if_sip.c revision 1.168.2.2 1 /* $NetBSD: if_sip.c,v 1.168.2.2 2020/04/08 14:08:09 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.168.2.2 2020/04/08 14:08:09 martin Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Set this to 1 to force-disable using the 64-bit data path
142 * on DP83820.
143 */
144 static int gsip_disable_data64 = 0;
145
146 /*
147 * Control structures are DMA'd to the SiS900 chip. We allocate them in
148 * a single clump that maps to a single DMA segment to make several things
149 * easier.
150 */
151 struct sip_control_data {
152 /*
153 * The transmit descriptors.
154 */
155 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156
157 /*
158 * The receive descriptors.
159 */
160 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162
163 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
164 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
165 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
166
167 /*
168 * Software state for transmit jobs.
169 */
170 struct sip_txsoft {
171 struct mbuf *txs_mbuf; /* head of our mbuf chain */
172 bus_dmamap_t txs_dmamap; /* our DMA map */
173 int txs_firstdesc; /* first descriptor in packet */
174 int txs_lastdesc; /* last descriptor in packet */
175 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179
180 /*
181 * Software state for receive jobs.
182 */
183 struct sip_rxsoft {
184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t rxs_dmamap; /* our DMA map */
186 };
187
188 enum sip_attach_stage {
189 SIP_ATTACH_FIN = 0
190 , SIP_ATTACH_CREATE_RXMAP
191 , SIP_ATTACH_CREATE_TXMAP
192 , SIP_ATTACH_LOAD_MAP
193 , SIP_ATTACH_CREATE_MAP
194 , SIP_ATTACH_MAP_MEM
195 , SIP_ATTACH_ALLOC_MEM
196 , SIP_ATTACH_INTR
197 , SIP_ATTACH_MAP
198 };
199
200 /*
201 * Software state per device.
202 */
203 struct sip_softc {
204 device_t sc_dev; /* generic device information */
205 device_suspensor_t sc_suspensor;
206 pmf_qual_t sc_qual;
207
208 bus_space_tag_t sc_st; /* bus space tag */
209 bus_space_handle_t sc_sh; /* bus space handle */
210 bus_size_t sc_sz; /* bus space size */
211 bus_dma_tag_t sc_dmat; /* bus DMA tag */
212 pci_chipset_tag_t sc_pc;
213 bus_dma_segment_t sc_seg;
214 struct ethercom sc_ethercom; /* ethernet common data */
215
216 const struct sip_product *sc_model; /* which model are we? */
217 bool sc_gigabit; /* 1: 83820, 0: other */
218 bool sc_dma64; /* using 64-bit DMA addresses */
219 int sc_rev; /* chip revision */
220
221 unsigned int sc_bufptr_idx;
222 unsigned int sc_cmdsts_idx;
223 unsigned int sc_extsts_idx; /* DP83820 only */
224
225 void *sc_ih; /* interrupt cookie */
226
227 struct mii_data sc_mii; /* MII/media information */
228
229 callout_t sc_tick_ch; /* tick callout */
230
231 bus_dmamap_t sc_cddmamap; /* control data DMA map */
232 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
233
234 /*
235 * Software state for transmit and receive descriptors.
236 */
237 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
238 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
239
240 /*
241 * Control data structures.
242 */
243 struct sip_control_data *sc_control_data;
244 #define sc_txdescs sc_control_data->scd_txdescs
245 #define sc_rxdescs sc_control_data->scd_rxdescs
246
247 #ifdef SIP_EVENT_COUNTERS
248 /*
249 * Event counters.
250 */
251 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
252 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
253 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
254 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
255 struct evcnt sc_ev_rxintr; /* Rx interrupts */
256 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
257 struct evcnt sc_ev_rxpause; /* PAUSE received */
258 /* DP83820 only */
259 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
260 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
261 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
262 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
263 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
264 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
265 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
266 #endif /* SIP_EVENT_COUNTERS */
267
268 uint32_t sc_txcfg; /* prototype TXCFG register */
269 uint32_t sc_rxcfg; /* prototype RXCFG register */
270 uint32_t sc_imr; /* prototype IMR register */
271 uint32_t sc_rfcr; /* prototype RFCR register */
272
273 uint32_t sc_cfg; /* prototype CFG register */
274
275 uint32_t sc_gpior; /* prototype GPIOR register */
276
277 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
278 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
279
280 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
281
282 int sc_flowflags; /* 802.3x flow control flags */
283 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
284 int sc_paused; /* paused indication */
285
286 int sc_txfree; /* number of free Tx descriptors */
287 int sc_txnext; /* next ready Tx descriptor */
288 int sc_txwin; /* Tx descriptors since last intr */
289
290 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
291 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
292
293 /* values of interface state at last init */
294 struct {
295 /* if_capenable */
296 uint64_t if_capenable;
297 /* ec_capenable */
298 int ec_capenable;
299 /* VLAN_ATTACHED */
300 int is_vlan;
301 } sc_prev;
302
303 short sc_if_flags;
304
305 int sc_rxptr; /* next ready Rx descriptor/descsoft */
306 int sc_rxdiscard;
307 int sc_rxlen;
308 struct mbuf *sc_rxhead;
309 struct mbuf *sc_rxtail;
310 struct mbuf **sc_rxtailp;
311
312 int sc_ntxdesc;
313 int sc_ntxdesc_mask;
314
315 int sc_nrxdesc_mask;
316
317 const struct sip_parm {
318 const struct sip_regs {
319 int r_rxcfg;
320 int r_txcfg;
321 } p_regs;
322
323 const struct sip_bits {
324 uint32_t b_txcfg_mxdma_8;
325 uint32_t b_txcfg_mxdma_16;
326 uint32_t b_txcfg_mxdma_32;
327 uint32_t b_txcfg_mxdma_64;
328 uint32_t b_txcfg_mxdma_128;
329 uint32_t b_txcfg_mxdma_256;
330 uint32_t b_txcfg_mxdma_512;
331 uint32_t b_txcfg_flth_mask;
332 uint32_t b_txcfg_drth_mask;
333
334 uint32_t b_rxcfg_mxdma_8;
335 uint32_t b_rxcfg_mxdma_16;
336 uint32_t b_rxcfg_mxdma_32;
337 uint32_t b_rxcfg_mxdma_64;
338 uint32_t b_rxcfg_mxdma_128;
339 uint32_t b_rxcfg_mxdma_256;
340 uint32_t b_rxcfg_mxdma_512;
341
342 uint32_t b_isr_txrcmp;
343 uint32_t b_isr_rxrcmp;
344 uint32_t b_isr_dperr;
345 uint32_t b_isr_sserr;
346 uint32_t b_isr_rmabt;
347 uint32_t b_isr_rtabt;
348
349 uint32_t b_cmdsts_size_mask;
350 } p_bits;
351 int p_filtmem;
352 int p_rxbuf_len;
353 bus_size_t p_tx_dmamap_size;
354 int p_ntxsegs;
355 int p_ntxsegs_alloc;
356 int p_nrxdesc;
357 } *sc_parm;
358
359 void (*sc_rxintr)(struct sip_softc *);
360
361 krndsource_t rnd_source; /* random source */
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr)
485 {
486 if (sc->sc_gigabit)
487 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI,
488 BUS_ADDR_HI32(addr));
489 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr));
490 }
491
492 static inline void
493 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr)
494 {
495 if (sc->sc_gigabit)
496 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI,
497 BUS_ADDR_HI32(addr));
498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr));
499 }
500
501 static inline void
502 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
503 {
504 int x, n;
505
506 x = x0;
507 n = n0;
508
509 /* If it will wrap around, sync to the end of the ring. */
510 if (x + n > sc->sc_ntxdesc) {
511 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
512 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
513 (sc->sc_ntxdesc - x), ops);
514 n -= (sc->sc_ntxdesc - x);
515 x = 0;
516 }
517
518 /* Now sync whatever is left. */
519 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
520 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
521 }
522
523 static inline void
524 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
525 {
526 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
527 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
528 }
529
530 static void
531 sip_init_txring(struct sip_softc *sc)
532 {
533 struct sip_desc *sipd;
534 bus_addr_t next_desc;
535 int i;
536
537 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
538 for (i = 0; i < sc->sc_ntxdesc; i++) {
539 sipd = &sc->sc_txdescs[i];
540 next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i));
541 if (sc->sc_dma64) {
542 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
543 htole32(BUS_ADDR_LO32(next_desc));
544 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
545 htole32(BUS_ADDR_HI32(next_desc));
546 } else {
547 /* SIP_DESC_LINK == GSIP_DESC_LINK */
548 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
549 }
550 }
551 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
553 sc->sc_txfree = sc->sc_ntxdesc;
554 sc->sc_txnext = 0;
555 sc->sc_txwin = 0;
556 }
557
558 static inline void
559 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts)
560 {
561 struct sip_desc *sipd = &sc->sc_txdescs[x];
562
563 if (sc->sc_dma64) {
564 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
565 htole32(BUS_ADDR_LO32(bufptr));
566 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
567 htole32(BUS_ADDR_HI32(bufptr));
568 } else {
569 sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr);
570 }
571 sipd->sipd_words[sc->sc_extsts_idx] = 0;
572 membar_producer();
573 sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts);
574 /* sip_cdtxsync() will be done later. */
575 }
576
577 static inline void
578 sip_init_rxdesc(struct sip_softc *sc, int x)
579 {
580 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
581 struct sip_desc *sipd = &sc->sc_rxdescs[x];
582 const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x));
583
584 if (sc->sc_dma64) {
585 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
586 htole32(BUS_ADDR_LO32(next_desc));
587 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
588 htole32(BUS_ADDR_HI32(next_desc));
589 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
590 htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
591 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
592 htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
593 } else {
594 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
595 sipd->sipd_words[sc->sc_bufptr_idx] =
596 htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
597 }
598 sipd->sipd_words[sc->sc_extsts_idx] = 0;
599 membar_producer();
600 sipd->sipd_words[sc->sc_cmdsts_idx] =
601 htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len &
602 sc->sc_bits.b_cmdsts_size_mask));
603 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
604 }
605
606 #define SIP_CHIP_VERS(sc, v, p, r) \
607 ((sc)->sc_model->sip_vendor == (v) && \
608 (sc)->sc_model->sip_product == (p) && \
609 (sc)->sc_rev == (r))
610
611 #define SIP_CHIP_MODEL(sc, v, p) \
612 ((sc)->sc_model->sip_vendor == (v) && \
613 (sc)->sc_model->sip_product == (p))
614
615 #define SIP_SIS900_REV(sc, rev) \
616 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
617
618 #define SIP_TIMEOUT 1000
619
620 static int sip_ifflags_cb(struct ethercom *);
621 static void sipcom_start(struct ifnet *);
622 static void sipcom_watchdog(struct ifnet *);
623 static int sipcom_ioctl(struct ifnet *, u_long, void *);
624 static int sipcom_init(struct ifnet *);
625 static void sipcom_stop(struct ifnet *, int);
626
627 static bool sipcom_reset(struct sip_softc *);
628 static void sipcom_rxdrain(struct sip_softc *);
629 static int sipcom_add_rxbuf(struct sip_softc *, int);
630 static void sipcom_read_eeprom(struct sip_softc *, int, int,
631 uint16_t *);
632 static void sipcom_tick(void *);
633
634 static void sipcom_sis900_set_filter(struct sip_softc *);
635 static void sipcom_dp83815_set_filter(struct sip_softc *);
636
637 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
638 const struct pci_attach_args *, uint8_t *);
639 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
640 static void sipcom_sis900_read_macaddr(struct sip_softc *,
641 const struct pci_attach_args *, uint8_t *);
642 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
643 const struct pci_attach_args *, uint8_t *);
644
645 static int sipcom_intr(void *);
646 static void sipcom_txintr(struct sip_softc *);
647 static void sip_rxintr(struct sip_softc *);
648 static void gsip_rxintr(struct sip_softc *);
649
650 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
651 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
652 static void sipcom_dp83820_mii_statchg(struct ifnet *);
653
654 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
655 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
656 static void sipcom_sis900_mii_statchg(struct ifnet *);
657
658 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
659 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
660 static void sipcom_dp83815_mii_statchg(struct ifnet *);
661
662 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
663
664 static int sipcom_match(device_t, cfdata_t, void *);
665 static void sipcom_attach(device_t, device_t, void *);
666 static void sipcom_do_detach(device_t, enum sip_attach_stage);
667 static int sipcom_detach(device_t, int);
668 static bool sipcom_resume(device_t, const pmf_qual_t *);
669 static bool sipcom_suspend(device_t, const pmf_qual_t *);
670
671 int gsip_copy_small = 0;
672 int sip_copy_small = 0;
673
674 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
675 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
676 DVF_DETACH_SHUTDOWN);
677 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
678 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
679 DVF_DETACH_SHUTDOWN);
680
681 /*
682 * Descriptions of the variants of the SiS900.
