900_eeprom_delay(sc);
   3816 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3817 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3818 					sipcom_sis900_eeprom_delay(sc);
   3819 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3820 					sipcom_sis900_eeprom_delay(sc);
   3821 				}
   3822 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3823 				sipcom_sis900_eeprom_delay(sc);
   3824 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   3825 				    SIP_EROMAR, 0);
   3826 
   3827 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
   3828 				    SIP_EROMAR) & EROMAR_GNT) {
   3829 					sipcom_read_eeprom(sc,
   3830 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
   3831 					    sizeof(myea) / sizeof(myea[0]),
   3832 					    myea);
   3833 					break;
   3834 				}
   3835 				DELAY(1);
   3836 			}
   3837 
   3838 			/*
   3839 			 * Set SIS_EECTL_CLK to high, so a other master
   3840 			 * can operate on the i2c bus.
   3841 			 */
   3842 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3843 
   3844 			/* Refuse EEPROM access by LAN */
   3845 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3846 		} break;
   3847 
   3848 	default:
   3849 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3850 		    sizeof(myea) / sizeof(myea[0]), myea);
   3851 	}
   3852 
   3853 	enaddr[0] = myea[0] & 0xff;
   3854 	enaddr[1] = myea[0] >> 8;
   3855 	enaddr[2] = myea[1] & 0xff;
   3856 	enaddr[3] = myea[1] >> 8;
   3857 	enaddr[4] = myea[2] & 0xff;
   3858 	enaddr[5] = myea[2] >> 8;
   3859 }
   3860 
   3861 /* Table and macro to bit-reverse an octet. */
   3862 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3863 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3864 
   3865 static void
   3866 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3867     const struct pci_attach_args *pa, uint8_t *enaddr)
   3868 {
   3869 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3870 	uint8_t cksum, *e, match;
   3871 	int i;
   3872 
   3873 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3874 	    sizeof(eeprom_data[0]), eeprom_data);
   3875 
   3876 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3877 	match = ~(match - 1);
   3878 
   3879 	cksum = 0x55;
   3880 	e = (uint8_t *)eeprom_data;
   3881 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
   3882 		cksum += *e++;
   3883 
   3884 	if (cksum != match)
   3885 		printf("%s: Checksum (%x) mismatch (%x)",
   3886 		    device_xname(sc->sc_dev), cksum, match);
   3887 
   3888 	/*
   3889 	 * Unrolled because it makes slightly more sense this way.
   3890 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3891 	 * through bit 15 of word 8.
   3892 	 */
   3893 	ea = &eeprom_data[6];
   3894 	enaddr[0] = ((*ea & 0x1) << 7);
   3895 	ea++;
   3896 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3897 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3898 	enaddr[2] = ((*ea & 0x1) << 7);
   3899 	ea++;
   3900 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3901 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3902 	enaddr[4] = ((*ea & 0x1) << 7);
   3903 	ea++;
   3904 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3905 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3906 
   3907 	/*
   3908 	 * In case that's not weird enough, we also need to reverse
   3909 	 * the bits in each byte.  This all actually makes more sense
   3910 	 * if you think about the EEPROM storage as an array of bits
   3911 	 * being shifted into bytes, but that's not how we're looking
   3912 	 * at it here...
   3913 	 */
   3914 	for (i = 0; i < 6 ;i++)
   3915 		enaddr[i] = bbr(enaddr[i]);
   3916 }
   3917 
   3918 /*
   3919  * sip_mediastatus:	[ifmedia interface function]
   3920  *
   3921  *	Get the current interface media status.
   3922  */
   3923 static void
   3924 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3925 {
   3926 	struct sip_softc *sc = ifp->if_softc;
   3927 
   3928 	if (!device_is_active(sc->sc_dev)) {
   3929 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3930 		ifmr->ifm_status = 0;
   3931 		return;
   3932 	}
   3933 	ether_mediastatus(ifp, ifmr);
   3934 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3935 			   sc->sc_flowflags;
   3936 }
   3937