683 */
684 struct sip_variant {
685 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
686 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
687 void (*sipv_mii_statchg)(struct ifnet *);
688 void (*sipv_set_filter)(struct sip_softc *);
689 void (*sipv_read_macaddr)(struct sip_softc *,
690 const struct pci_attach_args *, uint8_t *);
691 };
692
693 static uint32_t sipcom_mii_bitbang_read(device_t);
694 static void sipcom_mii_bitbang_write(device_t, uint32_t);
695
696 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
697 sipcom_mii_bitbang_read,
698 sipcom_mii_bitbang_write,
699 {
700 EROMAR_MDIO, /* MII_BIT_MDO */
701 EROMAR_MDIO, /* MII_BIT_MDI */
702 EROMAR_MDC, /* MII_BIT_MDC */
703 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
704 0, /* MII_BIT_DIR_PHY_HOST */
705 }
706 };
707
708 static const struct sip_variant sipcom_variant_dp83820 = {
709 sipcom_dp83820_mii_readreg,
710 sipcom_dp83820_mii_writereg,
711 sipcom_dp83820_mii_statchg,
712 sipcom_dp83815_set_filter,
713 sipcom_dp83820_read_macaddr,
714 };
715
716 static const struct sip_variant sipcom_variant_sis900 = {
717 sipcom_sis900_mii_readreg,
718 sipcom_sis900_mii_writereg,
719 sipcom_sis900_mii_statchg,
720 sipcom_sis900_set_filter,
721 sipcom_sis900_read_macaddr,
722 };
723
724 static const struct sip_variant sipcom_variant_dp83815 = {
725 sipcom_dp83815_mii_readreg,
726 sipcom_dp83815_mii_writereg,
727 sipcom_dp83815_mii_statchg,
728 sipcom_dp83815_set_filter,
729 sipcom_dp83815_read_macaddr,
730 };
731
732
733 /*
734 * Devices supported by this driver.
735 */
736 static const struct sip_product {
737 pci_vendor_id_t sip_vendor;
738 pci_product_id_t sip_product;
739 const char *sip_name;
740 const struct sip_variant *sip_variant;
741 bool sip_gigabit;
742 } sipcom_products[] = {
743 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
744 "NatSemi DP83820 Gigabit Ethernet",
745 &sipcom_variant_dp83820, true },
746
747 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
748 "SiS 900 10/100 Ethernet",
749 &sipcom_variant_sis900, false },
750 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
751 "SiS 7016 10/100 Ethernet",
752 &sipcom_variant_sis900, false },
753
754 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
755 "NatSemi DP83815 10/100 Ethernet",
756 &sipcom_variant_dp83815, false },
757
758 { 0, 0,
759 NULL,
760 NULL, false },
761 };
762
763 static const struct sip_product *
764 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
765 {
766 const struct sip_product *sip;
767
768 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
769 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
770 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
771 sip->sip_gigabit == gigabit)
772 return sip;
773 }
774 return NULL;
775 }
776
777 /*
778 * I really hate stupid hardware vendors. There's a bit in the EEPROM
779 * which indicates if the card can do 64-bit data transfers. Unfortunately,
780 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
781 * which means we try to use 64-bit data transfers on those cards if we
782 * happen to be plugged into a 32-bit slot.
783 *
784 * What we do is use this table of cards known to be 64-bit cards. If
785 * you have a 64-bit card who's subsystem ID is not listed in this table,
786 * send the output of "pcictl dump ..." of the device to me so that your
787 * card will use the 64-bit data path when plugged into a 64-bit slot.
788 *
789 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
790 * June 30, 2002
791 */
792 static int
793 sipcom_check_64bit(const struct pci_attach_args *pa)
794 {
795 static const struct {
796 pci_vendor_id_t c64_vendor;
797 pci_product_id_t c64_product;
798 } card64[] = {
799 /* Asante GigaNIX */
800 { 0x128a, 0x0002 },
801
802 /* Accton EN1407-T, Planex GN-1000TE */
803 { 0x1113, 0x1407 },
804
805 /* Netgear GA621 */
806 { 0x1385, 0x621a },
807
808 /* Netgear GA622 */
809 { 0x1385, 0x622a },
810
811 /* SMC EZ Card 1000 (9462TX) */
812 { 0x10b8, 0x9462 },
813
814 { 0, 0}
815 };
816 pcireg_t subsys;
817 int i;
818
819 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
820
821 for (i = 0; card64[i].c64_vendor != 0; i++) {
822 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
823 PCI_PRODUCT(subsys) == card64[i].c64_product)
824 return 1;
825 }
826
827 return 0;
828 }
829
830 static int
831 sipcom_match(device_t parent, cfdata_t cf, void *aux)
832 {
833 struct pci_attach_args *pa = aux;
834
835 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
836 return 1;
837
838 return 0;
839 }
840
841 static void
842 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
843 {
844 uint32_t reg;
845 int i;
846
847 /*
848 * Cause the chip to load configuration data from the EEPROM.
849 */
850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
851 for (i = 0; i < 10000; i++) {
852 delay(10);
853 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
854 PTSCR_EELOAD_EN) == 0)
855 break;
856 }
857 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
858 PTSCR_EELOAD_EN) {
859 printf("%s: timeout loading configuration from EEPROM\n",
860 device_xname(sc->sc_dev));
861 return;
862 }
863
864 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
865
866 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
867 if (reg & CFG_PCI64_DET) {
868 const char *using64 = NULL;
869
870 if (reg & CFG_DATA64_EN) {
871 /*
872 * Check to see if this card is 64-bit. If so,
873 * enable 64-bit data transfers.
874 *
875 * We can't trust the DATA64_EN bit in the EEPROM,
876 * because vendors of 32-bit cards fail to clear
877 * that bit in many cases (yet the card still detects
878 * that it's in a 64-bit slot because I guess they
879 * wired up ACK64# and REQ64#).
880 */
881 if (gsip_disable_data64)
882 using64 = "force-disabled";
883 else if (sipcom_check_64bit(pa)) {
884 sc->sc_cfg |= CFG_DATA64_EN;
885 using64 = "enabled";
886 } else
887 using64 = "disabled (32-bit card)";
888 } else {
889 using64 = "disabled in EEPROM";
890 }
891 printf("%s: 64-bit slot detected, 64-bit tranfers %s\n",
892 device_xname(sc->sc_dev), using64);
893 }
894
895 /*
896 * The T64ADDR bit is loaded by the chip from the EEPROM and
897 * is read-only.
898 */
899 if (reg & CFG_T64ADDR)
900 sc->sc_cfg |= CFG_T64ADDR;
901
902 /*
903 * We can use 64-bit DMA addressing regardless of what
904 * sort of slot we're in.
905 */
906 if (pci_dma64_available(pa)) {
907 sc->sc_dmat = pa->pa_dmat64;
908 sc->sc_cfg |= CFG_M64ADDR;
909 sc->sc_dma64 = true;
910 }
911
912 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
913 const char *sep = "";
914 printf("%s: using ", device_xname(sc->sc_dev));
915 if (reg & CFG_EXT_125) {
916 sc->sc_cfg |= CFG_EXT_125;
917 printf("%sexternal 125MHz clock", sep);
918 sep = ", ";
919 }
920 if (reg & CFG_TBI_EN) {
921 sc->sc_cfg |= CFG_TBI_EN;
922 printf("%sten-bit interface", sep);
923 sep = ", ";
924 }
925 printf("\n");
926 }
927 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
928 (reg & CFG_MRM_DIS) != 0)
929 sc->sc_cfg |= CFG_MRM_DIS;
930 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
931 (reg & CFG_MWI_DIS) != 0)
932 sc->sc_cfg |= CFG_MWI_DIS;
933
934 /*
935 * Use the extended descriptor format on the DP83820. This
936 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
937 * checksumming.
938 */
939 sc->sc_cfg |= CFG_EXTSTS_EN;
940 }
941
942 static int
943 sipcom_detach(device_t self, int flags)
944 {
945 int s;
946
947 s = splnet();
948 sipcom_do_detach(self, SIP_ATTACH_FIN);
949 splx(s);
950
951 return 0;
952 }
953
954 static void
955 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
956 {
957 int i;
958 struct sip_softc *sc = device_private(self);
959 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
960
961 /*
962 * Free any resources we've allocated during attach.
963 * Do this in reverse order and fall through.
964 */
965 switch (stage) {
966 case SIP_ATTACH_FIN:
967 sipcom_stop(ifp, 1);
968 pmf_device_deregister(self);
969 #ifdef SIP_EVENT_COUNTERS
970 /*
971 * Attach event counters.
972 */
973 evcnt_detach(&sc->sc_ev_txforceintr);
974 evcnt_detach(&sc->sc_ev_txdstall);
975 evcnt_detach(&sc->sc_ev_hiberr);
976 evcnt_detach(&sc->sc_ev_rxintr);
977 evcnt_detach(&sc->sc_ev_txiintr);
978 evcnt_detach(&sc->sc_ev_txdintr);
979 if (!sc->sc_gigabit) {
980 evcnt_detach(&sc->sc_ev_rxpause);
981 } else {
982 evcnt_detach(&sc->sc_ev_txudpsum);
983 evcnt_detach(&sc->sc_ev_txtcpsum);
984 evcnt_detach(&sc->sc_ev_txipsum);
985 evcnt_detach(&sc->sc_ev_rxudpsum);
986 evcnt_detach(&sc->sc_ev_rxtcpsum);
987 evcnt_detach(&sc->sc_ev_rxipsum);
988 evcnt_detach(&sc->sc_ev_txpause);
989 evcnt_detach(&sc->sc_ev_rxpause);
990 }
991 #endif /* SIP_EVENT_COUNTERS */
992
993 rnd_detach_source(&sc->rnd_source);
994
995 ether_ifdetach(ifp);
996 if_detach(ifp);
997 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
998 ifmedia_fini(&sc->sc_mii.mii_media);
999
1000 /*FALLTHROUGH*/
1001 case SIP_ATTACH_CREATE_RXMAP:
1002 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1003 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1004 bus_dmamap_destroy(sc->sc_dmat,
1005 sc->sc_rxsoft[i].rxs_dmamap);
1006 }
1007 /*FALLTHROUGH*/
1008 case SIP_ATTACH_CREATE_TXMAP:
1009 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1010 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1011 bus_dmamap_destroy(sc->sc_dmat,
1012 sc->sc_txsoft[i].txs_dmamap);
1013 }
1014 /*FALLTHROUGH*/
1015 case SIP_ATTACH_LOAD_MAP:
1016 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1017 /*FALLTHROUGH*/
1018 case SIP_ATTACH_CREATE_MAP:
1019 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1020 /*FALLTHROUGH*/
1021 case SIP_ATTACH_MAP_MEM:
1022 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1023 sizeof(struct sip_control_data));
1024 /*FALLTHROUGH*/
1025 case SIP_ATTACH_ALLOC_MEM:
1026 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
1027 /* FALLTHROUGH*/
1028 case SIP_ATTACH_INTR:
1029 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1030 /* FALLTHROUGH*/
1031 case SIP_ATTACH_MAP:
1032 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1033 break;
1034 default:
1035 break;
1036 }
1037 return;
1038 }
1039
1040 static bool
1041 sipcom_resume(device_t self, const pmf_qual_t *qual)
1042 {
1043 struct sip_softc *sc = device_private(self);
1044
1045 return sipcom_reset(sc);
1046 }
1047
1048 static bool
1049 sipcom_suspend(device_t self, const pmf_qual_t *qual)
1050 {
1051 struct sip_softc *sc = device_private(self);
1052
1053 sipcom_rxdrain(sc);
1054 return true;
1055 }
1056
1057 static void
1058 sipcom_attach(device_t parent, device_t self, void *aux)
1059 {
1060 struct sip_softc *sc = device_private(self);
1061 struct pci_attach_args *pa = aux;
1062 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 struct mii_data * const mii = &sc->sc_mii;
1064 pci_chipset_tag_t pc = pa->pa_pc;
1065 pci_intr_handle_t ih;
1066 const char *intrstr = NULL;
1067 bus_space_tag_t iot, memt;
1068 bus_space_handle_t ioh, memh;
1069 bus_size_t iosz, memsz;
1070 int ioh_valid, memh_valid;
1071 int i, rseg, error;
1072 const struct sip_product *sip;
1073 uint8_t enaddr[ETHER_ADDR_LEN];
1074 pcireg_t csr;
1075 pcireg_t memtype;
1076 bus_size_t tx_dmamap_size;
1077 int ntxsegs_alloc;
1078 cfdata_t cf = device_cfdata(self);
1079 char intrbuf[PCI_INTRSTR_LEN];
1080
1081 callout_init(&sc->sc_tick_ch, 0);
1082 callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
1083
1084 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1085 if (sip == NULL) {
1086 aprint_error("\n");
1087 panic("%s: impossible", __func__);
1088 }
1089 sc->sc_dev = self;
1090 sc->sc_gigabit = sip->sip_gigabit;
1091 sc->sc_dma64 = false;
1092 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1093 sc->sc_pc = pc;
1094
1095 if (sc->sc_gigabit) {
1096 if (sc->sc_dma64) {
1097 sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO;
1098 sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS;
1099 sc->sc_extsts_idx = GSIP64_DESC_EXTSTS;
1100 } else {
1101 sc->sc_bufptr_idx = GSIP_DESC_BUFPTR;
1102 sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS;
1103 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1104 }
1105 sc->sc_rxintr = gsip_rxintr;
1106 sc->sc_parm = &gsip_parm;
1107 } else {
1108 sc->sc_rxintr = sip_rxintr;
1109 sc->sc_parm = &sip_parm;
1110 sc->sc_bufptr_idx = SIP_DESC_BUFPTR;
1111 sc->sc_cmdsts_idx = SIP_DESC_CMDSTS;
1112 /*
1113 * EXTSTS doesn't really exist on non-GigE parts,
1114 * but we initialize the index for simplicity later.
1115 */
1116 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1117 }
1118 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1119 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1120 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1121 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1122 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1123
1124 sc->sc_rev = PCI_REVISION(pa->pa_class);
1125
1126 aprint_naive("\n");
1127 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1128
1129 sc->sc_model = sip;
1130
1131 /*
1132 * XXX Work-around broken PXE firmware on some boards.
1133 *
1134 * The DP83815 shares an address decoder with the MEM BAR
1135 * and the ROM BAR. Make sure the ROM BAR is disabled,
1136 * so that memory mapped access works.
1137 */
1138 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1139 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1140 ~PCI_MAPREG_ROM_ENABLE);
1141
1142 /*
1143 * Map the device.
1144 */
1145 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1146 PCI_MAPREG_TYPE_IO, 0,
1147 &iot, &ioh, NULL, &iosz) == 0);
1148 if (sc->sc_gigabit) {
1149 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1150 switch (memtype) {
1151 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1152 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1153 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1154 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1155 break;
1156 default:
1157 memh_valid = 0;
1158 }
1159 } else {
1160 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1161 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1162 &memt, &memh, NULL, &memsz) == 0);
1163 }
1164
1165 if (memh_valid) {
1166 sc->sc_st = memt;
1167 sc->sc_sh = memh;
1168 sc->sc_sz = memsz;
1169 } else if (ioh_valid) {
1170 sc->sc_st = iot;
1171 sc->sc_sh = ioh;
1172 sc->sc_sz = iosz;
1173 } else {
1174 aprint_error_dev(self, "unable to map device registers\n");
1175 return;
1176 }
1177
1178 sc->sc_dmat = pa->pa_dmat;
1179
1180 /*
1181 * Make sure bus mastering is enabled. Also make sure
1182 * Write/Invalidate is enabled if we're allowed to use it.
1183 */
1184 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1185 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1186 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1187 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1188 csr | PCI_COMMAND_MASTER_ENABLE);
1189
1190 /* Power up chip */
1191 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1192 if (error != 0 && error != EOPNOTSUPP) {
1193 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1194 return;
1195 }
1196
1197 /*
1198 * Map and establish our interrupt.
1199 */
1200 if (pci_intr_map(pa, &ih)) {
1201 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1202 return;
1203 }
1204 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1205 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1206 device_xname(self));
1207 if (sc->sc_ih == NULL) {
1208 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1209 if (intrstr != NULL)
1210 aprint_error(" at %s", intrstr);
1211 aprint_error("\n");
1212 sipcom_do_detach(self, SIP_ATTACH_MAP);
1213 return;
1214 }
1215 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1216
1217 SIMPLEQ_INIT(&sc->sc_txfreeq);
1218 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1219
1220 /*
1221 * Allocate the control data structures, and create and load the
1222 * DMA map for it.
1223 */
1224 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1225 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1226 &rseg, 0)) != 0) {
1227 aprint_error_dev(sc->sc_dev,
1228 "unable to allocate control data, error = %d\n", error);
1229 sipcom_do_detach(self, SIP_ATTACH_INTR);
1230 return;
1231 }
1232
1233 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1234 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1235 BUS_DMA_COHERENT)) != 0) {
1236 aprint_error_dev(sc->sc_dev,
1237 "unable to map control data, error = %d\n", error);
1238 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1239 }
1240
1241 if ((error = bus_dmamap_create(sc->sc_dmat,
1242 sizeof(struct sip_control_data), 1,
1243 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1244 aprint_error_dev(self, "unable to create control data DMA map"
1245 ", error = %d\n", error);
1246 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1247 }
1248
1249 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1250 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1251 0)) != 0) {
1252 aprint_error_dev(self, "unable to load control data DMA map"
1253 ", error = %d\n", error);
1254 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1255 }
1256
1257 /*
1258 * Create the transmit buffer DMA maps.
1259 */
1260 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1261 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1262 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1263 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1264 aprint_error_dev(self, "unable to create tx DMA map %d"
1265 ", error = %d\n", i, error);
1266 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1267 }
1268 }
1269
1270 /*
1271 * Create the receive buffer DMA maps.
1272 */
1273 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1274 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1275 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1276 aprint_error_dev(self, "unable to create rx DMA map %d"
1277 ", error = %d\n", i, error);
1278 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1279 }
1280 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1281 }
1282
1283 /*
1284 * Reset the chip to a known state.
1285 */
1286 sipcom_reset(sc);
1287
1288 /*
1289 * Read the Ethernet address from the EEPROM. This might
1290 * also fetch other stuff from the EEPROM and stash it
1291 * in the softc.
1292 */
1293 sc->sc_cfg = 0;
1294 if (!sc->sc_gigabit) {
1295 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1296 SIP_SIS900_REV(sc, SIS_REV_900B))
1297 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1298
1299 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1300 SIP_SIS900_REV(sc, SIS_REV_960) ||
1301 SIP_SIS900_REV(sc, SIS_REV_900B))
1302 sc->sc_cfg |=
1303 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1304 CFG_EDBMASTEN);
1305 }
1306
1307 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1308
1309 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1310
1311 /*
1312 * Initialize the configuration register: aggressive PCI
1313 * bus request algorithm, default backoff, default OW timer,
1314 * default parity error detection.
1315 *
1316 * NOTE: "Big endian mode" is useless on the SiS900 and
1317 * friends -- it affects packet data, not descriptors.
1318 */
1319 if (sc->sc_gigabit)
1320 sipcom_dp83820_attach(sc, pa);
1321
1322 /*
1323 * Initialize our media structures and probe the MII.
1324 */
1325 mii->mii_ifp = ifp;
1326 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1327 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1328 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1329 sc->sc_ethercom.ec_mii = mii;
1330 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1331 sipcom_mediastatus);
1332
1333 /*
1334 * XXX We cannot handle flow control on the DP83815.
1335 */
1336 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1337 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1338 MII_OFFSET_ANY, 0);
1339 else
1340 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1341 MII_OFFSET_ANY, MIIF_DOPAUSE);
1342 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1343 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1344 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1345 } else
1346 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1347
1348 ifp = &sc->sc_ethercom.ec_if;
1349 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1350 ifp->if_softc = sc;
1351 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1352 sc->sc_if_flags = ifp->if_flags;
1353 ifp->if_ioctl = sipcom_ioctl;
1354 ifp->if_start = sipcom_start;
1355 ifp->if_watchdog = sipcom_watchdog;
1356 ifp->if_init = sipcom_init;
1357 ifp->if_stop = sipcom_stop;
1358 IFQ_SET_READY(&ifp->if_snd);
1359
1360 /*
1361 * We can support 802.1Q VLAN-sized frames.
1362 */
1363 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1364
1365 if (sc->sc_gigabit) {
1366 /*
1367 * And the DP83820 can do VLAN tagging in hardware, and
1368 * support the jumbo Ethernet MTU.
1369 */
1370 sc->sc_ethercom.ec_capabilities |=
1371 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1372
1373 /*
1374 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1375 * in hardware.
1376 */
1377 ifp->if_capabilities |=
1378 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1379 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1380 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1381 }
1382
1383 /*
1384 * Attach the interface.
1385 */
1386 if_attach(ifp);
1387 if_deferred_start_init(ifp, NULL);
1388 ether_ifattach(ifp, enaddr);
1389 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1390 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1391 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1392 sc->sc_prev.if_capenable = ifp->if_capenable;
1393 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1394 RND_TYPE_NET, RND_FLAG_DEFAULT);
1395
1396 /*
1397 * The number of bytes that must be available in
1398 * the Tx FIFO before the bus master can DMA more
1399 * data into the FIFO.
1400 */
1401 sc->sc_tx_fill_thresh = 64 / 32;
1402
1403 /*
1404 * Start at a drain threshold of 512 bytes. We will
1405 * increase it if a DMA underrun occurs.
1406 *
1407 * XXX The minimum value of this variable should be
1408 * tuned. We may be able to improve performance
1409 * by starting with a lower value. That, however,
1410 * may trash the first few outgoing packets if the
1411 * PCI bus is saturated.
1412 */
1413 if (sc->sc_gigabit)
1414 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1415 else
1416 sc->sc_tx_drain_thresh = 1504 / 32;
1417
1418 /*
1419 * Initialize the Rx FIFO drain threshold.
1420 *
1421 * This is in units of 8 bytes.
1422 *
1423 * We should never set this value lower than 2; 14 bytes are
1424 * required to filter the packet.
1425 */
1426 sc->sc_rx_drain_thresh = 128 / 8;
1427
1428 #ifdef SIP_EVENT_COUNTERS
1429 /*
1430 * Attach event counters.
1431 */
1432 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1433 NULL, device_xname(sc->sc_dev), "txdstall");
1434 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1435 NULL, device_xname(sc->sc_dev), "txforceintr");
1436 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1437 NULL, device_xname(sc->sc_dev), "txdintr");
1438 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1439 NULL, device_xname(sc->sc_dev), "txiintr");
1440 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1441 NULL, device_xname(sc->sc_dev), "rxintr");
1442 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1443 NULL, device_xname(sc->sc_dev), "hiberr");
1444 if (!sc->sc_gigabit) {
1445 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1446 NULL, device_xname(sc->sc_dev), "rxpause");
1447 } else {
1448 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1449 NULL, device_xname(sc->sc_dev), "rxpause");
1450 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1451 NULL, device_xname(sc->sc_dev), "txpause");
1452 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1453 NULL, device_xname(sc->sc_dev), "rxipsum");
1454 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1455 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1456 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1457 NULL, device_xname(sc->sc_dev), "rxudpsum");
1458 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1459 NULL, device_xname(sc->sc_dev), "txipsum");
1460 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1461 NULL, device_xname(sc->sc_dev), "txtcpsum");
1462 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1463 NULL, device_xname(sc->sc_dev), "txudpsum");
1464 }
1465 #endif /* SIP_EVENT_COUNTERS */
1466
1467 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1468 pmf_class_network_register(self, ifp);
1469 else
1470 aprint_error_dev(self, "couldn't establish power handler\n");
1471 }
1472
1473 static inline void
1474 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1475 uint64_t capenable)
1476 {
1477 uint32_t extsts = 0;
1478 #ifdef DEBUG
1479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1480 #endif
1481 /*
1482 * If VLANs are enabled and the packet has a VLAN tag, set
1483 * up the descriptor to encapsulate the packet for us.
1484 *
1485 * This apparently has to be on the last descriptor of
1486 * the packet.
1487 */
1488
1489 /*
1490 * Byte swapping is tricky. We need to provide the tag
1491 * in a network byte order. On a big-endian machine,
1492 * the byteorder is correct, but we need to swap it
1493 * anyway, because this will be undone by the outside
1494 * htole32(). That's why there must be an
1495 * unconditional swap instead of htons() inside.
1496 */
1497 if (vlan_has_tag(m0)) {
1498 sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |=
1499 htole32(EXTSTS_VPKT |
1500 (bswap16(vlan_get_tag(m0)) &
1501 EXTSTS_VTCI));
1502 }
1503
1504 /*
1505 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1506 * checksumming, set up the descriptor to do this work
1507 * for us.
1508 *
1509 * This apparently has to be on the first descriptor of
1510 * the packet.
1511 *
1512 * Byte-swap constants so the compiler can optimize.
1513 */
1514 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1515 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1516 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1517 extsts |= htole32(EXTSTS_IPPKT);
1518 }
1519 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1520 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1521 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1522 extsts |= htole32(EXTSTS_TCPPKT);
1523 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1524 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1525 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1526 extsts |= htole32(EXTSTS_UDPPKT);
1527 }
1528 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts;
1529 }
1530
1531 /*
1532 * sip_start: [ifnet interface function]
1533 *
1534 * Start packet transmission on the interface.
1535 */
1536 static void
1537 sipcom_start(struct ifnet *ifp)
1538 {
1539 struct sip_softc *sc = ifp->if_softc;
1540 struct mbuf *m0;
1541 struct mbuf *m;
1542 struct sip_txsoft *txs;
1543 bus_dmamap_t dmamap;
1544 int error, nexttx, lasttx, seg;
1545 int ofree = sc->sc_txfree;
1546 uint32_t cmdsts;
1547 #if 0
1548 int firsttx = sc->sc_txnext;
1549 #endif
1550
1551 /*
1552 * If we've been told to pause, don't transmit any more packets.
1553 */
1554 if (!sc->sc_gigabit && sc->sc_paused)
1555 return;
1556
1557 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1558 return;
1559
1560 /*
1561 * Loop through the send queue, setting up transmit descriptors
1562 * until we drain the queue, or use up all available transmit
1563 * descriptors.
1564 */
1565 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1566 /*
1567 * Grab a packet off the queue.
1568 */
1569 IFQ_POLL(&ifp->if_snd, m0);
1570 if (m0 == NULL)
1571 break;
1572 m = NULL;
1573
1574 dmamap = txs->txs_dmamap;
1575
1576 /*
1577 * Load the DMA map. If this fails, the packet either
1578 * didn't fit in the alloted number of segments, or we
1579 * were short on resources.
1580 */
1581 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1582 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1583 /* In the non-gigabit case, we'll copy and try again. */
1584 if (error != 0 && !sc->sc_gigabit) {
1585 MGETHDR(m, M_DONTWAIT, MT_DATA);
1586 if (m == NULL) {
1587 printf("%s: unable to allocate Tx mbuf\n",
1588 device_xname(sc->sc_dev));
1589 break;
1590 }
1591 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1592 if (m0->m_pkthdr.len > MHLEN) {
1593 MCLGET(m, M_DONTWAIT);
1594 if ((m->m_flags & M_EXT) == 0) {
1595 printf("%s: unable to allocate Tx "
1596 "cluster\n",
1597 device_xname(sc->sc_dev));
1598 m_freem(m);
1599 break;
1600 }
1601 }
1602 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1603 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1604 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1605 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1606 if (error) {
1607 printf("%s: unable to load Tx buffer, error = "
1608 "%d\n", device_xname(sc->sc_dev), error);
1609 break;
1610 }
1611 } else if (error == EFBIG) {
1612 /*
1613 * For the too-many-segments case, we simply
1614 * report an error and drop the packet,
1615 * since we can't sanely copy a jumbo packet
1616 * to a single buffer.
1617 */
1618 printf("%s: Tx packet consumes too many DMA segments, "
1619 "dropping...\n", device_xname(sc->sc_dev));
1620 IFQ_DEQUEUE(&ifp->if_snd, m0);
1621 m_freem(m0);
1622 continue;
1623 } else if (error != 0) {
1624 /*
1625 * Short on resources, just stop for now.
1626 */
1627 break;
1628 }
1629
1630 /*
1631 * Ensure we have enough descriptors free to describe
1632 * the packet. Note, we always reserve one descriptor
1633 * at the end of the ring as a termination point, to
1634 * prevent wrap-around.
1635 */
1636 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1637 /*
1638 * Not enough free descriptors to transmit this
1639 * packet.
1640 */
1641 bus_dmamap_unload(sc->sc_dmat, dmamap);
1642 if (m != NULL)
1643 m_freem(m);
1644 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1645 break;
1646 }
1647
1648 IFQ_DEQUEUE(&ifp->if_snd, m0);
1649 if (m != NULL) {
1650 m_freem(m0);
1651 m0 = m;
1652 }
1653
1654 /*
1655 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1656 */
1657
1658 /* Sync the DMA map. */
1659 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1660 BUS_DMASYNC_PREWRITE);
1661
1662 /*
1663 * Initialize the transmit descriptors.
1664 */
1665 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1666 seg < dmamap->dm_nsegs;
1667 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1668 /*
1669 * If this is the first descriptor we're
1670 * enqueueing, don't set the OWN bit just
1671 * yet. That could cause a race condition.
1672 * We'll do it below.
1673 */
1674
1675 cmdsts = dmamap->dm_segs[seg].ds_len;
1676 if (nexttx != sc->sc_txnext)
1677 cmdsts |= CMDSTS_OWN;
1678 if (seg < dmamap->dm_nsegs - 1)
1679 cmdsts |= CMDSTS_MORE;
1680 sip_init_txdesc(sc, nexttx,
1681 dmamap->dm_segs[seg].ds_addr, cmdsts);
1682 lasttx = nexttx;
1683 }
1684
1685 /*
1686 * If we're in the interrupt delay window, delay the
1687 * interrupt.
1688 */
1689 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1690 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1691 sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |=
1692 htole32(CMDSTS_INTR);
1693 sc->sc_txwin = 0;
1694 }
1695
1696 if (sc->sc_gigabit)
1697 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1698
1699 /* Sync the descriptors we're using. */
1700 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1701 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1702
1703 /*
1704 * The entire packet is set up. Give the first descrptor
1705 * to the chip now.
1706 */
1707 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |=
1708 htole32(CMDSTS_OWN);
1709 sip_cdtxsync(sc, sc->sc_txnext, 1,
1710 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1711
1712 /*
1713 * Store a pointer to the packet so we can free it later,
1714 * and remember what txdirty will be once the packet is
1715 * done.
1716 */
1717 txs->txs_mbuf = m0;
1718 txs->txs_firstdesc = sc->sc_txnext;
1719 txs->txs_lastdesc = lasttx;
1720
1721 /* Advance the tx pointer. */
1722 sc->sc_txfree -= dmamap->dm_nsegs;
1723 sc->sc_txnext = nexttx;
1724
1725 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1726 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1727
1728 /* Pass the packet to any BPF listeners. */
1729 bpf_mtap(ifp, m0, BPF_D_OUT);
1730 }
1731
1732 if (sc->sc_txfree != ofree) {
1733 /*
1734 * Start the transmit process. Note, the manual says
1735 * that if there are no pending transmissions in the
1736 * chip's internal queue (indicated by TXE being clear),
1737 * then the driver software must set the TXDP to the
1738 * first descriptor to be transmitted. However, if we
1739 * do this, it causes serious performance degredation on
1740 * the DP83820 under load, not setting TXDP doesn't seem
1741 * to adversely affect the SiS 900 or DP83815.
1742 *
1743 * Well, I guess it wouldn't be the first time a manual
1744 * has lied -- and they could be speaking of the NULL-
1745 * terminated descriptor list case, rather than OWN-
1746 * terminated rings.
1747 */
1748 #if 0
1749 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1750 CR_TXE) == 0) {
1751 sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx));
1752 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1753 }
1754 #else
1755 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1756 #endif
1757
1758 /* Set a watchdog timer in case the chip flakes out. */
1759 /* Gigabit autonegotiation takes 5 seconds. */
1760 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1761 }
1762 }
1763
1764 /*
1765 * sip_watchdog: [ifnet interface function]
1766 *
1767 * Watchdog timer handler.
1768 */
1769 static void
1770 sipcom_watchdog(struct ifnet *ifp)
1771 {
1772 struct sip_softc *sc = ifp->if_softc;
1773
1774 /*
1775 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1776 * If we get a timeout, try and sweep up transmit descriptors.
1777 * If we manage to sweep them all up, ignore the lack of
1778 * interrupt.
1779 */
1780 sipcom_txintr(sc);
1781
1782 if (sc->sc_txfree != sc->sc_ntxdesc) {
1783 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1784 if_statinc(ifp, if_oerrors);
1785
1786 /* Reset the interface. */
1787 (void) sipcom_init(ifp);
1788 } else if (ifp->if_flags & IFF_DEBUG)
1789 printf("%s: recovered from device timeout\n",
1790 device_xname(sc->sc_dev));
1791
1792 /* Try to get more packets going. */
1793 sipcom_start(ifp);
1794 }
1795
1796 /* If the interface is up and running, only modify the receive
1797 * filter when setting promiscuous or debug mode. Otherwise fall
1798 * through to ether_ioctl, which will reset the chip.
1799 */
1800 static int
1801 sip_ifflags_cb(struct ethercom *ec)
1802 {
1803 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1804 == (sc)->sc_ethercom.ec_capenable) \
1805 && ((sc)->sc_prev.is_vlan == \
1806 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1807 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1808 struct ifnet *ifp = &ec->ec_if;
1809 struct sip_softc *sc = ifp->if_softc;
1810 int change = ifp->if_flags ^ sc->sc_if_flags;
1811
1812 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1813 !COMPARE_IC(sc, ifp))
1814 return ENETRESET;
1815 /* Set up the receive filter. */
1816 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1817 return 0;
1818 }
1819
1820 /*
1821 * sip_ioctl: [ifnet interface function]
1822 *
1823 * Handle control requests from the operator.
1824 */
1825 static int
1826 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1827 {
1828 struct sip_softc *sc = ifp->if_softc;
1829 struct ifreq *ifr = (struct ifreq *)data;
1830 int s, error;
1831
1832 s = splnet();
1833
1834 switch (cmd) {
1835 case SIOCSIFMEDIA:
1836 /* Flow control requires full-duplex mode. */
1837 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1838 (ifr->ifr_media & IFM_FDX) == 0)
1839 ifr->ifr_media &= ~IFM_ETH_FMASK;
1840
1841 /* XXX */
1842 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1843 ifr->ifr_media &= ~IFM_ETH_FMASK;
1844 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1845 if (sc->sc_gigabit &&
1846 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1847 /* We can do both TXPAUSE and RXPAUSE. */
1848 ifr->ifr_media |=
1849 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1850 } else if (ifr->ifr_media & IFM_FLOW) {
1851 /*
1852 * Both TXPAUSE and RXPAUSE must be set.
1853 * (SiS900 and DP83815 don't have PAUSE_ASYM
1854 * feature.)
1855 *
1856 * XXX Can SiS900 and DP83815 send PAUSE?
1857 */
1858 ifr->ifr_media |=
1859 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1860 }
1861 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1862 }
1863 /*FALLTHROUGH*/
1864 default:
1865 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1866 break;
1867
1868 error = 0;
1869
1870 if (cmd == SIOCSIFCAP)
1871 error = (*ifp->if_init)(ifp);
1872 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1873 ;
1874 else if (ifp->if_flags & IFF_RUNNING) {
1875 /*
1876 * Multicast list has changed; set the hardware filter
1877 * accordingly.
1878 */
1879 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1880 }
1881 break;
1882 }
1883
1884 /* Try to get more packets going. */
1885 sipcom_start(ifp);
1886
1887 sc->sc_if_flags = ifp->if_flags;
1888 splx(s);
1889 return error;
1890 }
1891
1892 /*
1893 * sip_intr:
1894 *
1895 * Interrupt service routine.
1896 */
1897 static int
1898 sipcom_intr(void *arg)
1899 {
1900 struct sip_softc *sc = arg;
1901 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1902 uint32_t isr;
1903 int handled = 0;
1904
1905 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1906 return 0;
1907
1908 /* Disable interrupts. */
1909 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1910
1911 for (;;) {
1912 /* Reading clears interrupt. */
1913 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1914 if ((isr & sc->sc_imr) == 0)
1915 break;
1916
1917 rnd_add_uint32(&sc->rnd_source, isr);
1918
1919 handled = 1;
1920
1921 if ((ifp->if_flags & IFF_RUNNING) == 0)
1922 break;
1923
1924 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1925 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1926
1927 /* Grab any new packets. */
1928 (*sc->sc_rxintr)(sc);
1929
1930 if (isr & ISR_RXORN) {
1931 printf("%s: receive FIFO overrun\n",
1932 device_xname(sc->sc_dev));
1933
1934 /* XXX adjust rx_drain_thresh? */
1935 }
1936
1937 if (isr & ISR_RXIDLE) {
1938 printf("%s: receive ring overrun\n",
1939 device_xname(sc->sc_dev));
1940
1941 /* Get the receive process going again. */
1942 sip_set_rxdp(sc,
1943 SIP_CDRXADDR(sc, sc->sc_rxptr));
1944 bus_space_write_4(sc->sc_st, sc->sc_sh,
1945 SIP_CR, CR_RXE);
1946 }
1947 }
1948
1949 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1950 #ifdef SIP_EVENT_COUNTERS
1951 if (isr & ISR_TXDESC)
1952 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1953 else if (isr & ISR_TXIDLE)
1954 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1955 #endif
1956
1957 /* Sweep up transmit descriptors. */
1958 sipcom_txintr(sc);
1959
1960 if (isr & ISR_TXURN) {
1961 uint32_t thresh;
1962 int txfifo_size = (sc->sc_gigabit)
1963 ? DP83820_SIP_TXFIFO_SIZE
1964 : OTHER_SIP_TXFIFO_SIZE;
1965
1966 printf("%s: transmit FIFO underrun",
1967 device_xname(sc->sc_dev));
1968 thresh = sc->sc_tx_drain_thresh + 1;
1969 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1970 && (thresh * 32) <= (txfifo_size -
1971 (sc->sc_tx_fill_thresh * 32))) {
1972 printf("; increasing Tx drain "
1973 "threshold to %u bytes\n",
1974 thresh * 32);
1975 sc->sc_tx_drain_thresh = thresh;
1976 (void) sipcom_init(ifp);
1977 } else {
1978 (void) sipcom_init(ifp);
1979 printf("\n");
1980 }
1981 }
1982 }
1983
1984 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1985 if (isr & ISR_PAUSE_ST) {
1986 sc->sc_paused = 1;
1987 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1988 }
1989 if (isr & ISR_PAUSE_END) {
1990 sc->sc_paused = 0;
1991 }
1992 }
1993
1994 if (isr & ISR_HIBERR) {
1995 int want_init = 0;
1996
1997 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1998
1999 #define PRINTERR(bit, str) \
2000 do { \
2001 if ((isr & (bit)) != 0) { \
2002 if ((ifp->if_flags & IFF_DEBUG) != 0) \
2003 printf("%s: %s\n", \
2004 device_xname(sc->sc_dev), str); \
2005 want_init = 1; \
2006 } \
2007 } while (/*CONSTCOND*/0)
2008
2009 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
2010 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
2011 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
2012 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
2013 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
2014 /*
2015 * Ignore:
2016 * Tx reset complete
2017 * Rx reset complete
2018 */
2019 if (want_init)
2020 (void) sipcom_init(ifp);
2021 #undef PRINTERR
2022 }
2023 }
2024
2025 /* Re-enable interrupts. */
2026 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
2027
2028 /* Try to get more packets going. */
2029 if_schedule_deferred_start(ifp);
2030
2031 return handled;
2032 }
2033
2034 /*
2035 * sip_txintr:
2036 *
2037 * Helper; handle transmit interrupts.
2038 */
2039 static void
2040 sipcom_txintr(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_txsoft *txs;
2044 uint32_t cmdsts;
2045
2046 /*
2047 * Go through our Tx list and free mbufs for those
2048 * frames which have been transmitted.
2049 */
2050 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2051 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2052 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2053
2054 cmdsts = le32toh(sc->sc_txdescs[
2055 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2056 if (cmdsts & CMDSTS_OWN)
2057 break;
2058
2059 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2060
2061 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2062
2063 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2064 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2065 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2066 m_freem(txs->txs_mbuf);
2067 txs->txs_mbuf = NULL;
2068
2069 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2070
2071 /* Check for errors and collisions. */
2072 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2073 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2074 CMDSTS_Tx_EC)) {
2075 if_statinc_ref(nsr, if_oerrors);
2076 if (cmdsts & CMDSTS_Tx_EC)
2077 if_statadd_ref(nsr, if_collisions, 16);
2078 if (ifp->if_flags & IFF_DEBUG) {
2079 if (cmdsts & CMDSTS_Tx_ED)
2080 printf("%s: excessive deferral\n",
2081 device_xname(sc->sc_dev));
2082 if (cmdsts & CMDSTS_Tx_EC)
2083 printf("%s: excessive collisions\n",
2084 device_xname(sc->sc_dev));
2085 }
2086 } else {
2087 /* Packet was transmitted successfully. */
2088 if_statinc_ref(nsr, if_opackets);
2089 if (CMDSTS_COLLISIONS(cmdsts))
2090 if_statadd_ref(nsr, if_collisions,
2091 CMDSTS_COLLISIONS(cmdsts));
2092 }
2093 IF_STAT_PUTREF(ifp);
2094 }
2095
2096 /*
2097 * If there are no more pending transmissions, cancel the watchdog
2098 * timer.
2099 */
2100 if (txs == NULL) {
2101 ifp->if_timer = 0;
2102 sc->sc_txwin = 0;
2103 }
2104 }
2105
2106 /*
2107 * gsip_rxintr:
2108 *
2109 * Helper; handle receive interrupts on gigabit parts.
2110 */
2111 static void
2112 gsip_rxintr(struct sip_softc *sc)
2113 {
2114 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2115 struct sip_rxsoft *rxs;
2116 struct mbuf *m;
2117 uint32_t cmdsts, extsts;
2118 int i, len;
2119
2120 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2121 rxs = &sc->sc_rxsoft[i];
2122
2123 sip_cdrxsync(sc, i,
2124 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2125
2126 cmdsts =
2127 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2128 extsts =
2129 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]);
2130 len = CMDSTS_SIZE(sc, cmdsts);
2131
2132 /*
2133 * NOTE: OWN is set if owned by _consumer_. We're the
2134 * consumer of the receive ring, so if the bit is clear,
2135 * we have processed all of the packets.
2136 */
2137 if ((cmdsts & CMDSTS_OWN) == 0) {
2138 /*
2139 * We have processed all of the receive buffers.
2140 */
2141 break;
2142 }
2143
2144 if (__predict_false(sc->sc_rxdiscard)) {
2145 sip_init_rxdesc(sc, i);
2146 if ((cmdsts & CMDSTS_MORE) == 0) {
2147 /* Reset our state. */
2148 sc->sc_rxdiscard = 0;
2149 }
2150 continue;
2151 }
2152
2153 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2154 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2155
2156 m = rxs->rxs_mbuf;
2157
2158 /*
2159 * Add a new receive buffer to the ring.
2160 */
2161 if (sipcom_add_rxbuf(sc, i) != 0) {
2162 /*
2163 * Failed, throw away what we've done so
2164 * far, and discard the rest of the packet.
2165 */
2166 if_statinc(ifp, if_ierrors);
2167 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2168 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2169 sip_init_rxdesc(sc, i);
2170 if (cmdsts & CMDSTS_MORE)
2171 sc->sc_rxdiscard = 1;
2172 if (sc->sc_rxhead != NULL)
2173 m_freem(sc->sc_rxhead);
2174 sip_rxchain_reset(sc);
2175 continue;
2176 }
2177
2178 sip_rxchain_link(sc, m);
2179
2180 m->m_len = len;
2181
2182 /*
2183 * If this is not the end of the packet, keep
2184 * looking.
2185 */
2186 if (cmdsts & CMDSTS_MORE) {
2187 sc->sc_rxlen += len;
2188 continue;
2189 }
2190
2191 /*
2192 * Okay, we have the entire packet now. The chip includes
2193 * the FCS, so we need to trim it.
2194 */
2195 m->m_len -= ETHER_CRC_LEN;
2196
2197 *sc->sc_rxtailp = NULL;
2198 len = m->m_len + sc->sc_rxlen;
2199 m = sc->sc_rxhead;
2200
2201 sip_rxchain_reset(sc);
2202
2203 /* If an error occurred, update stats and drop the packet. */
2204 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2205 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2206 if_statinc(ifp, if_ierrors);
2207 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2208 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2209 /* Receive overrun handled elsewhere. */
2210 printf("%s: receive descriptor error\n",
2211 device_xname(sc->sc_dev));
2212 }
2213 #define PRINTERR(bit, str) \
2214 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2215 (cmdsts & (bit)) != 0) \
2216 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2217 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2218 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2219 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2220 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2221 #undef PRINTERR
2222 m_freem(m);
2223 continue;
2224 }
2225
2226 /*
2227 * If the packet is small enough to fit in a
2228 * single header mbuf, allocate one and copy
2229 * the data into it. This greatly reduces
2230 * memory consumption when we receive lots
2231 * of small packets.
2232 */
2233 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2234 struct mbuf *nm;
2235 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2236 if (nm == NULL) {
2237 if_statinc(ifp, if_ierrors);
2238 m_freem(m);
2239 continue;
2240 }
2241 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2242 nm->m_data += 2;
2243 nm->m_pkthdr.len = nm->m_len = len;
2244 m_copydata(m, 0, len, mtod(nm, void *));
2245 m_freem(m);
2246 m = nm;
2247 }
2248 #ifndef __NO_STRICT_ALIGNMENT
2249 else {
2250 /*
2251 * The DP83820's receive buffers must be 4-byte
2252 * aligned. But this means that the data after
2253 * the Ethernet header is misaligned. To compensate,
2254 * we have artificially shortened the buffer size
2255 * in the descriptor, and we do an overlapping copy
2256 * of the data two bytes further in (in the first
2257 * buffer of the chain only).
2258 */
2259 memmove(mtod(m, char *) + 2, mtod(m, void *),
2260 m->m_len);
2261 m->m_data += 2;
2262 }
2263 #endif /* ! __NO_STRICT_ALIGNMENT */
2264
2265 /*
2266 * If VLANs are enabled, VLAN packets have been unwrapped
2267 * for us. Associate the tag with the packet.
2268 */
2269
2270 /*
2271 * Again, byte swapping is tricky. Hardware provided
2272 * the tag in the network byte order, but extsts was
2273 * passed through le32toh() in the meantime. On a
2274 * big-endian machine, we need to swap it again. On a
2275 * little-endian machine, we need to convert from the
2276 * network to host byte order. This means that we must
2277 * swap it in any case, so unconditional swap instead
2278 * of htons() is used.
2279 */
2280 if ((extsts & EXTSTS_VPKT) != 0) {
2281 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2282 }
2283
2284 /*
2285 * Set the incoming checksum information for the
2286 * packet.
2287 */
2288 if ((extsts & EXTSTS_IPPKT) != 0) {
2289 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2290 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2291 if (extsts & EXTSTS_Rx_IPERR)
2292 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2293 if (extsts & EXTSTS_TCPPKT) {
2294 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2295 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2296 if (extsts & EXTSTS_Rx_TCPERR)
2297 m->m_pkthdr.csum_flags |=
2298 M_CSUM_TCP_UDP_BAD;
2299 } else if (extsts & EXTSTS_UDPPKT) {
2300 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2301 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2302 if (extsts & EXTSTS_Rx_UDPERR)
2303 m->m_pkthdr.csum_flags |=
2304 M_CSUM_TCP_UDP_BAD;
2305 }
2306 }
2307
2308 m_set_rcvif(m, ifp);
2309 m->m_pkthdr.len = len;
2310
2311 /* Pass it on. */
2312 if_percpuq_enqueue(ifp->if_percpuq, m);
2313 }
2314
2315 /* Update the receive pointer. */
2316 sc->sc_rxptr = i;
2317 }
2318
2319 /*
2320 * sip_rxintr:
2321 *
2322 * Helper; handle receive interrupts on 10/100 parts.
2323 */
2324 static void
2325 sip_rxintr(struct sip_softc *sc)
2326 {
2327 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2328 struct sip_rxsoft *rxs;
2329 struct mbuf *m;
2330 uint32_t cmdsts;
2331 int i, len;
2332
2333 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2334 rxs = &sc->sc_rxsoft[i];
2335
2336 sip_cdrxsync(sc, i,
2337 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2338
2339 cmdsts =
2340 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2341
2342 /*
2343 * NOTE: OWN is set if owned by _consumer_. We're the
2344 * consumer of the receive ring, so if the bit is clear,
2345 * we have processed all of the packets.
2346 */
2347 if ((cmdsts & CMDSTS_OWN) == 0) {
2348 /*
2349 * We have processed all of the receive buffers.
2350 */
2351 break;
2352 }
2353
2354 /* If any collisions were seen on the wire, count one. */
2355 if (cmdsts & CMDSTS_Rx_COL)
2356 if_statinc(ifp, if_collisions);
2357
2358 /*
2359 * If an error occurred, update stats, clear the status
2360 * word, and leave the packet buffer in place. It will
2361 * simply be reused the next time the ring comes around.
2362 */
2363 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2364 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2365 if_statinc(ifp, if_ierrors);
2366 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2367 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2368 /* Receive overrun handled elsewhere. */
2369 printf("%s: receive descriptor error\n",
2370 device_xname(sc->sc_dev));
2371 }
2372 #define PRINTERR(bit, str) \
2373 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2374 (cmdsts & (bit)) != 0) \
2375 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2376 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2377 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2378 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2379 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2380 #undef PRINTERR
2381 sip_init_rxdesc(sc, i);
2382 continue;
2383 }
2384
2385 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2386 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2387
2388 /*
2389 * No errors; receive the packet. Note, the SiS 900
2390 * includes the CRC with every packet.
2391 */
2392 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2393
2394 #ifdef __NO_STRICT_ALIGNMENT
2395 /*
2396 * If the packet is small enough to fit in a
2397 * single header mbuf, allocate one and copy
2398 * the data into it. This greatly reduces
2399 * memory consumption when we receive lots
2400 * of small packets.
2401 *
2402 * Otherwise, we add a new buffer to the receive
2403 * chain. If this fails, we drop the packet and
2404 * recycle the old buffer.
2405 */
2406 if (sip_copy_small != 0 && len <= MHLEN) {
2407 MGETHDR(m, M_DONTWAIT, MT_DATA);
2408 if (m == NULL)
2409 goto dropit;
2410 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2411 memcpy(mtod(m, void *),
2412 mtod(rxs->rxs_mbuf, void *), len);
2413 sip_init_rxdesc(sc, i);
2414 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2415 rxs->rxs_dmamap->dm_mapsize,
2416 BUS_DMASYNC_PREREAD);
2417 } else {
2418 m = rxs->rxs_mbuf;
2419 if (sipcom_add_rxbuf(sc, i) != 0) {
2420 dropit:
2421 if_statinc(ifp, if_ierrors);
2422 sip_init_rxdesc(sc, i);
2423 bus_dmamap_sync(sc->sc_dmat,
2424 rxs->rxs_dmamap, 0,
2425 rxs->rxs_dmamap->dm_mapsize,
2426 BUS_DMASYNC_PREREAD);
2427 continue;
2428 }
2429 }
2430 #else
2431 /*
2432 * The SiS 900's receive buffers must be 4-byte aligned.
2433 * But this means that the data after the Ethernet header
2434 * is misaligned. We must allocate a new buffer and
2435 * copy the data, shifted forward 2 bytes.
2436 */
2437 MGETHDR(m, M_DONTWAIT, MT_DATA);
2438 if (m == NULL) {
2439 dropit:
2440 if_statinc(ifp, if_ierrors);
2441 sip_init_rxdesc(sc, i);
2442 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2443 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2444 continue;
2445 }
2446 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2447 if (len > (MHLEN - 2)) {
2448 MCLGET(m, M_DONTWAIT);
2449 if ((m->m_flags & M_EXT) == 0) {
2450 m_freem(m);
2451 goto dropit;
2452 }
2453 }
2454 m->m_data += 2;
2455
2456 /*
2457 * Note that we use clusters for incoming frames, so the
2458 * buffer is virtually contiguous.
2459 */
2460 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2461
2462 /* Allow the receive descriptor to continue using its mbuf. */
2463 sip_init_rxdesc(sc, i);
2464 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2465 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2466 #endif /* __NO_STRICT_ALIGNMENT */
2467
2468 m_set_rcvif(m, ifp);
2469 m->m_pkthdr.len = m->m_len = len;
2470
2471 /* Pass it on. */
2472 if_percpuq_enqueue(ifp->if_percpuq, m);
2473 }
2474
2475 /* Update the receive pointer. */
2476 sc->sc_rxptr = i;
2477 }
2478
2479 /*
2480 * sip_tick:
2481 *
2482 * One second timer, used to tick the MII.
2483 */
2484 static void
2485 sipcom_tick(void *arg)
2486 {
2487 struct sip_softc *sc = arg;
2488 int s;
2489
2490 s = splnet();
2491 #ifdef SIP_EVENT_COUNTERS
2492 if (sc->sc_gigabit) {
2493 /* Read PAUSE related counts from MIB registers. */
2494 sc->sc_ev_rxpause.ev_count +=
2495 bus_space_read_4(sc->sc_st, sc->sc_sh,
2496 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2497 sc->sc_ev_txpause.ev_count +=
2498 bus_space_read_4(sc->sc_st, sc->sc_sh,
2499 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2500 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2501 }
2502 #endif /* SIP_EVENT_COUNTERS */
2503 mii_tick(&sc->sc_mii);
2504 splx(s);
2505
2506 callout_schedule(&sc->sc_tick_ch, hz);
2507 }
2508
2509 /*
2510 * sip_reset:
2511 *
2512 * Perform a soft reset on the SiS 900.
2513 */
2514 static bool
2515 sipcom_reset(struct sip_softc *sc)
2516 {
2517 bus_space_tag_t st = sc->sc_st;
2518 bus_space_handle_t sh = sc->sc_sh;
2519 int i;
2520
2521 bus_space_write_4(st, sh, SIP_IER, 0);
2522 bus_space_write_4(st, sh, SIP_IMR, 0);
2523 bus_space_write_4(st, sh, SIP_RFCR, 0);
2524 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2525
2526 for (i = 0; i < SIP_TIMEOUT; i++) {
2527 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2528 break;
2529 delay(2);
2530 }
2531
2532 if (i == SIP_TIMEOUT) {
2533 printf("%s: reset failed to complete\n",
2534 device_xname(sc->sc_dev));
2535 return false;
2536 }
2537
2538 delay(1000);
2539
2540 if (sc->sc_gigabit) {
2541 /*
2542 * Set the general purpose I/O bits. Do it here in case we
2543 * need to have GPIO set up to talk to the media interface.
2544 */
2545 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2546 delay(1000);
2547 }
2548 return true;
2549 }
2550
2551 static void
2552 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2553 {
2554 uint32_t reg;
2555 bus_space_tag_t st = sc->sc_st;
2556 bus_space_handle_t sh = sc->sc_sh;
2557 /*
2558 * Initialize the VLAN/IP receive control register.
2559 * We enable checksum computation on all incoming
2560 * packets, and do not reject packets w/ bad checksums.
2561 */
2562 reg = 0;
2563 if (capenable &
2564 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2565 reg |= VRCR_IPEN;
2566 if (VLAN_ATTACHED(&sc->sc_ethercom))
2567 reg |= VRCR_VTDEN | VRCR_VTREN;
2568 bus_space_write_4(st, sh, SIP_VRCR, reg);
2569
2570 /*
2571 * Initialize the VLAN/IP transmit control register.
2572 * We enable outgoing checksum computation on a
2573 * per-packet basis.
2574 */
2575 reg = 0;
2576 if (capenable &
2577 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2578 reg |= VTCR_PPCHK;
2579 if (VLAN_ATTACHED(&sc->sc_ethercom))
2580 reg |= VTCR_VPPTI;
2581 bus_space_write_4(st, sh, SIP_VTCR, reg);
2582
2583 /*
2584 * If we're using VLANs, initialize the VLAN data register.
2585 * To understand why we bswap the VLAN Ethertype, see section
2586 * 4.2.36 of the DP83820 manual.
2587 */
2588 if (VLAN_ATTACHED(&sc->sc_ethercom))
2589 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2590 }
2591
2592 /*
2593 * sip_init: [ ifnet interface function ]
2594 *
2595 * Initialize the interface. Must be called at splnet().
2596 */
2597 static int
2598 sipcom_init(struct ifnet *ifp)
2599 {
2600 struct sip_softc *sc = ifp->if_softc;
2601 bus_space_tag_t st = sc->sc_st;
2602 bus_space_handle_t sh = sc->sc_sh;
2603 struct sip_txsoft *txs;
2604 struct sip_rxsoft *rxs;
2605 int i, error = 0;
2606
2607 if (device_is_active(sc->sc_dev)) {
2608 /*
2609 * Cancel any pending I/O.
2610 */
2611 sipcom_stop(ifp, 0);
2612 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2613 !device_is_active(sc->sc_dev))
2614 return 0;
2615
2616 /*
2617 * Reset the chip to a known state.
2618 */
2619 if (!sipcom_reset(sc))
2620 return EBUSY;
2621
2622 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2623 /*
2624 * DP83815 manual, page 78:
2625 * 4.4 Recommended Registers Configuration
2626 * For optimum performance of the DP83815, version noted
2627 * as DP83815CVNG (SRR = 203h), the listed register
2628 * modifications must be followed in sequence...
2629 *
2630 * It's not clear if this should be 302h or 203h because that
2631 * chip name is listed as SRR 302h in the description of the
2632 * SRR register. However, my revision 302h DP83815 on the
2633 * Netgear FA311 purchased in 02/2001 needs these settings
2634 * to avoid tons of errors in AcceptPerfectMatch (non-
2635 * IFF_PROMISC) mode. I do not know if other revisions need
2636 * this set or not. [briggs -- 09 March 2001]
2637 *
2638 * Note that only the low-order 12 bits of 0xe4 are documented
2639 * and that this sets reserved bits in that register.
2640 */
2641 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2642
2643 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2644 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2645 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2646 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2647
2648 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2649 }
2650
2651 /* Initialize the transmit descriptor ring. */
2652 sip_init_txring(sc);
2653
2654 /*
2655 * Initialize the transmit job descriptors.
2656 */
2657 SIMPLEQ_INIT(&sc->sc_txfreeq);
2658 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2659 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2660 txs = &sc->sc_txsoft[i];
2661 txs->txs_mbuf = NULL;
2662 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2663 }
2664
2665 /*
2666 * Initialize the receive descriptor and receive job
2667 * descriptor rings.
2668 */
2669 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2670 rxs = &sc->sc_rxsoft[i];
2671 if (rxs->rxs_mbuf == NULL) {
2672 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2673 printf("%s: unable to allocate or map rx "
2674 "buffer %d, error = %d\n",
2675 device_xname(sc->sc_dev), i, error);
2676 /*
2677 * XXX Should attempt to run with fewer receive
2678 * XXX buffers instead of just failing.
2679 */
2680 sipcom_rxdrain(sc);
2681 goto out;
2682 }
2683 } else
2684 sip_init_rxdesc(sc, i);
2685 }
2686 sc->sc_rxptr = 0;
2687 sc->sc_rxdiscard = 0;
2688 sip_rxchain_reset(sc);
2689
2690 /*
2691 * Set the configuration register; it's already initialized
2692 * in sip_attach().
2693 */
2694 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2695
2696 /*
2697 * Initialize the prototype TXCFG register.
2698 */
2699 if (sc->sc_gigabit) {
2700 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2701 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2702 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2703 SIP_SIS900_REV(sc, SIS_REV_960) ||
2704 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2705 (sc->sc_cfg & CFG_EDBMASTEN)) {
2706 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2707 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2708 } else {
2709 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2710 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2711 }
2712
2713 sc->sc_txcfg |= TXCFG_ATP |
2714 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2715 sc->sc_tx_drain_thresh;
2716 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2717
2718 /*
2719 * Initialize the receive drain threshold if we have never
2720 * done so.
2721 */
2722 if (sc->sc_rx_drain_thresh == 0) {
2723 /*
2724 * XXX This value should be tuned. This is set to the
2725 * maximum of 248 bytes, and we may be able to improve
2726 * performance by decreasing it (although we should never
2727 * set this value lower than 2; 14 bytes are required to
2728 * filter the packet).
2729 */
2730 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2731 }
2732
2733 /*
2734 * Initialize the prototype RXCFG register.
2735 */
2736 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2737 /*
2738 * Accept long packets (including FCS) so we can handle
2739 * 802.1q-tagged frames and jumbo frames properly.
2740 */
2741 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2742 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2743 sc->sc_rxcfg |= RXCFG_ALP;
2744
2745 /*
2746 * Checksum offloading is disabled if the user selects an MTU
2747 * larger than 8109. (FreeBSD says 8152, but there is emperical
2748 * evidence that >8109 does not work on some boards, such as the
2749 * Planex GN-1000TE).
2750 */
2751 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2752 (ifp->if_capenable &
2753 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2754 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2755 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2756 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2757 "disabled.\n", device_xname(sc->sc_dev));
2758 ifp->if_capenable &=
2759 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2760 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2761 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2762 ifp->if_csum_flags_tx = 0;
2763 ifp->if_csum_flags_rx = 0;
2764 }
2765
2766 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2767
2768 if (sc->sc_gigabit)
2769 sipcom_dp83820_init(sc, ifp->if_capenable);
2770
2771 /*
2772 * Give the transmit and receive rings to the chip.
2773 */
2774 sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext));
2775 sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr));
2776
2777 /*
2778 * Initialize the interrupt mask.
2779 */
2780 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2781 sc->sc_bits.b_isr_sserr |
2782 sc->sc_bits.b_isr_rmabt |
2783 sc->sc_bits.b_isr_rtabt |
2784 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2785 ISR_RXIDLE | ISR_RXDESC;
2786 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2787
2788 /* Set up the receive filter. */
2789 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2790
2791 /*
2792 * Tune sc_rx_flow_thresh.
2793 * XXX "More than 8KB" is too short for jumbo frames.
2794 * XXX TODO: Threshold value should be user-settable.
2795 */
2796 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2797 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2798 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2799
2800 /*
2801 * Set the current media. Do this after initializing the prototype
2802 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2803 * control.
2804 */
2805 if ((error = ether_mediachange(ifp)) != 0)
2806 goto out;
2807
2808 /*
2809 * Set the interrupt hold-off timer to 100us.
2810 */
2811 if (sc->sc_gigabit)
2812 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2813
2814 /*
2815 * Enable interrupts.
2816 */
2817 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2818
2819 /*
2820 * Start the transmit and receive processes.
2821 */
2822 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2823
2824 /*
2825 * Start the one second MII clock.
2826 */
2827 callout_schedule(&sc->sc_tick_ch, hz);
2828
2829 /*
2830 * ...all done!
2831 */
2832 ifp->if_flags |= IFF_RUNNING;
2833 sc->sc_if_flags = ifp->if_flags;
2834 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2835 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2836 sc->sc_prev.if_capenable = ifp->if_capenable;
2837
2838 out:
2839 if (error)
2840 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2841 return error;
2842 }
2843
2844 /*
2845 * sip_drain:
2846 *
2847 * Drain the receive queue.
2848 */
2849 static void
2850 sipcom_rxdrain(struct sip_softc *sc)
2851 {
2852 struct sip_rxsoft *rxs;
2853 int i;
2854
2855 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2856 rxs = &sc->sc_rxsoft[i];
2857 if (rxs->rxs_mbuf != NULL) {
2858 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2859 m_freem(rxs->rxs_mbuf);
2860 rxs->rxs_mbuf = NULL;
2861 }
2862 }
2863 }
2864
2865 /*
2866 * sip_stop: [ ifnet interface function ]
2867 *
2868 * Stop transmission on the interface.
2869 */
2870 static void
2871 sipcom_stop(struct ifnet *ifp, int disable)
2872 {
2873 struct sip_softc *sc = ifp->if_softc;
2874 bus_space_tag_t st = sc->sc_st;
2875 bus_space_handle_t sh = sc->sc_sh;
2876 struct sip_txsoft *txs;
2877 uint32_t cmdsts = 0; /* DEBUG */
2878
2879 /*
2880 * Stop the one second clock.
2881 */
2882 callout_stop(&sc->sc_tick_ch);
2883
2884 /* Down the MII. */
2885 mii_down(&sc->sc_mii);
2886
2887 if (device_is_active(sc->sc_dev)) {
2888 /*
2889 * Disable interrupts.
2890 */
2891 bus_space_write_4(st, sh, SIP_IER, 0);
2892
2893 /*
2894 * Stop receiver and transmitter.
2895 */
2896 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2897 }
2898
2899 /*
2900 * Release any queued transmit buffers.
2901 */
2902 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2903 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2904 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2905 (sc->sc_txdescs[
2906 txs->txs_lastdesc].sipd_words[
2907 sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0)
2908 printf("%s: sip_stop: last descriptor does not "
2909 "have INTR bit set\n", device_xname(sc->sc_dev));
2910 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2911 #ifdef DIAGNOSTIC
2912 if (txs->txs_mbuf == NULL) {
2913 printf("%s: dirty txsoft with no mbuf chain\n",
2914 device_xname(sc->sc_dev));
2915 panic("sip_stop");
2916 }
2917 #endif
2918 cmdsts |= /* DEBUG */
2919 le32toh(sc->sc_txdescs[
2920 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2921 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2922 m_freem(txs->txs_mbuf);
2923 txs->txs_mbuf = NULL;
2924 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2925 }
2926
2927 /*
2928 * Mark the interface down and cancel the watchdog timer.
2929 */
2930 ifp->if_flags &= ~IFF_RUNNING;
2931 ifp->if_timer = 0;
2932
2933 if (disable)
2934 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2935
2936 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2937 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2938 printf("%s: sip_stop: no INTR bits set in dirty tx "
2939 "descriptors\n", device_xname(sc->sc_dev));
2940 }
2941
2942 /*
2943 * sip_read_eeprom:
2944 *
2945 * Read data from the serial EEPROM.
2946 */
2947 static void
2948 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2949 uint16_t *data)
2950 {
2951 bus_space_tag_t st = sc->sc_st;
2952 bus_space_handle_t sh = sc->sc_sh;
2953 uint16_t reg;
2954 int i, x;
2955
2956 for (i = 0; i < wordcnt; i++) {
2957 /* Send CHIP SELECT. */
2958 reg = EROMAR_EECS;
2959 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2960
2961 /* Shift in the READ opcode. */
2962 for (x = 3; x > 0; x--) {
2963 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2964 reg |= EROMAR_EEDI;
2965 else
2966 reg &= ~EROMAR_EEDI;
2967 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2968 bus_space_write_4(st, sh, SIP_EROMAR,
2969 reg | EROMAR_EESK);
2970 delay(4);
2971 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2972 delay(4);
2973 }
2974
2975 /* Shift in address. */
2976 for (x = 6; x > 0; x--) {
2977 if ((word + i) & (1 << (x - 1)))
2978 reg |= EROMAR_EEDI;
2979 else
2980 reg &= ~EROMAR_EEDI;
2981 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2982 bus_space_write_4(st, sh, SIP_EROMAR,
2983 reg | EROMAR_EESK);
2984 delay(4);
2985 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2986 delay(4);
2987 }
2988
2989 /* Shift out data. */
2990 reg = EROMAR_EECS;
2991 data[i] = 0;
2992 for (x = 16; x > 0; x--) {
2993 bus_space_write_4(st, sh, SIP_EROMAR,
2994 reg | EROMAR_EESK);
2995 delay(4);
2996 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2997 data[i] |= (1 << (x - 1));
2998 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2999 delay(4);
3000 }
3001
3002 /* Clear CHIP SELECT. */
3003 bus_space_write_4(st, sh, SIP_EROMAR, 0);
3004 delay(4);
3005 }
3006 }
3007
3008 /*
3009 * sipcom_add_rxbuf:
3010 *
3011 * Add a receive buffer to the indicated descriptor.
3012 */
3013 static int
3014 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
3015 {
3016 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
3017 struct mbuf *m;
3018 int error;
3019
3020 MGETHDR(m, M_DONTWAIT, MT_DATA);
3021 if (m == NULL)
3022 return ENOBUFS;
3023 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
3024
3025 MCLGET(m, M_DONTWAIT);
3026 if ((m->m_flags & M_EXT) == 0) {
3027 m_freem(m);
3028 return ENOBUFS;
3029 }
3030
3031 /* XXX I don't believe this is necessary. --dyoung */
3032 if (sc->sc_gigabit)
3033 m->m_len = sc->sc_parm->p_rxbuf_len;
3034
3035 if (rxs->rxs_mbuf != NULL)
3036 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3037
3038 rxs->rxs_mbuf = m;
3039
3040 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3041 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3042 BUS_DMA_READ | BUS_DMA_NOWAIT);
3043 if (error) {
3044 printf("%s: can't load rx DMA map %d, error = %d\n",
3045 device_xname(sc->sc_dev), idx, error);
3046 panic("%s", __func__); /* XXX */
3047 }
3048
3049 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3050 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3051
3052 sip_init_rxdesc(sc, idx);
3053
3054 return 0;
3055 }
3056
3057 /*
3058 * sip_sis900_set_filter:
3059 *
3060 * Set up the receive filter.
3061 */
3062 static void
3063 sipcom_sis900_set_filter(struct sip_softc *sc)
3064 {
3065 bus_space_tag_t st = sc->sc_st;
3066 bus_space_handle_t sh = sc->sc_sh;
3067 struct ethercom *ec = &sc->sc_ethercom;
3068 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3069 struct ether_multi *enm;
3070 const uint8_t *cp;
3071 struct ether_multistep step;
3072 uint32_t crc, mchash[16];
3073
3074 /*
3075 * Initialize the prototype RFCR.
3076 */
3077 sc->sc_rfcr = RFCR_RFEN;
3078 if (ifp->if_flags & IFF_BROADCAST)
3079 sc->sc_rfcr |= RFCR_AAB;
3080 if (ifp->if_flags & IFF_PROMISC) {
3081 sc->sc_rfcr |= RFCR_AAP;
3082 goto allmulti;
3083 }
3084
3085 /*
3086 * Set up the multicast address filter by passing all multicast
3087 * addresses through a CRC generator, and then using the high-order
3088 * 6 bits as an index into the 128 bit multicast hash table (only
3089 * the lower 16 bits of each 32 bit multicast hash register are
3090 * valid). The high order bits select the register, while the
3091 * rest of the bits select the bit within the register.
3092 */
3093
3094 memset(mchash, 0, sizeof(mchash));
3095
3096 /*
3097 * SiS900 (at least SiS963) requires us to register the address of
3098 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3099 */
3100 crc = 0x0ed423f9;
3101
3102 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3103 SIP_SIS900_REV(sc, SIS_REV_960) ||
3104 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3105 /* Just want the 8 most significant bits. */
3106 crc >>= 24;
3107 } else {
3108 /* Just want the 7 most significant bits. */
3109 crc >>= 25;
3110 }
3111
3112 /* Set the corresponding bit in the hash table. */
3113 mchash[crc >> 4] |= 1 << (crc & 0xf);
3114
3115 ETHER_LOCK(ec);
3116 ETHER_FIRST_MULTI(step, ec, enm);
3117 while (enm != NULL) {
3118 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3119 /*
3120 * We must listen to a range of multicast addresses.
3121 * For now, just accept all multicasts, rather than
3122 * trying to set only those filter bits needed to match
3123 * the range. (At this time, the only use of address
3124 * ranges is for IP multicast routing, for which the
3125 * range is big enough to require all bits set.)
3126 */
3127 ETHER_UNLOCK(ec);
3128 goto allmulti;
3129 }
3130
3131 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3132
3133 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3134 SIP_SIS900_REV(sc, SIS_REV_960) ||
3135 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3136 /* Just want the 8 most significant bits. */
3137 crc >>= 24;
3138 } else {
3139 /* Just want the 7 most significant bits. */
3140 crc >>= 25;
3141 }
3142
3143 /* Set the corresponding bit in the hash table. */
3144 mchash[crc >> 4] |= 1 << (crc & 0xf);
3145
3146 ETHER_NEXT_MULTI(step, enm);
3147 }
3148 ETHER_UNLOCK(ec);
3149
3150 ifp->if_flags &= ~IFF_ALLMULTI;
3151 goto setit;
3152
3153 allmulti:
3154 ifp->if_flags |= IFF_ALLMULTI;
3155 sc->sc_rfcr |= RFCR_AAM;
3156
3157 setit:
3158 #define FILTER_EMIT(addr, data) \
3159 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3160 delay(1); \
3161 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3162 delay(1)
3163
3164 /*
3165 * Disable receive filter, and program the node address.
3166 */
3167 cp = CLLADDR(ifp->if_sadl);
3168 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3169 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3170 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3171
3172 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3173 /*
3174 * Program the multicast hash table.
3175 */
3176 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3177 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3178 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3179 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3180 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3181 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3182 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3183 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3184 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3185 SIP_SIS900_REV(sc, SIS_REV_960) ||
3186 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3187 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3188 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3189 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3190 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3191 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3192 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3193 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3194 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3195 }
3196 }
3197 #undef FILTER_EMIT
3198
3199 /*
3200 * Re-enable the receiver filter.
3201 */
3202 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3203 }
3204
3205 /*
3206 * sip_dp83815_set_filter:
3207 *
3208 * Set up the receive filter.
3209 */
3210 static void
3211 sipcom_dp83815_set_filter(struct sip_softc *sc)
3212 {
3213 bus_space_tag_t st = sc->sc_st;
3214 bus_space_handle_t sh = sc->sc_sh;
3215 struct ethercom *ec = &sc->sc_ethercom;
3216 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3217 struct ether_multi *enm;
3218 const uint8_t *cp;
3219 struct ether_multistep step;
3220 uint32_t crc, hash, slot, bit;
3221 #define MCHASH_NWORDS_83820 128
3222 #define MCHASH_NWORDS_83815 32
3223 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3224 uint16_t mchash[MCHASH_NWORDS];
3225 int i;
3226
3227 /*
3228 * Initialize the prototype RFCR.
3229 * Enable the receive filter, and accept on
3230 * Perfect (destination address) Match
3231 * If IFF_BROADCAST, also accept all broadcast packets.
3232 * If IFF_PROMISC, accept all unicast packets (and later, set
3233 * IFF_ALLMULTI and accept all multicast, too).
3234 */
3235 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3236 if (ifp->if_flags & IFF_BROADCAST)
3237 sc->sc_rfcr |= RFCR_AAB;
3238 if (ifp->if_flags & IFF_PROMISC) {
3239 sc->sc_rfcr |= RFCR_AAP;
3240 goto allmulti;
3241 }
3242
3243 /*
3244 * Set up the DP83820/DP83815 multicast address filter by
3245 * passing all multicast addresses through a CRC generator,
3246 * and then using the high-order 11/9 bits as an index into
3247 * the 2048/512 bit multicast hash table. The high-order
3248 * 7/5 bits select the slot, while the low-order 4 bits
3249 * select the bit within the slot. Note that only the low
3250 * 16-bits of each filter word are used, and there are
3251 * 128/32 filter words.
3252 */
3253
3254 memset(mchash, 0, sizeof(mchash));
3255
3256 ifp->if_flags &= ~IFF_ALLMULTI;
3257 ETHER_FIRST_MULTI(step, ec, enm);
3258 if (enm == NULL)
3259 goto setit;
3260 while (enm != NULL) {
3261 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3262 /*
3263 * We must listen to a range of multicast addresses.
3264 * For now, just accept all multicasts, rather than
3265 * trying to set only those filter bits needed to match
3266 * the range. (At this time, the only use of address
3267 * ranges is for IP multicast routing, for which the
3268 * range is big enough to require all bits set.)
3269 */
3270 goto allmulti;
3271 }
3272
3273 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3274
3275 if (sc->sc_gigabit) {
3276 /* Just want the 11 most significant bits. */
3277 hash = crc >> 21;
3278 } else {
3279 /* Just want the 9 most significant bits. */
3280 hash = crc >> 23;
3281 }
3282
3283 slot = hash >> 4;
3284 bit = hash & 0xf;
3285
3286 /* Set the corresponding bit in the hash table. */
3287 mchash[slot] |= 1 << bit;
3288
3289 ETHER_NEXT_MULTI(step, enm);
3290 }
3291 sc->sc_rfcr |= RFCR_MHEN;
3292 goto setit;
3293
3294 allmulti:
3295 ifp->if_flags |= IFF_ALLMULTI;
3296 sc->sc_rfcr |= RFCR_AAM;
3297
3298 setit:
3299 #define FILTER_EMIT(addr, data) \
3300 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3301 delay(1); \
3302 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3303 delay(1)
3304
3305 /*
3306 * Disable receive filter, and program the node address.
3307 */
3308 cp = CLLADDR(ifp->if_sadl);
3309 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3310 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3311 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3312
3313 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3314 int nwords =
3315 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3316 /*
3317 * Program the multicast hash table.
3318 */
3319 for (i = 0; i < nwords; i++) {
3320 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3321 }
3322 }
3323 #undef FILTER_EMIT
3324 #undef MCHASH_NWORDS
3325 #undef MCHASH_NWORDS_83815
3326 #undef MCHASH_NWORDS_83820
3327
3328 /*
3329 * Re-enable the receiver filter.
3330 */
3331 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3332 }
3333
3334 /*
3335 * sip_dp83820_mii_readreg: [mii interface function]
3336 *
3337 * Read a PHY register on the MII of the DP83820.
3338 */
3339 static int
3340 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3341 {
3342 struct sip_softc *sc = device_private(self);
3343
3344 if (sc->sc_cfg & CFG_TBI_EN) {
3345 bus_addr_t tbireg;
3346
3347 if (phy != 0)
3348 return -1;
3349
3350 switch (reg) {
3351 case MII_BMCR: tbireg = SIP_TBICR; break;
3352 case MII_BMSR: tbireg = SIP_TBISR; break;
3353 case MII_ANAR: tbireg = SIP_TANAR; break;
3354 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3355 case MII_ANER: tbireg = SIP_TANER; break;
3356 case MII_EXTSR:
3357 /*
3358 * Don't even bother reading the TESR register.
3359 * The manual documents that the device has
3360 * 1000baseX full/half capability, but the
3361 * register itself seems read back 0 on some
3362 * boards. Just hard-code the result.
3363 */
3364 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3365 return 0;
3366
3367 default:
3368 return 0;
3369 }
3370
3371 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3372 if (tbireg == SIP_TBISR) {
3373 /* LINK and ACOMP are switched! */
3374 int sr = *val;
3375
3376 *val = 0;
3377 if (sr & TBISR_MR_LINK_STATUS)
3378 *val |= BMSR_LINK;
3379 if (sr & TBISR_MR_AN_COMPLETE)
3380 *val |= BMSR_ACOMP;
3381
3382 /*
3383 * The manual claims this register reads back 0
3384 * on hard and soft reset. But we want to let
3385 * the gentbi driver know that we support auto-
3386 * negotiation, so hard-code this bit in the
3387 * result.
3388 */
3389 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3390 }
3391
3392 return 0;
3393 }
3394
3395 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3396 val);
3397 }
3398
3399 /*
3400 * sip_dp83820_mii_writereg: [mii interface function]
3401 *
3402 * Write a PHY register on the MII of the DP83820.
3403 */
3404 static int
3405 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3406 {
3407 struct sip_softc *sc = device_private(self);
3408
3409 if (sc->sc_cfg & CFG_TBI_EN) {
3410 bus_addr_t tbireg;
3411
3412 if (phy != 0)
3413 return -1;
3414
3415 switch (reg) {
3416 case MII_BMCR: tbireg = SIP_TBICR; break;
3417 case MII_ANAR: tbireg = SIP_TANAR; break;
3418 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3419 default:
3420 return 0;
3421 }
3422
3423 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3424 return 0;
3425 }
3426
3427 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3428 val);
3429 }
3430
3431 /*
3432 * sip_dp83820_mii_statchg: [mii interface function]
3433 *
3434 * Callback from MII layer when media changes.
3435 */
3436 static void
3437 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3438 {
3439 struct sip_softc *sc = ifp->if_softc;
3440 struct mii_data *mii = &sc->sc_mii;
3441 uint32_t cfg, pcr;
3442
3443 /*
3444 * Get flow control negotiation result.
3445 */
3446 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3447 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3448 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3449 mii->mii_media_active &= ~IFM_ETH_FMASK;
3450 }
3451
3452 /*
3453 * Update TXCFG for full-duplex operation.
3454 */
3455 if ((mii->mii_media_active & IFM_FDX) != 0)
3456 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3457 else
3458 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3459
3460 /*
3461 * Update RXCFG for full-duplex or loopback.
3462 */
3463 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3464 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3465 sc->sc_rxcfg |= RXCFG_ATX;
3466 else
3467 sc->sc_rxcfg &= ~RXCFG_ATX;
3468
3469 /*
3470 * Update CFG for MII/GMII.
3471 */
3472 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3473 cfg = sc->sc_cfg | CFG_MODE_1000;
3474 else
3475 cfg = sc->sc_cfg;
3476
3477 /*
3478 * 802.3x flow control.
3479 */
3480 pcr = 0;
3481 if (sc->sc_flowflags & IFM_FLOW) {
3482 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3483 pcr |= sc->sc_rx_flow_thresh;
3484 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3485 pcr |= PCR_PSEN | PCR_PS_MCAST;
3486 }
3487
3488 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3489 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3490 sc->sc_txcfg);
3491 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3492 sc->sc_rxcfg);
3493 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3494 }
3495
3496 /*
3497 * sip_mii_bitbang_read: [mii bit-bang interface function]
3498 *
3499 * Read the MII serial port for the MII bit-bang module.
3500 */
3501 static uint32_t
3502 sipcom_mii_bitbang_read(device_t self)
3503 {
3504 struct sip_softc *sc = device_private(self);
3505
3506 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3507 }
3508
3509 /*
3510 * sip_mii_bitbang_write: [mii big-bang interface function]
3511 *
3512 * Write the MII serial port for the MII bit-bang module.
3513 */
3514 static void
3515 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3516 {
3517 struct sip_softc *sc = device_private(self);
3518
3519 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3520 }
3521
3522 /*
3523 * sip_sis900_mii_readreg: [mii interface function]
3524 *
3525 * Read a PHY register on the MII.
3526 */
3527 static int
3528 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3529 {
3530 struct sip_softc *sc = device_private(self);
3531 uint32_t enphy;
3532
3533 /*
3534 * The PHY of recent SiS chipsets is accessed through bitbang
3535 * operations.
3536 */
3537 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3538 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3539 phy, reg, val);
3540
3541 #ifndef SIS900_MII_RESTRICT
3542 /*
3543 * The SiS 900 has only an internal PHY on the MII. Only allow
3544 * MII address 0.
3545 */
3546 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3547 return -1;
3548 #endif
3549
3550 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3551 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3552 ENPHY_RWCMD | ENPHY_ACCESS);
3553 do {
3554 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3555 } while (enphy & ENPHY_ACCESS);
3556
3557 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3558 return 0;
3559 }
3560
3561 /*
3562 * sip_sis900_mii_writereg: [mii interface function]
3563 *
3564 * Write a PHY register on the MII.
3565 */
3566 static int
3567 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3568 {
3569 struct sip_softc *sc = device_private(self);
3570 uint32_t enphy;
3571
3572 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3573 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3574 phy, reg, val);
3575 }
3576
3577 #ifndef SIS900_MII_RESTRICT
3578 /*
3579 * The SiS 900 has only an internal PHY on the MII. Only allow
3580 * MII address 0.
3581 */
3582 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3583 return -1;
3584 #endif
3585
3586 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3587 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3588 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3589 do {
3590 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3591 } while (enphy & ENPHY_ACCESS);
3592
3593 return 0;
3594 }
3595
3596 /*
3597 * sip_sis900_mii_statchg: [mii interface function]
3598 *
3599 * Callback from MII layer when media changes.
3600 */
3601 static void
3602 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3603 {
3604 struct sip_softc *sc = ifp->if_softc;
3605 struct mii_data *mii = &sc->sc_mii;
3606 uint32_t flowctl;
3607
3608 /*
3609 * Get flow control negotiation result.
3610 */
3611 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3612 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3613 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3614 mii->mii_media_active &= ~IFM_ETH_FMASK;
3615 }
3616
3617 /*
3618 * Update TXCFG for full-duplex operation.
3619 */
3620 if ((mii->mii_media_active & IFM_FDX) != 0)
3621 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3622 else
3623 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3624
3625 /*
3626 * Update RXCFG for full-duplex or loopback.
3627 */
3628 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3629 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3630 sc->sc_rxcfg |= RXCFG_ATX;
3631 else
3632 sc->sc_rxcfg &= ~RXCFG_ATX;
3633
3634 /*
3635 * Update IMR for use of 802.3x flow control.
3636 */
3637 if (sc->sc_flowflags & IFM_FLOW) {
3638 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3639 flowctl = FLOWCTL_FLOWEN;
3640 } else {
3641 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3642 flowctl = 0;
3643 }
3644
3645 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3646 sc->sc_txcfg);
3647 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3648 sc->sc_rxcfg);
3649 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3650 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3651 }
3652
3653 /*
3654 * sip_dp83815_mii_readreg: [mii interface function]
3655 *
3656 * Read a PHY register on the MII.
3657 */
3658 static int
3659 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3660 {
3661 struct sip_softc *sc = device_private(self);
3662 uint32_t data;
3663
3664 /*
3665 * The DP83815 only has an internal PHY. Only allow
3666 * MII address 0.
3667 */
3668 if (phy != 0)
3669 return -1;
3670
3671 /*
3672 * Apparently, after a reset, the DP83815 can take a while
3673 * to respond. During this recovery period, the BMSR returns
3674 * a value of 0. Catch this -- it's not supposed to happen
3675 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3676 * PHY to come back to life.
3677 *
3678 * This works out because the BMSR is the first register
3679 * read during the PHY probe process.
3680 */
3681 do {
3682 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3683 } while (reg == MII_BMSR && data == 0);
3684
3685 *val = data & 0xffff;
3686 return 0;
3687 }
3688
3689 /*
3690 * sip_dp83815_mii_writereg: [mii interface function]
3691 *
3692 * Write a PHY register to the MII.
3693 */
3694 static int
3695 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3696 {
3697 struct sip_softc *sc = device_private(self);
3698
3699 /*
3700 * The DP83815 only has an internal PHY. Only allow
3701 * MII address 0.
3702 */
3703 if (phy != 0)
3704 return -1;
3705
3706 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3707
3708 return 0;
3709 }
3710
3711 /*
3712 * sip_dp83815_mii_statchg: [mii interface function]
3713 *
3714 * Callback from MII layer when media changes.
3715 */
3716 static void
3717 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3718 {
3719 struct sip_softc *sc = ifp->if_softc;
3720
3721 /*
3722 * Update TXCFG for full-duplex operation.
3723 */
3724 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3725 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3726 else
3727 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3728
3729 /*
3730 * Update RXCFG for full-duplex or loopback.
3731 */
3732 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3733 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3734 sc->sc_rxcfg |= RXCFG_ATX;
3735 else
3736 sc->sc_rxcfg &= ~RXCFG_ATX;
3737
3738 /*
3739 * XXX 802.3x flow control.
3740 */
3741
3742 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3743 sc->sc_txcfg);
3744 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3745 sc->sc_rxcfg);
3746
3747 /*
3748 * Some DP83815s experience problems when used with short
3749 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3750 * sequence adjusts the DSP's signal attenuation to fix the
3751 * problem.
3752 */
3753 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3754 uint32_t reg;
3755
3756 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3757
3758 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3759 reg &= 0x0fff;
3760 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3761 delay(100);
3762 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3763 reg &= 0x00ff;
3764 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3765 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3766 0x00e8);
3767 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3768 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3769 reg | 0x20);
3770 }
3771
3772 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3773 }
3774 }
3775
3776 static void
3777 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3778 const struct pci_attach_args *pa, uint8_t *enaddr)
3779 {
3780 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3781 uint8_t cksum, *e, match;
3782 int i;
3783
3784 /*
3785 * EEPROM data format for the DP83820 can be found in
3786 * the DP83820 manual, section 4.2.4.
3787 */
3788
3789 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3790
3791 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3792 match = ~(match - 1);
3793
3794 cksum = 0x55;
3795 e = (uint8_t *)eeprom_data;
3796 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3797 cksum += *e++;
3798
3799 if (cksum != match)
3800 printf("%s: Checksum (%x) mismatch (%x)",
3801 device_xname(sc->sc_dev), cksum, match);
3802
3803 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3804 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3805 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3806 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3807 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3808 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3809 }
3810
3811 static void
3812 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3813 {
3814 int i;
3815
3816 /*
3817 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3818 * a reason, but I don't know it.
3819 */
3820 for (i = 0; i < 10; i++)
3821 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3822 }
3823
3824 static void
3825 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3826 const struct pci_attach_args *pa, uint8_t *enaddr)
3827 {
3828 uint16_t myea[ETHER_ADDR_LEN / 2];
3829
3830 switch (sc->sc_rev) {
3831 case SIS_REV_630S:
3832 case SIS_REV_630E:
3833 case SIS_REV_630EA1:
3834 case SIS_REV_630ET:
3835 case SIS_REV_635:
3836 /*
3837 * The MAC address for the on-board Ethernet of
3838 * the SiS 630 chipset is in the NVRAM. Kick
3839 * the chip into re-loading it from NVRAM, and
3840 * read the MAC address out of the filter registers.
3841 */
3842 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3843
3844 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3845 RFCR_RFADDR_NODE0);
3846 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3847 0xffff;
3848
3849 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3850 RFCR_RFADDR_NODE2);
3851 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3852 0xffff;
3853
3854 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3855 RFCR_RFADDR_NODE4);
3856 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3857 0xffff;
3858 break;
3859
3860 case SIS_REV_960:
3861 {
3862 #define SIS_SET_EROMAR(x, y) \
3863 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3864 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3865
3866 #define SIS_CLR_EROMAR(x, y) \
3867 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3868 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3869
3870 int waittime, i;
3871
3872 /* Allow to read EEPROM from LAN. It is shared
3873 * between a 1394 controller and the NIC and each
3874 * time we access it, we need to set SIS_EECMD_REQ.
3875 */
3876 SIS_SET_EROMAR(sc, EROMAR_REQ);
3877
3878 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3879 /* Force EEPROM to idle state. */
3880
3881 /*
3882 * XXX-cube This is ugly.
3883 * I'll look for docs about it.
3884 */
3885 SIS_SET_EROMAR(sc, EROMAR_EECS);
3886 sipcom_sis900_eeprom_delay(sc);
3887 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3888 SIS_SET_EROMAR(sc, EROMAR_EESK);
3889 sipcom_sis900_eeprom_delay(sc);
3890 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3891 sipcom_sis900_eeprom_delay(sc);
3892 }
3893 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3894 sipcom_sis900_eeprom_delay(sc);
3895 bus_space_write_4(sc->sc_st, sc->sc_sh,
3896 SIP_EROMAR, 0);
3897
3898 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3899 SIP_EROMAR) & EROMAR_GNT) {
3900 sipcom_read_eeprom(sc,
3901 SIP_EEPROM_ETHERNET_ID0 >> 1,
3902 sizeof(myea) / sizeof(myea[0]),
3903 myea);
3904 break;
3905 }
3906 DELAY(1);
3907 }
3908
3909 /*
3910 * Set SIS_EECTL_CLK to high, so a other master
3911 * can operate on the i2c bus.
3912 */
3913 SIS_SET_EROMAR(sc, EROMAR_EESK);
3914
3915 /* Refuse EEPROM access by LAN */
3916 SIS_SET_EROMAR(sc, EROMAR_DONE);
3917 } break;
3918
3919 default:
3920 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3921 sizeof(myea) / sizeof(myea[0]), myea);
3922 }
3923
3924 enaddr[0] = myea[0] & 0xff;
3925 enaddr[1] = myea[0] >> 8;
3926 enaddr[2] = myea[1] & 0xff;
3927 enaddr[3] = myea[1] >> 8;
3928 enaddr[4] = myea[2] & 0xff;
3929 enaddr[5] = myea[2] >> 8;
3930 }
3931
3932 /* Table and macro to bit-reverse an octet. */
3933 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3934 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3935
3936 static void
3937 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3938 const struct pci_attach_args *pa, uint8_t *enaddr)
3939 {
3940 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3941 uint8_t cksum, *e, match;
3942 int i;
3943
3944 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3945 sizeof(eeprom_data[0]), eeprom_data);
3946
3947 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3948 match = ~(match - 1);
3949
3950 cksum = 0x55;
3951 e = (uint8_t *)eeprom_data;
3952 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3953 cksum += *e++;
3954
3955 if (cksum != match)
3956 printf("%s: Checksum (%x) mismatch (%x)",
3957 device_xname(sc->sc_dev), cksum, match);
3958
3959 /*
3960 * Unrolled because it makes slightly more sense this way.
3961 * The DP83815 stores the MAC address in bit 0 of word 6
3962 * through bit 15 of word 8.
3963 */
3964 ea = &eeprom_data[6];
3965 enaddr[0] = ((*ea & 0x1) << 7);
3966 ea++;
3967 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3968 enaddr[1] = ((*ea & 0x1FE) >> 1);
3969 enaddr[2] = ((*ea & 0x1) << 7);
3970 ea++;
3971 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3972 enaddr[3] = ((*ea & 0x1FE) >> 1);
3973 enaddr[4] = ((*ea & 0x1) << 7);
3974 ea++;
3975 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3976 enaddr[5] = ((*ea & 0x1FE) >> 1);
3977
3978 /*
3979 * In case that's not weird enough, we also need to reverse
3980 * the bits in each byte. This all actually makes more sense
3981 * if you think about the EEPROM storage as an array of bits
3982 * being shifted into bytes, but that's not how we're looking
3983 * at it here...
3984 */
3985 for (i = 0; i < 6 ;i++)
3986 enaddr[i] = bbr(enaddr[i]);
3987 }
3988
3989 /*
3990 * sip_mediastatus: [ifmedia interface function]
3991 *
3992 * Get the current interface media status.
3993 */
3994 static void
3995 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3996 {
3997 struct sip_softc *sc = ifp->if_softc;
3998
3999 if (!device_is_active(sc->sc_dev)) {
4000 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
4001 ifmr->ifm_status = 0;
4002 return;
4003 }
4004 ether_mediastatus(ifp, ifmr);
4005 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4006 sc->sc_flowflags;
4007 }
4008